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Summary

Improving the knowledge of the mechanics of small-scale structures is important in many
microelectromechanical and nanoelectromechanical systems. Classical continuum mechanics cannot
be utilised to determine the mechanical response of small-scale structures, since size effects become
significant at small-scale levels. Modified elasticity models have been introduced for the mechanics
of ultra-small structures. It has recently been shown that higher-order models, such as nonlocal strain
gradient and integral models, are more capable of incorporating scale influences on the mechanical
characteristics of small-scale structures than the classical continuum models. In addition, some scale-
dependent models are restricted to a specific range of sizes. For instance, nonlocal effects on the
mechanical behaviour vanish after a particular length. Scrutinising the available literature indicates
that the large amplitude vibrations of small-scale beams and plates using two-parameter scale-
dependent models and nonlocal integral models have not been investigated yet. In addition, no two-
parameter continuum model with geometrical nonlinearity has been introduced to analyse the
influence of a geometrical imperfection on the vibration of small-scale beams. Analysing these
systems would provide useful results for small-scale mass sensors, resonators, energy harvesters and

actuators using small-scale beams and plates.

In this thesis, scale-dependent nonlinear continuum models are developed for the time-dependent
deformation behaviour of beam-shaped structures. The models contain two completely different size
parameters, which make it able to describe both the reduction and increase in the total stiffness. The
first size parameter accounts for the nonlocality of the stress, while the second one describes the strain
gradient effect. Geometrical nonlinearity on the vibrations of small-scale beams is captured through
the strain-displacement equations. The small-scale beam is assumed to possess geometrical
imperfections. Hamilton’s approach is utilised for deriving the corresponding differential equations.
The coupled nonlinear motion equations are solved numerically employing Galerkin’s method of
discretisation and the continuation scheme of solution. It is concluded that geometrical imperfections



would substantially alter the nonlinear vibrational response of small-scale beams. When there is a
relatively small geometrical imperfection in the structure, the small-scale beam exhibits a hardening-
type nonlinearity while a combined hardening- and softening-type nonlinearity is found for beams
with large geometrical imperfections. The strain gradient influence is associated with an enhancement
in the beam stiffness, leading to higher nonlinear resonance frequencies. By contrast, the stress
nonlocality is related to a remarkable reduction in the total stiffness, and consequently lower nonlinear
resonance frequencies. In addition, a scale-dependent model of beams is proposed in this thesis to
analyse the influence of viscoelasticity and geometrical nonlinearity on the vibration of small-scale
beams. A nonlocal theory incorporating strain gradients is used for describing the problem in a
mathematical form. Implementing the classical continuum model of beams causes a substantial
overestimation in the beam vibrational amplitude. In addition, the nonlinear resonance frequency
computed by the nonlocal model is less than that obtained via the classical model. When the forcing
amplitude is comparatively low, the linear and nonlinear damping mechanisms predict almost the
same results. However, when forcing amplitudes become larger, the role of nonlinear viscoelasticity
in the vibrational response increases. The resonance frequency of the scale-dependent model with a

nonlinear damping mechanism is lower than that of the linear one.

To simulate scale effects on the mechanical behaviour of ultra-small plates, a novel scale-dependent
model of plates is developed. The static deflection and oscillation of rectangular plates at small-scale
levels are analysed via a two-dimensional stress-driven nonlocal integral model. A reasonable kernel
function, which fulfil all necessary criteria, is introduced for rectangular small-scale plates for the
first time. Hamilton and Leibniz integral rules are used for deriving the non-classical motion
equations of the structure. Moreover, two types of edge conditions are obtained for the linear vibration.
The first type is the well-known classical boundary condition while the second type is the non-
classical edge condition associated with the curvature nonlocality. The differential quadrature
technique as a powerful numerical approach for implementing complex boundary conditions is used.

It is found that while the Laplacian-based nonlocal model cannot predict size influences on the
iv



bending of small-scale plates subject to uniform lateral loading, the bending response is remarkably
size-dependent based on the stress-driven plate model. When the size influence increases, the
difference between the resonance frequency obtained via the stress-driven model and that of other
theories substantially increases. Moreover, the resonance frequency is higher when the curvature
nonlocality increases due to an enhancement in the plate stiffness. It is also concluded that more
constraint on the small-scale plate causes the system to vibrate at a relatively high frequency. In
addition to the linear vibration, the time-dependent large deformation of small-scale plates
incorporating size influences is studied. The stress-driven theory is employed to formulate the
problem at small-scale levels. Geometrical nonlinearity effects are taken into account via von
Karman’s theory. Three types of edge conditions including one conventional and two non-
conventional conditions are presented for nonlinear vibrations. The first non-classical edge condition
is associated with the curvature nonlocality while the second one is related to nonlocal in-plane strain
components. A differential quadrature technique and an appropriate iteration method are used to
compute the nonlinear natural frequencies and maximum in-plane displacements. Molecular
dynamics simulations are also performed for verification purposes. Nonlinear frequency ratios are
increased when vibration amplitudes increase. Furthermore, the curvature nonlocality would cause
the small-scale pate to vibrate at a lower nonlinear frequency ratio. By contrast, the nonlocal in-plane

strain has the opposite effect on the small-scale system.

The outcomes from this thesis will be useful for engineers to design vibrating small-scale resonators

and sensors using ultra-small plates.
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Chapter 1
Introduction

Chapter overview

This chapter provides an introductory background and motivation about the research conducted in
this thesis. Next, an introduction about size-dependent theoretical tools such as nonlocal and strain
gradient elasticity, and the basic concept of molecular dynamics are introduced. The scope, aims and
objectives of the present work are then specified. The overall structure of this thesis is presented at

the end of this chapter.



1 Introduction

1.1 Motivation

Flexible thin-walled structures are often used in mechanical and civil engineering applications.
The deformation behaviour of flexible thin-walled structures, such as elastic plates and beams at both
macroscale and small-scale levels, has been the focus of many research studies in the literature due
to their applications in biomedical, civil, and mechanical engineering. Developing theoretical models
using continuum mechanics is beneficial to predicting the deformation behaviour of these thin-walled
structures. The deformation can either be amplified or mitigated depending on the application. When
the deformation is large compared to the thickness of the structure, theories based on a linear response
are not valid, and theories that account for non-linearities in the physics need to be utilised. As a ‘rule-
of-thumb’, linear theoretical models are only applicable for deformations less than 5% of the
thickness of a structure [1]. For MEMS and other ultra-small devices, this threshold is frequently
exceeded, and impresses the need for utilising non-linear structural mechanics models. For small-

scale structures, developing a modified continuum model that incorporates ‘size effects’ is essential.

Nanoscale structures including nanoscale rods , rings [2], beams [3-5], plates [6, 7], and shells [8,
9] have been utilised as the structural parts of nanoelectromechanical systems (NEMS).
Nanomechanical resonators [10, 11], nanoscale mass sensors [12], electromechanical nano-actuators
[13], and nano-energy harvesters [14] are examples of these NEMS-based devices. These nanoscale
devices have applications in areas of nanotechnology such as nano-electronics, nano-machines and
nano-medicine. To achieve a better performance of nano-devices, a better understanding of the
mechanical characteristics of nanostructures is important, as these ultra-small structures are usually
subject to mechanical loads, pressure or stresses. In addition, in nano-devices such as nanoscale
generators [15, 16], the mechanical energy is converted into electricity, hence an analysis on the

electro-mechanical behaviour is essential.



Performing accurate experimental measurements at nanoscale levels is challenging, and therefore
continuum-based modelling and molecular dynamics (MD) simulations of nanostructures have
attracted a considerable amount of attention. Using continuum-based models and the results of MD
simulations, the number of required experimental measurements for the validations of models can be
reduced. Compared to MD simulations, the continuum modelling of nanostructures is less
computationally expensive. Particularly, performing MD simulations on a nanostructure with a large
number of molecules requires a high computational effort. Using continuum models, the mechanical
characteristics can be formulated and estimated. In this way, the computational costs of MD
simulations can be reduced by eliminating unnecessary simulations. In addition, the results from
continuum-based modelling of nanostructures complement and can help clarify the results of
experimental measurements and molecular dynamics simulations.

Accounting for scale effects has a crucial role in the mechanics of nanostructures, as opposed to
in macrostructures [17, 18]. Thus, traditional continuum-based theories, which are scale-free, have
been modified in order to capture size effects. Various size-dependent theories for examining the
mechanical characteristics of nanostructures have been introduced in recent years. Since the
mechanical behaviour of structures at microscale levels [19, 20] is different from that observed at
nanoscale levels, the modified continuum-based theories of microstructures are different from those
of nanostructures [21]. In general, structural stiffness hardening is observed at microscale levels
whereas the mechanics of nanostructures is usually governed by stiffness softening. Therefore, size-
dependent models, including the couple stress [22, 23] and strain gradient elasticities [24], are often
used to analyse the mechanical behaviour of microstructures including microbeams, microbars, and
microplates, while the nonlocal elasticity theory [25, 26] is applied to nanoscale structures. However,
to have a more general size-dependent continuum-based model capable of predicting size effects at
different small scales, a combination of these modified elasticity theories [27] can be employed. In

addition, more recently, a number of nonlocal integral continuum models [28, 29] with non-classical



constitutive boundary conditions have been used for ultra-small structures, which do not exhibit the

drawbacks of conventional scale-dependent models.

1.2 Size-dependent continuum mechanics

In this section, size-dependent [30, 31] elasticity theories, including nonlocal elasticity and
nonlocal strain gradient elasticity, which are commonly applied to nanoscale structures, are reviewed.
Firstly, the basic concept of nonlocal elasticity is clarified, and then both the integral and differential
nonlocal constitutive relations are discussed. Finally, the theory of the nonlocal strain gradient
elasticity is introduced.

The main advantage of advanced elasticity approaches such as nonlocal strain gradient theory
(NSGT) and stress-driven integral elasticity (SDIE) compared to the classical elasticity theory (CET)
is size dependency. The CET is scale-free, and thus can only predict size-independent mechanical
characteristics. As a result, the application of this theory to small-scale beam and plate structures is
not recommended. By contrast, the NSGT and SDIE contain at least on scale parameter that accounts
for size effects. These scale-dependent theories are valid at a wide range of sizes from ultrasmall to
macroscale levels. However, the computational costs of the NSGT and SDIE are higher than the CET.
The NSGT has two size parameters (one related to stress nonlocalities and the other associated with
strain gradients) while one parameter illustrates size effects in the SDIE. On the other side,
constitutive boundary conditions are captured in the SDIE whereas the NSGT and CET do not include
these extra boundary conditions.

Consider a carbon nanotube of length L as a small-scale beam. The fundamental building block
of the carbon nanotube is a carbon hexagon with bond length a. Both internal and external
characteristic lengths (i.e. a and L) affect the mechanical behaviour of the carbon nanotube, in contrast

to large-scale tubes, where only the external characteristic length (L) is important. In nonlocal
elasticity, mechanical stress (a{}-l) is a function of strain components at all locations. From the

mathematical point of view, stress is related to strain by an integral relation, which contains the ratio

4



of ato L as a scale parameter. In the next subsection, more details are given on how to capture size

effects using advanced elasticity models.

1.2.1 Nonlocal elasticity theory

The nonlocal elasticity theory was introduced by Eringen [32, 33], almost two decades before the
invention of carbon nanotubes (CNTs). However, this valuable theory did not attract much attention
until the synthesis of nanostructures such as CNTs and graphene sheets (GSs) emerged. Peddieson et
al. [34] first suggested that the theory can be used to analyse the size-dependent mechanical response
of nanostructures. In the classical elasticity theory, which is not able to predict size effects, the stress
at a location is only dependent on the strain at that location. By contrast with classical elasticity,
strains at all locations affect the stress at one arbitrary location in nonlocal elasticity as shown in Fig.
1. This basic assumption allows this theory to capture intermolecular interactions, leading to a size-
dependent theory of elasticity. Ignoring body forces, the nonlocal integral constitutive relation is

given by
ot = [[f, @(Ix — x'|,mak,dv, o

where ai’}l, at:, ¢ and n stand for the nonlocal stress, local stress, kernel function and small-scale

ij
coefficient, respectively; |x — x'| is the distance from x to x’, and V denotes the volume of the body.

The nonlocal coefficient is expressed as

epa

n=-- 2

L
in which eo, a and L are respectively the calibration coefficient, and internal and external characteristic

lengths. Each nanostructure has internal and external characteristic lengths. For example, the c-c bond
length in graphene is commonly chosen as the internal characteristic length, as shown in Fig. 2. The
calibration coefficient is obtained either from experimental measurements or molecular dynamics
(MD). The classical (local) stress is obtained as

Uilj = Cijki€rir 3)
where Ciju and &, stand for the elasticity tensor and the strain tensor, respectively.

5



Fig. 1. Stress at a spot of a nanostructure is dependent on strains at all spots according to the nonlocal elasticity theory.

a

|4 ;l

) L

Fig. 2. Internal characteristic length (a) as well as the external characteristic length (L) for graphene.

Since the nonlocal constitutive Eq. (1) must reduce to that of the classical elasticity theory for very

large external characteristic length, the kernel function (nonlocal modulus) has the following property

limg (lx = x| ) = 8(1x - x']). (4)
Here, § denotes the Dirac delta function. Eringen [35] introduced some kernel functions for nonlocal

problems. One of the most popular kernel functions is given by

_ 2.2\—1 |x|
o(lxl,n) = 2rL*n*)" K, (Ln), (5)
in which Ko denotes the modified Bessel function. Since the implementation of the integral nonlocal

constitutive equation, shown in Eq. (1), in formulating the mechanics of nanostructures is difficult, a

nonlocal operator (L,,;) with the following property is introduced

Lyo(lx —x'[,n) = 6(|lx — x']). (6)

Applying the nonlocal operator to Eg. (1), one can obtain
6



Ludjj = oyj. ©
Using the above equations, Eringen [33, 35] obtained the following relation for the nonlocal operator
Ly (*) = [1 = (epa)?V?](). )
Here, V2 is the Laplace operator. Equations (7) and (8) have been extensively used to develop size-

dependent continuum models in order to estimate the mechanical response of nanostructures [26, 36-

38].

1.2.2 Nonlocal strain gradient elasticity

There are two limitations associated with the nonlocal elasticity theory. Firstly, nonlocal effects
disappear after a certain length. For instance, scale effects predicted by the nonlocal elasticity on the
axial vibration of uniform nanorods disappear for L>20 nm [37]. Secondly, nonlocal elasticity can
only predict stiffness softening of small-scale structures. However, stiffness hardening has been
observed in some small-scale structures, especially at higher lengths. This stiffness hardening can be
estimated incorporating surface effects [39-43] or strain gradients [44-47]. For example, it was found
that the pure nonlocal plate model cannot completely predict the buckling instability of circular
graphene sheets subject to axisymmetric radial loading [48] by employing MD simulations. To
overcome the shortcomings of the nonlocal elasticity, Lim et al. [27] introduced a nonlocal strain
gradient theory (NSGT) using two kernel functions. The new theory is able to describe both stiffness
softening and hardening at small-scale levels. In addition, the scale effect predicted by the NSGT
appears in a wider range of lengths in comparison with nonlocal effects. However, the computational
costs of the nonlocal elasticity is less than those of the NSGT due to the fact that strain gradient terms
are also incorporated.

According to the nonlocal theory of strain gradients, the basic relation of small-scale structures

can be written as

ag-l(o) =[], HO(Ix - x'|,X,(l?))Cijkz€kde. ©)
O'Z]l.l(l) = €§g fffV Hl(lx - x'|,)(1($))Cijkl\7£kldV. (10)
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Here al.']l.l(o) and ag.l(l) show the nonlocal stresses of zeroth and first orders; Ho and Hi represent the
nonlocal moduli corresponding to o7} and o7;'?, respectively; 7, £, x<) and x)’ are the

gradient operator, strain gradient constant, zeroth- and first-order nonlocal constants, respectively.

For nonlocal stresses, one can write

nl(t) _ _nl(0) nl(1)
0;j =0y —Val.j . (11)

In the above relation, ai’}l(t) denotes the total nonlocal stress. Furthermore, the nonlocal parameters

are defined by

(0) _ €otic
nl — loc (12)
M _ etic
nl — Loc (13)

in which eg and e; are two calibration parameters associated with the zeroth-order and first-order
nonlocal scale coefficients, respectively. Following Eringen [35] and assuming e=ep=e1, Lim et al.

[27] used a differential form for the scale-dependent basic relation of small-scale structures given by

l l
Ly0]j" = Lggai;. (14)

Here Ln and Lsg represent the nonlocal and strain gradient operators which are defined by

Lu(*) = (%) — (e;)?V?(%),

Leg(¥) = (%) — €3,V (). (15)
It should be noticed that the effect of axial inertia (in-plane inertia) on the mechanics of beams

(plates) is negligible when the maximum deformation is small enough. However, in large amplitude

problems, these effects become significant since large displacements in one direction can induce

deformation along other directions as well. In the present work, the equation of motion in axial

direction (in-plane directions) is derived in conjunction with the main motion equation of beams

(plates), and then a system of nonlinear coupled equations are solved using a numerical technique

such as the differential quadrature or Galerkin methods.



1.3 Molecular dynamics

Molecular dynamics (MD) is a powerful approach to determine the mechanical, electrical and
thermal properties of ultra-small structures. In this method, the positions of the molecules of an ultra-
small system are estimated by solving Newton's motion equations at each time step of numerical
simulation. The forces, which affect the motion of each particle, are calculated from the appropriate
potential energies, which include all intermolecular interactions. MD simulations can be performed
to indicate the accuracy of the results of the developed advanced continuum model. The deformation
of a small-scale structure can be predicted through MD simulations. LAMMPS software is commonly
utilised for obtaining the scale-dependent deformation behaviour. A Velocity-Verlet approach can be
used for integrating the motion equations of small-scale particles. In this way, the trajectories of
small-scale particles are determined at each time. The suitable potential energy, which plays an
important role in obtaining accurate MD results, are chosen for the system based on the type of

molecules inside the system.

1.4 Research gaps

It has been recently shown that conventional scale-dependent models are not capable of
comprehensively incorporating size effects on the mechanical characteristics of structures at ultra-
small levels [49]. In addition, a conventional model is restricted to a specific range of sizes. For
example, nonlocal effects on the mechanical behaviour vanish after a particular length. Scrutinising
the available literature review indicates that the number of advanced two-parameter scale-dependent
models and integral models are limited compared to one-parameter ones. Particularly, the large
amplitude vibration of small-scale beams with geometrical imperfections and viscoelasticity using a
higher-order two-parameter model has not been investigated yet. Analysing these systems would

provide useful results for small-scale mass sensors using vibrating microscale/nanoscale beams.

A majority of the available analysis on the deformation behaviour of beams and plates at

nanoscales is restricted to either a simple linear investigation or nonlinear models with a single-mode
9



solution procedure. Nonetheless, large deformations are very likely in a real situation due to large
mechanical loads. Thus, linear scale-dependent models are not adequately accurate for these
structures. In addition, a single-mode solution procedure for solving nonlinear differential equations
results in an overly approximate solution which is not reliable, especially for small-scale structures.
Developing a precise nonlinear model and solution procedure for taking into account the effect of
geometrical nonlinearity provides a platform for understanding the mechanics of the building blocks

of small-scale devices during operation of a realistic situation.

Previous studies performed on the time-dependent deformation of small-scale plates using
advanced scale-dependent models based on stress-driven elasticity are restricted to only circular and
annular nanoplates with a one-dimensional kernel function. However, in real applications, other
geometry types such as rectangular small-scale plates are also found. Thus, linear scale-dependent
models available for annular nanoplates are extended in this thesis to rectangular small-scale plates,
by introducing a reasonable two-dimensional kernel function. Additional non-classical edge
conditions associated with the curvature nonlocality are presented for the mechanical analysis of

rectangular nanoplates for the first time.

In many of the available continuum models of small-scale plates, only small deflections have
been taken into consideration [36, 38, 50]. By contrast, the mechanical response of small-scale plate
structures are usually nonlinear due to different causes such unavoidable large loading and strong
intermolecular interactions. Thus, to better describe the mechanics of small-scale plates, there is a
growing need to develop a scale-dependent model incorporating nonlinearity effects. No nonlinear
analysis has been reported on these systems using a stress-driven scale-dependent model.
Understanding the time-dependent deformation of small-scale plates with geometrical nonlinearity

would be useful in the design of small-scale systems such as ultra-small resonators and actuators.
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1.5 Aims and objectives

The first aim of this project was to analyse the nonlinear scale-dependent time-dependent
deformation of beams at ultra-small levels. Accordingly, the first objective was developing a
continuum model for the vibration of straight ultra-small beams incorporating nonlinearly coupled
transverse/axial motion and scale impacts. This continuum modelling is conducted taking into
account two completely different size parameters. The nonlocality of the stress as well as the strain
gradient effect are captured. Nonlinear terms appearing in coupled differential equations of motions
are rooted in the geometrical nonlinearity. Developing a comprehensive continuum model is also
performed by incorporating both transverse and axial displacements via a high-dimensional coupled
DOF ensuring converged and reliable results. The second objective is to derive a scale-dependent
continuum model for the vibrations of geometrically imperfect ultra-small beams and obtaining their
vibration response by including the nonlinearity of geometric type due to the stretching of the beam
centreline. Eringen’s type of elasticity is adopted for nonlocality effects. Moreover, the influence of
strain gradients is incorporated, leading to a comprehensive continuum modelling for small-scale
beams. Both displacements are considered in the nonlinear model. A precise numerical solution is
presented for large deformations. The third objective of this project is to study the large time-
dependent deformation of small-scale viscoelastic beams. The influences of geometric imperfections
and internal energy loss on the vibrational behaviour of small-scale beams are examined in detail via

a nonlinear scale-dependent model.

The second aim of this project was to examine the vibrational behaviour of small-scale plates via
an advanced scale-dependent model. Firstly, a linear stress-driven model is presented for the
deformation of rectangular plates at small-scale levels taking into consideration the influence of the
curvature nonlocality. Extra edge conditions related to the non-classical constitutive equations are
obtained. Higher-order non-classical motion equations are solved implementing extra edge conditions

using the differential quadrature technique. Secondly, scale-dependent nonlinear continuum

11



modelling of the large-amplitude vibrations of ultra-small plates is performed based on an integral
size-dependent model. Incorporating both in-plane and transverse displacements, as well as
geometrical nonlinearity, an accurate elasticity model is presented. The curvature nonlocality and in-
plane nonlocality are taken into account. Developing a continuum model by incorporating these
effects enables the proposed model to precisely predict the vibration response of the system at ultra-
small levels. A reliable solution using a numerical technique with a high number of DOF for the
coupled transverse/axial motion is obtained. MD simulation is conducted to evaluate the precision of
the models for the scale-dependent deformation behaviour of plates using LAMMPS software. In
addition, visual molecular dynamics (VMD) software will be used to visually observe the deformation
of the ultra-small structure. To verify the results of the developed model, a graphene sheet as a

nanoplate will be used in MD simulations.

1.6 Chapter outline

There are seven chapters in this thesis. The first chapter gives an introductory background about
the research undertaken in this project. The motivation of the present work is elaborated in this chapter.
In addition, size-dependent continuum approaches including nonlocal and strain gradient elasticity
are briefly explained. The basic concept of molecular dynamics technique and popular related
software packages are also given. The research gaps, aims and objectives of the present work are
listed, followed by this section that described the structure of the thesis.

A comprehensive literature review on the mechanical modelling of structures at small-scales is
presented in chapter 2. The available studies on various types of ultra-small structures including rods,
rings, beams, tubes, plates and shells are investigated. Particular attention is paid to static deformation,
wave propagation, vibrations and instability analysis at small-scales. More information and details
about the basic concepts and mathematical modelling tools such as nonlocal continuum mechanics

are given in the second chapter. This chapter together with chapter one give a detailed overview of
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the available research methods and works on the mechanics of small-scale structures to an interested
reader.

Chapter 3 deals with the nonlinear vibrations of ultra-small beams with geometrical imperfections.
An advanced continuum model is proposed via a nonlocal model including strain gradients. The roles
of size, nonlinearity and imperfections in the scale-dependent deformation of beams are illustrated.
This study fulfils the initial objectives of the project.

In chapter 4, a nonlinear scale-dependent model with viscoelasticity effects is presented. Strain
gradients, stress nonlocality and a geometrical imperfection in the small-scale beam are assumed in
order for the analysis to be original and more comprehensive. The nonlinear viscoelasticity modelling
performed in this chapter together with the mathematical framework given in chapter three provide a
comprehensive nonlinear continuum model of ultrasmall beams.

In chapter 5, the size-dependent deformation behaviour of small-scale plates is studied via
developing a stress-driven model. The linear resonance frequency is computed by applying a
differential solution technique. The influences of various parameters on the vibrational response is
analysed in this chapter. This chapter covers one of the main objectives of the project, which is the
scale-dependent mechanics of ultrasmall plates.

In chapter 6, an advanced nonlinear plate model is proposed for the oscillations of small-scale
plates. Graphene sheets are taken into account to conduct MD simulations on. The accuracy of the
proposed nonlinear model is examined using MD results. The coupled equations with higher-order
nonlinearity are solved by a differential quadrature approach and an iteration technique. All non-
classical edge conditions related to both curvature nonlocality and in-plane strain components are
presented in this chapter. The influences of size, maximum deflection and geometric parameters on
the nonlinear frequencies and in-plane displacements are studied. In chapter six, the linear continuum
model presented in the previous chapter is extended to nonlinear small-scale problems. In chapter six,
the linear scale-dependent model presented in the previous chapter is extended to nonlinear small-

scale plate problems.
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In the final chapter 7, the most important findings of the present work and some possible future
research that can be conducted to continue this study are listed. The results of all scale-dependent
models of beam and plate structures as well as numerical molecular dynamics simulations performed
in previous chapters are reviewed.

In addition to the nonlinear vibration analysis of nanobeams and nanoplates, the large-amplitude
oscillation of nanotubes conveying fluid is analysed by developing an advanced mathematical
framework in the Appendix. The mathematical models of small-scale tubes presented in the main
body of the thesis are extended to their fluid-structure interaction counterparts. This part is a
complementary study to chapters 3 and 4, and provide a useful platform for engineers and researchers
who design and fabricate microelectromechanical and nanoelectromechanical systems using fluid-

conveying nanotubes such as fluid filtration nanosystems, nanopipettes and microfluidic devices.
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Chapter 2
Literature review

Chapter overview

A literature review on the scale-dependent modelling of fundamental structural components at
small-scales is given in this chapter. The available models on the mechanical behaviour of different
types of small-scale components including micro/nanorods, micro/nanorings, micro/nanobeams,
micro/nanoplates and micro/nanoshells are described. The focus of attention in this chapter is the
static deformation, wave propagation, vibration and instability analysis at ultra-small levels. This
literature review has been published in “International Journal of Engineering Science” as:

A. Farajpour, M.H. Ghayesh, H. Farokhi, “A review on the mechanics of nanostructures”,

International Journal of Engineering Science, volume 133, pages 231-263 (2018).
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ARTICLE INFO ABSTRACT

Am'df—’ history: Understanding the mechanical behaviour of nanostructures is of great importance due to
Received 6 September 2018 their applications in nanodevices such as in nanomechanical resonators, nanoscale mass
Revised 16 September 2018 sensors, electromechanical nanoactuators and nanogenerators. Due to the difficulties of
Accepted 16 September 2018 . . .
) : performing accurate experimental measurements at nanoscales and the high computa-
Available online 5 October 2018 . . . . . . . R
tional costs associated with the molecular dynamics simulations, the continuum modelling
of nanostructures has attracted a considerable amount of attention. Since size influences

ﬁiﬂfg{fﬁ;wre have a crucial role in the mechanics of structures at nanoscale levels, classical continuum-
Size-dependent based theories have been modified to incorporate these effects. Among various modified
Modified continuum models continuum-based theories, the nonlocal elasticity and the nonlocal strain gradient elas-
Mechanical behaviour ticity have been employed to estimate the mechanical behaviour of nanostructures. In

this review paper, first these two modified elasticity theories are briefly explained. Then,
the nonlocal motion equations for different nanostructures including nanorods, nanorings,
nanobeams, nanoplates and nanoshells are derived. Several papers which reported on the
size-dependent mechanical behaviour of nanostructures using modified continuum models
are reviewed. Furthermore, important results reported on the vibration, bending and buck-
ling of nanostructures as well as the results of size-dependent wave propagation analyses
are discussed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Nanoscale structures including nanoscale rods (Xu et al., 2004), rings (Cui, Gu, Xu & Shi, 2006), beams (lijima & Ichihashi,
1993, Barretta, Canadija, Luciano & de Sciarra, 2018, Barretta & Marotti de Sciarra, 2018, Hadi, Nejad & Hosseini, 2018, She,
Ren, Yuan & Xiao, 2018, Khaniki, 2018), plates (Geim & Novoselov, 2010, Jalaei, Arani & Tourang, 2018), and shells (Loo et al.,
2005, Faleh, Ahmed & Fenjan, 2018) have been utilised as the fundamental structural parts of many nanoelectromechanical
systems (NEMS). Nanomechanical resonators (Eichler et al., 2011, Farokhi, Paidoussis & Misra, 2018), nanoscale mass sensors
(Zhao, Gan & Zhuang, 2002), electromechanical nanoactuators (Fennimore et al., 2003), and nanoenergy harvesters (Briscoe
& Dunn, 2015) are salient examples of these NEMS-based devices. These valuable nanoscale devices have broad applications
in different areas of nanotechnology such as nanoelectronics, nanomachines and nanomedicine. To achieve a better perfor-
mance for the nanodevice, a better understanding of the mechanical characteristics of nanostructures as these ultrasmall
structures are usually subject to mechanical loads, pressure or stresses. In addition, in nanodevices such as nanoscale gen-
erators (Chu et al.,, 2016, Kwon, Sharma & Ahn, 2013), the mechanical energy is converted into electricity, hence an analysis
on the mechanical behaviour is essential.
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Since performing an accurate experimental measurement at nanoscale levels is challenging, continuum-based modelling
and molecular dynamics (MD) simulations of nanostructures have attracted a considerable amount of attention. Using
continuum-based models and the results of MD simulations, the number of required experimental measurements can be
reduced. Compared to MD simulations, the continuum modelling of nanostructures is less computationally expensive. Par-
ticularly, performing MD simulations on a nanostructure with a large number of molecules requires a high computational
effort. Using continuum models, the mechanical characteristics can be formulated and estimated. In this way, the compu-
tational costs of MD simulations can be reduced by eliminating unnecessary simulations. In addition, the continuum-based
modelling of nanostructures can help us to better understand the results of experimental measurements or molecular dy-
namics.

Scale effects have a crucial role to play in the mechanics of nanostructures, as opposed in macrostructures (Ghayesh, Pai-
doussis & Amabili, 2013, Ghayesh & Amabili, 2012, Ghayesh & Amabili, 2013, Ghayesh, Amabili & Paidoussis, 2012, Ghayesh,
2009, Ghayesh, 2011, Gholipour, Ghayesh, Zander & Mahajan, 2018). Thus, traditional continuum-based theories, which are
scale-free, have been modified in order to capture size effects. Various size-dependent theories for examining the mechan-
ical characteristics of nanostructures have been introduced in recent years. Since the mechanical behaviour of structures at
microscale levels (Ghayesh & Farokhi, 2015, Gholipour, Farokhi & Ghayesh, 2015, Ghayesh, Amabili & Farokhi, 2013, Ghayesh,
Farokhi & Amabili, 2013, Ghayesh, Farokhi & Amabili, 2014, Ghayesh & Farokhi, 2015, Farokhi & Ghayesh, 2015, Farokhi &
Ghayesh, 2015, Ghayesh, Farokhi & Gholipour, 2017, Farokhi & Ghayesh, 2018, Ghayesh, Farokhi, Gholipour & Tavallaeine-
jad, 2018, Dehrouyeh-Semnani, Nikkhah-Bahrami & Yazdi, 2017, Ghayesh & Farokhi, 2017) is different from that observed
at nanoscale levels, the modified continuum-based theories of microstructures are different from those of nanostructures
(Lei et al,, 2016). In general, the structural stiffness hardening is observed at microscale levels whereas the mechanics of
nanostructures is usually governed by the stiffness softening. Therefore, size-dependent models including the couple stress
(Farokhi, Ghayesh & Amabili, 2013, Ghayesh, Farokhi & Alici, 2015, Farokhi, Ghayesh, Gholipour & Hussain, 2017, Ghayesh
& Farokhi, 2017, Farokhi & Ghayesh, 2018, Farokhi & Ghayesh, 2018, Ghayesh, 2018, Ghayesh & Farokhi, 2018, Ghayesh,
Farokhi & Alici, 2016, Ghayesh, Farokhi & Amabili, 2013, Ghayesh, Farokhi & Gholipour, 2017) and strain gradient elasticities
(Ghayesh, Amabili & Farokhi, 2013, Akgoz & Civalek, 2011, Akgdz & Civalek, 2013) are often used to analyse the mechanical
behaviour of microstructures including microbeams, microbars and microplates while the nonlocal elasticity theory (Pradhan
& Phadikar, 2009, Reddy, 2007, Farajpour, Shahidi & Farajpour, 2018, Asemi & Farajpour, 2014) is applied to nanoscale struc-
tures. However, to have a more general size-dependent continuum-based model capable of predicting size effects at different
small scales, a combination of these modified elasticity theories (Lim, Zhang & Reddy, 2015) can be employed.

This review article is organised as follows: In Section 2, concise information is given about different size-dependent
elasticity theories utilised for investigating the mechanical characteristics of structures at nanoscale levels including the pure
nonlocal and nonlocal strain gradient elasticities. In Section 3, first the size-dependent motion equations of various types
of nanoscale structures such as nanoscale rods, rings, beams, plates and shells are developed via the nonlocal elasticity.
Then, studies on the size-dependent modelling of the mechanical behaviour of these structures are reviewed; particular
attention is paid to the size-dependent bending, buckling and vibration of nanoscale structures as well as size-dependent
wave propagations in these small-scale structures. Finally, Section 4 concludes on the size-dependent continuum theories of
nanostructures, and the most important findings to date are highlighted.

2. Size-dependent continuum mechanics

In this section, size-dependent (Ghayesh, Farokhi & Hussain, 2016, Farokhi & Ghayesh, 2016, Ghayesh & Amabili, 2014,
Ghayesh, 2018, Ghayesh, 2018, Ghayesh, Farokhi, Gholipour & Tavallaeinejad, 2017, Ghayesh, Farokhi, Gholipour & Hussain,
2017, Farokhi, Ghayesh, Gholipour & Tavallaeinejad, 2017, Farokhi, Ghayesh & Gholipour, 2017, Ghayesh, Farokhi & Farajpour,
2018) elasticity theories including the nonlocal elasticity and the nonlocal strain gradient elasticity, which are commonly
applied to nanoscale structures, are reviewed. Firstly, the basic concept of the nonlocal elasticity is clarified, and then both
the integral and differential nonlocal constitutive relations are discussed. Finally, the theory of the nonlocal strain gradient
elasticity is introduced.

2.1. Nonlocal elasticity theory

The nonlocal elasticity was introduced by Eringen (Eringen & Edelen, 1972, Eringen & Nonlocal, 2002) almost two decades
before the invention of carbon nanotubes (CNTs). However, this valuable theory did not attract much attention until the syn-
thesis of nanostructures such as CNTs and graphene sheets (GSs) emerged. Peddieson et al. (Peddieson, Buchanan & McNitt,
2003) first suggested that the theory can be used to analyse the size-dependent mechanical response of nanostructures. In
the classical elasticity theory, which is not able to predict size effects, the stress at a spot is only dependent on the strain
at that spot. By contrast, in the nonlocal elasticity, strains at all spots affect the stress at one arbitrary spot as shown in
Fig. 1. This basic assumption allows this theory to capture intermolecular interactions, leading to a size-dependent theory
of elasticity. Ignoring body forces, the nonlocal integral constitutive relation is given by

of = [ [ [e(Ix-x].n)atav, (1)
v
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Fig. 1. Stress at a spot of a nanostructure is dependent on strains at all spots according to the nonlocal elasticity theory.

a

Fig. 2. Internal characteristics length (a) as well as the external characteristics length (L) for CNTs.

where U,-'}-l. a,.’j, ¢ and n stand for the nonlocal stress, local stress, kernel function and small-scale coefficient, respectively;
|x —x'| is the distance from x to X/, and V denotes the volume of the body. The nonlocal coefficient is expressed as
€oa

n= I (2)
in which ey, a and L are respectively the calibration coefficient, and internal and external characteristic lengths. Each nanos-
tructure has internal and external characteristic lengths. For example, for carbon nanotubes, the c-c bond length is com-
monly chosen as the internal characteristic length (see Fig. 2). The calibration coefficient is obtained either from experimen-
tal measurements or molecular dynamics (MD). The classical (local) stress is obtained as

!
Uij :Cijklgkl’ (3)
where Cyy and & stand for the elasticity tensor and the strain tensor, respectively.

Since the nonlocal constitutive Eq. (1) must reduce to that of the classical elasticity theory for very large external char-
acteristic length, the kernel function (nonlocal modulus) has the following property

lim g ([x =) = 8(|x—x). (4)

Here § denotes the Dirac delta. Eringen (Eringen, 1983) introduced some kernel functions for nonlocal problems. One of
the most popular kernel functions is given by

/55)

(x| 1) = (27TL2772)1K0( I (5)
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in which K, denotes the modified Bessel function. Since the implementation of the integral nonlocal constitutive equation
(i.e. Eq. (1)) in formulating the mechanics of nanostructures is difficult, a nonlocal operator (L,;) with the following property
is introduced

Lut (|x = [ m) = 8(]x = x'))- (6)
Applying the nonlocal operator to Eq. (1), one can obtain
Ly} = o). (7)

Using the above equations, Eringen (Eringen and Nonlocal, 2002, Eringen, 1983) obtained the following relation for the
nonlocal operator

Lu (%) = [1 = (0a)* V] (). (8)

Here V2 stands for the Laplace operator. Eqs. (7) and (8) are extensively used to develop size-dependent continuum
models in order to estimate the mechanical response of nanostructures.

2.2. Nonlocal strain gradient elasticity

There are two limitations associated with the nonlocal elasticity theory. Firstly, nonlocal effects disappear after a certain
length. For instance, scale effects predicted by the nonlocal elasticity on the axial vibration of uniform nanorods disap-
pear for L>20nm (Aydogdu, 2009). Secondly, the nonlocal elasticity can only predict the stiffness softening of small-scale
structures. However, stiffness hardening has been observed in some small-scale structures, especially at higher lengths. This
stiffness hardening can be estimated incorporating surface effects (Yan & Jiang, 2011, Gheshlaghi & Hasheminejad, 2011, Guo
& Zhao, 2007, Malekzadeh & Shojaee, 2013, Jiang & Yan, 2010, Assadi, 2013) or strain gradients (Ghayesh, Amabili & Farokhi,
2013, Akgoz & Civalek, 2011, Mindlin & Eshel, 1968, Farajpour, Shahidi, Tabataba'i-Nasab & Farajpour, 2018, Wang, Zhou, Zhao
& Chen, 2011, Askes & Aifantis, 2009, Ghayesh & Farajpour, 2018, Farajpour & Rastgoo, 2017). For example, it was found that
the pure nonlocal plate model cannot completely predict the buckling instability of circular graphene sheets subject to an
axisymmetric loading (Farajpour, Dehghany & Shahidi, 2013) by employing MD simulations. To overcome the shortcomings
of the nonlocal elasticity, Lim et al. (Lim, Zhang & Reddy, 2015) introduced a nonlocal strain gradient theory (NSGT) using
two kernel functions. The new theory is able to describe both stiffness softening and hardening at small-scale levels. In
addition, the scale effect predicted by the NSGT appears in a wider range of lengths in comparison with nonlocal effects.
However, the computational costs of the nonlocal elasticity is less than those of the NSGT due to the fact that strain gradient
terms are also incorporated.

3. Types of different nanostructures

In the following sub-sections, the size-dependent continuum models of various types of nanoscale structures including
nanorods, nanorings, nanobeams, nanoplates and nanoshells as well as the literature on the mechanics of these nanostruc-
tures are reviewed. Furthermore, size-dependent differential equations for the mechanical behaviours of these structures
such as their buckling, vibration, bending and wave propagation responses are presented via the nonlocal elasticity. Various
types of nanostructures, involving nanorods, nanorings, nanobeams, nanoplates, and nanoshells, are considered in this paper
(see Fig. 3).

3.1. Nanorods

In this section, modified continuum models reported on the mechanical behaviour of nanorods are reviewed. Nanorods
(Ye et al., 2012) are one-dimensional nanoscale structures which can be made by various techniques such as vapour-
phase transport (Xu et al., 2004), hydrothermal synthesis (Choy et al., 2004) and seed-mediated growth (Nikoobakht &
El-Sayed, 2003) (see Fig. 4). The length of nanorods can vary from 1nm to 3000nm (Wen et al., 2003). These small-
scale structures have been extensively utilised in various devices including nanosensors (John, 2005), drug delivery systems
(Alkilany et al., 2012) and solar cells (Liu & Aydil, 2009). To better design nanosystems using nanorods, it is advised to en-
hance knowledge about the mechanics of these structures since the overall performance of a nanosystem is affected by the
mechanical characteristics of its parts.

3.1.1. Nonlocal rod model
Aydogdu (Aydogdu, 2009) developed a nonlocal model for the linear longitudinal vibration of nanoscale rods. Following
him, one can write the nonlocal stress of nanorods as
2 320&1
dx2
where E is the elasticity modulus. Using Eq. (9), the force resultant of nanorods (i.e. Nyx = [ oldA) can be expressed as
A

= Egxx, 9)

Ux’y - (EOa)

32N, 0
Ny — (e0a)? 8x2xx = EAa—l;, (10)
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where A and u denote the area of the rod cross-section and the axial displacement, respectively. Now employing the Hamil-
ton principle, one can obtain the motion equation of nanorods as
oN. 0%u
a— (11)
ax ot?
Here m represents the mass per unit length of the nanorod. Using Eqgs. (10) and (11), the following explicit relation is
obtained for the stress resultant

ou 93u
No=EA5- + (eoa)? My o (12)
Substituting Eq. (12) into Eq. (11), one obtains
9%u 94u 9%u
EAws + m(eoa)? 5298 = Mo (13)

Eq. (13) governs the axial vibration of nanoscale rods incorporating size effects. This equation was first derived by Ay-
dogdu (Aydogdu, 2009). He solved the equation analytically and presented explicit expressions for two different boundary
conditions. Fig. 5 shows the ratio of the local natural frequency to the nonlocal one for various scale parameters. The fre-
quency ratios are calculated for clamped-clamped (C-C) and clamped-free (C-F) nanorods. It is found that for small lengths,
scale effects are noticeable while the nonlocal and local frequencies are approximately the same after a certain length
(L>20nm). More recently, the nonlocal rod model has been employed to analyse the longitudinal free vibration of nanorods
for different boundary conditions including an attached mass and an attached spring (Numanoglu, Akgoz & Civalek, 2018);
it was found that the mass attachment reduces the axial frequency of nanorods.

3.1.2. Size-dependent mechanics of nanorods

There are various types of nanoscale rods such as uniform, non-uniform and nonhomogeneous. In addition to simple
uniform nanorods, the axial vibrations of tapered nanorods (Danesh, Farajpour & Mohammadi, 2012) and double-nanorod
systems (Murmu & Adhikari, 2010) were also investigated in the literature. Moreover, the axial vibration of nonhomoge-
neous rods at nanoscale levels was studied utilising the nonlocal elasticity (Chang, 2013, Simsek, 2012); shown was that the
material non-homogeneity can greatly affect the axial vibration of nanorods. Depending on the value of elasticity modulus
ratio, the natural frequency of nanorods can decrease or increase with increasing power-law exponent (Simsek, 2012).

In addition to the axial vibration of nanorods, other mechanical responses of these small-scale structures have been
also investigated using size-dependent continuum models. For instance, wave propagations in nanorods were studied via
help of the nonlocal elasticity (Narendar & Gopalakrishnan, 2010, Aydogdu, 2012); it was reported that the scale parameter
greatly affects the wave propagation in nanorods. The size coefficient causes a certain region associated with the band
gap in longitudinal wave modes. The nonlocal elasticity was also employed for analysing the size-dependent torsion of
cracked nanorods (Loya, Aranda-Ruiz & Fernandez-Saez, 2014); the presence of a circumferential crack reduces the natural
frequencies.
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Fig. 7. A nanoscale arch embedded in an elastic medium (Wang & Duan, 2008). Reprinted with permission from AIP Publishing.

The majority of size-dependent continuum models of nanorods have been developed via the nonlocal theory of elasticity.
However, more recently, the NSGT has been employed for describing the longitudinal vibration (Li, Hu & Li, 2016) and
tension (Zhu & Li, 2017) of nanorods; the modified rod model was successfully calibrated employing MD results.

3.2. Nanorings

Another nanoscale structure with a remarkable potential applications in nanoelectromechanical systems (NEMS) is nanor-
ings. Fig. 6 illustrate a system of circular nanorings as well as a single nanoring. Compared to nanobeams and nanoplates,
few theoretical studies have been reported on the mechanical behaviour of nanorings using size-dependent continuum mod-
els. Wang & Duan (2008) developed a nonlocal model to explore the oscillations of nanoscale rings; exact results were
obtained for the size-dependent natural frequencies. Assuming the flexural vibration of nanorings without extension, the
nonlocal differential equation is obtained as (Wang & Duan, 2008)

v 0w 9 mR! |:e0a 95y ( eoa> 4 821/}

(14)

306 T 2507 T 902 — B | R aees  \\ T R ) ooz T o

where v, R and 0 are the tangential displacement, the radius of the nanoring and the angle between the horizontal line and
the line drawn from the ring centre, respectively; E, m, I and ega are the elasticity modulus, mass per unit length, inertia
moment and the nonlocal parameter, respectively. In a paper by Wang and Duan (Wang & Duan, 2008), the oscillation of
nanoscale arches (see Fig. 7) was also examined using the nonlocal elasticity. The variation of the frequency parameter
versus the opening angle (2f) for various nonlocal parameters (« = ega/R) for (a) asymmetric and (b) symmetric modes
is plotted in Fig. 8. The frequency parameter is defined as Q = mR*w?/EI where w is the dimensional natural frequency of
the nanosystem. Increasing opening angle reduces the natural frequency of nanoarches. In addition, stronger nonlocal effects
lead to lower natural frequencies since increasing nonlocal parameter results in a reduction in the stiffness of nanostructures.

In addition to the above-mentioned valuable study, the nonlocal elasticity theory was also utilised in Refs. (Moosavi,
Mohammadi, Farajpour & Shahidi, 2011, Wang, Xiang, Yang & Kitipornchai, 2012, Arefi, Mirdamadi & Salimi, 2012) in order
to derive size-dependent differential equations for investigating the mechanical behaviour of nanoscale rings. Moosavi et al.
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(Moosavi, Mohammadi, Farajpour & Shahidi, 2011) developed a nonlocal shear deformation theory of rings for the in-plane
free vibrations of nanorings; they found that the change in the natural frequency obtained by the classical theory and the
shear deformation one is significant for small radii and larger nonlocal parameters. Furthermore, the size-dependent buck-
ling of nanorings and nanoarches was analysed via help of the nonlocal elasticity in Refs. (Wang, Xiang, Yang & Kitipornchai,
2012) and (Arefi, Mirdamadi & Salimi, 2012); increasing the scale parameter reduces the buckling force.

3.3. Nanobeams

Nanobeams (Garcia-Sanchez et al., 2007, Babaei Gavan et al., 2009, Baghani, Mohammadi & Farajpour, 2016) such as car-
bon nanotubes, silicon and silver nanobeams have various promising applications in different nanoscale devices such as
small-scale mechanical sensors (Zhao, Gan & Zhuang, 2002), resonators (Eichler et al., 2011, Farokhi, Paidoussis & Misra,
2018) and actuators (Fennimore et al., 2003) (see Fig. 9). Since the small-scale system operates based on mechanical mecha-
nisms in these applications, understanding the size-dependent mechanical characteristics of nanoscale beams is importance.
In early studies on the mechanics of nanoscale beams, especially carbon nanotubes, size effects were not taken into con-
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Fig. 9. A schematic representation of a cantilever nanobeam (Babaei Gavan et al., 2009). Reprinted with permission from AIP Publishing.

sideration (Fu, Hong & Wang, 2006, Yoon, Ru & Mioduchowski, 2005, Yoon, Ru & Mioduchowski, 2003, Wang, Ru & Miodu-
chowski, 2005). For the first time, Peddieson et al. (Peddieson, Buchanan & McNitt, 2003) utilised the nonlocal continuum
mechanics so as to capture size effects on the bending of nanobeams; particularly size-dependent bending of cantilever
nanobeams was examined because of their wide applications in nanoscale actuators. In the following, the bending, vibration
and buckling of nanobeams as well as the wave propagation in them are reviewed. Both size-dependent linear and nonlinear
studies are considered.

3.3.1. Nonlocal beam model
Applying the nonlocal theory, the modified constitutive equation of a nanoscale beam can be expressed as

[1- (e0a)’V?]0rx = Eca. (15)
On the other hand, applying the theory of Euler-Bernoulli beams, the axial strain is given by

ou(x, ) _zazw(x, t)
ax ox2

where w and u indicate the mid-surface transverse and axial displacements of the nanobeam, respectively (Dehghany &
Farajpour, 2014). The force and couple stress resultants of nanobeams are defined as

ex(X,2,t) = (16)

N = /oxdi, My = /zaxdi, (17)
A A

in which A is the cross-sectional area. For nanobeams, the following equations are derived via Hamilton’s principle

ONqxx 02

ax m_tg’ (18)
2My 0 ow 92w
—8)(2 +ﬁ(NXX_X> +q—mw. (19)

Here m and q represent the mass per unit length and the transverse loading, respectively. In view of Eq. (15), one can
write

ow
ox2 "

Using Egs. (18)-(20), the following differential equation is derived for the linear transverse vibration of nonlocal beams
subject to an external loading

04w 9 ow 5 03 ow
“Eloa + 5% (NW) ~ (@) 55 (”ﬂ?)

02 02w 9w
+q - (3()(1)28—)(;Z = mw - m(eoa)zm. (21)

[1- (e0a)*V?|My = —EI (20)
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Fig. 10. The ratio of the maximum transverse displacement calculated via the Timoshenko model of beams to that calculated via the Euler-Bernoulli
model against the ratio of the length to the internal characteristic length for (a) simply supported, (b) clamped, (c) cantilever and (d) propped cantilever
nanobeams subject to a uniform transverse load (a dashed line indicates the Euler-Bernoulli model while a solid line indicates Timoshenko beam model)
(Reddy & Pang, 2008). Reprinted with permission from AIP Publishing.

3.3.2. Size-dependent bending of nanobeams

Different modified beam models such as Reddy, Timoshenko, Euler-Bernoulli and Levinson were proposed for investi-
gating the bending of nanoscale beams via the nonlocal continuum mechanics (Reddy, 2007, Reddy & Pang, 2008, Aydogdu,
2009, Thai & Vo, 2012). Fig. 10 shows the ratio of the maximum deflection of nanobeams under uniformly transverse load-
ing obtained by the Timoshenko theory to that of the Euler-Bernoulli one with the ratio of the length (a) to the internal
characteristic length (I;) for various boundary conditions and various calibration coefficients (ep) (Reddy & Pang, 2008). In
all cases, the influence of the calibration coefficient disappears after a certain length. Furthermore, explicit expressions were
obtained in Refs. (Khajeansari, Baradaran & Yvonnet, 2012, Yan et al., 2015, Zenkour & Sobhy, 2015) in order to analyse the
linear bending of nanobeams using the nonlocal elasticity as a size-dependent theory. The influence of the surface energy
on the bending of nanobeams was also studied in the literature (Jiang & Yan, 2010, Ansari & Sahmani, 2011); it was found
that the surface influence is more significant for slender nanobeams.

In addition, the nonlocal elasticity has been utilised to explore the size-dependent bending behaviour of non-
homogeneous nanobeams (Simsek & Yurtcu, 2013, Nejad & Hadi, 2016). More recently, a NSGT-based beam model has been
proposed by Li et al. (Li et al.,, 2017) for the mechanical behaviour of non-homogeneous nanoscale beams. Fig. 11 indicates
the maximum deflection of a non-homogeneous nanobeam with simply supported boundary conditions subject to sinusoidal
applied load in the transverse direction. Different strain gradient coefficients (i.e. £ = ¢/L in which ¢ is the strain gradient
parameter) and various nonlocal coefficients (i.e T =ega/L) are considered. Increasing strain gradient parameter reduces
the maximum deflection of non-homogeneous nanobeams since higher strain gradient parameters increase the stiffness of
nanostructures. By contrast, the maximum deflection notably increases with increasing nonlocal coefficient.

In addition to linear size-dependent models, nonlinear studies have been also reported on the static behaviour of
nanoscale beams (Reddy, 2010, Preethi, Rajagopal & Reddy, 2015, Li, Hu & Ling, 2016). Reddy (Reddy, 2010) presented both
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Fig. 11. Maximum deflection of a non-homogeneous nanoscale beam with simply supported boundary conditions subject to sinusoidal applied load for
different strain gradient coefficients and various nonlocal coefficients (Li et al., 2017). Reprinted with permission from Elsevier.
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Fig. 12. Integral and differential nonlocal models for the bending of cantilever nanobeams (h is the nonlocal coefficient defined as h=epa/L) (Fernandez-
Saez, Zaera, Loya & Reddy, 2016). Reprinted with permission from Elsevier.

classical and shear deformable beam models incorporating the geometric nonlinearity as well as the size effects by nonlocal
elasticity as well as von Karman’s assumptions. Moreover, a nonlinear size-dependent finite element formulation incorpo-
rating both surface and nonlocal effects was proposed by Preethi et al. (Preethi, Rajagopal & Reddy, 2015) via use of the
Timoshenko theory of beams. The nonlinear bending of nanoscale non-homogeneous beams has been lately examined by Li
and Hu (Li, Hu & Ling, 2016) using the NSGT as a size-dependent elasticity theory.

More recently, an integral size-dependent formulation has been developed by Fernandez-Saez et al. (Fernandez-Saez, Za-
era, Loya & Reddy, 2016) so as to describe the bending of nanobeams using the nonlocal integral constitutive relation and
the Euler-Bernoulli theory of beams. Using the integral nonlocal formulation, the paradox observed in cantilever nanobeams
when the differential nonlocal elasticity is used (namely, the increasing effect of the nonlocal parameter on the nanobeam
stiffness) was resolved as shown in Fig. 12. Moreover, Tuna and Kirca (2016) examined the static deformation of nanobeams
using the nonlocal integral model; exact results were obtained for both Euler-Bernoulli and Timoshenko nanobeams.

3.3.3. Size-dependent buckling of nanobeams

Size-dependent elasticity models have been also proposed for the buckling of nanoscale beams, especially carbon nan-
otubes. The majority of continuum models have been developed using the nonlocal elasticity (Zhang, Liu & Wang, 2004,
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Fig. 14. The nonlocal-to-local buckling ratio of CNTs against their length for different mode numbers (Wang, Varadan & Quek, 2006). Reprinted with
permission from Elsevier.

Murmu & Pradhan, 2009, Pradhan & Reddy, 2011, Benguediab, Tounsi, Zidour & Semmah, 2014, Hao, Guo & Wang, 2010,
Eltaher, Emam & Mahmoud, 2013, Nejad, Hadi & Rastgoo, 2016, Murmu & Adhikari, 2011). For instance, Sudak (Sudak, 2003)
explored the linear stability of multi-walled carbon nanotubes (MWCNTSs) via help of the nonlocal elasticity; nonlocal influ-
ences have a crucial role to play in the buckling of MWCNTs. In addition, Wang et al. (Wang, Varadan & Quek, 2006) intro-
duced a linear nonlocal theory for the stability of single-walled carbon nanotubes (SWCNTs). The variation of the nonlocal-
to-local buckling ratio with the length is plotted in Fig. 13 for different nonlocal parameters. As the length increases, the
effect of the length scale significantly decreases. Furthermore, higher values of ega reduces the buckling load ratio since the
difference between the two theories increases when the nonlocal influence becomes stronger. Fig. 14 illustrates the change
of the buckling ratio with the length for different model numbers. It is observed that the influence of size is greater for
higher mode numbers. This is due to the fact that at higher buckling modes, the interaction between molecules increases.
At nanoscale levels, the surface-to-bulk ratio of structures is high, and thus surface influences on the mechanical character-
istics of nanostructures become important. The surface influence on the stability of nanoscale beams has been investigated
using modified beam models (Wang & Feng, 2009, Wang, 2012, Attia, 2017). Wang and Feng (Wang & Feng, 2009) proposed
a modified Euler model so as to examine the influence of surface elastic constants and surface residual stress on the buck-
ling of nanowires subject to uniaxial compression. Wang (Wang, 2012) carried out a nonlinear analysis on the buckling of
nanobeams conveying fluid flow; the nonlinear buckling of the fluid-conveying nanosystem was considerably affected by
the surface elastic constant. More lately, the effects of surface energy on the mechanics of non-homogeneous nanobeams
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& Pradhan, 2010). Reprinted with permission from Elsevier.

have been analysed based on two different size-dependent theories; surface effects become more prominent as the material
gradient index of non-homogeneous nanobeams increases.

It has been shown that the critical buckling load of different types of nanobeams such as CNTs and non-homogeneous
nanobeams is sensitive to temperature changes (Murmu & Pradhan, 2010, Amara, Tounsi & Mechab, 2010, Narendar &
Gopalakrishnan, 2011, Ebrahimi & Salari, 2015, Yu, Xue, Li & Tian, 2016). Fig. 15 shows temperature effects on the linear
stability of CNTs. The temperature change affects the buckling force of SWCNTs. At low temperatures, the buckling force
increases when the temperature change increases whereas increasing temperature change reduces the buckling force at a
high temperature environment. This is because the thermal expansion constant of SWCNTs is negative at low temperatures
while it is positive at high temperatures (Jiang, Liu, Huang & Hwang, 2004).

The post-buckling analysis of nanoscale beams has been the focus of many studies in the literature (Emam, 2013,
Dai, Wang, Abdelkefi & Ni, 2015, She, Yuan, Ren & Xiao, 2017). For example, Setoodeh et al. (Setoodeh, Khosrownejad &
Malekzadeh, 2011) determined exact analytical solutions for the post-buckling of SWCNTs within the framework of the
nonlocal elasticity as well as the Euler-Bernoulli beam theory; the nonlinearity related to the stretching of the mid-plane is
more profound for higher modes. In addition, the NSGT was utilised in order to examine the nonlinear buckling of nanoscale
beams (Li & Hu, 2015); both the nonlocal and strain gradient parameters significantly affect the nonlinear buckling loads.
The post-buckling of non-homogeneous nanobeams was also studied via the NSGT (Li & Hu, 2017); it was found that both
hardening and softening responses can occur for the stiffness of the nanoscale beam depending on size coefficient values.

3.3.4. Size-dependent vibration of nanobeams

The nonlocal elasticity theory has been broadly utilised for analysing the vibration characteristics of nanobeams
(Chakraverty & Behera, 2015, Murmu, McCarthy & Adhikari, 2012, Apuzzo et al., 2017, Kiani, 2010, Murmu & Adhikari, 2010,
Murmu, Adhikari & Wang, 2011, Lei, Adhikari & Friswell, 2013, Fernandez-Saez & Zaera, 2017). Some pioneering studies are
briefly reviewed in the following. Wang and Varadan (Wang & Varadan, 2006) proposed a linear nonlocal beam theory for
the size-dependent oscillations of both single- and double-walled CNTs. The ratio of the nonlocal natural frequency to the
local one decreases with increasing the nonlocal parameter as seen from Fig. 16 (Pradhan & Murmu, 2009). Murmu and
Pradhan (Murmu & Pradhan, 2009) analysed the oscillation of SWCNTs surrounded by a linear elastic medium employing
the nonlocal elasticity incorporating thermal influences; the small scale influence becomes less important with increasing
Winkler stiffness constant of the elastic medium (see Fig. 17). In addition, a nonlocal beam model was presented by Simsek
(Simsek, 2010) for the size-dependent vibration of CNTs subject to a moving load; the nonlocal dynamic deflection is larger
than the local one since the small scale effect has a decreasing effect on the nanotube stiffness. Benzair et al. (Benzair et al.,
2008) examined temperature influences on the vibrations of CNTs via help of the nonlocal elasticity; temperature influ-
ences on the natural frequency decrease with increasing vibration mode number. Duan et al. (Duan, Wang & Zhang, 2007)
employed the molecular dynamics to calibrate the nonlocal beam model of CNTs for the vibration analysis; it was found
that the calibration coefficient of the nonlocal beam model depends on the geometrical features, mode number and edge
conditions.

In addition to the stress nonlocality, surface influences on the vibration of nanoscale beams have been studied based
on modified continuum models (Yan & Jiang, 2011, Gheshlaghi & Hasheminejad, 2011, Attia & Rahman, 2018, Kiani, 2016,
Sharabiani & Yazdi, 2013, Lee & Chang, 2010, Lei, Natsuki, Shi & Ni, 2012); it was concluded that surface effects can account
for the stiffness hardening, which cannot be described by the nonlocal elasticity theory. In addition, recently size-dependent
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continuum models incorporating surface and nonlocal effects have been developed for the vibration of smart nanoscale
beams such as piezoelectric and magneto-electro-elastic nanobeams (Ebrahimi & Barati, 2018, Ke & Wang, 2014, Ebrahimi
& Barati, 2016, Ke, Wang & Wang, 2012, Arefi & Zenkour, 2017, Yan & Jiang, 2013) as well as non-homogeneous nanoscale
beams (Attia, 2017, Shafiei, Kazemi, Safi & Ghadiri, 2016, Simsek, 2016, Rahmani & Pedram, 2014, Nejad, Hadi & Farajpour,
2017).

More recently, NSGT-based continuum models have been introduced for the vibration of nanobeams (Farajpour, Shahidi,
Tabataba’i-Nasab & Farajpour, 2018, Li et al.,, 2017, Simsek, 2016, Lu, Guo & Zhao, 2017, Ebrahimi & Barati, 2017, Lu, Guo
& Zhao, 2017, Ghayesh & Farajpour, 2018). Various modified theories of elasticity are compared in Fig. 18; CT, NT and SGT
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stand for the classical, nonlocal, and strain gradient theories, respectively. It is found that the NT gives the lowest natural
frequencies while the SGT leads to the highest ones. The results of the NSGT are greatly dependent on the relative values
of size parameters. For ea > I, the natural frequency obtained by the NSGT is higher than that of the NT but lower than that
obtained by the CT. However, for ea <1, the NSGT leads to the natural frequency which is higher than that obtained by the
CT but lower than that of the SGT.

In addition to linear modified continuum models, nonlinear size-dependent models have been presented in the literature
for the free and forced vibrations of nanobeams using the nonlocal elasticity (Shafiei, Kazemi, Safi & Ghadiri, 2016, Yang, Ke
& Kitipornchai, 2010, Ke, Xiang, Yang & Kitipornchai, 2009, Arani et al., 2012, Simsek, 2014, Fang, Zhen, Zhang & Tang, 2013,
Soltani & Farshidianfar, 2012), the surface elasticity (Malekzadeh & Shojaee, 2013, Hosseini-Hashemi, Nazemnezhad & Rokni,
2015) and the NSGT (Li, Hu & Ling, 2016, Simsek, 2016, Ghayesh & Farajpour, 2018). Furthermore, different solution methods
such as the differential quadrature method (DQM) (Malekzadeh & Shojaee, 2013, Yang, Ke & Kitipornchai, 2010), the Ho-
motopy perturbation method (Shafiei, Kazemi, Safi & Ghadiri, 2016), the continuation scheme (Ghayesh & Farajpour, 2018)
and the Hamiltonian approach (Simsek, 2016) have been utilised for solving the derived nonlinear equations of motion.
Fig. 19 shows the frequency-amplitude response of tubes at nanoscales via the NSGT; q;, w; and 2 denote the first gener-
alised coordinate, the linear natural frequency and the non-dimensional excitation frequency, respectively. Perfectly straight
nanotubes exhibit a hardening-type nonlinear response with two saddle nodes.

3.3.5. Size-dependent wave propagations in nanobeams

Wave propagations in nanobeams have been also analysed via help of size-dependent models including the nonlocal
elasticity theory (NET) (Wang, 2005, Heireche et al., 2008, Wang, Zhou & Lin, 2006, Narendar & Gopalakrishnan, 2009), the
surface elasticity (Zhang et al., 2015, Assadi & Farshi, 2011) and the NSGT (Lim, Zhang & Reddy, 2015, Li, Hu & Ling, 2016,
Li, Hu & Ling, 2015, She, Yuan & Ren, 2018, Barati, 2017). Fig. 20 illustrates the change of the phase velocity with the wave
number for various modified theories such as the classical elasticity theory (CET), NSGT, SGT and NET; the results of MD
calculations are also plotted in the figure. The NSGT results are very close to those calculated by the MD simulations.

3.4. Nanoplates

Nanoplates such as graphene sheets (Geim & Novoselov, 2010), silver nanoplates (Chen & Carroll, 2002) and metallic
carbon nanosheets (Zhang, Wang, Chen & Jena, 2013) have an extensive range of promising applications in various fields of
nanotechnology. In applications such as nanomechanical resonators (Bunch et al., 2007, Jiang, Park & Rabczuk, 2014, Rhoads,
Shaw & Turner, 2008, Asemi, Farajpour & Mohammadi, 2014), nanoscale mass sensors (Dai, Kim & Eom, 2012, Shen, Tang,
Li & Tang, 2012, Farajpour, Rastgoo, Farajpour & Mohammadi, 2016) and actuators (Park, An, Suk & Ruoff, 2010, Kong &
Chen, 2014), mechanical characteristics of nanoplates play an important role in the general performance of the nanoscale
device. Fig. 21 shows the application of graphene sheets as a resonating nanomechanical sensor (Murmu & Adhikari, 2013).
So far many modified theoretical models have been reported on the mechanics of various nanoplates. In the following, first
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Fig. 19. Frequency-amplitude response of tubes at nanoscales via the NSGT (Ghayesh & Farajpour, 2018). Reprinted with permission from Elsevier.
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(b)

Fig. 22. (a) A SLGS with length I, and width I, and (b) its equivalent continuum model.

the linear motion equations for the mechanics of nanoplates are presented. Then, important size-dependent studies on the
vibration, stability and static deformation of nanoscale plates as well as wave propagations in them are discussed.

3.4.1. Nonlocal plate model

In Fig. 22, a typical single-layered graphene sheet (SLGS) with length Iy and width I, is shown. Based on the NET, the
constitutive equations of orthotropic nanoplates are expressed as

E vE vpE
1 292] g — 1 12E> 1_ 2y2]g.. —  Vi2E2
[1- (eot)*V?]ous Ty X T T ooy [1 = (c0a)™V* o T—vun ™ Ty
[1 - (e0a)*V?]0xy = 2Grz84y, (22)

where E;, v; and Gy stand for the elasticity modulus along the i direction, Poisson’s ratio and the shear elasticity modulus
of the nanoplate, respectively. The strain components of the orthotropic nanoplate are as

o pw v o
T Ax Toax2 Y T 9y Tay?

1(0u ov 92w
Exy = f(a_y * ﬁ) ~“oxay’ =
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in which w, v and u, respectively, indicate the mid-surface displacements in z, y and x axes. The stress resultants are as

h/2 h/2
(Nt Nyys Ny = / (s Oy Oy} 42, (M, My, Myy) = / (s Oy, Oy 202. (24)
—h/2 —h/2

Here h denotes the thickness of the orthotropic nanoplate. Using Eqs. (22)-(24), the stress resultants of the orthotropic
nanoplate are obtained as

Jdu v ou ov
[1 — (EOG)ZVZ]NXX =51 a + 5125, [1 — (EQG)ZVZ]Nyy = S]zﬁ + Szzafy,
du Jv
292
[1 — (e0a)"V ]ny =533 (ay + ax>v (25)
%w 92w 9%w %w
[1- (e0a)*V?[Mye = —Dyy T DlzTﬁ’ [1- (e0a)’V*]Myy = —Du5s - DZZTst
0%w
292
[1- (e0a)*VZ|My = —2D33Way, (26)
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in which S;; and D; stand for the in-plane and flexural stiffnesses of the nanoscale plate. Using Hamilton’s law, the motion
equations in terms of stress resultants are obtained as

ONe  ONg 0% ONy  ONg 0% 92My  0°M,, . 0°My 3 ow _ ow
ax "oy TP oy ax ‘phW’ e Ty +28x8y Tatax nyW—FNX"ﬁ
0 ow ow 02w
+8}/<ny8)( +Nyyay> = Phwv (28)

where q and p are the distributed transverse load and the nanoplate mass density, respectively. Substituting Eq. (26) into
Eq. (28), one obtains

94w 94w 04w
_DHW - 2(D12 + 2D33) axzayz - 2237}}4
+[1 = (e0a)*V?]q+[1- (eoa)zvz]2 Ny 2V +N. ow
ax\ Yoy T 0ox
3 0 ow ow 3 92w
+[1 - (eoa) V2]87y nyﬁ-i-NyyW =[1- (e00) VZ],ohW (29)

3.4.2. Size-dependent bending of nanoplates

Nonlocal continuum mechanics has been utilised to analyse the static deformation of nanoscale plates. For instance, Duan
and Wang (Duan & Wang, 2007) obtained exact solutions for the axisymmetric static deformation of circular SLGSs subject
to transverse loading by decoupling nonlocal equations for both clamped and simply-supported edges. In addition, an exact
solution was presented by Yan et al. (Yan et al., 2015) for the bending of rectangular nanoplates via the NET. Aghababaei
and Reddy (Aghababaei & Reddy, 2009) explored the static deformation of rectangular nanoplates incorporating size ef-
fects via use of the NET; a modified third-order theory of shear deformations was proposed for nanoplates. Huang et al.
(Huang, Han & Liang, 2012) determined the scale parameter for the bending of SLGSs using the molecular dynamics. More-
over, a nonlinear nonlocal plate model was proposed for the large deflection of monolayer graphene sheets (Golmakani &
Rezatalab, 2014) as well as bilayer graphene sheets (Far & Golmakani, 2018, Xu, Shen & Zhang, 2013). Surface influences on
the size-dependent bending of nanoscale plates have been also examined (Shaat, Mahmoud, Gao & Faheem, 2014, Zhang
& Jiang, 2014, Wang & Wang, 2013); a positive value of surface constant reduces the nanoplate deflection. In Fig. 23, the
results of the nonlocal and local plate models as well as MD results for the bending of nanoplates are compared (Yan et al.,
2015). The results of the nonlocal plate model are in a very good agreement with those calculated by MD simulations.
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Fig. 23. Comparison of the nonlocal and local plate models as well as MD results (Yan et al., 2015). Reprinted with permission from Elsevier.
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Fig. 24. Buckling load ratio versus the nonlocal parameter for both biaxially amd uniaxially compressed nanoplates (Pradhan & Murmu, 2009). Reprinted
with permission from Elsevier.

3.4.3. Size-dependent buckling of nanoplates

NET-based models have been employed for the linear buckling of nanoplates in recent years due to the simplicity and
capability of these models in the size-dependent analysis of structures at nanoscale levels. Various solution methods such
as analytical solution techniques (Aksencer & Aydogdu, 2011, Zenkour & Sobhy, 2013, Murmu, McCarthy & Adhikari, 2013,
Murmu & Pradhan, 2009, Farajpour, Mohammadi, Shahidi & Mahzoon, 2011, Pradhan, 2009, Radi¢ & Jeremi¢, 2016), the
DQM (Malekzadeh, Setoodeh & Beni, 2011, Pradhan & Murmu, 2009, Farajpour, Shahidi, Mohammadi & Mahzoon, 2012),
Galerkin’s approach (Babaei & Shahidi, 2011, Farajpour, Danesh & Mohammadi, 2011) and the finite strip method (Sarrami-
Foroushani & Azhari, 2014) have been applied to the nonlocal governing differential equations of nanoscale plates. Fig. 24
shows the nonlocal-to-local buckling load ratio versus the scale parameter for nanoplates subject to uniaxial and biaxial
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Fig. 25. Accuracy of nonlocal continuum modelling of SLGSs via MD simulations (Ansari & Sahmani, 2013). Reprinted with permission from Elsevier.

loading conditions; the nonlocal buckling load is lower than the local one. This is because the nonlocal effect reduces the
structural stiffness of nanoplates, and thus the buckling load declines. The accuracy and reliability of the nonlocal continuum
modelling of nanoplates have been shown by performing MD simulations (Farajpour, Dehghany & Shahidi, 2013, Ansari &
Sahmani, 2013). In Fig. 25, the buckling force of square SLGSs versus the length is plotted for different size parameters (i.e.
1 = (ega)?); the MD results are also shown. It is observed that the nonlocal plate model with a reasonable size parameter
can accurately predict the critical buckling force of nanoscale plates.

In addition to the NET, the surface elasticity theory (Farajpour, Dehghany & Shahidi, 2013, Cheng & Chen, 2015, Karimi,
Mirdamadi & Shahidi, 2017, Lu, Guo & Zhao, 2018) and the NSGT (Farajpour, Yazdi, Rastgoo & Mohammadi, 2016) have
also been utilised for the stability of nanoscale plates, especially GSs. It has been shown that surface or strain gradient
effects should be taken into consideration to capture the stiffness hardening behaviour observed in the stability of circular
GSs subject to axisymmetric radial loads. Furthermore, nonlinear nonlocal models (Shen, 2011, Farajpour, Solghar & Shahidi,
2013, Naderi & Saidi, 2014) and nonlinear continuum models incorporating surface effects (Wang & Wang, 2013, Sahmani,
Bahrami, Aghdam & Ansari, 2015) have been developed in the literature to analyse the size-dependent post-buckling of
nanoplates.

3.4.4. Size-dependent vibration of nanoplates

Various nonlocal plate models such as the Kirchhoff plate theory (Wang, Li & Kishimoto, 2011, Pradhan & Phadikar, 2009,
Pouresmaeeli, Ghavanloo & Fazelzadeh, 2013, Wang, Murmu & Adhikari, 2011, Farajpour, Shahidi & Farajpour, 2018), first-
order shear deformation model (Pradhan & Phadikar, 2009, Hosseini-Hashemi, Zare & Nazemnezhad, 2013), two-variable
refined theory of plates (Malekzadeh & Shojaee, 2013, Karimi, Haddad & Shahidi, 2015) and higher-order shear deformation
model (Pradhan & Sahu, 2010, Daneshmehr, Rajabpoor & Hadi, 2015, Kiani, 2014) have been employed so as to examine
the linear vibration of nanoscale plates. On the other hand, to solve the size-dependent differential equations of these non-
local plate models, different solution methods such as analytical approaches (Mohammadi, Goodarzi, Ghayour & Farajpour,
2013, Arani & Jalaei, 2016, Hosseini-Hashemi, Bedroud & Nazemnezhad, 2013), Galerkin’s method (Babaei & Shahidi, 2013,
Malekzadeh & Farajpour, 2012), the DQM (Farajpour, Shahidi & Farajpour, 2018, Pradhan & Kumar, 2011, Malekzadeh, Se-
toodeh & Beni, 2011), the finite element method (Phadikar & Pradhan, 2010, Natarajan et al., 2012) and the kp-Ritz method
(Zhang, Zhang & Liew, 2017, Zhang et al., 2015). The variation of the fundamental frequency of square SLGSs with the width
for various nonlocal parameters is illustrated in Fig. 26. The results of MD simulations, local and nonlocal plate models are
given. Firstly, the results of the NET match MD results while the CET leads to overestimated results especially for SLGSs with
small widths. Secondly, increasing nonlocal parameter reduces the fundamental frequency since increasing nonlocal effects
reduces the structural stiffness. Moreover, it is found that the nonlocal influence gradually disappears as the width of the
nanoplate increases.
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Fig. 26. Fundamental frequencies of SLGSs with four edges simply supported versus the width for different nonlocal parameters (Zhang et al., 2015).
Reprinted with permission from Elsevier.

The influences of surface energy, residual surface tension and strain gradients affect the vibration characteristics of
nanoplates. In recent years, size-dependent plate models incorporating surface effects (Assadi, 2013, Ansari & Sahmani, 2011,
Wang & Wang, 2011, Barati & Shahverdi, 2017) as well as NSGT-based models (Shahverdi & Barati, 2017, Ebrahimi & Barati,
2017) have been developed for the vibration of nanoplates. It has been shown that the stiffness-hardening behaviour can be
described using these size-dependent plate models.

In addition to linear size-dependent plate models, nonlinear models have been proposed to analyse the large-amplitude
vibration of nanoscale plates using the surface elasticity theory (Ebrahimi & Hosseini, 2017, Ebrahimi & Heidari, 2017) and
the NET (Shen, Shen & Zhang, 2010, Jomehzadeh & Saidi, 2011, Farajpour, Shahidi, Hadi & Farajpour, 2018, Shen, Xu & Zhang,
2013). Fig. 27 indicates the size influence on the nonlinear vibration of SLGSs with four edges simply supported. The non-
linear frequency ratio is defined as w/w; where w and w; indicate the nonlinear and linear nonlocal frequencies, respec-
tively. It is found that the as the scale parameter increases the influence of the geometrical nonlinearity. More recently,
size-dependent nonlinear plate models have been utilised for investigating the large-amplitude vibration of smart nanoscale
plates such as piezoelectric (Asemi, Farajpour & Mohammadi, 2014, Liu et al., 2016, Liu, Ke, Wang & Yang, 2015) & magneto-
electro-elastic ultrathin plates (Ansari & Gholami, 2016, Farajpour et al., 2016).

3.4.5. Size-dependent wave propagations in nanoplates

Wave propagations in nanoscale plates such as graphene sheets (Arash, Wang & Liew, 2012, Wang, Li & Kishimoto, 2010),
smart (Ebrahimi & Dabbagh, 2017) and inhomogeneous (Karami, Shahsavari & Janghorban, 2018) nanoplates have been ex-
amined using size-dependent plate models. The majority of size-dependent studies on the wave propagation analysis have
been carried out via use of the NET (Wang, Li & Kishimoto, 2010, Narendar & Gopalakrishnan, 2012, Wang, Li & Kishimoto,
2010). The surface elasticity theory (Narendar & Gopalakrishnan, 2012, Zhang, Liu, Fang & Nie, 2014) and the NSGT (Ebrahimi,
Barati & Dabbagh, 2016, Ebrahimi & Dabbagh, 2017) have been also utilised to explore the size-dependent wave propagation
in nanoplates. It was found that increasing nonlocal parameter strengthens the dispersion degree. In addition, strengthened
dispersion degrees for nanoplates can be achieved by increasing wave numbers.
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Fig. 27. Nonlinear frequency ratio of SLGSs against maximum deflection for different scale parameters (i = (ega)?) (Jomehzadeh & Saidi, 2011). Reprinted
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3.5. Nanoshells

In addition to size-dependent beam models, the mechanical behaviour of nanotubes including CNTs (lijima & Ichi-
hashi, 1993), boron nitride nanoscale tubes (BNNTs) (Chopra et al., 1995) can be estimated via size-dependent shell models.
In general, modified shell theories result in a more accurate estimation of the mechanical characteristics of nanotubes com-
pared to modified beam theories. However, size-dependent shell models are more complex in terms of mathematical for-
mulation as well as solution methods. Moreover, they require high computational costs compared to size-dependent beam
models.

3.5.1. Nonlocal shell model

At nanoscale levels, the NET is usually employed in order to incorporate the size effect into a continuum-based shell
model. Based on the NET and the classical shell theory, one can write

Oxx Ch Gz Gs 0 0 O Exx

o C Cn O3 0 0 O €66

2021) 0z | _ |Gz Gs Gz 0 0 O &z
-V N t=1 "0 0 0 cu 0 0 [Jmf (30)

Oxz 0 0 0 0 C55 0 sz

Oyxp 0 0 0 0 0 Ces Yx6

where Cj; are the elasticity constants of the nanoscale shell. From the above equation, the normal strain along the z direction
is obtained as &;; = —(1/C33) (Ci3&xx + C23€40)- Substituting this relation into Eq. (30), one obtains

, Oxx C:u C:12 0 Exx
[1-(e0n)*V?] 1009 1 = |Co Co O |00 ¢ (31)
Ox6 0 0 C66 Vx6
where
~ 2, c, . Ci3Cz =~
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Applying Hamilton’s law, the motion equations of the nanoscale shell in terms of stress resultants are obtained as

19Ny ONu _ o 92y

R0 " ax ~ Mo (33)
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in which h and p indicate the thickness and mass density of the nanoscale shell, respectively; also, Ng)g and N., are respec-
tively the total circumferential and axial loads. R and q represent the average radius of the nanoshell and the radial loading,
respectively. Using Eqs. (31) and (36), one can obtain
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Substituting Eq. (37) into Egs. (33)-(35), the differential motion equations of the nanoshell are derived as
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in which m = ph. The above coupled differential equations govern the size-dependent mechanical behaviour of nanoshells
based on the NET.

3.5.2. Size-dependent mechanics of nanoshells

Size-dependent shell models have recently been utilised for analysing the mechanics of CNTs (Wang & Varadan, 2007,
Hu et al., 2008, Ansari, Rouhi & Sahmani, 2011), BNNTs (Arani, Amir, Shajari & Mozdianfard, 2012), piezoelectric nanotubes
(Ke, Wang & Reddy, 2014, Sahmani, Aghdam & Akbarzadeh, 2016) and magneto-electro-elastic nanotubes (Ke, Wang, Yang
& Kitipornchai, 2014, Farajpour, Rastgoo & Farajpour, 2017). To modify the traditional shell theories for capturing size influ-
ences, various modified theories including the NET (Wang & Varadan, 2007, Hu et al.,, 2008, Wang, Hu & Guo, 2006), the
surface elasticity (Altenbach & Eremeyev, 2011, Sahmani, Bahrami & Aghdam, 2016) and the NSGT (Sahmani & Aghdam, 2018,
Zeighampour, Beni & Karimipour, 2017) can be used. The NET can predict the stiffness softening while the surface elasticity
with positive surface properties can account for the stiffness hardening. The NSGT takes into account both the softening and
hardening of the structural stiffness. To solve the motion equations of nanotubes using modified shell models, various so-
lution techniques such as the DQM (Arani, Kolahchi & Maraghi, 2013, Farajpour, Rastgoo & Mohammadi, 2017), perturbation
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Fig. 28. Comparison between the nonlocal and local shell models for simply-supported SWCNTs (Ansari, Sahmani & Rouhi, 2011). Reprinted with permis-
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Fig. 29. Comparison between the nonlocal and local shell models for clamped-free SWCNTs (Ansari, Sahmani & Rouhi, 2011). Reprinted with permission
from Elsevier.

schemes (Sahmani & Aghdam, 2018, Shen & Zhang, 2010), analytical methods (Wang, Hu & Guo, 2006, Khademolhosseini,
Rajapakse & Nojeh, 2010, Farajpour & Rastgoo, 2017) were employed.

The appropriate value of the nonlocal parameter has a significant role in the correct prediction of the mechanical charac-
teristics of nanotubes, especially CNTs. Wang and Wang (Wang & Wang, 2007) formulated the constitutive equations of CNTs
via use of the nonlocal elasticity; they also proposed a general range for the nonlocal parameter (i.e. 0 nm<ega<2 nm), which
has been extensively applied to the nonlocal continuum models of CNTs and GSs. Particularly, Ansari et al. (Ansari, Sah-
mani & Rouhi, 2011) calibrated a nonlocal shear deformable shell model for the buckling of SWCNTs applying the MD. The
value of the nonlocal parameter ranges from 0.5 to 0.8 nm depending on the bending rigidity and the boundary conditions.
Figs. 28 and 29 show the change of the buckling force with L/d for both local and nonlocal shell models for clamped-free
and simply-supported edges. The local shell model fails to correctly predict the buckling behaviour of SWCNTs while the
nonlocal shell model with a calibrated scale parameter gives a reasonable estimation of the critical buckling force. Tables 1
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Table 1
Calibrated scale parameters for the mechanics of CNTs via the NET.
Mechanical behaviour ~ Continuum model Calibration parameter (e;)  Nonlocal parameter (nm)
Mechanics NET-based shell and beam models (Wang & Wang, 2007)  —- 0-2
Wave propagation NET-based shell model (Hu et al., 2008) 0.2-0.6 —
Vibration NET-based beam model (Duan, Wang & Zhang, 2007) 0-19 —
Wave propagation NET-based rod model (Aydogdu, 2012) 0-0.386 —
Axial buckling NET-based shell model (Ansari, Sahmani & Rouhi, 2011) —- 0.531-0.780
Table 2
Calibrated scale parameters for the mechanics of GSs via the NET.
Mechanical behaviour ~ Continuum model Nonlocal parameter (nm)
Buckling NET-based plate model (Ansari & Sahmani, 2013) 1.33-1.36
Vibration NET-based plate model (Shen, Shen & Zhang, 2010) 0.22-0.67
Post-buckling NET-based nonlinear plate model (Farajpour, Solghar & Shahidi, 2013)  0.25-1
Table 3
Calibrated scale parameters for the mechanics of CNTs via the NSGT.
Mechanical behaviour  Continuum model Strain gradient parameter (nm)  Nonlocal parameter (nm)
Buckling NSGT-based shell model (Mehralian, Beni & Zeverdejani, 2017)  0.4-0.9 1-15
Vibration NSGT-based shell model (Mehralian, Beni & Zeverdejani, 2017)  0.1-0.4 3.3-35
Wave propagation NSGT-based beam model (Li, Hu & Ling, 2016) 0.175 0.8

and 2 list the calibrated scale parameters of CNTs and GSs for the NET, respectively. In addition, the calibrated values for
the scale parameters of CNTs for the NSGT are given in Table 3.

4. Conclusions

Nanostructures have extensively been utilised in NEMS-based devices including nanomechanical resonators, mass
nanosensors, nanoenergy harvesters, and nanogenerators due to their excellent physical characteristics. To properly design
and manufacture these small-scale devices, it is important to estimate how nanostructures respond to mechanical/electrical
excitation loads. Due to the problems associated with performing experiments at nanoscales and conducting MD simula-
tions, the size-dependent continuum models of nanostructures have received a considerable attention.

The NET and NSGT have widely been applied for estimating the mechanical characteristics of nanoscale structures. In
the present paper, first these size-dependent elasticity theories were briefly reviewed. Then, the NET-based equations of
motion were derived for nanorods, nanorings, nanobeams, nanoplates and nanoshells. Pioneering studies conducted on the
size-dependent continuum modelling of nanostructures with and without incorporating surface effects on the basis of the
NET and NSGT were reviewed. Important findings on the mechanical behaviour of these nanostructures are summarised as

Scale effects predicted by the NSGT appear in a wider range of lengths compared to nonlocal effects.

The computational cost of the NET is less than that of the NSGT.

Surface effects are more significant for slender nanobeams.

Increasing strain gradient parameter reduces the transverse deflection of nanobeams while the transverse deflection in-
creases with increasing nonlocal coefficient.

For cantilever nanobeams, integral nonlocal models can better describe the bending behaviour than a differential nonlo-
cal model.

Nonlocal effects reduce the critical buckling loads of nanostructures due to the reduction of the structural stiffness.
Increasing nonlocal parameter notably reduces the natural frequencies of nanostructure.

Strengthened dispersion degrees for nanoplates can be achieved by increasing the nonlocal parameter as well as increas-
ing the wave number.

For circular nanoplates, a combination of the NET and surface elasticity or the NSGT is required in order to accurately
predict the critical buckling loads.

Size-dependent shell models lead to a more accurate estimation of the mechanical characteristics of nanotubes compared
to size-dependent beam models.

Size-dependent shell models are more mathematically complex and require high computational effort compared to size-
dependent beam models.

Further effort is required in order to calibrate the available size-dependent continuum models of nanostructures by per-
forming MD simulations or experiments. In addition, compared to nanobeams, the mechanical behaviour of nanorings has
not been studied comprehensively. More analysis can be carried out to explore the size-dependent mechanical response



256 A. Farajpour et al./International Journal of Engineering Science 133 (2018) 231-263

of nanorings, especially in thermal environment. Moreover, most size-dependent studies on the mechanics of nanorods are
linear. Modified continuum models can be developed to examine the nonlinear vibration of nanorods.
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Chapter 3

Nonlinear vibration of small-scale beams with
geometrical imperfections

Chapter overview

In this chapter, the first objective of this project, which is the nonlinear vibration of geometrically
imperfect beams at small-scale levels, is analysed. For this purpose, an advanced scale-dependent
model is developed by assuming stress nonlocality and taking into consideration strain gradients
in the constitutive equations of the structure. To simulate a geometrical imperfection, an initial
deformation is assumed in the small-scale beam prior to vibrations. The geometrical nonlinearity
is modelled through strain-displacement relations. Potential and kinetic energies of the small-scale
system are used to conduct an energy balance and obtain the coupled motion equations. Using a
Galerkin-based technique, the nonlinear vibrational response of the imperfect beam is numerically
estimated. It is found that the resonance frequency is highly influenced by both geometrical
imperfections and scale effects. This work was published in “International Journal of Mechanical
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ARTICLE INFO ABSTRACT

Keywords: In this paper, a scale-dependent coupled nonlinear continuum-based model is developed for the mechanical

Nanotubes behaviour of imperfect nanoscale tubes incorporating both the effect of the stress nonlocality and strain gradient

Enpirfecn‘ons effects. The scale effects on the nonlinear mechanics are taken into consideration employing a modified elasticity
onlinearity

theory on the basis of a refined combination of Eringen’s elasticity and the strain gradient theory. According to
the Euler—Bernoulli theory of beams, the nonlocal strain gradient theory (NSGT) and Hamilton’s principle, the
potential energy, kinetic energy and the work performed by harmonic loads are formulated, and then the coupled
scale-dependent equations of the imperfect nanotube are derived. Finally, Galerkin’s scheme, as a discretisation
technique, and the continuation method, as a solution procedure for ordinary differential equations, are used.
The effects of geometrical imperfections in conjunction with other nanosystem parameters such as the nonlocal
coefficient as well as the strain gradient coefficient on the coupled large-amplitude mechanical behaviour are

Nonlocal effects
Strain gradient effects

explored and discussed.

1. Introduction

Nanostructures such as nanorings, nanotubes and nanosheets which
form the fundamental building blocks of some nanoelectromechanical
systems (NEMS) are scarcely a perfect structural element. During the
fabrication process, a geometric imperfection is likely to be formed in
the structure of nanomaterials since manufacturing at nanoscale levels
is difficult to be implemented with high precision. Therefore, it is im-
portant to take these imperfections into account in a theoretical model
or molecular dynamics (MD) simulations so as to obtain more accurate
results.

In addition to experimental measurements and MD simulations, the-
oretical modelling of nanoscale structures has attracted researchers’ at-
tention in recent years due to its simplicity and low computational
costs [1-7]. In addition to microscale structures [8-10], various size-
dependent continuum-based models for nanoscale structures have been
proposed [11-16]. For instance, Guo et al. [17] examined the influence
of length scale on the mechanical response of nanoscale beams while
moving in the axial direction and rotating; the critical velocity of ro-
tation is greater for forward waves than that of backward waves. Li
et al. [18] studied the influence of the nonlocality along the thickness of
nanoscale beams; analytical expressions were proposed for the buckling
behaviour. More recently, wave propagations in smart nanoscale tubes

* Corresponding author.

and shells have been investigated using a size-dependent continuum-
based formulation [19]. Lei et al. [20] examined the size-dependent
elasticity of cantilever small-scale beams carrying out experiments. In
addition, in an interesting article, an experimental scheme was proposed
by Li et al. [21] for obtaining the scale parameter of a size-dependent
theory. Now previous studies related to the continuum-based modelling
of size-dependent imperfect nanostructures are reviewed. Farshidian-
far and Soltani [22] used the nonlocal continuum mechanics to in-
vestigate the transverse dynamics of a geometrically imperfect fluid-
conveying carbon nanotube (CNT) with both edges immovable; they
obtained an approximate explicit expression for the nonlinear natu-
ral frequencies employing a multi-scale perturbation technique. Wang
et al. [23] also developed a nonlocal beam model in order to examine
the large-amplitude forced dynamics of imperfect single-walled CNTs;
they utilised a one-term Galerkin approximation and the precise inte-
gration scheme to describe the nonlinear behaviour of the CNT. In an-
other study, Mohammadi et al. [24] applied Eringen’s elasticity theory
to nanoscale beams with a geometrical imperfection resting on an elas-
tic foundation so as to explore their post-buckling behaviour. In order
to examine the stability response of metal foam nanoscale beams with
an initial deflection in the presence of structural porosities, a nonlinear
nonlocal analysis was also performed by Barati and Zenkour [25]. The
effect of out-of-plane defects on the free dynamics of a single-layered
graphene sheets was investigated by Jalali et al. [26] via use of Erin-
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gen’s elasticity theory; they reported that out-of-plane defects have an
important role to play in the free vibration of graphene sheets. Further-
more, Rafiee et al. [27] used the classical (local) continuum mechanics
in conjunction with the first-order shear deformation theory in order
to explore the large-amplitude dynamic instability of imperfect piezo-
electric functionally graded (FG) plates reinforced by CNTs. A nonlocal
beam model was also developed by Arefi and Salimi [28] to study the
influence of the small initial curvature on the mechanical behaviour of
single-walled CNTs. In addition, the effects of geometrical imperfections
on the vibration response of graphene sheets [29] and on the large-
amplitude instability of FG nanopanels [30] have been investigated. In
addition, size influences have been studied on the nonlinear mechanics
of microscale structures in recent years [31-33].

Recently, it has been reported that taking into account both the stress
nonlocality and strain gradients leads to a more reliable size-dependent
theoretical model for nanorods [34], nanobeams [35-37], functionally
graded nanostructures [38,39], protein microtubules [40] and graphene
sheets [41]. However, all of the above-described valuable theoretical
models of size-dependent imperfect nanoscale structures contain only
one scale parameter (mainly only one nonlocal parameter) which is in-
capable of incorporating the size effect thoroughly. In the present study,
for the first time, a nonlinear size-dependent nanobeam model is de-
veloped for imperfect nanotubes with consideration of both the stress
nonlocality and strain gradients. The effect of being nanosized is incor-
porated into the modified continuum model within the framework of the
nonlocal counterpart of the classical continuum mechanics as well as a
strain gradient-based theory. The Euler-Bernoulli beam theory (EBBT),
as a deformation model, is employed together with Hamilton’s principle,
as a work/energy law, for the derivation of the coupled scale-dependent
equations of geometrically imperfect nanoscale tubes. The nonlinear me-
chanical behaviour of the imperfect nanosystem is obtained on the basis
of Galerkin’s scheme and a continuation-based approach. It is predicted
that the present modified continuum-based model would be useful in
design and manufacturing of NEMS devices using different nanotubes
such as silver, carbon and silicon nanotubes.

2. Size-dependent formulation and solution technique

Fig. 1 illustrates a nanoscale tube with a geometrical imperfection
subject to external harmonic force. The geometrical imperfection is de-
scribed by an arbitrary initial curvature as shown in the figure. The
length and thickness of the nanotube are respectively denoted by L and
h while the inner and outer radii are indicated by R; and R,, respectively.
Moreover, the area and the inertia moment of the cross-section of the
tube are denoted by A and I, respectively. E, p and v also represent the
elasticity modulus, the mass density and Poisson’s ratio of the nanoscale
tube, respectively.
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According the EBBT, the nonlinear axial strain (¢,,) of the geomet-
rically imperfect nanoscale tube is obtained as
_ou 1(6w>2 owdwy  Pw

Y e 1
*ox 2\ ox ox dx Z()xz M

in which u, w and w,, represent the longitudinal, transverse and initial
transverse displacements of the imperfect nanosystem, respectively; x,
z and t are the longitudinal coordinate, the transverse coordinate and
the time, respectively. There are various size-dependent theories for
nanoscale structures [42-46] as well as modified elasticity theories for
microscale structures [47-49]. In this paper, the NSGT [38,50,51] is
utilised for capturing size effects. The nonlocal strain gradient constitu-
tive equation of the nanotube can be formulated as [52,53]

£

2
tor = (€0) VP, = Ee — EIZ Ve, )

where t,,, L, and eya are the total stress along the axial direction, the
strain gradient parameter and the nonlocal parameter, respectively; V2
indicates the Laplace operator; e, and a are a scale parameter for cal-
ibrating the theoretical model and the internal characteristics length
of the nanotube, respectively [54,55]. The strain gradient parameter
and the nonlocal parameter are determined using experimental mea-
surements or MD simulations [21,56,57]. For instance, Li et al. [35] ob-
tained the scale parameters of carbon nanotubes for the wave propaga-
tion analysis via MD simulations. Using Egs. (1) and (2), one can derive
the following relations

2 ou 1 (ow\*  owdwy
e L A | e e R vl B
2 0?
[1 ~ (epa) VZ]MXX =-£11 —zggvz)a—;, (3b)

with N, being the longitudinal force resultant and M, being the bend-
ing couple resultant, which are defined by

N | _ 1
(2 {1}on

Applying the nonlocal strain gradient theory (NSGT) to the imperfect
nanoscale tube, the variation of the elastic energy is obtained as

L L
oU = / / (0yx0€ . + 0D VSE, )dAdx = / / tx0€ o d Adx
0 A 0 A
L

+ [ / aj)x)&exdi] . ®)
A 0

in which s, and chlx) are respectively the traditional nonlocal axial stress
and the higher-order nonlocal axial stress, and V represents the gradient
operator; U stands for the elastic energy of the nanotube. It should be
noted that the relation between the various stress components is given
by, =0, — Vo' on the basis of the NSGT. Consider a nanoscale tube
of mass per unit length m subject to the harmonic transverse loading

\

Nanoscale tube

m—

Fig. 1. Schematic representation of a geometrically imperfect nanoscale tube subject to a harmonic loading.
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F(x) cos (w t) in which F and o represent the force amplitude and frequency, respectively. The corresponding motion and work variations can be
written as

ou .ou = ow .ow
5K = ( 5o +—5—)d : 6
'"/0 oot o Car )N 2)

L
W = / F(x) cos(wt)ow dx. (6b)
0

Here K and Wy are the motion energy and the external work associated with the transverse harmonic force, respectively. To derive the differential
equations of motion, the following steps are taken:

(1) Substituting Egs. (5) and (6) into /tiz (6K + Wy — 8U)dt = 0 (i.e., Hamilton’s principle).
(2) Integrating by parts and collecting the coefficient of éu and éw.

The resultant differential equations of motion are as

0Nxx ()ZM
P _ 0 7
ox o 7
M, 9 ow  dwg 0w
Fy) +a|:Nxx<g+W> = ?—F(}C) cos(wt). (7b)
The related boundary conditions are also obtained as
ow dwo oM ow
«=0o0ru=0,N, (ax+W>+7”:00rw:0,Mxx:00r$:O, (8a)
dw, 0 2w
M —gor 2 —o N[ 0\ 2 0or % o MO =gor 2% =
NXX_Oorax ON <0x dx)—Oor ax—O,MXX—Oor axz—O, (8b)
where

N / o
= dA.
{ MO [ 2 ©

Using the relations of stress resultants (i.e., Eq. (3)) and the above differential equations (i.e., Eq. (7)), the following explicit relations are obtained

ou _1/dw\* dwdwy 2 0%u
N, _EA(I—IZ v2> 1w , 10
ax+2(ax) *ox x| ) 5 os (10
_ _ 2 w2\ dw 202w
My =—EI(1- 1V )0 <+ m(ega)’ 2 o)

dwy

(eoa) F(x) cos(wt) — (eoa —[N (— + —)]
Substituting Eq. (10) into Eq. (7) leads to the following NSGT-based coupled nonlinear equations for the geometrically imperfect nanoscale tube
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2( 0w | dwy 2 0% 0*u af BPw | dPw > d*u
— m(ega —+ — egd) ——— — —— | —3ml(ega — +
(e02) <ax dx )[( 04) ox4or2  ox20r (e0) 0x3 | dx3 ) ox2or
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Assuming the amplitude of the harmonic loading as F(x) =F;, and applying the following non-dimensional parameters to Egs. (11) and (12)
Ly

B L e —
—L, —rs = ra O_ rv,}’nI ’Isg ’
L, I F L L4 13
p==r=4\|—7F'=—F—,t"=
Al EI L2 EI
one can obtain the non-dimensional equations of motions as
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Here asterisk superscripts are neglected for convenience purposes. f, 7, y and y,, stand for the slenderness ratio, the gyration radius, the nonlocal
coefficient and the strain gradient coefficient, respectively. Furthermore, Q represents the non-dimensional harmonic excitation frequency. In order
to obtain a numerical solution for Egs. (14) and (15), first Galerkin’s procedure [58-61] as a discretisation method is utilised [66-69]. In this way,
the longitudinal and transverse displacements are as

NX

u(x, 1) = Y r; (0 (x), (16a)
j=1
NZ

wix, 1) = )" g0, (x), (16b)
Jj=1

where N, and N, denote the number of shape functions along the x and z axes, respectively; r; and i; represent the axial generalized coordinate
and the axial shape function of the imperfect nanotube; also, ¢; and ; stand for the transverse generalized coordinate and the transverse shape
function, respectively. Let us consider a geometric imperfection as w, = Ay, (x) for the nanotube; A indicates the imperfection amplitude. Assuming
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clamped-clamped (C-C) boundary conditions for the tube, the appropriate shape functions are

{0}
i (x)

in which 4; stand for the jth root of the classical frequency equation for C-C beams. It is worth mentioning that i, (x) is obtained from Eq. (17) when
j is set to 1. Inserting Eq. (16) into Egs. (14) and (15) and then applying the Galerkin discretisation technique, one obtains
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Fig. 2. Frequency-amplitude plots of the geometrically imperfect nanotube; (a—c) the maximum of q;, q,, and g3, respectively; (d) the minimum of r,; for non-zero
Zsgand Ag=0.8.
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Fig. 3. Strain gradient effects on frequency-amplitude plots of the geometrically imperfect nanotube; (a—c) the maximum of q,, q,, and g3, respectively; (d) the
minimum of r, for A;=0.8.
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Fig. 4. Frequency-amplitude plots of the geometrically imperfect nanotube; (a—c) the maximum of q;, q,, and g3, respectively; (d) the minimum of r, for non-zero
s and Ag=0.8.
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Fig. 5. Nonlocal effects on frequency-amplitude plots of the geometrically imperfect nanotube; (a—c) the maximum of q,, g,, and g3, respectively; (d) the minimum
of r, for A;=0.8.
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Fig. 6. Frequency-amplitude plots of the geometrically imperfect nanotube; (a—c) the maximum of q;, q,, and g3, respectively; (d) the minimum of r, for non-zero
Xsg and Ag=1.5.
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Fig. 7. Strain gradient effects on frequency-amplitude plots of the geometrically imperfect nanotube; (a—c) the maximum of q;, g,, and g3, respectively; (d) the
minimum of r, for A;=1.5.
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Fig. 8. Frequency-amplitude plots of the geometrically imperfect nanotube; (a—c) the maximum of q,, q,, and g3, respectively; (d) the minimum of r, for non-zero
ym and Ag=1.5.
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Fig. 9. Nonlocal effects on frequency-amplitude plots of the geometrically imperfect nanotube; (a—c) the maximum of q,, g,, and g3, respectively; (d) the minimum
of r, for Ay=1.5.
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To determine the large-amplitude mechanical characteristics
[70-79] of geometrically imperfect nanotubes subject to a harmonic
loading, a numerical scheme in the context of a continuation-based tech-
nique is employed [62,63]. In the present nonlinear analysis, a conver-
gence test is carried out, indicating that eight base functions for each
displacement component are sufficient to meet the requirement of cal-
culation precision [80-84]. In general, a system of sixteen base functions
is considered (eight base functions for u and eight base functions for w).

3. Numerical results

The influence of a geometric imperfection together with other pa-
rameters such as the nonlocal and strain gradient coefficients on the
large-amplitude mechanical behaviour of nanoscale tubes is studied
in this section. Let us consider an imperfect nanoscale tube of length
100 nm. The material properties are taken as E=1.0 TPa, v=0.19, and
p=2300kg/m3. The outer and inner radii of the tube are, respectively,
assumed as 0.84 and 0.5nm. The slenderness ratio is determined as
f =204.5935. In the nonlinear analysis, the modal damping ratio is cho-
sen as ¢ =0.005.

The variation of the maximum values of some transverse generalised
coordinates as well as the minimum value of the second axial generalised
coordinate versus the excitation-to-natural frequency ratio (excitation
frequency ratio) is shown in Fig. 2. The values of the strain gradient and
nonlocal coefficients are, respectively, taken as v =0.1 and y,; =0. The
force and imperfection amplitudes are assumed as F; =0.1 and A;=0.8,
respectively. A hardening-type nonlinearity with two saddle points (B
and B,) is found for the geometrically imperfect nanoscale tube. As the
excitation frequency ratio increases, the maximum value of q; increases
until point B; (the first saddle point) in which the nanotube experiences
a dramatic jump to a lower value of the transverse amplitude. Decreas-
ing the excitation frequency first increases the maximum value of g,
and then at point B, (the second saddle point), the nanosystem displays
a sudden increase followed by a gradual reduction in q;. In addition,
from Fig. 2, modal interactions [64] around the first saddle point are
clearly observed for higher generalised coordinates.

Fig. 3 illustrates the effect of y, on the frequency-amplitude plots
for imperfect nanoscale tubes. The force and imperfection amplitudes
are taken as F; =0.1 and A;=0.8, respectively. The nonlocal effect is
neglected in this figure (i.e., y,; =0). The resonant frequency of the ge-
ometrically imperfect nanotube is higher when higher values are cho-
sen for the strain gradient coefficient. Nonetheless, the peak amplitude
of the imperfect nanosystem is lower for higher values of y. In ad-
dition, strong modal interactions are observed, especially for higher
generalised coordinates, when the strain gradient coefficient is set to
Zsg=0.05. However, increasing the strain gradient effect can gradually
eliminates the modal interactions.

The variation of some transverse and axial generalised coordinates
of the imperfect nanoscale tube versus the excitation frequency ratio
is depicted in Fig. 4; but this time, only the nonlocal effect is incorpo-
rated. The imperfection and force amplitudes are the same as those of
Fig. 2. A nonlocal coefficient of 0.1 is selected for the nanotube while
the strain gradient coefficient is zero. Again, a hardening-type nonlin-
earity with two saddle points is observed for geometrically imperfect
nanotubes. However, stronger modal interactions are seen in Fig. 4 in
comparison with those of Fig. 2, especially for the fifth generalised co-
ordinate along the transverse direction. It means that the modal inter-
action may be overestimated when only the nonlocal effect is taken into
consideration.

Fig. 5 depicts the influence of y,; on the frequency-amplitude plots of
imperfect nanoscale tubes. The strain gradient coefficient is set to zero.
A value of 0.8 is chosen for the non-dimensional imperfection amplitude
while the dimensionless force amplitude is F; =0.1. It is found that im-
perfect nanotubes with higher nonlocal coefficients undergo resonance
at lower excitation frequencies. Another interesting finding is that for
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Fig. 10. Comparison of the present results with those reported in Ref. [53] for
linear perfect NSGT nanobeams.

higher nonlocal effects, the imperfect nanotube exhibits strong modal
interactions (see Fig. 5c).

The variation of maximum values of some transverse generalised co-
ordinates and the minimum value of the second axial generalised coor-
dinate of the nanotube versus the excitation frequency ratio is demon-
strated in Fig. 6; a larger imperfection amplitude (A, =1.5) is taken into
account. A value of F; =0.14 is taken for the force amplitude. The strain
gradient coefficient is taken as y,,=0.1 while the nonlocal coefficient
is assumed to be zero. A combination of softening and hardening non-
linearities with four saddle points is observed in this case. Initially, the
nonlinear mechanical behaviour is of softening type which is followed
by a hardening-type nonlinearity. The transverse amplitude of the im-
perfect nanotube increases gradually with increasing the excitation fre-
quency ratio until point B; (the first saddle point) where it suddenly
increases. Then, the transverse amplitude continuously increases until
point B (the third saddle point) in which the imperfect nanotube jumps
to a lower transverse amplitude. By comparing Fig. 2 with Fig. 6, it can
be concluded that a small increase in the imperfection amplitude can
substantially change the nonlinear mechanical behaviour.

Fig. 7 shows the influence of y, on the large-amplitude mechani-
cal behaviour of geometrically imperfect nanoscale tubes. The nonlo-
cal effect is not taken into account. The imperfection amplitude and the
force amplitude are set to Ay = 1.5, and F; = 0.14, respectively. Imperfect
nanotubes with higher strain gradient coefficients undergo resonance at
higher excitation frequencies. Moreover, higher values of the strain gra-
dient coefficient reduces the peak amplitude of both the motions along
the x and 2z axes.

The variation of the maximum values of some transverse generalised
coordinates and the minimum value of the second axial generalised co-
ordinate versus the excitation frequency ratio is depicted in Fig. 8; only
the effect of the nonlocal coefficient is taken into consideration (i.e.
Xsg= 0.0, ypy=0.1). The imperfection and force amplitudes are the same
as those mentioned above for Fig. 6. It is observed that the nonlinear
behaviour is still a combination of softening and hardening types with
four saddle points. Increasing the excitation frequency ratio gradually
increases q; until point B; where the value of the first transverse gen-
eralised coordinate suddenly increases. Then, the value of g; decreases
with increasing Q/w,. By comparing Figs. 6-8, it is seen that although
the general nonlinear mechanical characteristics of the imperfect nan-
otube such as the number of saddle points remain the same, some details
are different. Fig. 9 illustrates the influence of y,; on the frequency-
amplitude plots of imperfect nanoscale tubes for 4, =0.0, Ay=1.5, and
f1=0.14. It is found that in this case, non-zero nonlocal coefficients are
associated with strong modal interactions, especially for higher gener-
alised coordinates.
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4. Conclusions

A nonlinear analysis has been performed in order to investigate the
effect of geometrical imperfection on the large-amplitude mechanical
behaviour of nanoscale tube subject to transverse distributed harmonic
loading. A NSGT-based model incorporating both nonlocal and strain
gradient effects was proposed to better describe the size-dependent soft-
ening and hardening behaviors of the stiffness. The EBBT as well as
the Hamilton principle were utilised for deriving the coupled nonlin-
ear equations. Galerkin’s procedure as well as a continuation-based ap-
proach were lastly used to discretise the differential equations and to
determine the large-amplitude mechanical characteristics, respectively.

A geometrical imperfection can significantly change the nonlinear
dynamic behaviour of nanoscale tubes. When the amplitude of the geo-
metrical imperfection is low, the nanotube displays a hardening-type
nonlinearity with two saddle points. However, when a large imper-
fection amplitude is taken into consideration, the nanotube displays a
combination of softening and hardening nonlinearities with four saddle
points. Higher strain gradient coefficients are associated with higher res-
onant frequencies. Furthermore, it was found that increasing the strain
gradient coefficient can eliminate the modal interactions. On the other
hand, higher nonlocal coefficients make the imperfect nanotube un-
dergo resonances at lower excitation frequencies. The modal interaction
is overestimated by incorporating only the nonlocal effect.

Appendix A. Verification study

To verify the present results, a linear NSGT nanotube without any ge-
ometrical imperfections is considered. For this nanotube, Eqgs. (14) and
(15) are reduced to only one motion equation along the transverse di-
rection. In Fig. 10, the results are compared with those obtained by Li
et al. [53] for the linear vibration of nanobeams employing the NSGT.
The material and geometrical properties are given in Refs. [53,65]. A
very good agreement is observed between the reported results and the

available results in the literature.
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Chapter 4

Nonlinear vibration of small-scale imperfect
beams incorporating viscoelasticity effects

Chapter overview

Chapter 4 deals with the second objective of this project, which is the nonlinear vibration of
geometrically imperfect beams with viscoelasticity at small-scales. To formulate the problem, a
scale-dependent model, which is based on a non-classical constitutive equation, is proposed. Strain
gradients and nonlocality in stress components are simulated in the beam constitutive equations in
order for the model to better describe size dependency. To model the internal energy loss in the
structure, the Kelvin-Voigt theory is used. Potential and kinetic energies as well as viscous work
are implemented into a work/energy balance, yielding the coupled motion equations. This
investigation together with the previous analysis presented in chapter 3 provide a comprehensive
study on the large-amplitude vibration of beams at nanoscales. This study would be helpful in the
analysis of electromechanical small-scale systems using vibrating carbon nanotubes. The work

was published in International Journal of Engineering Science as:

A. Farajpour, M.H. Ghayesh, H. Farokhi, “Nonlocal nonlinear mechanics of imperfect carbon

nanotubes”, International Journal of Engineering Science, volume 142, pages 201-215 (2019).



Statement of Authorship

Title of Paper Nonlocal nonlinear mechanics of imperfect carbon nanotubes
Publication Status [V Published [~ Accepted for Publication

; Unpublished and Unsubmitted w ork w ritten in
Publication Details A Farajpour, MH Ghayesh, H Farokhi, Nonlocal nonlinear mechanics of imperfect carbon

nanotubes, International Journal of Engineering Science 142, 201-215 (2019).

Principal Author
Name of Principal Author (Candidate) Ali Farajpour Quderji
Contribution to the Paper . Research and doing the literature raview of the paper
- Developing the model (i.e. derivation of nonlinear coupled partial differential equations of
motion via Hamilton's principle)

- incorporating size effects using a modified elasticity theory

- Incorporating the influence of geometrical nonlinearity into the model
- Incorporating viscoelasticity effects into the model

- Writing all parts of the paper and analysing the data

Overall percentage (%) 60%

Certification: This paper reports on original research | conducted during the period of my Higher Degree by
Research candidature and is not subject to any obligations or contractual agreements with a
third party that would constrain its inclusion in this thesis. | am the primary author of this paper.

—

Signature ~ | Date 276/ 2< Lo

Co-Author Contributions
By signing the Statement of Authorship, each author certifies that:
i the candidata’s stated contribution to the publication is accurate (as detailed above),
ii. permission is granted for the candidate in include the publication in the thesis, and
iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author Mergen H. Ghayesh

contnpution to the Peper - Supervising the work including preparing the paper
-Contribtmonlothedeveiopmemo(lheldcuandoomeptlolmepapef

- Editing and evaluating the paper before submission

_ Comrespondence with the reviewers and editor of the journal

- Discretising and‘ solving thg equations of motions, and obtaining frequency response curves

=

Signature Date 91 /0 éz 21) 26. =
e

Name of Co-Author Hamed Farokhi

Contribution to the Paper - Participation in supervising the work
- Contribution to the development of the concepts of the paper
- Discretising and solving the equations of motions, and obtaining frequency response curves

Signature Date 19/06/2020




International Journal of Engineering Science 142 (2019) 201-215

Contents lists available at ScienceDirect _

nternational
aurnal of

ngineering

International Journal of Engineering Science

journal homepage: www.elsevier.com/locate/ijengsci T

Nonlocal nonlinear mechanics of imperfect carbon nanotubes )

Check for
updates

Ali Farajpour?, Mergen H. Ghayesh®*, Hamed Farokhi®

aSchool of Mechanical Engineering, University of Adelaide, South Australia 5005, Australia
b Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK

ARTICLE INFO ABSTRACT
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Accepted 3 March 2019

: ! cal imperfections on the nonlocal coupled mechanics of carbon nanotubes; large deforma-
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tions, stress nonlocality and strain gradients are captured in the model. The Kelvin-Voigt
model is also applied in order to ascertain the viscoelasticity effects on the mechanics

Ié?rl]‘;\f;d;:mowbes of the initially imperfect nanoscale system. The modified coupled equations of motion are
Initial imperfections then derived via the Hamilton principle. A solution approach for the derived coupled equa-
Viscoelasticity tions is finally developed applying a decomposition-based procedure in conjunction with a
Nonlinear response continuation-based scheme. The significance of many parameters such as size parameters,
Scale influences initial imperfections, excitation parameters and linear and nonlinear damping effects in

the nonlinear mechanical response of the initially imperfect viscoelastic carbon nanotube
is assessed. The present results can be useful for nanoscale devices using carbon nanotubes
since the viscoelasticity and geometrical imperfection are simultaneously included in the
proposed model.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Micro and nano structures have been widely used in micro/nano devices (Farajpour, Ghayesh, & Farokhi, 2018; Ruzziconi,
Bataineh, Younis, Cui, & Lenci, 2013). Among them, carbon nanostructures have been used in a wide range of applications
in nanotechnology, biotechnology and nanoengineering since they display interesting electrical, mechanical and chemical
properties. Some important carbon nanostructures are carbon nanotubes (CNTs), graphene sheets and buckyballs. To appro-
priately use these precious nanostructures in different applications, especially in nanoengineering, our level of understanding
of their mechanical properties should be increased. This is due to the fact that the overall performance of a nanoelectrome-
chanical system (NEMS) depends greatly on the mechanical behaviour of its building blocks such as CNTs.

Scale-dependent models have been utilised for the investigation of the mechanics of many small-scale structures such as
microbeams (Dehrouyeh-Semnani, Nikkhah-Bahrami, & Yazdi, 2017; Demir and Civalek, 2017; Farokhi, Ghayesh, & Gholipour,
2017; Farokhi, Ghayesh, Gholipour, & Hussain, 2017; Ghayesh, Farokhi, Gholipour, & Hussain, 2017; Pourasghar & Chen,
2019; Qi, Huang, Fu, Zhou, & Jiang, 2018), microplates (Farokhi & Ghayesh, 2018b; Farokhi & Ghayesh, 2018a; Ghayesh,
Farokhi, Gholipour, & Tavallaeinejad, 2018; Rahaeifard & Mojahedi, 2017), nanobeams (Attia & Abdel Rahman, 2018; Barretta,
ﬁanadija, Luciano, & de Sciarra, 2018; Karami & Janghorban, 2019; Khaniki, 2018; Khaniki, 2019; Li, Tang, & Hu, 2018; She,
Ren, Yuan, & Xiao, 2018) and nanoplates (Barretta, Faghidian, & Marotti de Sciarra, 2019; Jalaei, Arani, & Tourang, 2018; Lu,
Guo, & Zhao, 2018; Natsuki & Natsuki, 2018; Shahverdi & Barati, 2017). A particular attention has been paid to the mechanics

* Corresponding author.
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https://doi.org/10.1016/j.ijengsci.2019.03.003
0020-7225/© 2019 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.ijengsci.2019.03.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijengsci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijengsci.2019.03.003&domain=pdf
mailto:mergen.ghayesh@adelaide.edu.au
https://doi.org/10.1016/j.ijengsci.2019.03.003

202 A. Farajpour, M.H. Ghayesh and H. Farokhi/International Journal of Engineering Science 142 (2019) 201-215

Fig. 1. An initially imperfect viscoelastic CNT with clamped-clamped edges.

of CNTs. Although CNTs display a viscoelastic response when they are subject to an applied load (Suhr, Koratkar, Keblinski,
& Ajayan, 2005; Xu, Futaba, Yamada, Yumura, & Hata, 2010), many size-dependent theoretical models in the literature have
not considered the effects of viscoelasticity. As some examples, a few size-dependent models for the mechanical response
of elastic CNTs are reviewed. Setoodeh, Khosrownejad, and Malekzadeh (2011) obtained an exact solution for the buckling
instability of elastic CNTs with large deformations by applying a classical nonlocal model. Aydogdu (2012) presented a size-
dependent nonlocal rod theory to ascertain the axial vibration characteristics of nanorods. In addition, Malekzadeh and Sho-
jaee (2013) proposed a non-classical continuum theory to explore the free vibration of non-uniform beams at the nanoscale
level. The nonlocal oscillations of mass nanosensors employing elastic CNTs with small deformations were also examined
by Aydogdu and Filiz (2011). In addition to these interesting papers, a few studies have been carried out on the viscoelastic
response of CNTs under mechanical stresses. Chang and Lee (2012) developed a nonlocal model to study the viscoelas-
tic vibration characteristics of carbon nanotubes. In another analysis, a linear study was performed by Lei, Adhikari, and
Friswell (2013) on the damping effect on the vibration response of CNTs using a combination of the Kelvin-Voigt model
and the Eringen theory. The time-dependent deformation of fluid-conveying CNTs taking into account the internal energy
loss was also explored by Bahaadini and Hosseini (2016). Furthermore, the effect of initial stresses on the vibration of vis-
coelastic beams at nanoscale levels was investigated by Zhang, Pang, and Fan (2016). Karli¢ic, Murmu, Caji¢, Kozi¢, and
Adhikari (2014) also proposed a non-classical model for the dynamic characteristics of a CNT-based composite viscoelastic
system under the action of a magnetic field.

The use of the classical nonlocal theory of elasticity for nanoscale structures such as CNTs is limited to a particular
range of lengths since nonlocal effects usually disappear after a certain length. To overcome this problem, Lim, Zhang, and
Reddy (2015) has recently introduced a modified nonlocal elasticity theory by incorporating the strain gradient influences.
Using the molecular dynamics, it has been indicated that this modified theory is able to better estimate the size-dependent
mechanics of CNTs compared to the classical nonlocal theory (Li, Hu, & Ling, 2016). However, few research papers have been
reported on the size-dependent deformation of CNTs with consideration of viscoelastic effects using this modified nonlocal
theory. Some linear models have been merely developed for the wave propagation analysis of viscoelastic carbon nanotubes
(Li & Hu, 2016; Tang, Liu, & Zhao, 2016; Zhen & Zhou, 2017).

In addition to the influence of viscoelasticity, the influence of geometrical imperfections becomes more and more impor-
tant when large deformations are taken into consideration since these imperfections can change the nonlinear mechanical
characteristics of ultrasmall structures.

In the current investigation, for the first time, the effects of viscoelasticity as well as geometrical imperfections on the
mechanics of CNTs with large deformations are analysed via a modified nonlocal elasticity model. The consideration of both
viscoelasticity and geometrical imperfections leads to a more comprehensive scale-dependent model for CNTs. Furthermore,
the proposed model can be used in a wide range of lengths since the stiffness hardening and softening are included. As a
viscoelastic theory, the Kelvin-Voigt model is applied in the analysis. The coupled nonlinear equations of ultrasmall tubes
are presented applying the Hamilton principle together with a beam model. A solution approach is developed with the
application of a decomposition-based procedure in conjunction with a continuation-based method. The importance of many
parameters such as the size parameter, the initial imperfection, the excitation loading as well as the linear and nonlinear
damping effects in the size-dependent coupled mechanics of the initially imperfect viscoelastic carbon nanotube with large
deflections is explained.

2. Formulation

Shown in Fig. 1 is a clamped-clamped single-walled carbon nanotube with an initial deformation as a geometric imper-
fection. The viscoelastic and elastic constants of the CNT are denoted by 7 and E, respectively. Moreover, Poisson’s ratio, the
length and the mass density are denoted by v, L and p, respectively. wy denotes the initial deflection of the viscoelastic CNT
while the axial and transverse time-dependent displacements are described by u and w, respectively. A harmonic load in
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the form of q(x,t) = cos(wt)F(x) is applied on the imperfect nanoscale system along the transverse direction; w and F are
the forcing frequency and amplitude, respectively.

To model the mechanics of nanostructures such as CNTs, scale-dependent continuum mechanics can be used (Bahaadini,
Saidi, & Hosseini, 2018; Ebrahimi & Barati, 2016; Faleh, Ahmed, & Fenjan, 2018; Hadi, Nejad, & Hosseini, 2018; Lu, Guo, &
Zhao, 2017b; Zhu and Li, 2017b). For a single-walled CNT with an initial deformation, the axial strain (&xx) is given by

. ou 1<8w>2 ow dwg %w

=53l ax ) Tax dx  Foe (1

On the other hand, based on the modified nonlocal elasticity, the total axial stress of the imperfect viscoelastic CNT (txx)
is expressed as (Ebrahimi, Barati, & Dabbagh, 2016; Lu, Guo, & Zhao, 2017a; Simsek, 2016; Zhu & Li, 2017a)

2
[1- (e0a)* V2 ]twe = (1 = 15V?) (tker) + toruis))- (2)
where t)f)’((e,) and tg((m) are respectively the elastic and viscoelastic parts of the classical (local) stress; eq, a, lsg and V2

stand for the calibration parameter associated with the nonlocal stress (Malekzadeh & Shojaee, 2015), the internal charac-
teristic length, the strain gradient parameter and the Laplace operator, respectively (Ghayesh & Farajpour, 2018; Ghayesh &
Farajpour, 2019). Eq. (2) is the differential scale-dependent constitutive relation of the modified elasticity theory. Recently,
integral scale-dependent constitutive relations have also been used for nanostructures (Apuzzo, Barretta, Faghidian, Luciano,
& Marotti de Sciarra, 2018; Faghidian, 2018; Fernadndez-Sdez & Zaera, 2017; Romano and Barretta, 2017). The elastic and
viscoelastic parts of the classical stress are

de
1 1 XX
t;x(el) = Eex, t§x(vis) =7 at (3)

In view of Egs. (1)-(3), the non-classical stress resultants of the imperfect viscoelastic CNT can be formulated as

du 1<8w>2 aw dwg

[1- (e0®)? V2N = EA(1 - BV2) | 22 o 5 4+ 5250

0%2u  ow 9w 3%w dw,
122 ow 0
Al -5V )<8t8x " 9x 9tox " dtox dx ) )
0°w 3w
[] - (EOG)ZVZ]MXX = —El(] - lngZ)W - T]l(] - lng2)W, (5)

where

N AR ®

The relations between different non-classical stresses are described by

1
tyx Oxx O—(X}))
bxx(ely { = | Oxx(el) ( — v ONE
Lxx(vis) Oxx(vis) Gxgcl ()vis) @
o Lxxel) bxx(vis)
O b = Ux(x]()el) + Gx(x](;zis) ,
(1)
Oyxx Uxx(el) Uxx(vis)

where V, 0jjq) and a,.%{) represent the gradient operator, the axial classical nonlocal stress and the axial higher-order
nonlocal stress, respectively. The energy variation due to the total elastic stress (§U,;) of the imperfect CNT and the work

variation due to its total viscoelastic stress (8W,;) are as follows

L L
SU = /0 /A b ety SExcdlAdx + [ /A ox(;()el)Saxdi]o, 8)
L L
SWys = — / f b i) S dAdX — [ / a;;(:,is)asxdi] . 9)
0 JA A 0

The kinetic energy variation (6K.) of the imperfect CNT and the work variation (§W;) due to q(x, t) are also formulated
as (Ghayesh, 2018)
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L
51<e:m/0 <?;t‘5glt‘ aavt"aaw> (10)
L
8Wq=/ q(x, t)dw dx. (11)
0

In Eq. (10), m denotes the mass per unit length of the imperfect CNT. The Hamilton principle is now used for the deriva-
tion of the motion equations of the imperfect viscoelastic tube. This principle is generally written as follows

t;
" (8Ke + 8W, + Wi — 8Uy)dt = 0. (12)
2]
Using Egs. (8)-(11), one obtains the following motion equations
ONix d0%u
x Mo (13)
ZM,, 0 ow  dwy 2w
e +8X[Nx"<8x+dx A= (14)

Application of the above equations to Egs. (4) and (5) gives the following expressions for the non-classical stress resul-

tants
2
Ju 1(dw ow dw,
2 2 0
Now = EA(1 = V)|:8x+2(8x> *x dx:|

2%u  ow 3w 82w dw, 3u
2 w2 ow 0 2 07U
+nA(1 - 15V )<3t3x T 9x atox T 9rox dx )*m(e(’“) 9xor2’ (15)
%w w0 ow  dw,
_ 122 _ 2 \72 _ 9 gw L BWo ) [ _
My = —EI(1 - 15V?) 57 —nl(1 - 15V )ara 5 + (e0a) { 5 3X|:NXX<8X + )] q}, (16)

Substituting the obtained stress resultants into Eqgs. (13) and (14) and assuming the harmonic load as g = F; cos(wt), one
can obtain
2y owotw  Awdwy, Iw d?w, o%u %w 33w
EA — 4 — — EAL2 +3—
(8x2 + x 0x2 + ax2 dx + ox dx?

x4 T Ox2 X3

+ o+

ow 04w 347W% N 837wd2w0 N 827Wd3W0 N aiwd“wo
ox dx4 ox4 dx 0x3 dx? 0x2 dx3 ox dx*

nA d3u 0%w 2w Pw dwy 0w BPw 9w d*wy
T Stox2 T orox 9x2 T 9tax2 dx T 9x 9tox2 T 9tox dx2

AL 3M 93w +37W 3w N 9°u +847W32W +382l tw
0x3 0tdx2 =~ 0x J0tdx*  Otox* = 0x* 0tox 0x2 0x30t

N 0°w dﬂ+ 04w d2wyg N 3w d3wy N o?w diwo) | 0%u 0%u
sta ax 3000 a2 e de ok ae ) =M 9E ~ @9 5eam

*w , 3w dPw 5, Iw
- ( ax g ) " <8t8x4 ~ L eaxe
[ 92w d2W0 04w d*wy dwg ow 1 (0w > u
T e el (eO)<8x4 e )]|:dx8x+2 ) T

" 3 3 2 2 2 2
ow  dwg 3(€0a) <8w dw0>i|<8u ow 0*w  d%w dwy 8wdw0>

TR e T a0 e )|\ Tax e T dx T ax aw

?w  d*wy *w  d*wy
- EA [13g+3<eoa>2](ax2+ dx2> con)'l (3)(4 M )}

93u 2w\’ awdiw  dw dwy 2w d?wg  Ow d3wy
il (e —ag t a3 t295 =+ —
dax3 d0x2 ox 0x3 0x3 dx 0x2 dx? ox dx3




A. Farajpour, M.H. Ghayesh and H. Farokhi/International Journal of Engineering Science 142 (2019) 201-215 205

1 0w dwy 2 [ 3w dPwy
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3. Solution method

In this section, a numerical solution procedure is presented for the derived coupled equations of motion given by
Egs. (17) and (18). First of all, it is better to rewrite these differential equations in the non-dimensional form via the follow-

ing set of parameters

X 1 I
Xt = I’ (u*, w*, w) = T (u, w, wp), Re _,/ (Xn1s Xsg) = <ega lsg),
g

* I _L *_7 ko EI _2 E
n _n‘/EmL“"B_Rg’F] = =t L /Ea) (19)

in which B represents the ratio of the CNT length (L) to its gyration radius (Rg). In view of these non-dimensional parame-
ters, Eqs. (17) and (18) can be expressed as

—
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In Egs. (20) and (21), asterisk superscripts are neglected for the sake of simplification. As the second step, the non-
dimensional nonlinear coupled equations are discretised employing the following expressions
Nx
u(x, t) = er [as a function of t]®; [as a function of x],
i=1
N,
w(x, t) = Zq,- [as a function of t]¥; [as a function of x]. (22)
i=1
Here (r;, q;) and (®;, ;) indicate the generalised coordinates and the shape functions of the imperfect viscoelastic CNT,
respectively. Assuming the initial deflection as wy = AgW;(x) and applying Eq. (22), a set of coupled discretised equations
are obtained, where, a continuation-based approach is applied so as to the frequency response of the imperfect viscoelastic
CNT is obtained.

4. Numerical results

A nonlinear investigation is performed in the following to examine the effect of initial deflections on the nonlinear
coupled response of viscoelastic CNTs. All results are plotted for the case of a zigzag (10, 0) single-walled CNT. The scale



208 A. Farajpour, M.H. Ghayesh and H. Farokhi/International Journal of Engineering Science 142 (2019) 201-215

(a) H
Stable response SN

[ mdmme- Unstable response

1.6

P I I S P T
0.88 0.94 1 1.06 1.12 1.18

(b) 0.04
Stable response

-------- Unstable response

0.03

> 0.02

0.01

0 —_—
1.18
(© 0
-0.005
-0.01
k(\l
-0.015
-0.02 r Stable response
| =teece-- Unstable response
7\'\\\\l\\\\l\\\\l\\\\l\\\\l\
0.88 0.94 1 1.06 1.12 1.18

Ql/o

1

Fig. 2. Frequency-amplitude response of the initially imperfect viscoelastic CNT; (a,b) the maximum of q; and gs, respectively; (c) the minimum of ry;
Ap = 0.7.
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Fig. 3. Comparison of frequency-amplitude responses of the initially imperfect viscoelastic CNT obtained via the nonlocal strain gradient (x, = 0.1,
Xsg = 0.05) and classical continuum (), = 0, x5z = 0) theories; (a) the maximum of q;; (b) the minimum of r,; Ay = 0.7.

and geometrical parameters of the imperfect viscoelastic nanosystem are as (x, = 0.1, xsz = 0.05) and (L=20, h=0.34,
d=0.7829) nm, respectively. Here the thickness and the average diameter are, respectively, shown by h and d. For the
described geometry, the slenderness ratio is as 8 = 66.2751. The material features of the imperfect viscoelastic zigzag CNT
are considered as E=1.0 TPa, v = 0.19, n = 0.00045 and p = 2300kg/m?3 for all the cases.

Plotted in Fig. 2 is the size-dependent frequency-amplitude responses of the initially imperfect viscoelastic CNT for
Xn = 0.1, xsg = 0.05, F; = 0.35, Ap = 0.7, and n = 0.00045. The coupled resonance behaviour of this nanoscale system
is of hardening nonlinearity; two saddle nodes at Q/w; = 1.1554 and Q/w; = 1.0292 are found. The natural frequency of
the initially imperfect viscoelastic CNT is w; = 23.4998. It is worth pointing out that between the two saddle nodes, the
nonlinear response is unstable while it is stable in other regions.

The frequency-amplitude responses of the initially imperfect viscoelastic CNT obtained via the nonlocal strain gradient
and classical continuum theories are indicated in Fig. 3. The dimensional parameters of the imperfect viscoelastic nanotube
are set to F; = 0.35, Ap = 0.7 and n = 0.00045. Using the classical continuum theory causes overestimated results for
the motion amplitudes in both directions (i.e. the axial and transverse ones). In addition, the resonance frequency of the
modified nonlocal theory is slightly lower than the frequency estimated by the classical continuum theory.

Shown in Fig. 4 is the force-amplitude responses of the initially imperfect viscoelastic nanotube obtained via the nonlocal
strain gradient and classical continuum theories for 2 = 25.0, Ag = 0.7, and n = 0.00045. The size parameters for the
nonlocal strain gradient and classical continuum theories are taken as (x, = 0.1, xsg¢ = 0.05) and (X, = 0, xsg = 0),
respectively. Applying the classical continuum theory generally yields higher values of q; and r,. Moreover, ignoring the
influence of size parameters causes significantly underestimated results for the value of F; related to the saddle node.

Fig. 5 represents the variation of the resonance forcing amplitude versus the resonance frequency for initially imperfect
viscoelastic CNTs for two damping mechanisms. For the linear damping, it is assumed that ¢ = 0.006 where ¢ denotes the
modal damping ratio. Moreover, a value of n = 0.00045 is assumed for the nonlinear damping in this figure. For relatively
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Fig. 7. Comparison of frequency-amplitude responses of the initially imperfect viscoelastic CNT obtained via the nonlocal strain gradient and classical
continuum theories; (a) the maximum of g;; (b) the minimum of r;; Ay = 1.4.

small values of Fy, there is not an important difference between the results of the two mechanisms. By contrast, for high
values of F;, ignoring nonlinear damping effects causes overestimated results for the resonance frequencies.

Plotted in Fig. 6 is the size-dependent frequency-amplitude responses of the initially imperfect viscoelastic CNT for a
higher imperfection amplitude (A = 1.4). Other CNT parameters are set to X, = 0.1, x5z = 0.05, F; = 0.80, and 1 = 0.00045.
This time the coupled resonance behaviour of the imperfect viscoelastic zigzag CNT is significantly changed. Four saddle
nodes at Q2/w; = 0.9419, 0.9142, 1.0566 and 0.9413 are found for the softening-hardening behaviour. In this case, the natural
frequency of the initially imperfect viscoelastic zigzag CNT is as w1 = 28.7136. Fig. 7 also represents the frequency-amplitude
responses of the initially imperfect viscoelastic nanosystem obtained via the nonlocal strain gradient (x,; = 0.1, xs¢ = 0.05)
and classical continuum (x,; = 0, xsg = 0) theories for F; = 0.80, Ap = 1.4, and n = 0.00045. It is found that the classical
continuum theory leads to overestimated results for the motion amplitudes of imperfect viscoelastic zigzag CNTs in both
directions.

Fig. 8 indicates the force-amplitude responses of the initially imperfect viscoelastic nanotube obtained via the nonlocal
strain gradient and classical continuum theories; this time a larger imperfection amplitude is chosen Ay = 1.4. The excita-
tion frequency and the viscoelastic coefficient are, respectively, set to 2 = 27.5, and 1 = 0.00045. Ignoring the size effect
generally yields higher values of q; and r,. Plotted in Fig. 5 is the variation of the resonance forcing amplitude versus the
resonance frequency for initially imperfect viscoelastic CNTs for two damping mechanisms. For the linear damping, it is
assumed that ¢ = 0.0072 while a value of n = 0.00045 is assumed for the nonlinear damping. For small values of F;, no
important difference between the results of the two mechanisms is found. Nonetheless, for relatively high values of F;, non-
linear damping effects become important. Ignoring them causes highly overestimated results for the resonance frequency.
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5. Concluding remarks

A nonlocal coupled nonlinear beam model was proposed in this paper in order to extract the mechanical response of
initially imperfect viscoelastic CNTs. The effect of viscoelasticity was modelled using a viscoelastic model. Moreover, the in-
fluence of being geometrically imperfect was captured by considering an initial deflection along the transverse direction. The
coupled nonlinear equations of the initially imperfect viscoelastic CNT were derived and solved by applying a work/energy
law and a Galerkin procedure.

It was found that the coupled resonance behaviour of viscoelastic CNTs is of hardening nonlinearity with two saddle
nodes when a relatively small imperfection is imposed. In addition, using the classical continuum theory causes overesti-
mated amplitudes of motion along both directions. The resonance frequency of the coupled nonlocal model is lower than
the frequency estimated by the classical model. For relatively small forcing amplitudes, there is not an important difference
between the results of the linear and nonlinear damping mechanisms. By contrast, for high values of this parameter, ignor-
ing nonlinear damping causes overestimated resonance frequencies. It was also seen that a change in the initial deflection
can alter the number of the saddle nodes. Four saddle nodes are found for CNTs when a large enough initial deflection is
imposed (Fig. 9).

References

Apuzzo, A., Barretta, R., Faghidian, S. A., Luciano, R., & Marotti de Sciarra, F. (2018). Free vibrations of elastic beams by modified nonlocal strain gradient
theory. International Journal of Engineering Science, 133, 99-108.

Attia, M. A., & Abdel Rahman, A. A. (2018). On vibrations of functionally graded viscoelastic nanobeams with surface effects. International Journal of Engi-
neering Science, 127, 1-32.

Aydogdu, M. (2012). Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mechanics Research
Communications, 43, 34-40.

Aydogdu, M., & Filiz, S. (2011). Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Physica E: Low-dimensional
Systems and Nanostructures, 43, 1229-1234.

Bahaadini, R., & Hosseini, M. (2016). Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon
nanotubes conveying fluid. Computational Materials Science, 114, 151-159.

Bahaadini, R., Saidi, A. R., & Hosseini, M. (2018). On dynamics of nanotubes conveying nanoflow. International Journal of Engineering Science, 123, 181-196.

Barretta, R., Canadija, M., Luciano, R., & de Sciarra, F. M. (2018). Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. International
Journal of Engineering Science, 126, 53-67.

Barretta, R., Faghidian, S. A., & Marotti de Sciarra, F. (2019). Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. International Journal of
Engineering Science, 136, 38-52.

Chang, W.-]., & Lee, H.-L. (2012). Vibration analysis of viscoelastic carbon nanotubes. Micro & Nano Letters, 7, 1308-1312.

Dehrouyeh-Semnani, A. M., Nikkhah-Bahrami, M., & Yazdi, M. R. H. (2017). On nonlinear vibrations of micropipes conveying fluid. International Journal of
Engineering Science, 117, 20-33.

Demir, C., & Civalek, O. (2017). On the analysis of microbeams. International Journal of Engineering Science, 121, 14-33.

Ebrahimi, F., & Barati, M. R. (2016). A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures.
International Journal of Engineering Science, 107, 183-196.

Ebrahimi, F, Barati, M. R., & Dabbagh, A. (2016). A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous
nanoplates. International Journal of Engineering Science, 107, 169-182.

Faghidian, S. A. (2018). Integro-differential nonlocal theory of elasticity. International Journal of Engineering Science, 129, 96-110.

Faleh, N. M., Ahmed, R. A., & Fenjan, R. M. (2018). On vibrations of porous FG nanoshells. International Journal of Engineering Science, 133, 1-14.

Farajpour, A., Ghayesh, M. H., & Farokhi, H. (2018). A review on the mechanics of nanostructures. International Journal of Engineering Science, 133, 231-263.

Farokhi, H., & Ghayesh, M. H. (2018a). Nonlinear mechanics of electrically actuated microplates. International Journal of Engineering Science, 123, 197-213.

Farokhi, H., & Ghayesh, M. H. (2018b). On the dynamics of imperfect shear deformable microplates. International Journal of Engineering Science, 133, 264-283.

Farokhi, H., Ghayesh, M. H., & Gholipour, A. (2017a). Dynamics of functionally graded micro-cantilevers. International Journal of Engineering Science, 115,
117-130.

Farokhi, H., Ghayesh, M. H., Gholipour, A., & Hussain, S. (2017b). Motion characteristics of bilayered extensible Timoshenko microbeams. International Journal
of Engineering Science, 112, 1-17.

Fernandez-Séez, J., & Zaera, R. (2017). Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. International Journal of Engineering
Science, 119, 232-248.

Ghayesh, M. H. (2018). Nonlinear vibrations of axially functionally graded Timoshenko tapered beams. Journal of Computational and Nonlinear Dynamics, 13
041002-041002-041010.

Ghayesh, M. H., & Farajpour, A. (2018). Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory. International Journal of Engineering
Science, 129, 84-95.

Ghayesh, M. H., & Farajpour, A. (2019). A review on the mechanics of functionally graded nanoscale and microscale structures. International Journal of
Engineering Science, 137, 8-36.

Ghayesh, M. H., Farokhi, H., Gholipour, A., & Hussain, S. (2017). On the nonlinear mechanics of layered microcantilevers. International Journal of Engineering
Science, 120, 1-14.

Ghayesh, M. H., Farokhi, H., Gholipour, A., & Tavallaeinejad, M. (2018). Nonlinear oscillations of functionally graded microplates. International Journal of
Engineering Science, 122, 56-72.

Hadi, A., Nejad, M. Z., & Hosseini, M. (2018). Vibrations of three-dimensionally graded nanobeams. International Journal of Engineering Science, 128, 12-23.

Jalaei, M. H., Arani, A. G., & Tourang, H. (2018). On the dynamic stability of viscoelastic graphene sheets. International Journal of Engineering Science, 132,
16-29.

Karami, B., & Janghorban, M. (2019). On the dynamics of porous nanotubes with variable material properties and variable thickness. International Journal of
Engineering Science, 136, 53-66.

Karli¢i¢, D., Murmu, T., Caji¢, M., Kozi¢, P, & Adhikari, S. (2014). Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial
magnetic field. Journal of Applied Physics, 115, 234303.

Khaniki, H. B. (2018). On vibrations of nanobeam systems. International Journal of Engineering Science, 124, 85-103.

Khaniki, H. B. (2019). On vibrations of FG nanobeams. International Journal of Engineering Science, 135, 23-36.

Lei, Y., Adhikari, S., & Friswell, M. (2013). Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams. International Journal of Engineering
Science, 66, 1-13.

Li, L., & Hu, Y. (2016). Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Computational Materials
Science, 112, 282-288.


http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0001
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0001
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0001
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0001
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0001
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0001
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0001
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0002
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0002
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0002
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0002
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0003
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0003
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0004
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0004
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0004
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0004
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0005
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0005
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0005
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0005
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0006
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0006
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0006
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0006
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0006
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0007
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0007
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0007
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0007
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0007
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0007
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0008
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0008
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0008
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0008
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0008
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0009
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0009
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0009
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0009
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0010
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0010
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0010
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0010
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0010
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0011
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0011
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0011
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0011
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0012
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0012
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0012
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0012
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0013
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0013
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0013
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0013
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0013
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0014
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0014
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0015
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0015
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0015
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0015
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0015
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0016
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0016
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0016
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0016
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0016
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0017
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0017
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0017
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0017
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0018
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0018
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0018
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0018
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0019
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0019
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0019
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0019
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0019
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0020
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0020
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0020
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0020
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0020
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0020
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0021
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0021
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0021
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0021
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0022
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0022
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0023
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0023
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0023
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0023
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0024
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0024
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0024
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0024
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0025
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0025
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0025
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0025
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0025
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0025
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0026
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0026
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0026
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0026
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0026
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0026
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0027
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0027
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0027
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0027
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0027
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0028
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0028
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0028
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0028
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0028
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0029
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0029
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0029
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0029
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0030
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0030
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0030
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0030
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0030
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0030
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0030
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0031
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0031
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0032
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0032
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0033
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0033
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0033
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0033
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0033
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0034
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0034
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0034
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0034

A. Farajpour, M.H. Ghayesh and H. Farokhi/International Journal of Engineering Science 142 (2019) 201-215 215

Li, L, Huy, Y., & Ling, L. (2016). Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal
strain gradient theory. Physica E: Low-dimensional Systems and Nanostructures, 75, 118-124.

Li, L., Tang, H., & Hu, Y. (2018). The effect of thickness on the mechanics of nanobeams. International Journal of Engineering Science, 123, 81-91.

Lim, C, Zhang, G., & Reddy, ]. (2015). A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the
Mechanics and Physics of Solids, 78, 298-313.

Lu, L, Guo, X., & Zhao, ]. (2017a). Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. International Journal of
Engineering Science, 116, 12-24.

Lu, L., Guo, X., & Zhao, J. (2017b). A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. International Journal
of Engineering Science, 119, 265-277.

Lu, L., Guo, X., & Zhao, ]. (2018). On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy. International Journal of Engineering Science,
124, 24-40.

Malekzadeh, P., & Shojaee, M. (2013). Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Composites Part B: Engineering,
52, 84-92.

Malekzadeh, P., & Shojaee, M. (2015). A two-variable first-order shear deformation theory coupled with surface and nonlocal effects for free vibration of
nanoplates. Journal of Vibration and Control, 21, 2755-2772.

Natsuki, T., & Natsuki, J. (2018). Transverse impact analysis of double-layered graphene sheets on an elastic foundation. International Journal of Engineering
Science, 124, 41-48.

Pourasghar, A., & Chen, Z. (2019). Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally
graded microbeams. International Journal of Engineering Science, 137, 57-72.

Qi, L, Huang, S, Fu, G, Zhou, S., & Jiang, X. (2018). On the mechanics of curved flexoelectric microbeams. International Journal of Engineering Science, 124,
1-15.

Rahaeifard, M., & Mojahedi, M. (2017). On the mechanics of laminated microplates. International Journal of Engineering Science, 119, 180-188.

Romano, G., & Barretta, R. (2017). Nonlocal elasticity in nanobeams: The stress-driven integral model. International Journal of Engineering Science, 115, 14-27.

Ruzziconi, L., Bataineh, A. M., Younis, M. I, Cui, W., & Lenci, S. (2013). Nonlinear dynamics of an electrically actuated imperfect microbeam resonator:
Experimental investigation and reduced-order modeling. Journal of Micromechanics and Microengineering, 23, 075012.

Setoodeh, A., Khosrownejad, M., & Malekzadeh, P. (2011). Exact nonlocal solution for postbuckling of single-walled carbon nanotubes. Physica E: Low-dimen-
sional Systems and Nanostructures, 43, 1730-1737.

Shahverdi, H., & Barati, M. R. (2017). Vibration analysis of porous functionally graded nanoplates. International Journal of Engineering Science, 120, 82-99.

She, G.-L., Ren, Y.-R,, Yuan, F-G., & Xiao, W.-S. (2018). On vibrations of porous nanotubes. International Journal of Engineering Science, 125, 23-35.

Simsek, M. (2016). Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach.
International Journal of Engineering Science, 105, 12-27.

Suhr, J., Koratkar, N., Keblinski, P., & Ajayan, P. (2005). Viscoelasticity in carbon nanotube composites. Nature materials, 4, 134.

Tang, Y., Liu, Y., & Zhao, D. (2016). Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient
theory. Physica E: Low-dimensional Systems and Nanostructures, 84, 202-208.

Xu, M., Futaba, D. N., Yamada, T., Yumura, M., & Hata, K. (2010). Carbon nanotubes with temperature-invariant viscoelasticity from-196 to 1000 C. Science,
330, 1364-1368.

Zhang, Y., Pang, M., & Fan, L. (2016). Analyses of transverse vibrations of axially pretensioned viscoelastic nanobeams with small size and surface effects.
Physics Letters A, 380, 2294-2299.

Zhen, Y., & Zhou, L. (2017). Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface
effect via nonlocal strain gradient theory. Modern Physics Letters B, 31, 1750069.

Zhu, X., & Li, L. (2017a). Closed form solution for a nonlocal strain gradient rod in tension. International Journal of Engineering Science, 119, 16-28.

Zhu, X., & Li, L. (2017b). On longitudinal dynamics of nanorods. International Journal of Engineering Science, 120, 129-145.


http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0035
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0035
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0035
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0035
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0035
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0036
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0036
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0036
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0036
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0036
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0037
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0037
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0037
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0037
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0037
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0038
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0038
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0038
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0038
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0038
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0039
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0039
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0039
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0039
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0039
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0040
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0040
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0040
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0040
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0040
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0041
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0041
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0041
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0041
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0042
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0042
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0042
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0042
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0043
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0043
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0043
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0043
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0044
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0044
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0044
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0044
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0045
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0045
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0045
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0045
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0045
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0045
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0045
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0046
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0046
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0046
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0046
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0047
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0047
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0047
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0047
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0048
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0048
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0048
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0048
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0048
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0048
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0048
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0049
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0049
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0049
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0049
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0049
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0050
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0050
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0050
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0050
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0051
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0051
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0051
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0051
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0051
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0051
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0052
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0052
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0053
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0053
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0053
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0053
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0053
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0053
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0054
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0054
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0054
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0054
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0054
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0055
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0055
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0055
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0055
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0055
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0055
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0055
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0056
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0056
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0056
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0056
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0056
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0057
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0057
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0057
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0057
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0058
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0058
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0058
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0058
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0059
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0059
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0059
http://refhub.elsevier.com/S0020-7225(19)30351-9/sbref0059

Chapter 5

Vibration and bending of small-scale plates

Chapter overview

In this chapter, the third objective of this project, which is the linear time-dependent deformation
of small-scale plates, is investigated. An advanced scale-dependent model is developed by using
the stress-driven elasticity theory. To simulate size effects, an integral constitutive equation
incorporating curvature nonlocality is used. Introducing an appropriate kernel function and using
the Leibniz integral rule, additional non-classical edge conditions are derived. The novel stress-
driven nonlocal model is reasonable from mathematical point of view compared to available
conventional scale-dependent models. The differential quadrature method is applied as this
numerical technique is better capable of implementing complex boundary conditions. While the
conventional nonlocal models fail to comprehensively model size dependency in a few cases, the
stress-driven integral model can describe size effects in a wide range of small-scale problems. The
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propriate kernel function, which satisfies all essential properties, is proposed for two-
dimensional problems in the Cartesian coordinate system. Using Leibniz integral rule and
Hamilton’s principle, the curvature-moment relations, classical and constitutive boundary
conditions, as well as the equations of motion of rectangular small-scale plates are de-

I;fryev::_:;lrsi'ven nonlocal integral elasticity rived. Two differential quadrature techniques are utilised to implement both classical and
Size effects non-classical boundary conditions and obtain an accurate numerical solution. The solution
Bending is used to simulate the bending and vibration of nanoplates. The Laplacian-based nonlocal
Free vibration strain gradient model of plates is also developed for the sake of comparison. It is found
Rectangular nanoplates that the stress-driven integral model can better estimate the size-dependent mechanical

characteristics of small-scale rectangular plates with various boundary conditions.
© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Small-scale plates such as graphene sheets, silicene and boron nitride ultrathin films, have shown a wide range of promis-
ing applications in nanotechnology and microtechnology (Chen et al., 2013, Zheng, Lee & Feng, 2017). These interesting
applications include, but are not limited to, ultrasmall mass detectors, actuators and sensors as well as microscale and
nanoscale generators and gyroscopes (Farokhi & Ghayesh, 2018, Ghayesh, Farokhi & Alici, 2016, Kostarelos & Novoselov, 2014,
Medina, Gilat & Krylov, 2018). In a considerable number of small-scale devices and systems including those mentioned
above, the accurate prediction of the mechanical behaviour of ultrasmall plates plays a crucial role since the performance of
these systems is highly dependent on the mechanical characteristics such as critical buckling loads and resonance frequen-
cies (Wang & Arash, 2014).

In addition to experimental techniques, molecular dynamics (MD) approach and modified continuum-based models
have been utilised for obtaining the mechanical characteristics of structural components at ultrasmall scales (Farokhi
& Ghayesh, 2018, Ghayesh, 2018, Zhao, Guo & Lu, 2018). Due to the high computational requirements and complex-
ity involved in MD simulations, continuum-based models have attracted considerable attention in recent years (El-
Borgi et al., 2018, Farokhi & Ghayesh, 2018, Farokhi, Ghayesh, Gholipour & Hussain, 2017, Ghayesh, Farajpour & Farokhi, 2019,
Ghayesh, Farokhi, Gholipour & Tavallaeinejad, 2018, Ma, Ke, Wang & Wang, 2018). Early in the 2000s, traditional contin-
uum mechanics was used to study the vibration and buckling of small-scale structures (Ru, 2000, Yoon, Ru & Miodu-
chowski, 2003). Nonetheless, size effects, which have a significant role in the mechanical behaviour at ultrasmall scales,
were not incorporated in the classical continuum mechanics. To handle this limitation, continuum-based models have been
modified to include size effects using various assumptions. The most widely used models are Laplacian-based nonlocal elas-
ticity, strain gradient model and couple stress theory.

* Corresponding author.
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https://doi.org/10.1016/j.ijengsci.2020.103368
0020-7225/© 2020 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.ijengsci.2020.103368
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijengsci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijengsci.2020.103368&domain=pdf
mailto:ali.farajpourouderji@adelaide.edu.au
https://doi.org/10.1016/j.ijengsci.2020.103368

2 A. Farajpour, C.Q. Howard and W.S.P. Robertson/International Journal of Engineering Science 156 (2020) 103368

The Laplacian-based nonlocal elasticity is used as an approximate differential model of the integral nonlocal theory, in
which stress components are related to strain components through an integral relationship. The basic assumption of this
theory appears promising since there is strong interaction between different parts of a structure at ultrasmall scales. The
Laplacian-based nonlocal elasticity has been employed to analyse problems at ultrasmall scales, such as the moderate rota-
tions of nanobeams (Reddy & EIl-Borgi, 2014), instability and transient responses of graphene sheets (Arani & Jalaei, 2016,
Naderi & Saidi, 2014), post-buckling of nanotubes (She, Yuan, Ren & Xiao, 2017), the vibration of non-homogeneous nanos-
tructures (Daneshmehr, Rajabpoor & Hadi, 2015, Nejad & Hadi, 2016, Nejad, Hadi & Rastgoo, 2016, Rahmani & Pedram, 2014,
Shafiei, Kazemi, Safi & Ghadiri, 2016), instability analysis of nanotubes transporting fluid (Dai, Wang, Abdelkefi & Ni, 2015),
and the mechanical response of smart nanostructures (Ebrahimi & Barati, 2016). In addition to the Laplacian nonlocal elas-
ticity, a refined higher-order scale-dependent model was introduced by combining the differential forms of nonlocal and
strain gradient theories (Farajpour, Shahidi, Tabataba'i-Nasab & Farajpour, 2018, Ghayesh & Farajpour, 2018, Lim, Zhang &
Reddy, 2015). A number of continuum-based models have been proposed for nanobeams (Hadi, Nejad & Hosseini, 2018,
Li, Tang & Hu, 2018, Rajasekaran & Khaniki, 2017), nanotubes (Farajpour, Ghayesh & Farokhi, 2019, Karami & Janghor-
ban, 2019, She et al., 2019, She, Yuan & Ren, 2018), nanoplates (Karami, Shahsavari, Janghorban & Li, 2019, Shahverdi &
Barati, 2017) and nanorods (Zhu & Li, 2017) in recent years based on this scale-dependent theory (Lu, Guo & Zhao, 2017,
Xu, Zheng & Wang, 2017). Zhu & Li, (2017) obtained analytical solutions for ultrasmall rods subject to axial tension using
the Laplacian form of strain gradient nonlocal elasticity. Furthermore, Lu, Guo & Zhao, (2017) used this theory to develop a
size-dependent model for the oscillation of nanobeams. More recently, Farajpour, Farokhi, Ghayesh & Hussain, (2018) used
an elasticity theory incorporating strain gradients and nonlocality for investigating the large-amplitude dynamics of fluid-
conveying nanotubes. This elasticity theory was also employed by Ghayesh, Farokhi & Farajpour, (2019) for global dynam-
ics of tubes conveying fluid at nanoscales. These studies indicate that nonlocal strain gradient models can cover a wider
range of size effects, and lead to more reliable results than the Laplacian-based nonlocal elasticity (Li, Hu & Ling, 2016,
Mohammadi, Rajabpour & Ghadiri, 2018).

In the integral form of Eringen’s model (Eringen, 2002), stress components at an arbitrary point are estimated as a func-
tion of strain component at all points (Eringen, 2002, Farajpour, Rastgoo & Farajpour, 2017). Strain components near the
given point play a more important role than those far from the point. This assumption is consistent with intermolecular
interactions inside a small-scale structure. However, due to the difficulties in applying the integral form of Eringen’s model,
a Laplacian-based nonlocal theory has commonly been used for small-scale structures (Farajpour, Ghayesh & Farokhi, 2018,
Ghayesh & Farajpour, 2019). The application of Laplacian-based nonlocal model is not reliable since several paradoxes, es-
pecially in the bending analysis of nanobeams and nanoplates have been reported (Apuzzo et al., 2017, Fernandez-Saez, Za-
era, Loya & Reddy, 2016, Romano, Barretta, Diaco & de Sciarra, 2017). To overcome these shortcomings, the integral form of
nonlocal elasticity (Koutsoumaris, Eptaimeros & Tsamasphyros, 2017, Tuna & Kirca, 2016), strain- and stress-driven integral
models (Apuzzo et al., 2017, Romano & Barretta, 2017, Romano & Barretta, 2017) have been successfully used, yielding more
accurate and reliable models for small-scale structures (Romano & Barretta, 2017).

In recent years, stress-driven nonlocal models have been developed for the mechanics of nanorods (Barretta, Faghid-
ian & Luciano, 2019), nanobeams (Barretta, Canadija, Luciano & de Sciarra, 2018) and axisymmetric annular nanoplates
(Barretta, Faghidian & Marotti de Sciarra, 2019). However, all of these problems are limited to one-dimensional small-scale
structures. In the case of axisymmetric annular nanoplates, the geometry of the non-classical problem is described by only
one coordinate (i.e. radial coordinate) before deformation. Up to now, no scale-dependent continuum models have been
proposed for the mechanical behaviour of rectangular nanoplates using the stress-driven integral theory. In the present ar-
ticle, the bending and free vibration of rectangular small-scale plates are examined by developing a stress-driven integral
formulation in the Cartesian coordinate system for the first time. For comparison purposes, a nonlocal strain gradient model
of plates is also developed for both bending and vibration analyses. An advanced version of the differential quadrature
technique is used for solving the sixth-order differential equation of motions. Both classical and non-classical (constitutive)
boundary conditions are taken into consideration in both the modelling and solution procedures. Numerical results are cal-
culated for rectangular small-scale plates with various boundary conditions. The influences of parameters including aspect
ratio, stress-driven and strain gradient scale coefficients are thoroughly studied.

2. Stress-driven nonlocal integral model of rectangular small-scale plates

A nanoplate of thickness h, width b and length a is shown in Fig. 1. A Cartesian coordinate system is used to measure
the response of the small-scale system. It is assumed that the in-plane displacements are negligible compared to transverse
deflection, and the effect of geometrical nonlinearity is sufficiently small. Using a Kirchhoff plate model (Leissa, 1969), the
strain components (g;) are given by

o%w
Exx = —zW = ZKxx,
e ZBZW zZK
yy — ayz — ~Ryy»
02w
= ZKyy, (1)

o = "2 5xay
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Fig. 1. A rectangular small-scale plate of length a and width b, with a distributed load q applied.

where w and «; are transverse deflection and curvature components, respectively.
The strain components is written in terms of stress components as

1 1 1
Exx = E(G"X —U0yy), &y = E(ayy — UOxx), Exy = Eaxy. (2)

where o, G, E and v denote stress, shear modulus, elasticity modulus and Poisson’s ratio, respectively. The components of
stress resultants are defined by

h2
My = / (ow2)dz,
—h2
h2
Myy = / (oyy2)dz,
—h/2

hy2
Myy = / (oxy2)dz, (3)
2

in which h is the nanoplate thickness. According to the stress-driven integral elasticity (Barretta, Faghidian & Marotti de Scia-
rra, 2019, Romano & Barretta, 2017), the curvature components along the x and y axes are expressed as

b pra
Kxx(x’yaf)=(<P*Hxx)(x’y,t)=/o /0 Ha(X. 7. )@ (Ix = X|. [y = J|. Ac)dXdy.

b ra
Ky (%,9,6) = (¢ 5 Hy) (%, 9. £) = /0 /0 Hyy (3. 0@ (X — &1, |y — J1. Ac)dzdy, (4)

where “*” represents integral convolution. The parameters X and y are the variables of integration, ¢ is the nonlocal kernel
function, and A¢ is the stress-driven scale parameter, which is given by Ac = Lc/€ex:, Where Lc and £y are the scale and
external characteristic dimensions, respectively. For small-scale plates, the external characteristic dimension is the same as
the nanoplate length (i.e. £exr = a). In addition, Hxx and Hy, are given by

Hxx()a }7’ t) =

(M (X, ¥, ) = UMyy (X, 3, 1)), Hyy (X, y, t) = (Myy(X,y,t) — UMk (%, Y. 1)), (5)

1 1
Dl] (1 — UZ) D]l (1 — ’Uz)

where Dy; is the bending rigidity, which is obtained by Dy; = Eh3/(12(1 — v2)). The shear rigidity of the plate is also
given by D33 = Gh3/12. The appropriate kernel function for rectangular nanoplates should satisfy the following properties
(Barretta, Faghidian & Marotti de Sciarra, 2019):

Positivity : ¢(x,y, Ac) >0, (6)
400 p+o0
Normalisation : / ©x,y, Ac)dxdy =1, (7)
Impulsivity : klirré [y, Ac)] = 8(x,y). (8)
c—>0"

Here & is the Dirac delta function. According to the above-mentioned properties, the kernel function of rectangular small-
scale plates is

- 1 1 - -
y =313 = gexp( - (=R + 1y 31 ©)

The bi-exponential kernel function, which is described by Eq. (9), is plotted in Fig. 2 for L = 1/5. One can easily prove

that this nonlocal kernel function fulfils all necessary properties given by Eqgs. (6)-(8). Substituting Eq. (9) into the first
relation given by Eq. (5), yields

1 (b 1 _ _ s
.0 = 715 [ [ exp(= =21+ by =31} e . 5. ). (10)
C

p(lx—x

)
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Kernel function

Fig. 2. Nonlocal kernel function for rectangular small-scale plates (L. = 1/5).

Using the Leibniz integral rule, the following differential equation is obtained for the curvature along the x axis:
0%k 0%k 0%k
2 XX XX 4 XX
Hoor = fex = LC( w2 ay? Cox29y?” ()

It is important to note that Eq. (11) is equivalent to Eq. (10) and can be used in the mathematical modelling of small-scale
plates such as microplates and nanoplates, provided that the following additional boundary conditions are satisfied

dK 1 oK 1
x=0: a;" = E/cxx,x=a: 8;" =—EKXX. (12)
Substituting Eq. (9) into the second relation given by Eq. (5), leads to
1 b e 1 B a o
30 = 35 [ [ exp(= {1k =%+ 1y ~ 91} iy (2.5, )dRd5. (13)
418 Jo Jo Lc
In a similar manner, the following differential equation is obtained
REYS REPS 0%k
2 VY vy 4 y
Hyy :Kyy_LC< e gy >+ Cox29y? (14)

Furthermore, the following additional boundary conditions must be satisfied for the curvature along the y axis

dakyy 1 Ky 1
= L == — =D, —W =—— 1
y=0 3y I Kyy,y=Db 3y I Kyy, (15)
Substituting Eq. (5) into Eqs. (11) and (14), and then substituting Eq. (1) into the resultant equations, one obtains
2w 2w *w 04w 95w
My = -Dii=— — UDjj=— + Dnl2| =— + =——— | - Dyléi—-—
X g TV gy +Pn C( axt Bx28y2> N CHx49y2

*w *w a%w
+ UD]]L%(axzayz + ay4> - UD11L47

9w 9%w ,(0%w 9w 4 0w of *w 9w 4 0w
My = —vDnz ~ Dz + ”D“LC<ax4 ¥ 8x23y2> ~ VDnlegiagyz + Pulc\ gyt gye) ~ Pl gy
92w
Mxy = —2D33Ways (16)

Similarly, the non-classical additional boundary conditions for rectangular small-scale plates are obtained as

Pw  9*w
¥=0:kegs = 5
N—a: L83w_82w

T T T

Pw  9*w

yZO'LCBTﬁZBT/Z’
3 2

B =y
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Employing Hamilton’s law, the governing equation is determined as

%M. 02M 0%2M. 02w o*w o*w
a2 T 2axay T gy TI=Moga - 2( )

3o T ayrae (18)

where q is the transverse load per unit area; mg and m, indicate the mass per unit area and mass moment of inertia,
respectively; they are given by
h/2 h/2
mg = pdz, m, = pZ%dz, (19)
—h/2 —h/2
in which p represents the mass density of the small-scale plate. Substituting Eq. (16) into Eq. (18), leads to the following
higher-order differential equation
04w 94w 04w

—— —2(vD 2D33) s+ — D11 +—
axd —2Whn + 33)8x23y2 gy

Do [2 ‘dw  %w ‘w  %w
U Gxs T gxaayz T axzayr T ays

—Dny

dx40y?2 + dx2oy*

08w a%w %w
_ 4
D”LC<8x58y2 +2U8x“8y4 + 8x28y6)

0w o*w 04w
=M — M gome + 5yme ) (20)

6 6
+2vDuL§( 5w 5w >

In Eq. (20), the highest derivative with respect to x is six, namely six boundary conditions are required along the edges
perpendicular to x axis. Furthermore, since the highest order of derivatives with respect to y is also six, six boundary con-
ditions in total are needed at the boundaries y =0 and y = b. In the stress-driven integral nonlocal elasticity model, the
required boundary conditions for small-scale plates can be categorised into two types:

(1) Classical boundary conditions:

Clamped edges:

x=0,a: w=0, =0,y=0,b:w=0,—y=0, (21)

ax
Simply supported edges:

x=0a: w=0, Mx=0,y=0,b: w=0, M, =0, (22)
(2) Non-classical (constitutive) boundary conditions:

Pw 192w
=0: 5= -+—=5=0
X 0x3  Lc 0x2 ’
X=4da: 837W+1827W_0
T ax3  Leox2 T

Pw 192w

V=0 gy iy =0
w1 9%w

3. Strain-gradient nonlocal differential model of rectangular small-scale plates
To make a comparison between the integral modelling and available size-dependent models, the governing equations of

the strain-gradient nonlocal differential model are derived in this section. Using the strain-gradient nonlocal elasticity and
Kirchhoff plate model, the constitutive equations are given by (Lim, Zhang & Reddy, 2015)

0?0 0%0; E 026 0%
2 XX XX\ _ 2 XX XX
o (Cote) ( o " oy )‘ (1-v?) [8"" ‘S( a2 oy )}

UE ,f 0%ey,  0%eyy
oy ()} .
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d%0 d%0 vE d%¢ d2%¢ E
— (eat)? vy ) _ P’ xx XX
(Oc)(axz + 5y (=07 w= G| Za T 52 +(]_U2)
92¢ d2¢
2 vy vy
|:8ny5< FI% + 372 , (25)
020, 020, d2¢ 92¢
2 xy xy | _ 2 xy xy
xy — (€olc) < % + 372 = 2G| &xy — 45 % + 372 , (26)
where e, ¢ and G are the calibration coefficient, internal characteristic dimension and shear modulus, respectively. Fur-
thermore, ¢; denotes the scale parameter associated with strain gradients (Farajpour & Rastgoo, 2017; Farajpour et al., 2018;

Malekzadeh & Farajpour, 2012; Mohammadi et al., 2014). Substituting Eq. (1) into Egs. (24)-(26), and then using the defini-
tions of the stress resultants given by Eq. (3), one obtains

92M 9°M 0%w 24w 24w 9%w 24w 24w
28 ¥ 7 V) _p|l 2 2, Y _ e =7 47
~ (e0) ( e 0y2 ) - D|: 0x2 & ( T szayz)} UD|: dy2 & (8x28y2 + ay4 )] (27)
02M, 0’M 02w 94w 94w 92w 4w 94w
_ 2 yy w\ _ 0w Lfow  OTW N | oW 5 oW
(€od) ( e 0y2 ) - UD[ 0x2 & < axd T 8x28y2>} D|: 0y2 & (8x28y2 + oyt )] (28)

0?My | 0*My \ ?w  ,( 9w 9w
(eoa)< e 9y2 =-(1-uv)b axay’es 8x38y+8x8y3 ’ (29)

in which D = Eh3/12(1 — v?). Substituting Eqs. (27)-(29) into Eq. (18), yields

D 84w+2 9w +84w _pe2 95w 43 9w 43 95w +E)Gw
x4 T T Ox20y2 | 0yt 9x6 T T ox49y2 T T 9x2dyt | 9yS

02w %w 94w 82q 92q
+ Mo~ g+ g ) ~9+ @D 5e + 5

94w *w of 0w 95w 95w
- Mo(eo®) < ayzoe * 3x28t2> MO\ Guage T *gxeayzoe T ayaae ) = (0)
with the following boundary conditions (Farajpour, Yazdi, Rastgoo & Mohammadi, 2016)
ow 94w ow 94w
x=0,a: w=0, My=0, orﬁzo,W_Oy 0,b: w=0, M, =0, orW 0,8—y4=0, (31)

4. Solution procedure
4.1. Standard DQ technique

In this section, the differential quadrature (DQ) technique is employed to determine a numerical solution for the gov-
erning equation of rectangular nanoplates via the stress-driven integral elasticity theory. It should be noted that the DQ
technique is used in this paper since it is a powerful numerical method for handling differential equations with complex
boundary conditions.

For brevity, only the DQ-based solution procedure for the bending of small-scale plates using the stress-driven integral
nonlocal elasticity is presented. The numerical solution for the vibration analysis can be performed in a similar way. First of
all, a set of non-dimensional parameters are given by

_ow X y a . qa® = D33 Lc

Zas‘f:asn:E’ﬂ:BsQO:Ts D33:D7H’ACZE’ (32)

where 8, o and A denote the aspect ratio, non-dimensional transverse load and scale coefficient of stress-driven integral
nonlocal elasticity, respectively. In view of Eq. (32), one can obtain the following non-dimensional differential equation

P*w o, W LW (%W, 95w . 05w 5 05W
950 +28 (U+2D33)a§23n2+ﬁ I 8—56+ﬂ RIZHD >+ B 35757 2+ B Era

—2uA2 ,32 ,64 oo + B¢ 00w +2v ,32 ﬁ“ v _ do (33)
543 2 9E207" C\ 9&6972 543 ri 523 6 ’

The boundary condition at each edge of the small-scale plate is clamped. In this section, for brevity, only clamped bound-
ary conditions are considered. However, for other edge conditions, DQ solutions are similarly developed. Using Eq. (32) in
conjunction with Egs. (21) and (23), yields

aw 0°w a>w

3w
gIO,‘l:W:O,g:O,g:O' 8752 )\.Ca$3

92w 93w

=0E=1: a—éz+xca—g3

=0, (34)
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02w
an?

_ ow 02w
n=0,1: w=0, %:0,77:0, W_

Based on the DQ technique, the derivatives with respect to £ and n can be expressed as (Farajpour, Yazdi, Rastgoo &
Mohammadi, 2016)

a"w

aé:r Z ik WkJ’
8SW (5)

ans Z jkwlk’

9rtow D E®)
8‘é’:r8ns Z Z 1k1C]k2Wk1 ky > (36)

kp=1ky=1

9w _ e

where Ci(? and fj(sk) represent the weighting coefficients for derivatives with respect to & and 5, respectively. The numbers
of mesh points along & and n are, respectively, indicated by ny and n,. For first-order derivatives, the weighting coefficients
are determined via the relations

MUE)  for j £k

Cé}() _ ) GE8MDGE 37
ZJ 1(0) 11 forl_k
M® (r]j) .
C"Uk) _ ) (nj=m)MO () for j # k (38)
Js n 1) L)
-2 l(m#)ij for j=k
where M(D(&;) and M()(n;) are given by
Ny My
MO E) = [] G-&).MOm)= T (ni—m). (39)
k=1(k+#i) k=1(k#j)

Higher weighting coefficients are calculated using the following relations

(2) D)
ZCI k ij

3) _ N c@cm

ik “k,j°’

4) _ (2)(2)
Ci,]’ - ZCI k ij
17

ik “k,j’

5) _ § Oc@

(6) 3)3)
Ci,j ZCI k ij (40)
k=1

(2) (HFM)
ZCI ij

(3) 2)F(1)
ZC Ck]

C(4) Zc(z)quj)

C(5) Z C(B)C,EZJ)

~(6) B3
9= ZC Col- (41)
k=1
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The distribution of grid points is important in the implementation of the DQ technique. It has been shown that the
Gauss-Chebyshev-Lobatto distribution leads to sufficiently accurate results (Shu, 2012). Using this law of distribution, one
can define

1 w(i-1)
o)
nj= ;{1 —cos[jzlilj:]])}}. (42)

To implement all six boundary conditions, the direct method is utilised. Based on this method, all derivatives of the
boundary conditions are first discretised, and then substituted into the main discretised governing equations. Applying
Eq. (36) to Egs. (34) and (35), the following relations are obtained

ny—1 ny—1 ny—1 ny—1
> (CBCX); Wy j =0, Y (CBCX), (Wi j =0, (NBCX); W j=0, > (NBCX), W ;=0, (43)
k=2 k=2 k=2 k=2
ny—1 ny—1 ny—1 ny—1
> (CBCY)y Wi =0, > (CBCY), yWir =0,y (NBCY); Wi, =0, )  (NBCY), Wi =0, (44)
k=2 k=2 k=2 k=2

where

(CBCX), , = qyg (CBCX),, = c;”k,

(NBCX)y = C2) = AcC. (NBCX),, ;= CZ + ML)

ny.k’
1 1
(CBCY )y =G} (CBCY), 1 =G

(NBCY), ;= C%) — AcBCE), (NBCY), ;= C(z) + A ﬁcf}k. (45)

Using Eqgs. (43) and (44), the following relations are obtained for the transverse deflection near the boundaries of the
rectangular small-scale plate

nx—3 nx—3
Waj=— > (HX)1 Wi, W3j=— D (HX)y Wi,
k=4 k=4
ny—3 nx—3
Wiz =— Y (HX)3 Wy j, Wn1j=— Y (HX)4 W, (46)
k=4 k=4
and
ny—3 ny—3
Wiz =— Y (HY) Wi, Wiz=— Y (HY), Wi,
k=4 k=4
ny—3 ny—3
Win2=— Y (HY)3 Wi, Win1=— Y (HY)yWiy. (47)
k=4 k=4

The details related to (HX);  and (HY); | are given in Appendix A. Substituting Eqgs. (46) and (47) into Eq. (36), yields

J'w
()7
8xr Z P Wk J

W
ays - Z Qj k W"vk’

k=4

Jurow o 3y

Xrays Z Z 1k1 kz] kl-kz’ (48)

ko=4 k=

where Pi(,r(), Q]@, and F, (,: s)k ; are defined in Appendix B. Substituting Eq. (48) into Eq. (33), leads to the following discretised
equation
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ny—3 ny—3n,—3 ny—3
4),7 . 2 4 (4)
Zpi,k Wi+ 2B ZZ zlqkzj Wik, + B Z K Wik
k=4 ky=4 k= k=4
ny—3n,-3
2 (6) 2 2 F42) 2
_)L ZP Wk]_)\c(1+zu)ﬁ ZZ i,kq,ky,j k1kz
k=4 ko=4 ky=
ny—3ny—3 ny—3
2 4 ECY @ 206 (6)
—A c(I+ 2v)p Z Z iki,ka, _]Wkl ky = )‘C:B Z ik Wi k
ky=4 k= k=4
ny—3ny—3 ny—3n,—3
2 6.2) = 404 (4,4)
'B Z Z Fl ki.ka, jVVkl ke T ZUXC’B Z Z FI Jk1.kz, ]Wkl ky
ky=4 k= ky=4 Iy =
ny—3n,—3
6
/3 Z Z zk1 kz jWkl ky = q']’ (49)
ky=4 k=
in which i=4,5,...,ny—3 and j=4,5,...,nx— 3. It should be noted that for isotropic small-scale plates, Poisson’s ratio

and shear rigidity have the relationship v + 2D53 = 1. The non-dimensional deflection of rectangular small-scale plates is
determined as

{(Wa) = [Kp] ™ {Gex ). (50)

Where {wy}, [Kp] and {@ex} are the inner deflection vector, bending stiffness matrix and external transverse load vec-
tor, respectively. Following a similar DQ-based procedure for solving Eq. (20), one finally obtains the relation for the free
vibration behaviour of small-scale plates as

(K] — @ 2[My]){wg} = {0}, (51)

where w is the dimensionless frequency of free transverse vibration, which is defined as @ = wa?,/my/Dy;. The matrices
[Kv]and [My] denote the stiffness and mass matrices of the small-scale plate, respectively.

4.2. DQ technique for sixth-order partial differential equations
An advanced version of the generalised DQ technique, which was proposed by Wu & Liu, (2000) in order to handle sixth-

order differential equations, is implemented in this subsection. Based on this technique, partial derivatives are expressed as
(Khaniki, 2018, Wu & Liu, 2000)

"w ( ) | o) ( (kx) (
FI%G Zh Txow' + thro(x,)w,” + Zh nw,} = ZE,Z Uk j:
k=0 = k= k=1
Sw 2 ' ; m+4
S S S K’ S
SR+ R Sl =
Y i P p
8(r+s)w n+4 m+4 © 26
8x’8y5 - Z Z Ez 7(1E]Sk2U’<1-’<z (52)
ki=1ky=1

where hl.(rj) and Fllffj) are the Hermite interpolation shape functions that must satisfy the following relations (Khaniki, 2018)

(r) _Jlifi=jandl=r
h (Xi) = {0 otherwise ’ (53)
(s) _Jlifi=jandl=s
h i) = {O otherwise ’ (54)

In addition, E; (r) and E](r ) are the total weighting coefficients of the DQ technique. As can be seen from Eq. (52), along each

edge of the small scale plate, two additional parameters (i.e. the first and second derivatives of the transverse deflection)
are incorporated. According to the properties given by the above relations (i.e. Eqs. (53) and (54)), the weighting coefficients
are defined as (Khaniki, 2018, Wu & Liu, 2000)

hyi(x) = (x=x)” 5 (@1%% + byix + c1) 1 (x), fori=0,1,2, (55)
(%1 —xn)?

hyi(X) = (x=x)” 5 (@niX* + bpiX + Coi) tn (x), for i=10,1,2, (56)
(%1 = xn)?
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(X —X1)2 (X — Xp)?

2 2
(= x1)"(x; = xn)
in which ¢;(x;) = d;;. Furthermore, ay;,by; and ¢;; (k=1,nand i=0, 1, 2) are a number of constant coefficients given in

Appendix C. Similarly, the weighting coefficients for partial derivatives with respect to y (i.e. Eﬁ) (y;)) are obtained. For

brevity purposes, the solution procedure for the bending of clamped rectangular small-scale plates via the stress-driven
integral nonlocal elasticity is presented. Inserting Eq. (52) into Eqs. (34) and (35), the following relations are obtained

hjo(x) = Lij(x), for j=2,3,...,n—-1, (57)

n+2 n+2
> (BCX) 1 U j= 0.y (BCX), Uy j = 0.
k=3 k=3
m+2 m+2
Y (BCY) Uik =0, ) (BCY )y Uik =0, %)
s k=3
where
2 3
(BCX), 1o = E{Y) — AcELY,

(BCX )i = E®) + AcEP)

nk nk’

(BCY)y = E2) — AcBED)

1k?
(BCY ) e = ESy + AcBED), (59)
In view of Eq. (58), the displacement components near the edges of the small-scale plate are determined as follows
n+1 n+1
Usj=— ZHI,kUk.js Upzj=— ZHZ.kUk,j’
k=4 k=4
m+1 m+1
Us=-Y H3Uik: Uimia=— Y HylUik: (60)
k=4 k=4

where
Hy o = (BCXI)q 1 (BCX) 1y + (BCXI)q 5 (BCX) .
Hy o = (BCXI)3 1 (BCX)q y + (BCXI)3 5 (BCX) i
Hs o = (BCYD); 1 (BCY )y g + (BCYD) 5 (BCY )y
Hy = (BCYI), 1 (BCY)q j + (BCYI)5 5 (BCY )y - (61)

Here (BCXI); ; and (BCYI); ; are the elements of the inverse of the boundary condition matrices, which are defined in
Appendix C. Substituting Eq. (60) into Eq. (52), leads to

3rW n+1 ( ) m+1 ) a( s ) - n+1 m+1 ( )
r (s r.s

ox" Z Uk Je ys = Pj,k Ui-k’ xrays Z Z i.ky ko, JUk‘ kz (62)
k=4 k=4 k1=4 k=4

where Pi(l:), I3j(sk) and F,(l:]s)kzj are the modified weighting coefficients given in Appendix C. Inserting Eq. (62) into Eq. (33), the
following equation is derived for the bending of rectangular small-scale plates subject to transverse loading

n+1 n+1 m+1 m+1
(4) 4 (4)
2P Uk +2B2 (v +2Dx) 37 3 FRS, Uik + B ZP,kU
k=4 ki=4 k,=4
n+1 n+1 m+1 n+1 m+1 m+1
2 (6) 232 (4.2) 2 p4 (2,4) 26 POy,
=AY PR Uk =B +20) 370 3 LS Uik, = 2281 +20) 30 3 T ESS, Ui, — A28 Z P
k=4 k1=4 k,=4 k1=4 k=4
n+1 m+1 62 n+1 m+1 44 n+1 m+1 6
214 (6.2) 494 (4.4) 694 E(26)
+P ACZZFIthU’Clkz—"—ZU'B A ZZEhk“U"lkz + B¢ ZZ iky.ky.j Uk, k, = Gij- (63)
k=4 ky=4 ky=4 ko =4 ky=4 ky=4

Eq. (63) can be organised in a matrix form for efficient computation. The dimensionless deflection of the plate can be
expressed as

) = [K] (@), (64)
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Table 1
First six dimensionless frequencies of SSCC square plates.
@ First natural Second natural Third natural Fourth natural Fifth natural Sixth natural
frequency frequency frequency frequency frequency frequency
Leissa (Leissa, 1969) 28.946 54.743 69.320 94.584 102.213 129.086
Present method 28.9509 54.7431 69.3270 94.5853 102.2156 129.0951
Table 2
Deflection of CCCC plates subject to uniform loading (WnexD/qb*).
Aspect ratio (a/b) Present method Imrak and Gerdemeli (Imrak & Gerdemeli, 2007)
1.0 0.0013 0.00127
1.2 0.0017 0.00173
1.4 0.0021 0.00207
1.6 0.0023 0.00230
1.8 0.0024 0.00245
2.0 0.0025 0.00254

l E
’O_.O_..o--—o-—O-—O
0.8
2 a
E 0.6 1 o
!
= /
g 041 dll O Reported results (e,[}= 1 nm)
- —--—Present results (e,[}= 1 nm)
0.2 1 — Present results (e,[}= 2 nm)
O Reported results (e,[}= 2 nm)
0 T T T
0 10 20 30

Length (nm)

Fig. 3. A verification study for SSSS rectangular nanoplates based on the differential nonlocal model of plates (Aksencer & Aydogdu, 2011).

Similarly, the matrix form for the free transverse vibration based on the advanced DQ technique can be written as
([&] - = 2[i1,]) {w} = (0}. (65)

In this paper, the computational results were calculated using Matlab (MathWorks Inc., Natick MA, USA).
5. Numerical results
5.1. Verification study

To show the accuracy of the results, several test cases are considered. Table 1 lists the first six dimensionless natural
frequencies of local square plates according to classical elasticity theory (Leissa, 1969). The dimensionless frequency is de-
fined by @ = wa?,/my/Dy;. The boundary conditions of the plate are: simply supported at x=0, a, and clamped at y=0, b
(i.e. SSCC). For simplification, four-letter symbols are used to indicate the boundary conditions of the plate. The first and
second letters, respectively, denote the boundary condition at x =0 and x = a, while the third and fourth letters represent
the boundary condition along boundaries y = 0 and y = b, respectively. For instance, SCCC plates have one simply supported
edge at x = 0 and three clamped edges at x = a and y = 0, b. The results obtained via standard DQ technique are compared
in Table 1 with those obtained by Leissa, (1969). A reasonable agreement is concluded between the results of the present
solution procedure and those obtained in the literature.

Table 2 lists the dimensionless transverse deflection of CCCC local plates under uniform distributed loading for various
aspect ratios (a/b). The results are compared to those reported by Imrak & Gerdemeli, (2007), and a good match is found.
Furthermore, Fig. 3 shows a verification study for the vibration of SSSS rectangular nanoplates for two values of nonlocal
parameter. The results are obtained based on Eq. (30) when the strain gradient effect is ignored (i.e. ¢s = 0). The aspect
ratio of the nanoplate is set to 2. The ratio of the nonlocal frequency to its local counterpart is defined as the frequency
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Fig. 4. Transverse deflection ratio of small-scale plates with all edges (a) simply supported, and (b) clamped versus the scale coefficient for stress-driven,
strain gradient and classical elasticity theories.
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Fig. 5. Deflection ratio of small-scale plates with all edges (a) simply supported, and (b) clamped versus the aspect ratio for stress-driven, strain gradient
and classical elasticity theories.

ratio. The results obtained by Aksencer & Aydogdu, (2011) according to the differential nonlocal theory are also presented.
An excellent match is seen from Fig. 3 for both nonlocal parameters.

5.2. Bending analysis

The variation of the transverse deflection ratio of simply supported square nanoplates with the scale coefficient for dif-
ferent elasticity theories including the stress-driven, strain gradient and classical theories is plotted in Fig. 4(a). Poisson’s
ratio and dimensionless transverse loading are set to 0.3 and 1, respectively. Twenty grid points are taken into consideration
along each direction of the system for ensuring the convergence of numerical results. It should be noted that the results of
the standard and advanced DQ techniques exactly match for a wide range of scale coefficients excluding very small values
where the standard method fails to obtain a converged solution. The strain gradient model is obtained from Eq. (30) when
the nonlocal parameter is set to zero (ega = 0). In addition, when the scale parameter of the stress-driven model and its
additional (constitutive) boundary conditions are neglected, the classical model is obtained. The transverse deflection ra-
tio is given by (Wmax)nc/(Wmax)g Where “nc” and “cl” stand for non-classical (stress-driven or strain gradient) and classical
models, respectively. From Fig. 4(a), it is found that the transverse deflection ratio determined via the stress-driven in-
tegral model is significantly different from that of the strain gradient theory. Increasing the scale coefficient dramatically
increases the difference between non-classical models, indicating the importance of using the stress-driven theory when
the behaviour of the small-scale plate is highly size dependent. A similar trend is observed for clamped square small-scale
plates (see Fig. 4(b)). However, this time the stress-driven model leads to lower transverse deflection ratios. It implies that
clamped small-scale plates are more influenced by stress-driven effects than simply-supported ones. This is due to the fact
that clamped boundary conditions are associated with higher size effects.

Fig. 5(a) and 5(b) indicate the change of the deflection ratio of small-scale plates subject to uniform transverse loading
with the aspect ratio for simply supported and clamped cases, respectively. The deflection ratio is defined as Wmax/wr(ga)x
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Fig. 7. Dimensionless deflection versus B and ¢/a based on the strain gradient differential model.

in which Wﬁggx is the maximum dimensionless deflection of a local square plate. The strain gradient parameter and scale
coefficient of the stress-driven model are set to 0.2. It can be concluded that when the aspect ratio of the small-scale plate
increases, the deflection ratio decreases for both boundary conditions. The stress-driven model predicts relatively higher
deflection ratios than the strain gradient model for SSSS nanoplates whereas the opposite is observed for CCCC nanoplates.
In fact, clamped boundary conditions lead to higher size effects based on the stress-driven integral modelling. In addition,
Figs. 6 and 7 are plotted for investigating the effect of boundary condition on the deflection of ultrasmall plates via the
integral and strain gradient models, respectively. The dimensionless defection is given by wmax/wf;;x where wﬁg;x is the
maximum deflection of a local square plate with all edges simply supported. It is observed that as more constraint is made
on the small-scale plate, the dimensionless deflection decreases.

5.3. Free vibration analysis

The variation of the frequency ratio of simply-supported square nanoplates with the scale coefficient is indicated in
Fig. 8(a) for different elasticity theories such as stress-driven and strain gradient models. Poisson’s ratio and thickness-to-
length ratio are, respectively, taken as 0.3 and 0.05. The frequency ratio is defined as wpc/w, where “nc” and “cl” indicate
non-classical and classical models, respectively. The difference between the non-classical models significantly increases with
increasing the scale coefficient. Fig. 8(b) depicts the frequency ratio of clamped nanoplates versus the scale coefficient for
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and classical elasticity theories.

various elasticity models. Frequency ratios increase with increasing the scale coefficient. Comparing Fig. 8(a) and 8(b) indi-
cates that the frequency ratios of clamped nanoplates are higher than those of simply supported ones since the vibration
behaviour at small-scale levels is highly affected by size effects when all boundaries of the system are clamped. This ob-
servation can be better described by the stress-driven integral theory than the Laplacian-based model incorporating strain
gradients as size effects are more pronounced in this model.

To show the influence of geometry on the free vibrations of simply supported small-scale plates, the frequency ratio
versus the aspect ratio (i.e. a/b) is plotted in Fig. 9(a) for stress-driven, strain gradient and classical elasticity models. The
number of grid points, scale coefficient and thickness-to-length ratio are assumed as 20, 0.2 and 0.05, respectively. The
frequency ratio is defined as wnc/wg in which wg is the dimensionless frequency of a local square plate. Rectangular
small-scale plates with higher aspect ratios have higher frequency ratios. In addition, both non-classical models predict
higher values for the frequency ratio than the classical plate model since both strain gradient and stress-driven effects
lead to a considerable enhancement in the structural stiffness. A similar trend is observed in Fig. 9(b) for the frequency
response of clamped small-scale plates. However, in contrast to simply supported nanoplates, the stress-driven model leads
to higher frequency ratios than those of the strain gradient model for clamped boundary condition. Figs. 10 and 11 depict
the dimensionless frequency versus the aspect ratio and scale coefficient via the stress-driven and strain gradient models,
respectively. The dimensionless frequency is defined by wnc/wc(ls) where wc(ls) is the frequency of a simply supported local
square plate. The results are calculated for nanoplates with different edge conditions including SSSS, SSSC, SSCC, SCCC and
CCCC. It can be concluded that when more constraint is imposed on the system, the dimensionless frequency increases, as
expected.
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6. Conclusions

A stress-driven nonlocal integral model has been developed for the bending and free transverse vibration of rectangu-
lar nanoplates using an appropriate two-dimensional kernel function. According to the Leibniz integral rule and Kirchhoff
plate model, the curvature-moment relations were derived. The sixth-order partial differential equation of motion, classi-
cal and constitutive boundary conditions were explicitly obtained. In addition, the governing differential equations for the
static deformation and vibration of a rectangular nanoplate were presented utilising the Laplacian-based model of nonlocal
strain gradient elasticity. The maximum transverse deflection and natural frequencies were presented for various boundary
conditions and different modified theories such as stress-driven, strain gradient and local models.

It was found that the Laplacian-based nonlocal theory fails to model size effects on the bending behaviour of nanoplates
under uniform transverse loading. By contrast, the stress-driven integral elasticity can reliably predict size influences on
the statics and vibration of nanoplates with various boundary conditions. Moreover, for clamped nanoplates, the stress-
driven model estimates a highly size-dependent response, which is consistent with the fact that when more constraint is
imposed on the nanoplate, the effect of intermolecular interactions increases, and thus, size effects increase. The difference
between the results of strain gradient elasticity and stress-driven model is higher for higher scale coefficients. In addition,
clamped nanoplates are more influenced by the stress-driven effect than simply-supported ones. The stress-driven nonlocal
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integral model yields relatively higher scale effects than the strain gradient model for clamped nanoplates. Moreover, it was
concluded that stress-driven effects are associated with a notable increase in the structural stiffness of small-scale plates.
Furthermore, imposing more constraint on the nanoplate leads to higher dimensionless frequency parameters. The frequency
ratios obtained via the stress-driven model are lower than those obtained via the Laplacian-based strain gradient model for
simply supported boundary condition.
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Appendix A

The coefficients (HX); | are given by

(HX)1 ko = (BCXI)q 1 (CBCX) 1 g + (BCXT)y 5 (CBCX ),y (BCXD)q 3(NBCX) 1y + (BCXT) 4 (NBCX)y, ks (A1)

(HX) ) = (BCXI)3 1 (CBCX) 1 g + (BCXT); 5 (CBCX )y, o+ (BCXD)5 3 (NBCX) 1y + (BCXT) 4 (NBCX)y, ks (A2)

(HX)3 = (BCXI)5 1 (CBCX)q  + (BCXD)3 5 (CBCX),  +(BCX1)3 5 (NBCX)q | + (BCXD)3 4 (NBCX),, - (A3)

(HX) 4 = (BCXI)4 1 (CBCX)q  + (BCXT) 4 5 (CBCX),,  +(BCXT) 4 3 (NBCX) 1 + (BCXT) 4 4 (NBCX),, (A4)
where

(CBCX)I,Z (CBCX)LB (CBCX)I,nX—Z (CBCX)l,nX—l
(CBCX)nXl (CBCX)nX,B (CBCX)nx.nx—2 (CBCX)nXﬂX—l
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The coefficients (HY); y are given by
(HY)q = (BCYI); 1 (CBCY )y + (BCYI)LZ(CBCY)ny.k—&-(BCYI)l_3 (NBCY)q , + (BCYI)1,4(NBCY)ny_k, (A7)
(HY) 3= (BCYI)y 1 (CBCY )y + (BCYD)5 5 (CBCY ), +(BCY 1)y 3(NBCY )y + (BCYI)y 4 (NBCY), 4, (A8)
(HY)3 = (BCYI)3 1 (CBCY )y + (BCYI)3 5 (CBCY ),y +(BCYI)3 3(NBCY )y + (BCYI)3 4 (NBCY), 4. (A9)
(HY) 4 = (BCYI), 1 (CBCY ) + (BCYI)4,2(CBCY),1y.,<(BCYI)4,3(NBCY)L,< + (BCYI)4’4(NBCY)ny,k, (A10)
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Appendix B
The modified weighting coefficients of Eq. (48) are calculated by
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Appendix C

The coefficients of Hermite interpolation shape functions are given by
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The inverse of boundary condition matrices is calculated by

-1
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The modified weighting coefficients of Eq. (62) are obtained by
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Chapter 6

Nonlinear vibration behaviour of rectangular
small-scale plates

Chapter overview

In chapter 6, the nonlinear vibration of plates at small-scale levels, which is the last objective of
this project, is analysed. To conduct this analysis, a nonlinear size-dependent model is presented
based on non-classical integral constitutive equations. Curvature nonlocality and in-plane
nonlocality are both taken into consideration in the continuum modelling to better estimate size
dependency at small-scales. Coupled nonlinear equations with conventional and non-conventional
edge conditions are presented by the stress-driven theory. Applying a differential quadrature
method and an iteration approach, all edge conditions and coupled nonlinear equations are
discretized, and the nonlinear frequencies are computed. Molecular dynamics simulations are also
performed to prove that the modelling is valid. This analysis in conjunction with the previous
analysis presented in chapter 5 provide a useful benchmark for the vibrations of small-scale plates.
This work has been submitted as a journal manuscript for review to “Composites Part B:

Engineering”.
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Abstract

A nonlinear nonlocal integral plate model is introduced in the present article for the first
time to investigate the vibrations of graphene sheets. Integral constitutive equations are
assumed for both in-plane strain components and nanoplate curvature. Three types of boundary
conditions including classical edge condition and non-classical constitutive conditions related
to both nonlocal strain components and curvature nonlocality are derived. Application of the
stress-driven integral theory and von Karman’s theory of nonlinearity to Kirchhoff’s plate
model leads to the coupled nonlinear motion equations. The resonance frequencies of the
graphene are computed via a differential quadrature technique and an iteration method. All
boundary condition types are discretised and implemented in the numerical solution procedure.
Furthermore, molecular dynamics simulations are conducted for various maximum transverse
amplitudes to verify the nonlinear stress-driven integral plate model. The influences of
curvature nonlocality, in-plane nonlocality, maximum transverse deflection, and geometric
ratios on the nonlinear frequency ratio and maximum in-plane displacements are studied in
detail.

Keywords: Nonlinear vibration, Stress-driven nonlocal integral elasticity, Graphene sheets,
Molecular dynamcis
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1. Introduction

Graphene sheets (GSs), as one of the most common types of nanoplates, have received much
interest lately because of their promising mechanical, physical and electrical properties [1, 2].
These ultrasmall plate-shaped structures have been utilised in nanotechnology-based devices
and systems from nanoresonators [3] to electrically excited nanoactuators [4] as the basic
component. Motion analysis and vibration response of GSs are important in order for these
devices to operate efficiently. In a number of unavoidable situations, nonlinear motions and

large-amplitude vibrations have been observed in GS-based nanodevices [5, 6].

The vibrational behaviour of GSs with small engineering strain components has been
remarkably examined in the open literature due to relatively simple modelling and simulations.
In an early continuum-based analysis, Kitipornchai et al. [7] investigated the vibration of GSs
by developing a scale-free elasticity model via Kirchhoff’s theory; the plate-shaped
nanostructure was made of several layers, and the influence of van der Waals force between
these layers were taken into account; they found that interlayer forces were strongly dependent
on the space between layers. Moreover, Ansari et al. [8] analysed the vibrational response of
GSs made of one single layer with small vibration amplitudes via a differential form of nonlocal
continuum mechanics; they also determined the calibrated nonlocal parameters, which were
independent of the system geometry. Furthermore, molecular mechanics simulations were
conducted to analyse the tensile behaviour and linear oscillation of single-layered GSs by
Gupta and Batra [9]. A differential nonlocal model incorporating shear deformation and surface
energy as well as the nonlocality of stress components were developed by Malekzadeh and
Shojaee [10] for the nanoplate vibration; they concluded that surface energy was associated
with larger resonance frequencies. Zenkour [11] introduced a mixed nonlocal continuum

modelling for the thermomechanical vibrational response of ultrasmall plate-shaped structures;
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while the linear frequency decreases with increasing stress nonlocality, the thermal parameter

has the opposite effect on the linear frequency.

The number of nonlinear studies carried out on the large-amplitude vibration of GSs is
limited compared to widely reported linear studies since the mathematical modelling is more
complex, and molecular dynamics simulations require more computational effort. Reddy [12]
presented comprehensive nonlinear theoretical formulations for the deformation of beam- and
plate-shaped nanostructures via differential nonlocal theory, which can be used as guiding
principle for the nonlinear modelling of GSs. Malekzadeh et al. [13] investigated the impacts
of geometrical, nonlocal and surface parameters on the nonlinear vibration of skew ultrasmall
plates by the differential quadrature method (DQM); they indicated that higher skew angles
lead to higher geometrical nonlinearity in the vibrational response of ultrasmall plates. In
addition, Farajpour et al. [14] extended the differential nonlocal elasticity to the nonlocal
magneto-electro-elasticity for investigating the oscillations of smart nanofilms with large
amplitudes. Liu et al. [15] also modelled the nonlinear frequency behaviour of ultrasmall plates
with piezoelectric material properties via a differential nonlocal Mindlin theory of plates.
Moreover, the influence of geometrical nonlinearity on the vibration of bilayer GSs [16], smart
sandwich ultrasmall plates [17], nonhomogeneous nanoplates [18, 19], viscoelastic nanoplates

[20, 21], imperfect nanoplates [22] and ultrasmall vibration-based sensors [23].

Recently, the application of integral forms of size-dependent elasticity theories as a more
precise theoretical tool, in the continuum modelling of nanostructures has been introduced [24-
28]. A number of integral continuum models incorporating size impacts such as stress-driven
[29-31], two-phase [32-34] and strain-driven [35] theories have been introduced. These integral
size-dependent models include higher-order differential equations of motions with extra non-
classical boundary conditions, leading to more accurate theoretical estimations at ultrasmall
levels but more time-consuming and complex solution procedures in some cases, compared to
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the differential nonlocal elasticity. The majority of these research studies using integral models
have focused on the linear vibration of nanostructures, especially nanobeams and nanorods.
The large-amplitude vibration of plates at nanoscales via the nonlinear stress-driven nonlocal
elasticity has not been investigated so far. This work is the first endeavour to develop a
nonlinear integral model with size effects for analysing this important problem in
nanotechnology. Stress-driven effects are incorporated in both in-plane force resultants and
bending moments. The equations of motions are derived via nonlinear Kirchhoff’s plate theory
and stress-driven integral elasticity. Two sets of higher-order nonlocal edge conditions are
obtained for nanoplate motion equations. A DQM-based numerical solution is developed to
determine the nonlinear frequency parameters of GSs. Molecular dynamics simulation is also
performed to indicate the accuracy of the continuum model. The influences of geometric
properties, maximum lateral deflection and size parameters on the nonlinear vibrational

behaviour are investigated.

2. A nonlinear stress-driven plate model

Figure 1 shows a single-layered GS of zigzag types with dimensions (a, h, b)=(length,
thickness, width). The nanoplate is free of any initial stress and initial deflection. The
displacements of the GS in z, y and x axis are w, v and u, respectively. Assuming von Karman’s

nonlinearity, the strain components are

ou 1 /0w\? 0w 0
Exx = a*z(a) T gaz T Bex t Ho
ov 1 /0w\? 2%w o
é'yy:@ﬂ'E(@) —Za—yZ:Syy'l'ZK'yy,

&

_ 1(611 v | 0w 6W) 9w 0

=3 oy Y ax T oxay) ~ Zoxay = v T 2Ky, 1

where &7 and x; are the in-plane strain and plate curvature, respectively.
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Fig. 1. A single-layered GS prior to time-dependent deformation.

Using the classical model of elasticity, stress components are associated with nonlinear strains

as follows

1 1 L
exe = 5 (0x =003y ), £y = 5(0yy — V02, £y = 550 @

In Eq. (2), E and G indicate Young and shear moduli, respectively; v denotes Poisson’s ratio.
However, Eqg. (2) is not valid for the stress-driven model, in which size influences are captured

via assuming integral constitutive equations for the GS. The in-plane strain components are

0
Exx

b a
jj<p(Ix—fl,Iy—J‘II,Lc)Fxx(f,J‘/)dfdJ‘/,
0
0

b a
£y jj‘P(|X—f|:|y—37|,Lc)Fyy(J?,37)dfd37,
0
0

o _ 1
Exy = 2435 ny: 3)

where

1

1 4)
By = A (1—02) (Nyy — UNxx),
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Nxx, Nyy and Nxy represent force resultants, and Ajj denotes the nanoplate in-plane stiffness. In

this analysis, Njj and Ajj are defied by

h/2 h/2

h/2

NXX = f_h/z Uxde, Nyy = f—h/z O-yde; ny = f—h/Z nydz, (5)
Eh VEh

A = =)’ 12 = G2y Asz; = Gh. (6)

In Eq. (3), ¢ and L., denote the kernel function and the scale parameter associated with in-

plane strains, respectively. Similarly, for the plate curvature components, we have

b
a
Kxx = f j o(|x — x|, |y — y|, Lc)Hyx (X, ¥)dxdy,
0
0

b
a
Kyy = f j @(lx — x|, |y — y1, Lc)Hyy (X, y)dxdy,
0
0

1

ny = ﬁMxy' (7)
where

1
Hyy = D11 (1—07) (Mxx - UMyy)p

1 8
Hy, = D1, (1-02) (Myy — vMy,),

where My, Myy and Myy represent the couple resultants, and Dj; is the rigidity of the GS. L,
denotes the scale parameter associated with the nanoplate curvature, The couple resultants and
bending rigidities are given by

h/2 h/2

h/2

My, = f—h/z 20y dz, My, = f—h/z 20yydz, My, = f—h/z 20yydz. (9)
Eh? VER3 Gh3

D1y = 12(1-v2)’ D1z = 12(1-02) VD11, Dss =7 (10)

12"
To accurately model the size effect on the mechanics of ultrasmall plate-shaped structures, the

kernel function should fulfil the following relations

o(lx =x|,ly =¥, Lc) 2 0, (11)

+00 [o%)
012 9y, Le)dxdy = 1, (12)
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Jim [ 77 9l = 8, v = 7). Lelf (%, 9)d%d5 = £ (x,). (13)
Here f(x,y) is an arbitrary continuous function. An appropriate extension of the one-

dimensional bi-exponential kernel function is used as

1
2
412

o(lx = 2,1y = 71,L¢) = gz exp [— 1= (x = % + |y = 7] (14)

Substituting Eq. (14) into Egs. (11)-(13), it can be simply proved that the above-introduced
two-dimensional kernel function fully satisfy the required relations. Using Eq. (14) together

with Egs. (3) and (4), one obtains

4.0 2.0 2.0
s 0%exy 5 [0%€xx  0%€xy 0o _F
+JCJC_XX'

C09y29x2  TCO\ gy2 dx?
0%¢) 9%¢9 9%¢9
4 vy g2 vy vy 0 _
LCO 9y20x2 LCO( dy? + 9x2 ) + Eyy = FJ’J" (15)

with the following boundary conditions

x = 0: O = Leo
0x  Lgy ¥
0
X =a E)sxx — _igg(c)x'
0x Lco
0
y=0: 953y = ieso
dy Leo
G 1
y= b: a—;y = —Esyy. (16)

Applying Egs. (14), (7) and (8), yields the curvature components of the GS

0% Ky 5 <62Kxx N aZ;cxx)

%ayzaxz - L¢ + Kxx = Hxx(x'y)!

y? d0x?
4 9%y 2 (ryy | 3%Kyy
L ez = Ve (G2 +58) + oy = Hyy (0 3), (17)

with two extra boundary conditions

_0 Oy 1
=0 T Lc Ko

0Ky 1
x=a— == I Kyxr
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y= —Kyy,
0 LC yy
dk 1
y:b: a—;;y:—zk'yy. (18)

Using Egs. (4), (8), (15) and (17), the force and couple resultants of the GS are obtained as
follows

2°u ow 9°w 2%w  9*w

Ny, = Ay Ly |——— + — 2
xx T TR0 5y,2 93 T ox 0y20x3 T 0y20x2

+63w 3w N 3w\’ 0*w o*w
0x3 dy?0x dydx? dydx dyodx3

—Ay1LE,

0°u_ u (0’w 2+aw Ow _ (Pw 2+6w63w
dy?0x 0dx3 dyodx dx 0y?0x 0x? dx 0x3

i 6u+1(6W)2 ALt 2°v +6W 9°w +262W 0w
Mlax ~ 2\ox VA115co dy30x? 0y d0x?0y3 dy? 0x20y?

+63W 23w o 23w 2+202W 0w 12 03v +63v
dy3 dx?0y dxdy? 0x0y 0xdy3 VA11Sco d0x?dy 0dy3

N 02w 2+6W 3w N 0w 2+6W63W .y 6v+1<aw>2 1
0x0dy dy 0x20y \ dy? dy dy3 v oy 2\ay/ | (19
9°v ow 9w ’w o*w

—— et — +2

dy30dx? = 0y d0x?0y3 dy? 0x20y?

Nyy = AlleéO l

+63W 3w N 3w \° ZE)ZW 0w
dy3 dx?0y dxdy? 0x0y 0xdy3

A2 [6317 +63v+<azw>2 ow 93w <62w>2 6w63w]
—4d11Lco 3

0x0y +Eaxzay+ dy? +an3

A av+1(aW)2 poaph [P, 0w Otw  dw 9%w
1 VA115co dy?0x3 0x? dy?0x? 0x dy?0x3

03w 93w 03w 2+262W o*w a2 03u +63u
0yodx dyox3 VA115co dy?dx  0x3

N 02w 2+6W d3w N 0%w 2+6W03W .y 6u+1((3w>2 20
d0yox Ox dy?dx \ dx? ox ax3 | T VP G T 2\ax) | 20

118



N = A <6u+6v+6W6W) 21
w383\ \gy  ox  ax ay/’ @)
, 0°w , [ 0*w a*w\ 0w
Mx = =Dua |Le dy2axt Le 0y20x2 T oxt ) T ax2
D |12 0w 12 0*w N 0w N 0w (22
Ve dy*ox2  “C\ay*  ay2dx%)  oay2| )
, 0°w , (0*w  d*w 0w
Myy =D |Lec dy*ax? Le dy* + dy20x? + dy?
D |12 0w 12 0*w N 0w N 0w (23
Vi Coy2axt TC\dy20x%  Ox* ox2 |’ )
92w
Mxy - —2D33 m (24)
Applying Hamilton’s principle results in
ON,, ON. d%u
T T F 25)
ONy, 0Ny,  9d%*v
gy | ox 032 (26)
9*M. %My, 0*M 0 0 0
T2 —= 2”+—( xx—W+ny—W)
dx dxdy dy 0x 0x dy
N i) (N ow N 6W) 0w .
oy "7 gy Ty gy ) T Mgz @7

where m, = ph; the density of the GS is denoted by p. Substituting Egs. (19)-(24) into Egs.
(25)-(27), yields the nonlinear stress-driven equations of motion

A 0%u p 3w 9w +262W 9°w
1RC0 N gy2gx4 dydx? dyodx3 dydx dyodx*

+E)w 0°w N 382w 9°w N 383W 94w N o*w 93w
d0x dy?0x* 0x? 0y?0x3 0x3 0y?0x? = 0dx* dy?dx

oA L 0%v p 3w dtw L3 3w o*w
VA11%co dy30x3 dxdy? dx?0dy? 0x20dy dxdy3

3 ’w  0°w +6w 0°w +262W 9°w +63w 9w
dxdy dx20y3 = dy dx30y3 dy? dx30y? = dy3 dx3dy
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T 04u+ 0*u +6W64w+362W63W
1RCO\ gx4 " 9y20x2  Ox Ox* 0x? 0x3

+6W o*w +62W 3w o ’w 93w
Ox 0y?0x?  0x? dy?0x 0ydx dydx?

d*v 0*v ’w 33w ow o*w
+ +3 +—
0x3dy = dxdy3 d0xdy 0x%dy  dy dx3dy

_UA11L2c0 <

+6W 0w N 262W 3w N 3w 9w
dy 0xdy3 d0y? dxdy? = dy3 0xdy

A 62u+8w82w oA 0%v +6w d%w
1\ ox2 " dx dx? Vel 0xdy 0y 0xdy

)

0’u  9%v  0*w ow Odwodiw
+ + —t——
dy? 0xdy 0xdy dy 0x dy?

A 0%v p 3w dtw +262W a°w
HEC0\ 9y49x2 dxdy? dxdy3 dxdy dxdy*

N ow 0%w L3 ’w  0°w L3 3w 0*w N o*w 93w
dy 0x20y* dy? 0x?0dy3 dy3 0x2dy?  0dy* 0x?dy

0%u 3w d*tw 9w 3w
+6 +3
dy30dx3 dydx? dy?0x? 0ydx 0y?0dx3

-+uA11L§0<

3 3w 9tw +6W 0°w +262W °w +63W o*w
dy?dx dydx3 = 0dx dy30dx3 0x? dy30x? = 0x3 dy3dx

o 0*v +64v+262W 3w +6w64’w
170\ gx29y2 * gy4 d0xdy dxdy? 0dy dy*

+6w o*w +62w 3w +362W63w
dy 0x?0dy? = 0y? 0x?0dy dy? dy3

0*u 0*u ’w 93w dw J*w
+ +3 +—
dy3dx 0ydx3 0ydx dy?dx 0dx dydx3

_UAllLZCO <

+E)w o*w N ZBZW 3w N 3w 9w
dx dy30x 0x? dydx? 0x3 dyox

o 62v+6W62W oA 0%u +6w 92w
1 \ay2 * dy dy? v dydx 0x dydx

0%u +62v+azwaw+6w ’w\
3\oxdy ' 0x? ' 0x2 dy = oOx dxdy)
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D | 8w 12 2°w +66W +64W
1% oy2gx6  “C\ay2axt " ox® ox*

o[ d%w 12 °w N 9°w N d*w
Vo n Coy*axt “C\oax2ay* ' dy20x*)  0x20y?

D *w . |1 08w 5 86W+ 9°w +64W
33 0x2dy? " 9y69x2 "€\ ay®  dy+dx? oy*
b |1 d%w 12 °w N 9°w N d*w
Vo n Coy*axt “C\ay*ax? ' dy20x*)  0y20x?
92w 0w 0w 0w
+Nxxw + Zny axay + Nyy ayz =my W (30)

A nanoplate with four clamped edges is considered. There are three sets of boundary
conditions: 1) conventional boundary condition (CBC), 2) non-conventional boundary
condition (NCBC-e) for in-plane strain components, 3) non-conventional boundary condition

(NCBC-k) for curvature components.

CBC:
ow
x=0 u=20, w =0, — =0,
0x
ow
XxX=a u=0 w=0, — =0,
0x
=0 =0 =0 aW—0
y— V= ) w = ) ay_ )
“b v=0 w=0 _y 31)
y_ . v =\, w =, ay_ )
NCBC-e
—o.L 0%u  owod*w _6u+1 E)W)Z
¥ =057 T o axZ ) T ox 2(ax '

3 L 62u+6w62w B 6u+1<6W)2
= \ox2 " ox ax2) |ox  2\ox/ |

oL 62v+6w62w _(’)v+1<6W)2
y =T Leo dy?  ady dy?) oy 2\ay)’
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L 62v+6W62W 3 6v+1 w2 32
y=bite\5+ a5 557) = |5y 2(ay) | G2)
NCBC-k;

o 83w_82W
X=U e T o

23w 2%w

r=aleg s =T

—o.L 83w_82W
y=ULe 6y3 - ayZ'

L 63w_ 2%w 1
y_ . C ay3 - ayz . ( )

3. DQM solution

A DQM-based solution procedure is developed in this section for the coupled nonlinear
stress-driven equations of motion taking into account both classical and non-classical boundary

conditions (i.e. CBC, NCBC-e and NCBC-k). The dimensionless parameters of the GS are

given by

’ X / y / u ’ v ’ w LCO LC

X=a, y=E' u=ﬁ, V=E, W=h' Yco-;: Ye=—

_a A—h t'—t E _ \/ﬁ N _Nijaz 34
ﬁ_b' T a’ T ap’ ©=a0JE T o p o (34

Using the relationship between the elasticity and shear moduli and implementing Eq. (34)
into Egs. (28)-(30), one obtains

a (., 0%u AR 3w 9*w o , 0°w 0°w
Voo | P dy?ox* A dydx? dydx3 g dydx 0ydx*

,0w 0°w L3 ,0%w 0°w L3 ,0%°w 0*w N ,0%w 9w
g Ox dy2ox* A 0x? 0y?0x3 A 0x3 0y?0x? g dx* 0y?ox
ot (g3 2%v -+ 618" 3w 9*w L 3284 3w d*w
v¥co (B dy30x3 g d0x0y? dx?0y? A dx?dy dxdy?
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+31p*

0’w 05w 3 Lo0w 0%w o2 0’w 9w 3 ,0°w 0*w
0x0y 0x20y3 g dy 0x3dy?3 £ 6y26 30y? +A5 dy3 dx30y

5 64u+ , 0*u +/16w64w+3162w63w
Yeo\gx% g dy?0x? dx d0x* 0x? 0x3

2w 2?w 03w 22w 63W>

+AB* ow

2 2
dx 0y?0x? +4p 0x? dy?0x 245 dyox 0ydx?

5 0*v e 0*v 322 0*w 03w 3 ,0w d*w
VYco 'Bax38y p dxdy3 p 0x0y 0x20y g dy 0x30dy
ow 0*w 21 L0%w 2w 43 ,0°w 9%w
dy dxdy3 g dy? dxdy? A dy3 dxdy
0%u 1 0%u 1 0%v ow 0w

- a1 _ 2 4 = - -
TR A v TSRl v el o o

+Ap*

owo*w 1 ow 0%w

1
5 (=D G 4 5 (L0t oo

o —a-w T,

61:2

w (4 0%V 6185 3w 9tw 2155 ?w 0w
Voo | P dy*ox? p 0x0y? dxdy3 p d0xdy 0xdy*
ow d°w L3 ’w 9°w L3 c0%w 0w N (0w 93w
3y ox ay g 8y? 9x2dy3 B dy3 0x20y? g dy* dx2dy
3w 9tw L3 , 0°w 9w
36 5+ 64 dydx? dy?0x? g dydx 0y?dx3
94w v ,0w 0°w Y ,0%w 0%w 3 ,0%w 0*w
0y2dx dydx3 g d0x dy30x3 g 0x? dy30x? p 0x3 dy30x
o [, 0% N 4(')417_|_2/1 , 0°w 0w 3 ow 0w
veo\P gr2ay2 TP 552 T 2P 525, axay? a By ay*

04w L3 ,0%w 9w 32 02w dw
A dy? 0x2%0y B dy? dy3

+AB5

+uyo

+3183

+AB3 ow
dy 0x?0y?

oy, <ﬂ3 0*u v p 0*u 1 325° 0*w 03w +/1'86_W o*w
dy30x dydx3 dydx 0y?dx d0x dydx3
0*w Zlﬁazw 3w +/wa3w 62w>
0x? dydx? 0x3 dydx

+AB3 ow +
dx 0y30x

+1(1 )62v+ 26217_'_)L 36W62W
2=V ga B e A 5055

62W ow 9%w

vy T2 ﬁ(l—v)———( —n2loo,
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2*w 2w

PR

4
46W

0x?dy? +h Ayt

da°w

dx*dy?
0°w 66wl

0w
—)/g [ﬁ + (1 + 21)),82

4 6
+(1 + 2v)B 9x70y7 + B G

g2 08w 2w 08w Lt 08w
vek 0x%0y? vh ox*oy* g 6x26y6
0w 2

N 25, W _ o, OV, ( 2y W 37)
“Nagyz T PN g, TP N gz T Y atZ"

where prime symbol ( ') is dropped for simplicity purposes. Furthermore, the dimensionless

force resultants can be expressed as

T - 12 BZ 9°u , 0w o°w ow_ ,0%w 0w
w = 120 T oy TP axaytans TP Gx aytaxe

N ,0°w 9w + 22 03w 2+2 , 0%w 0*w
A d0x3 dy?0x A dydx? A

dydx dydx3
12 B3 0%v 20w 0°w N ,0%w 0w
vrdo T oy TP 5y axzays TP 5y axzaye

g Ow Pw (P 2+2462w 9w
£ ay3 6x26y A 0x0y? A 0x0y d0xdy3

gz |7 0% 10% o, (0Pw 2+ ow 3w (9w 2+6W63w
Yeo A dy?0x  A0x3 g dyodx Bt (')xayzax 0x? dx 0x3

2
I B3 03v 0w ow 93w 0w ow 03w
_ 2 2 2 4 4
12vyeo [/16 20y T 1 oys TP \axay) TP yaxay TP \G2) TP 5500

Lqptou vBOY 1 (aW)2+1 2(6w>2 28
2ox T 1oy t2\ax) T2VP\G) | (38)

_ . [B? 9%v 20w 0w ,0%w 0*w
Nyy =12yco |5 5575+ 8 2703 T 2B 2 9x29y2
A dy30x dy 0x20y3 dy* 0x40y

N ,0°w 3w L opt 3w 2+2 , 0%w 0*w
A dy3 dx?dy A d0xdy? A 0x0y dxdy3

120y p? 0°u , 0w 0w v, ,0%w 0*w
Voo | T ay20x TP axayzaxne T 2P axz aytaxt
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N ,0°w 3%w L 22 03w 2+2 , 0%w d*w

p d0x3 dy?0x p dyox? p dyodx 0yodx3

gz |B 2PV BP0, (07w 2+ ow 3w (3w 2+ ow 93w
Yeo |2 ax2ay A ay? p dxdy i Ay 0x20dy +h dy? £ dy dy3

12002 p? 03u 163 , [ 0%w 2+ , 0w 0w N 0w 2+6w63w
U¥eo A 0y?0x Aax3 +h dyodx g dx dy?0x 0x? dx 0x3

P vou N B ov N 1 <6W)2 N 1, (6W>2 39
1ox T3y, T2%\ax) TP 5 | (39)
.. =6(1 )(,B Ju 10dv 4 aw GW) 40
xy = v Tz TP axay ) (40)
On the other hand, the dimensionless CBC, NCBC-e and NCBC-k can be written as
ow
x=0: u=0, w =0, — =0,
0x
ow
X = 1 u = 0, w = O, — =0,
0x
=0: v=0 —o, oy
y —_ . v = ) w = ) ay - )
=1: =0 =0 ow =0 41
y - 4 v=y, w =y, ay - Y% ( )
o 62u+/16W62W _ou 1 (OW)Z
* =" Yeo dx2 ox 0x2 ) oax 2" \ox/ '’
N 9%u Aawaz au+1l<aW)2
X= 5 Yeolgx2 T4 ox ox? ax 2" \ox) |’
d0%v 3 ow 9w B 6v+ 11 ((’)W)Z
y yCOIB 2 ay ayz - ay 2 ﬁ ay )
1 aZvJ”1 owolw) _ v 1. (aW)Z .
2

23w 0%*w

x=0:ycﬁ=ax2,

x=1: yca3_w:_62_w
0x3 ox?’

:Oiﬁycag_W:aZ_W;
dy3  0dy?
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_ 1 03w B 0%w (43
- -,BVC ay3 - ayz' )

Implementing all types of edge conditions is essential in order to extract a solution for Egs.

(35)-(37). Using the DQM, we have [36, 37]

e Y AP Y A e ) T AP
o _ Z; AP, = z: AP, S = Z;Z: PR Dy,
B e S A 5 D S

(44)

where A (a = x,y) is the DQ coefficient; n, (@« = x,y) represents the number of discrete

points. The first-order DQ coefficients are computed by

( M(l) (xl)

| = k
=My
A = Ny , (45)

ik

— Z Aﬁl) fori=k
\ =100
[ MD(y;)

(y -—yk)M(l)(yk)
D = (46)

Z A?ﬁ) forj=k

m=1(m#j)

forj#k

where
Nx
MOG) = [ Gi-xo,

k=1(k=i)
ny

MO0 =[] Gr-w).
k=1(k#j)

(47)

The higher-order DQ coefficients for partial derivatives are given by
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x(2) x(1) ,x(1) x(3) x(2) ,x(1)
E ALC A E ALD A
x(4) x(2) ,x(2) x(6) x(3) 4x(3)
E ALO A E AL A

2P — z e Ay(l) 23 — z 2@ Ay(l)
i,j ’ i,j ’

y(4) _ y(2) 4¥(2) y(6) _ y(3) y(3)
Ai,j ZA Ak] , Al.,j ZA A . (48)

According to the Gauss—Chebyshev—Lobatto distribution, xk and yk are obtained by [36, 37]

1 1 <7T(k—1)>
X =5 —zcos| ———|,
kK72 2 n, — 1 49)
11 w(k —1)
=272 (-1 )

Substituting Eq. (44) into Egs. (35)-(37), the three nonlinear differential equations, which

describe the coupled large-amplitude vibration of GSs, can be discretised as
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)
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[ Ny Nx
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_ 12 ’w
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(52)
where i=1,2,...,nxand j=1,2,...,ny. It should be noticed that in-plane inertia terms are negligible
compared to transverse inertia terms [38]. However, time-dependent in-plane displacement
components are not ignored in this analysis since large deformations along the transverse
direction can induce considerable displacements in the plane of the GS. Substituting Eq. (44)

into Egs. (38)-(40) leads to the following discretised equations for force resultants

Ny Nx

_ 1
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k=1

1 Nx ny 1 Nx 2
v
+12 Z( A;i,(cl)uk’j + _AB E Ay(l)vl k + E E Axl(cl)Wk j + = U,BZ E Ay(l)Wi‘k ,
k=1 k=1

(53)

[ Ny Ny

ny
Z Ax(Z) Ay(s) ) Z 2O Z Ax(Z) Ay(s)
Il ko i
k=1

L \ 4= =
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SO VN \
128 D 4P, Z AP P, | +28 D AaPw | 45
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k=1 k=1

2

Ny Nx
y
(z Aj-y,,ie’)wi,k) Z AP D, | 428 Z AED Dy, Z ATD ROy,
k=1
k=1 k=1
Ny Ny
[1 .
+12vy8,B? Fl Z Ax(3)Ay(2)uk‘l + Z AT Pw, Z Ax(3)Ay(2)wk_l
k=1
l k=1 k=1
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Vans ) 4™ )\
Ny Ny 2
ﬁ 2 1 3 1 1
_12),50IZ ZAx( 4Dy ZAy( v |+ B ZA;;(C W Owe, |+ 57 x
=1
l k=1 k=1
Nx
ny ny 2 ny ny ]
1 2 1 2 1 3
Z AV Pwy Z ATP A Pw, [+ z AYPw |+ Z A7 Pwy Z AT Dw
k=1 k=1 k=1 k=1 J
/ \ . AN \
12vyc0 /1 “”Aﬁ”ukl |+— ZA?,?)ukJ + 52| ZA"“)A”” |+ B2 x
k=1
2 / ) 1
1 1 2 2 1 3
fl(f )ij fzi )Ay( ‘i |+ ZAf:(c )ij ZAfl(c ‘Wi ZAicl(c ‘wie; |
k: / J
2
Z Ax(l) k,j Z Ay(l)vl k + U Z Axl(cl)WkJ Z Ay(l)W,:’k B
(54)
ny
¥ 1 1
(ny)i (1 - U) Z Ajf’(( )ui‘k Z Af,(cl)vkj + B Z Aicl(cl)Wk] Z A]Jfl(( )Wi,k
k=1
(54)

In addition to the nonlinear motion equations and in-plane force resultants, the boundary

conditions of the single-layered GS including all three types (CBC, NCBC-e and NCBC-k) are

discretised as follows

CBC:
uyj =0, wy; =0, 1.k Wkj =

1
U, =0, Wy, =0, ZA"(;W,” 0,
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k=1
ny
1
Ui,ny =0, Wi,ny =0, Z A%i,lzwi,k =0, (56)
k=1
NCBC-¢e
Ny Ny Ny
2 1 2
Yeo ZA;C(Ic)ukJ +a( D AT Wi ZAf(k)ij
k=1 k=1 k=1
Ny 1 Ny 2
_ x(1) x(1)
= :E:I41k Tik] +'§U1 AAlk le] ,
k=1 k=1
Ny Ny Ny
2 1 2
Yco Z Ai( ﬁuk jta Aff ﬁWk j Z Afl,(c,lzwk,j
k=1 k=1 k=1
Ny 1 Ny 2
_ x(1) x(1)
= — :E:‘4n”kllkj +'§U1 :E:I4nmklka ,
k=1 k=1
ny ny ny
2 1 2
YcoB z Aﬁ( ik + AB Z Aﬁ( Wik Z Aﬁ( Wik
k=1 k=1 k=1

2

ny ny
1
1 1
:::E:x4ii)vtk'+iglﬁ :§:14{%)Mﬁk )
k=1 k=1

2 1 2
YcoB Z A,yli,,zvi,k + 1B Z A%;,;Wi,k z Aii,ﬁwi,k
k=1 k=1 k=1
ny ny 2
1
1 1
==Y A8+ 528( D B Swi | |, (57)
k=1 k=1
NCBC-k:

Ny Ny
3 2
Ye EA;C'S‘)W"J - ZAJlC,(k)WkJ =0,
k=1 k=1

Nx Nx
3 2
Ye EAflfo,ﬂwk,j + ZAﬁfo,ﬂwk,j =0,
k=1 k=1
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Byc Z Ayf’)wlk z AyE(Z)Wlk =0,

By ZAy(kwlk ZAY(kka —0. (58)

To implement the CBC, NCBC-e and NCBC-k, the direct method [36] is employed in this
paper. According to this method, Egs. (56)-(58) are used to obtain the displacement
components near the edges of the GS, and then these relations are directly substituted into Egs.

(50)-(55). The resultant reduced equations can be expressed as

(Wl (W] (R = [ {70} + 501, (59)
Kol {20} + DO = 10), (60)

where [K¢] and [K,,,,] are the stiffness matrices related to in-plane force resultants and in-plane

displacements, respectively. Obtaining the in-plane displacement components from Eq. (60),
and then substituting the derived equation into Eg. (59), one obtains the resultants as a function
of the transverse deflection

([Nex] [Nyl [Nyl = —[Kp] K] " U W)] + [Sw)]. (61)
Substituting Eq. (61) into the discretised version of the motion equation for w, the following
matrix equation is obtained

[Kivi (Noxer Ny, Ny, w)[{iw} + [KL 1w} + [M,1{3 = 0, (62)
where Ky, and K, denote the nonlinear and linear stiffness matrices of the nanoplate,
respectively; My is the mass matrix of the nanostructure. The nonlinear matrix is a function of
the in-plane force resultants and the transverse displacement. However, the mass matrix and
linear stiffness depend neither on the force resultant nor on the transverse displacement.
Finally, a harmonic balance technique and an iterative method are used to solve Eq. (62), and

obtain the nonlinear frequency of the GS. The stopping criteria for the iterative method is [38]
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w —-w
|@N+1 vl <& (63)
Wn

where N, @ and &’ are the number of iterations, nanoplate dimensionless frequency and a small

constant value. In this numerical approach, a value of ¢’ = 0.0001 is taken.

4. MD simulations

Performing numerical simulations based on the molecular dynamics is a powerful technique
for analysing ultrasmall structures such as nanobeams and nanoplates. In this technique, first
intermolecular and intramolecular interactions are used to calculate force field, and then motion
equations are obtained for each ultrasmall particle. Solving these sets of Newtonian motion
equation gives the trajectories of the particles as a function of time. Unlike the continuum
modelling, the micro/nanostructure is regarded as a discrete system in MD simulations. In this
section, MD simulation is done to verify that the stress-driven model is accurate for the
nonlinear vibrations of GSs. Applying the adaptive intermolecular reactive empirical bond
order (AIREBO) potential [39], the force field is estimated. According to the AIREBO

potential, the entire system energy is expressed as

1 ( \
ETOT =2 ERFBO + B + Z ExR |, (64)
n#i,j,m
i JEL

m=i,j

where E represents energy; “REBO”, “LJ” and “TOR” denote the reactive empirical bond order,
Lennard-Jones, and torsion potentials, respectively. The cut-off distance is set to 0.2 nm in the
LAMMPS code. To model the filly clamped nanoplate, four layers of carbon are assumed to
be fixed along each side of the GS, as shown in Fig. 2. The time step and ambient temperature
are taken as 0.001 ps and 300 K, respectively. An isothermal-isobaric (npt) ensemble with the
Nose-Hoover style of time integration is used to perform the relaxation procedure in order for

the system to reach the minimum energy state at the beginning of the MD simulation. To induce
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nonlinear vibrations, a sufficiently large transverse force is gradually applied to a small group
of carbons at the centre of the GS, and then the nanoplate is released to freely vibrate along the
transverse direction for 20 ps. Finally, the natural frequencies of a square single-layered GS

with size 5 nm are determined via the fast Fourier transform technique.

® Bye

8%

»” 5
”‘

s
B ooyne
MRt &

.y
R ST |

Fig. 2. Four layers of carbon are fixed along each side of the GS to simulate fully clamped boundary
conditions in MD simulations.

5. Numerical results

Table 1 lists the linear natural frequencies of a square plate with clamped boundary
condition along each edge. Frequency parameters associated with the first vibration modes are
presented in this table. The aspect ratio, thickness-to-length ratio and Poisson’s ratio are set to
1, 0.05 and 0.3, respectively. The numerical results obtained by the DQM-based solution
procedure are compared with those reported by Leissa [40]. A close agreement is found,
indicating the accuracy of the solution method. Furthermore, Table 2 provides the nonlinear
ratios of clamped square plates for different maximum transverse deflections. To indicate the

convergence of the DQ technique, various numbers of grid points are also taken into
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consideration. The nonlinear ratio is the ratio of nonlinear fundamental frequency parameter to
the linear one (i.e. w,;/w;). After each computed nonlinear ratio, the number of required
iteration is also indicated in parentheses. Table 2 compares the present nonlinear ratios to those
computed by hierarchical finite element method (HFEM) [41]; a good match is found. In

addition, a grid distribution with at least 15 grid points is required for converged results.

Table 1. First six sets of linear frequencies of clamped square plates.

, [P First Second Third Fourth Fifth Sixth
wap mode mode mode mode mode mode
[Llle(;j“"’sa 35.99 73.40 10822 13164 13218  164.99
Present
DQ 35.9852  73.3938  108.2165 131.5808 132.2048 165.0004
technique

Table 2. The ratio of nonlinear fundamental frequency parameter to its linear counterpart for clamped
square plates.

Number of grid points (n, = n, = n)

Winax HFEM
h [41]
7 9 11 15 19 21
1.0064 1.0084 1.0082 1.0082 1.0082 1.0082
0.21377 1.0082
2)* (2) (2) ) (2) (2)
1.0534 1.0658 1.0645 1.0647 1.0647 1.0647
0.60780 1.0647
(4) ) ) ®) (3) (3)
1.1498 1.1696 1.1666 1.1668 1.1668 1.1668
1.0012 1.1668
®) ) ) ®) (3) (3)

* The number of required iterations.

Table 3 lists the fundamental nonlinear frequencies of a zigzag GS with size a=b=5 nm and
h=0.34 nm. The results of both MD simulations and stress-driven plate theory are presented in
this table. Various values of maximum transverse deflections are taken into account. The
appropriate scale parameter of the size-dependent stress-driven plate model is also given in

parentheses. More details about the MD simulation are given the previous section. In the stress-
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driven continuum modelling, the aspect ratio, density, Poisson’s ratio and the number of grid
points are 1, 2270 kg/m3, 0.3 and 19, respectively. The in-plane stiffness of the nanoplate is
adopted as 227.46 J/m? [42]. The natural frequency obtained via the stress-driven elasticity

theory is in a satisfactory agreement with that computed by MD simulations.

Table 3. Comparison of present stress-driven plate model to scale-free nonlinear model and MD
simulations.

Nonlinear frequency (THz)

Wmax Nonli
h MD Nonlinear stress- onfinear
. . - classical plate
simulations  driven plate model
model
0.4150
0.9438 0.4 0.4651
(0.01,-0.2)*
1.2245 0.48 0.4694 0.5021
(0.02,-0.05)*
0.5524
1.3979 0.55 0.5281
(0.02,0.02)*
0.5456
1.3557 0.55 0.5216
(0.02,0.02)*
0.6025
1.5471 0.60 0.5519
(0.04,0.04)*
0.6567
1.6689 0.65 0.5723
(0.06,0.06)*

*Dimensionless scale parameters (¥., ¥co)-

The nonlinear frequency ratio of the single-layered GS versus the dimensionless maximum
transverse deflection (w4, /h) is indicated in Fig. 3 for various scale coefficients associated
with the plate curvature. The aspect ratio, Poisson’s ratio, thickness-to-length ratio are assumed
as 1, 0.3 and 0.05, respectively. The scale parameter associated with in-plane nonlocality is

taken as 0.1. A grid distribution with nineteen points is assumed for the DQ technique.
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Increasing the maximum lateral deflection increases the nonlinear ratio. In fact, the geometrical
nonlinearity effect increases when the vibration amplitude gets larger. The second important
observation is that the nonlinear ratio dramatically reduces when the curvature nonlocality is
higher. As the scale parameter related to the nanoplate curvature increases, the total stiffness
enhances, leading to less geometrical nonlinearity effects in the nanoscale structure. The third
important finding from this figure is that increasing the dimensionless maximum transverse
deflection of the GS results in larger difference between the results of different cases. This
indicates that ignoring scale effects at larger transverse deflections is more likely to cause

considerable error in the continuum modelling.

1.6 { —-@7c=0.05
+7/C:O.l
15 4 —=—=7c=0.15
o —
g —-7:=0.2
> 1.4 -
c
)
S
o
£ 13
3
h=
= 1.2 - 1
]
P
1.1 -
1 1 1 1
0 05 1 15 2

Dimensionless maximum transverse deflection

Fig. 3. Nonlinear ratio against the lateral deflection of the GS for various scale parameters associated
with the nanoplate curvature.
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The influence of the in-plane nonlocality on the large amplitude vibrations of the GS is
shown in Fig. 4. Several values of the scale parameter associated with in-plane strain
components are taken into account. The aspect ratio, Poisson’s ratio, curvature scale parameter,
and thickness-to-length ratio are set to 1, 0.3, 0.1, and 0.05, respectively. The nonlinear ratio
substantially increases when the GS undergoes larger transverse vibration amplitudes.
Furthermore, it is interesting to notice that the nonlinear frequency ratio is higher for higher
scale parameters associated with in-plane strain components. This is the opposite of what is
observed for the curvature scale parameter. The physical reason behind this finding is that
increasing the in-plane strain nonlocality is likely to lead to higher in-pane stiffnesses, which
would increase the nonlinearity effect. In a comprehensive continuum model, the scale
parameters associated with in-plane strain and curvature should be same. Setting the two scale
parameters equal to each other, the nonlinear frequency ratio versus the dimensionless
maximum transverse deflection is plotted in Fig. 5. The results of the conventional elasticity
are also shown in this figure. The general scale parameter exhibits a decreasing impact on the
nonlinear effect. In addition, the difference between the stress-driven and local elasticity
models substantially increases with increasing the dimensionless maximum transverse

deflection.
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Fig. 4. Nonlinear ratio against the lateral deflection of the GS for various scale parameters associated
with the in-plane strains.
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Fig. 5. Nonlinear ratio against the lateral deflection of the GS for various scale parameters
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Figure 6 demonstrates the nonlinear frequency ratio against the dimensionless transverse
deflection of the single-layered GS for various aspect (length-to-width) ratios. The thickness-
to-length ratio and Poisson’s ratio are taken as 0.05 and 0.3, respectively. Size coefficients
related to the nanoplate curvature and in-plane strain components are both set to 0.1. Larger
aspect ratios lead to lower nonlinear frequency ratios. This trend is more pronounced for large
maximum deflections of the GS. To investigate size influences on the in-plane displacement of
the nanoplate, the dimensionless maximum displacement components along the x and y axes
against the maximum lateral deflection is plotted in Fig. 7 for several scale parameters. The
aspect ratio, thickness-to-length ratio and Poisson’s ratio are 1.5, 0.05 and 0.3, respectively.
Size coefficients related to the curvature and in-plane strain are assumed to be the same. From
the figure, it is clear that the scale parameter of the stress-driven plate theory has a slight
decreasing impact on the maximum in-plane displacements of the GS along both in-plane
directions. This is rooted in the general rule of thumb that when the stress-driven scale

parameter increases, the stiffness is increased at small-scale levels.
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Fig. 6. Nonlinear ratio against the lateral deflection of the GS for various aspect ratios.
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Fig. 7. Maximum displacement in (a) x and (b) y axes versus the lateral deflection of the GS for

various scale parameters.

The influences of the aspect and thickness-to-length ratios on the dimensionless maximum
in-plane displacements are indicated in Figs. 8 and 9, respectively. Both scale parameters are
taken as 0.1. The aspect ratio is set to 1.5 when the influence of the other geometric parameter
is investigated. On the hand, when aspect ratio effects on in-plane displacements are analysed,
the thickness-to-length ratio is taken as 0.05. The geometry of the GS plays a significant role
in the in-plane displacements. Both geometric parameters (i.e. the aspect ratio and thickness-
to-length ratio) have an increasing effect on the dimensionless maximum in-plane

displacements.

145



—@—Aspect ratio = 0.5
0.05 1 —A— Aspect ratio = 1
—0—Aspect ratio = 1.5
—- Aspect ratio = 2
0.0375 A pect rat
umax
h
0.025 -
0.0125 4
O 1 1 1
0 0.5 1 15 2
Dimensionless maximum transverse deflection
(@)
0.1
—@—Aspect ratio = 0.5 !
—— Aspect ratio = 1
0.08 1 —o— Aspect ratio = 1.5
—l- Aspect ratio = 2
0.06 A
Vmax
h
0.04 A
0.02 A
0 1 1 1
0 0.5 1 15 2
Dimensionless maximum transverse deflection
(b)

Fig. 8. Maximum displacement in (a) x and (b) y axes versus the lateral deflection of the GS for
various aspect ratios.
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Fig. 9. Maximum displacement in (a) x and (b) y axes versus the lateral deflection of the GS for
various thickness-to-length ratios.
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6. Conclusions

A nonlinear stress-driven integral model has been developed for the large-amplitude
vibrations of single-layered GSs. The coupled nonlinear equations of motions together with the
non-classical and classical constitutive conditions were presented by the von Karman’s theory
of nonlinearity and stress-driven elasticity theory. Non-classical constitutive conditions were
considered for both in-plane strains as well as nanoplate curvature components. A DQM-based
solution procedure in conjunction with an appropriate iteration technique were used to compute
the nonlinear frequency parameters of the GS. Furthermore, MD simulation was done for
verifying the accuracy of the stress-driven plate model. It was found that the nonlinear
frequency ratio is higher when the nanoplate vibration amplitude gets larger. Moreover, the
nonlinear frequency ratio substantially reduces with enhancing the curvature nonlocality. Scale
effects are more pronounced when the GS undergoes larger transverse vibration amplitudes.
In contrast to the scale parameter related to the curvature nonlocality, the other scale parameter,
which is associated with nonlocal in-plane strains, has an increasing impact on the nonlinear
ratio. In addition, the maximum in-plane displacements of the GS are slightly decreased with

increasing the general stress-driven scale parameter.
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Chapter 7
Conclusions and future works

Chapter overview

The most important findings of the present study on the nonlinear time-dependent deformation
of beam- and plate-shaped structures at small-scales are summarized in this chapter. The
significance of the present research in engineering applications is also emphasised. In addition,
a number of possible future investigations, which can be carried out to continue this thesis are

briefly mentioned at the end of this chapter.



7 Conclusions and future works

7.1 Significance

Small-scale devices have many promising applications in scientific fields and modern
technologies because of their excellent electromechanical properties. In many small-scale
devices, understanding the mechanical characteristics of small-scale beam and plate structures
subject to external loads is essential to achieve a reasonable design and manufacturing process
since they form the building blocks of these devices. As shown in this thesis, the mechanical
characteristics of small-scale structures have been proven to be scale-dependent, and, for the
first time, a number of modified continuum models have been provided for the time-dependent
deformation of beams and plates at ultrasmall levels. With the help of these modified
continuum models, it is now possible to better predict size influences on the mechanical

characteristics of ultrasmall devices.

7.2 Conclusions

An advanced scale-dependent model of beams was proposed in chapter 3 to analyse the
nonlinear vibrations of nanotubes with an imperfection in the geometry. Strain gradient
influences together with stress nonlocality effects were modelled via the NSGT. Both
softening- and hardening-stiffness responses could be predicted depending on the values of
scale parameters. A scale-dependent type of Euler-Bernoulli theory was implemented to obtain
the coupled motion equations. A discretisation solution methodology is utilised for computing
the nonlinear natural frequencies. The imperfection in the beam geometry is regarded as an
initial transverse deflection. Important observations on the vibrations of small-scale imperfect

tubes are:

e Size influences estimated via the NSGT occur in a wider size range in comparison with

the stress nonlocality effect. This is because the NSGT concurrently includes strain
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gradient and stress nonlocality effects. After a certain length, the latter effect disappears

while the former remains active.

The conventional nonlocal elasticity needs less computational effort than the NSGT.

Increasing stress nonlocality remarkably decreases the natural frequencies.

An imperfection in the geometry of the small-scale beam can notably alter the nonlinear

vibrational response.

For systems with low amplitudes of geometrical imperfections, the nanoscale tube
exhibits hardening nonlinearity including 2 saddle nodes. By contrast, as imperfections
with large amplitudes exist in the structure prior to the time-dependent deformation, the
nanoscale tube shows a combined hardening and softening nonlinearity including 4

saddle nodes.

Higher resonance frequencies are induced by higher strain gradients.

Enhancing strain gradients would remove modal interactions.

A larger nonlocal coefficient causes the nanoscale tube to have a resonance response at
a lower frequency since stress nonlocalities are associated with a reduction in the

structural stiffness.

In chapter 4, using an advanced nonlinear scale-dependent model, the coupled vibrations

of small-scale beams with viscoelasticity and imperfections effects were studied. An

appropriate work/energy balance was conducted, and the nonlinear motion equations were

presented. The stress nonlocality together with the role of strain gradients in the vibrational

behaviour of beams at small-scales were simulated in the modelling. Internal energy loss and

imperfections in the geometry were estimated via a viscoelastic model and by assuming an
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initial transverse deflection, respectively. Using Galerkin’s technique, nonlinear frequencies

are calculated. The important findings of this study are:

Imposing a comparatively small imperfection on the small-scale beam, the nonlinear

response of the viscoelastic system obeys a hardening type including 2 saddle points.

The conventional scale-free theory results in an overestimated motion amplitude for the

coupled vibration.

The frequency parameter estimated by the nonlocal theory is less than the one computed

via the scale-free theory.

When the small-scale tube is subject to small loading amplitudes, the linear

viscoelasticity would have the same results as the nonlinear viscoelasticity.

For large magnitudes of loading amplitudes, neglecting nonlinear viscoelasticity leads

to overestimated frequency parameters.

Even a slight decrease in the initial deformation could significantly change the number

of saddle points.

Two saddle points are associated with small initial deflections.

Two extra saddle points are induced when the small-scale beam is subject to relatively

large initial deflections.

The linear vibration and deformation of small-scale plates were investigated in chapter 5

via a stress-driven nonlocal integral model. The one-dimensional kernel function, which had

been used for circular and annular small-scale plates, was extended to two-dimensional

problems at ultrasmall levels such as the vibration of rectangular nanoplates. The additional

non-classical edge conditions related to the curvature nonlocality were obtained. The sixth-

order differential equation is presented by implementing Hamilton’s law and Kirchhoff plate
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model. The differential quadrature technique, as a useful numerical tool for dealing with

mathematical problems with complex boundary conditions, is used to compute the natural

frequency and transverse deflection of the small-scale plate. The obtained results for various

aspect ratios and vibration modes were compared to those reported previously, and an excellent

agreement was observed. The following important findings are concluded:

The Laplacian-based nonlocal model is not able to predict scale influences on the static

deformation of small-scale plates subject to uniform load.

Scale effects on the bending of small-scale plates with different edge conditions can

reasonably be described via the stress-driven nonlocal integral model.

A highly scale-dependent behaviour is found in cases with fully clamped edges based
on the stress-driven model. This finding is consistent with a previously reported general
law that as stiff conditions are placed on the boundaries at small-scale levels, the
influence of intermolecular interaction enhances, and consequently scale effects get

more prominent.

The gap between the strain gradient theory and stress-driven nonlocal theory becomes

larger as the scale coefficient increases.

Clamped small-scale plates are more affected by the size parameter of the continuum

model than simply-supported plates.

The stress-driven model predicts comparatively more size dependency than the model

with strain gradients for fully clamped small-scale plates.

The stress-driven influence induces a remarkable rise in the total stiffness of nanoplates.

Additional stiff conditions on the small-scale plate would cause the system to vibrate

at higher resonance frequencies.
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Finally, a nonlinear stress-driven model of plates was developed in chapter 6 for the
vibrations of nanoplates. Curvature nonlocality was taken into consideration in conjunction
with in-plane nonlocality. Three nonlinear coupled motion equations together with three types
of edge conditions including one conventional and two non-conventional conditions were
obtained. The first additional non-conventional condition was induced due to the curvature
nonlocality while the second one was associated with the in-plane nonlocality. A numerical
solution was developed based on a differential quadrature method and an iteration technique.
Conducting MD simulations via LAMMPS software, the validity of the stress-driven modelling
for the vibration of graphene sheets was examined. A very good match was found between the
stress-driven and MD results. Important findings on the nonlinear vibrations of small-scale

plates are summarised as:

e The nonlinear frequency ratio increases as the small-scale plate experiences vibrations

with larger amplitudes.

e Enhancing the curvature nonlocality substantially decreases the nonlinear frequency
ratio of the small-scale plate since the curvature nonlinearity is linked to a remarkable

enhancement in the stiffness.

e The size influence gets more significant as the graphene sheet displays higher vibration
amplitudes, indicating the importance of size effects in the accurate theoretical

modelling of nonlinear small-scale structures.

e The scale parameter associated with the in-plane nonlocality exhibits a notable
increasing effect on the nonlinear ratio, as opposed to the scale parameter related to the

curvature nonlocality.

¢ Maximum displacements in the plane of the graphene sheet slightly decrease when the

general stress-driven parameter increases.
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7.3 Future works

A number of small-scale rings and rods have been used as the fundamental parts of
nanoscale/microscale systems due to their fascinating properties, simple structure, and
comparatively straightforward fabrication process. The nonlinear mechanical behaviour of
these structures have not been studied comprehensively. Advanced scale-dependent models
can be used to carry out more investigations on the nonlinear vibrations of rings and rods at

small-scale levels.

The majority of the available scale-dependent continuum models for the vibrations of
ultrasmall structures have not been validated yet using experimental measurements since
conducting a vibration test at small-scale levels, especially nanoscales, is very challenging and
difficult in comparison with the similar test at large-scale levels. More attempt is needed for
calibrating the scale-dependent modelling of nanoscale/microscale structures via experiment.
To do this, graphene sheets and carbon nanotubes can be used as small-scale plates and beams

due to their widespread applications, special mechanical properties and availability.

In addition to small-scale plates and beams, the nonlinear vibrational behaviour of shells
at ultrasmall levels can be studied in the future. Developing scale-dependent shell models
provides a useful mathematical tool to analyse the vibrational response of a range of ultrasmall
structures such as microshells and nanoshells. However, few theoretical investigations have
been reported on the mechanics of these ultrasmall structures due to the relative complexity

and computational costs with respect to nanoscale/microscale beams and plates.

In the design of many ultrasmall devices such as nanoelectromechanical systems,
understanding the mechanical response of fundamental parts to external forces is vital.
Particularly, when carbon nanotubes are subject to external axial compressive forces, it is

important to compute the critical force corresponding to buckling. To continue the present
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study, the linear instability and post-buckling behaviour of nanotubes can be analysed via
developing advanced scale-dependent models and MD simulations. In addition, small-scale
plates can undergo buckling as an in-plane biaxial or uniaxial compressive load is exerted. The
two-dimensional kernel function introduced in the present work, can be used to develop stress-
driven models for the linear stability and post-buckling analysis of rectangular plates at small-

scale levels.
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Appendix Al

Nonlinear vibration of small-scale tubes
conveying fluid with initial deflection

Al.1 Appendix overview

In this appendix, the influences of initial deflection on the nonlinear vibrations of tubes conveying
fluid at small scales are analysed. For this purpose, a higher-order model is presented by assuming
nonlocality in stresses and incorporating strain gradients in the non-classical constitutive
equations. To simulate slip conditions, the Karniadakis—Beskok technique is employed.
Geometrical nonlinearity is modelled through strain-displacement relations. Potential and kinetic
energies as well as external work are used to carry out a work/energy balance and obtain the
coupled motion equations. The nonlinear vibrational response of the tube is numerically estimated
via a Galerkin-based technique. It is found that initial deflections have a crucial impact on the
mechanics of fluid-conveying tubes at ultrasmall levels. The continuum models presented in
chapters three and four for small-scale beams are extended to their fluid-structure interaction
counterparts. This part is a complementary study and provide a useful platform to understand the
nonlinear oscillation of nanotubes as one of the most commonly used nanobeams when there is

fluid flow inside.
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Abstract.

The objective of this paper is to develop a size-dependent nonlinear model of beams for fluid-conveying nanotubes with

an initial deflection. The nonlinear frequency response of the nanotube is analysed via an Euler-Bernoulli model. Size influences on
the behaviour of the nanosystem are described utilising the nonlocal strain gradient theory (NSGT). Relative motions at the inner
wall of the nanotube is taken into consideration via Beskok—Karniadakis model. Formulating kinetic and elastic energies and then
employing Hamilton’s approach, the nonlinear motion equations are derived. Furthermore, Galerkin’s approach is employed for
discretisation, and then a continuation scheme is developed for obtaining numerical results. It is observed that an initial deflection
significantly alters the frequency response of NSGT nanotubes conveying fluid. For small initial deflections, a hardening
nonlinearity is found whereas a softening-hardening nonlinearity is observed for large initial deflections.

Keywords:

nonlinear frequency response; nanotubes; fluid flow; initial deflection

1. Introduction

Nanostructural components such as nanotubes and
nanoplates form the basic blocks of many
microelectromechanical and nanoelectromechanical
systems. Salient examples of these systems are
nanoscale/microscale generators, mass sensors and energy
harvesters. Furthermore, nanostructures, especially carbon
nanotubes and boron nitride nanotubes can be used for the
reinforcement of composite plates (Bakhadda, Bouiadjra et
al. 2018, Draoui, Zidour et al. 2019, Semmah, Heireche et
al. 2019). Developing advanced mathematical modelling for
understanding the mechanics of nanostructural components
provides a platform to improve the performance of these
ultrasmall systems.

Since the mechanical behaviour of ultrasmall
structures such as graphene sheets and nanotubes is highly
influenced by size effects (Ebrahimi and Barati 2018,
Ebrahimi, Haghi et al. 2018, Nejad, Hadi et al. 2018,
Farajpour, Ghayesh ef al. 2019), the application of the
classical continuum mechanics in analysing the mechanical
behaviour at ultrasmall levels is not reliable. Therefore, the
classical continuum mechanics is modified so as to capture
size influences (Ebrahimi and Dabbagh 2018, Farajpour,
Ghayesh et al. 2018, Arefi 2019, Benahmed, Fahsi et al.
2019, Gao, Xiao et al. 2019, Karami, Janghorban et al.
2019, Mohammadi and Rastgoo 2019, Nebab, Atmane et al.
2019). There are a number of size-dependent continuum-,
Eringen’s theory (Eringen and Edelen 1972, Farajpour,
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Shahidi et al. 2018) and strain gradient elasticity (Akgdz
and Civalek 2013, Ghayesh, Amabili ef al. 2013, Akgdz and
Civalek 2014). In this work, a nonlocal theory incorporating
strain gradient effects is used for deriving the motion
equations of fluid-conveying nanotubes with an initial
deflection.

In the last decade, for the first time, the application of
the nonlocal theory to continuum modelling of nanoscale
cantilevers was introduced by Peddieson ef al. (Peddieson,
Buchanan et al. 2003). Then, many investigations have
been performed on the size-dependent continuum modelling
of microscale fundamental components (Ghayesh, Amabili
et al. 2013, Simsek and Reddy 2013, Farokhi, Ghayesh et al.
2016, Farokhi and Ghayesh 2018) and nanoscale
fundamental components (Reddy 2010, Farajpour, Rastgoo
et al. 2017, Farajpour, Shahidi et al. 2018) via modifying
the continuum mechanics. Various basic problems in solid
mechanics at nanoscales such as wave propagation (Tounsi,
Heireche et al. 2008), thermal buckling (Zenkour and
Sobhy 2013), static deflection (Reddy 2010), resonance
behaviour (Karami, Shahsavari et al. 2019) and vibration
analysis with consideration of surface effects (Malekzadeh
and Shojaee 2015) as well as homogeneous (Civalek and
Akgdz 2013), inhomogeneous (Nejad, Hadi ef al. 2017) and
piezoelectric problems (Asemi and Farajpour 2014), have
been studied.

Scale-dependent continuum formulations have been
introduced for the mechanics of various types of small-scale
structures involving nanoplates (Karami, Janghorban et al.
2017, Kadari, Bessaim et al. 2018), functionally graded
nanoplates (Belkorissat, Houari et al. 2015, Bounouara,
Benrahou et al. 2016, Besseghier, Houari et al. 2017, Khetir,
Bouiadjra et al. 2017, Karami, Janghorban et al. 2018,
Karami, Janghorban ef al. 2018, Karami, Janghorban ef al.
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2018), graphene sheets (Bouadi, Bousahla er al. 2018,
Bourada, Amara et al. 2018, Mokhtar, Heireche et al. 2018,
Yazid, Heireche et al. 2018), nanobeams (Chaht, Kaci et al.
2015, Bellifa, Benrahou et al. 2017, Mouffoki, Bedia et al.
2017, Hamza-Cherif, Meradjah et al. 2018, Mokhtar,
Heireche et al. 2018, Youcef, Kaci et al. 2018, Bedia,
Houari et al. 2019), functionally graded nanobeams
(Ahouel, Houari et al. 2016, Bouafia, Kaci et al. 2017),
nanoshells (Karami, Janghorban et al. 2018), and
nanoparticles (Karami, Janghorban ef al. 2018) as well as
microbeams (Al-Basyouni, Tounsi et al. 2015, Tlidji,
Zidour et al. 2019).

Different higher-order theories have been utilised to
capture scale influences on the mechanical response of
small-scale structural components involving small-scale
shells (Farokhi and Ghayesh 2018) and plates (Murmu and
Adhikari 2013), panels (Demir, Mercan et al. 2016) as well
as rods (Numanoglu, Akgoz et al. 2018), beams (Zhang, He
et al. 2014, Demir and Civalek 2017, Romano, Barretta et
al. 2017) and tubes (Akgoz and Civalek 2011). Rahmani et
al. (Rahmani, Refacinejad et al. 2017) assessed different
higher-order models with nonlocal influences for the static
deformation and instability of functionally graded nanoscale
beams; the inclusion of the influences of shear deformations
results in a rise in deflection and a decrease in buckling
force. Moreover, Akgoz and Civalek (Akgodz and Civalek
2017) examined the influences of shear deformations and
temperature change on the vibrations of functionally graded

nanoscale microbeams through use of a couple stress model.

Malikan (Malikan 2017) also utilised a first-order theory of
shear deformations for electromechanical stability analysis
of smart nanoplates. In addition, scale-dependent higher-
order models have been introduced for Silicon carbide
nanotubes (Mercan and Civalek 2017) and boron nitride
nanotubes (Mercan and Civalek 2016) as well as nanoscale
beams resting on an elastic medium (Demir and Civalek
2017).

In addition to the size-dependent formulation and
analysis of solid structural elements at small-scale levels,
size effects on the mechanical behaviour of structural
elements conveying fluid have been examined in the
literature. For instance, the effects of a viscoelastic medium
on the flow-induced stability and vibration of a single
nanotube (Soltani, Taherian et al. 2010), the stability of
nanotubes conveying pulsating fluid (Liang and Su 2013),
and the flow-induced dynamics of nanotubes (Bahaadini,
Saidi et al. 2018) as well as elastic waves in fluid-
conveying both homogeneous and inhomogeneous
nanotubes (Wang, Li et al. 2010, Filiz and Aydogdu 2015),
have been analysed in recent times. Besides developing
size-dependent formulation for fluid-conveying carbon
nanotubes, other kinds of nanotubes including boron nitride
(Maraghi, Arani et al. 2013) and piezoelectric nanotubes
(Amiri, Talebitooti et al. 2018) conveying nanofluid have
been taken into consideration.

As mentioned above, fluid-conveying nanotubes have
mainly been analysed in terms of linear mechanics.
Nonetheless, a few studies have been done with
consideration of nonlinear strain components (Askari and
Esmailzadeh 2017). More investigations are required in

order to fully understand the nonlinear frequency response
of nanotubes conveying fluid, especially when there is an
initial deflection in the system. For the sake of
simplification, the influences of an initial deflection on the
frequency response of fluid-conveying tubes at nanoscales
have not been examined yet. Initial deflections are very
significant since in nanoscale electromechanical devices,
the fundamental parts are very prone to initial
thermomechanical loading, which can consequently cause
initial deflections (Farokhi and Ghayesh 2015). In addition,
in previous studies, the frequency response was calculated
taking into consideration only one trial function for
displacements. However, in this paper, a precise solution
methodology is presented via consideration of a high
number of trail functions.

The aim of this investigation is to examine the
influences of an initial deflection on the nonlinear
mechanical behaviour of NSGT nanotubes conveying
nanofluid flow. A modified Euler-Bernoulli model with
strain gradient and nonlocal effects is developed to examine
the nonlinear frequency response. To model the relative
motions at the inner wall of the nanotube, Beskok—
Karniadakis model is also applied. Nonlinear motion
equations are presented by formulating kinetic and elastic
energies as well as employing Hamilton’s approach. For
accurately estimating the frequency response, firstly, a
system with a high degree of freedom is developed based on
Galerkin’s approach. Secondly, a continuation method is
implemented to extract numerical results in the time domain.
The present results would help researchers and engineers
with the design of nanoscale electromechanical devices
involving nanotubes conveying flow.

2. A nonlocal strain gradient model for tubes
conveying flow at nanoscales

Figure 1 shows the schematic configuration of an
ultrasmall tube with an initial deflection, which is employed
to convey flow at nanoscales. According to the Euler—
Bernoulli model, one has the following relation for the
nonlinear strain (Ghayesh 2018)

ou  dw owdw, 1(owY
Ey=——ZI—+— +=| — €))
ox Ox~ Ox dx 2\ Ox
Here the initial deflection, transverse and axial

displacements are denoted by wo, w and u, respectively. The
NSGT-based constitutive relation of nanotubes is given by
(Simsek 2016)

t, —(ea) Vit =tg ~I2Vty, )
where

ty, =Es, 3)

where ti indicates the classical stress, and ¢ is the total

stress; |, E and e represent the scale parameter linked
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Fig. 1 An initial deflection in a nanotube conveying flow

to strain gradients, elasticity modulus and the scale
parameter linked to stress nonlocality, respectively. In the
nonlocal parameter, ey is a coefficient, which is employed to
calibrate the theoretical model, and « is an internal
characteristic size of nanotubes (Mohammadi et al. 2014,
Farajpour ef al. 2018, Mohammadi et al. 2013, farajpour et
al. 2019, Malekzadeh et al. 2012, Farajpour et al. 2019).
For instance, the internal characteristic size of carbon
nanotubes is the bond length between two adjacent carbons.
In this case, for the Laplace operator, one has V2()=0%()/
0x?. Furthermore, let us consider / and 4 as the inertia
moment and area of cross-section.

The force and moment resultants are

(N,,M,,)= '[<1,z>txdi. @

In view of the above equations, the force and moment
resultants are written as

2
N =EA(1—I2V2) w)  ou
i s 8X ox

(5)
ow dw,
+EA(1—I;VZ)[—X dx°}+(e0a)2v2/vxx,
M, =—EI(1-12V?) aw +(&a) VM (6)
XX sg 6X2 0 XX

Based on the NSGT, the elastic energy is (Lim, Zhang et al.
2015, Simgek 2016)

sU,, =j | axxagxdide [oliv oz, dads, %)
0A 0A

where the lower- and first-order non-classical stresses are
indicated by oxx@p and o'Vp represent, respectively;
also, L represents the tube length. Assuming V as the
gradient operator, the lower- and first-order non-classical
stresses are related as (Lim, Zhang ef al. 2015)

t,=0,-Voy (8)

Taking into account the effect of the relative motion at the
inner wall, the total kinetic energy is obtained as
(Paidoussis 1998)

ndnf (2] +(Z) e

+§pf;[-([[[gltl+’(“’u(l+giﬂ + 9)

2
+ w + KSEfU((lN + dw, j dAdx.
ot ox  dx

In Eq. (20), Koy

are, respectively, the mass density and fluid speed; and
“f* are abbreviations for “tube” and “fluid”, respectively.
Assuming F(x) as the amplitude of applied loading and
as the excitation frequency of applied loading, the external
work is

is the speed correction factor; p and U

cct”

SW. :J'OLF x)cos(wt)Sw dx. (10)

Using Egs. (7), (9) and (10) together with the following
principle

J| {ow, +oT,~6U, }de =0, (11)

the nanotube motion equations are derived as

ou _ON,
Ootox ax

20%

(M+m)g—zg+M(/(fo) ™ +2/v/( KU)—— =0 (12)

o*w 2 O*w d*w
(M+m) pw +M( sch) {axz + dxz"]

e 0 d
+2M(K5‘fu)62)/( F(x)cos(a)t)—a—x(Nxx C‘Z(OJ (13)

2
_g Nxx a_w - a MXX = OI
ox ox ox?

in which M is the mass of fluid per length while m denotes
the mass of the tube per length (Ghayesh et al. 2019,
Farajpour et al. 2018, Ghayesh et al. 2019, Farajpour et al.
2019). To derive the differential equations in terms of
displacement components, Eqs. (12) and (13) are used
together with Eqgs. (5) and (6). The derived coupled
nonlinear equations are as

ou

(1-(es0) VZ){(M+m)¥

2 0% ol
M(K'sch) o +2M(Ksch)a ax}
owo'w (14)
w2

2 2
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3. Solution technique

To obtain the frequency response of fluid-conveying
nanotubes with an initial deflection, a numerical solution
technique is developed in this section based on continuation
and Galerkin methods (Ghayesh 2012, Kazemirad et al.
2013, Farokhi and Ghayesh 2017, Ghayesh et al. 2015,
Farokhi et al. 2017). First of all, a set of dimensionless
parameters is introduced as
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where d is the outer diameter of the nanotube. Moreover, in
the present work, 4 and R are employed to indicate the
thickness and outer radius, respectively. Using Eq. (16), the
motion equations are first rewritten in a non-dimensional
form. Then, applying Galerkin’s procedure (Ghayesh and
Farokhi 2015, Ghayesh 2018, Ghayesh 2018), the following
expressions are used for the sake of discretisation

~ | Xx

a7

in which (7, ¢;)=(axial generalised coordinate, axial trial
function) and (g;, wj)=(transverse generalised coordinate,
transverse trial function) (Gholipour, Farokhi et al. 2015,
Ghayesh, Farokhi et al. 2016). A clamped-clamped
nanotube with an initial deflection in the form of
w, = Ay, (x) is considered; Ao denotes the initial deflection

coefficient. Employing Eqgs. (16) and (17) together with
Egs. (14) and (15) gives
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The superscript is neglected for convenience. From
Egs. (18) and (19), a set of discretised coupled differential
equations is obtained. The resultant differential equations
are numerically solved by a continuation method (Farokhi
and Ghayesh 2018, Ghayesh and Farajpour 2018).

4. Results and discussion

Numerical results are presented in the following section
for a clamped-clamped nanosystem with 20 degrees of
freedom (ten degrees of freedom along each direction). The
tube mass density, Poisson’s ratio and Young’s constant are
1024 kg/m?, 0.3 and 610 MPa, respectively (Shen 2011).
These material properties belong to small-scale lipid
tubules, which are a class of soft ultrasmall tubes. A
dimensionless damping coefficient (c;~0.25) is introduced
in the calculation. Furthermore, the tube geometric features
are h=66.0 nm, R=290.5 nm, and L/d=20. The
dimensionless parameters are Ko =1.0788, I, =0.5915,

==4006.9411, ¢4 = 0.04 and ¢,; = 0.08.

The nonlinear frequency response of nanotubes with an
initial deflection conveying flow is illustrated in Fig. 2 for
U=3.65, Kyu=1.0788, 40=0.10, F1=2.5, and »;=16.3803.

Table 1 Verification study for the linear vibration of simply-
supported nanoscale tubes

Strain NSGT

Mode Classical radient Nonlocal NSGT (Li, Li
number model gmodel model (present) etal.
2017)
1 9.8696 9.9906 9.8502 9.9710 9.97

2 39.4784 41.3808 39.1704 41.0579 41.06

3 88.8264 98.1951 87.2893 96.4957 96.50

4 1579137  186.4976  153.1508  180.8726  180.87

The maximum values of # and w are plotted versus the
frequency ratio (excitation frequency/natural frequency). A
hardening-type frequency response involving two distinct
bifurcation points at w/w;=1.1194 and 1.0238 is observed.
In addition, slight modal interactions are seen in the
nonlinear frequency response of the nanotube around w/m;
=1.0171 for motions in both directions. Figures 3 and 4
indicates the total transverse displacement of the nanotube
in one oscillation period for two important cases, namely
when modal interactions are strongest and at peak
oscillation amplitude, respectively.

First of all, the accuracy and validity of the present
model are demonstrated in Table 1 by making a comparison
between the obtained results and those available in the
literature for the frequencies values of uniform nanobeams.
The difference between the nonlocal, classical, NSGT and
strain gradient models can be calculated from this table. For
nonlocal, classical, NSGT and strain gradient models, scale
parameters are set to <@g~ = <0,0,02>, <@g @.> =
<0,0>, <@g @n> = <0.05,0.02> and <@g, @.> = <0.05,0>.
respectively. For an appropriate comparison, the features of
the nanobeam are the same as those assumed in Ref. (Li, Li
et al. 2017). From the table, a reasonable agreement is
observed, demonstrating the validity of the proposed
modelling. Moreover, the strain gradient model leads to the

highest dimensionless frequencies (a)*:a)./pLz/E) whereas

the smallest ones are obtained by the nonlocal model.

The physical explanation for the observed increase in
the frequency parameter with increasing strain gradient
influence is that the stiffness of structural components at
ultrasmall levels is related to strain gradients. The stiffness
is higher for stronger strain gradient influences, and this
causes the tube to vibrate at a higher natural frequency.
However, the nonlocal influence makes the nanosystem
experience lower frequency parameters. The physical
explanation for this phenomenon is rooted in the reduction
of structural stiffness with enhancing nonlocal influences.

The influence of an initial deflection on the nonlinear
frequency response of the nanotube conveying flow is
illustrated in Fig. 5 for U=4.0 and F,=2.5. This figure
reveals the importance of the consideration of the initial
deflection on the frequency response. When there is a slight
initial deflection in the nanotube, a hardening-type
nonlinearity governs the frequency response. Nonetheless,
for larger initial deflections, the frequency response is
governed by a softening-hardening response. In fact, the
nonlinear frequency response of the system can be tailored
by creating an initial deflection during manufacturing
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Fig. 2 Nonlinear frequency response of the nanotube; (a)
Wiar at X=0.5; (b) uma at x=0.66; dashed line: unstable
branch; solid line: stable branch.

process. This is important in ultrasmall electromechanical
systems in which there is a fluid-conveying nanotube.
Another significant finding is that modal interactions, which
are found in the frequency response for small initial
deflections (especially, for the axial motion), can be
removed by creating higher initial deflections in the
nanotube.

The significance of size effects on the coupled nonlinear
frequency response of the nanotube conveying flow is
indicated in Fig. 6. The initial deflection coefficient and
flow speed are, respectively, 40=0.15 and U=4.0. The speed
correction coefficient and the amplitude of applied loading
are set to Ky =1.0788 and F1=3.0, respectively. The
frequency response is plotted for the classical theory (CT)
and NSGT. In the CT, size effects are neglected (i.e. @5 =
0.0 and ¢, = 0.0) while the size parameters of the NSGT are
set to g5 = 0.04 and ¢, = 0.08. The resonance frequency of
the CT is noticeably higher than that of the NSGT due to
the decreasing effect of stress nonlocality on the stiffness.
In addition, the CT overestimates modal interactions,
especially for the axial motion.

Figures 7 and 8 illustrate the nonlinear coupled

0 0.2 0.4 0.6 0.8 1
X
Fig. 3 Total transverse displacement (w=w+wg) of the
fluid-conveying nanotube of Fig. 2 in one period of
oscillation at w/w; = 1.0171 (i.e. when modal interactions
are strongest).

0 0.2 0.4 0.6 0.8 1
by
Fig. 4 Total transverse displacement (w=w+wyg) of the
fluid-conveying nanotube of Fig. 2 in one period of
oscillation at w/w; = 1.1194 (i.e. at peak oscillation
amplitude).

frequency response of the nanotube conveying flow for slip
and no-slip conditions. In both figures, the initial deflection
coefficient and the amplitude of applied loading are
assumed as 4¢=0.15 and F=2.5, respectively. In Fig. 7, the
flow speed is set to U=3.0 whereas a value of 6.50 is
considered for the dimensionless flow speed in Fig. 8.
Depending on the flow speed, slip condition effect can
increase or decrease the resonance frequency. When the
flow speed is U=3.0, slip effects result in a reduction in the
resonance frequency whereas relative motions at the wall
are associated with a substantial increase in the resonance
frequency for higher flow speed.

5. Conclusions

This paper dealt with the development of a size-
dependent nonlinear model for nanotubes conveying flow
when there is an initial deflection in the geometry. The
Euler-Bernoulli model was applied in conjunction with the
NSGT for formulating the nonlinear frequency response of
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Fig. 5 Effect of an initial deflection on the nonlinear
frequency response of the nanotube conveying flow; (a)
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Fig. 6 Nonlinear frequency response of the nanotube
conveying flow based on the CT and NSGT for wy... at
x=0.5

the nanosystem. To capture slip effects on the nonlinear
coupled motion, the Beskok—Karniadakis model was used.
Formulating kinetic and elastic energies and applying
Hamilton’s approach, the nonlinear motion equations were
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Fig. 7. Nonlinear frequency response of the nanosystem
for slip and no-slip conditions for wy.. at x=0.5; U=3.0,
Ap=0.15 and F=2.5.
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Fig. 8. Nonlinear frequency response of the nanosystem
for slip and no-slip conditions for wy. at x=0.5; U=6.50,
Ao=0.15 and F1:2.5

given. The discretisation of the motion equations was
performed using Galerkin’s technique, leading to a system
of nonlinear ordinary differential equations. Then, a
continuation method of solution was developed for solving
the system of equations. The present modelling and
methodology  would be  helpful for different
nanoengineering applications such as ultrasmall pipettes,
nanofluid filtration, drug delivery and nanofluidics.
Numerical results showed the importance of the effect
of initial deflection on the frequency response of nanotubes
conveying flow. For a slight initial deflection, the
nanosystem displays a hardening-type frequency response.
However, when the initial deflection is larger, the frequency
response of the nanosystem is governed by a softening-
hardening response. Furthermore, it was indicated that
enhancing the nonlocal influence reduces the frequency
parameter of ultrasmall tubes due to the reduction of their
stiffness while boosting the strain gradient influence causes
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the opposite trend since it generally improves the tube
stiffness. Moreover, modal interactions are substantially
influenced by the initial deflection. The CT predicts higher
resonance frequencies than the NSGT because of the
decreasing influence of stress nonlocality on the stiffness.
Furthermore, the CT is not reliable since it overestimates
modal interactions. Slip condition effects greatly depend on
the flow speed. For comparatively small flow speeds, slip
effects reduce the resonance frequency. However, slip
effects are linked with a noticeable increase in the
resonance frequency of the nanosystem when the flow
speed is higher.
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Appendix A2

Nonlinear dynamics of viscoelastic small-scale
tubes conveying fluid

A2.1 Appendix overview

This appendix deals with the dynamics of viscoelastic tubes conveying fluid at small scales.
Moreover, the viscoelastic tube is assume to possess a geometrical imperfection. A higher-order
scale-dependent model is proposed using non-classical constitutive equations with stress
nonlocality and strain gradient. Slip conditions and viscoelasticity effects are simulated via the
Karniadakis—Beskok technique and Kelvin—-Voigt approach, respectively. Strain-displacement
relations are modified to include the influences of geometrical nonlinearity. Potential and Kinetic
energies together with viscous and external works are used to perform a work/energy balance and
derive the motion equations. The nonlinear dynamic response of the tube is predicted by a
Galerkin-based method. As the excitation frequency increases, the role of nonlinear damping in
the dynamic response increases. This work is a complementary study to the nonlinear vibrations
of viscoelastic nanotubes, and would be useful while designing ultrasmall fluid-conveying systems

such as microfluidic devices, small-scale fluid filtration systems, and pipettes.
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Abstract

An attempt is made in this article to analyse the large-amplitude local dynamics of nanofluid-conveying nanotubes
with geometrical imperfections. Each element of the nanotube can have displacements along both longitudinal and
transverse directions. A nonlinear damping model is also taken into account utilising the Kelvin—Voigt approach. The stress
nonlocality and strain gradient influences are modelled using an advanced scale-dependent theory. Moreover, the Beskok—
Karniadakis approach is applied for relative motions at the nanotube wall. To present the coupled motion equations of the
coupled nanotube, Hamilton’s approach is used. Moreover, to develop a reliable solution procedure, Galerkin’s method
along with continuation technique is utilised. The effects of nonlinear damping, geometrical imperfection, being at

nanoscales, fluid velocity and relative motion at the wall on the large-amplitude local dynamics are investigated.

Keywords

Dynamic analysis, nanotubes, fluid flow, nonlinear damping, imperfection

I. Introduction

Ultrasmall tubes such as carbon nanotubes and boron ni-
tride nanotubes have a substantial promise in conveying
fluid due to their perfect hollow circular cross section and
excellent mechanical properties. The flow-induced me-
chanical behaviour of nanotubes raises an attractive re-
search topic, which is significant in order to properly design
small-scale systems conveying fluid and particles. Nano-
fluidic devices, nanopipettes, nanoactuators and nanofluid
filtration systems are examples of the application of fluid-
conveying ultrasmall systems.

Classical continuum mechanics is not capable of mod-
elling nanostructures and microstructures as size effects are
omitted in the classical (local) constitutive relations (Behera
and Chakraverty, 2016; Zenkour and Abouelregal, 2014).
To take into consideration the effect of being nanosized and
microsized, different modified versions of classical con-
tinuum mechanics have been introduced. The most popular
size-dependent theories are Eringen’s theory, theory of
strain gradients, couple stress model and theory of surface
elasticity. Eringen’s theory is widely utilised to capture the
influence of being nanosized (Arda and Aydogdu, 2019;
Ebrahimi et al., 2018; Farajpour et al., 2017; Ghadiri and
Shafiei, 2017; Hosseini et al., 2018), whereas the couple
stress and strain gradient models generally account for the

effect of being microsized (Farokhi and Ghayesh, 2018;
Farokhi et al., 2018; Ghayesh, 2018a). In this investigation,
a nonlocal model with strain gradient effects is utilised for
formulating the dynamic behaviour of imperfect coupled
tubes conveying fluid at nanoscales.

Investigating size influences on the deformation be-
haviour of micro/nanoscale structural components has been
a topic of major concern in recent years due to the appli-
cation of these components in microelectromechanical and
nanoelectromechanical systems. For instance, Peddieson
et al. (2003), as the first researchers, applied Eringen’s
theory to examine the static deformation of ultrasmall
beams. Tounsi et al. (2008) explored the influences of
a temperature change on the wave propagation in double-
walled tubes at nanoscales; the classical theory (CT) of
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elasticity fails to predict the wave propagation character-
istics. Moreover, a nonlocal vibration analysis was con-
ducted by Civalek and Akgéz (2013) on sector graphene
sheets. The critical buckling temperature of nanoscale plates
was determined by Zenkour and Sobhy (2013); the influ-
ences of a Winkler—Pasternak substrate together with size
effects on the critical temperature were captured. In addi-
tion, based on Eringen’s theory, the large deformation of
nonlocal plates and beams was formulated by Reddy (2010).
The vibration characteristics of functionally graded ultra-
small beams were also determined by Hadi et al. (2018) via
help of a modified model of elasticity; they assumed that the
material properties of the ultrasmall beam alter along all axes.
Malekzadeh and Shojaee (2015) formulated the variation of
the natural frequencies of nonlocal plates with surface
properties using a modified elasticity model with consider-
ation of shear effects.

Besides the investigation of the mechanics of ultrasmall
structural components, the static and dynamic behaviours
of small-scale systems conveying fluid have also been
studied recently. Particularly, vibration (Soltani et al.,
2010), instability (Liang and Su, 2013), linear dynamics
(Bahaadini et al., 2018) and wave dispersion behaviour
(Filiz and Aydogdu, 2015; Wang et al., 2010) of fluid-
conveying nanoscale/microscale tubes have been in-
vestigated. In addition to carbon nanotubes, piezoelectric
nanoscale/microscale tubes have been employed in fluid
transport systems (Amiri et al., 2018; Maraghi et al., 2013).
In addition to linear models (Atashafrooz et al., 2018),
a few nonlinear continuum models with size effects have
been proposed for fluid-conveying nanotubes (Askari and
Esmailzadeh, 2017). However, the available size-dependent
nonlinear models are limited in terms of geometry and
nonlinear damping. First of all, in the available nonlinear
models for fluid-conveying systems, it is assumed that
nanotubes are perfectly straight. Nonetheless, geometrical
imperfections are inevitable in the manufacturing process at
small-scale levels. On the other side, the effects of nonlinear
damping on the dynamics of fluid-conveying nanotubes
have not been incorporated into the size-dependent for-
mulation yet.

In the current study, a nonlinear nonlocal analysis is
performed on the large-amplitude dynamics of nanofluid-
conveying nanotubes with consideration of an imperfection in

the geometry. Both longitudinal and transverse displacements
are considered for the size-dependent coupled motion. The
influence of nonlinear damping on the nonlinear nonlocal
dynamics is captured by employing the Kelvin—Voigt ap-
proach. The motion equations of the fluid-conveying nano-
system are presented using an advanced scale-dependent
model capturing the stress nonlocality and strain gradients.
Based on the Beskok—Karniadakis approach, a speed cor-
rection factor is also implemented to incorporate the effect of
relative motions at the nanotube wall. Galerkin’s method
along with continuation technique is used to develop an
accurate solution scheme. Numerical results are presented to
study the influences of nonlinear damping, imperfections in
geometry, fluid speed and relative motion at the nanotube
wall on the dynamic behaviour of the nanosystem.

2. Relative motion at the nanotube wall

In order to incorporate the relative motion between the fluid
and the nanotube at the inner wall, the Beskok—Karniadakis
approach is employed in the following section briefly; an
interested reader is referred to Farajpour et al. (2019). It is
assumed that the fluid density, velocity vector and pressure
are denoted by p;, v and P, respectively. The Navier—Stokes
equation for the fluid is expressed as

pf% + VP —u, Vv =0 (1)
in which V and V? denote the gradient and Laplacian op-
erators, respectively. The effective nanofluid viscosity is
denoted by .. It should be mentioned that equation (1) is
a linearised version of the Navier—Stokes equation. The
nonlinear terms of this equation are insignificant since in
this analysis the nanotube possesses geometrical non-
linearity while there is no nonlinearity in the fluid flow. It is
assumed that the fluid inside the nanotube is Newtonian and
incompressible. In addition, laminar fluid flow is considered
for the nanosystem (see Figure 1). The fluid speed in the
axial axis is determined as

s
Vy = rlue

where Cy and C| are integration constants and » denotes the
radial distance from the centre of the nanotube. C; must be

oP
—+ C() + C]Li’l

. (r)

@

Geometric
imperfection

—

_—

—

Nanotube

Figure 1. A nanotube with a geometrically imperfect configuration conveying fluid.
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zero in order to avoid infinite values at the centre. The slip
speed is given by (Beskok and Karniadakis, 1999)

] = 2Rl (00

3)

in which R; and o, are, respectively, the nanotube inner
radius and tangential momentum accommodation factor.
Here, f is commonly set to —1, and Kn is the Knudsen
number. Employing equations (2) and (3), the integration
constants are obtained as

R?\ oP R? Kn o, — 2\ 0P
Co=—(5")%+ =,
4u,) Ox 2u,) \1 — pKn o, )Ox

C1:0

)

The speed correction factor related to the relative motion
at the inner wall is defined as

Vi My {4Kn(2 —0,) l}

He (1 _ﬁKn)o-v (5)

K;’ = —_—=
\Lf Vsl
where vy and v,y represent the average slip and no-slip
nanofluid speed, respectively. 4, is the bulk viscosity.

3. Modelling via nonlocal strain gradient
theory

In this section, the size-dependent dynamics of imperfect
fluid-conveying nanotubes with large deformations is
briefly modelled taking into consideration nonlinear; an
interested reader is referred to Farajpour et al. (2019) for
detailed continuous and discretised equations of Sections 3
and 4. Let us denote the axial strain, axial displacement,
transverse deflection and geometrical imperfection by &y, u,
w and wy, respectively. Utilising the Euler—Bernoulli theory,
the nonlinear strain component is (Farokhi and Ghayesh,

2015, 2016)
1 fow)?
+§ (5) 6)

Employing the nonlocal strain gradient theory (NSGT),
the stress component is written as (Lim et al., 2015)

ou Ow dwy

Pw
by =—+———z

ox Ox dx o

22 2 72 4l 1 2 72 .l

Le — (eoa) v b = xxel _l V ;xel +t)corws _l V ist
(7

where

Oe
! XX
xx L[ Eg’cxa t:x(vis) = nﬁa Ly = txx(el) + txx(vis)v
] !
tix Ax + t)ix (vis)

®)

In the above equations, ‘cl’, ‘e’ and ‘vis’ stand for
classical, elastic and viscoelastic stresses, respectively, and

1, E, I, and epa denote the viscosity coefficient, Young’s
modulus, strain gradient and nonlocal size parameters,
respectively (Farajpour et al., 2018). Assuming A4 as the area
of the tube cross section, the stress resultants of the tube are

1A AR

In view of equations (6)—(8), one obtains
Lo — (eoa)ZVZtm

ou w1 [ow\’
_ _ 2 2 ;e v I i
_E(l lﬂ)(ax Z@x2+2<8x)>
ow dw oO“w dw
_2y2 0 _Ry2 0
+E(1 lsgv><a dx >+’7<1 lsgv)<atax dx>

ou oOw  ow dw
J— 2 —_—
(AY (atax T o am)
(10)

‘oo
Using equations (9) and (10), one can obtain the fol-
lowing relations for the stress resultants

Nxx - (eOa)2V2Nxx

EA(I P V2> <a”+% @_:)2)

ow dw ) w2\ [ Ow dwy
+EA(1- 1 )(a dx >+ (1 V)(atax dx>
Fu  ow Pw
A(1 -2V =z
A )(6t6x+6x atax>
(11)
M, — (ea)’ VM,
A Fw w2 Sw
:—EI(I—ngV) =)+ 1( —zsgv) —
(12)

In equation (12), / denotes the second moment of area.
For the nanotube, one can write

5Ud / /O-xv el) 58Adidx + / / xx (el) Vésxdidx
/ /O-xx el) 58xdidx + |:/ xx(e[)égxdi:|
0
- / / Vo'l dewdAdx
0 J4 '

13)
where 0,45 and a)(rxzam represent the lower-order and

higher-order nonlocal stress components, respectively; U,
is the elastic energy; and L stands for the tube length.
Similarly, the viscoelastic work is
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W, = / / O ex(vis) O edAdx — / / fm‘jm Ve, dAdx

where M and m are, respectively, mass per length for fluid
and solid parts. Using equations (11) and (12) in conjunction
with equations (19) and (20), one obtains

— / / O xx(vis) OExxdAdx — { / O (i) 58)(di:|
0 Ja 4 0
L
+ / / Vo' )0 dAdx
0 J4
(14)

According to the NSGT, the stress components satisfy
the following relations

o)

tY)C O-rx ™

h ’ 1
txx(el) = O xx(el) -V O-f:xzel) (1 5)
t)oc(vis) O xx(vis) 0'< 1)

xx(vis)

Equation (15) is employed in order to further simplify the
elastic energy and viscoelastic work (i.e. equations (13) and
(14)). The nanosystem kinetic energy is formulated as

/A/opf< )dAd” /A/Op,< )dAdx
e [l (1 2)] e
/A/o pf[ +"3‘1U<gw d;")} dAdx

(16)
where p, and p, are the tube and fluid mass densities, re-
spectively, and U stands for the fluid speed. The external
work associated with transverse load F(x) is written as

L
5WF:/ cos(wt)F (x)dwdx (17
0

where @ denotes the excitation frequency. The energy/work
law is given as follows

%)
/ {5WF + 5ins - aUel + 5Tk}dt =0 (18)
1

Using equations (13), (14), (16) and (17) together with
equation (18) gives

ON,, 8*u u 20%u
o =M+m )ﬁJrzM(zcmfu)aa + M (ko U) =
(19)
M, 0 dwy 0 ow
e +§ (N e ) + F(x)cos(wt) —|—& (N“"ax)
o*w ow
M —— 4 2M (ke U
= (M )+ 2M (e U)

oIw  d*wy
+ M (i U)’ <6x2 + de)

(20)

ou 1 [/ow\>
N EA(I zv)<6x+2<6x)>

+EA(1-1,7%) (@%)

ox dx

o“w dw,

A1 -2V 0
+na(1-1, <8t6x dx)

)
+77A(1—lng2)<a !

aw &w
otox | Ox Otox

, Bu , Du
+ (M +m)(epa)’ p. at2+2M(waU)(eoa) EYEm
2 2831/{
+M(Ksch) (eOa) %
€2y

M=~ [EI (1-2v) ZZTV; +al(1-£7) ai;v;]

~ (a2 (N";) — (ewa) F(x)cos(ar)

2

2 6 aW 26 w
— (e L (N2 + gw
(epa) p. ( 6x) + (M + m)(epa) %

&w
2M (Koo =
+ 2M (Kyr U) (e0a) ion
2 L, (Pw dPwy
+ M(Kscf'U) (eoa) (E + W

(22)

Substituting equations (21) and (22) into equations (19)
and (20) gives

EA(1-2,7) 227‘2‘ +n4(1- 2V

Su
X W — (1 — (EOCZ)ZVz)
&u &u 20U
x [(M+m) o + 2M (Kyy U) == 3o + M (ko U) 5 2}

_ 2 o2
= —£4(1-27?)
ow &Pw  *w dwy
Oox dx?

Fw dw
otox? dx

X
Pw &w  ow Ow
otox Ox? = Ox Otox?

L @) - nA(l - zfgvz)

Fu
Otox dx?
(23)
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w w dw  Ow
(22 90 (P -
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Ox Otox Otox dx  Otox
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(24)

In equations (23) and (24), all linear terms are on the
left-hand side of the equal sign, whereas nonlinear terms
are on the right-hand side. In equation (23), the first and
second terms on the left-hand side are associated with
elasticity and viscoelasticity, respectively. Furthermore,

the third, fourth and fifth terms are related to the inertial,
Coriolis and parametric forces, respectively. Similar terms
in conjunction with the term containing external trans-
verse loading are found on the left-hand side of equa-
tion (24). The linear terms in the above-mentioned
equations are noticeably different from those of the
classical macroscale fluid-conveying pipes. In fact, taking
into account size effects leads to terms with higher-order
derivatives.

4. Numerical solution

In this section, the nonlinear coupled equations of the
nanosystem are first discretised based on Galerkin’s
scheme, and then the dynamic characteristics are deter-
mined via a continuation numerical method. Using the
dimensionless parameters given by

. X ey lsg LW . u
X _L7 wnl_ La ws‘g L7 w _d7 u _d,
w="0 m=pp(4), ro (L B,
0T g T \u) - \L2 m+M)|"’
F* Lt F L 11 M
= e S = — m: s

Eld) "’ d M+m

1 EI M
== U =L — U
1 <L2)< m+M>'7’ < EI) ’

M
a)*:L2< m;—[ >w
(25)

the coupled nonlinear equations of the nanosystem (i.e.
equations (23) and (24)) are rewritten as

. 2@ ou T ou _ Su
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ox dx

055 |2 dias | aiex dx
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The symbol “*’ is dropped for convenience purposes.

Now, the aforementioned dimensionless motion equations
are discretised using the following expressions of dis-
placement components

(28)
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where ¢; and r; stand for the trial function and generalised
coordinate of u, respectively. Moreover, y; and g; indicate
the trial function and generalised coordinate of w, re-
spectively (Ghayesh, 2018b; Ghayesh et al., 2013, 2016,
2017). Assuming clamped boundary conditions and using
equation (28), the discretised form of equations (26) and
(27) is obtained as
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The size-dependent local dynamic characteristics of the
system are lastly extracted from equations (29) and (30) via
implementation of a numerical continuation technique.

5. Numerical results

To determine the numerical results, nanosystem parameters
are assumed as £ = 610 MPa, v=0.3, p, = 1024 kg/m’, h =
66.0 nm, R, =290.5 nm and L/d, = 20 in which v, R, h and
d, stand for Poisson’s ratio, outer radius, thickness and outer
diameter, respectively. In addition, the speed correction
factor, dimensionless mass coefficient and dimensionless
nanotube geometry factor are x,. = 1.10, I1,, = 0.5915 and

[1]

=4006.9411, respectively. The scale coefficients are set to
(@sg» @u) = (0.04,0.10). Ten trial functions are assumed
for each displacement component.

Figure 2 is plotted to illustrate the nonlinear static
transverse response of the fluid-conveying nanotube with
increasing fluid speed; various initial imperfection amplitudes
are considered. The static transverse response is noticeably
affected by the imperfection amplitude. For slow fluid flow,
the maximum transverse deflection is higher for higher A4,
while the deflection of the nanotube is lower for higher 4, for
fast fluid flow. It means the influence of geometrical im-
perfection on the mechanics depends on the value of the fluid
speed. Figure 3 shows the fundamental transverse frequency

12? 4,=0.05
—_——— 4,=0.15
0.8
:
=
0.4
0
0

Figure 2. Nonlinear static transverse behaviour of a fluid-conveying tube at nanoscales with increasing fluid speed for different initial

imperfection amplitudes.

(=}
—_
[}

Figure 3. Fundamental transverse frequency of fluid-conveying nanotubes with the fluid speed for different initial imperfection

amplitudes.



422 Journal of Vibration and Control 26(7-8)

0.8

0.95 1 1.05 1.1

min

0.008
%

ma:

0.004

0.95 1 1.05 1.1

Figure 4. Nonlinear local dynamics of the fluid-conveying tube at nanoscales; (a, b) maximum and minimum values of w at x = 0.5;
(c) maximum value of u at x = 0.66.
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of nanotubes conveying fluid with the fluid speed; again,
various values are considered for the geometric imperfection.
As the imperfection amplitude increases, the fundamental
frequency substantially increases.

0.5

-0.5

Figure 5. Transverse local oscillation (w, = w + wp) of the fluid-
conveying nanotube of Figure 4 in one period at w/w, = 1.0810
(i.e. at peak oscillation amplitude).

The nonlinear local dynamic behaviour of the fluid-
conveying tube at nanoscales is shown in Figure 4 for 4,
=0.15,U=3.0, F1 = 3.0, 5r = 1.10, ¢,;, = 0.10 and ¢, =
0.04; the fundamental frequency is w; = 18.5677. Two
different saddle nodes at w/w; = 1.0810 and 1.0128 are
found in the nonlinear behaviour. Furthermore, the me-
chanics is of hardening kind since the amplitude of both
axial and transverse motions suddenly decreases at w/w; =
1.0810 with the increase in excitation frequency. More
details about the coupled motion of Figure 4 at w/w; =
1.0810, in which the peak oscillation amplitude occurs, are
given in Figures 5 and 6. The total transverse deflection of
the nanosystem in one period and the motion characteristics
(time histories and phase-plane plots) are, respectively, il-
lustrated in Figures 5 and 6.

In Figure 7, the amplitude of nanotubes conveying fluid
is indicated as a function of excitation frequency for 4y =
0.15, U=4.25,F, = 4.0, k5 = 1.10, ¢,; = 0.10 and ¢, =
0.04; this time, the nonlinear local dynamic behaviour is
plotted for a higher fluid speed. The fundamental frequency
is w; = 17.1162. In this case, four different saddle nodes at
wl/wy =0.9525, 0.8880, 0.9346 and 0.9016 are observed in

(a) (b)
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t
n n
() (d)
18
03F
121
0.15F
6 -
~ ~
= = Of
Zof 3
LS} o
-0.15 |
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g b i ; ; ; 045 L i i i
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Figure 6. Motion details of Figure 4 at w/w, = 1.0810 (i.e. at peak local oscillation amplitude). (a, b) w — t,atx=0.5and u — t,atx =

0.66; (c, d) dw/dt at x = 0.5 and du/dt at x = 0.66; t, denotes dimensionless time with respect to oscillation period.
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Figure 7. Nonlinear local dynamics of the fluid-conveying tube at nanoscales; (a, b) maximum and minimum values of w at x = 0.5;
(c) maximum value of u at x = 0.66; Ag = 0.15, U = 4.25, F, = 4.0 and w, = 17.1162.
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the nonlinear local dynamic behaviour. Furthermore,
a softening-hardening nonlinearity is found for the system.
Comparing Figures 4 and 7 reveals the significance of the
fluid speed in the nonlinear dynamics of the nanotube. An

0.5

-0.5

Figure 8. Transverse local oscillation (w, = w + wp) of the fluid-
conveying nanotube of Figure 7 in one period at w/w, = 0.9346
(i.e. at peak oscillation amplitude).

increase in the flow speed alters the number of saddle modes
and even the type of nonlinearity. Figures 8 and 9 are plotted
in order to give more details about the peak oscillation
amplitude of the frequency-amplitude diagram of Figure 7.
The total transverse deflection and motion characteristics
involving time histories and phase-plane plots are illustrated
in Figures 8 and 9, respectively.

To investigate the influence of fluid speed on the
amplitude-frequency plots of the system, Figure 10 is
plotted; 49 =0.15, F'; =4.0, ksr = 1.10, ¢, = 0.10 and Psg =
0.04. From this figure, it is seen that the type of nonlinearity
is very sensitive to the fluid speed. For a relatively small
speed (i.e. U = 3.4), a completely hardening nonlinear
response is observed while the nanotube exhibits a soften-
ing-hardening response and softening response for U = 4.2
and U =5, respectively.

A comparison between the linear and nonlinear damping
mechanisms is given in Figure 11; the excitation frequency
corresponding to peak oscillation amplitude versus the
forcing amplitude is plotted. For comparatively small ex-
citation frequencies, both damping mechanisms result in the
same forcing amplitudes. Nonetheless, the Kelvin—Voigt
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Figure 9. Motion details of Figure 7 at w/w, = 0.9346 (i.e. at peak local oscillation amplitude). (a, b) w — t,atx=0.5and u — t,atx =
0.66; (c, d) dw/dt at x = 0.5 and du/dt at x = 0.66; t, denotes dimensionless time with respect to oscillation period.
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Figure 10. Influence of flow velocity on the nonlinear local dy-
namics of the fluid-conveying tube at nanoscales; (a) maximum
value of w at x = 0.5; (b) maximum value of u at x = 0.66; Ao = 0.15
and F, = 4.0.
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Figure |1. Excitation frequency corresponding to peak oscilla-

tion amplitude versus the forcing amplitude obtained using the
Kelvin—Voigt nonlinear damping mechanism (with 7 = 0.00035) and
a linear viscous damping mechanism (with ¢; = 0.24).

nonlinear damping mechanism gives higher forcing am-
plitudes compared to the simple linear viscous damping
mechanism. It means that for small excitation frequencies,
the linear mechanism can be used while this simple
mechanism underestimates the forcing amplitude for
comparatively high excitation frequencies.

Figure 12 depicts the role of imperfection amplitude in
the amplitude-frequency response of fluid-conveying
nanotubes; the flow velocity and forcing amplitude are
chosen as U = 3.5 and F; = 3.0, respectively. The imper-
fection amplitude has an important role in the nonlinear
dynamic behaviour of fluid-conveying nanotubes. It can
substantially alter the nonlinear dynamics of the nano-
system as shown in Figure 12. Increasing the imperfection
amplitude from 4= 0.05 to 4o =0.25, the type of nonlinear
response gradually turns from hardening to softening.

Figure 13 shows the influence of the relative motion
at the inner wall of the nanotube on the nonlinear local
dynamic behaviour; the nanosystem parameters are set to
U=4.2,F =3.5and 4y = 0.15. It is found that neglecting
the relative motion (i.e. the no-slip condition) yields

(@)
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[ ———— 4,=0.15 )

0.01

max
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12 15 18 21 24

Figure 12. Influence of imperfection amplitude on the nonlinear
local dynamics of the fluid-conveying tube at nanoscales; (a)
maximum value of w at x = 0.5; (b) maximum value of u at x = 0.66.
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Figure 13. Slip condition influence on the nonlinear local dy-
namics of the fluid-conveying tube at nanoscales; (a) maximum
value of w at x = 0.5; (b) maximum value of u at x = 0.66.

overestimated values for the excitation frequency corre-
sponding to the peak oscillation amplitude. Figures 14 and
15 compare the NSGT and the CT for U= 3.8 and U = 6.0,
respectively. For the NSGT, it is assumed that ¢,; =0.10 and
@5 = 0.04, whereas both size parameters are set to zero for
the CT. It is concluded that neglecting size effects causes
a significant error in the estimation of the nonlinear dynamic
characteristics of nanotubes conveying fluid.

6. Conclusions

The local dynamic behaviour of a fluid-conveying tube with
an imperfection in the geometry has been studied at
nanoscales. Both longitudinal and transverse displacements
were considered for the motion of each element of the
nanotube. Utilising the Kelvin—Voigt approach, a nonlinear
damping mechanism was also considered in the size-
dependent modelling. Furthermore, applying the NSGT,

0.015

0.005

Figure 14. Nonlinear local dynamics of the fluid-conveying tube
at nanoscales calculated by the nonlocal strain gradient theory and
classical theory; (a) maximum value of w at x = 0.5; (b) maximum
value of u at x = 0.66; U = 3.8, F; = 3.2 and Ay = 0.15.

the stress nonlocality and strain gradient influences were
modelled. The Beskok—Karniadakis approach was used for
describing the relative motion at the inner wall of the
viscoelastic nanotube. Hamilton’s approach, Galerkin’s
technique and continuation technique were lastly used for
deriving, discretising and solving the coupled nonlinear
motion equations, respectively. It was found that the fun-
damental frequency is substantially higher for larger im-
perfection amplitudes. The type of nonlinearity in the local
dynamic behaviour of fluid-conveying nanotubes depends
on the fluid speed. For comparatively small fluid speeds,
a pure hardening nonlinear response was obtained for the
nanotube, whereas the dynamic behaviour gradually turns
into a softening response with increasing fluid speed.
Furthermore, it was concluded that for relatively small
excitation frequencies, the results of the linear damping
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12 14 16 18 20 22

Figure 15. Nonlinear local dynamics of the fluid-conveying tube
at nanoscales calculated by the nonlocal strain gradient theory and
classical theory; (a) maximum value of w at x = 0.5; (b) maximum
value of u at x = 0.66; U = 6.0, F| = 4.5 and Ay = 0.15.

mechanism are almost the same as those of the nonlinear
damping mechanism. However, the nonlinear damping
mechanism leads to higher forcing amplitudes compared to
the simple linear viscous mechanism for higher values of
the excitation frequency.
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