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Abstract

Bayesian optimal experimental design has immense potential to
inform the collection of data, so as to subsequently enhance our un-
derstanding of a variety of processes. However, a major impediment
is the difficulty in evaluating optimal designs for problems with large,
or high-dimensional, design spaces. We propose an efficient search
heuristic suitable for general optimisation problems, with a particular
focus on optimal Bayesian experimental design problems. The heuris-
tic evaluates the objective (utility) function at an initial, randomly
generated set of input values. At each generation of the algorithm,
input values are “accepted” if their corresponding objective (utility)
function satisfies some acceptance criteria, and new inputs are sampled
about these accepted points. We demonstrate the new algorithm by
evaluating the optimal Bayesian experimental designs for two popular
stochastic models: a Markovian death model, and a pharmacokinetic
model. The designs from this new algorithm are compared to those
evaluated by existing algorithms, and computation times are given as
a demonstration of the computational efficiency. A comparison to the
current “gold-standard” method are given, to demonstrate that INSH
finds designs that contain a similar amount of information, but more
computationally efficiently. We also consider a simple approach to
the construction of sampling windows for the pharmacokinetic model
using the output of the proposed algorithm.

Keywords: Bayesian optimal design; Optimisation heuristic; Stochastic
models; Sampling windows



1 Introduction

Optimising the design of experiments is an important consideration in many
areas of science, including, but not limited, to: biology (Faller et al.| [2003]),
clinical trials (Berry [2004]) and epidemiology (Pagendam and Pollett|[2013]).
The theory of optimal experimental design is a statistical framework that
allows us to determine the optimal experimental protocol to gain the most
information about model parameters, given constraints on resources.

In evaluating an optimal Bayesian design, there are two main compo-
nents: the search across the design space, and the evaluation of the utility.
There have been many approaches to improving the efficiency of both as-
pects, summarised by Ryan et al|[2015a]. Recently, Overstall and Woods
[2016b] proposed the Approximate Coordinate Exchange (ACE) algorithm
for finding optimal Bayesian experimental designs efficiently. The method
utilises a coordinate exchange algorithm to update one dimension of the
design at a time, coupled with a Gaussian process in order to search each
dimension efficiently. [Price et al.| [2016] proposed an ABC-based approach
to evaluating the utility in an efficient manner, embedded within an exhaus-
tive search of the design space. The overall optimal design tool lends itself
to evaluating multiple criteria simultaneously (i.e., simultaneously evaluate
different utilities for each design), albeit without any sensible search mecha-
nism across the design space. It has been asserted that the future of optimal
Bayesian experimental design lies in the ability to evaluate the optimal de-
signs for large-scale problems (i.e., large or high-dimensional design spaces),
in a computationally-efficient manner (Ryan et al|[2015a]). In this paper,
we address this by proposing a new, efficient search algorithm which is more
efficient than the current “gold-standard” ACE algorithm.

The search heuristic we present performs targeted sampling of the design
space to find high utility designs, without making any assumptions about
the shape of the utility function. The algorithm determines similarly well-
performing designs as determined by ACE (Overstall and Woods| [2016b]),
with greater computational efficiency. Our method borrows the idea of tar-
geting regions of high utility, as per the MCMC approaches, by sampling
new designs at each iteration around the “best” designs. The “best” designs
are chosen according to some acceptance criteria; in this work we consider
two alternative approaches. First, we consider accepting all points that are
within some proportion of the current maximum objective (utility) function,
and increase this proportion towards one as the algorithm progresses (i.e.,



such that only designs that perform as well as the optimal are retained).
This choice of acceptance criteria is similar to a fully adaptive cross-entropy
algorithm (De Boer et al.| [2005]), in that the number of “elite” samples
accepted at each iteration is changed. Alternatively, this increasing cut-off
can be thought of in a similar way to an annealing schedule in a simulated-
annealing algorithm (Rutenbar| [1989]). The initial cutoff value, and the
rate at which the cutoff increases towards one controls the trade-off between
exploration and exploitation, as in existing algorithms (e.g., the annealing
schedule in a simulated-annealing algorithm, Rutenbar| [1989], or the pro-
portion of “elite” samples retained in a cross-entropy algorithm, |De Boer
et al.| [2005]). Second, we consider accepting a fixed number of samples at
each iteration of the algorithm, in the same way as a standard cross-entropy
algorithm (De Boer et al. [2005]). However, in both scenarios, rather than
updating a sampling distribution at each iteration based on a combination
of the “best” samples — as in a cross-entropy or a genetic algorithm — we
propose new samples around each of these “best” samples independently, in
a similar way to a sequential importance sampling algorithm. We describe
this algorithm using the notion of “survival-of-the-fittest”, as the “fittest”
individuals — according to their objective (utility) function value — survive
at each iteration (generation) based on a user-defined acceptance criteria,
to produce offspring for the next generation. Hence, we refer to this new
algorithm as an Induced Natural Selection Heuristic (INSH).

By independently sampling new designs around each accepted design, we
aim to avoid the pitfalls associated with some other optimisation routines.
For example, INSH is able to sample multiple regions of high utility at a
time, thus exploring multiple optima simultaneously, rather than potentially
being stuck at a local optima. Furthermore, by not combining the retained
designs in any way, INSH avoids the potential to move to a region of low
utility when there are multiple modes that is at the “centre” of the modes —
as may occur in a cross-entropy or genetic algorithm. By taking a sampling
approach, as opposed to trying to approximate the function, INSH makes no
assumptions about the shape of the utility function — thus, it is not limited
to utility functions that are, for example, smooth. Utilising (embarrassingly)
parallel computation tools, the method can evaluate the utility for a large
number of designs in each iteration, in an efficient manner.

The ACE algorithm of (Overstall and Woods [2016b] has allowed the con-
sideration of Bayesian optimal designs for a larger, more-complex class of
statistical models and experiments than was possible with previous algo-



rithms. There are a number of drawbacks to the ACE algorithm, however.
By searching in one-dimension at a time, the ACE algorithm risks missing the
globally optimal design, and instead finding only local-optima. The authors
approach to avoid this is to re-run the algorithm from a number (typically
20) of randomly generated initial designs. Similarly, as noted by the authors,
by searching in one-dimension at a time, the algorithm will be inefficient in
scenarios where there is a large correlation between the design variables — a
problem which adds to the difficulty in choosing a suitable number of itera-
tions for each phase of the algorithm. The algorithm requires a sufficiently
good estimate of the utility when determining whether to accept the candi-
date design — spurious estimates may lead to sub-optimal candidate designs
being accepted, and thus push the algorithm away from regions of high util-
ity. Alternatively, a large improvement in the computation time comes about
from the estimation of the utility surface in each dimension in the form of
a Gaussian process based on a number of candidate points. This approxi-
mation to the utility surface based on noisy evaluations of the utility aims
to provide a smooth approximation to the surface. When the surface is not
smooth, or has a discontinuity (e.g., the utility surface corresponding to the
death model in Figure [24), this may cause significant problems for the ACE
algorithm in finding optimal designs.

In the following, we present the INSH search algorithm in a general frame-
work, and we note that efficient evaluation of the utility is another problem
that needs to be addressed. We consider two existing approaches to evaluat-
ing the utility: the method used in ABCdE (Price et al.| [2016]) in a scenario
where the benefits of this approach are realised; and a nested Monte-Carlo
approximation using code from the acebayes package (Overstall and Woods
[20164]).

We consider the problem of finding the optimal design for two stochas-
tic models — the death model, and a pharmacokinetic (PK) model tracking
the concentration of a drug or treatment in the blood. In the death and
PK examples, a design d consists of n sampling times (1, ..,t,), subject to
some problem-specific constraints. The first problem we address is when to
observe the stochastic process in order to gain the most information about
the model parameters. The stochastic death model has been considered pre-
viously in a Bayesian framework by |Cook et al.|[2008], Drovandi and Pettitt
[2013], and Price et al|[2016]. We evaluate the optimal experimental designs
for 1-4 observation times, in order to demonstrate the efficacy of the method,
and the relative improvement in computation time. Second, we consider the
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optimal Bayesian experimental design for a PK model — a process where the
design space is a considerably higher-dimension — in order to demonstrate
the efficiency of the INSH algorithm for larger design spaces. The optimal
designs are compared to those evaluated using the “gold-standard” Approx-
imate Coordinate Exchange algorithm of |Overstall and Woods [2016b]. We
also consider the idea of sampling windows for this example, which have
been considered previously by |Green and Duffull [2003], Chenel et al.| [2005],
Graham and Aarons [2006], McGree et al. [2012], and Duffull et al. [2012],
for example. The idea of sampling windows allows those implementing an
optimally-chosen design some flexibility in choosing the sampling times, such
that the resulting design is more practically feasible. By defining sampling
windows, we can dictate a set of near-optimal designs — which are practically
feasible — which can be implemented more easily. This avoids the scenario
where an inferior design is chosen preferentially by those that are implement-
ing the design, having been supplied with an impractical optimal design.

2 Background

The aim of optimal experimental design is to determine the best experimental
protocol in order to maximise some utility of the experiment. To achieve
this aim, we specify a utility function U(@, x, d) representing how we ‘value’
the experimental design d, chosen from the set of all designs D, where 8
represents the model parameters and x is the data. We are interested in the
expected utility of using design d, over the unknown model parameters and
data. That is, we wish to evaluate,

u(d) = Eg U (0, x,d)]
// U@,xz,d)p(x | 6,d)p(0)d0dx, (1)

where p(x | 0,d) is the likelihood function of the unobserved data x, under
design d, and p(0) is the prior distribution of the model parameters. The
optimal design d* maximises the expected utility over the design space D,
that is, d* = argmax, pu(d).

The utility function we use throughout this work is the Kullback-Leibler
divergence (Kullback and Leibler [1951]) from the prior distribution to the



posterior distribution (which is independent of ),

Uz, d) = /9 log (%) (0 | z,d)do

which leads to an expected utility:

/ / log < po] =, d>>p(:c|0,d)p(9)d0dsc. (@)

See |Price et al.| [2016] for details of the derivation.
Alternatively, it is commonplace to consider the Shannon Information
Gain (SIG), which can be written as:

U(0,xz,d) =logp(0 | ,d) — log p(0)
=logp(z | 0,d) —logp(z | d), (3)

through the application of Bayes’ theorem. Maximisation of the expected SIG
is equivalent to maximisation of the expected Kullback-Leibler divergence
above.

Analytic evaluation of the expected utility function u(d) is typically not
possible. In light of this limitation, Muller| [1999] proposed an MCMC sam-

pling scheme from the joint probability distribution, (0, x,d) < U(0,x, d)p(x

0,d)p(#). Sampling from h(6,x,d) in this way allows us to obtain samples
from a distribution that is proportional to u(d) by considering the marginal
distribution of h(@,x,d) in d. The approximate optimal experimental de-
sign is thus obtained as the mode of the function proportional to u(d), as
determined by the samples from the MCMC sampling scheme. The MCMC
sampling scheme defined by [Miiller| [1999] is outlined in Online Resource A.
For further details, extensions, and comments on the algorithm, see Muller
[1999]. The difficulty in evaluating the mode of a high-dimensional utility
surface is one of the limiting factors of the MCMC algorithms for evaluating

optimal experimental designs for a large number of design variables (Ryan
et al.|[2015a]).

2.1 ACE Algorithm

The Approximate Coordinate Exchange algorithm of |Overstall and Woods
[2016Db] directly addresses the need for a computationally efficient algorithm
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for determining optimal Bayesian experimental designs in large-dimensional
design spaces (Ryan et al. [2015a]). The reader is directed to Overstall and
Woods| [2016b] for full details of the algorithm. Briefly, the algorithm consid-
ers each dimension of the experimental design one-at-a-time (e.g., the first
observation time in an observation schedule), and evaluates the utility at a
number of new, candidate values in that dimension (e.g., consider the utility
at each of ¢ equally spaced times across the feasible range of observation
times, conditional on the other elements of the design). Having obtained
these approximate utilities across the feasible range for the particular di-
mension of the design, a Gaussian process is fit to these candidate values to
find an approximate “optimal” value as an update to this dimension of the
design (accepted with some probability). The algorithm cycles through each
design variable (probabilistically) updating them to the best value according
to the Gaussian process approximation to the utility. The ACE algorithm is
the first algorithm that is capable of dealing with designs in large dimensional
design spaces, in a computationally feasible amount of time.

2.2 ABCdE Algorithm

In the following work, we utilise the efficient approach to evaluating the util-
ity used in the ABCdE algorithm by [Price et al. [2016], within the INSH
algorithm. We give a brief description here, and detail the ABCdE algo-
rithm in Online Resource A. The ABCdE algorithm evaluates the utility of
a collection of designs (in Price et al. [2016], this collection was all designs
across an exhaustive grid on the design space) simultaneously in an embar-
rassingly parallel fashion using, e.g., parfor in MATLAB, or the doParallel
and foreach packages (Analytics and Weston| [2015a,b]) in R (R Core Team
[2016]). For each design, we pre-simulate N, data sets from the model, cor-
responding to parameters independently sampled from the prior distribution.
We use each set of the pre-simulated data as the “observed datum” one-by-
one, and evaluate the utility using all the N,,. data as “simulated data”. This
creates a set of posterior samples having observed every set of simulated data
for a particular design. That is, for simulated data @y, s, ..., Ty, under
design d, we determine Approximate Bayesian Computation (ABC) posterior
distributions [p(@ | ©1,d),p(0 | x2,d),...,p(0 | Tn,,.,d)] using a standard
rejection ABC algorithm (detailed in Online Resource A). We pre-simulate
data across all designs and thus we can pass pre-simulated data and corre-
sponding parameter values to the ABC rejection-algorithm. This increases



memory requirements, but saves on simulation effort, since we do not sim-
ulate new parameter values and data each time, as would typically be done
in an ABC rejection-algorithm. We evaluate the utility using each of these
N,re posterior distributions under a particular design, and take the average
of these N, values to be our measure of the expected utility for that design.

One of the main advantages of this approach to evaluating the utility
comes about for discrete data, and when the number of unique datum are
small compared to the number of simulations considered, N,... We eval-
uate a single (approximate) posterior for each unique datum only, as the
approximate posterior distributions for each of the data sets will be the same
(ignoring the removal of the sampled parameter that was used to produce
the data set we are currently considering). We note that it is often not the
case that we have discrete data, or, we may wish to consider a large num-
ber of design points where the dimension of the data is increased. In these
cases, this advantage is lost. Hence, we consider this approach to evaluate
the utility for the death model only.

3 INSH Algorithm

In the following, we present a new algorithm to find optimal Bayesian experi-
mental designs efficiently. Given the current advantages of parallel computing
— which are rapidly improving as parallel-computing becomes more widely-
available, more easy to implement, and more powerful — we wish to retain
some of the parallel aspects of the ABCdE algorithm (or other optimisation
routines, for example, Evans et al. [2007]). However, we embrace an advanta-
geous aspect of the MCMC search algorithms implemented by Miiller| [1999],
Cook et al. [2008], and Drovandi and Pettitt| [2013], namely, we seek to spend
less computational effort evaluating designs in low-utility regions. This forms
the crux of the efficiency of an MCMC approach, and is achieved by sam-
pling from a function proportional to the utility, and hence, more samples
are taken from regions of high utility. However, MCMC is inherently sequen-
tial, in that the next design is chosen after evaluating the current design,
and so it cannot be parallelised efficiently. The new algorithm we propose
instead evaluates the utility of multiple designs simultaneously — in order to
retain the parallel nature that was advantageous in the ABCdE algorithm —
and samples new designs at each iteration of the algorithm around designs
satisfying some acceptance criteria. The acceptance criteria for designs at



each iteration can be chosen in a number of different ways. In this paper,
we demonstrate an increasing cut-off for the proportion of utility compared
to the current maximum, similar to an annealing schedule in a simulated-
annealing algorithm (Rutenbar [1989]), or alternatively, accepting a fixed
number of the “best” designs, similar to the proportion of “elite” samples in
a cross-entropy algorithm (De Boer et al. [2005]). However, in contrast to
these existing optimisation algorithms, the algorithm presented here consid-
ers multiple designs at each iteration, allowing us to explore the design space
more efficiently. The INSH algorithm is detailed in Algorithm [I] Note that
in order to continue to explore the region near the current optimal design,
the optimal design that has been considered thus far is re-introduced into
the set of designs that are to be sampled around, at each iteration.

Algorithm 1 INSH Algorithm

1: Choose an initial set of designs. D (e.g., a coarse grid of design points
across the design space, or randomly sample).

2: Specify the number of generations (iterations) of the algorithm W, a
perturbation function f(d | d’), and the acceptance criteria.

3: for w=1to W do

4: For each design d' € D, sample parameters @ ~ p(@), and simulate
data x' from the model.

: Evaluate utility u(d"), for each design d' € D.

6: Set D’ to be the designs which satisfy the acceptance criteria, and the
current optimal design d* (even if it occurred in a previous generation).

7 Sample m designs from f(d | d'), for each d' € D'. Set D to be these
newly sampled designs.

8: end for

Output: Set of designs d, and corresponding utilities u(d) (and hence, the
optimal design d* = argmax(u(d))).
deD

3.1 Evaluation of the Utility

An efficient approach to evaluate the utility of a design in Step [5|of Algorithm
is the same approach used in the ABCdE algorithm (Price et al.| [2016]).
In particular, we use Steps 3 to 9 of Algorithm 2, in Online Resource A.
Note that this approach is suitable for discrete data, and for low-dimensional
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design spaces. This is due to the majority of the efficiency coming from
having to evaluate a posterior distribution only once for each unique data set,
as described previously. As the number of possible unique data sets increases
— for example, either by observing the process more often (increasing the size
of the design space), or having a larger population — this approach becomes
less efficient. We use this approach to demonstrate the efficacy of the INSH
algorithm for the Markovian death model.

For cases where the dimension of the data is too large (or continuous),
we must consider an alternative approach to evaluating the utility for each
design. As noted previously, this is one of the two main challenges when
considering Bayesian optimal experimental design. A suitable and efficient
method for evaluation of the utility for a design is often problem-specific,
and a number of different approaches have been considered — a summary of
these approaches can be found in Ryan et al.|[2015a]. For the pharmacoki-
netic example we consider subsequently, we implement the utility function
of Overstall and Woods| [2016b] provided in the acebayes package in R.
Briefly, the SIG utility in equation , is estimated by a nested Monte-Carlo
approximation of the values p(x | 6,d) and p(x | d), within the Monte-
Carlo approximation to the expected utility, u(d). Borrowing the notation
of |Overstall and Woods| [2016b], define @ = (0, 7) to be the combination of
the parameters of interest, @, and nuisance parameters, vv. Then, we use B
simulations to approximate the inner Monte-Carlo estimates:

B
N 1 ~
pla | 0,d) = pr|07'7ba . and p(w\d)zgzp(wwb,%,d),
b=1

where (éb, 4,) are the B parameters sampled from the prior distribution of ).
Similarly, B simulations are used to evaluate the outer Monte-Carlo estimate,

B
Z log p(x; | 0;,d) —logp(x; | d)],

with {x;, 0,} parameters, and corresponding simulations, sampled from the
prior and simulated from the model, respectively. In the work of |(Overstall
and Woods [2016b|, the authors use B = B = 1,000 to evaluate the can-
didate designs’ utilities in the one-dimensional search (Step 1b of the ACE
Algorithm in [Overstall and Woods| [2016b]), and B = B = 20,000 to eval-
uate the utility when determining whether to accept the candidate design
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(Steps 1d and 3e of the ACE Algorithm in |Overstall and Woods| [2016b];
note that Step 3 is not implemented for the compartmental model). As the
INSH method considers the utility of multiple designs simultaneously, and
multiple designs in each region, rather than searching for the optimal design
sequentially, we are able to use significantly less effort (i.e., Monte Carlo
simulations) to evaluate the utility of each design without detriment to the
results.

3.2 Choice of Acceptance Criteria

There are a number of ways the “best” designs can be retained at each
iteration of the INSH algorithm. We propose the following two approaches,
which we implement for the Markovian death model and pharmacokinetic
examples respectively.

First, we propose that those designs which correspond to a utility within
some percentage of the current maximum utility are retained. That is, keep
all d* such that u(d®) > v, X u(d*), a, € (0,1), w = 1,..., W, where d* is
the “best” design considered up to generation i of the algorithm. The pro-
portional cut-off ,, should increase steadily from some initial value in (0,1),
up to the maximum of one. The rate at which the cut-off increases balances
the trade-off between exploration and exploitation, as in other optimisation
routines (e.g., the rate at which the annealing schedule converges to zero in
simulated-annealing, or the proportion of “elite” samples retained in a cross-
entropy algorithm). As the INSH algorithm progresses, later generations of
candidate designs will (ideally) be located closer to the optimal design than
many of the earlier generations. If the region containing the optimal design
is retained throughout the algorithm, naturally, this region is explored better
than regions of low utility. However, as the cut-off for the utility approaches
one, there may be very few designs accepted/retained and thus very few
new designs to be considered. Hence, it is sensible to replace the number of
sampled designs at each generation, m, with a non-decreasing sequence of
samples m,,, w = 1,..., W, such that later generations (i.e., those closer to
the optimal) produce more offspring. Hence, we sample more designs around
the optimal design, and thus get better resolution in this region.

One downside of this approach to the acceptance criteria is that all de-
signs in the initial waves of the algorithm may be within the initial cutoff
a1. Hence, the algorithm accepts all designs, and thus samples many de-
signs in the following iteration. It is possible that this occurs for multiple
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generations of the algorithm, resulting in a large increase in the computation
time, as a larger portion of the design space is explored. Thus, one must
first analyse the distribution of utilities across the design space in order to
choose a sensible sequence for «,,. In the name of producing an efficient
algorithm which is more simple to implement “out-of-the-box”, we propose
the following alternative.

The second approach we propose is similar to the “elite” samples of a
cross-entropy algorithm (De Boer et al.| [2005]). That is, at each generation,
the algorithm accepts the best r designs, based on the utility. At the next
generation of the algorithm, we sample m designs from the perturbation
kernel from each of these r designs. Similar to the first approach, one may
sensibly propose an increasing number of samples m,, at each generation in
order to provide better resolution around the optimal design. Similarly, the
number of “elite” samples can be altered at each generation, as is done in
a fully-adaptive cross-entropy algorithm (De Boer et al.| [2005]) — increasing
exploitation at later stages of the algorithm at the cost of exploration. Given
one dictates the number of samples that are accepted at each generation,
rw, and the number of new samples at each generation, m,,, this ensures
full control over the number of designs considered at each generation of the
algorithm, allowing more control over the computational effort. Thus, one
may reasonably evaluate the optimal (or near-optimal) Bayesian design in a
computationally efficient time-frame.

3.3 Perturbation Kernel

The perturbation kernel is used to sample new designs at each generation of
the INSH algorithm. In the two examples we consider in this work, we use
a truncated, multivariate-Normal distribution (where the dimension is given
by the dimension of the design space, and the truncation is to ensure con-
straints are satisfied). One could alternatively sample from any symmetric
distribution, centred on the current design points. A standard cross-entropy
algorithm uses the accepted samples to define the mean and (co-)variance
structure of a (multivariate-)Normal distribution, and all new samples are
generated by this distribution. We prefer to avoid this approach, rather,
allowing the region surrounding each accepted point to be explored individ-
ually. Combining all accepted samples into a single distribution from which
to sample, may result in new samples not being generated in regions of high
utility (for example, when considering multi-modal utility surfaces), and re-
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quires re-evaluation of the (co-)variance matrix at each generation.

3.4 Stopping Criteria

A common feature of optimisation tools is a criterion for stopping the al-
gorithm. It would be straight-forward for the user to implement a stopping
criteria based on the change in utility of newly sampled designs at each itera-
tion of the algorithm, based on the desired level of accuracy. In the examples
in this work, we choose to demonstrate the algorithm by running it for a
fixed number of iterations.

4 Examples

4.1 Markovian Death Model

Consider the Markovian death model as defined by (Cook et al. [2008]. There
is a population of N individuals which, independently, move to an infec-
tious class I at constant rate b; — for example, due to infection from an
environmental source. The Markov chain models the number of infectious
individuals at time ¢, I(¢) (where the number of susceptible individuals is
S(t) = N — I(t)). The positive transition rates of the Markov chain are
given by ¢;i;+1 = b1(IN — i), for i = 0,..., N — 1. The prior distribution we
consider is by ~ log-N(—0.005,0.01), chosen such that the mean lifetime of
individuals in the population is one, with an approximate variance of 0.01
(as per (Cook et al.[[2008]).

The optimal experimental design for the Markovian Death model has
previously been considered in a Bayesian framework by |Cook et al.| [2008],
Drovandi and Pettitt [2013], and Price et al.|[2016]. |Cook et al. [2008] utilised
the MCMC approach of Miiller| [1999], and used an exact posterior, hence, the
designs of (Cook et al.| [2008]| provide a gold-standard with which to compare
our results. [Drovandi and Pettitt [2013] also utilised the MCMC approach of
Muller| [1999], however, coupled with an approximate posterior distribution
evaluated via an ABC approach. We note however, that the MCMC approach
struggles to evaluate the optimal design once the dimension of the design
space is more than four. This is due to the increasing computational difficulty
associated with the evaluation of the mode of the multi-dimensional utility
surface. |Price et al.|[2016] provided an exhaustive-search across a grid on the
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design space, where the posterior distributions, and hence the utility, were
evaluated using an ABC method. The INSH code for the death model is
implemented in MATLAB R2015b.

4.2 Pharmacokinetic Model

Consider the pharmacokinetic experiment considered by Ryan et al| [2014]
and |Overstall and Woods [2016b]. In these pharmacokinetic experiments,
individuals are administered a fixed amount of a drug. Blood samples are
taken in order to understand the behaviour of the drug within the body.
Let y; represent the observed concentration of the drug at time ¢. We
model the concentration as y; = u(t)(1+€1;)+e2, where, p(t) = % (e‘elt

is the mean concentration at time ¢, and ey, ~ N(0,07,.,,), €2t ~ N(0,024,),
02.op = 0.01 and 02, = 0.1. That is,

yr ~ N (:u(t)a O-gdd + O-irop:u’(t)2) :

The blood samples are taken within the first 24 hours after the drug is ad-
ministered (that is, ¢ € [0,24]), and it is not practical to take blood samples
less than 10-15 minutes apart (hence, ;11 —t; > 0.25). We wish to obtain
information about the model parameters 8 = (61,65,05), where 0; repre-
sents the first-order elimination rate constant, 6 represents the first-order
absorption rate constant, and 63 represents the volume of distribution — a
theoretical volume that a drug would have to occupy in order to provide the
same concentration as is currently present in the blood plasma, assuming the
drug is uniformly distributed (Ryan et al. [2014]).

As per Ryan et al. [2014] and |Overstall and Woods| [2016b], the model
parameters @ = (01, 605,05) are assumed a priori to be independently, nor-
mally distributed on the log-scale, with mean log(0.1), log(1), and log(20)
respectively, and variance 0.05. (Overstall and Woods| [2016b] demonstrate
that the designs evaluated using their method are clearly better than those
obtained via the dimension reduction schemes implemented by Ryan et al.
[2014], and so we only compare our results to those of |(Overstall and Woods
[2016D].

Duffull et al.| [2012], McGree et al|[2012], Ryan et al. [2014], and Ryan
et al.| [2015b] have previously evaluated optimal Bayesian experimental de-
signs for pharmacokinetic models, either for a few sampling times (less than
five), or consider more observations through dimension reduction schemes
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(e.g., search across the two-parameters of a Beta distribution, where the
quantiles are scaled to give the observation times). Overstall and Woods
[2016D] are currently the only example of a method efficient enough to estab-
lish optimal Bayesian designs for a system of this magnitude without imple-
menting a dimension reduction scheme in a feasible amount of computation
time.

Furthermore, we show how the output of the INSH algorithm can be used
simply to construct sampling windows — a range of values for each observa-
tion, rather than a fixed value for each observation time. The motivation
for sampling windows, comes from the potential difficulty associated with
implementing what is the “optimal design” in a practical setting. Sampling
windows allow practitioners (or those implementing the design) to conduct
each sample within a range of values, which may not be as informative as
the optimal, but potentially more informative than the practical design that
ends up being implemented. Sampling windows have been considered previ-
ously for similar types of models, for example, in |Green and Duffull [2003],
Chenel et al.| [2005], Graham and Aarons [2006], Duffull et al||2012], and
McGree et al| [2012], to name a few. As the output of the INSH algorithm
consists of a large number of designs sampled around regions of high utility
— as opposed to a single design, as in ACE — the construction of sampling
windows is a simple extension to the algorithm.

The INSH algorithm for the pharmacokinetic example is implemented in
R (version 3.3.0).

5 Results

5.1 Markovian Death Model

We wish to determine the optimal observation times for the Markovian death
model. We consider the optimal observation schedule when the number of
observations permitted is n = 1,2,3,4,6 or 8. The designs and computation
times for n = 1,...,4 observation times are compared to existing results.
The observation schedules and computation times for 6 and 8 observations
are also provided in order to demonstrate the efficiency of this algorithm for
larger design spaces.

First, however, we demonstrate how the INSH algorithm works by consid-
ering two observation times for the death model. We choose to implement the
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first approach to the acceptance criteria: that is, accept designs correspond-
ing to a utility within an increasing proportional cut-off. We set a,,, = 1 —a",
for a = 0.6, and w = 1,..., W, where W = 15 (we define the sequence in
this way solely for reproducibility — any values can be specified for «,,). At
each generation, m = 3 designs are sampled for each accepted design from
the perturbation kernel — a Normal distribution centred on the accepted de-
sign, with fixed standard deviation 0.15 for each design parameter, and zero
covariances (truncated subject to the design constraints, i.e., t;1; —t; > 0,
i=1,....,n—1).

Figure [1| shows the progression of the INSH algorithm at each of the first
eight generations. For comparison, Figure 2a]shows the full utility surface for
the death model, evaluated using the ABCdE algorithm at all observation
times across a grid with spacing 0.1, with ¢; € [0.1,10]. We can clearly see
the optimal design is on a ridge at approximately (0.9, 2.8). There is also a
region of high utility around (0.7, 2.0). Regions of low utility exist for very
early ¢; (and in particular, t; > 4), or where both ¢; and t, are high (e.g.,
both above 3.5). In Figure , Generation 2 (Figure clearly shows that
regions of low utility are discarded early, and high utility regions are retained.
Generations 2-6 (Figures clearly demonstrate the convergence of the
samples towards the region containing the optimal design. Generation 6
demonstrates the samples converging about the two “peaks” observed in
Figure [2a] — clearly demonstrating the ability to investigate multiple regions
of high utility simultaneously. Figure [2b| shows all design points considered
throughout the INSH algorithm, with each point shaded by the utility value
(darker corresponds to higher utility). The regions of high utility clearly have
been sampled more thoroughly.
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Figure 1: Demonstration of the design regions being considered by the INSH
algorithm at each of the first eight generations.
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Figure 2: (a) Full utility surface for two observations of the death model
evaluated using the ABCdE algorithm, where dark shaded regions indicate
high utility. (b) Samples from every generation of the INSH algorithm for
two observations of the death model, where darker points have higher utility
values.

Online Resource B contains box-plots illustrating the convergence of the
sampled observation times towards the optimal, and the corresponding util-
ities towards the maximum. Online Resource B also contains tables with
the optimal experimental designs determined using the INSH algorithm com-
pared to the existing methods (along with the corresponding INSH algorithm
inputs), and the computation time compared to the ABCdE algorithm, re-
spectively. These times are represented in Figure [3]

Figure |3| clearly depicts the improved efficiency of the INSH algorithm
for large dimensional design spaces compared to the ABCdE algorithm. In
particular, we note the increase in computation time is dependent only on the
algorithm inputs, which can be controlled by the user, rather than the size of
the design space. Note that the INSH algorithm is slower than the ABCdE
algorithm for the same number of designs, as the simulations are created
at each generation — in the ABCdE algorithm, all simulations are created in
parallel, prior to running the algorithm. It is clear that the computation times
of the INSH algorithm are much lower for more observation times compared
to the ABCdE algorithm, as significantly less designs are considered.
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Figure 3: Comparison of the computation times for the ABCdE and INSH
algorithms, to evaluate optimal designs for the Markovian death model.

5.2 Pharmacokinetic Model

We choose the acceptance criteria to be a fixed number of “elite” samples
at each generation. That is, we accept at each generation of the algorithm
the best r, designs, and sample m,, designs from the perturbation kernel
using these “best” r,, designs. We step down the value of r,, and increase
the value of m,, as w increases, such that early iterations are geared towards
exploration, while later iterations are focussed on exploitation. Due to the
physical constraints on the frequency at which sampling can be performed (at
least 15 minutes apart), we restrict the designs such that ¢;,1 —t; > 0.25, i =
1,...,14. We sample designs from a multivariate-Normal perturbation kernel
with fixed standard deviation 0.20, and zero covariance (truncated subject
to the design constraints). The first generation of designs were sampled
uniformly from the viable design space, [0, 24], such that the designs satisfied
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the constraints.

In order to compare the run time of the ACE algorithm to the INSH
algorithm, we implemented the ACE algorithm as detailed in |Overstall and
Woods| [2016b], (i.e., running 20 instances of the ACE algorithm from the
acebayes package in (embarrassingly) parallel across four cores). On an
iMac running OSX 10.11.4 with 4.0GHz Intel Core i7 processor and 32GB
memory, this took 15.53 hours. We did not include the run time of the post-
processing utility evaluation of the 20 candidate designs, 20 times each, in
order to establish the overall optimal design, for reasons we state shortly.

The ACE algorithm for this example in (Overstall and Woods [2016b] was
performed 20 times from random initial conditions, each for a total of 20
iterations. Each iteration searches across each of the 15 dimensions of the
design, and considers 20 candidate times to fit the Gaussian process. Thus,
a total of 120,000 designs are considered (i.e., utility evaluations) in the
ACE algorithm, where 6,000 of these utility evaluations are completed using
significantly more Monte Carlo simulations. Specifically, the utility for the
20 candidate times used to train the Gaussian process are evaluated using
B = B = 1,000 Monte Carlo simulations, while the utility corresponding
to the design with the proposed new observation time is evaluated using
B = B = 20,000.

The advantage of the INSH algorithm is in the ability to consider a
large number of designs in multiple regions, simultaneously. Hence, it is
sufficient to use less effort to evaluate the utility of each design, as poorly-
estimated utilities will have less influence on the output of the algorithm.
Hence, we used B = B = 5,000 for the evaluation of the utility of each
design, which was completed in parallel on four cores (using foreach and
doParallel packages in R), on the same machine as stated above. We
ran the INSH algorithm for W = 40 iterations, with 1200 randomly gen-
erated initial designs. At each iteration, we retained the “best” 150, 75,
50, 25, and 10 designs, and proposed two, four, six, 12 and 30 new designs
around each accepted design, for 12 iterations of each combination (i.e.,
(ri,72,...,712,713,...,760) = (150,150,...,150,75,...,10)) — maintaining
consideration of 300 designs at each iteration, while increasing the exploita-
tion and reducing exploration at each iteration. This run of the INSH algo-
rithm took approximately 2.23 hours (approximately 7 times faster than the
ACE algorithm). Having obtained the designs and utility evaluations from
the INSH algorithms, we perform the same post-processing utility evaluation
on the 20 best considered designs, with 20 evaluations of the utility of each

20



design with B = B = 20,000, in order to identify the overall optimal.

The total number of designs considered by the INSH algorithm with this
selection criteria is approximately: (No. initial designs)+ (W —1)xr, xm,, =
1200 4+ (60 — 1) x 300 = 18,900. In practice, this number is often slightly
higher, as the 7 ranked design can be a tie, and the optimal design is re-
introduced into the set of designs being considered if it occurred in a previous
generation (this run of the INSH algorithm considered 19,428 designs). In
contrast, if we were to attempt to evaluate the utility at every design across a
grid with spacing 0.05 (e.g., as in the ABCAE algorithm of |Price et al.| [2016]),
we would be required to evaluate (41756) ~ 8.93 x 107 designs — approximately
4.7 x 10* times as many designs as were considered by the INSH algorithm.

Figure 4] shows box-plots of the 20 utility evaluations for each of the
20 best designs that were considered by the INSH algorithm, compared
to the same number of evaluations of the ACE optimal design reported in
optdescomp15sig() in the acebayes package (each utility evaluation using
B=B= 20,000). We can see from this figure that there are three designs
that perform similarly well to the design found using the ACE algorithm.
Online Resource C contains a table with summaries of the evaluated utilities
for each design, a figure demonstrating convergence of the INSH algorithm
to the optimal region, and a figure demonstrating how well each design per-
forms with respect to inference (in particular, a comparison of the posterior
variance, and the bias in posterior mode).
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Figure 4: Box-plots of the utility for the optimal design found by the ACE
algorithm, compared to the top 20 designs considered by the INSH algorithm.
The utility of each design is evaluated 20 times, using B = B = 20,000 Monte
Carlo simulations.

5.2.1 Sampling Windows

The nature of the INSH algorithm means that we retain a large number
of designs with high utility. We use these “best” designs to construct the
sampling windows for each sampling time, similar to the approach of McGree
et al.[[2012]. [McGree et al.| [2012] use percentiles of the designs evaluated once
a stopping-criteria has been reached in their algorithm to form the sampling
windows, whereas we just choose a fixed number of “best” designs to form
the windows. Given the windows, the one implementing the design can then
simply choose each observation time from these windows, ensuring that the
physical constraint, t;,1 — t; > 0.25, is satisfied.

As an example of this process, we arbitrarily consider the top 20 designs
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from the output of the INSH algorithm for the pharmacokinetic example,
and form sampling windows as the range of values considered at each ob-
servation time for these “best” designs. Alternatively, one could consider
all designs that were within some percentage of the utility corresponding
to the maximum, or, use a weighting based on the expected utility for each
design to approximate a distribution for each sampling time which could sub-
sequently be sampled. In order to construct the sampling window designs
for the purpose of evaluating their utility, we “bootstrap” an observation
schedule by randomly selecting each of the 15 sampling times (with equal
probability), from the 20 candidate observation times, subject to the con-
straints. A new design is sampled for each of the 20 utility evaluations to
demonstrate the range of potential outputs from this approach. Figures
and show the sampling windows for each observation time, calculated
using the output of the INSH algorithm. Figure [5al shows the optimal ob-
servation schedules evaluated using the ACE and INSH algorithms. Note
that the optimal design returned from the INSH method, was that which
corresponded to the 19" highest utility value from the original output of the
INSH algorithm (i.e., using B = B = 5,000). It was deemed the optimal
design as it corresponded to the highest mean utility, from 20 utliity evalu-
ations using B = B = 20,000 (Figure . Figure shows box-plots of 20
utility evaluations (using B = B = 20,000) for the ACE and INSH optimal
designs, and the 20 randomly selected designs from the sampling windows.
Note that the average efficiency of the sampling windows designs compared
to the INSH optimal design is 99.07%.
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Figure 5: (a) Comparison of the resulting optimal designs from the ACE and
INSH methods. (b) Boxplots of 20 utility evaluations for the ACE and INSH
optimal designs and the sampling windows designs, using B = B = 20000.
(¢) Sampling windows for each observation time obtained from the 20 designs
corresponding to the highest utilities found during the INSH algorithm. The
error bars show the range for each observation time from the 20 designs, and
the cross shows the corresponding observation from the optimal design. (d)
Density plot of the sampling windows for each observation time.

6 Discussion

The results of the INSH algorithm applied to the death model indicates the
suitability of this method, compared to existing methods. The resulting
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optimal designs evaluated are near-identical to those evaluated by existing
methods — especially ABCdE. This makes sense given the estimation of the
utility at each design is performed using the same mechanism. We have
omitted the comparison of designs with regards to inference, as the compar-
ison between all existing methods was made in Price et al.| [2016], and these
new designs from INSH are not significantly different to those previously
considered — the main purpose of this example was to demonstrate the com-
putational efficiency. The computation time is clearly reliant on the choice
of parameters for the algorithm, however the conservative choices made for
the death model have clearly demonstrated a vast improvement in the com-
putation time compared to the ABCAE method, while also allowing a simple
approach to evaluated optimal experimental designs for more than four di-
mensional design spaces that are not practically feasible with the MCMC
approaches. The larger computation time for more observation times for the
death model is due to the evaluation of the utility. As previously stated, the
evaluation of the utility is efficient due to the consideration of only unique
data sets. As the number of observation times increases, the number of
unique data sets increases, and hence evaluation of the utility for each design
is more computationally demanding.

We used the INSH algorithm to evaluate the optimal Bayesian experimen-
tal designs for 15 observation times of the pharmacokinetic model. Previous
work had successfully considered fewer observation times (e.g., Duffull et al.
[2012], McGree et al.[[2012]), or a re-parameterisation of the problem in order
to obtain optimal designs for a large number of sampling times in a compu-
tationally feasible amount of time (Ryan et al.|[2014]). (Overstall and Woods
[2016b] provided a significant step forward with their efficient approach to
evaluating the optimal design for this model, with a high-dimension design
space, that logically perform better than the re-parameterised designs consid-
ered previously. Here, we have used the INSH algorithm to evaluate Bayesian
experimental designs for the pharmacokinetic model, which slightly outper-
form those evaluated by the ACE algorithm of |Overstall and Woods| [2016Db].
Of particular significance is the small amount of computation time required
to evaluate these designs — for the example we considered here, the INSH
algorithm found a number of well-performing designs in approximately 14%
of the computation time of the ACE algorithm.

For the pharmacokinetic example, we considered forming sampling win-
dows for practical implementation of near-optimal designs. We showed that
these sampling windows can be derived very simply from the output of the
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INSH algorithm, with minimal post-processing. We showed that the sam-
pling windows (chosen in a completely uninformed manner) provided a sim-
ilar level of information to that provided by the optimal design evaluated
from the INSH algorithm.

We note that in evaluating the optimal designs for the ACE algorithm,
B = B = 20,000 was used. A more accurate estimate of the utility of each
design is required in the ACE algorithm, as one design is considered at a
time, and subsequent designs considered are dependent on whether or not
the new design coordinate is accepted. An “extreme” utility evaluation could
push the algorithm from a region of high-utility, and thus the algorithm
could converge to, or conclude whilst still in, a sub-optimal region. The
INSH algorithm considers a large number of designs simultaneously, and so a
spurious utility evaluation has less of an impact on the overall output of the
algorithm. By performing the post-processing of the “best” designs returned
by the INSH algorithm — as is done for the ACE candidate designs as well
— we can use a sufficiently large amount of effort to evaluate the utility of
these designs and thus have greater confidence in their estimated utility.

We have not provided a proof that the INSH algorithm will converge to
the optimal design, however, one can see that in the limit (i.e., W — o0,
ap = 0 and o, — 1 as w — o0, and sufficiently large m), the INSH algo-
rithm will identify the optimal design. When searching for the design across
a gridded design space, less restrictive conditions would be required to en-
sure convergence to the optimal solution. However, as with all optimisation
routines, the aim of this algorithm is to find near-optimal designs in a compu-
tationally feasible amount of time. Thus, practical algorithm inputs must be
chosen, which may not guarantee convergence to the optimal solution. How-
ever, this trade-off is apparent in a number of existing optimisation routines
— for example, simulated-annealing, cross-entropy, and genetic algorithms all
have the potential to converge to local, rather than global, optima. Further-
more, the authors believe that the choice of algorithm parameters, in partic-
ular those corresponding to the acceptance criteria (proportion of maximum
utility a,, or number of “elite” samples r) and perturbation kernel (distri-
bution f(d | d'), and number of new samples m,,), are quite intuitive, and
thus, INSH is easier to implement than some existing stochastic optimisation
methods. We also note that, as with other stochastic optimisation routines,
some trial-and-error may be required in order to choose suitable values of
these parameters for particular problem classes.

The INSH algorithm we have presented here is quite general, and there
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exist many aspects of the algorithm which can be explored in order to im-
prove the efficiency of the algorithm for different optimisation problems. For
example, randomly incorporating a sample in a region of the design space
that has either not been considered previously, or was dismissed earlier in
the algorithm, may be a beneficial approach in order to increase exploration
of the input space, and maximise the chances of obtaining the optimal solu-
tion. Another important consideration will be to provide some general rules
regarding the choice of algorithm inputs for a particular utility surface. For
example, the initial samples could be used to approximate some characteris-
tics of the utility surface, and provide some insight into sensible choices of the
inputs for the algorithm. While we did not consider it here, increasing the
number of utility evaluations which form the approximate expected utility
could also be increased as the algorithm progresses, i.e., specify a sequence
for B and B in the SIG utility evaluation — ensuring more effort is spent
evaluating a more precise estimate of the utility in regions near to the opti-
mal design. One could also incorporate the noise in the utility evaluation in
the acceptance criteria — discarding only those samples that have an upper
limit below the threshold value.

Bayesian optimal experimental design has immense potential to inform
the collection of data, so as to subsequently enhance our understanding of
a variety of processes. However, a major impediment is the difficulty in
evaluating optimal designs for problems with large, or high-dimensional, de-
sign spaces; attempts at evaluating optimal experimental designs prior to
the ACE algorithm of |Overstall and Woods [2016b] have been restricted to
considering no more than several design parameters, and typically, for rela-
tively simple models. Here, we have proposed an algorithm which improves
the efficiency of the search across the design space, even compared to that
of the ACE algorithm. While it still requires identification of an efficient
approach to evaluating the utility, this improvement in the search aspect of
determining the optimal design is extremely beneficial. In particular, cou-
pled with advances in parallel computing — both in power and accessibility —
this algorithm should prove to be a significant step towards the wide spread
use of Bayesian optimal experimental design.
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Appendix A contains existing algorithms referenced throughout the main
text. Appendix B contains the results, tables and figures corresponding to
the Markovian death model, as well as some discussion of the choice of inputs
to the INSH algorithm. Appendix C contains the results, tables and figures
corresponding to the pharmacokinetic model. Appendix D contains figures
and tables corresponding to the sampling windows for the pharmacokinetic
model.

7 Appendix A

Ezisting Algorithms
Algorithm [2| describes the ABC algorithm used by ABCdE and the INSH
algorithm (for the death model) to evaluate the posterior distribution.

Algorithm 2 ABC Algorithm: Fixed tolerance

Input: Observed data x, simulated data y = (y',...,y"), corresponding
parameter values 6°,i = 1,..., N, and tolerance .

1: Evaluate discrepancies p' = p(x,¥y’), creating particles {6", p'} for i =
1,....N.

2: Using the posterior sample of parameters 8 such that p' < ¢, evaluate
utility.

Output: Utility for current design, having observed x, U(d, x).

Algorithm 3| describes the ABCdE algorithm of Price et al. [2016], to
evaluate the optimal Bayesian experimental design.
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Algorithm 3 ABCdE Algorithm

1: Choose grid over the parameter space for the discrete estimate of the
utility, number of simulations N,., and tolerance e.
2: Sample N, parameters 6 from p(6).
3: For each of the V. parameters, and under every design d in the design
space D, simulate process and store Xy, ., «p|(6,d).
4: for i =1 to |D| do
5: Consider the unique rows of data Y(0,d") = unique(X(0,d")).
Note: We let K* be the number of such unique data, and ng: be the
number of repetitions of the kit unique data, for k' =1,..., K"
6: for k' =1 to K* do v
7 Pass ‘observed data’ y* = [Y(0,d")];:, ‘simulated data’ X(0,d"),

Npre sampled parameters, and tolerance € to Algorithm [2 and re-

turn contribution U (yki, d") to the expected utility, for it unique

datum (‘observed data’) and i*" design.
8: end for

Store u(d') = 51— > . U(y # d'); the average utility over all pa-

©

rameters and data for design d'.
10: end for

Output: The optimal design d* = argmax(u(d)).
deD

Algorithm [4] details the MCMC algorithm for determining Bayesian op-
timal designs proposed by Muller [1999].

8 Appendix B

Markovian Death Model ABC' Choices

We provide the parameter choices for the ABC algorithm used to eval-
uate the approximate posterior distributions when evaluating the utility for
the Markovian death model example. Prior to running the ABC algorithm
(Algorithm , we sample N = 100, 000 parameter values from the prior dis-
tribution, and simulate data corresponding to each under each design. For
each of 1, 2, 3, 4, 6, and 8 observation times, we use a tolerance of 0.25, 0.50,
0.75, 1.00, 1.50, 1.50, respectively.

We note however, that these choices are problem specific, and suggest that
researchers undertake a pilot-study in order to determine sensible parameter
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Algorithm 4 MCMC with stationary distribution h(8,x,d), Muller [1999]

Input: Number of samples m, prior distribution of model parameters p(0),

and proposal density q(-).

1: Choose, or simulate an initial design, d*.

2: Sample 8' ~ p(@), simulate ' ~ p(x | ', d"), and evaluate u' =
Ue', xt,d.

3: forv=1:m do

: Generate a candidate design, d, from a proposal density q(J | dY).

5: Sample 8 ~ p(@), simulate & ~ p(z | 0,d), and evaluate @ =
U8, ,d).

6: Calculate,

a:min{l M}
“ui g(d | dY)

7 Generate a ~ U(0, 1)

8: if a < o then

9: Set (dit!, uitl) = (d, @)
10: else

11: Set (d"L, uttt) = (d', u?)
12: end if

13: end for

14:

Output: Sample of m designs, d.
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choices, as one would do prior to using ABC for inference.

Markovian Death Model Results
Figure [6] demonstrates the convergence of the INSH algorithm to the

optimal observation times, and the maximum utility.

10.0 10.0

12 15

2 15 0 3 6 9
Generation

(b) Second observation time.

0 3 6 9
Generation

(a) First observation time.

L TTEETTEET

Utility

0 3 6 9 12 15
Generation

(c) Utility.

Figure 6: Boxplots of the two observation times, and the utility corresponding
to the considered designs at each generation of the INSH algorithm. The
horizontal lines in (a) and (b) correspond to the optimal observation times

evaluated using the ABCdE method.
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Table 1: Comparison of the optimal observation times for the death process,
from (Cook et al.| [2008], Drovandi and Pettitt| [2013], |Price et al.|[2016], and
the INSH algorithm. |¢| is the pre-determined number of observation times,
and i is the i"* time.

Design Method

lt|] ¢ Cook, et al. Drovandi & Pettitt ABCdE INSH
1 1 1.70 1.60 1.50 1.55

1 0.90 1.15 0.80 0.90
- 2 2.40 3.05 2.80 2.80
3 1 0.70 0.75 0.40 0.45
- 2 1.50 1.90 1.30 1.25
- 3 2.90 3.90 2.60 2.65
4 1 0.80 0.75 0.30 0.30
- 2 1.70 1.70 0.70 0.65
- 3 3.10 2.75 1.30 1.50
- 4 5.30 4.35 2.70 2.75
6 (12) - - ~(0.10,0.20)
- (34) ; . ~ (0.40,0.90)
~ (5,6) ; . - (1.60,3.00)
8 (1.2) - - ~(0.10,0.20)
- (34) ; - ~ (0.40,0.60)
~ (5,6) : - - (1.00,1.60)
- (7.8) - - - (2.10,3.20)

Table[I] contains the optimal experimental designs for different numbers of
observations of the Markovian death model, evaluated by (Cook et al. [2008],
Drovandi and Pettitt| [2013], Price et al. [2016], and the INSH algorithm
(each where appropriate).

Table [2] gives a comparison of the computation times for the ABCdE
algorithm of [Price et al. [2016], compared to the INSH algorithm. These
times are represented in Figure 3 in the main text.

Note, we define the number of offspring at each generation m,,, to be a
non-decreasing function. As the algorithm converges towards the optimal
design, it is desirable that we consider more designs in order to better ex-
plore the region surrounding the optimal design. As the algorithm converges
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towards the optimal, there are typically fewer designs being accepted, and
so producing more offspring at each design is no significant burden compu-
tationally. We choose to increase the number of designs at each generation
according to the function |m x exp(p x w)|, for w = 1,..., W, where m is
the initial number generated at early generations, and p governs the rate at
which the number of offspring increases at each generation. The parameter
p is co-dependent on W, and so we reduce p when W is large in order to
slow the rate at which m,, increases. The floor is taken to ensure an integer
number of points are generated. Similarly, we choose to slow the rate of
convergence of the increasing cut-off for the utility at each generation, from
1—a¥ tol—aV? w=1,...,W, to ensure the design space is not reduced
too rapidly, and thus increase exploration of the design space in the example
where eight observation times are considered. We note that there is no need
for the cutoff values p, or number of new samples at each generation m, to
be defined by a smooth function: one can simply input a set of discrete val-
ues. We have chosen to define these values via functions for the purposes of
simplicity. The initial grid in each example is all combinations of times from
0.75 to 10, in steps of 0.75, subject to the constraint, ¢;,1 > t;. The speed
at which the cut-off p,, converges to one and the size of the initial grid can
both be adjusted in order to ensure that the optimal design is found — a fine
initial grid means that a larger portion of the design space is explored ini-
tially, and hence the cut-off can increase faster; whereas a coarse grid means
that there are potentially regions of high utility that are not observed and so
the cut-off should increase slower so as to provide the opportunity for more
points to be sampled about the existing points. A similar argument holds
for the variance of the perturbation kernel — a smaller variance means more
effort will be spent searching near to accepted designs, while a larger variance
means that greater regions of the design space will be explored.
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Table 2: Computation times for the ABCdE algorithm compared to the
INSH algorithm for the Death model, with each observation time in [0.1,6]
for ABCAE, and [0.1,10] for INSH. Computation times are from an iMac with
4GHz Quad-core Intel Core i7 Processor, 32GB 1867MHz DDR3 memory.

Computation Time INSH Parameters
(No. Designs Considered)

|| ABCdE INSH (W, a,my,, o, At)
1 0.4 secs (60)  57.00 secs (152) (10, 0.45, |2 exp(0.1w)], 0.1, 0.05)
2 19.5 secs (1770)  72.00 secs (464) (10, 0.45, |3 exp(0.1w)], 0.1, 0.05)
3 26.0 mins (34220)  2.95 mins (1058) (15, 0.50, |3 exp(0.1w)], 0.1, 0.05)
4 21.0 hours (487635) 0.19 hours (2170) (20, 0.50, |3 exp(0.1w)], 0.1, 0.05)
6 ~ 110 hours (4100) (25, 0.50, |3 exp(0.1w)]), 0.1, 0.05)
8 - 3.50 hours (4131) (50, 0.50, |3 exp(0.05w)]), 0.1, 0.05)
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9 Appendix C

Figure [7] demonstrates the mean concentrations over time of the pharmacoki-
netic model evaluated for 50 parameter sets sampled from the prior distribu-
tion.

- N
(6] o

Concentration
o

0 4 8 12 16 20 24
Time

Figure 7: Plot of 50 mean concentrations over time of the pharmacokinetic
model simulated using values sampled from the prior distribution.

Table 3] gives the 15 optimal observation times from the top three designs
considered by the INSH algorithm. FEach chosen optimal design shows the
same pattern — four early observation times (< 1.2), followed by a cluster
of observation times around 4-7, and the remaining observations grouped
together towards the final permitted time.
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Table 3: Three best sampling schedules evaluated from the INSH algorithm
for the pharmacokinetic model.

Original rank Design
19 (0.1961, 0.4840, 0.7506, 1.176, 4.069, 4.780, 5.281,
6.030,6.377,18.22,18.85,19.72,20.33, 21.52, 22.04)

2 (0.2460, 0.5054, 0.8017, 1.211,4.035, 4.477, 5.173,6.101,
6.632,17.82,18.63,19.71, 20.32, 21.57, 21.98)

3 (0.1989,0.4801, 0.7778,1.103, 4.465, 4.754, 5.776, 6.270,
6.754,18.50, 18.99, 20.19, 20.87, 21.16, 21.87)

Figure [§| shows box plots of the observation times, and the utility eval-
uations of the corresponding designs considered at each wave of the INSH
algorithm. The figure for t9, for example, depicts the ability of the INSH
algorithm to search multiple regions simultaneously. In particular, iterations
17-27 are considering observation times in approximately three clusters —
around times of 5, 12 and 15.
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Figure 8: Figure showing the convergence of the sampled designs towards the
region near the optimal design. Each panel represents an individual aspect
of the sampled designs, the x-axis is the iteration of the INSH algorithm,
and the y-axis is the value of the design aspect. The final panel shows the
utilities corresponding to the sampled utilities.

Table 4| contains the estimated expected utility, median utility, and the
10t" and 90" percentiles, corresponding to each of the top 20 designs consid-
ered by INSH, and the optimal returned by the ACE algorithm.
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Table 4: Summary statistics of estimated utilities corresponding to the top
20 designs from the INSH algorithm, and the optimal design returned by the
ACE algorithm. The design highlighted in bold is the design considered to
be the optimal from the INSH algorithm.

Utility
Design | Mean Median  10% 90%

ACE | 44987 4.5004 4.4844  4.5102
1| 4.4874  4.4865 4.4715 4.5040
21 44725 44710 44596  4.4894
3| 4.4707  4.4685 44598  4.4864
41 4.4700 4.4686  4.4576  4.4835
5| 44991 4.4995 4.4870 4.5111
6| 4.4739 4.4719 4.4638  4.4900
71 44707 44733 4.4558  4.4866
8| 4.5034 4.5015 4.4956  4.5156
9| 4.4633 4.4648 4.4506  4.4758
10 | 4.4595 4.4633 4.4444  4.4736
11| 4.4652 4.4633 4.4526  4.4803
12 | 4.4733  4.4742  4.4608  4.4868
13 | 4.4508  4.4497 44349  4.4654
14 | 4.4748  4.4754  4.4616  4.4878
15| 4.4702  4.4690 4.4527 4.4941
16 | 4.4537 4.4523  4.4426  4.4725
17| 4.4625  4.4633 4.4439  4.4846
18 | 4.4853  4.4877 44702  4.4991
19 | 4.5052 4.5076 4.4866 4.5204
20 | 44799 44780 4.4676  4.4975

Figure [J) provides a comparison of the inferential performance of the two
optimal designs — corresponding to INSH and ACE — with regards to bias in
a point estimate, and the posterior variance. We simulated 100 experiments
from random parameters drawn from the prior distribution, and evaluated
an approximate posterior distribution using a Metropolis-Hastings algorithm
(retaining 100,000 samples from the posterior, following a burn-in of 10,000).
The bias is estimated as the difference between the MAP (mazimum a pos-
teriori) estimate and the true parameter value that created the simulated
data. Recall, the prior variance was 0.05 for each parameter.
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It appears as though the design evaluated by the INSH algorithm per-
forms marginally better with respect to the posterior variance — that is, the
estimated variances are slightly lower for each parameter. The bias in the
parameter estimates appears roughly equivalent between the two designs.

Bias Variance

0.015 *
0.2: :

0.005

6, 6, 6, 990005 —¢§ g,
Parameter

Figure 9: Comparison of the bias in MAP estimate, and posterior variance
of each parameter in the pharmacokinetic model.
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