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Abstract

Steel-concrete composite beams are commonly used in bridges, buildings and other civil
engineering infrastructure for their superior structural performances. This is achieved by
exploiting the typical configuration of this structural system where the concrete slab is
primarily utilised to resist compressive stresses whereas the steel girder is used to sustain
tensile stresses. The composite action is realised by connecting the concrete slab with the
steel girder by steel shear studs. The interfacial shear slip is always observed due to the
deformation of shear studs having a finite stiffness in reality which is commonly known as
partial shear interaction. This is an important feature which should be considered in the

analysis of these composite beams to get satisfactory results.

It is observed that most of the existing models for simulating composite beams are based on
Euler-Bernoulli’s beam theory (EBT) which does not consider the effect of shear
deformation of the beam layers. In recent past, the incorporation of this effect is becoming
popular and some attempts have already been made where Timoshenko’s beam theory (TBT)
Is typically used. In this beam theory (TBT), the true parabolic variation of shear stress over
the beam depth is replaced by a uniform shear stress distribution over the beam depth to
simplify the problem. In order to address this issue, a higher-order beam theory (HBT) has
recently been developed at the University of Adelaide. However, the model is so far applied
to the linear analysis of these beams.

In the present study, a comprehensive nonlinear finite element model is developed based on
HBT for an accurate prediction of the bending response of steel-concrete composite beams
with partial shear interaction. This is achieved by taking a third order variation of
longitudinal displacement over the beam depth for the steel and the concrete layers
separately. The deformable shear studs used for connecting the concrete slab with the steel
girder are modelled as distributed shear springs along the interface between these material
layers. The effects of nonlinearities produced by large deformations and inelastic material
behaviours are incorporated in the formulation of the proposed one-dimensional finite
element model. The Green-Lagrange strain vector is used to capture the effect of geometric
nonlinearity due to large deformations. The von Mises yield criterion with an isotropic-
hardening rule is used for modelling the inelastic behaviour of steel girders, reinforcements
and steel shear studs. This modelling approach is also applied to the region of concrete slab
subjected to compressive stress for simplicity. A damage mechanics model is adopted to

simulate the cracking behaviour of the concrete under tensile stress. The nonlinear governing
iii



equations are solved by an incremental-iterative technique following the Newton-Raphson
method. A robust arc-length method is employed to capture the post peak response
successfully where the energy dissipation played an important role. To assess the
performance of the proposed model, the results predicted by the model are compared with
existing experimental results as well as numerical results produced by using a detailed two

dimensional finite element modelling of the composite beams.
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Chapter 1: Introductory Background

1.1 Introduction

Steel-concrete composite beams (Fig. 1) consist of a concrete slab and a steel girder
connected by steel shear studs to have a composite action. These composite structures have
widespread applications, especially in bridges, modern buildings and other structures. In this
typical structural form, the two material layers are properly utilised to enhance the
performance of the overall structural system, whereby the concrete slab is mainly used to
carry the compressive stress and the steel girder carries the tensile stress. The shear studs
transfer the shear force at the interface between concrete and steel layers. As the shear
connectors are not infinitely stiff in reality, interfacial shear slip as well as vertical separation
may occur between the two layers. The vertical separation between the layers is not common
(Battini et al. 2009) under static loading for a straight beam. However, the interfacial slip
has always been found (Oehlers & Bradford 1995) in reality at the interface between the
steel and concrete layers, which is commonly defined as partial interaction. The effect of
partial shear interaction on the structural performance has been found to be significant e.g.
(Loh et al. 2004; Uy & Nethercot 2005), it should therefore be considered in the analysis of

these composite beams.
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Fig. 1. Cross-section of steel-concrete composite beam

A number of researchers e.g. (Adekola 1968; Faella et al. 2002; Girhammar & Pan 1993;
Huang & Su 2008; Jasim 1997; Ko 1972; Newmark et al. 1951; Ranzi, G et al. 2004; Ranzi,
Gianluca et al. 2006; Salari et al. 1998; Schnabl et al. 2006; Wu et al. 2002; Yasunori et al.
1981) have developed models for composite beams considering the effect of partial
interaction based on Euler Bernoulli beam theory (EBT). It has been recognised that a model



based on EBT underestimates the deflection of the beam as it ignores the effect of transverse

shear deformation.

In the recent past, there is a growing trend to incorporate the effect of shear deformation in
the modelling of composite beams using Timoshenko’s beam theory (TBT). Zona and Reddy
(2011), and Ranzi and Zona (2007) have investigated the effect of shear deformation on the
behaviour of steel-concrete composite beams with partial interaction but they have been
applied TBT to the steel girder only, while EBT has been used to model the concrete slab.
They have shown that the concrete slab gives a more conservative result, and emphasised
the need to consider the effect of shear deformation in the modelling of composite beam.
This is especially true for beams with a low span-to-depth ratio, steel I-girders having wide
flanges and thin web. Berczynski & Wroblewski (2005); Schnabl et al. (2007); Xu & Wu
(2007) have applied TBT to model both material layers. It is shown that a model based on
TBT is capable of predicting the global response (e.g., deflection) of a beam satisfactorily.
However, the model based on TBT is not adequate for predicting the actual distribution of
stresses (local response). In this beam theory (TBT), the actual parabolic variation of shear
stress over the beam depth is replaced by a uniform shear stress distribution over the beam
depth to simplify the problem. In order to address this problem, an arbitrary factor known as
a shear correction factor is artificially introduced which helps to get a satisfactory global
response. Moreover, the calculation of the exact value of this shear correction factor for a

composite beam with partial shear interaction is cumbersome.

In order to address these problems, a higher-order beam theory (HBT) has recently been
developed at the University of Adelaide (Chakrabarti et al. 2012a, 2012b, 2012c) for
accurately predicting the global as well as local response of these beam. This beam theory
(HBT) utilised the concept of Reddy’s higher order shear deformation theory (Reddy 1984)
developed for multi-layered laminated composite plates modelled as a single layered plate
without any interfacial slip. The cross-sectional warping of the beam layers produced by the
parabolic (nonlinear) variation of shear stress is modelled by taking a higher order (3" order)
variation of longitudinal displacement of the fibres across the beam depth. However, the
development of these models (Chakrabarti et al. 2012a, 2012b, 2012c¢) is based on small
deformation and elastic material behaviour. In reality these composite beams often undergo
large deformations, where the assumption of geometric linearity is no longer appropriate.
Moreover, the beam materials can found to exhibit an inelastic response even with a

moderate range of loading.



1.2 Nonlinear Analysis

The effect of geometric nonlinearity due to large deformations is incorporated in the finite
element models by Erkmen and Bradford (2009) for the analysis of steel-concrete composite
beams being curved in plane, and Battini et al. (2009) and Ranzi et al. (2010) for the two-
layered straight composite beams. These models are all based on EBT with the inherent
drawback of this theory as outlined previously. Hijaj et al. (2012) developed a model based
on TBT considering the effect of large deformation. Whilst this represents an improvement
over the models using EBT, the model is not capable of predicting the actual distribution of
stresses (local response) and in addition ignored the effects of inelastic material behaviour

which is encountered even within a low to moderate range of loading.

The material nonlinearity due to inelastic material behaviours has incorporated by Yasunori
et al. (1981) in their finite element model for composite beams using the von Mises yield
criterion. However, they have used a very simple material model based on an elastic
perfectly-plastic idealisation for all materials including concrete, which is not realistic
especially for the tensile response of concrete. Similar studies have been carried out by Salari
etal. (1998) using a bi-linear elasto-plastic material model with a strain hardening parameter.
A further development in this direction is due to Dall’ Asta and Zona (2002) and Erkmen and
Attard (2011) who have used realistic stress-strain curves for the beam materials. In their
model, Dall’Asta and Zona (2002) have ignored the contribution of concrete in tension
whereas Erkmen and Attard (2011) have used the concept of tension stiffening for its
modelling. However, these investigators (Dall’Asta & Zona 2002; Erkmen & Attard 2011,
Salari et al. 1998; Yasunori et al. 1981) have developed models based on EBT and did not
consider the effects of large deformation in the modelling of composite beams.

A nonlinear model considering the effect of inelastic material behaviour along with the large
deformation can ideally be the best model for predicting the response of these composite
structures accurately. For this purpose, Hozjan et al. (2013) developed a nonlinear finite
element model for composite beams with interfacial slip based on the shear-stiff Reissner
beam theory. However, this beam theory suffers from similar drawbacks to EBT and
neglected the tensile behaviour of concrete. A comprehensive finite element model is
proposed by Liu et al. (2013) where the tensile behaviour of concrete is simulated using a
damage mechanics model which can precisely model the tensile response of plain concrete
without reinforcement. They also employed EBT for simulating composite beams that

neglected the effect of transverse shear deformation. Nguyen et al. (2014) considered the



effect of shear deformations using TBT in the modelling of composite beams. Both
geometric and material nonlinearities are included in their models, however they (Nguyen
et al. 2014) have used very simple constitutive models for the beam material. Moreover, they

treated the behaviour of concrete in tension and compression identically.

The review of exiting studies as presented above leads to the conclusion that there is a need
for a development of an efficient numerical model based on HBT considering all the
aforementioned aspects for accurately predicting the response of steel-concrete composite

beams.

1.3 Solution Strategy

The nonlinear response of these structures is typically manifested in the form of nonlinear
load-deflection curves which are found to have a descending branch after attaining the peak
load due to the strain-softening behaviour of concrete. It is observed that most of the
investigations carried out on the inelastic response of composite beams could not capture the
descending branch of the nonlinear load-deflection curve successfully. The solution of this
typical nonlinear problem is quite challenging and a load control based technique cannot
trace the descending branch of the load-deflection curve. In order to overcome this problem,
a displacement control based technique may be used, however this will also fail if the load-
deflection curve has a snap-back response. In this situation, an arc-length based solution

technique seems to be the only possible option.

The arc-length method was initially proposed by Riks (1979) and subsequently enhanced by
various investigators (Crisfield 1981, 1983) for solving different nonlinear problems.
Although these developments helped to solve complex geometric nonlinear problems
successfully, they encountered severe convergence problems in solving material nonlinear
problems. This has proved to be especially the case in the modelling of quasi-brittle materials
which exhibit localised failure. In order to address this specific issue, the localised nature of
damage has been utilised by May and Duan (1997) to develop an arc-length method known
as a damage localization approach. This method can provide a satisfactory solution but it
requires the position of damaged elements to be known, which may be difficult to locate in
a complex structural system. A further advancement in this direction is due to Gutiérrez
(2004) who initially proposed an energy dissipation based arc-length method (Fig. 2) for

continuum damage model. Subsequently, this method has been extended by Verhoosel et al.



(2009) to include plasticity as an additional mechanism which is utilised to solve the

nonlinear equations in terms of incremental iterative process.
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Fig. 2. Energy dissipation based arc-length method

1.4 Research gaps and objectives

The literature review shows a number of research gaps related to modelling of steel-concrete
composite beams, which are attempted to address in the present study by developing the

following models:

The existing models incorporation the effect of large deformation for simulating composite
beams with partial interaction are limited and these are developed using EBT and first order
beam theory (TBT). These beam theories are not adequate for predicting the local response
and even the global response in some situation such as beams with a small span-to-depth

ratio, localised concentrated loads and clamped boundary conditions.

e Objective 1: To develop a one dimensional finite element model based on a
higher-order beam theory (HBT) considering the effect geometric nonlinearity
using Green-Lagrange strain vector for predicting the response of two-layered

composite beam with partial interaction.

The existing models considering material nonlinear behaviours of the beam constituents are
also limited in number and these models are based on EBT and TBT. Moreover, most of
these investigations are used a simplified material model specifically for the concrete slab.
In some studies, a simple stress return technique is used for the plasticity model which may
cause a divergence problem in the solution of nonlinear equations. The nonlinear response

in the form of load-deflection curve has a descending branch due to the strain-softening



behaviour of the concrete slab and it is really a challenging problem to capture this response.
Unfortunately, most of the existing techniques could not capture the descending branch of
the nonlinear response successfully.

e Objective 2: To develop an efficient nonlinear model based on HBT considering
inelastic material behaviours using von Mises plasticity theory and a damage
mechanics model for an accurate prediction of the inelastic response of steel-
concrete composite beams with partial interaction. To implement a robust arc-
length technique for solving the nonlinear equation so as to capture the post peak

response successfully.

In the existing literature, the available finite element models considering the effect of
geometric and material nonlinearity are very limited and none of those models are developed
using HBT. In addition, most of the existing models are developed by using very simple
constitutive models for the beam material and neglected the contribution of concrete in
tension. The effect of large deformations and inelastic material behaviours are responsible
for inducing nonlinear in the structural response, which also has a descending branch
because the material nonlinearity is usually having a dominant contribution for the type of
structures investigated in this research. It is also observed that none of the existing studied

paid a proper attention on the prediction of the softening branch of the load deflection curve.

e Objective 3: To develop a comprehensive nonlinear finite element model based
on HBT incorporating all aspects of geometric and material nonlinearities to be
considered in objective 1 and objective 2 for a reliable prediction of the nonlinear
response of steel-concrete composite beams with interfacial slip.

1.5 Details of Manuscripts included in the Thesis

This thesis contains a number of manuscripts which are submitted/to be submitted to
internationally recognised journals. Each chapter of the thesis is presented in the form of a
journal paper which is self-sufficient individually and do not need the accumulation of

information from the previous chapters.

Chapter 2 presents a study on large deformation response of two-layered composite beam
with inter layer slip by developing a one-dimensional finite element model based on a
higher-order beam theory (HBT). The Green-Lagrange strain vector is used to consider the



effect of large deformations. Numerical examples of composite beams are solved by the
model taking into account different layer configurations, loading, support conditions, and
shear interactions to assess the performance and range of applicability of the model. The
model performance is verified and validated using 2D finite element model results and

existing published results respectively.

Chapter 3 presents an investigation on the behaviour of steel-concrete composite beams with
partial interaction due to inelastic material behaviours through development of a
computationally efficient finite element model. A plasticity model based on von Mises yield
criterion and a damage mechanics model are used to simulate the inelastic behaviour of beam
materials. An energy dissipation based arc-length method is employed to solve the nonlinear
equations and capture the post peak response effectively. The proposed one dimensional
model based on HBT is validated with existing experimental results and verified with
numerical results obtained from a detailed two dimensional finite element model of

composite beams.

Chapter 4 presents a study on the response of steel-concrete composite beams with interfacial
slip considering large deformations as well as inelastic material behaviours through
development of a similar finite element model based on HBT. The effect of large
deformation is incorporated using the Green-Lagrange strain vector whereas the von Mises
plasticity model is used to simulate the inelastic material behaviour of most of the
constituents of these beams. A damage mechanics model is also used for modelling the
inelastic behaviour of concrete under tension. A robust arc-length method is adopted to solve
the nonlinear equations and capture the post peak response. Numerical results are generated
with a detailed 2D finite element model which are used for the verification of the proposed

model. The existing experimental data are also used to validate the proposed model.

Chapter 5 of this thesis presents the concluding remarks based on the major findings of this

research. Suggestions for possible future research are also listed in this chapter.
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Chapter 2: Geometrically Nonlinear Model

2.1 Introduction

The manuscript of this chapter “Large deformation analysis of two layered composite beams
with partial shear interaction using a higher-order beam theory” presents the development
an efficient finite element model based on higher-order beam theory (HBT) for composite
beams considering the effect of geometric nonlinearity. The aim of this study to investigate
the effect of large deformations on the response of these composite beams with interfacial
slip. The Green-Lagrange strain vector is used to capture the effect of geometric nonlinearity
in the present formulation. Numerical examples are solved by the proposed model to assess
the performance and range of applicability of the model by taking into account different
loading, supporting conditions and shear interactions. It is shown that the proposed model
has improved capabilities compared with existing techniques in predicting the local response
(stress distribution) of composite beams, especially TBT is not capable of predicting the
actual variation of shear stress. It is also shown that the proposed model achieved some
improvement in the prediction of global response of these beams.

2.2 List of Manuscripts

Uddin, M. A,, Sheikh, A. H., Bennett, T. and Uy, B. (2016). “Large deformation analysis of
two layered composite beams with partial shear interaction using a higher-order beam
theory.” International Journal of Mechanical Sciences, (Elsevier), vol. 122, no. 1, pp. 331-
340.
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2.4 Large deformation analysis of two layered composite beams with partial shear

interaction using a higher-order beam theory

Md. Alhaz Uddin, Abdul Hamid Sheikh, Terry Bennett and Brian Uy

ABSTRACT

An efficient nonlinear finite element model based on a higher-order beam theory is
developed for accurately predicting the response of two layered composite beams with
partial shear interaction. This is achieved by taking a third order variation of the longitudinal
displacement over the beam depth for the two layers separately. The deformable shear
connectors joining the two different material layers are modelled as distributed shear springs
along the beam length at their interface. In order to capture the geometric nonlinear effects
of the beam, the Green-Lagrange strain vector is used to develop the one dimensional finite
element model. The nonlinear governing equations are solved by an incremental-iterative
technique following the Newton-Raphson method. To assess the performance of the
proposed model, the results predicted by the model are compared with published results as
well as numerical results produced by using a detailed two dimensional finite element

modelling of the composite beams.

Keywords: Composite beam, Partial shear interaction, Higher-order beam theory, Finite

element model, Geometric nonlinearity.

Nomenclature

Aa, Ap cross-sectional area of upper and lower layers of the beam

[B.], linear strain-displacement matrix for the k-th layer (k=c for concrete, k=s for steel)
[B,] strain-displacement matrix for the penalty function

[B]y, strain-displacement matrix for shear connectors

[Dl« constitutive matrix for the k-th layer
Ex, elastic modulus for the k-th layer

{F}  nodal load vector
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Gk
[G],
[H ],
[Hyk
[Kd]

[Kn]

ksh
[Kr]

[Ko]

shear modulus for the k-th layer

nonlinear strain-displacement matrix for the k-th layer
linear cross-sectional matrix for the k-th layer
nonlinear cross-sectional matrix for the k-th layer

linear stiffness matrix

nonlinear stiffness matrix

penalty parameter

stiffness of distributed springs used for modelling shear connectors
tangent stiffness matrix

geometric stiffness matrix

shape function

distributed external load

interfacial slip between upper and lower layers

longitudinal displacement of the upper layer at its centroidal or reference axis
longitudinal displacement at the bottom fibre of the upper layer
longitudinal displacement of the lower layer at its reference axis
longitudinal displacement at the top fibre of the lower layer

strain energy due to penalty function

transverse displacement

higher order terms

residual force vector

nodal displacement vector

{e}., {e}, strain vectors of upper and lower layers

{8L}k
&l
{en }k

linear strain vector for the k-th layer
linear one dimensional strain vector for the k-th layer

nonlinear strain vector for the k-th layer

{eno J NONlinear one dimensional strain vector for the k-th layer
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6s, 6, bending rotations of upper and lower layers

{o},, {a}, stress vectors of upper and lower layers

T distributed shear force (per unit length) at the interface between upper and lower
layers

1. INTRODUCTION

Composite beams are widely used in many structural engineering applications for their
superior structural performance. A two layered composite beam such as timber-timber,
timber-steel, timber-concrete and steel-concrete are typically used in the construction
industry. In these structures, the two material layers are properly utilised (e.g., in steel-
concrete composite beams, the concrete layer is primarily used to carry the compressive
stress whereas the steel layer carries the tensile stress) to enhance the performance of the
overall structural system. The composite action of these beams is achieved by connecting
the two different material layers with shear connectors such as nails or steel shear studs.
Theoretically, if the shear connectors have infinite stiffness, full composite action can be
achieved. In this case, the benefit of the composite beam can be fully exploited where no
shear slip develops at the interface between the two layers and full shear interaction is
achieved. However, shear connectors have finite stiffness in reality, which results in the
development of interfacial slip between the two layers and partial shear interaction is
therefore developed [1]. As the effect of partial shear interaction on the behaviour of
structural performance has been found to be significant (e.g. [2, 3]), it should be considered
in the analysis of these composite beams. This is an active area of research which is best
demonstrated by the large number of studies on different aspects of composite beams carried
out by many researchers (e.g. [4-20]). However, the main objective of the present study is to
develop a computationally efficient numerical model for these composite beams which can

capture the large deformation behaviour of these structures realistically.

One of the initial significant research attempts on the modelling of composite beams was
conducted by Newmark et al. [21] who developed an analytical solution based on the Euler-
Bernoulli beam theory (EBT) considering the effects of partial shear interaction. The model
can only accommodate simple loading and boundary conditions due to its analytical nature.
In order to introduce generality in the analysis, a number of numerical models based on the
finite element method (FEM) or some similar methods have subsequently been developed
by different researchers (e.g., [9-20]). However, most of the studies [12-16] conducted so
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far on these composite beams are based on EBT, where the effect of small deformation is
considered for a simple linear solution of the problem. In reality, these structures can
undergo large deformations under service loads and their effects should be considered in the
analysis to predict the actual behaviour of these composite beams. This introduces
nonlinearity in the model which is regarded as geometric nonlinearity. It is interesting to
note that the number of existing studies on geometric nonlinear analysis of these composite
beams is very limited [17, 18].

The effect of geometric nonlinear response is incorporated in the finite element models by
Ranzi et al. [17], and Erkmen and Bradford [18] for the analysis of composite beams having
curved and straight alignments respectively. The authors however have not considered the
effect of transverse shear deformation of the beam material layers, as the models are based
on EBT. As the effect of shear deformation is significant in some situations such as beams
with a small span-to-depth ratio, localized concentrated loads, clamped boundary conditions
and some other cases, there is a growing trend of incorporating shear deformation in recent
past [7-11]. Zona and Reddy [10], and Ranzi and Zona [11] have investigated the effect of
shear deformation on the behaviour of steel-concrete composite beams where they used
Timoshenko’s beam theory (TBT) to incorporate the contribution of shear deformation but
this has been applied to the steel girder only, while EBT has been used to model the concrete
slab. On the other hand, the other investigators [7-9] have applied TBT to model both layers.
All these studies [7-11] considering shear deformation are based on small deformation
theory leading to a linear analysis. Recently, Hjiaj et al. [22] presented a finite element model
for these composite beams where the effect of geometric nonlinearity as well as shear
deformation based on TBT have been considered.

It has been observed that a model based on TBT is capable of predicting the global response
(e.g., deflection) of beams satisfactorily, but it is not adequate for the prediction of the actual
distribution of stresses (local response) [23-25]. In this beam theory (TBT), the actual
parabolic variation of shear stress over the beam depth is simplified by taking a constant
average shear stress distribution over the beam depth. This simplification requires the use of
a factor known as a shear correction factor to get a satisfactory global response.
Unfortunately, the calculation of the exact value of this shear correction factor for a
composite beam with partial shear interaction is cumbersome in comparison with that of a

single layer homogeneous beam.
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In order to address these problems, a higher-order beam theory (HBT) has recently been
developed by Sheikh and co-workers [23-25] for an accurate prediction of global as well as
local responses of these composite beams. The cross-sectional warping of the beam layers
produced by the parabolic (nonlinear) variation of shear stress is modelled by taking a higher
order (3rd order) variation of longitudinal displacement of the fibres throughout the beam
depth. This beam theory (HBT) utilized the concept of Reddy’s higher order shear
deformation theory [26] developed for multi-layered laminated composite plates modelled
as single layered plates with no interfacial slip. The HBT [23-25] has been implemented by
a one dimensional finite element model which has exhibited very good performance but the

model is so far restricted to small deformation analysis of these composite beams.

In the present study, a nonlinear finite element model based on HBT is developed
considering the effect of large deformations based on the Green-Lagrange strain vector. This
leads to nonlinear governing equations which are solved by an incremental iterative
technique following the Newton-Raphson method. The results predicted by the proposed
models are validated with the published results and the numerical results produced by
detailed two-dimensional finite element modelling of composite beams using a commercial
finite element program (ABAQUS). It is noted that the stress distributions in composite
beams, considering geometrically nonlinear effects, were not found in the existing literature.

Therefore, the dataset reported contributes an important resource for future references.

2. FORMULATION
2.1. Higher-order Beam Theory

Fig.1 shows a typical two layered composite beam with a flexible interface. According to
the HBT, the variation of longitudinal displacement of the two layers over their depths can

be expressed as

ua = uaO - yaea + yazlaa + ygﬂa’ (1)
Uy =Uyo — Yobh + Yo + Y5 By s (2)

where ua and uno are longitudinal displacements of the two layers at their reference axis ( ya
=0ory,=0), éxand & are bending rotations of these layers, and « and g are higher order

terms. As the vertical separation between the layers is not common under static loading for
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a straight beam, its effect is not considered in this study. Thus the vertical displacement is

assumed to be the same for both the layers and it can be expressed as

W, =W, =W(X) . 3

The partial shear interaction between the two layers is modelled by uniformly distributed
springs along the entire length of the interface between these layers. The interlayer slip is
defined as the relative longitudinal displacement between the upper and lower layer at their

interface and it can be expressed as

Y
¢ A E a: Upper layer
T ______________ ‘(_.2_ ...................... _) X
A h Reference Axis
_a
Yy 2
Vb
@ b:Lower layer
N v oy
A Reference Axis
hy

Fig. 1. Typical two layer composite beam with displacement variations throughout the beam
depth.

s=0, -0, (4)

where i, is the longitudinal displacement at the bottom fibre of the upper layer and ,, is

that at the top fibre of the lower layer.

The shear strain for the upper material layer of the beam () at its top surface is zero, as
the shear stress (z, =G,y,) becomes zero at this free surface. Using Egs. (1) and (3), the

shear strain at any point of the upper layer may be expressed as

ou, ow ,  dw
=—2+—=-6,+2 +3 +—
7/3 aya 8X a aa ya ﬁa ya dX (5)

The shear stress free condition at the top surface of the upper material layer can now be

employed by substituting ya = ha/2 (Fig. 1) in the above equation which is lead to

3 dw
_9a+aaha+2ﬁah§+&:0 (6)
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Similarly, the shear stress free condition at the bottom surface of the lower material layer (
7, =G,y, =0 at yp = -hs/2) can be employed to get the following equation
dw

3
‘gb_abhb‘l'Zﬂbhbz-l'a:O (7)

Now, substituting ya = -ha/2 in Eq. (1), the longitudinal displacement at the bottom surface

of the upper material layer T, can be expressed as

h h? h3
u _ua0+ ;9a+aa7a_ﬂa€a (8)

Similarly, substituting y» = hu/2 in Eq. (2), the longitudinal displacement at the top surface

of the lower material layer T, can be expressed as

_ h hZ N
Ub:Ubo_?be+ b +ﬂb 9)

These four equations (6-9) are used to eliminate the four higher order non-physical terms
(a,,B..a, B,) appeared in Egs. (1) and (2) are these two equations (1-2) are rewritten as
u, =Au, +B,0, +C,6, +D,¢ (10)

where the parameters A, B, C and D are functions of y, cross-sectional properties of the two

layers and their material properties. The explicit expression of these parameters are as

follows:
12 , 16 12 , 16 , 4 2 12
=1l——— I B ] C = - )
A, 5h2 Ya t+ 5h3 y3 a = 5h2 Ya — 5h§ Ya a Ya 5h, 5h2 y:
2 12 16 12 16
D, =- 2 , =1- 3 B 2 ,
a 5ha ya 5h2 ya Ab 5h2 yb 5h€ yb b = 5h2 yb 5h3 yb
4 12 2 4
C.=-V, +—V? , D, =—V?
b Yo 5h, Yp 5h2 yi b 5h, Yo — 5h2 Yo -

In the above equations, ¢ (=dw/dx) is taken as an independent field variable to have a
straightforward C° continuous formulation for its finite element implementation and avoid

C1 continuous formulation.
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2.2. Variational Formulations and its Finite Element Implementation

The equilibrium equation can be derived using the principle of virtual work and it can be
expressed as

jj ) dAdx+ j j } dAdx+ j &t dx = j saqdx, (12)

where § is an operate to show the variation of any parameter, {e}, and {e}, are strain vectors

(consisting of longitudinal normal and transverse shear strains) of the upper and lower layers

respectively, {c},and {s}, are stress vectors (consisting of longitudinal normal and
transverse shear stresses) of these layers, r, is the distributed shear force (per unit length)

at their interface, q is the distributed external load (per unit length) acting on the beam and

A represents the cross-sectional area.

From Egs. (10) and (11), the Green-Lagrange strain vector [27] at a point within a material

layer may be written as

ou 2
=)Ll 35 (5
0
={e i +ew }kv (13)

where {g, }, and {g, }, are the linear and nonlinear strain vectors in which the index k = a

for the upper layer and k = b for the lower layer. The linear strain vectors may be written

in terms of the cross-sectional matrix [H, ], and the one dimensional strain vector {z, }, as
{SL}k :[HL]k{gL}k’ (14)

AOB C, D 0O 0 0 0 0

where, [H ] =| 3 o o o 9A 9B dS db |, (15)
dy, dy, dy, dy,
_ du, du, d6, d¢ _ dw
and To| =k "k Kk 22 u, T 6 — . 16
{SL}k (dx dx  dx  dx ko Mk Y ¢ dxj (16)

For the finite element implementation of the proposed beam model, a displacement based
quadratic isoparametric beam element with three nodes is used to have a simple formulation
and no unexpected numerical inconsistencies. A typical element having a length of [, is
shown in Fig. 2. However, a displacement based formulation can have locking problem,

which is eliminated by using the field consistent technique [28]. The field variables of the
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element are uao, T,, 64, W, ¢, Upo, T,and &, and these are expressed in terms of their nodal

unknowns using interpolation functions of the element N; [27] as follows.

3 3 3 3
Uoo= D N U0 Ta= D N Ty, 0= D N0y, W= Nywj,
= I = =
3 3 3 3
Uo= 2N U0y o Ty= 2 N oy, 0= > N0y 6= N g, . a7
= = i= j=t
< >l >|
le/2 le/2

Fig. 2. Three nodded beam element

Using Eq. (17), the one dimensional strain vectors (16) can be expressed as

Ay
{EL}k:[[Bi]k [BE]k [Bf]k {Az} :[BL]k{A}’ (18)
{As}

3

where a typical component of the strain-displacement matrix [B/], corresponding to node j
(1,2 or 3) is:

dN;
—1 0 0 0 000
dx
dN
0 —4 0 0 0 000
dx
0 0 — 0 0 000
dx
| dN,
Bil=| 0 o o0 o —Looao|
X
N, 0 0 0 0 000
0O N, 0 0 0 000
0 0 N, 0 0 000
0 0 0 0 N, 000
dN;
0 0 0 — 0 000
L dx ]
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_ N ]
000 0 0 —L 0 o0
dx
000 0 0 0 —L 0
dx
dN;
000 0 0 0 —
0N dx
[Bil=[000 o0 —L 0 0 o
X
000 0 0O N, 0 0
000 0 0O 0 N, 0
000 0 0O 0 0 N,
000 0 N, O 0 O
dN
000—L 0 0 0 o0
L dx _

and the nodal displacement vector is:

T

Now the nonlinear strain vectors may be expressed as

du
| dudwy
{EN}kZE dox dOX dw ZE[A]k{g}k' (19)
dx

The vectors {9}, of the two layers may be expressed in terms of their cross-sectional

matrices [H, ], and one dimensional strain vectors {,}  (dependent on x only) as

{0 :[HN]k {‘9N9}k , (20)
— Ak Bk Ck Dk 0
where, [H, ], _{ A J, (21)
¢ (du, du, do, dg dw
and fewo _[ dx dx dx dx dxj' 22)

The matrix [A], in Eq. (19) is dependent on displacements of the beam and is evaluated for

updating in each iteration within the solution scheme of the nonlinear governing equations

utilising {6}, .

The one dimensional strain vector shown in Eq. (22) can be expressed in terms of the nodal

displacement using Eq. (17) as
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[a—

{5N9}k = [[Gl]k [Gz

1A,
‘ [Ga]k%{Az}} =[Gl A}, (23)

{As)
where
dN; |
0 0 0 0O 00O
dx
dN;
— 0 0 0O 00O
dx 0N
[G,-L= 0 0 — 0o 0 000/ j=120r3
dx
dN;
0 0 0 0O — 00O
dx
0 0 o —X 0 000
i dx |
I dN; ]
000 O o — 0 0
dx
000 O 0 o —L o0
dx iN
and[Gj]b=ooo 0O 0 0 O d—j,j:1,20r3.
X
ooo0o o — o 0 0
dx
dN;
000 — O 0 0 0
L dx i

Employing the above Egs. (14), (18), (19), (20) and (23), the total strain vector of Eq. (13)

can be expressed as

b =[ (oML S Ak LGk =[] + 3B Jo 24

Taking the variation of Eq. (24), the incremental strain vector can be obtained [27] and be

expressed as

Gl =(H LB ] +[AL[Hy LIGL fon}=([B. 1 +[By] fon} =[BI, {an}. (25)

Similarly, the slip at the interface between the two layers (4) can be expressed in terms of

the nodal displacement vector as

1A
S= (Ub - Ua) = [[Bl]sh [Bz ]sh [B3]sh}{{A2}} = [B]sh {A}’ (26)

1)

where [B;];,=[0 N; 0 0 0 0 -N; 0],j=1,20r3.
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As there is no nonlinear term in the expression of the interfacial slip (26), the incremental

slip can simply be written as

& = [Bly e} &7

The virtual work done by an externally applied distributed load g can be expressed in terms

of the nodal load vector {F} as
ja/qux (A} {F}, (28)

where, {F}=[[IN,] [N,] [N, ] qdx=[[N]"qdx (29)

in which [N;]1=[0 0 0 N; 0 0 0 0],j=1,20r3.

Substituting Egs. (25), (27) and (28) into Eq. (12), the equilibrium equation can be obtained
and expressed as

[ [(BIL{ol.dAdx+ [ [IBI; {o}, dAdx+ [[BIL7ydx= L[N]qux. (30)
X A x A X

2.3. Incremental Equilibrium Equation

The stresses in the above equation (30) can be expressed in terms of strains using appropriate
constitutive relationships and these strains can subsequently be expressed in terms of nodal
displacements. However, this resulting equation cannot be solved for displacements or nodal
displacements directly due to the occurrence of the displacement dependent nonlinear
components of the strain displacement matrices. Thus the equation (30) is solved iteratively
which will help to update and improve the displacement values successively and this iterative
process will be continued until an acceptable level of accuracy is achieved. This can be
quantified with the norm of residual force vector which should be less than a user defined

tolerance to stop the iteration. The residual force vector {éR} will be obtained from Eqg. (30)

and it can be expressed as

{éR}:L[N]qux— [ [(BT {o}dAdx+ [ [IBI; {o}, dAdx+ [[BTG,zqdx |. (31)
x A X A X
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The Newton-Raphson technique will be used for the iterative solution of the nonlinear
equilibrium equation (30) which needs an incremental form of this equation. This can be

obtained by taking a variation of the equilibrium equation with respect to displacements as

[ [[B1:{o}.dAdx+ | [IBI; {do},dAdx+ [ [[oBI; o}, dAdx
X A, X A, X A

32
+[ [IBI; oo}, dAdx+ [[BIL,or,dx= (R} 2
X A X

The incremental strain displacement matrix of a material layer used in the above equation

can be expressed by invoking Eqg. (25) as

[5§]k :[agN]k z[&]k[HN]k[G]k' (33)

Again, the incremental stress vector of a layer can be expressed by invoking Eq. (25) as
{0} =[Dl{ce}, =[DL([BL1 + Byl hon}. (34)
The constitutive matrix [D]k used in the above equation can be expressed as

_|E O
[D]k _I: 0 Gk:|' (35)
where Ex and Gy are the elastic modulus and shear modulus of the k™ material layer.
The incremental interfacial shear force can be expressed in terms of the incremental slip as
5TSh = ksh& y (36)
where kg, is the spring stiffness for the shear connectors.

In the proposed finite element formulation, dw/dx is taken as an independent field variable
¢ (see Egs. (10) and (11)), which has introduced a mathematical inconsistency, since ¢ can
be obtained from w by taking its derivative, i.e., ¢ is dependent on w. In order to avoid this
inconsistency, a penalty function approach [29] is used to satisfy a constraint condition

(dw/dx) — ¢ = 0 variationally which leads to an additional strain energy as follows

2
up=%jkp(‘;—‘;v—¢j dx (37)

where kp is the penalty stiffness parameter which is usually having a large value.
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Using Eq. (17), the constraint condition can be expressed in terms of the nodal displacement

vector as

As

1A}
—¢ﬂBtIBS][B$H{§AZ%}[Bp]{A} (38)

dN;,
where [B,]=[0 0 0 d—x' -N; 000],j=1,20r3.

After substitution of Egs. (33) to (38) into Eq. (32), the incremental equilibrium equation
can finally be written as

[KrTion)={R}. (39)

The tangent stiffness matrix [Kr] used in the above equation can conveniently be expressed

in terms of linear, nonlinear and geometric stiffness matrices ([Ki], [Kn], [K/]) as

[Ke 1=K I+ Ky 1+ K, ], (40)

where these matrices can be expressed with the help of the above equations as follow:

K ]=[[B ]Z[I[H i [PL[HL ]adAJ[BL]adHI[BL I (I[H L [PL[HL, dAJ[BL ], dx
X A X A
+I[B]Ih ksh[B]sth"‘”Bp]T Kp [Bp]dx

X

(41)

[Ky ]:J.[BL];[J.[H LE [DL[AL[H\ ]adA\J[G]adx-’_J- L]T{J.[H [DL,[ALL,[Hy ]b dAJ[G]

Aq

X

jer[j[H [[AL[DLH L]adA][BL]adH j[elz[ﬂHNE[A];[D]b[HL]bdA][BL]bdx
X A, A

o ];{j[HN T AT [OLIALH, ]dAJ[e] s j[er[j[ J;[A]z[D]b[AJb[HN]bdA][e]bdx,
X A, X Ay
(42)

=] G]T[I[H o.[Hy ], dAJ G], dx+j[G (I[H TouHy dA][G] (43)

X A
The system of nonlinear equations is solved using the incremental equilibrium equation (39)
and other equations such as Eg. (32) where an incremental integrative approach of solution
is adopted so as to avoid any possible divergence. The entire load is divided into a number

of load steps and they are applied gradually in increments where the iterative solution
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technique is activated within each load step. The iteration within a load step is stopped once

the following condition is satisfied.

(R} {R)

x100<Tol (44)
{FIT{F}

where Tol is the tolerance for convergence and it is taken as 0.1% in the present study.

3. NUMERICAL RESULTS
3.1. Simply Supported Composite Beam with Rectangular Section

An example of a 1000 mm long two layered composite beam, subjected to a uniformly
distributed load, studied by Hjiaj et al. [22] is considered in this section for the validation of
the proposed one dimensional nonlinear finite element model. The cross-section of the beam
is 200 mm wide and 50 mm deep and it consists of two identical layers (each 200 mm wide
and 25 mm deep) where the shear stiffness at their interface is 1000 MPa/mm. The modulus
of elasticity is 10 GPa for the upper layer and 1 GPa for the lower layer whereas the Poisson’s

ratio is 0.3 for both material layers. The ends of the beam are pinned at mid-depth.

The finite element model of Hjiaj et al. [22] is based on TBT but they have also shown results
based on EBT. The proposed model is derived using HBT but the formulation can easily be
modified to accommodate a lower order beam theory (e.g., TBT, EBT) by elimination of a
few terms of Egs. (1) and (2). The composite beam is analysed with the proposed approach
using different number of beam elements (Fig. 2) and the results confirmed that 30 beam
elements, which generates a total degrees of freedom of 488, are adequate to achieve a
convergent solution. The number of load increments used for solving the problem was 50
where the maximum number of iterations required to get a converged solution within a load
increment was 4. The whole analysis required 120 iterations and a computing time of 4.9 sec
where an ordinary desktop computer (i5-3470T CPU @ 2.90 GHz and RAM 8.0 GB, 64 bit

operating system) is used.

The variation of the mid-span deflection with respect to the distributed load acting vertically
downward, found in the present analysis using HBT as well as TBT, is presented in Fig. 3
along with that found by Hjiaj et al. [22] using TBT and EBT. The figure also includes results

obtained from a detailed two dimensional (2D) finite element analysis of the composite beam
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utilising a commercially available finite element code (ABAQUS). The entire beam is
modelled with ABAQUS using four node plane stress (CPS4R) rectangular elements laying
in the vertical plane where 50 elements are used along the beam length and 20 elements are
used along the entire depth. This specific mesh size produced a total DOF of 2142. The
analysis is carried in a similar manner using 50 load increments but the maximum number
of iterations required within a load increment was 10 for this 2D analysis. The same
computer is used for running this 2D analysis where the computing time consumed was 1
minute 40 sec for solving the whole problem. It should be noted that the solver used by
ABAQUS is expected to be more efficient than a relatively simple solver used in the
computer program (FORTRAN) developed for implementing the proposed model.
Moreover, it needs a significant amount of time for model generation in ABAQUS. The
interface of the two material layers is simulated with the cohesive contact model. Fig. 3
shows reasonable agreement between the results produced by the different models. However,
the performance of the proposed one dimensional (1D) model based on HBT is found to be
most superior amongst 1D models when compared with the results based on the 2D finite

element model.
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Fig. 3. Mid-span deflection of the composite beam with rectangular section (50 mm deep).
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Fig. 4. Mid-span deflection of the composite beam with rectangular section (200 mm deep).

Hjiaj et al. [22] have investigated the problem by changing the depth of the beam as 200 mm
(each layer 100 mm thick) in order to have a beam having lower span to depth ratio, which
should help to highlight the improvement of their TBT model over the EBT model. This 200
mm thick beam is also analysed with the proposed model (HBT) and compared with TBT as
well as the 2D finite element model, the results obtained for the mid-span deflection are
plotted in Fig. 4. It has followed a similar trend but the deviation of the results obtained by

the different models are magnified as expected.
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Fig. 5. Bending stress at mid-span of the composite beam with rectangular section (200 mm
deep).
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The variation of bending stress over the depth of this beam (200 mm deep) at mid-span as
predicted by the proposed models is plotted in Fig. 5. It shows that HBT predicts a higher
value of the bending stress at critical points. In a similar manner, the variation of shear stress
over the beam depth found in the present analysis at the quarter span and support of the beam
is presented in Fig. 6 and Fig. 7 respectively. The figures clearly indicate that TBT is not

capable of predicting the actual variation of shear stress.
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Fig. 6. Shear stress at quarter-span of the composite beam with rectangular section (200 mm
deep).
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Fig. 7. Shear stress at a support of the composite beam with rectangular section (200 mm
deep).
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3.2. Simply Supported Composite Beam with T-section

An 8.0 m long two layered composite beam having a T-section as shown in Fig. 8 is
considered in this example. The material properties of the two layers are taken as: E; = 26
GPa (modulus of elasticity of layer-1), v = 0.15 (Poisson’s ratio of layer-1), E = 200 GPa
and w = 0.3. The interfacial stiffness of the shear connectors is taken as 11.70 MPa. The
beam is simply supported at its two ends and subjected to a uniformly distributed load, with
a maximum magnitude of 4500 kN/m. The composite beam is analysed with the proposed
1D finite element model based on HBT as well as ABAQUS model where the beam is
modelled in 2D laying in the vertical plane, where the thickness of the layers are explicitly
modelled as 500 mm and 150 mm for modelling Layer-1 and Layer-I1 respectively as shown
in Fig. 8. The solution of this composite beam problem also required 30 beam elements (total
DOF: 488) and the analysis is also carried with 50 load increments where the maximum
number iteration required in a load increment was 3. The total number of iterations required
for these 50 load increments was 100 which required a computing time of 4.6 sec. On the
other hands, the 2D finite element model (ABAQUS) required a total DOF of 1134 which
required a computing time of 1 min and 30sec for the whole solution consisting of 50 load

increments.

bi=500 mm

7

h;=150 mm

h; =300 mm

e
b =150 mm

Fig. 8. Cross-section of the 8 m long simply supported composite beam

The load-deflection curve obtained from both modelling techniques at mid-span and quarter-
span sections of the beam is plotted in Fig. 9 which shows very good agreement between the
results. The variation of deflection along the length of the beam obtained from both models
for load intensity of 2000 kN/m, 3000 kN/m and 4500 kKN/m is presented in Fig. 10. All these
results show a good and consistent performance of the proposed model.
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Fig. 9. Deflection at mid-span and quarter-span of the simply supported composite beam
with T section (Fig. 8).
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Fig. 10. Deflection along the length of the simply supported composite beam with T section
(Fig. 8).

3.3. Composite Beam with Fixed Supports at Two Ends

The behaviour of a 2 m long two layered composite beam having a rectangular section and
fixed supports at its ends (Fig. 11) is studied in this section. It includes the response of the
beam in geometric nonlinear (GNL) and linear (GL) ranges considering flexible (PI) and
strong (FI) interfaces taking the value of ksh as 70 MPa and 1.0x10*°*MPa respectively and
these results are produced by the proposed model according to HBT as well as TBT. The
beam is subjected to a uniformly distributed load, which is increased incrementally from

zero to 100 KN/mm to trace the entire nonlinear response. This specific problem is chosen

35



from the study [9], where analytical models have been developed based on TBT to predict
the linear response of this beam taking simply supported boundary condition and interfacial
properties.

300 mm

ANY VYV Y YVYYVYVY VY VY
N Layer 1 300 mm
{ 2000 mm | X
E, = E, = 12000 MPa 300 mm
G, = 800 MPa, G, = 1200 MPa M

Fig. 11. Composite beam having fixed supports at its two ends

The computational time required for solving this problem was 8.1 sec (total number of
iterations: 202) where 30 beam elements (total DOF: 488) and 100 load increments are used.
The load deflection curves obtained at the mid-span section of the beam using different
modelling options as mentioned above (GNL, GL, PI, FI, HBT and TBT) are plotted in Fig.
12, which show the relative performance of the different modelling techniques. The variation
of deflection along the length of the beam obtained with the same modelling techniques is
presented in Fig. 13 where all these results are corresponding to a load intensity of 50
kN/mm. Similarly, the variation of interfacial shear slip along the length of the beam having
flexible interface (ksh = 70 MPa) is plotted in Fig. 14, which shows an expected pattern of

shear slip in a fixed beam problem.
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Fig. 12. Mid-span deflection of the fixed ended composite beam (Fig. 11).
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Fig. 13. Deflection of the fixed ended composite beam (Fig. 11) along its length under 50
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Fig. 14. Interfacial shear slip of the fixed ended composite beam (Fig. 11) along its length
under 50 kN/mm of loading

For further investigation, the variation of bending stress over the beam depth obtained at one
of the fixed ends using all these modelling techniques is presented in Fig. 15. It shows a
significant deviation between the predictions made by HBT and TBT for the bending stress
in all cases. In a similar manner, the variation of shear stress over the beam depth at a fixed
end is presented in Fig. 16, which shows a huge difference between results predicted by HBT
and TBT as expected. Similarly, through the depth variations of bending and shear stresses
at the mid as well as quarter span section of the beam are presented in Fig. 17 and Fig. 18

respectively where a similar behaviour is observed.
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Fig. 15. Bending stress of the fixed ended composite beam (Fig. 11) at one of its end section
under 50 kN/mm of loading.
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Fig. 16. Shear stress of the fixed ended composite beam (Fig. 11) at one of its end section
under 50 kN/mm.
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Fig. 17. Bending stress of the fixed ended composite beam (Fig. 11) at mid-span section
under 50 kN/mm of loading.
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Fig. 18. Shear stress of the fixed ended composite beam (Fig. 11) at quarter-span section
under 50 kN/mm of loading.

3.4. Steel-Concrete Composite Beam with Two Spans

A two-span continuous beam consists of a concrete slab and a steel I-girder connected by
steel shear studs as shown in Fig. 19 is studied. The beam is fixed at the left end, pinned at
the right end and having an intermediate roller support that divides the entire beam into two
equal spans (Fig. 19). The beam is subjected to two identical point loads acting at the
midpoint of these two spans as shown in Fig. 19 where each load P is varied from zero to
20,000 kN incrementally. The material properties of the concrete slab and the steel girder
are taken as: E¢ = 20,000 MPa, Es = 200,000 MPa, v = 0.2 and 1 = 0.25.
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Fig. 19. Two-span steel concrete composite beam.
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The beam is analysed with the proposed finite element model based on HBT and compared

with TBT where the interfacial shear stiffness is taken as 10 MPa (P1) and 1.0x10"°MPa
(FI). This problem also required 30 beam elements (total DOF: 488 DOF) and the analysis
is carried with 100 load increments where the maximum number iteration required in a load
increment was 5 for HBT as well as TBT. The total number of iteration required for these
100 load increments was 199 which required a computing time of 11 sec. The load-deflection
curves obtained at the mid-point of these two spans are presented in Fig. 20 and Fig. 21. It
is observed that the discrepancy between the deflections predicted by HBT and TBT is less
for the flexible interface compared to the strong interface.
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Fig. 20. Deflection under the point load on the left span of the two span composite beam
(Fig. 19).
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Fig. 21. Deflection under the point load on the right span of the two span composite beam
(Fig. 19).
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The variations of bending and shear stresses over the beam depth obtained at the mid-point

of the left span corresponding to the highest load (P = 20,000 kN) are plotted in Fig. 22 and

Fig. 23 respectively. Similar to the deflection, the difference between the bending stress

results predicted by these two beam theories (Fig. 22) is highlighted in the case of strong

interface. Fig. 23 demonstrates that TBT is not able to capture the true shear stress

distribution as also observed in the previous examples.
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Fig. 22. Bending stress at the middle of the left span of the two span composite beam (Fig.
19) under maximum load (P = 20,000 kN).
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4. CONCLUSIONS

An efficient one dimensional finite element model based on a higher-order beam theory
(HBT) is developed for an accurate prediction of the geometrically nonlinear response of
two layered composite beams. The partial shear interaction caused by the longitudinal
separation or shear slip of the two layers at their interface due to the deformability of shear
connectors is considered and modelled as distributed shear springs along the entire length of
the beam.

The HBT provides a true parabolic variation of the shear stress over the beam depth, and
therefore does not require the use of a potentially arbitrary shear correction factor for the
correct prediction of the global response such as deflection. Moreover, the model is capable
of predicting the local response such as the distribution of stresses realistically.

The Green-Lagrange strain is used to develop the proposed finite element model for
incorporating the effects of geometric nonlinearity. The principle of virtual work is applied
to derive the nonlinear governing equations which are solved by an incremental-iterative

approach following the Newton-Raphson technique.

Numerical examples of composite beams are solved by the proposed model taking into
account different layer configurations, loading, support conditions, and interactions to assess
the performance and range of applicability of the model. The published results are used for
the validation of the proposed model, and a detailed two-dimensional finite element model

is used for verifying the response of composite beams.

The numerical analysis has confirmed that the proposed model has improved capabilities
compared with existing techniques in predicting the local response of composite beams. It is
also observed that an improvement in the prediction of global response of these beams is

achieved when the current model is applied.
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Chapter 3: Material Nonlinear Model

3.1 Introduction

The manuscript contained in this chapter namely “A higher-order model for inelastic
response of composite beams with interfacial slip using a dissipation based arc-length
method” presents the development of a one dimensional finite element model of steel-
concrete composite beam based on a higher-order beam theory (HBT) considering the effect
of material nonlinearity. The purpose of the study to predict the response of these composite
beams influenced by inelastic material behaviours of their constituents modelled by a
plasticity model based on von Mises yield criterion with an isotropic-hardening rule and a
damage mechanics model. In order to avoid any divergence in the solution of the plasticity
modelling, the backward Euler stress return algorithm is incorporated in the model to update
the stresses. Various types of stress-strain curve (uniaxial) are used for the different materials
to have a realistic representation of their actual behaviours of the beam. A robust arc-length
method is implemented for solving the nonlinear equations which helped to capture the post
peak response successfully. It is also shown that the performance of the proposed model
based on HBT is better than that based on existing beam theories such as EBT and TBT.
Based on the accuracy and range of applicability of the proposed model, it is highly

recommended for the analysis of composite beams having inelastic material behaviours.
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3.4 A higher order model for inelastic response of composite beams with interfacial

slip using a dissipation based arc-length method

Md. Alhaz Uddin, Abdul Hamid Sheikh, David Brown, Terry Bennett and Brian Uy

ABSTRACT

An efficient one dimensional finite element model is developed for an accurate prediction
of the inelastic response of steel-concrete composite beams with partial shear interaction
using a higher-order beam theory (HBT). This is achieved by taking a third order variation
of the longitudinal displacement over the beam depth for the two layers separately. The
deformable shear studs used for connecting the concrete slab with the steel girder are
modelled as distributed shear springs along the interface between these two material layers.
A plasticity model based on von Mises yield criterion and a damage model are used to
simulate the inelastic behaviour of beam materials. An arc-length method based on energy
dissipation is employed to capture the post peak response successfully. The capability of the
proposed model is assessed through its verification and validation using existing
experimental results and numerical results produced by detailed finite element modelling of

these beams.

Keywords: Steel-concrete composite beam, Partial shear interaction, Higher-order beam
theory, Inelastic material behaviour, Dissipation based arc-length method.

1. INTRODUCTION

Composite structures are widely used in various engineering activities for their superior
structural performances. Steel-concrete composite beams belong to a specific type of
composite structures, typically used in bridges, buildings and other civil engineering
infrastructure. These structures consist of a concrete slab and a steel girder which are
connected by steel shear studs to have composite action. The concrete slab is primarily
utilised to carry the compressive stress whereas the steel girder carries the tensile stress to
enhance the performance of the overall structural system. The shear connectors transfer shear
forces at the interface between concrete and steel material layers. This leads to interfacial

shear slip due to shear studs with finite stiffness which is commonly known as partial shear
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interaction [1]. As the contribution of partial shear interaction on the structural behaviour is
found to be significant (e.g. [2, 3]), this effect can’t be ignored in the analysis of these
composite beams. This is an active area of research which is best demonstrated by the large
number of studies on different aspects of composite beams. However, the main aim of the
present study is to develop an efficient model for accurately predicting the inelastic response

of composite beams.

Newmark et al. [4] is one of the earliest researchers who developed an analytical model for
composite beams where the effect of partial interaction was considered in the form of shear
slip. This is a well-regarded model but only applicable to beams with simply supported
boundaries and relatively simple loading due to the analytical nature of the model. In
contrast, a numerical model based on finite element approximation can provide adequate
generality in the analysis with sufficient accuracy. Thus a number of researchers (e.g. [5-9])
have developed finite element models for composite beams with partial interaction. However
all these models [5-9] are based on elastic behaviour of beam materials. In reality, the
materials of these beams are having inelastic deformations even with a low to moderate
range of loading. In order to address this issue, Yasunori et al. [10] incorporated the effect
of inelastic material behaviour in their finite element model of composite beams using the
von Mises yield criterion. However, they [10] used a very simple material model based on
an elastic perfectly-plastic idealisation for all materials including concrete which is not
realistic especially for the tensile response of concrete. Similar studies have been carried out
by Salari et al. [11] using a bi-linear elasto-plastic material model with a strain hardening
parameter. A further development in this direction is due to Dall’Asta and Zona [12] and
Erkmen and Attard [13] who have used realistic stress strain curves for the beam materials
but Dall’Asta and Zona [12] have ignored the contribution of concrete in tension whereas
Erkmen and Attard [13] have used the concept of tension stiffening for its modelling. A more
comprehensive model is proposed by Liu et al. [14] where the tensile behaviour of concrete
is simulated using a damage mechanics model which can precisely model the tensile
response of plain concrete without reinforcement. Foraboschi [15] and Foraboschi et al. [16]
attempted to solve the composite beam problem analytically but the structure is idealised in
a different manner where the shear connector is modelled as a separate material layer with a
finite thickness. Moreover, the inelastic material behaviour is consider only for this
interfacial layer whereas the primary layers (concrete slab and steel girder) are treated as
linear elastic materials. Anyway, all these models [4-16] are based on Euler-Bernoulli beam

theory (EBT), which does not consider the effect of transverse shear deformation of the steel
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and concrete layers. The effect of this shear deformation is significant in some situations
such as beams with a small span-to-depth ratio, localized concentrated loads, clamped
boundary conditions and some other cases.

Thus there has been a growing interest in recent years to incorporate the effect of shear
deformation and the Timoshenko’s beam theory (TBT) is typically used for this purpose
(e.g., [17-21]). It is observed that all these investigators [17-21] have used linear elastic
material behaviour to develop their models except Nguyen et al. [21], who have used a very
simple constitutive model specifically for the concrete. Moreover, it should be noted that the
actual variation of transverse shear stress over the beam depth is parabolic, whereas an
average shear stress having a uniform distribution is taken in TBT to simplify the problem.
In order to address this issue, TBT needs an arbitrary shear correction factor which helps to
predict the global response such as deflection or vibration frequency well, but it is not
sufficient for an accurate prediction of the local response such as the stress distributions
within these structures [22-24]. Moreover, the calculation of the exact value of this shear
correction factor for a composite beam with partial shear interaction is cumbersome in

comparison with that of a single layer homogeneous beam.

In order to address the aforementioned issues related to shear deformation of the beam
material layers, a higher-order beam theory (HBT) has recently been developed by Sheikh
and co-workers [22-24] for an accurate prediction of global as well as local responses of
these composite beams. The cross-sectional warping of the beam layers produced by the
transverse shear stress is modelled with a higher order (3rd order) variation of longitudinal
displacement of the fibres over the beam depth. This beam theory (HBT) utilized the concept
of Reddy’s higher order shear deformation theory [25] developed for multi-layered
laminated composite plates modelled as single layered plates without interfacial slip. In these
investigations [22-24], HBT has been implemented in a one dimensional finite element
model which has exhibited very good performance, though these studies are restricted to
linear elastic analysis of these composite beams with interfacial slip.

Considering the aforementioned aspects, an attempt is made in this study to develop an
efficient numerical model based on HBT for accurately predicting the inelastic response of
composite beams. The inelastic material behaviour is responsible for inducing nonlinearity
in the structural response, which can be manifested in the form of nonlinear load-deflection
curves. These curves can sometimes have a descending branch after attaining the peak load

due to the strain-softening of concrete. It is observed that most of the investigations carried
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out on the inelastic response of composite beams [10-14, 21] could not capture the
descending branch of the nonlinear load-deflection curve successfully. The solution of this
typical nonlinear problem is quite challenging and a load control based technique cannot
trace the descending branch of the load-deflection curve. In order to overcome this problem,
a displacement control based technique may be used but it will fail if the load-deflection
curve has a snap-back response. In this situation, an arc-length based solution technique
seems to be the only possible option.

The arc-length method was proposed by Riks [26] and subsequently enhanced by various
investigators (e.g. Crisfield [27, 28]) for solving different nonlinear problems. Though these
developments helped to solve complex geometric nonlinear problems successfully, but they
encountered severe convergence problem in solving material nonlinear problems especially
relating to concrete structures which have failure/crack localizations. In order to address this
specific issue, the localized nature of damage has been utilised by May and Duan [29] to
develop a new arc length method known as a damage localization approach. This method
can provide a satisfactory solution of a problem [30] but it requires the position of damaged
elements, which may be difficult to locate in a complex structural system. A further
advancement in this direction is due to Gutiérrez [31] who proposed a dissipation based arc-
length method where the energy dissipated by the entire structure due to its damage and
plastic deformations is utilised as a stepping parameter for controlling the incremental
iterative process. The success of this method is primarily due to the stepping parameter as it

is always positive regardless of the sign of the tangential stiffness.

In this study, a computationally efficient one dimensional finite element model is developed
using a higher order variation of the longitudinal displacement along the beam depth
according to HBT and inelastic material behaviours of the beam constituents. The von Mises
plasticity theory with an isotropic hardening rule is used for modelling the inelastic
behaviour of steel girders, concrete slabs under compression, steel reinforcements, and steel
shear studs. A damage mechanics model is used for modelling the inelastic behaviour of
concrete under tension. A dissipation based arc-length method is employed to capture the
post peak response successfully. Numerical examples of composite beams are solved by the
proposed model. The results predicted by the models are validated with the published
experimental results and the numerical results produced by a detailed two-dimensional finite
element model of these beams using a reliable finite element software. As the number of

results available in the inelastic range of composite beams is limited and no one has reported
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any results for the stress distributions within these structures, a number of new results are

presented for future references.

2. MATHEMATICAL FORMULATION
The formulation of the proposed model is based on the following major assumptions:

a) the beam has an uniform cross-section along its length, b) the beam deformation is small
which excludes any effect due to change in geometry, c) there is no vertical separation
between two material layers, d) the applied load passes through the vertical plane of
symmetrical of the beam which excludes any torsional effect, and e) local buckling of the

steel I girder is not considered.

2.1. Higher-order Beam Theory (HBT)

Fig. 1 shows a steel-concrete composite beam which is typically a two layered composite
beam with a flexible interface. According to the HBT, the variation of longitudinal

displacement of the concrete and steel layers over their depths can be expressed as

U, =Ug — ycec + ygac + y?ﬂc (1)
us :uso_y505+y52as+y53ﬂs (2)

where uco and uso are longitudinal displacements of the concrete slab and the steel girder at
their reference axes (y. = 0 and ys = 0) respectively, & and & are bending rotations of these
layers, and o and £ are the higher order terms. As vertical separation between the layers is
not commonly observed in a straight composite beam under a static load, it is not considered
in this study. Thus the vertical displacement will be the same for both layers and it can be

expressed as

—w 3)

The partial shear interaction between the concrete and steel layers is characterised by the slip
at their interface. This is defined as the relative longitudinal displacement of these material

layers and it can be expressed as
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S=U; —U; (4)

where . is the longitudinal displacement at the bottom fibre of the concrete layer and u is
that at the top fibre of the steel layer.

lP
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a) Side view of a typical steel-concrete composite beam b) Cross-sectional view of the
composite beam
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c) A portion of the composite beam d) Variation of longitudinal displacement

over the beam depth

Fig. 1. Typical Steel-concrete composite beam with displacement variations over the beam
depth.

The shear strain for the upper material layer of the beam (5, ) at its top surface is zero, as the
shear stress (7, =G,y. ) becomes zero at this free surface. Using Egs. (1) and (3), the shear

strain at any point of the upper layer may be expressed as

ou, ow , dw
=—+—=-0,+2a.y,+3 +—
7/0 ayc aX C aC yC ﬂc yC dX (5)

The shear stress free condition at the top surface of the upper material layer can now be

employed by substituting yc = he/2 (Fig. 1) in the above equation which is lead to

3 dw
—90+achc+zﬂchf+&:0 (6)
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Similarly, the shear stress free condition at the bottom surface of the lower material layer (
7, =Gy, =0 atys = -hs/2) can be employed to get the following equation
dw

3
—0,—ah, +2Bh2+ 2 =0 7
S a55+4ﬂ55+dx ()

Now, substituting yc = -h¢/2 in Eq. (1), the longitudinal displacement at the bottom surface
of the upper material layer T, can be expressed as

_ h h? h?
uc :Uco +?c00 +acTC_ﬂcEc

(8)

Similarly, substituting ys = hs/2 in Eq. (2), the longitudinal displacement at the top surface

of the lower material layer U, can be expressed as

h

7] -—=0,+a,

h52 h3
Us =Ugg 2

TpE ©

These four equations (6-9) are used to eliminate the four higher order non-physical terms
(a.,B., a4, b ) appeared in Egs. (1) and (2) are these two equations are rewritten as

uc = Auco + BCUC +Ccec + Dc¢ (10)
us = Asuso + BsUs + Cses + Ds¢ (11)

where A, B, C and D are functions of y, cross-sectional properties of the two layers and their

material properties. The explicit expression of these parameters are as follows:

12 16 12 16 4 12
A, 5h2 J¢ T gna Ve c=gnz Yo o3 ve o= Yo g Yotz Yo
2 4 12 16 12 16
D =-— 2 _ 31 =1— 2 _ 3’ B = 2 4 3 ’
e = "gn Ve Tgpz Ve A 5nz ¥* Tgp3 ¥s s =gpz Vs P Vs
4 12 2 4
C,=-y,+ 2y 3, D, = 2_ 3,
=) 5h, Vs 5h? Vs ® 5hy Vs 5h? Vs

In the equations above, ¢ (=dw/dx) is taken as an independent field variable to have a C°

continuous formulation for the finite element implementation of this beam theory.
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2.2. Variational Formulations and its Finite Element Implementation

The equilibrium equation can be derived using the principle of virtual work and it can be
expressed as

{de}! {0}, dAdx+ {de}! {0}, dAdx+ | dsr,dx = | dwqdx, (12)
J [ied | Jied Jasraix=[

where d is used to show the variation of any parameter, {¢}.and {¢}, are strain vectors

s
(consisting of longitudinal normal and transverse shear strains) of the concrete and steel
layers respectively, {s}.and {s}, are stress vectors (consisting of longitudinal normal and
transverse shear stresses) of these layers, ¢, is the distributed shear force (per unit length)
at their interface, q is the distributed external load (per unit length) acting on the beam, and
A is the cross-sectional area.

Using Egs. (10) and (11), the strain vectors of the two layers may be written in terms of their

cross-sectional matrices and one dimensional strain vectors (dependent on x only) as

oy,
B =12 ™ o [ =1L, (13
o x

where the subscript [ = ¢ for the concrete layer and [ = s for the steel layer. The cross-

sectional matrices and one dimensional strain vectors are as follows.

A B CD 0 0O 0 00

[H]|:0000d_'°1ﬁ£ﬂ1- (14)
dy, dy, dy, dy,

_ du, do, dg d _ dw

{g}sz[d_)l(o d_xl d_xl d_f Up 0, 6 ¢ &J (15)

For the finite element implementation of the proposed beam model, a displacement based
quadratic isoparametric beam element with three nodes is used for a simple formulation and
does not involve any unexpected numerical inconsistencies. However, a displacement based
formulation can have a locking problem, which is eliminated by using the field consistent
technique [32]. The field variables of the element are uco, T, , &, W, @, Uso, U, and 6, which
can be expressed in terms of their nodal unknowns using interpolation functions of the
element [24]. This leads to express the one dimensional strain vectors (15) in terms of the

nodal displacement vector {A} as
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A

(&} =B, [B.] [Bs] {{ }} [B]{a}, (16)

(s}

where, [B]; is the strain-displacement matrix for the concrete/steel layer [24]. Similarly, the
interfacial slip (4) can be expressed in terms of a strain-displacement matrix for the

interfacial slip [B],, and nodal displacement vector [24] as

S= (Us - Uc) = [B]sh {A} : (17)
The virtual work due to the external load q as expressed on the right hand side of Eq. (12)
can be further expressed in terms of the external load vector {F.,}and incremental nodal

displacement vector {dA} as

[ dwadx={dA}" {F,. }, (18)
where {F,. }= [[N]qdx (19)

The matrix [N] in the above equation contains shape functions of the transverse

displacement, w [24].

Substituting Egs. (13), (16), (17) and (18) into Eq. (12), the equilibrium equation can be

obtained and it is expressed as

[ [IBIEIHI {o}. dAdx+ [ [IBITIHIT {o}, dAdx+ [[BTE, rydx = {Fey } (20)
x A x A

X

For the solution of the above equation, the stresses are to be expressed in terms of strains
which can subsequently be expressed in terms of nodal displacements {A} using Egs. (16)
and (17). However, for a material having inelastic deformations, the stress-strain relationship
is nonlinear and must be expressed in its incremental form as the stresses cannot be expressed
in terms of strains in their total form due to the load history dependent material behaviour.
Thus the above equation cannot be solved directly and an iterative approach will be required
for solving this nonlinear equation. To facilitate this, the left hand side of the equilibrium

equation (20) is defined as the internal nodal force vector {Pim}(dependent on nodal

displacement vector {A}), which leads to an expression for Eq. (20) in a compact form as

Poc{aD) = Foet oF ¥} ={R)— {Fou = {0} (21)
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The Newton Raphson method is used to solve the above equation iteratively where the nodal

displacement vector {A}j“at the iteration j+1 can be computed from that obtained in the
previous iteration {A}' as

o{A}

{MM=MPHMW“%W+K§ﬂT]?T@Pﬂ @

From the above equation, the incremental nodal displacement {dA} within an iteration can
be written as

Ot laa)=—t) @23)

Substituting Egs. (20) and (21) into the above equation and defining its right hand side as
the residual load vector {dR} (= —{}), it can be rewritten as

[ [IBIEIHI {do). dAdx+ [ [[BIL[HI! {do}, dAdx+ [[BIL, dz,dx = {dR} (24)
X A X A X

Now the incremental stresses in Eq. (24) can be expressed in terms of incremental strains

using a suitable constitutive relationship (provided in the following section) as

{do}, =[E']{de}, ; dzy, =kids (25)

where [E‘], is the tangential material stiffness matrix (elasto-plastic/damage stiffness matrix)

of the steel/concrete layer and k¢, is the tangential material stiffness (elasto-plastic stiffness)

of the shear connectors. Substituting Egs. (13), (16), (17) and (25) into Eq. (24), the

incremental equation can be written in its final form as

[Kr JidA} = {dR} (26)

where [K7] is the tangent stiffness matrix of the structure that can be expressed as

o ]= J[BE{ j[HmEtL[H]CdA}[Bde+ j[slz[ j[HE[ErL[HLdA][Bde
x A

AR (27)

+_[[BEh K& [Blndx

X

In order to ensure that the solution of the nonlinear equation is converged, the

abovementioned iteration process will continue until the residual force vector {dR} is

reduced to a specified tolerance as follows
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RR] 100<Tol (28)

{Foe) {Fou)

where Tol is the convergence tolerance which is taken as 1% in the present study.

It should be noted that the external loading with its maximum value is not to be applied at
once, and it is rather be applied gradually in a number of steps in order to avoid convergence
problems in the iterative solution process and also to trace the entire equilibrium path.
Moreover, this is a load control technique which will not be adequate to trace the post peak
inelastic response of composite beams. This problem is typically solved by using a robust

arc-length method which is presented in Section 2.4.

2.3. Constitutive Relationship

The von Mises yield criterion with an isotropic-hardening rule [33] is used for modelling the
inelastic behaviour of steel girders, reinforcement and steel shear studs. This modelling
approach is also applied to the region of concrete slab subjected to compressive stress for
simplicity. A damage mechanics model [34, 35] is adopted to simulate the cracking

behaviour of the concrete under tensile stress.

2.3.1. Constitutive Relationship for Steel and Concrete in Compression

According to the von Mises yield criterion, the stress state must be on (plastic loading) or
within (elastic loading and unloading) the yield surface which may be written for the

steel/concrete layer subjected to bending and shear stresses as
fi=0g,-0,,<0 (29)

In the above equation, o;,; is the uniaxial yield stress and o, is the effective stress, which

can be written in terms of bending stress o, and shear stress 7, as

Oe | =~JOF +31} (30)
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In order to correlate a multiaxial stress state (usually found in a real problem) with the

uniaxial yield stress, the uniaxial yield stress can be expressed in terms of equivalent plastic

strain £ | =+ (8|p )2 +(ylp )2 /3as

ge’?.l
Oy =0y + J-Hll5ge¢,l (31)
0

where g, is the initial value of the uniaxial yield stress for a material layer and Hy is the

strain hardening parameter of the layer.

As mentioned in the previous section, the stress-strain relationship must be expressed in its
incremental form due to inelastic material behaviour. Thus the strain vector is taken in its

incremental form and can be expressed in terms of its elastic and plastic components as

fdehy =1de®)y +{de) (32)

The elastic strain increment can simply be obtained from the incremental stress using

Hooke's law as

R N L (33)

where E; and G; are the elastic modulus and shear modulus of the material layer respectively.

As an associated flow rule is used, the plastic strain increments can be determined [36] using
Eq. (29) as

2} —da % _ :—f'l{;'l } _d4 fa, (34)

where d4; is the incremental plastic strain multiplier and the vector {a}, gives the direction

of plastic flow, which is normal to the yield surface. Using the consistency condition of the
yield function (29) along with the above equations (29, 30, 33 and 34), the incremental
plastic strain multiplier can be derived following the usual operations used in a plasticity

formulation [36] and it can be expressed as

d, = (35)
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For the von Mises yield criterion, the equivalent plastic strain increment will be the

incremental plastic strain multiplier d4, [36]. Using Egs. (33) to (35), the incremental stress-

strain relationship can be obtained which is expressed as

_[Een _| [Fe [Ee]l i fay [EE]IT
{do-}, —[E ]I {dg}l = [E ]I - {a}IT [Ee]| {a}| TH| {d5}| (36)

where [E®], is the elasto-plastic constitutive matrix that can be used for [E'], in Eq. (25).

This constitutive relationship is also applied for the modelling of reinforcement bars by

eliminating the contribution of shear stress/strain.

2.3.2. Constitutive Relationship for Concrete in Tension

The concrete under tensile stress (major principal stress) is treated as an elastic material up

to its uniaxial ultimate tensile stress ( o,,) where cracks are initiated. The crack initiation is

detected according to Rankine’s failure criterion [37] as follows.

fi =0 — 010 =0 (37)

where o, 1S the maximum principle stress which can be evaluated using the following

equation.
O¢ O'c2 2
Omex =~ 44 + 7 (38)

The material behavior in tension is modelled with an elastic damage mechanics model taking
a linear strain softening branch for simulating the post cracking response [35]. Fig. 2 shows
a typical one dimensional damage model where the damage parameter « ranges from 0
(damage initiation) to 1 (complete damage) to characterize the extent of cracking. The
damage parameter is used to quantify the loss of material stiffness due to cracking, which is
illustrated with the unloading path from any point on the softening branch, in the form of its

secant stiffness. The loading function for the damage can be expressed as
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Fig. 2. Uniaxial strain softening model in tension.

fcr =K — ma)((Kold 'Kto) <0 (39)

where f, =0 indicates loading (i.e., damage growth) and f, <0 indicates unloading. The
equivalent strain parameter x¢ (similar to equivalent plastic strain in plasticity) in the above

equation (scalar quantity) is taken as

1, 7l
I} (0

where x4 IS its value obtained in the previous iteration of the analysis and «,, corresponds
to that at the instance of damage initiation i.e., & =&, (Fig. 2). In the case of unloading, the
value of «,; will be unaltered but it must be updated with the new value of «,; for loading

in order to satisfy Eq. (39). Similarly, the damage parameter o will retain its old value for

unloading but it is to be updated for damage growth (loading) as

_ Ky (Kt —Kio)

Ket (Ktu - Kto)

(41)

where x,, corresponds to complete damage i.e., & =¢, (Fig. 2).

In the modelling of concrete under tensile stress, it is observed that the solution is dependent
on the mesh size in a traditional strength based analysis. This is a typical problem which is
eliminated in the present study using the concept of crack band theory proposed by Bazant
and Oh [38]. This concept is based on fracture mechanics principles which utilize fracture
toughness Gt (energy required to produce a crack of unit area) as a material property. This

will be utilised to estimate the value of &, used in Fig. 2 (@=1) considering the area under
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the stress strain curve as g; =G, /w, where W, is the crack band width and the energy Gg is

assumed to be distributed over the crack band width [38]. This is an important concept that
helps to treat the discrete nature of cracking within a continuum model. It is obvious that the
exact location and size of the damage localisation over a finite length (i.e. a crack) cannot
be predicted by a smeared crack model based on the usual local constitutive relationship

adopted in the present study but crack band model will help to predict the overall response

of the structure satisfactorily. As the element length |, is related to the crack band in a smear
crack model, the final expression of &, can be written as

2G;
S =

aWIthO

(42)

where a,|, is defined as the characteristic length. The value of «,, depends on the order of

element which is 1.0 in the present case as a quadratic element is used [38].
With the damage parameter (41), the stress-strain relationship can be written as

{O-}c = (1_ a)) [Ee]c {g}c (43)

where (1-)[E®], is the secant damage stiffness matrix (Fig. 2).
Finally, the incremental stress-strain relationship of the damaged concrete may be written as

{do}, =[E"1{de}, (44)

where the tangent damage stiffness matrix [E"] can be expressed with the following

equation and it can be used in Eq. (25) for [E'], .

Ev]=@-w)Ec] -5 0 {o) {o), (45)

2
Kot (K — Kio)

The above equation is applicable for damage growth while [E"] will be the secant damage

stiffness matrix (L- w)[E®], for unloading.
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2.3.3. Constitutive Relationship for Shear Connectors

The shear connectors are idealised as a distributed spring layer which transfers a distributed
shear force between steel and concrete layers at their interface tangentially. The von Mises

yield criterion used to model the shear connectors can be written as

foo =7er — Ty (46)

where the effective shear stress (force per unit length) 7., is the absolute value of the

interfacial shear force 74y, and 7,, is the corresponding yield stress (force per unit length)

that may be expressed in terms of the effective plastic shear slip s} (absolute value of the

plastic shear slip s”) as

P
Sef

T, =T+ J.Hécﬁse'} (47)
0

where T, is the initial yield stress (force per unit length) of this interfacial shear, and H's,
is the hardening parameter. In this case, the slip (s) is taking the role of strains and it is to be
expressed in terms of its elastic (s¢) and plastic (s”) components. Following the usual steps

of plasticity, the increments of these plastic slip components may be expressed as

ds® =dr,, /k, (48)
Ksn
dsP =——=0—ds (49)
H éc + ksh

where kg, is the elastic stiffness of the distributed interfacial shear springs. Finally, the

incremental relationship between interfacial shear force and slip may be written as

k2
deh = ksﬁds = (ksh —ﬁjds (50)

SC

where k;} is the elasto-plastic tangent stiffness for the shear connectors that can be utilized

in Eq. (25) as k.
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2.4. Arc-length Technique

The dissipation based arc-length method has initially been proposed by Gutiérrez [31]
considering damage as the only energy dissipation mechanism. Subsequently, this method
has been extended by Verhoosel et al. [39] to include plasticity as an additional mechanism,
which is applied to the present problem. As the value of the external loading will not increase
in the post peak range, the equilibrium equation (21) is expressed in terms of an unknown

load factor (or multiplier) x as

P} = u{F} (51)

where {F} is the external load vector due to one unit of applied load. In order to avoid any

convergence problems and trace the entire structural response in the pre-peak as well as post-
peak ranges, the equilibrium path is divided into a number of steps by adjusting the value of

u and the nonlinear equation is solved iteratively within each load step. As x is also an

unknown parameter and its value is adjusted by this technique, an additional equation is

required which is taken in the form of a constraint as follows

C({Ao}, o, {60}, S, e4)=0 (52)
where ({A,}, 4,) is a point on the equilibrium path (a converged solution at the end of a load
step), {5A}is the incremental nodal displacement vector for the next load step, &u is the
corresponding incremental load factor and e, is the prescribed dissipation energy required
for estimating the step size. It should be noted that {9A} is the value of {A} within a load step

whereas {dA} used in Section 2.2 is the value of {A} within an iteration. The incremental

energy dissipation Uq of a structure due to inelastic deformations within a load step is used
to define the constraint C in the above equation as

C=U, ¢, (53)

As the energy dissipation can be obtained from the work done by the external loads Wk (i.e.,
total energy supplied to the structural system) and the elastic energy Ue retained by the

system, the incremental energy dissipation within a load step can be written as

U, =W, - U, (54)

With the external load vector as expressed in Eg. (51), the incremental work done by the

external loads used in the above equation can be written as
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O, = {F |7 {oA} (55)

In case of a structure having plastic deformations, the strain will have an elastic component
and a plastic component where the elastic strain can be used to obtain the elastic energy of a
composite beam Ue and it can be expressed as

0, =2l lohetv L e ok ov e ©6)

Using the constitutive relationships of the different beam components, the elastic strains in

the above equation can be replaced with the corresponding stresses as

U, =3 [t [E T okeave 5 [T [T o) ove [ kot (57)

Now the incremental elastic energy within a load step can be obtained from the above

equation and it is written as

U, = [{orf[Es [ lohodv+ [ i) [Ee [ oo dve+ [ orakaizadx (58)

Using the elasto-plastic constitutive relationships from Eq. (25) with reference to the starting
point of the load step, the incremental stresses in the above equation can be expressed in

terms of incremental strains as

3, = [l [E' L [Ee Mot av+ [loef [B L [Ee L o) av [ bt katrandx (59)

Using Egs. (13), (16) and (17), the strains in the above equation can be expressed in the form

of incremental nodal displacement vector and Eq. (59) can be rewritten as

M, = (o}’ {F} (60)

where

Fl=[BIRI[E T[T ohdv+ [BEHE[ET [0 o), av-+ [[BL Kipkstzaax (61)

Using the forward Euler discretisation with respect to the converged solution ({A, }, 4, ) of the

previous time step, the constraint in Eq. (53) can be expressed with the help of Egs. (54),
(55) and (60) as
C= {5A}T (/Uo {F}- {'fo })_ed (62)

In case of a structure having damage [39], the above equation can similarly be derived and

it can be expressed as
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C = {FY (a0} - el e, (63)

Now Eqg. (52) is combined with Eqg. (51) to have the augmented system of equations as

I:)int - F 0
(it 1iF1)_f0) (64)
Now, the Newton Raphson method can be used to solve above equation iteratively as
{{&}_"”} _ {{&}_'}Jr {{dA}j+l} (©5)

5/,[ j+1 5/.[1 d,u Jj+1

I e (M |
where {{gi}m } o) 2 fulF)-tow) (66)
ola} ou

Using Egs. (62), (63) and relevant equations in Section 2.2, the above equation can be
rewritten as

d [K:] ={FIT TR
fau Loy v 1% 0
where {G}:yO{F}—{Ifo} and h =0 for plasticity; and {G}:%MO{F} and h:—%{F}T {A,) for

damage. The above equation in its present form is not suitable for its solution due to the
incorporation of an additional row and column for including the additional unknown (load
factor) which has destroyed the banded nature of the matrix system to be operated. In order
to overcome this problem, the Sherman-Morrison formula [40] is used for solving the above

equation as follows

{{dA}} _ {{A, }}_ 1 {_ o (6 {a ) +Clia, ) } (68)

du | T1=C 6T fan - |- 6T {4, }-caa+ (6] {a, }-hy
where {A,}=[K, J*(dR} and {a, }= [k, T*{F}.

Using Egs. (65) and (68), the nodal displacement vectors and load factor can finally be

updated as
o ={an +{a Y (g ) a, ¥ (69)
St =& +(g; ) (70)
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_{6l'iaj+c
where ¢, _m

As this arc-length method utilises the energy dissipated in a load step, the application of the
method is not convenient at the initial loading steps where the structural deformations may
be in the elastic range and have no energy dissipation. Thus a hybrid approach of solution

strategy is adopted in the present study where the load control method is applied for some

initial load steps and it is switched to the arc-length method when the energy dissipation U4
in a load step exceeds €,_.,, which is the minimum value of e; prescribed by the user.
Actually, the value of e, is updated in each load step when the arc-length method is activated
in order to reduce the solution time. The value of €, in a load step i+1 can be estimated with

the value of U, in the previous load step [41] as

(ed )i+l :0_57(Ud)i (71)
where y =0.25(j - j,) in which j is the iteration number and, j, is the desired number of

iterations to get convergence. In order to avoid any divergence problems, the value of €,

should be restricted within its minimum value €,_, and maximum value€,_., , which is

another user specified value.

2.5. Stress Update

The nonlinear equilibrium equation is solved iteratively as mentioned in the above sections
where the stresses are updated after every iteration as the total stress cannot be expressed in

terms of total strain in the case of plastic deformations. In that situation, the incremental

nodal displacements {dA}’ obtained in an iteration j are used to evaluate the corresponding
incremental strains {de}) using Egs. (13) and (16) in their incremental form which are

subsequently utilised to compute the incremental stresses {ds}; of that iteration using the

elastic constitutive relationship as

{do}! =[E°], {de}{ (72)
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The above equation is written for a material layer but it is similarly applicable to the shear

studs. Now the stresses can be updated by adding the incremental stresses {do}; with the

stresses accumulated in the previous iteration {o}/ " as

ol ={o}l” +do}} (73)
The updated stresses are substituted into the yield criteria as given in Eq. (29) which will

lead to f, >0 that indicates plastic deformations of the material or f, <0 for its elastic

deformations. For plastic deformations ( f, >0), the updated stress vector {a},j estimated by
Eq. (73) is unfortunately not the final stress vector and it is rather defined as the trial stress
vector {a‘ }| which is adjusted to bring it on the yield surface. This is accomplished by using

the backward Euler return technique [36], a robust stress return algorithm, in the present
investigation. The starting estimate of the adjusted stress vector can be obtained from the

trial stress vector as

{oh =t} —da [E°] fa), (74)
f)
e 94 ) o =

and {a}, can be calculated using Eq. (34). Both {a}, and d/, are calculated based on the trial

stresses. As the above stress vector {s}, does not usually satisfy the yield function, an
iterative approach is used where the starting or first estimate of the stress vector is defined
as {o}; and the corresponding incremental plastic strain multiplier as dA!. The value of the

stress vector and the incremental plastic strain multiplier is iteratively improved till a desired

level of convergence is achieved as follows.

loh " =lol +1o} (76)
dAft = dak + Ak (77)

where k (>1) is the iteration used for the stress return algorithm. The expressions used to

determine the value of {5} and if are given below.

ol =-IMIHry - A [MIF[ET {a)f (78)
i =fo} ~ (bt} - dATED o) (79)
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6{U}|

[Mr=bhwﬂhﬂ{“%}1 (80)

}Lr _ fik — {{a}:( }T [M ].k {r}:‘ (81)
ol f T [Ee] )t + 1

The superscript k used with any parameter in the above equations indicates that that
parameter is calculated at iteration k. The vector norm of the residual stress {r} with respect
to the current stress {s} is used to check the convergence of the above iterative process. For

the present problem, the derivative of {a}, used in Eq. (80) can be written as

1- of _3oy7,

ofal, _ 1 Cai  Oal 82)
ool owi| _Som 3_£
Oa o

As the equilibrium path is divided into a number of load steps and the nonlinear equilibrium
equation is solved within each load step iteratively, the stress return algorithm presented
above is implemented in a slightly different manner so as to avoid any convergence problem.

For an iteration within a load step, the incremental strains accumulated from the beginning

of that load step {5z}, are used instead of {ds}/ in Eq. (72) to get the incremental stresses

{o}) of that load step which are added with the converged stresses of the previous load step

to evaluate the trial stresses of that iteration which is adjusted by the stress return algorithm

presented above.

3. NUMERICAL RESULTS
3.1. Two Layered Composite Beam with Rectangular Section — Numerical Verification

In this example, a composite beam consisting of two material layers having rectangular
sections as shown in Fig. 3 is used for numerical verification of the proposed model. For this
purpose, the beam is also analysed with a well-regarded finite element software (ABAQUS)
where the numerical results produced by a detailed 2D model of the beam are utilised to
compare the results predicted by the proposed model. For the upper material layer of the
beam, the Hognestad model [42] as shown in Fig. 4 is used for defining its uniaxial stress-

strain curves that may be expressed as
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2 2
o, = fc[ Ze —(8—0] ] & < &g (83)
ch ch

Gc = fc [83(‘900 _gc)+1] ‘900 < gc < gcu (84)

where f. is the peak compressive strength, €., is the strain corresponding to f. and &, is

the ultimate compressive strain.

LP E 200 mm
Upper layer 150 mm

T T T
LI

2500 mm Lower layer| | 350 mm

Fig. 3. Composite beam having fixed supports at its two ends

For the present problem, the values of these material parameters are taken as: f. = 25 MPa,
€c0 = 0.002 and €., = 0.038 along with the elastic modulus of 20,000 MPa and Poisson’s
ratio of 0.25 for the upper layer.

T
a
S
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™
a

Stress

>
. €0 Ecu
Strain

Fig. 4. Uniaxial stress-strain curve for the upper material layer (concrete)

For the lower layer of the beam, a hypothetical material is used and its uniaxial stress-strain
relationship both in tension and compression is defined with a simple bi-linear model as
shown in Fig. 5 where the strain softening branch is deliberately taken to produce a
prominent descending branch of the load-deflection curve of the composite beam. This is
actually a theoretical problem devised to show the capability of the proposed model in
tracing the descending branch of the load-deflection curve successfully. The present analysis
is carried out taking the ultimate stress f, = 40 MPa, elastic modulus E = 30,000 MPa,
Poisson’s ratio v = 0.25 and hardening parameter of the strain softening branch H = -3000

MPa for the lower material layer which is assumed to follow the von Mises plasticity model
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both in tension and compression. For the sake of comparison of the proposed model with the
ABAQUS model, the upper layer is also treated as a hypothetical material where von Mises
plasticity theory is used in compression as well as tension regions. Moreover, the uniaxial
stress-strain curve of the material in both compression and tension is defined by the
Hognestad model [42], which is typically used for concrete in compression for all other

examples.

Stress

\4

€o Strain

Fig. 5. Uniaxial stress-strain curve for the lower material layer

Shear force

\4

Slip Su

Fig. 6. Interfacial shear force (per unit length) slip relationship for shear connectors

The interface between these material layers can be modelled by ABAQUS where the contact
mechanics is typically used and the interfacial slip can be simulated by using a cohesive
contact model which is similar to the damage model presented in Section 2.3.2. Though a
plasticity based constitutive model proposed in Section 2.3.3 is used for modelling the shear
connectors in other examples, a damage mechanics based model is used in this example to
have a parity with the ABAQUS as this software does not have the capability of modelling
an elasto-plastic interface. The formulation for the damage mechanics model of the shear
connectors is not presented but it can easily be derived utilising the concepts presented in

Sections 2.3.2 and 2.3.3. Fig. 6 shows the interfacial shear force (per unit length)-slip
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relationship used for this damage model where the fracture energy (Gs) is used to estimate
the maximum slip sy. To define the damage model for the shear connectors (Fig. 6), the
values of the different material parameters used are: ksn = 100 MPa, max = 150 MPa, sy = 3

mm.

The beam is analysed with the proposed 1D finite element (FE) model using different
number of elements and the results show that an acceptable level of convergence is achieved
with 20 elements for this beam. The computing time needed to complete the analysis using
the proposed model was 75.81 sec where an ordinary desktop computer (i5-3470T CPU @
2.90 GHz and RAM 8.0 GB, 64 bit operating system) was used. Though the proposed
element is based on HBT (3™ order theory), it can easily be amended to TBT (1% order
theory) by dropping the higher order terms. For the analysis of the beam using ABAQUS,
the 2D plane stress rectangular element (CPS4R) are used to model both layers by
discretising these layers along their lengths and depths assuming no normal stress across the
beam width where the mesh convergence study is similarly conducted. The shear connectors
are modelled using the cohesive contact model place at the interface between the elements
used for upper and lower layers. The same computer is used for running this 2D analysis
where the computing time consumed was 730.66 sec for solving the problem. It should be
noted that the solver used by ABAQUS is expected to be more efficient than a relatively
simple solver used in the computer program (FORTRAN) developed for implementing the
proposed model. Moreover, it needs a significant amount of time for model generation in
ABAQUS.

900
800

700

600 S
Proposed model (HBT)

— —-2DFEM

Load (kN)

0 1 2 3 4 5 6 7 8
Deflection (mm)

Fig. 7. Mid-span deflection of the two-layer composite beam
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The variation of mid-span deflection with respect to the applied load predicted by the
proposed 1D FE model based on HBT as well as TBT is presented in Fig. 7 along with the
results produced by the detailed 2D FE model. The figures shows a good correlation between
the results obtained from the three models where the performance of HBT is relatively better
than TBT if compared with the 2D FE model. It also shows that the post-peak response of
the beam is successfully traced by the proposed model and it performed better than
ABAQUS in the sense that the nonlinear solution process of this software is terminated
earlier than the proposed model. The variations of the vertical displacement and the
interfacial slip along the beam length corresponding to 700 kN of the applied load (P)

predicted by these approaches are presented in Fig. 8 and Fig. 9, respectively.

35

Proposed model (HBT)
3 — — -2DFEM

Deflection (mm)
= N
[l (62] N ol

o
w1

0 500 1000 1500 2000 2500
Beam length (mm)

Fig. 8. Deflection along the length of the two-layered composite beam

Proposed model (HBT)
— —-2DFEM

0 500 1000 1500 2000 2500
Beam length (mm)

Fig. 9. Interfacial shear slip of the two-layered composite beam along its length

Finally, the variation of von Mises stress over the beam depth obtained at two sections of
the beam by these three approaches for P = 700 kN is plotted in Fig. 10 and Fig. 11, which
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shows a very good performance of HBT. The performance of TBT is not generally good due
to the assumption of average shear strain and the performance is severely affected at the
quarter span (Fig. 11) where the contribution of shear stress is predominant as the bending

moment/stress is less at this section.
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Fig. 10. Von Mises stress at a section 1m away from a support of the two-layered composite
beam
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Fig. 11. Von Mises stress at the quarter span of the two-layered composite beam

3.2. Steel-concrete Composite Beam Subjected to Three Point Bending — Experimental

Validation

A 5.5 m long steel-concrete composite beam tested by Chapman and Balakrishnan [43] is

used in this example for the experimental validation of the proposed model. The beam
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consisting of a concrete slab and a steel I-girder connected by steel shear studs as shown in

Fig. 12 was simply supported at its two ends and subjected to a point load at the mid-span.

‘k 1220 mm )‘[

N\

/) R6@300 >R12@150 152 mm

S

305 mm
—1 «—10.16 mm

18.2 mm L
T

152 mm
Fig. 12. Cross-section of composite beam

The Hognestad model [42] as shown in Fig. 4 is used for the uniaxial stress-strain
relationship of concrete in compression while the bi-linear model as shown in Fig. 2 is used
for this in tension. The steel girder is assumed to follow a bi-linear model with a strain
hardening branch as shown in Fig. 13 for its uniaxial stress-strain relationship both in tension
and compression. For the shear connectors idealised as a distributed shear springs layer, a
bi-linear model as shown in Fig. 14 is used to define the relationship between the interfacial
shear force per unit length g and the shear slip s using two values of the hardening parameter
which is zero in one case. The concrete slab is reinforced with longitudinal steel bars
R12@150mm in its top and bottom regions (Fig. 12). The re-bars are modelled as 1D
members under uniaxial stress where an elastic-perfectly plastic material behaviour is

adopted.

Stress

\4

&y

& .
Y Strain

Fig. 13. Bi-axial stress-strain curve for steel girder
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Shear force
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Fig. 14. Bi-axial stress-strain curve for shear connector

The material properties used for characterising the different components of the composite

beam are given in Table 1 which also contains the material properties of the beam considered

in the next example. The problem is solved by the proposed nonlinear model based on HBT

using 20 elements, and the variation of mid-span deflection with respect to the applied load

obtained with two different hardening parameters of the shear connectors are presented in

Fig. 15 along with the experimental result obtained by Chapman and Balakrishnan [43]. Fig.

15 also includes numerical results reported by Liang et al. [44] who obtained this result from
a detailed 3D finite element model of the beam using ABAQUS. The figure shows a very

good correlation between the results obtained from different approaches where the proposed

model (considering no hardening for the shear connectors) is found to perform better than

ABAQUS when compared with the experimental result.

600 -

500

N
o
o

w
o
o

Load (kN)

N
o
o

100

Experiment

——————— 3D model
— -+ —HBT model (H'=585)
— HBT model (H'=0)

20 40 60 80
Displacement (mm)

Fig. 15. Vertical displacement at mid-span of composite beam.

76



Table 1. Material properties of composite beams

Material

Property

Liang et al. [44]

Tan and Uy [45]

Concrete slab

Steel girder

Shear connector

Reinforcement
in concrete slab

Elastic modulus, E.

Poisson’s ratio, v

Compressive strength, f,

Strain, &,

Ultimate tensile stress, f;

Fracture energy, Gs

Ultimate tensile strain, &,

Elastic modulus, E;

Poisson’s ratio, v

Yield stress, f,

Ultimate stress, f;,

Ultimate strain, &,

Yield shear force, q,,

Ultimate  shear

Qmax

Elastic stiffness, kg,

Maximum slip, s,,

force,

Modulus of elasticity, E;

Poisson’s ratio, v

Yield stress, f,

Ultimate strain, &,

32,920 MPa
0.15

42.5 MPa
0.002

3.553 MPa
0.208 N/mm
0.0016
205,000 MPa
0.3

265 MPa
410 MPa
0.25

435 MPa

565 MPa

2491.46 MPa

6 mm

200,000 MPa
0.3
250 MPa

0.25

20,000 MPa
0.10

25 MPa
0.002

2.5 MPa
0.1875 N/mm
0.0019
200,000 MPa
0.3

300 MPa
500 MPa

0.11

743.86 N/mmj
396.49 N/mmf
717.74 MPaj
597.61 MPaf
7 mmj

10 mmt
200,000 MPa
0.25

550 MPa

0.11

Note: T = Single shear stud in a row
1= Double shear stud in a row
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3.3. Steel-concrete Composite Beam Under Four Point Bending — Experimental

Validation

A steel-concrete composite beam (Fig. 16) tested by Tan and Uy [45] under four point
bending is used in this example. The concrete slab (including re-bars) and steel girder are

modelled in a similar manner as followed in the previous example.

L/3
|{ P P B L/3 N
I i
o L=4000 mm
“ "
’ 500 mm N
= = = AN
>R6@300 >R12@1so 120 mm
= .\ 1 =X
— 6.3 mm 207 mm
9.6 mm L
T ——
134 mm

Fig. 16. Simply supported steel-concrete composite beam
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Shear force
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>
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Slip

u

Fig. 17. Exponential model for the uniaxial stress-strain curve for shear connector

For the simulation of steel shear studs used for connecting the concrete slab with the steel
girder, the exponential model of Olgaard et al. [46] as shown in Fig. 17 is used which can

be given by

Tp = O L~ €07 (85)
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where gmax is the ultimate value of the interfacial shear force (per unit length) and sy is the
ultimate slip. This model (Fig. 17) is chosen on the basis of the trend of results obtained in
the push out test [45].

For the present study, two different beam specimens tested by Tan and Uy [45] are used
where the number shear studs used in a row along the beam width is one in the first case
while it is two in the other case. Table 1 includes all the material properties used for defining
the different constituents of the composite beam. The beam is analysed with the proposed
technique and the result obtained in the form of variation of mid-span deflection with respect
to mid-span moment is presented in Fig. 18 along with the experimental results reported by
Tan and Uy [45]. The figure shows a good correlation between the numerical and
experimental results. For this statically determinant beam, the mid-span moment can easily

be determined with the value of applied loads and their locations.

250 +

200
: e o=
zZ =
<150 - = Experiment (double stud)
I=
g — -~ — Experiment (single stud)
o
=100 - — HBT model (double stud)

— — - HBT model (single stud)
50 -
O h T T T T T T 1
0 10 20 30 40 50 60 70

Deflection (mm)

Fig. 18. Variation of mid-span deflection with respect to mid-span moment of the composite
beam (Tan and Uy [45]).

3.4. Two Span Steel-concrete Composite Beam

The problem of a two-span continuous beam consisting of a concrete slab and a steel I-girder
connected by steel shear studs (Fig. 19) is studied using the proposed model which is
carefully verified and validated in the above sections. Fig. 19 shows the dimensions of
different components of the beam and its boundary and loading conditions chosen for the

present study. The behaviour of concrete slab and shear connectors is modelled in a similar
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manner as followed in the previous example. For the steel girder, an elastic-perfectly plastic
with strain hardening model [14] as shown in Fig. 20 is employed for defining its uniaxial
stress-strain relationship in both tension and compression. According to Liu et al. [14], the

strain hardening branch of the stress-strain curve (Fig. 20) can be expressed as

(gsh_gs)
o, =f, +(fu - fy{l—e a } &g <&, <&, (86)

where f,, is the yield stress, f, is the ultimate stress, ¢, is the yield strain, &, is the strain at

the beginning of strain hardening, and &, is the ultimate strain. The material constant a used

in Eq. (86) can be determined with the above parameters as

a4 0.028¢y, — ¢,) (87)
P v
A 2500 mm A7 2500 mm
< »< >t
< 400 mm N
100 mm
i — X
Si10 mm 150 mm
N2
10mm i |
T
75 mm

Fig. 19. Two-span steel concrete composite beam.

For the present problem, the values used for the material parameters of concrete are: f; = 25
MPa, £, = 0.002, ., = 0.038, f; = 2.5 MPa, G¢= 0.1875 N/mm, E = 20 GPa and vc = 0.20.
Similarly, the material properties used for the steel girder are: f,= 275 MPa, f,,= 500 MPa,
eqn= 0.025, £,=0.11, Es = 200 GPa and vs = 0.25. For the shear connectors, the values of

material properties are: gmax = 500 N/mm, ksh = 250 MPa and sy = 6 mm.
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Fig. 20. Uniaxial stress-strain curve (elastic perfectly plastic with strain hardening) for the
steel girder
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Fig. 21. Deflection under the point load on a span of the two span composite beam (Fig. 19).

The beam is analysed with the proposed nonlinear finite element model based on HBT as

well as TBT. Moreover, the analysis is carried out with a very high value of gmax (1.0x10"
MPa) for modelling the shear connectors in addition to its usual value as mentioned above
(500 MPa), which are defined as full interaction (FI) and partial interaction (PI) conditions
respectively. The load-deflection curves obtained at one of the mid-span sections for all these
cases (HBT, TBT, Pl and FI) are presented in Fig. 21. It is observed that the difference
between the deflection values predicted by HBT and TBT is more in the case of full
interaction compared to partial interaction. The variations of von Mises stress over the beam
depth obtained at a section 1.0 m away from one of the end supports corresponding to the
applied load P = 200 kN are plotted in Fig. 22. It shows a significant deviation of results
predicted by HBT and TBT where the deviation is more in the case of partial interaction.
The variations of shear stress over the beam depth obtained at a quarter section from one of

the end supports corresponding to the applied load P = 200 kN are plotted in Fig. 23. The
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figure clearly indicate that TBT is not capable of predicting the actual variation of shear

stress.
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Fig. 22. Von Mises stress at a section 1m away from one of the end support of the two span
composite beam under point load (P = 200 kN)
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Fig. 23. Shear stress at a quarter section from one of the end support of the two span
composite beam under point load (P = 200 kN)

4. SUMMARY AND CONCLUSIONS

An accurate and computationally efficient finite element model is developed for a reliable
prediction of the inelastic response of steel-concrete composite beams. The steel shear studs
used to connect the steel girder with the concrete slab are idealised as interfacial distributed
springs with finite stiffness which helps to model the partial shear interaction of the
composite beam. The higher order beam theory is used to develop this one dimensional finite

element model with better accuracy. The von-Mises yield function with an isotropic
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hardening rule and associated flow rule is used to model the behaviour of steel girders, steel
reinforcements, steel shear studs and concrete slabs in compression. A damage mechanics
model is used for modelling concrete slabs in tension. The mesh sensitivity associate with
the damage modelling of concrete, a quasi-brittle material, in tension is eliminated using the
well-known crack band theory. The inelastic material behaviour imposed a typical
nonlinearity in the present problem and the solution of the governing equations becomes
challenging specifically for capturing the post peak response. In order to address this issue,
an energy dissipation based arc length method is employed to solve the nonlinear equations
which helped to trace the descending branch of the load deflection curve successfully. Before
validation of the proposed model with benchmarking experimental results, the numerical
verification of the model is carried out with the help of a two-layer composite beam. For this
purpose, a detailed 2D model of the composite beam is developed using a reliable
commercial finite element software to produce reliable numerical results which are

compared with the results produced by the proposed 1D model.

The proposed model is based on a 3™ order beam theory (HBT) but it can easily be converted
to a lower order beam theory (e.g., TBT) by eliminating the higher order terms. The
numerical analysis has confirmed that the model based on TBT is able to predict the global
response satisfactorily with the help of a shear correction factor. However, it is observed that
this factor is not sufficient even for an accurate prediction of the global response in some
situation such as beams with a small span-to-depth ratio, localised concentrated loads and
clamped boundary conditions. Moreover, the model based on TBT could not predicting the
distribution of stresses (local response) across the beam section. On the other hand, the
proposed model based on HBT could realistically predict the global as well as local
responses of these beams without any arbitrary factor as it takes account of the actual
parabolic variation of shear strain. The major advantage of the proposed model is it can
predict results very close to those produced by detailed finite element modes using ABAQUS
but the computational cost of the proposed model is significantly less than the ABAQUS
model. Moreover, in some situations, the proposed model performed better than ABAQUS
in the sense that the nonlinear solution process of this commercial software was terminated

earlier than the proposed model.

The proposed model is also used to examine the effect of different levels of shear interaction
between the concrete and steel layers of the composite beam. It is observed that the full shear
interaction condition predicted deflection less than that for the partial interaction as expected.

For both full and partial interaction conditions, the difference between the results predicted
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by HBT and TBT models is found to be appreciable. Based on the accuracy and range of
applicability along with the computational efficiency of the proposed model, it is highly
recommended for the analysis of composite beams having inelastic material behaviours.
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6. APPENDIX
Nomenclature

Ac, As cross-sectional area of concrete and steel layers of the beam

[B],  strain-displacement matrix for the I-th layer (I=c for concrete, I=s for steel)
[B]y, strain-displacement matrix for shear connectors

{dR} residual force vector

e, prescribed dissipation energy

Ei elastic modulus for the I-th layer

[E®] tangent damage stiffness matrix for concrete

[E®], elasto-plastic constitutive matrix for the I-th layer
fi von Mises yield function for the I-th layer

{F..} external load vector

G shear modulus for the I-th layer

Gt fracture energy

[H],  cross-sectional matrix for the I-th layer
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H,  hardening parameter for the I-th layer

H..  hardening parameter for shear connectors

Ksh elastic stiffness of distributed springs for shear connectors
ke elasto-plastic tangent stiffness for shear connectors

[Kr] tangent stiffness matrix

I, element length

N shape function

{Pim} internal nodal force vector

q distributed external load

S interfacial slip between concrete and steel layers

s¢ elastic shear slip between concrete and steel layers
sP plastic shear slip between concrete and steel layers

Set effective plastic shear slip between concrete and steel layers
Uco longitudinal displacement of the concrete layer at its centroidal or reference axis
longitudinal displacement at the bottom fibre of the concrete layer

Uso longitudinal displacement of the steel layer at its reference axis

longitudinal displacement at the top fibre of the lower layer
W transverse displacement

W, crack band width

a,p higher order terms

{A}  nodal displacement vector

{e)., {e) strain vectors of concrete and steel layers

{ge }, elastic strain vector for the I-th layer

{g P }, plastic strain vector for the I-th layer

&P plastic normal strain for the I-th layer

g4, equivalent plastic strain for the I-th layer

85



{€}, one dimensional strain vector for the I-th layer
7’ plastic shear strain for the I-th layer
Kg  equivalent strain parameter

d4,  incremental plastic strain multiplier for the I-th layer
U load factor (or multiplier)

6, 6 bending rotations of concrete and steel layers

o)., {o}; stress vectors of concrete and steel layers

oy, effective stress for the I-th layer

o) uniaxial yield stress for the I-th layer

A
o bending stress for the I-th layer
o,  Uniaxial ultimate tensile stress

maximum principle stress

T, shear stress for the I-th layer

Ten distributed shear force (per unit length) at the interface between concrete and steel

® damage parameter

7. REFERENCE

[1] Oehlers D, Bradford MA. Composite Steel and Concrete Structural Members.
Fundamental Behaviour, Australia. 1995.

[2] Loh H, Uy B, Bradford MA. The effects of partial shear connection in the hogging
moment regions of composite beams: Part I—Experimental study. Journal of constructional
steel research. 2004;60:897-919.

[3] Uy B, Nethercot D. Effects of partial shear connection on the required and available
rotations of semi-continuous composite beam systems. The Structural Engineer 2005;83.

[4] Newmark NM, Siess CP, Viest I. Tests and analysis of composite beams with incomplete
interaction. Proc Soc Exp Stress Anal. 1951;9:75-92.

[5] Ranzi G, Gara F, Leoni G, Bradford MA. Analysis of composite beams with partial shear

interaction using available modelling techniques: A comparative study. Computers &
structures. 2006;84:930-41.

86



[6] Adekola A. Partial interaction between elastically connected elements of a composite
beam. International Journal of Solids and Structures. 1968;4:1125-35.

[7] Girhammar UA, Pan D. Dynamic analysis of composite members with interlayer slip.
International Journal of Solids and Structures. 1993;30:797-823.

[8] Jasim NA. Computation of deflections for continuous composite beams with partial
interaction. Proceedings of the Institution of Civil Engineers Structures and buildings.
1997;122:347-54.

[9] Nguyen Q, Hjiaj M, Uy B. Time effects analysis of composite beams using a mixed FE
formulation. Third International Conference on Structural Engineering, Mechanics and
Computation (SEMC 2007)2007. p. 1157-63.

[10] Yasunori A, Sumio H, Kajita T. Elastic-plastic analysis of composite beams with
incomplete interaction by finite element method. Computers & Structures. 1981;14:453-62.

[11] Salari MR, Spacone E, Shing PB, Frangopol DM. Nonlinear analysis of composite
beams with deformable shear connectors. Journal of Structural Engineering. 1998;124:1148-
58.

[12] Dall’Asta A, Zona A. Non-linear analysis of composite beams by a displacement
approach. Computers & Structures. 2002;80:2217-28.

[13] Erkmen RE, Attard MM. Displacement-based finite element formulations for material-
nonlinear analysis of composite beams and treatment of locking behaviour. Finite Elements
in Analysis and Design. 2011;47:1293-305.

[14] Liu X, Bradford MA, Erkmen RE. Non-linear inelastic analysis of steel-concrete
composite beams curved in-plan. Engineering Structures. 2013;57:484-92.

[15] Foraboschi P. Analytical solution of two-layer beam taking into account nonlinear
interlayer slip. Journal of engineering mechanics. 2009;135:1129-46.

[16] Focacci F, Foraboschi P, De Stefano M. Composite beam generally connected:
Analytical model. Composite Structures. 2015;133:1237-48.

[17] Berczynski S, Wroblewski T. Vibration of steel-concrete composite beams using the
Timoshenko beam model. Journal of Vibration and Control. 2005;11:829-48.

[18] Ranzi G, Zona A. A steel—concrete composite beam model with partial interaction
including the shear deformability of the steel component. Engineering Structures.
2007;29:3026-41.

[19] Xu R, Wu Y. Static, dynamic, and buckling analysis of partial interaction composite
members using Timoshenko's beam theory. International Journal of Mechanical Sciences.
2007;49:1139-55.

[20] Schnabl S, Saje M, Turk G, Planinc I. Locking-free two-layer Timoshenko beam
element with interlayer slip. Finite Elements in Analysis and Design. 2007;43:705-14.

[21] Nguyen Q-H, Hjiaj M, Lai V-A. Force-based FE for large displacement inelastic
analysis of two-layer Timoshenko beams with interlayer slips. Finite Elements in Analysis
and Design. 2014;85:1-10.

87



[22] Chakrabarti A, Sheikh A, Griffith M, Oehlers D. Analysis of composite beams with
longitudinal and transverse partial interactions using higher order beam theory. International
Journal of Mechanical Sciences. 2012;59:115-25.

[23] Chakrabarti A, Sheikh A, Griffith M, Oehlers D. Analysis of composite beams with
partial shear interactions using a higher order beam theory. Engineering Structures.
2012;36:283-91.

[24] Chakrabarti A, Sheikh A, Griffith M, Oehlers D. Dynamic response of composite beams
with partial shear interaction using a higher-order beam theory. Journal of Structural
Engineering. 2012;139:47-56.

[25] Reddy JN. A simple higher-order theory for laminated composite plates. Journal of
applied mechanics. 1984;51:745-52.

[26] Riks E. An incremental approach to the solution of snapping and buckling problems.
International Journal of Solids and Structures. 1979;15:529-51.

[27] Crisfield MA. A fast incremental/iterative solution procedure that handles “snap-
through”. Computers & Structures. 1981;13:55-62.

[28] Crisfield MA. An arc-length method including line searches and accelerations.
International journal for numerical methods in engineering. 1983;19:1269-89.

[29] May I, Duan Y. A local arc-length procedure for strain softening. Computers &
structures. 1997,64:297-303.

[30] Bennett T, Jefferson AD. Experimental Tests and Numerical Modelling of Hexagonal
Concrete Specimens. Materials and Structures. 2007;40:491-505.

[31] Gutiérrez MA. Energy release control for numerical simulations of failure in quasi-
brittle solids. Communications in Numerical Methods in Engineering. 2004;20:19-29.

[32] Vinayak RU, Prathap G, Naganarayana BP. Beam elements based on a higher order
theory—I. Formulation and analysis of performance. Computers & Structures. 1996;58:775-
89.

[33] Chen W-F, Han D-J. Plasticity for structural engineers: J. Ross Publishing; 2007.

[34] Crisfield MA. Non-Linear Finite Element Analysis of Solids and Structures: Advanced
Topics: John Wiley & Sons, Inc.; 1997.

[35] De Borst R, Crisfield MA, Remmers JJ, Verhoosel CV. Nonlinear finite element
analysis of solids and structures: John Wiley & Sons; 2012.

[36] Crisfield MA. Non linear finite element analysis of solids and structures, vol. 1. Wiley,
New York; 1991.

[37] Rankine WJIM. Applied Mechanics. 1st edition ed. London1858.

[38] Bazant ZP, Oh BH. Crack band theory for fracture of concrete. Matériaux et
construction. 1983;16:155-77.

88



[39] Verhoosel CV, Remmers JJ, Gutiérrez MA. A dissipation-based arc-length method for
robust simulation of brittle and ductile failure. International Journal for Numerical Methods
in Engineering. 2009;77:1290-321.

[40] Sherman J, Morrison WJ. Adjustment of an Inverse Matrix Corresponding to a Change
in One Element of a Given Matrix. 1950:124-7.

[41] Nguyen VP, Nguyen-Xuan H. High-order B-splines based finite elements for
delamination analysis of laminated composites. Composite Structures. 2013;102:261-75.

[42] Hognestad E, Hanson NW, McHenry D. Concrete stress distribution in ultimate strength
design. Journal Proceedings1955. p. 455-80.

[43] Chapman J, Balakrishnan S. Experiments on composite beams. The Structural Engineer.
1964;42:369-83.

[44] Liang QQ, Uy B, Bradford MA, Ronagh HR. Strength analysis of steel-concrete
composite beams in combined bending and shear. Journal of Structural Engineering.
2005;131:1593-600.

[45] Tan E, Uy B. Experimental study on straight composite beams subjected to combined
flexure and torsion. Journal of Constructional Steel Research. 2009;65:784-93.

[46] Ollgaard JG, Slutter RG, Fisher JW. Shear strength of stud connectors in lightweight
and normal-weight concrete. AISC Engineering Journal. 1971;8:55-64.

89



90



Chapter 4: Geometric and Material Nonlinear Model

4.1 Introduction

This chapter contains the manuscript entitled “Geometrically nonlinear inelastic analysis of
steel-concrete composite beams with partial interaction using a higher-order beam theory”.
It presents the development of a one dimensional finite element model for composite beams
considering the effects of inelastic material behaviour and large deformation. The model
presented in this chapter is developed by systematically combining all aspects considered to
develop the two models presented in chapter 2 and chapter 3. The effect of large deformation
is incorporated by using the Green-Lagrange strain vector whereas the inelastic material
behaviour is modelled by the von Mises plasticity theory. A damage mechanics model is
also used for modelling the inelastic behaviour of concrete under tension. It also implements
the robust stress return algorithm for updating the stresses. In order to simulate a realistic
response, different stress-strain relationships are used for the different materials. It is shown
that a robust arc-length method used for solving the nonlinear equations helped to trace the
descending branch of the load-deflection curve well. It also shown that the relative
performances of the proposed model based on HBT, EBT and TBT. Based on the accuracy
and range of applicability of the proposed model, it is recommended for the analysis of

composite beams having large deformations as well as inelastic material behaviours.

4.2 List of Manuscripts

Uddin, M. A., Sheikh, A. H., Brown, D., Bennett, T. and Uy, B. (2016). “Geometrically
nonlinear inelastic analysis of steel-concrete composite beams with partial interaction using
a higher-order beam theory.” International Journal of Non-linear Mechanics, (Elsevier),
Submitted.
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4.4 Geometrically nonlinear inelastic analysis of steel-concrete composite beams with

partial interaction using a higher-order beam theory

Md. Alhaz Uddin, Abdul Hamid Sheikh, David Brown, Terry Bennett and Brian Uy

ABSTRACT

A comprehensive finite element model based on a higher-order beam theory (HBT) is
developed for an accurate prediction of the response of steel-concrete composite beams with
partial shear interaction. The formulation of the proposed one dimensional finite element
model incorporated nonlinearities due to large deformations of the beam as well as inelastic
material behaviour of its constituent components. The higher-order beam model is achieved
by taking a third order variation of the longitudinal displacement over the beam depth for
the steel and concrete layers separately. The deformable shear studs used for connecting the
concrete slab with the steel girder are modelled as distributed shear springs along the
interface between these two material layers. The Green-Lagrange strain vector is used to
capture the effect of geometric nonlinearity due to large deflections. The von Mises plasticity
theory with an isotropic hardening rule and a damage mechanics model are incorporated
within the proposed finite element model for simulating the inelastic response of the beam
materials. The nonlinear governing equations are solved by an incremental-iterative
technique following the Newton-Raphson method. A dissipation based arc-length method is
employed to capture the post peak response of these beams successfully. The capability of
the proposed model is assessed through its validation and verification using existing
experimental results and numerical results produced by detailed finite element modelling of
these beams.

Keywords: Composite beam, Partial shear interaction, Higher-order beam theory, Large

deformation, Inelastic material response, Arc-length method.

1. INTRODUCTION

Steel concrete composite beams have many applications in the construction industry due to
their superior performances as structural members. In these typical structural configurations,

the concrete layer is primarily utilised to resist the compressive stress whereas the steel layer
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resists the tensile stress to enhance the performance of the overall structural system. The
composite action is commonly achieved by connecting the concrete slab with the steel girder
using steel shear studs. As the stiffness of these shear connectors is finite in reality, a shear
slip is always present at the interface [1] between the concrete and steel layers which results

in behaviour typically referred to as partial shear interaction.

Newmark et al. [2] is one of the earliest researchers who developed an analytical model for
simulating composite beams considering the effects of partial interaction. The Newmark
model is one of the most popular models, but due to its analytical nature it is only applicable
to composite beams having specific boundary and loading conditions. On the other hand, a
numerical model using a technique such as the finite element method, possesses a better
level of generality and is hence able to solve a wide range of problems. This has motivated
a number of researchers (e.g. [3-7]) to develop finite element models for composite beams
with partial interaction. However, these models [3-7] have been developed considering the
effect of small deformation and elastic material behaviour which produces a simple linear
solution to the problem. In reality, the loading can’t be restricted within such a small range
and these composite beams often undergo large deformations with beam materials exhibiting

an inelastic response.

In order to address some of these issues, Yasunori et al. [8] incorporated the effect of inelastic
material behaviour in their finite element model of composite beams using the von Mises
yield criterion. However, they [8] used a very simple material model based on an elastic
perfectly-plastic idealisation for all materials including concrete, which is not realistic
especially for the tensile response of concrete. Similar studies have been carried out by Salari
et al. [9] using a bi-linear elasto-plastic material model with a strain hardening parameter. A
further development in this direction is due to Dall’Asta and Zona [10] and Erkmen and
Attard [11] who have used realistic stress-strain curves for the beam materials. In their work
Dall’Asta and Zona [10] have ignored the contribution of concrete in tension whereas
Erkmen and Attard [11] have used the concept of tension stiffening for its modelling.
However, the studies [8-11] did not consider the effects of large deformation in the
modelling of composite beams. On the other hand, the effect of geometric nonlinearity due
to large deformations is incorporated in the finite element models by Erkmen and Bradford
[12] for the analysis of steel-concrete composite beams being curved in plane, and Battini et
al. [13] and Ranzi et al. [14] for the two-layered straight composite beams. However, they
[12-14] ignored the effects of inelastic material behaviour which is encountered even with a

low to moderate range of loading.
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A nonlinear model considering the effect of inelastic material behaviour along with the large
deformation can ideally be the best model for predicting the response of these composite
structures accurately. For this purpose, Hozjan et al. [15] developed a nonlinear finite
element model considering the large deformation and the inelastic material behaviour of the
constituents of composite beams with interfacial slip, but neglected the tensile behaviour of
concrete. A comprehensive one dimensional finite element model is proposed by Liu et al.
[16] where the tensile behaviour of concrete is simulated using a damage mechanics model
which can precisely model the tensile response of plain concrete without reinforcement.
However, all these models [3-16] are based on Euler-Bernoulli beam theory (EBT), which
does not consider the effect of transverse shear deformation of the steel and concrete layers.
The effect of this shear deformation is significant in some situations such as beams with a
small span-to-depth ratio, localized concentrated loads, clamped boundary conditions and

some other scenarios.

Thus there has been a growing interest in recent years to incorporate the effects of shear
deformation and the Timoshenko’s beam theory (TBT) is typically used for this purpose
(e.g., [17-20]). It is observed that all these investigators [17-20] have used linear elastic
material behaviour and small deflection theory to develop their models. Recently, Hijaj et
al. [21] developed a model based on TBT considering the effect of large deformation. This
has been extended further by Nguyen et al. [22] to incorporate the effect of inelastic material
behaviour. However, they [22] have used a very simplified material model as well as treating
the behaviour of concrete in tension and compression identically. Moreover, in this beam
theory (TBT), the actual parabolic variation of shear stress over the beam depth is simplified
by taking a constant average shear stress distribution over the beam depth. This
simplification requires the use of a factor known as a shear correction factor to determine a
satisfactory global response such as deflection or vibration frequency. This correction factor
is not sufficient for an accurate prediction of the local response such as the stress
distributions within these structures [23-25]. Furthermore, the calculation of the exact value
of this shear correction factor for a composite beam with partial shear interaction is

cumbersome in comparison with that of a single layer homogeneous beam.

In order to address the aforementioned issues related to shear deformation of the beam layers,
a higher-order beam theory (HBT) has recently been developed by Sheikh and co-workers
[23-25] for an accurate prediction of global as well as local responses of these composite
beams. The cross-sectional warping of the beam layers produced by the transverse shear

stress is modelled with a higher order (3™ order) variation of longitudinal displacements of
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the fibres over the beam depth. This beam theory (HBT) utilized the concept of Reddy’s
higher order shear deformation theory [26] developed for multi-layered laminated composite
plates modelled as single layered plates without interfacial slip. In these investigations [23-
25], HBT has been implemented with a one dimensional finite element model which has
exhibited a very good performance, though these studies are restricted to linear elastic

analysis of these composite beams having small deformations.

Considering all the aforementioned aspects, an attempt is made in this study to develop an
efficient numerical model based on HBT for accurately predicting the large deformation
response of composite beams having inelastic material behaviour. The nonlinearity induced
by the large deformation and inelastic material response is manifested in the form of
nonlinear load-deflection curves. These curves can have a descending branch after attaining
the peak load due to the strain-softening behaviour of concrete in its inelastic range. It is
observed that most of the investigations carried out on the inelastic response of composite
beams [8-11, 16, 22] could not capture the descending branch of the nonlinear load-
deflection curve successfully. The solution of this typical nonlinear problem is quite
challenging and a load control based technique cannot trace the descending branch of the
load-deflection curve. In order to overcome this problem, a displacement control based
technique may be used, however this will also fail if the load-deflection curve has a snap-
back response. In this situation, an arc-length based solution technique seems to be the only

possible option.

The arc-length method was initially proposed by Riks [27] and subsequently enhanced by
various investigators (e.g. Crisfield [28, 29]) for solving different nonlinear problems.
Though these developments helped to solve complex geometric nonlinear problems
successfully, they encountered severe convergence problems in solving material nonlinear
problems especially relating to concrete structures which have failure/crack localizations. In
order to address this specific issue, the localized nature of damage has been utilised by May
and Duan [30] to develop an arc length method known as a damage localization approach.
This method can provide a satisfactory solution to a problem [31] but it requires the position
of damaged elements to be known, which may be difficult to locate in a complex structural
system. A further advancement in this direction is due to Gutiérrez [32] who proposed a
dissipation based arc-length method where the energy dissipated by the entire structure due
to its damage and plastic deformations is utilised as a stepping parameter for controlling the
incremental iterative process. The success of this method is primarily due to the stepping

parameter which is always positive regardless of the sign of the tangential stiffness.
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For the one dimensional finite element model developed in this study, the von Mises
plasticity theory with an isotropic hardening rule is used for modelling the inelastic
behaviour of steel girders, concrete slabs under compression, steel reinforcements, and steel
shear studs. A damage mechanics model is used for modelling the inelastic behaviour of
concrete under tension. The Green-Lagrange strain vector is used to capture the effect of
geometric nonlinearity in the composite beam. A dissipation based arc-length method is
employed to capture the post peak response successfully. Numerical examples of composite
beams are solved by the proposed model. The results predicted by the models are validated
with the published experimental results and the numerical results produced by a detailed
two-dimensional finite element model of these beams using a reliable finite element
software. As the number of results available in the inelastic range of composite beams having
large deformations is limited and no one has reported any results for the stress distributions

within these structures, a number of new results are presented for future references.

2. MATHEMATICAL FORMULATION
2.1. Higher-order Beam Theory (HBT)

Fig. 1 shows a steel-concrete composite beam which is typically a two layered composite
beam with a flexible interface. According to the HBT, the variation of longitudinal

displacement of the concrete and steel layers over their depths can be expressed as

U =Ug — ycec + yczac + yg:Bc (1)
Ug =Ugo — Y0, + yszas + ygﬁs (2)

where uco and uso are the longitudinal displacements of the concrete slab and the steel girder
at their reference axes (yc = 0 and ys = 0) respectively, & and & are bending rotations of
these layers, and a and S are the higher order terms. As vertical separation between the layers
is not commonly observed in a straight composite beam under static loading, it is not
considered in this study. Thus the vertical displacement will be identical for both layers and

it can be expressed as
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Fig. 1. Typical Steel-concrete composite beam with longitudinal displacement variations
over the beam depth.

W, =W, =W (3)

The partial shear interaction between the concrete and steel layers is characterised by the slip
at their interface. This is defined as the relative longitudinal displacement of these material
layers and it can be expressed as

SZUS—UC (4)

where i, is the longitudinal displacement at the bottom fibre of the concrete layer and i is

the longitudinal displacement at the top fibre of the steel layer.

Utilising the shear stress free condition at the exterior surfaces (yc = he/2 and ys = -hs/2), and
taking U,and T, as independent field variables, the higher order non-physical terms
appearing in Egs. (1) and (2) can be expressed in terms of other field variables [23]. Using
Eqg. (3) and the above conditions, Egs. (1) and (2) can be rewritten in terms of all physical

parameters as

uc = A:Uco + BcUc + Ccec + Dc¢ (5)
u, = AU, + B0, +C.6, + D¢ (6)

where A, B, C and D are functions of y, cross-sectional properties of the two layers and their
material properties [24]. In the equations above, ¢ (=dw/dx) is taken as an independent field
variable to have a C° continuous formulation for the finite element implementation of this

beam theory.
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2.2.  Variational Formulations and its Finite Element Implementation

The equilibrium equation can be derived using the principle of virtual work and it can be
expressed as

j jdg } dAdx+ j j {de)? {o}, dAdx+ j dsz,dx = j dwadx, @)

where d is used to show the variation of any parameter, {¢j.and {e}; are strain vectors

S

(consisting of normal and transverse shear strains) of the concrete and steel layers

respectively, {s}.and {c}, are stress vectors (consisting of bending and shear stresses) of

S

these layers, t, is the distributed shear force (per unit length) at their interface, q is the

distributed external load (per unit length) acting on the beam, and A is the cross-sectional

area.

The Green-Lagrange strain vector of the two layers may be written as

Eh=12 - aug—iaw : %{[Z—)@” o)y + o ©

Yk -
ay OX 0

where {e, },and {e }, are the linear and nonlinear strain vectors in which the index k = ¢

for the concrete layer and k = s for the steel layer. Using Egs. (5) and (6), the linear strain

vectors may be written in terms of the cross-sectional matrix [H, ], and the one dimensional

linear strain vector {Z, }, as

{gL}k :[HL]k {gL}k’ 9)
A B,C, D O O 0O 0 0
where, [H ], =| g o o o 9A 9B dG db |, (10)
dy, dy, dy, dy,
_ du, du, dg, d¢
and T=| k0 "k K =2 u, O 6 — 11
{gL}k (dx dx  dx dx ko Mk Y ¢ dX (11)

For the finite element implementation of the proposed beam model, a displacement based
quadratic isoparametric beam element with three nodes is used to have a simple formulation
with no unexpected numerical inconsistencies. However, a displacement based formulation
can exhibit locking phenomena, which is eliminated by using the field consistent technique

[33]. The field variables of the element are uco, T, &, W, ¢, Uso, T, and &, which can be
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expressed in terms of their nodal unknowns using the interpolation functions of the element
[25]. This leads to an expression for the one dimensional linear strain vectors (11) in terms

of the nodal displacement vector {A} as

3

AL
[t B s ]%Az}}[mkw w
{A,}

where a typical component of the linear strain-displacement matrix [B/], corresponding to

node j (1, 2 or 3) is given in [25] for the concrete/steel layer.
Now the nonlinear strain vectors may be expressed as
du

du dw i 1
ten e = [dox dOX] Z—W :E[A]k{g}k' (13)
X

Using Egs. (5) and (6), the vector {#}, may be expressed in terms of its cross-sectional

matrices [H, ], and one dimensional strain vectors {¢,,}, (dependent on x only) as

{0} = [HN ]k {5N9}k , (14)
where, [H ], =[A(‘)‘< E(’)k %k %k ﬂ (15)

du, du, dg, d¢ dw
and Y il U i L —J 16
tena (dx dx dx dx dx (16)

The matrix [A], in Eq. (13) is dependent on displacements of the beam and is evaluated or

updated in each iteration within the solution scheme of the nonlinear governing equations
utilising {6}, .

The one dimensional strain vector shown in Eg. (16) can be expressed in terms of the nodal

displacement vector as

J
gNH}k [[G ]k [G 3]k}{ 2{}_[G]k{A}’ 17)
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b} 0O 0 0 000
dx
dN,|
0 —4 0 0 0 000
dxd
N .
where, [6,] =| 0 0 —L 0 0 000
X
0 0 0 0 —000
dx
dN,
0 0 0 — 0 000
L dx ]
000 0 0 — 0 0
dx
dN,
000 0 0 0 —L 0
dxd
N .
and[6,]=loo0 0 0o 0o o0 —1|
dx
000 0 — 0 0 0
dx
dN
000 — 0 0 0 0
L dx J

Employing Egs. (9), (12), (13), (14) and (17), the total strain vector as given in Eqg. (8) can

be expressed as

S (CRICR R ARG NS AR A (18)

Taking the variation of Eq. (18), the incremental strain vector can be obtained [34] and it

may be expressed as

{dely =(H 1 [B ] +[AL[Hy ] [G] Hda} =B, 1, +[By ], fdA}=[B], {dA}. (19)

Similarly, the incremental form of the interfacial slip (4) can be expressed in terms of a

strain-displacement matrix for the interfacial slip [B],, and nodal displacement vector [25]

as

ds=d(T, -0, )=[B],{dA}. (20)

The virtual work due to the external load q as expressed on the right hand side of Eq. (7) can

be expressed further in terms of the external load vector {F,,}and incremental nodal

displacement vector {dA} as

J.dwqu {dAf {F.. }, (21)
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where {F,,}= I[N]qux (22)

The matrix [N] in the above equation contains shape functions of the transverse

displacement, w [25].

Substituting Egs. (19), (20) and (21) into Eq. (7), the equilibrium equation can be obtained

and expressed as
[ [BT{ol.andx+ [ [[BT o}, dadx+ [[BLradx={Fu . (23)
X A X A X

The stresses in the above equation (23) can be expressed in terms of strains using appropriate

constitutive relationships and these strains can subsequently be expressed in terms of nodal
displacements{A}. However, the resulting equation cannot be solved for nodal

displacements directly due to the nonlinear constitutive relationships produced by inelastic
material behaviours and the displacement dependent nonlinear strain displacement matrices.
The nonlinear stress-strain relationship must be expressed in its incremental form as the
stresses cannot be expressed in terms of strains in their total form due to the load history
dependent material behaviour. To facilitate this, the left hand side of the equilibrium

equation (23) is defined as the internal nodal force vector {P,,}(dependent on the nodal

displacement vector {A}), which leads to an expression for Eq. (23) in a compact form as

{Poc{AD} ={Fee} OF {¥}={Pui}— {Foe = {0} (24)
The Newton Raphson method is used to solve the above nonlinear equation iteratively where
the nodal displacement vector {A}'*at the iteration j+1 can be computed from that obtained

in the previous iteration {A} as
(A)7% = o)+ fan " = ) K%H Forfay) @)

From the above equation, the incremental nodal displacement {dA} within an iteration can
be written as

O taa) =) (26)

Substituting Egs. (23) and (24) into the above equation and defining its right hand side as

the residual load vector {dR} (=—{¥}), it can be rewritten as
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j I[dB]T } dAdx-+ j J’[B]T {do}, dAdx+ j j[oua]T o}, dAdX+ j j[§]§{da}sdAdx
X X A X A x A (27)

+ j [BT, dz,,dx = {dR}.

The incremental strain displacement matrix of a material layer used in the above equation
can be expressed with the use of Eq. (19) as
[dB], =[dB, ] = [dAL[H\ L [G] =[dAL[B, ] - (28)

Substituting the above equation in Eq. (27), the first and third terms in the left hand side of
the equation may be expressed in terms of geometric stiffness matrices [34] and incremental

nodal displacements as

[K,].{dA}+ j j[§]§{da}chdx+[KG]s{dA}+ j j[§]§{da}sdAdx+ j[B]ghdfshdx={dR} (29)
X A X X

where | j I[B o [B,].dAdx and [K_], —j I[B "o, [B, ],dAdx.

Now the incremental stresses appearing in the above equation can be expressed in terms of
incremental strains using a suitable constitutive relationship (see the Section 2.3) by using
Egs. (19) and (20) as

{da}k Z[Et]k{dg}k Z[Et]k[g]k{dA} (30)
and dzg, =k, ds =k [B]., {dA} (31)

where [E'].is the tangential material stiffness matrix (elasto-plastic/damage stiffness
matrix) of the steel/concrete layer and k!, is the tangential material stiffness (elasto-plastic

stiffness) of the shear connectors.

After the substitution of Egs. (30) and (31) into Eq. (29), the incremental equilibrium
equation can finally be written as

[Kr 1idA} = {dR} (32)

oly}
o{A}

The tangent stiffness matrix [Kr] in the above equation is the same as the term which

appeared in Eqg. (26) and can be expressed as

1=K, L+ j I[B]T [E'].[BLardx+[K,L+[ [[BT[E‘][BLaadx+ [[Blikt[Bladx  (33)
x A X
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The nonlinear equation (26) is solved in an iterative process (25) using Egs. (27), (32) and
(33). In order to achieve a converged solution, the iteration process will continue until the

residual force vector {dR} is reduced to a specified tolerance as follows

AIRUR)  100<Tol (34)

Pt {Fou)

where Tol is the convergence tolerance which is taken as 1% in the present study.

It should be noted that the entire load is divided into a number of load steps and it is applied
gradually in increments where the iterative solution technique is activated within each load
step. Moreover, this is a load control technique which will not be adequate for tracing the
post peak response of composite beams. This problem is solved by using a robust arc-length

method which is presented in Section 2.4.

2.3.  Constitutive Relationship

The von Mises yield criterion with an isotropic-hardening rule [35] is used for modelling the
inelastic behaviour of steel girders, reinforcement and steel shear studs. This modelling
approach is also applied to the region of concrete slab subjected to compressive stress for
simplicity. A damage mechanics model [36, 37] is adopted to simulate the cracking

behaviour of the concrete under tensile stress.

2.3.1. Constitutive Relationship for Steel and Concrete in Compression

According to the von Mises yield criterion, the stress state must be on (plastic loading) or
within (elastic loading and unloading) the yield surface which may be written for the
steel/concrete layer subjected to bending and shear stresses as

fy =0k —0y, <0 (35)

In the above equation, o, ;. is the uniaxial yield stress and o, 5 . is the effective stress, which

can be written in terms of bending stress o, and shear stress 7, as

Ok =N OF +372 (36)
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In order to correlate a multiaxial stress state (usually encountered in a real problem) with the

uniaxial yield stress, the uniaxial yield stress can be expressed in terms of equivalent plastic
strainef =+ (gk" )2 +(yk" )2 /3as

p
Eef k

Gy,k = UyO,k + J-H 125‘9(;; k (37)
0

where g, is the initial value of the uniaxial yield stress for a material layer and Hy is the

strain hardening parameter of the layer.

As mentioned in the previous section, the stress-strain relationship must be expressed in its
incremental form due to inelastic material behaviour. Thus the strain vector is taken in its

incremental form and can be expressed in terms of its elastic and plastic components as

fde = de* ) +{de” (38)

The elastic strain increment can simply be obtained from the incremental stress using
Hooke's law as

() ~ ), ~0e) ~[ET ool | T 3 | el (39)

where E;, and G, are the elastic modulus and shear modulus of the material layer

respectively.

As an associated flow rule is used, the plastic strain increments can be determined [38] using
Eq. (35) as

{deP}, =da, M _ 44 {"k}:dzk {al, (40)

6{G}k Ot k 3ty

where d 4, is the incremental plastic strain multiplier and the vector {a}, gives the direction
of plastic flow, which is normal to the yield surface. Using the consistency condition of the
yield function (35) along with the above equations (36, 39 and 40), the incremental plastic
strain multiplier can be derived following the usual operations used in a plasticity

formulation [38] and it can be expressed as

E L
Y @TIE T )+ 1] “h
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For the von Mises yield criterion, the equivalent plastic strain increment will be the
incremental plastic strain multiplier d4, [38]. Using Egs. (39) to (41), the incremental

stress-strain relationship can be obtained which is expressed as

oo ~lew bl - el - R o, @)

i [Erklal + 1y

where [E®], is the elasto-plastic constitutive matrix that can be used for [E'], in Eq. (30).

This constitutive relationship is also applied for the modelling of reinforcement bars by

eliminating the contribution of shear stress/strain.

2.3.2. Constitutive Relationship for Concrete in Tension

The concrete under tensile stress (major principal stress) is treated as an elastic material up

to its uniaxial ultimate tensile stress ( o,,) where cracks are initiated. The crack initiation can

be detected once the following equation is satisfied.

fi =0umax —010 =0 (43)

where o, IS the maximum principle stress which can be evaluated using the following

equation.
O¢ O'c2 2
O-max:7+ T-FTC (44)

The material behavior in tension is modelled with a damage mechanics approach taking a
linear strain softening branch for simulating the post cracking response [37]. Fig. 2 shows a
typical one dimensional damage model where the damage parameter « ranges from 0
(damage initiation) to 1 (complete damage) to characterize the extent of cracking. The
damage parameter is used to quantify the loss of material stiffness due to cracking, which is
illustrated with the unloading path from any point on the softening branch, in the form of its

secant stiffness. The loading function for the damage can be expressed as
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Fig. 2. Uniaxial strain softening model in tension.

fcr =K — ma)((Kold 'Kto) <0 (45)

where f, =0 indicates loading (i.e., damage growth) and f_, <0 indicates unloading. The
equivalent strain parameter x,; (Similar to equivalent plastic strain in plasticity) in the above

equation (scalar quantity) is taken as

o = lell[E Lk (40

where «,,, is its value obtained in the previous iteration of the analysis and «,, corresponds
to that at the instance of damage initiation i.e., & =&, (Fig. 2). In the case of unloading, the
value of x4 will be unaltered but it must be updated with the new value of «, for loading

in order to satisfy Eq. (45). Similarly, the damage parameter o will retain its old value for

unloading but it is to be updated for damage growth (loading) as

_ Ky (Ket —Kio)

Ket (Ktu - Kto)

(47)

where x,, corresponds to complete damage i.e., & =g, (Fig. 2).

In the modelling of concrete under tensile stress, it is observed that the solution is dependent
on the mesh size in a traditional strength based analysis. This is a typical problem which is
eliminated in the present study using the concept of crack band theory proposed by Bazant
and Oh [39]. This concept is based on fracture mechanics principles which utilize fracture
toughness Gt (energy required to produce a crack of unit area) as a material property. This

will be utilised to estimate the value of ¢, used in Fig. 2 (@ =1) considering the area under

the stress strain curve as g; =G; /w, where w, is the crack band width where the energy Gt
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is assumed to be distributed over the crack band width [39]. This is an important concept
that helps to treat the discrete nature of crack within a continuum model. As the element

length 1, is related to the crack band in a smear crack model, the final expression of &, can

be written as

Ewu =

Yl
aw eO-tO

(48)

where «, |, is defined as the characteristic length. The value of «,, depends on the order of

element which is 1.0 in the present case as a quadratic element is used [39].

With the damage parameter (47), the stress-strain relationship can be written as

{o}, =(1-o)[E°]{e}, (49)

where (1-w)[E®], is the secant damage stiffness matrix (Fig. 2).
Finally, the incremental stress-strain relationship of the damaged concrete may be written as

{dol. =[E"Hde}. (50)

where the tangent damage stiffness matrix [E"] can be expressed with the following

equation and it can be used in Eq. (30) for [E'], .
E = - w)[Ee] - w0 (1T () 51
o ey L (51)

The above equation is applicable for damage growth while [E€"] will be the secant damage

stiffness matrix (1— w)[E®], for unloading.

2.3.3. Constitutive Relationship for Shear Connectors

The shear connectors are idealised as a distributed spring layer which transfers a distributed
shear force between steel and concrete layers at their interface tangentially. The von Mises

yield criterion used to model the shear connectors can be written as

fo=7g -7 (52)

y

where the effective shear stress (force per unit length) 7., is the absolute value of the

interfacial shear force 74y, and 7,, is the corresponding yield stress (force per unit length)
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that may be expressed in terms of the effective plastic shear slip s; (absolute value of the

plastic shear slip s” ) as

P
Sef

T, =Ty + J-Hécﬁser; (53)
0

where 7,4 is the initial yield stress (force per unit length) of this interfacial shear, and H',,
is the hardening parameter. In this case, the slip (s) is taking the role of strains and it is to be
expressed in terms of its elastic (s¢) and plastic (s?) components. Following the usual steps

of plasticity, the increments of these plastic slip components may be expressed as

ds® =dz,, /k,, (54)
k h
dsP = —sh (s (55)
H;c + ksh

where kg, is the elastic stiffness of the distributed interfacial shear springs. Finally, the

incremental relationship between interfacial shear force and slip may be written as

2
dr,, = k;ﬁ’ds:(ksh —H,k;hkjds (56)
sh

sC

where kZF is the elasto-plastic tangent stiffness for the shear connectors that can be utilized

in Eq. (31) as k.

2.4.  Arc-length Technique

The dissipation based arc-length method has initially been proposed by Gutiérrez [32]
considering damage as the only energy dissipation mechanism. Subsequently, this method
has been extended by Verhoosel et al. [40] to include plasticity as an additional mechanism,
which is applied to the present problem. As the value of the external loading will not increase
in the post peak range, the equilibrium equation (24) is expressed in terms of an unknown

load factor (or multiplier) u as

{Pinc} = 1{F} (57)
where {F} is the external load vector due to one unit of applied load. In order to avoid any

convergence problems and trace the entire structural response in the pre-peak as well as post-

110



peak ranges, the equilibrium path is divided into a number of steps by adjusting the value of

4 and the nonlinear equation is solved iteratively within each load step. As x is also an

unknown parameter and its value is adjusted by this technique, an additional equation is

required which is taken in the form of a constraint as follows

C({Ao . o, {60}, S, e4) =0 (58)
where ({A,}, 14,) is a point on the equilibrium path (a converged solution at the end of a load
step), {0A}is the incremental nodal displacement vector for the next load step, &u is the
corresponding incremental load factor and e, is the prescribed dissipation energy required
for estimating the step size. It should be noted that {#A} is the value of {A} within a load step

whereas {dA} used in Section 2.2 is the value of {A} within an iteration. The incremental

energy dissipation Uq of a structure due to inelastic deformations within a load step is used

to define the constraint C in the above equation as

C=U, e, (59)

As the energy dissipation can be obtained from the work done by the external loads Wk (i.e.,
total energy supplied to the structural system) and the elastic energy Ue retained by the

system, the incremental energy dissipation within a load step can be written as

=W, -3, (60)

With the external load vector as expressed in Eq. (57), the incremental work done by the

external loads used in the above equation can be written as

W, = p{F}" {en} (61)

In the case of a structure having plastic deformations, the strain will have an elastic
component and a plastic component. The elastic strain can be used to obtain the elastic

energy of a composite beam Ue and it can be expressed as

:—J' Jodv+= I{ge I o), dv+%_|.sershdx (62)

Using the constitutive relationships of the different beam components, the elastic strains in

the above equation can be replaced with the corresponding stresses as

:—I{ el o) dv+ = I{ el o) dv+ = I T kg, dx (63)
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Now the incremental elastic energy within a load step can be obtained from the above

equation and written as

. = [{oofl [ee[ ol dv+ [{aofl [B2 [ Holsdv+ [ argkiradx (64)

Using the elasto-plastic constitutive relationships from Egs. (30) and (31) with reference to
the starting point of the load step, the incremental stresses in the above equation can be

expressed in terms of incremental strains as

U, = [{ef [E T e[ Mol ave [l [E L [Ee L ol avr [abkiiktesnax (65)

Using Egs. (19) and (20), the strains in the above equation can be expressed in the form the
incremental nodal displacement vector and Eq. (65) can be rewritten as

&, = (o' {F | (66)
where
)= [IBILIE N E L oo av + [[BITE T [E°T Mo dv -+ [[BTL, kipkaizy,dx (67)

Using the forward Euler discretisation with respect to the converged solution ({A,}, 4,) of the

previous time step, the constraint in Eq. (59) can be expressed with the help of Egs. (60),
(61) and (66) as

C = (oA} (o F} - {Fo f)-es (68)

In the case of a structure having damage [40], the above equation can similarly be derived
and expressed as

C =2 FY (molon} - aula ) -, (69)

Now Eq. (58) is combined with Eq. (57) to determine the augmented system of equations as

{Poct—w{FJ| _ [{0}
{ c =10 (70)
The Newton Raphson method can be used to solve above equation iteratively as
j+1 j j+1
o] _flea)'] [foay o
5/1 j+1 5,UJ d,u j+1
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NE : o (F)- o)
where {{dﬁi” } g_é é {# "o } (72)
o{A ou

Using Egs. (68), (69) and relevant equations in Section 2.2, the above equation can be
rewritten as

d [K.] —={F1T'T{d
(o -ler w1 ™
where {G}:yO{F}—{Ifo}and h =0 for plasticity; and {G}:%IUO{F} and h :_%{F}T A, for

damage. The above equation in its present form is not suitable for its solution due to the
incorporation of an additional row and column for including the additional unknown (load
factor) which has destroyed the banded nature of the matrix system to be operated. In order
to overcome this problem, the Sherman-Morrison formula [41] is used for solving the above

equation as follows

fla). {{_Ag;}}—{G}T{l { (61" ta }+c)an) } 74)

du Ay =h _{G}T{Al}_c(l"‘{G}T{Au}_h)
where {a, }=[KJ*{dRr} and {A, }=—K;J"{F}.

Using Egs. (71) and (74), the nodal displacement vectors and load factor can finally be

updated as

fonf = o +{a ) - (g P {a, ) (75)

S =gl + (g, ) (76)
_ {G}T {A j+C

W Gy

As this arc-length method utilises the energy dissipated in a load step, the application of the
method is not convenient at the initial loading steps where the structural deformations may
be in the elastic range and have no energy dissipation. Thus a hybrid approach of solution
strategy is adopted in the present study where the load control method is applied for some

initial load steps and it is switched to the arc-length method when the energy dissipation U,
in a load step exceeds €,_,,, Which is the minimum value of e, prescribed by the user.

Actually, the value of e, is updated in each load step when the arc-length method is activated
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in order to reduce the solution time. The value of e, in a load step i+1 can be estimated with

the value of U in the previous load step [42] as

(eq )i+l =0.5" (U4 )i (77)
where y =0.25(j - j,) in which j is the iteration number and, j is the desired number of

iterations to get convergence. In order to avoid any divergence problems, the value of e,
should be restricted within its minimum value e, _.;, and maximum valuee,_ ., , which is

another user specified value.

2.5.  Stress Update

The nonlinear equilibrium equation is solved iteratively as mentioned in the above sections
where the stresses are updated after every iteration as the total stress cannot be expressed in

terms of total strain in the case of plastic deformations. In that situation, the incremental

nodal displacements {dA}’ obtained in an iteration j are used to evaluate the corresponding
incremental strains {ds}) using Eq. (19) which are subsequently utilised to compute the

incremental stresses {do}) of that iteration using the elastic constitutive relationship as

doli =[E°] {de}} (78)
The above equation is written for a material layer but it is similarly applicable to the shear
studs. Now the stresses can be updated by adding the incremental stresses {ds}] with the

stresses accumulated in the previous iteration {o}/ ™" as

ol =loh" +ldo; (79)
The updated stresses are substituted in the yield criteria as given in Eg. (35) which will lead

to f, >0 that indicates plastic deformations of the material or f, <0 for its elastic

deformations. For plastic deformations ( f, > 0), the updated stress vector {s}; estimated by
Eg. (79) are unfortunately not the final stress vector and it is rather defined as the trial stress
vector {at }k which is adjusted to bring it on the yield surface. This is accomplished by using

the backward Euler return technique [38], a robust stress return algorithm, in the present
investigation. The starting estimate of the adjusted stress vector can be obtained from the

trial stress vector as
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{ohe =o'} —dA, [E°], fal, (80)

f
where dj, = k
© ek Bk fa)orHy

and {a}, can be calculated using Eq. (40). Both {a}, and d, are calculated based on the

(81)

trial stresses. As the above stress vector {o}, does not usually satisfy the yield function, an
iterative approach is used where the starting or first estimate of the stress vector is defined
as {o}; and the corresponding incremental plastic strain multiplier asdi!. The value of the

stress vector and the incremental plastic strain multiplier is iteratively improved till a desired

level of convergence is achieved as follows.

ol ={ok +16 (82)
dA™ = dAP + A7 (83)

where n (>1) is the iteration used for the stress return algorithm. The expressions used to

determine the value of {5} and i are given below.

(Gln =MT () — AL IMTLE®], fa)s (84)
irhn =toh (o'} —a[E], fa)) (85)
o) =[m+w E) [%H (86)
PO YO -

tals | MR [E L da + 1

The superscript n used with any parameter in the above equations indicates that that
parameter is calculated at iteration n. The vector norm of the residual stress {r}; with respect
to the current stress {s} is used to check the convergence of the above iterative process. For

the present problem, the derivative of {a}, used in Eq. (86) can be written as

1 Ok 3oy

ofaly _ 1 Cax  Oex (89)
ool o _ 30wz 3_ 97¢
it k Tat k

115



As the equilibrium path is divided into a number of load steps and the nonlinear equilibrium
equation is solved within each load step iteratively, the stress return algorithm presented
above is implemented in a slightly different manner so as to avoid any convergence problem.

For an iteration within a load step, the incremental strains accumulated from the beginning

of that load step {5z}, are used instead of {ds}) in Eq. (78) to get the incremental stresses

{s}) of that load step which are added with the converged stresses of the previous load step

to evaluate the trial stresses of that iteration which is adjusted by the stress return algorithm

presented above.

3. NUMERICAL RESULTS

3.1. Two Layered Composite Beam having a Rectangular Section — Numerical

Verification

An 8.0 m long composite beam consisting of two layers having rectangular sections of equal
width (200 mm) and equal depth (300 mm) is used in this section for the numerical
verification of the proposed model. The beam is simply supported at its two ends and
subjected to a point load P at its mid span. For the upper material layer of the beam, the
Hognestad model [43] as shown in Fig. 3 is used for defining its uniaxial stress-strain curves

that may be expressed as

™
[
e
[UnN
Ul
=
Q

Stress

Y

€0 Ecu
Strain

Fig. 3. Uniaxial stress-strain curve for the upper material layer (concrete)

2
O¢. = fcllzgc _[g_cj ] €. <& (89)
gco ‘9c0
O-c = fc [83(800 _gc)+1] ch < gc < gcu (90)
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where f. is the maximum compressive strength, €., is the strain corresponding to f.' and
€c,, 1S the ultimate compressive strain. For the present problem, the values of these material
parameters are taken as: f, = 30 MPa, €., = 0.002 and ¢., = 0.038 along with the elastic
modulus of 25 GPa and Poisson’s ratio of 0.25 for the upper layer. For the lower layer of the
beam, a hypothetical material is used and its uniaxial stress-strain relationship both in tension
and compression is defined with an elastic-perfectly plastic model. The present analysis is
carried out taking the ultimate stress fy = 50 MPa, elastic modulus E = 40 GPa and Poisson’s
ratio v = 0.25 for the lower material layer. The relationship between the interfacial shear
force (per unit length) and the shear slip of the shear connectors is idealised as distributed
interfacial springs and defined by the exponential model of Olgaard et al. [44] as shown in

Fig. 4. This relationship is given by

—0.7]5)]2/5

T = O [L— € $<s (91)

u

where gmax is the ultimate value of the interfacial shear force (per unit length) and sy is the
ultimate slip. For the present analysis, the values of these parameters are taken as: ksh = 10
MPa, gmax = 460 MPa, sy = 6 mm.

qmax

Shear force

N,
rd

Slip Su

Fig. 4. Exponential model for the uniaxial stress-strain curve for shear connector

Though the effects of geometric nonlinearity (GN) due to large deformations as well as
material nonlinearity (MN) due to inelastic material behaviour are incorporated in the
proposed 1D finite element (FE) model, provision is kept to deactivate GN or MN in the
computer program developed for implementing the model. This function is utilised to have
three different options (1: with GN only, 2: with MN only, and 3: with both i.e. GN+MN) of
the proposed model and they are used to analyse the beam to show the contribution of the
individual nonlinearities and their combination. The beam is analysed with this 1D finite

element model using different number of elements and the results show that the maximum
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number of elements required to get convergence is 30 which is used in all cases. Though the
proposed model is based on HBT (3" order theory), it can easily be amended to TBT (1%
order theory) by dropping the higher order terms.

For the numerical verification of the proposed model, this beam is also analysed with a well-
regarded finite element software (ABAQUS) where the 2D plane stress rectangular element
(CPS4R) is used to model both layers by discretising these layers along their lengths and
depths assuming no normal stress across the beam width. The shear connectors are modelled
using the cohesive contact modelling tool of ABAQUS which is placed at the interface
between the elements used for the upper and the lower layers. Both these nonlinearities are
activated in this approach of analysis where the mesh refinement is similarly conducted to
get a converged solution. For the sake of comparison of the proposed model with the
ABAQUS model, the upper layer is treated as a hypothetical material in this example only
where the von Mises plasticity theory is used in compression as well as tension regions.
Moreover, the Hognestad model [43] is used to define the uniaxial stress-strain curve of the
material in both compression and tension. This is typically used for concrete in compression

only in other examples.
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Fig. 5. Mid-span deflection of the two-layer composite beam

The variation of mid-span deflection of the beam with respect to the applied load predicted
by the three options (GN, MN and GN+MN) of the proposed 1D finite element (FE) model
based on HBT is presented in Fig. 5. The figure shows that the GN contributed towards
stiffening the beam whereas the MN softened the beam. Moreover, the MN has the dominant

contribution which is responsible for producing a softening response when both these
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nonlinearities (GN+MN) are activated. Fig. 5 also includes the results obtained from 1D FE
model (GN+MN) based on TBT to show the performance of HBT over TBT. The results
obtained by the detailed 2D FE model are also included in Fig. 5 which shows a good
agreement with the results predicted by the proposed 1D model (GN+MN) based on HBT.
The figure also shows that the post-peak response of the beam is successfully traced by the

proposed model.
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Fig. 6. Deflection along the length of the two-layered composite beam
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Fig. 7. Interfacial shear slip of two-layered composite beam along its length

The variations of the vertical displacement and the interfacial slip along the beam length
corresponding to the applied load P = 175 kN predicted by the proposed 1D FE model
(GN+MN) based on HBT as well as TBT and the detailed 2D FE model are presented in Fig.
6 and Fig. 7, respectively. Similarly, the variation of von Mises stress over the beam depth
obtained at quarter span of the beam predicted by these models for P = 175 kN is plotted in
Fig. 8.
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Fig. 8. Von Mises stress at the quarter span of two-layered composite beam

For further investigations, the variation of bending and shear stress over the beam depth
obtained at a section 1.0 m away from one of the end supports corresponding to P = 175 kN
are plotted in Fig. 9 and Fig. 10 respectively. The results shown in Figs. 6 to 10 show a very
good performance of the HBT model in all cases. The performance of TBT is affected due

to the assumption of average shear strain and this is severe in Fig. 10.
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Fig. 9. Bending stress at a section 1 m away from a support of the two-layered composite
beam
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Fig. 10. Shear stress at a section 1 m away from a support of the two-layered composite
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3.2.  Steel-concrete Composite Beam subjected to Three Point Bending -

Experimental Validation

A 5.5 m long simply supported steel-concrete composite beam tested by Chapman and
Balakrishnan [45] is used in this section for the experimental validation of the proposed 1D
FE model (GN+MN) based on HBT. The beam consisting of a concrete slab and a steel I-

girder connected by steel shear studs as shown in Fig. 11 was tested under three point

bending.
\ 1220 mm J
| A
- - - . N
> R6@300 > R12@150 152 mm
: T T = x
305 mm
— 10.16 mm
18.2 mm
152 mm

Fig. 11. Cross-section of composite beam
The Hognestad model [43] as shown in Fig. 3 is used for the uniaxial stress-strain

relationship of concrete in compression while the bi-linear model as shown in Fig. 2 is used

for the concrete in tension. The steel girder is assumed to follow a bi-linear model with a
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strain hardening branch as shown in Fig. 12 for its uniaxial stress-strain relationship both in
tension as well as compression. For the shear connectors idealised as a distributed shear
springs, a bi-linear model as shown in Fig. 13 is used to define the relationship between the
interfacial shear force per unit length q and the shear slip s where the value of the hardening
parameter is taken as 585 MPa in one case and zero in other case. The concrete slab is
reinforced with 4 longitudinal steel bars R12 in its top and bottom regions (Fig. 11). The re-
bars are modelled as 1D members under uniaxial stress where an elastic-perfectly plastic

material behaviour is adopted.

Stress

N,
>

g Strain &y

Fig. 12. Bi-axial stress-strain curve for steel girder

Shear force

y,
>

Su

Sy Slip

Fig. 13. Bi-axial stress-strain curve for shear connector

The material properties used for characterising the different components of the composite
beam are given in Table 1 which also contains the material properties of the beam considered
in the next example (Section 3.3). The problem is solved by the proposed 1D nonlinear FE
model using 20 elements (based on a convergence study), and the variation of mid-span
deflection with respect to the applied load obtained with the two hardening values of the
shear connectors are presented in Fig. 14 along with the experimental result reported by
Chapman and Balakrishnan [45]. Fig. 14 also includes the numerical results reported by
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Liang et al. [46] who obtained these results from a detailed 3D nonlinear finite element
model of the beam using ABAQUS. The figure shows a very good correlation between the
results obtained from different approaches where the proposed model (considering no
hardening for the shear connectors) is found to perform better than ABAQUS when

compared with the experimental results.

Table 1. Material properties of composite beams

Material Property Liang etal. [46] Tan and Uy [47]
Concrete slab Elastic modulus, E. 32,920 MPa 20,000 MPa
Poisson’s ratio, v 0.15 0.10
Compressive strength, f,/ 42.5 MPa 25 MPa
Strain, & 0.002 0.002
Ultimate tensile stress, f; 3.553 MPa 2.5 MPa
Fracture energy, Gs 0.208 N/mm 0.1875 N/mm
Ultimate tensile strain, &, 0.0016 0.0019
Steel girder Elastic modulus, E; 205,000 MPa 200,000 MPa
Poisson’s ratio, v 0.3 0.3
Yield stress, f, 265 MPa 300 MPa
Ultimate stress, f;, 410 MPa 500 MPa
Ultimate strain, &, 0.25 0.11
Shear connector  Yield shear force, q,, 435 MPa
Ultimate shear force, g;nqe 565 MPa 743.86 N/mmi
396.49 N/mm
Elastic stiffness, kg, 2491.46 MPa 517.74 MPa}
397.61 MPaf
Maximum slip, s,, 6 mm 7 mmi
10 mmy
Reinforcement ~ Modulus of elasticity, E 200,000 MPa 200,000 MPa
in concrete slab  Poisson’s ratio, v 0.3 0.25
Yield stress, fy 250 MPa 550 MPa
Ultimate strain, &, 0.25 0.11

Note: 1 = Single shear stud in a row
1= Double shear stud in a row
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Fig. 14. Vertical displacement at mid-span of composite beam.

3.3.  Steel-concrete composite beam under four point bending — experimental validation

A 4 m long steel-concrete composite beam tested by Tan and Uy [47] under four point
bending is used in this example. The beam is simply supported at the two ends and subjected
to two identical point loads acting symmetrically with a clearance of 4/3 m between them.
The composite beam consists of a 500 mm wide and 120 mm thick concrete slab used for
the upper layer, and a steel | girder (universal beam section 200UB29.8) for the lower layer.
The concrete slab is reinforced with 4 longitudinal steel bars R12 in its top and bottom
regions. The concrete slab (including re-bars) and the steel girder are modelled in a similar
manner as followed in the previous example. For the modelling of shear connectors, the
exponential model of Olgaard et al. [44] is used for this problem which is chosen on the basis
of the trend of results obtained in the push out test [47].

For the present study, two different beam specimens tested by Tan and Uy [47] are used
where the number of shear studs in a row at each shear stud location along the beam is one
in the first case and two in the other case. Table 1 includes all the material properties used
for defining the different constituents of the composite beam. The beam is analysed with the
proposed model (GN+MN) and the result obtained in the form of variation of mid-span
deflection with respect to the applied load is presented in Fig. 15 along with the experimental
results reported by Tan and Uy [47]. The figure shows a good correlation between the

numerical and experimental results.

124



400 -

350 -
0. 0
250 - o
z <
= 7 .
3 200 - / A A Expriment (double stud)
o
— 150 Experiment (single stud)
100 - Proposed model (double stud)
50 — — - Proposed model (single stud)
O h T T T 1
0 20 40 60 80

Deflection (mm)

Fig. 15. Variation of mid-span deflection with respect to mid-span moment of the composite
beam (Tan and Uy [47]).

3.4.  Steel-concrete composite beam with a T-section

The problem of a 6.0 m long steel-concrete composite beam having a T-section as shown in
Fig. 16 is used in this section to study the effect of interfacial shear stiffness and higher order
terms used for defining the beam theory (HBT) on the response of the composite beam. The
beam is simply supported at its two ends and subjected to a point load at its mid-span. The
behaviour of the concrete slab and shear connectors is modelled in a similar manner as that

followed in the previous example.

b. =800 mm

P

he= 150 mm

A

hs= 150 mm

ok
bs=75mm

Figure 16. Cross-section of the 6 m long simply supported composite beam

For the steel girder, an elastic-perfectly plastic with strain hardening model [16] as shown in
Fig. 17 is employed for defining its uniaxial stress-strain relationship in both tension and
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compression. According to Liu et al. [16], the strain hardening branch of the stress-strain

curve (Fig. 17) can be expressed as

(gshf“;s)
o, =f, +(fu - fy{l—e a } e <& < g, (92)

where f,, is the yield stress, f, is the ultimate stress, ¢, is the yield strain, &g, is the strain at
the beginning of strain hardening, and ¢, is the ultimate strain. The material constant a used

in Eq. (92) can be determined with the above parameters as

A 0.028¢g, —&,) (93)
&y —0.16

Stress

\4

Sy ESh . Eu
Strain

Fig. 17. Uniaxial stress-strain curve (elastic perfectly plastic with strain hardening) for the
steel girder

For the present problem, the values used for the material parameters of concrete are: f = 30
MPa, €., = 0.002, &, = 0.038, f; = 3.0 MPa, Gt=0.197 N/mm, E; = 26 GPa and v, = 0.15.
Similarly, the material properties used for the steel girder are: f,= 275 MPa, f,,= 400 MPa,
esp= 0.025, £,=0.11, Es = 200 GPa and vs = 0.25. For the shear connectors, the material
properties are: gmax = 500 N/mm, ks» = 150 MPa and sy = 6 mm.

Though the proposed model is based on a 3™ order theory (HBT), it can easily be converted
to a 1% order theory (TBT) by dropping the higher order terms (a. and B) used in Egs. (1) and
(2). In this example, the beam is analysed by the proposed model (GN+MN) based on HBT
as well as TBT to show the performance of these beam theories in the nonlinear range.

Moreover, the analysis is carried out using a very high value of shear connector stiffness in

terms of gmax = 1.0x10"> MPa (Eq. (91)) as well as a moderate value (qmax = 500 MPa) of this
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stiffness parameter, which are referred as full interaction (FI) and partial interaction (PI)
conditions, respectively, in this example. The variation of mid-span deflection with respect
to the applied load predicted by the different variants (HBT, TBT, Pl and FI) of the proposed
model is presented in Fig. 18. It shows that the higher order terms (o and ) used in HBT

has some effect and the effect of the shear connector stiffness is substantial.
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Fig. 18. Mid-span deflection of the steel-concrete composite beam with T-section
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Fig. 19. Bending stress at quarter span of composite beam with T-section under point load
(P =250 kN)

The variations of bending and shear stresses over the beam depth obtained at quarter span of
the beam corresponding to the applied load P = 250 kN are plotted in Fig. 19 and Fig. 20
respectively. It is observed that the bending stresses (Fig. 19) obtained by these four

considerations followed a similar pattern as observed for the mid-span displacement.
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However, the effect of both shear connector stiffness and higher order terms (a and B) is

significant for the shear stress (Fig. 20).
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Fig. 20. Shear stress at quarter span of composite beam with T-section under point load (P
= 250 kN)

4. CONCLUSIONS

An accurate and computationally efficient finite element model is developed for the reliable
prediction of the large deformation inelastic response of steel-concrete composite beams.
The steel shear studs used to connect the steel girder with the concrete slab are idealised as
interfacial distributed springs with finite stiffness which enables the incorporation of partial
shear interaction exhibited in composite beams. A higher order (3" order) beam theory is
used to model the cross-sectional warping which helped to accurately simulate the shear
deformation of the beam without using the arbitrary shear correction factor used in

Timoshenko’s beam theory.

The von-Mises yield function with an isotropic hardening rule and associated flow rule is
used to model the behaviour of steel girders, steel reinforcements, steel shear studs and
concrete slabs in compression. A damage mechanics model is used for modelling concrete
slabs in tension. The mesh sensitivity associated with the damage modelling of concrete, a

quasi-brittle material, in tension is eliminated using the well-known crack band theory.

The Green-Lagrange strain is used to develop the model for incorporating the effects of
geometric nonlinearity produced by the large deformation of the beam. This large

deformation along with the inelastic material behaviour imposed nonlinearity in the present
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problem and the solution of this nonlinear equations becomes challenging specifically for
capturing the post peak response. In order to address this issue, an energy dissipation based
arc length method is employed to solve the nonlinear equations which helped to trace the

descending branch of the load deflection curve successfully.

The proposed one dimensional finite element model is validated with experimental results
and verified with the numerical results obtained from a detailed 2D nonlinear finite element
model of a composite beam developed using a reliable commercial finite element software.
The numerical verifications as well as experimental validations show a very good
performance of the proposed finite element model in all cases. Based on the accuracy and
range of applicability of the proposed model, it is highly recommended for the analysis of

composite beams having large deformation and/or inelastic material behaviours.
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Chapter 5: Summary, Conclusions and Recommendations for Future Study

5.1 Summary and Conclusions

The higher-order beam theory (HBT) is used to develop nonlinear finite element models for
steel-concrete composite beams with partial interactions. The deformable shear studs used
for connecting the steel girder with the concrete slab are modelled as interfacial distributed

springs with a finite stiffness which helps to model the partial shear interaction.

The proposed one-dimensional nonlinear models are developed by considering the effect of
both geometric and material nonlinearities for a reliable prediction of the nonlinear response
of composite beams. The effects of geometric nonlinearity due to large deformations are
incorporated in the present formulation by using Green-Lagrange strain vector. In addition,
the material nonlinearity due to inelastic material behaviours is incorporated by using the
von-Mises yield function with an isotropic hardening rule for the steel girders, steel
reinforcements, steel shear studs and concrete slabs in compression. Moreover, a damage
mechanics model is adopted to simulate the cracking behaviour of the concrete under tensile
stress. Furthermore, the mesh sensitivity associated with the damage modelling of concrete

is eliminated using the well-known crack band theory.

An energy dissipation based robust arc-length method is employed to solve the nonlinear
equations which helped to trace the descending branch of the load deflection curve
successfully. The backward Euler stress return algorithm is incorporated in the present
models for updating the stresses. In order to have a realistic material behaviour, different

types of stress-strain curves are used for different materials in both compression and tension.

The performance and range of applicability of the present models are shown by solving
numerical examples of composite beams having different loading, supporting conditions,
shear interactions and some other features. The results obtained by the proposed models are
validated with experimental results. The model is also verified with numerical results
obtained from a detailed 2D nonlinear finite element model of composite beams developed
using a reliable commercial finite element software. Through these validation and

verification, the major findings from the present research are outlined below:

e The proposed model based on HBT can realistically predict the global as well as
local responses of these beams without any arbitrary shear correction factor as it

takes account of the actual parabolic variation of shear strain.
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The proposed model is developed based on a 3" order beam theory (HBT) but it
can easily be converted into a lower order beam theory (e.g., EBT, TBT) by
eliminating the higher order terms. The numerical analysis has confirmed that the
model based on EBT always underestimates the global response (e.g., deflection)
of the beam as the structures become stiff for ignoring the effect of transverse

shear deformation.

The model based on TBT is usually adequate for predicting the global response
satisfactorily with the help of a shear correction factor which adjusts the shear
stiffness appeared in the formulation due to incorporating the transverse shear
deformation. However, this factor is not sufficient even for an accurate prediction
of the global response in some situation such as beams with a small span-to-depth
ratio, localised concentrated loads and clamped boundary conditions. Moreover,
the model based on TBT is not adequate for predicting the distribution of stresses

(local response) across the beam section.

The major advantage of the proposed model is it can predict results very close to
those produced by detailed finite element modes using ABAQUS but the
computational cost of the proposed model is significantly less than the ABAQUS
model. Moreover, in some situations, the proposed model performed better than
ABAQUS in the sense that the nonlinear solution process of this commercial
software is terminated earlier than the proposed model.

The proposed model is also used to examine the effect of different levels of shear
interaction between the two layers of the composite beam. It is observed that the
full shear interaction condition predicted deflection less than that for the partial
interaction as expected. For both full and partial interaction conditions, the
difference between the results predicted by HBT and TBT models is appreciable.

The nonlinear response of these structures in the form of load-deflection curves
predicted by the proposed model could successfully traced the descending branch

after attaining the peak load.

It also observed from the load-deflection response of the composite beams that
the effect of geometric nonlinearity due to large deformation contributes towards
stiffening of the composite beams, whereas material nonlinearity due to inelastic

material behaviour leads to softening of these beams. In all cases considered in
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this investigation, the material nonlinearity is found to have the dominant
contribution which is demonstrated by an overall softening response of the beams
when both geometric and material nonlinearities are considered in combination.
In that situation, the predict response of these beams are found to be more close

to the experimental data.

Based on the accuracy and range of applicability along with the computational efficiency of
the proposed model, it is highly recommended for the analysis of composite beams having

large deformation and/or inelastic material behaviours.

5.2 Recommendations for Future Study

Though a comprehensive numerical model is developed in this study for accurately
predicting the nonlinear response of steel-concrete composite beams, a number of possible
scopes exist for the extension of the model to capture many other features. Some of the

obvious scopes of these future investigations are listed below:

e The current model is restricted to the prediction of static response of composite
beams having large deformations and inelastic material behaviours. Therefore, the
model can be extended so as to capture the nonlinear dynamic response of these
structures which are commonly encountered in a structure subjected to earthquake
loading, blast loading, and other form of impact loading.

e This model can be extended to buckling and post buckling analysis of the steel-
concrete composite beams which will find their applications in long slender bridges
and other structures.

e A current model is developed using a relatively simple constitute model for
simulating the inelastic response of the concrete slab. Thus, a very good opportunity
exists for the enhancement of the inelastic material model for concrete.

e Some complex behaviors of reinforced concrete, such as aggregate interlocking,
bond slip, tension stiffening and other effects, which are ignored in the current
research can be incorporated in future studies.

e The current models can be extended to incorporation the long term effects such as
creep, shrinkage and temperature, specifically for the concrete slab, to predict

accurate response under sustained loading.
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