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Abstract 

Steel-concrete composite beams are commonly used in bridges, buildings and other civil 

engineering infrastructure for their superior structural performances. This is achieved by 

exploiting the typical configuration of this structural system where the concrete slab is 

primarily utilised to resist compressive stresses whereas the steel girder is used to sustain 

tensile stresses. The composite action is realised by connecting the concrete slab with the 

steel girder by steel shear studs. The interfacial shear slip is always observed due to the 

deformation of shear studs having a finite stiffness in reality which is commonly known as 

partial shear interaction. This is an important feature which should be considered in the 

analysis of these composite beams to get satisfactory results.  

It is observed that most of the existing models for simulating composite beams are based on 

Euler-Bernoulli’s beam theory (EBT) which does not consider the effect of shear 

deformation of the beam layers. In recent past, the incorporation of this effect is becoming 

popular and some attempts have already been made where Timoshenko’s beam theory (TBT) 

is typically used. In this beam theory (TBT), the true parabolic variation of shear stress over 

the beam depth is replaced by a uniform shear stress distribution over the beam depth to 

simplify the problem. In order to address this issue, a higher-order beam theory (HBT) has 

recently been developed at the University of Adelaide. However, the model is so far applied 

to the linear analysis of these beams.  

In the present study, a comprehensive nonlinear finite element model is developed based on 

HBT for an accurate prediction of the bending response of steel-concrete composite beams 

with partial shear interaction. This is achieved by taking a third order variation of 

longitudinal displacement over the beam depth for the steel and the concrete layers 

separately. The deformable shear studs used for connecting the concrete slab with the steel 

girder are modelled as distributed shear springs along the interface between these material 

layers. The effects of nonlinearities produced by large deformations and inelastic material 

behaviours are incorporated in the formulation of the proposed one-dimensional finite 

element model. The Green-Lagrange strain vector is used to capture the effect of geometric 

nonlinearity due to large deformations. The von Mises yield criterion with an isotropic-

hardening rule is used for modelling the inelastic behaviour of steel girders, reinforcements 

and steel shear studs. This modelling approach is also applied to the region of concrete slab 

subjected to compressive stress for simplicity. A damage mechanics model is adopted to 

simulate the cracking behaviour of the concrete under tensile stress. The nonlinear governing 
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equations are solved by an incremental-iterative technique following the Newton-Raphson 

method. A robust arc-length method is employed to capture the post peak response 

successfully where the energy dissipation played an important role. To assess the 

performance of the proposed model, the results predicted by the model are compared with 

existing experimental results as well as numerical results produced by using a detailed two 

dimensional finite element modelling of the composite beams. 
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Chapter 1: Introductory Background 

1.1 Introduction 

Steel-concrete composite beams (Fig. 1) consist of a concrete slab and a steel girder 

connected by steel shear studs to have a composite action. These composite structures have 

widespread applications, especially in bridges, modern buildings and other structures. In this 

typical structural form, the two material layers are properly utilised to enhance the 

performance of the overall structural system, whereby the concrete slab is mainly used to 

carry the compressive stress and the steel girder carries the tensile stress. The shear studs 

transfer the shear force at the interface between concrete and steel layers. As the shear 

connectors are not infinitely stiff in reality, interfacial shear slip as well as vertical separation 

may occur between the two layers. The vertical separation between the layers is not common 

(Battini et al. 2009) under static loading for a straight beam. However, the interfacial slip 

has always been found (Oehlers & Bradford 1995) in reality at the interface between the 

steel and concrete layers, which is commonly defined as partial interaction. The effect of 

partial shear interaction on the structural performance has been found to be significant e.g. 

(Loh et al. 2004; Uy & Nethercot 2005), it should therefore be considered in the analysis of 

these composite beams. 

 

 

 

 

 

 

 

A number of researchers e.g. (Adekola 1968; Faella et al. 2002; Girhammar & Pan 1993; 

Huang & Su 2008; Jasim 1997; Ko 1972; Newmark et al. 1951; Ranzi, G et al. 2004; Ranzi, 

Gianluca et al. 2006; Salari et al. 1998; Schnabl et al. 2006; Wu et al. 2002; Yasunori et al. 

1981) have developed models for composite beams considering the effect of partial 

interaction based on Euler Bernoulli beam theory (EBT). It has been recognised that a model 

Fig. 1. Cross-section of steel-concrete composite beam 

Steel Shear Stud 
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based on EBT underestimates the deflection of the beam as it ignores the effect of transverse 

shear deformation. 

In the recent past, there is a growing trend to incorporate the effect of shear deformation in 

the modelling of composite beams using Timoshenko’s beam theory (TBT). Zona and Reddy 

(2011), and Ranzi and Zona (2007) have investigated the effect of shear deformation on the 

behaviour of steel-concrete composite beams with partial interaction but they have been 

applied TBT to the steel girder only, while EBT has been used to model the concrete slab. 

They have shown that the concrete slab gives a more conservative result, and emphasised 

the need to consider the effect of shear deformation in the modelling of composite beam. 

This is especially true for beams with a low span-to-depth ratio, steel I-girders having wide 

flanges and thin web. Berczyński & Wróblewski (2005); Schnabl et al. (2007); Xu & Wu 

(2007) have applied TBT to model both material layers. It is shown that a model based on 

TBT is capable of predicting the global response (e.g., deflection) of a beam satisfactorily. 

However, the model based on TBT is not adequate for predicting the actual distribution of 

stresses (local response). In this beam theory (TBT), the actual parabolic variation of shear 

stress over the beam depth is replaced by a uniform shear stress distribution over the beam 

depth to simplify the problem. In order to address this problem, an arbitrary factor known as 

a shear correction factor is artificially introduced which helps to get a satisfactory global 

response. Moreover, the calculation of the exact value of this shear correction factor for a 

composite beam with partial shear interaction is cumbersome. 

In order to address these problems, a higher-order beam theory (HBT) has recently been 

developed at the University of Adelaide (Chakrabarti et al. 2012a, 2012b, 2012c) for 

accurately predicting the global as well as local response of these beam. This beam theory 

(HBT) utilised the concept of Reddy’s higher order shear deformation theory (Reddy 1984) 

developed for multi-layered laminated composite plates modelled as a single layered plate 

without any interfacial slip. The cross-sectional warping of the beam layers produced by the 

parabolic (nonlinear) variation of shear stress is modelled by taking a higher order (3rd order) 

variation of longitudinal displacement of the fibres across the beam depth. However, the 

development of these models (Chakrabarti et al. 2012a, 2012b, 2012c) is based on small 

deformation and elastic material behaviour. In reality these composite beams often undergo 

large deformations, where the assumption of geometric linearity is no longer appropriate. 

Moreover, the beam materials can found to exhibit an inelastic response even with a 

moderate range of loading.  
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1.2 Nonlinear Analysis 

The effect of geometric nonlinearity due to large deformations is incorporated in the finite 

element models by Erkmen and Bradford (2009) for the analysis of steel-concrete composite 

beams being curved in plane, and Battini et al. (2009) and Ranzi et al. (2010) for the two-

layered straight composite beams. These models are all based on EBT with the inherent 

drawback of this theory as outlined previously. Hijaj et al. (2012) developed a model based 

on TBT considering the effect of large deformation. Whilst this represents an improvement 

over the models using EBT, the model is not capable of predicting the actual distribution of 

stresses (local response) and in addition ignored the effects of inelastic material behaviour 

which is encountered even within a low to moderate range of loading. 

The material nonlinearity due to inelastic material behaviours has incorporated by Yasunori 

et al. (1981) in their finite element model for composite beams using the von Mises yield 

criterion. However, they have used a very simple material model based on an elastic 

perfectly-plastic idealisation for all materials including concrete, which is not realistic 

especially for the tensile response of concrete. Similar studies have been carried out by Salari 

et al. (1998) using a bi-linear elasto-plastic material model with a strain hardening parameter. 

A further development in this direction is due to Dall’Asta and Zona (2002) and Erkmen and 

Attard (2011) who have used realistic stress-strain curves for the beam materials. In their 

model, Dall’Asta and Zona (2002) have ignored the contribution of concrete in tension 

whereas Erkmen and Attard (2011) have used the concept of tension stiffening for its 

modelling. However, these investigators (Dall’Asta & Zona 2002; Erkmen & Attard 2011; 

Salari et al. 1998; Yasunori et al. 1981) have developed models based on EBT and did not 

consider the effects of large deformation in the modelling of composite beams. 

A nonlinear model considering the effect of inelastic material behaviour along with the large 

deformation can ideally be the best model for predicting the response of these composite 

structures accurately. For this purpose, Hozjan et al. (2013) developed a nonlinear finite 

element model for composite beams with interfacial slip based on the shear-stiff Reissner 

beam theory. However, this beam theory suffers from similar drawbacks to EBT and 

neglected the tensile behaviour of concrete. A comprehensive finite element model is 

proposed by Liu et al. (2013) where the tensile behaviour of concrete is simulated using a 

damage mechanics model which can precisely model the tensile response of plain concrete 

without reinforcement. They also employed EBT for simulating composite beams that 

neglected the effect of transverse shear deformation. Nguyen et al. (2014) considered the 
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effect of shear deformations using TBT in the modelling of composite beams. Both 

geometric and material nonlinearities are included in their models, however they (Nguyen 

et al. 2014) have used very simple constitutive models for the beam material. Moreover, they 

treated the behaviour of concrete in tension and compression identically. 

The review of exiting studies as presented above leads to the conclusion that there is a need 

for a development of an efficient numerical model based on HBT considering all the 

aforementioned aspects for accurately predicting the response of steel-concrete composite 

beams. 

 

1.3 Solution Strategy 

The nonlinear response of these structures is typically manifested in the form of nonlinear 

load-deflection curves which are found to have a descending branch after attaining the peak 

load due to the strain-softening behaviour of concrete. It is observed that most of the 

investigations carried out on the inelastic response of composite beams could not capture the 

descending branch of the nonlinear load-deflection curve successfully. The solution of this 

typical nonlinear problem is quite challenging and a load control based technique cannot 

trace the descending branch of the load-deflection curve. In order to overcome this problem, 

a displacement control based technique may be used, however this will also fail if the load-

deflection curve has a snap-back response. In this situation, an arc-length based solution 

technique seems to be the only possible option.  

The arc-length method was initially proposed by Riks (1979) and subsequently enhanced by 

various investigators (Crisfield 1981, 1983) for solving different nonlinear problems. 

Although these developments helped to solve complex geometric nonlinear problems 

successfully, they encountered severe convergence problems in solving material nonlinear 

problems. This has proved to be especially the case in the modelling of quasi-brittle materials 

which exhibit localised failure. In order to address this specific issue, the localised nature of 

damage has been utilised by May and Duan (1997) to develop an arc-length method known 

as a damage localization approach. This method can provide a satisfactory solution but it 

requires the position of damaged elements to be known, which may be difficult to locate in 

a complex structural system. A further advancement in this direction is due to Gutiérrez 

(2004) who initially proposed an energy dissipation based arc-length method (Fig. 2) for 

continuum damage model. Subsequently, this method has been extended by Verhoosel et al. 
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(2009) to include plasticity as an additional mechanism which is utilised to solve the 

nonlinear equations in terms of incremental iterative process.  

 

 

 

 

 

 

 

1.4 Research gaps and objectives  

The literature review shows a number of research gaps related to modelling of steel-concrete 

composite beams, which are attempted to address in the present study by developing the 

following models: 

The existing models incorporation the effect of large deformation for simulating composite 

beams with partial interaction are limited and these are developed using EBT and first order 

beam theory (TBT). These beam theories are not adequate for predicting the local response 

and even the global response in some situation such as beams with a small span-to-depth 

ratio, localised concentrated loads and clamped boundary conditions. 

 Objective 1: To develop a one dimensional finite element model based on a 

higher-order beam theory (HBT) considering the effect geometric nonlinearity 

using Green-Lagrange strain vector for predicting the response of two-layered 

composite beam with partial interaction. 

The existing models considering material nonlinear behaviours of the beam constituents are 

also limited in number and these models are based on EBT and TBT. Moreover, most of 

these investigations are used a simplified material model specifically for the concrete slab. 

In some studies, a simple stress return technique is used for the plasticity model which may 

cause a divergence problem in the solution of nonlinear equations. The nonlinear response 

in the form of load-deflection curve has a descending branch due to the strain-softening 

∆𝜇𝑓  

𝑢 
∆𝑢 

𝜇𝑓  

Fig. 2. Energy dissipation based arc-length method 
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behaviour of the concrete slab and it is really a challenging problem to capture this response. 

Unfortunately, most of the existing techniques could not capture the descending branch of 

the nonlinear response successfully. 

 Objective 2: To develop an efficient nonlinear model based on HBT considering 

inelastic material behaviours using von Mises plasticity theory and a damage 

mechanics model for an accurate prediction of the inelastic response of steel-

concrete composite beams with partial interaction. To implement a robust arc-

length technique for solving the nonlinear equation so as to capture the post peak 

response successfully.  

In the existing literature, the available finite element models considering the effect of 

geometric and material nonlinearity are very limited and none of those models are developed 

using HBT. In addition, most of the existing models are developed by using very simple 

constitutive models for the beam material and neglected the contribution of concrete in 

tension. The effect of large deformations and inelastic material behaviours are responsible 

for inducing nonlinear in the structural response, which also has a descending branch 

because the material nonlinearity is usually having a dominant contribution for the type of 

structures investigated in this research. It is also observed that none of the existing studied 

paid a proper attention on the prediction of the softening branch of the load deflection curve. 

 Objective 3: To develop a comprehensive nonlinear finite element model based 

on HBT incorporating all aspects of geometric and material nonlinearities to be 

considered in objective 1 and objective 2 for a reliable prediction of the nonlinear 

response of steel-concrete composite beams with interfacial slip. 

 

1.5 Details of Manuscripts included in the Thesis 

This thesis contains a number of manuscripts which are submitted/to be submitted to 

internationally recognised journals. Each chapter of the thesis is presented in the form of a 

journal paper which is self-sufficient individually and do not need the accumulation of 

information from the previous chapters.  

Chapter 2 presents a study on large deformation response of two-layered composite beam 

with inter layer slip by developing a one-dimensional finite element model based on a 

higher-order beam theory (HBT). The Green-Lagrange strain vector is used to consider the 
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effect of large deformations. Numerical examples of composite beams are solved by the 

model taking into account different layer configurations, loading, support conditions, and 

shear interactions to assess the performance and range of applicability of the model. The 

model performance is verified and validated using 2D finite element model results and 

existing published results respectively.  

Chapter 3 presents an investigation on the behaviour of steel-concrete composite beams with 

partial interaction due to inelastic material behaviours through development of a 

computationally efficient finite element model. A plasticity model based on von Mises yield 

criterion and a damage mechanics model are used to simulate the inelastic behaviour of beam 

materials. An energy dissipation based arc-length method is employed to solve the nonlinear 

equations and capture the post peak response effectively. The proposed one dimensional 

model based on HBT is validated with existing experimental results and verified with 

numerical results obtained from a detailed two dimensional finite element model of 

composite beams. 

Chapter 4 presents a study on the response of steel-concrete composite beams with interfacial 

slip considering large deformations as well as inelastic material behaviours through 

development of a similar finite element model based on HBT. The effect of large 

deformation is incorporated using the Green-Lagrange strain vector whereas the von Mises 

plasticity model is used to simulate the inelastic material behaviour of most of the 

constituents of these beams. A damage mechanics model is also used for modelling the 

inelastic behaviour of concrete under tension. A robust arc-length method is adopted to solve 

the nonlinear equations and capture the post peak response. Numerical results are generated 

with a detailed 2D finite element model which are used for the verification of the proposed 

model. The existing experimental data are also used to validate the proposed model. 

Chapter 5 of this thesis presents the concluding remarks based on the major findings of this 

research. Suggestions for possible future research are also listed in this chapter.  
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Chapter 2: Geometrically Nonlinear Model 

2.1 Introduction 

The manuscript of this chapter “Large deformation analysis of two layered composite beams 

with partial shear interaction using a higher-order beam theory” presents the development 

an efficient finite element model based on higher-order beam theory (HBT) for composite 

beams considering the effect of geometric nonlinearity. The aim of this study to investigate 

the effect of large deformations on the response of these composite beams with interfacial 

slip. The Green-Lagrange strain vector is used to capture the effect of geometric nonlinearity 

in the present formulation. Numerical examples are solved by the proposed model to assess 

the performance and range of applicability of the model by taking into account different 

loading, supporting conditions and shear interactions. It is shown that the proposed model 

has improved capabilities compared with existing techniques in predicting the local response 

(stress distribution) of composite beams, especially TBT is not capable of predicting the 

actual variation of shear stress. It is also shown that the proposed model achieved some 

improvement in the prediction of global response of these beams. 
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2.4 Large deformation analysis of two layered composite beams with partial shear 

interaction using a higher-order beam theory 

Md. Alhaz Uddin, Abdul Hamid Sheikh, Terry Bennett and Brian Uy 

 

ABSTRACT 

An efficient nonlinear finite element model based on a higher-order beam theory is 

developed for accurately predicting the response of two layered composite beams with 

partial shear interaction. This is achieved by taking a third order variation of the longitudinal 

displacement over the beam depth for the two layers separately. The deformable shear 

connectors joining the two different material layers are modelled as distributed shear springs 

along the beam length at their interface. In order to capture the geometric nonlinear effects 

of the beam, the Green-Lagrange strain vector is used to develop the one dimensional finite 

element model. The nonlinear governing equations are solved by an incremental-iterative 

technique following the Newton-Raphson method. To assess the performance of the 

proposed model, the results predicted by the model are compared with published results as 

well as numerical results produced by using a detailed two dimensional finite element 

modelling of the composite beams.  

Keywords: Composite beam, Partial shear interaction, Higher-order beam theory, Finite 

element model, Geometric nonlinearity. 

 

Nomenclature 

Aa, Ab cross-sectional area of upper and lower layers of the beam 

 
kLB  linear strain-displacement matrix for the k-th layer (k=c for concrete, k=s for steel) 

][ pB   strain-displacement matrix for the penalty function 

 shB   strain-displacement matrix for shear connectors 

[D]k  constitutive matrix for the k-th layer 

Ek, elastic modulus for the k-th layer 

 F   nodal load vector 
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Gk  shear modulus for the k-th layer 

 kG  nonlinear strain-displacement matrix for the k-th layer 

 
kLH   linear cross-sectional matrix for the k-th layer  

 
kNH   nonlinear cross-sectional matrix for the k-th layer  

[KL] linear stiffness matrix 

[KN]   nonlinear stiffness matrix 

kp  penalty parameter 

ksh stiffness of distributed springs used for modelling shear connectors 

[KT]  tangent stiffness matrix  

 [Kσ]  geometric stiffness matrix 

N  shape function 

q  distributed external load  

s  interfacial slip between upper and lower layers 

ua0  longitudinal displacement of the upper layer at its centroidal or reference axis 

au  longitudinal displacement at the bottom fibre of the upper layer  

ub0  longitudinal displacement of the lower layer at its reference axis 

bu  longitudinal displacement at the top fibre of the lower layer 

Up   strain energy due to penalty function 

w  transverse displacement 

α , β  higher order terms 

 R   residual force vector 

    nodal displacement vector 

 aε ,  bε  strain vectors of upper and lower layers 

 
kLε  linear strain vector for the k-th layer 

 
kL  linear one dimensional strain vector for the k-th layer 

 
kNε   nonlinear strain vector for the k-th layer 

 
kN  nonlinear one dimensional strain vector for the k-th layer 
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a, b  bending rotations of upper and lower layers 

 aσ ,  bσ  stress vectors of upper and lower layers 

sh   distributed shear force (per unit length) at the interface between upper and lower 

layers 

 

1.  INTRODUCTION 

Composite beams are widely used in many structural engineering applications for their 

superior structural performance. A two layered composite beam such as timber-timber, 

timber-steel, timber-concrete and steel-concrete are typically used in the construction 

industry. In these structures, the two material layers are properly utilised (e.g., in steel-

concrete composite beams, the concrete layer is primarily used to carry the compressive 

stress whereas the steel layer carries the tensile stress) to enhance the performance of the 

overall structural system. The composite action of these beams is achieved by connecting 

the two different material layers with shear connectors such as nails or steel shear studs. 

Theoretically, if the shear connectors have infinite stiffness, full composite action can be 

achieved. In this case, the benefit of the composite beam can be fully exploited where no 

shear slip develops at the interface between the two layers and full shear interaction is 

achieved. However, shear connectors have finite stiffness in reality, which results in the 

development of interfacial slip between the two layers and partial shear interaction is 

therefore developed [1]. As the effect of partial shear interaction on the behaviour of 

structural performance has been found to be significant (e.g. [2, 3]), it should be considered 

in the analysis of these composite beams. This is an active area of research which is best 

demonstrated by the large number of studies on different aspects of composite beams carried 

out by many researchers (e.g. [4-20]). However, the main objective of the present study is to 

develop a computationally efficient numerical model for these composite beams which can 

capture the large deformation behaviour of these structures realistically. 

One of the initial significant research attempts on the modelling of composite beams was 

conducted by Newmark et al. [21] who developed an analytical solution based on the Euler-

Bernoulli beam theory (EBT) considering the effects of partial shear interaction. The model 

can only accommodate simple loading and boundary conditions due to its analytical nature. 

In order to introduce generality in the analysis, a number of numerical models based on the 

finite element method (FEM) or some similar methods have subsequently been developed 

by different researchers (e.g., [9-20]). However, most of the studies [12-16] conducted so 
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far on these composite beams are based on EBT, where the effect of small deformation is 

considered for a simple linear solution of the problem. In reality, these structures can 

undergo large deformations under service loads and their effects should be considered in the 

analysis to predict the actual behaviour of these composite beams. This introduces 

nonlinearity in the model which is regarded as geometric nonlinearity. It is interesting to 

note that the number of existing studies on geometric nonlinear analysis of these composite 

beams is very limited [17, 18].  

The effect of geometric nonlinear response is incorporated in the finite element models by 

Ranzi et al. [17], and Erkmen and Bradford [18] for the analysis of composite beams having 

curved and straight alignments respectively. The authors however have not considered the 

effect of transverse shear deformation of the beam material layers, as the models are based 

on EBT. As the effect of shear deformation is significant in some situations such as beams 

with a small span-to-depth ratio, localized concentrated loads, clamped boundary conditions 

and some other cases, there is a growing trend of incorporating shear deformation in recent 

past [7-11]. Zona and Reddy [10], and Ranzi and Zona [11] have investigated the effect of 

shear deformation on the behaviour of steel-concrete composite beams where they used 

Timoshenko’s beam theory (TBT) to incorporate the contribution of shear deformation but 

this has been applied to the steel girder only, while EBT has been used to model the concrete  

slab. On the other hand, the other investigators [7-9] have applied TBT to model both layers. 

All these studies [7-11] considering shear deformation are based on small deformation 

theory leading to a linear analysis. Recently, Hjiaj et al. [22] presented a finite element model 

for these composite beams where the effect of geometric nonlinearity as well as shear 

deformation based on TBT have been considered. 

It has been observed that a model based on TBT is capable of predicting the global response 

(e.g., deflection) of beams satisfactorily, but it is not adequate for the prediction of the actual 

distribution of stresses (local response) [23-25]. In this beam theory (TBT), the actual 

parabolic variation of shear stress over the beam depth is simplified by taking a constant 

average shear stress distribution over the beam depth. This simplification requires the use of 

a factor known as a shear correction factor to get a satisfactory global response. 

Unfortunately, the calculation of the exact value of this shear correction factor for a 

composite beam with partial shear interaction is cumbersome in comparison with that of a 

single layer homogeneous beam.  
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In order to address these problems, a higher-order beam theory (HBT) has recently been 

developed by Sheikh and co-workers [23-25] for an accurate prediction of global as well as 

local responses of these composite beams. The cross-sectional warping of the beam layers 

produced by the parabolic (nonlinear) variation of shear stress is modelled by taking a higher 

order (3rd order) variation of longitudinal displacement of the fibres throughout the beam 

depth. This beam theory (HBT) utilized the concept of Reddy’s higher order shear 

deformation theory [26] developed for multi-layered laminated composite plates modelled 

as single layered plates with no interfacial slip. The HBT [23-25] has been implemented by 

a one dimensional finite element model which has exhibited very good performance but the 

model is so far restricted to small deformation analysis of these composite beams. 

In the present study, a nonlinear finite element model based on HBT is developed 

considering the effect of large deformations based on the Green-Lagrange strain vector. This 

leads to nonlinear governing equations which are solved by an incremental iterative 

technique following the Newton-Raphson method. The results predicted by the proposed 

models are validated with the published results and the numerical results produced by 

detailed two-dimensional finite element modelling of composite beams using a commercial 

finite element program (ABAQUS). It is noted that the stress distributions in composite 

beams, considering geometrically nonlinear effects, were not found in the existing literature. 

Therefore, the dataset reported contributes an important resource for future references.  

 

2.  FORMULATION  

2.1. Higher-order Beam Theory 

Fig.1 shows a typical two layered composite beam with a flexible interface. According to 

the HBT, the variation of longitudinal displacement of the two layers over their depths can 

be expressed as 

aaaaaaaa yyyuu  32
0  , (1) 

bbbbbbbb yyyuu  32
0  , (2) 

where ua0 and ub0 are longitudinal displacements of the two layers at their reference axis ( ya 

= 0 or yb = 0), a and b are bending rotations of these layers, and α and β are higher order 

terms. As the vertical separation between the layers is not common under static loading for 
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a straight beam, its effect is not considered in this study. Thus the vertical displacement is 

assumed to be the same for both the layers and it can be expressed as 

)(xwww ba  . (3) 

The partial shear interaction between the two layers is modelled by uniformly distributed 

springs along the entire length of the interface between these layers. The interlayer slip is 

defined as the relative longitudinal displacement between the upper and lower layer at their 

interface and it can be expressed as 

 

 

 

 

 
 

Fig. 1. Typical two layer composite beam with displacement variations throughout the beam 

depth. 

 

ab uus   (4) 

where 𝑢̅𝑎 is the longitudinal displacement at the bottom fibre of the upper layer and 𝑢̅𝑏 is 

that at the top fibre of the lower layer. 

The shear strain for the upper material layer of the beam ( a ) at its top surface is zero, as 

the shear stress ( aaa G   ) becomes zero at this free surface. Using Eqs. (1) and (3), the 

shear strain at any point of the upper layer may be expressed as 
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The shear stress free condition at the top surface of the upper material layer can now be 

employed by substituting ya = ha/2 (Fig. 1) in the above equation which is lead to 

0
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Similarly, the shear stress free condition at the bottom surface of the lower material layer (

0 bbb G   at yb = -hb/2) can be employed to get the following equation  

0
4

3 2 
dx

dw
hh bbbbb   (7) 

Now, substituting ya = -ha/2 in Eq. (1), the longitudinal displacement at the bottom surface 

of the upper material layer au  can be expressed as 

842

32

0
a

a
a

aa
a

aa

hhh
uu    (8) 

Similarly, substituting yb = hb/2 in Eq. (2), the longitudinal displacement at the top surface 

of the lower material layer bu  can be expressed as  

842

32

0
b

b
b

bb
b

bb

hhh
uu    (9) 

These four equations (6-9) are used to eliminate the four higher order non-physical terms 

( bbaa  ,,, ) appeared in Eqs. (1) and (2) are these two equations (1-2) are rewritten as  

 aaaaaaaa DCuBuAu  0  (10) 

 bbbbbbbb DCuBuAu  0  (11) 

where the parameters A, B, C and D are functions of y, cross-sectional properties of the two 

layers and their material properties. The explicit expression of these parameters are as 

follows:  
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In the above equations, ϕ (=dw/dx) is taken as an independent field variable to have a 

straightforward C⁰ continuous formulation for its finite element implementation and avoid 

C1 continuous formulation.  
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2.2. Variational Formulations and its Finite Element Implementation 

The equilibrium equation can be derived using the principle of virtual work and it can be 

expressed as 

        qdxwdxτsdAdxdAdx
x

sh

x

b

Ax

a

Ax ba

   σεσε
T

b

T

a , (12) 

where   is an operate to show the variation of any parameter, aε and  bε  are strain vectors 

(consisting of longitudinal normal and transverse shear strains) of the upper and lower layers 

respectively,  aσ and  bσ  are stress vectors (consisting of longitudinal normal and 

transverse shear stresses) of these layers, sh  is the distributed shear force (per unit length) 

at their interface, q is the distributed external load (per unit length) acting on the beam and 

A represents the cross-sectional area. 

From Eqs. (10) and (11), the Green-Lagrange strain vector [27] at a point within a material 

layer may be written as 

 
































































































0

2

1
22

x

w

x

u

x

w

y

u
x

u

k

k
k 


ε  

                     
kNkL εε  , (13) 

where  
kLε and  

kNε are the linear and nonlinear strain vectors in which the index 𝑘 = 𝑎 

for the upper layer and 𝑘 =  𝑏 for the lower layer. The linear strain vectors may be written 

in terms of the cross-sectional matrix  
kLH  and the one dimensional strain vector  

kL  as 

     
kLkLkL H ε , (14) 

where,  
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and   









dx

dw
uu

dx

d

dx

d

dx

ud

dx

du
kkk

kkkT

kL 


 0
0 . (16) 

For the finite element implementation of the proposed beam model, a displacement based 

quadratic isoparametric beam element with three nodes is used to have a simple formulation 

and no unexpected numerical inconsistencies. A typical element having a length of 𝑙𝑒 is 

shown in Fig. 2. However, a displacement based formulation can have locking problem, 

which is eliminated by using the field consistent technique  [28].  The field variables of the 
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element are ua0, au , a, w, , ub0, bu and b, and these are expressed in terms of their nodal 

unknowns using interpolation functions of the element Nj  [27] as follows. 
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Fig. 2. Three nodded beam element 

Using Eq. (17), the one dimensional strain vectors (16) can be expressed as 
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where a typical component of the strain-displacement matrix k
j

LB ][  corresponding to node j 

(1, 2 or 3) is: 
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and the nodal displacement vector is: 
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Now the nonlinear strain vectors may be expressed as  
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The vectors  k  of the two layers may be expressed in terms of their cross-sectional 

matrices  
kNH  and one dimensional strain vectors  

kN  (dependent on x only) as 

     
kNkNk H   , (20) 
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

10000

0kkkk
kN

DCBA
H , (21) 

and   









dx

dw

dx

d

dx

d

dx

ud

dx

du kkkT

kN


 

0 . (22) 

The matrix  kA  in Eq. (19) is dependent on displacements of the beam and is evaluated for 

updating in each iteration within the solution scheme of the nonlinear governing equations 

utilising k . 

The one dimensional strain vector shown in Eq. (22) can be expressed in terms of the nodal 

displacement using Eq. (17) as 
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where  
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Employing the above Eqs. (14), (18), (19), (20) and (23), the total strain vector of Eq. (13) 

can be expressed as 

                   

















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2

1

2

1
ε . (24) 

Taking the variation of Eq. (24), the incremental strain vector can be obtained [27] and be 

expressed as  

                    kkNkLkkNkkLkLk BBBGHABH ][][][ε . (25) 

Similarly, the slip at the interface between the two layers (4) can be expressed in terms of 

the nodal displacement vector as 
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, (26) 

where ]000000[][ jjshj NNB  , j = 1, 2 or 3. 
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As there is no nonlinear term in the expression of the interfacial slip (26), the incremental 

slip can simply be written as 

     shBs  (27) 

The virtual work done by an externally applied distributed load q can be expressed in terms 

of the nodal load vector  F  as 

   Fwqdx
T

  , (28) 

where,          qdxNqdxNNNF TT

  ][321  (29) 

in which  ]0000000[][ jj NN  , j = 1, 2 or 3. 

Substituting Eqs. (25), (27) and (28) into Eq. (12), the equilibrium equation can be obtained 

and expressed as 

    qdxNdxBdAdxBdAdxB
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  ][][][][ σσ . (30) 

 

2.3. Incremental Equilibrium Equation 

The stresses in the above equation (30) can be expressed in terms of strains using appropriate 

constitutive relationships and these strains can subsequently be expressed in terms of nodal 

displacements. However, this resulting equation cannot be solved for displacements or nodal 

displacements directly due to the occurrence of the displacement dependent nonlinear 

components of the strain displacement matrices. Thus the equation (30) is solved iteratively 

which will help to update and improve the displacement values successively and this iterative 

process will be continued until an acceptable level of accuracy is achieved. This can be 

quantified with the norm of residual force vector which should be less than a user defined 

tolerance to stop the iteration. The residual force vector  R  will be obtained from Eq. (30) 

and it can be expressed as 
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 ][][][][ σσ . (31) 
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The Newton-Raphson technique will be used for the iterative solution of the nonlinear 

equilibrium equation (30) which needs an incremental form of this equation. This can be 

obtained by taking a variation of the equilibrium equation with respect to displacements as 

     
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 (32) 

The incremental strain displacement matrix of a material layer used in the above equation 

can be expressed by invoking Eq. (25) as 

   kkNkkNk GHABB ][][][   . (33) 

Again, the incremental stress vector of a layer can be expressed by invoking Eq. (25) as 

          kNkLkkkk BBDD ][][][ εσ . (34) 

The constitutive matrix [D]k used in the above equation can be expressed as 

  
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k
k G

E
D

0

0
, (35) 

where Ek and Gk are the elastic modulus and shear modulus of the kth material layer. 

The incremental interfacial shear force can be expressed in terms of the incremental slip as 

skshsh   , (36) 

where shk  is the spring stiffness for the shear connectors. 

In the proposed finite element formulation, dw/dx is taken as an independent field variable 

ϕ (see Eqs. (10) and (11)), which has introduced a mathematical inconsistency, since ϕ can 

be obtained from 𝑤 by taking its derivative, i.e., ϕ is dependent on 𝑤. In order to avoid this 

inconsistency, a penalty function approach [29] is used to satisfy a constraint condition  

(𝑑𝑤/𝑑𝑥) −  𝜙 =  0 variationally which leads to an additional strain energy as follows 

dx
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kU

x

pp

2

2

1








    (37) 

where kp  is the penalty stiffness parameter which is usually having a large value. 
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Using Eq. (17), the constraint condition can be expressed in terms of the nodal displacement 

vector as 

    
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where ]000000[][ j

j

p N
dx

dN
B  , j = 1, 2 or 3. 

After substitution of Eqs. (33) to (38) into Eq. (32), the incremental equilibrium equation 

can finally be written as  

   RKT  ][ . (39) 

The tangent stiffness matrix [KT] used in the above equation can conveniently be expressed 

in terms of linear, nonlinear and geometric stiffness matrices ([KL], [KN], [Kσ]) as  

][][][][ KKKK NLT  , (40) 

where these matrices can be expressed with the help of the above equations as follow:  
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The system of nonlinear equations is solved using the incremental equilibrium equation (39) 

and other equations such as Eq. (32) where an incremental integrative approach of solution 

is adopted so as to avoid any possible divergence. The entire load is divided into a number 

of load steps and they are applied gradually in increments where the iterative solution 
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technique is activated within each load step. The iteration within a load step is stopped once 

the following condition is satisfied.  

   

   
Tol

FF

RR

T

T

100


 (44) 

where Tol  is the tolerance for convergence and it is taken as 0.1% in the present study. 

 

3.  NUMERICAL RESULTS  

3.1. Simply Supported Composite Beam with Rectangular Section 

An example of a 1000 mm long two layered composite beam, subjected to a uniformly 

distributed load, studied by Hjiaj et al. [22] is considered in this section for the validation of 

the proposed one dimensional nonlinear finite element model. The cross-section of the beam 

is 200 mm wide and 50 mm deep and it consists of two identical layers (each 200 mm wide 

and 25 mm deep) where the shear stiffness at their interface is 1000 MPa/mm. The modulus 

of elasticity is 10 GPa for the upper layer and 1 GPa for the lower layer whereas the Poisson’s 

ratio is 0.3 for both material layers. The ends of the beam are pinned at mid-depth.  

The finite element model of Hjiaj et al. [22] is based on TBT but they have also shown results 

based on EBT. The proposed model is derived using HBT but the formulation can easily be 

modified to accommodate a lower order beam theory (e.g., TBT, EBT) by elimination of a 

few terms of Eqs. (1) and (2). The composite beam is analysed with the proposed approach 

using different number of beam elements (Fig. 2) and the results confirmed that 30 beam 

elements, which generates a total degrees of freedom of 488, are adequate to achieve a 

convergent solution. The number of load increments used for solving the problem was 50 

where the maximum number of iterations required to get a converged solution within a load 

increment was 4. The whole analysis required 120 iterations and a computing time of 4.9 sec 

where an ordinary desktop computer (i5-3470T CPU @ 2.90 GHz and RAM 8.0 GB, 64 bit 

operating system) is used.  

The variation of the mid-span deflection with respect to the distributed load acting vertically 

downward, found in the present analysis using HBT as well as TBT, is presented in Fig. 3 

along with that found by Hjiaj et al. [22] using TBT and EBT. The figure also includes results 

obtained from a detailed two dimensional (2D) finite element analysis of the composite beam 
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utilising a commercially available finite element code (ABAQUS). The entire beam is 

modelled with ABAQUS using four node plane stress (CPS4R) rectangular elements laying 

in the vertical plane where 50 elements are used along the beam length and 20 elements are 

used along the entire depth. This specific mesh size produced a total DOF of 2142. The 

analysis is carried in a similar manner using 50 load increments but the maximum number 

of iterations required within a load increment was 10 for this 2D analysis. The same 

computer is used for running this 2D analysis where the computing time consumed was 1 

minute 40 sec for solving the whole problem. It should be noted that the solver used by 

ABAQUS is expected to be more efficient than a relatively simple solver used in the 

computer program (FORTRAN) developed for implementing the proposed model. 

Moreover, it needs a significant amount of time for model generation in ABAQUS. The 

interface of the two material layers is simulated with the cohesive contact model. Fig. 3 

shows reasonable agreement between the results produced by the different models. However, 

the performance of the proposed one dimensional (1D) model based on HBT is found to be 

most superior amongst 1D models when compared with the results based on the 2D finite 

element model. 
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Hjiaj et al. [22] have investigated the problem by changing the depth of the beam as 200 mm 

(each layer 100 mm thick) in order to have a beam having lower span to depth ratio, which 

should help to highlight the improvement of their TBT model over the EBT model. This 200 

mm thick beam is also analysed with the proposed model (HBT) and compared with TBT as 

well as the 2D finite element model, the results obtained for the mid-span deflection are 

plotted in Fig. 4. It has followed a similar trend but the deviation of the results obtained by 

the different models are magnified as expected.  
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Fig. 4. Mid-span deflection of the composite beam with rectangular section (200 mm deep).  

 

Fig. 5. Bending stress at mid-span of the composite beam with rectangular section (200 mm 

deep). 
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The variation of bending stress over the depth of this beam (200 mm deep) at mid-span as 

predicted by the proposed models is plotted in Fig. 5. It shows that HBT predicts a higher 

value of the bending stress at critical points. In a similar manner, the variation of shear stress 

over the beam depth found in the present analysis at the quarter span and support of the beam 

is presented in Fig. 6 and Fig. 7 respectively. The figures clearly indicate that TBT is not 

capable of predicting the actual variation of shear stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-120

-70

-20

30

80

0 5 10 15

D
ep

th
 (

m
m

)

Shear stress (MPa)

2000 kN/m_HBT

2000 kN/m_TBT

-120

-70

-20

30

80

-70 -20 30 80

D
ep

th
 (

m
m

)

Shear stress (MPa)

2000 kN/m_HBT

2000 kN/m_TBT
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deep). 

 

Fig. 7. Shear stress at a support of the composite beam with rectangular section (200 mm 

deep). 
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3.2. Simply Supported Composite Beam with T-section  

An 8.0 m long two layered composite beam having a T-section as shown in Fig. 8 is 

considered in this example. The material properties of the two layers are taken as: EI = 26 

GPa (modulus of elasticity of layer-I), νI = 0.15 (Poisson’s ratio of layer-I), EII = 200 GPa 

and νII = 0.3. The interfacial stiffness of the shear connectors is taken as 11.70 MPa. The 

beam is simply supported at its two ends and subjected to a uniformly distributed load, with 

a maximum magnitude of 4500 kN/m. The composite beam is analysed with the proposed 

1D finite element model based on HBT as well as ABAQUS model where the beam is 

modelled in 2D laying in the vertical plane, where the thickness of the layers are explicitly 

modelled as 500 mm and 150 mm for modelling Layer-I and Layer-II respectively as shown 

in Fig. 8. The solution of this composite beam problem also required 30 beam elements (total 

DOF: 488) and the analysis is also carried with 50 load increments where the maximum 

number iteration required in a load increment was 3. The total number of iterations required 

for these 50 load increments was 100 which required a computing time of 4.6 sec. On the 

other hands, the 2D finite element model (ABAQUS) required a total DOF of 1134 which 

required a computing time of 1 min and 30sec for the whole solution consisting of 50 load 

increments.  

 

 

 

 

 

 

 

The load-deflection curve obtained from both modelling techniques at mid-span and quarter-

span sections of the beam is plotted in Fig. 9 which shows very good agreement between the 

results. The variation of deflection along the length of the beam obtained from both models 

for load intensity of 2000 kN/m, 3000 kN/m and 4500 kN/m is presented in Fig. 10. All these 

results show a good and consistent performance of the proposed model.  
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Fig. 8. Cross-section of the 8 m long simply supported composite beam 
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3.3. Composite Beam with Fixed Supports at Two Ends 

The behaviour of a 2 m long two layered composite beam having a rectangular section and 

fixed supports at its ends (Fig. 11) is studied in this section. It includes the response of the 

beam in geometric nonlinear (GNL) and linear (GL) ranges considering flexible (PI) and 

strong (FI) interfaces taking the value of ksh as 70 MPa and 15100.1  MPa respectively and 

these results are produced by the proposed model according to HBT as well as TBT. The 

beam is subjected to a uniformly distributed load, which is increased incrementally from 

zero to 100 kN/mm to trace the entire nonlinear response. This specific problem is chosen 
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Fig. 10. Deflection along the length of the simply supported composite beam with T section 

(Fig. 8).  

 

Fig. 9. Deflection at mid-span and quarter-span of the simply supported composite beam 

with T section (Fig. 8). 
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from the study [9], where analytical models have been developed based on TBT to predict 

the linear response of this beam taking simply supported boundary condition and interfacial 

properties. 

 

 

 

 

 

 

The computational time required for solving this problem was 8.1 sec (total number of 

iterations: 202) where 30 beam elements (total DOF: 488) and 100 load increments are used. 

The load deflection curves obtained at the mid-span section of the beam using different 

modelling options as mentioned above (GNL, GL, PI, FI, HBT and TBT) are plotted in Fig. 

12, which show the relative performance of the different modelling techniques. The variation 

of deflection along the length of the beam obtained with the same modelling techniques is 

presented in Fig. 13 where all these results are corresponding to a load intensity of 50 

kN/mm. Similarly, the variation of interfacial shear slip along the length of the beam having 

flexible interface (ksh = 70 MPa) is plotted in Fig. 14, which shows an expected pattern of 

shear slip in a fixed beam problem. 
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Fig. 11. Composite beam having fixed supports at its two ends 

 

Fig. 12. Mid-span deflection of the fixed ended composite beam (Fig. 11). 
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For further investigation, the variation of bending stress over the beam depth obtained at one 

of the fixed ends using all these modelling techniques is presented in Fig. 15. It shows a 

significant deviation between the predictions made by HBT and TBT for the bending stress 

in all cases. In a similar manner, the variation of shear stress over the beam depth at a fixed 

end is presented in Fig. 16, which shows a huge difference between results predicted by HBT 

and TBT as expected. Similarly, through the depth variations of bending and shear stresses 

at the mid as well as quarter span section of the beam are presented in Fig. 17 and Fig. 18 

respectively where a similar behaviour is observed. 
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kN/mm of loading 

 

Fig. 14. Interfacial shear slip of the fixed ended composite beam (Fig. 11) along its length 

under 50 kN/mm of loading  
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Fig. 15. Bending stress of the fixed ended composite beam (Fig. 11) at one of its end section 

under 50 kN/mm of loading. 

 

Fig. 16. Shear stress of the fixed ended composite beam (Fig. 11) at one of its end section 

under 50 kN/mm. 

 

Fig. 17. Bending stress of the fixed ended composite beam (Fig. 11) at mid-span section 

under 50 kN/mm of loading. 
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3.4. Steel-Concrete Composite Beam with Two Spans 

A two-span continuous beam consists of a concrete slab and a steel I-girder connected by 

steel shear studs as shown in Fig. 19 is studied. The beam is fixed at the left end, pinned at 

the right end and having an intermediate roller support that divides the entire beam into two 

equal spans (Fig. 19). The beam is subjected to two identical point loads acting at the 

midpoint of these two spans as shown in Fig. 19 where each load P is varied from zero to 

20,000 kN incrementally. The material properties of the concrete slab and the steel girder 

are taken as: Ec = 20,000 MPa, Es = 200,000 MPa, νc = 0.2 and νs = 0.25.  
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Fig. 19. Two-span steel concrete composite beam. 
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The beam is analysed with the proposed finite element model based on HBT and compared 

with TBT where the interfacial shear stiffness is taken as 10 MPa (PI) and 
15100.1  MPa 

(FI). This problem also required 30 beam elements (total DOF: 488 DOF) and the analysis 

is carried with 100 load increments where the maximum number iteration required in a load 

increment was 5 for HBT as well as TBT. The total number of iteration required for these 

100 load increments was 199 which required a computing time of 11 sec. The load-deflection 

curves obtained at the mid-point of these two spans are presented in Fig. 20 and Fig. 21. It 

is observed that the discrepancy between the deflections predicted by HBT and TBT is less 

for the flexible interface compared to the strong interface.  
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Fig. 20. Deflection under the point load on the left span of the two span composite beam 

(Fig. 19). 

 

Fig. 21. Deflection under the point load on the right span of the two span composite beam 

(Fig. 19). 

 



41 

The variations of bending and shear stresses over the beam depth obtained at the mid-point 

of the left span corresponding to the highest load (P = 20,000 kN) are plotted in Fig. 22 and 

Fig. 23 respectively. Similar to the deflection, the difference between the bending stress 

results predicted by these two beam theories (Fig. 22) is highlighted in the case of strong 

interface. Fig. 23 demonstrates that TBT is not able to capture the true shear stress 

distribution as also observed in the previous examples. 
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Fig. 22. Bending stress at the middle of the left span of the two span composite beam (Fig. 

19) under maximum load (P = 20,000 kN). 

 

Fig. 23. Shear stress at the middle of the left span of the two span composite beam (Fig. 19) 

under maximum load (P = 20,000 kN). 
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4. CONCLUSIONS  

An efficient one dimensional finite element model based on a higher-order beam theory 

(HBT) is developed for an accurate prediction of the geometrically nonlinear response of 

two layered composite beams. The partial shear interaction caused by the longitudinal 

separation or shear slip of the two layers at their interface due to the deformability of shear 

connectors is considered and modelled as distributed shear springs along the entire length of 

the beam.  

The HBT provides a true parabolic variation of the shear stress over the beam depth, and 

therefore does not require the use of a potentially arbitrary shear correction factor for the 

correct prediction of the global response such as deflection. Moreover, the model is capable 

of predicting the local response such as the distribution of stresses realistically.  

The Green-Lagrange strain is used to develop the proposed finite element model for 

incorporating the effects of geometric nonlinearity. The principle of virtual work is applied 

to derive the nonlinear governing equations which are solved by an incremental-iterative 

approach following the Newton-Raphson technique.  

Numerical examples of composite beams are solved by the proposed model taking into 

account different layer configurations, loading, support conditions, and interactions to assess 

the performance and range of applicability of the model. The published results are used for 

the validation of the proposed model, and a detailed two-dimensional finite element model 

is used for verifying the response of composite beams.  

The numerical analysis has confirmed that the proposed model has improved capabilities 

compared with existing techniques in predicting the local response of composite beams. It is 

also observed that an improvement in the prediction of global response of these beams is 

achieved when the current model is applied. 
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Chapter 3: Material Nonlinear Model  

3.1 Introduction 

The manuscript contained in this chapter namely “A higher-order model for inelastic 

response of composite beams with interfacial slip using a dissipation based arc-length 

method” presents the development of a one dimensional finite element model of steel-

concrete composite beam based on a higher-order beam theory (HBT) considering the effect 

of material nonlinearity. The purpose of the study to predict the response of these composite 

beams influenced by inelastic material behaviours of their constituents modelled by a 

plasticity model based on von Mises yield criterion with an isotropic-hardening rule and a 

damage mechanics model. In order to avoid any divergence in the solution of the plasticity 

modelling, the backward Euler stress return algorithm is incorporated in the model to update 

the stresses. Various types of stress-strain curve (uniaxial) are used for the different materials 

to have a realistic representation of their actual behaviours of the beam. A robust arc-length 

method is implemented for solving the nonlinear equations which helped to capture the post 

peak response successfully. It is also shown that the performance of the proposed model 

based on HBT is better than that based on existing beam theories such as EBT and TBT. 

Based on the accuracy and range of applicability of the proposed model, it is highly 

recommended for the analysis of composite beams having inelastic material behaviours. 
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46 

3.3 Statement of Authorship 

Title of Paper A higher-order model for inelastic response of composite beams with 

interfacial slip using a dissipation based arc-length method. 

Publication Status Accepted (Article in Press). 

Publication Details Uddin, M. A., Sheikh, A. H., Brown, D., Bennett, T. and Uy, B. (2016). “A 

higher-order model for inelastic response of composite beams with 

interfacial slip using a dissipation based arc-length method.” Engineering 

structures, (Elsevier) (Article in Press). 

Principal Author 

Name of Principal Author 

(Candidate) 

Md. Alhaz Uddin 

Contribution to the Paper Developed finite element model, performed numerical analysis and 

prepared manuscript. 

Overall percentage (%) 70% 

Certification: This paper reports on original research I conducted during the period of my 

Higher Degree by Research candidature and is not subject to any 

obligations or contractual agreements with a third party that would 

constrain its inclusion in this thesis. I am the primary author of this paper. 

Signature  Date  

Co-Author Contributions 

By signing the Statement of Authorship, each author certifies that: 

i. the candidate’s stated contribution to the publication is accurate (as detailed above); 

ii. permission is granted for the candidate in include the publication in the thesis; and 

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution. 

 

 

 



47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

3.4 A higher order model for inelastic response of composite beams with interfacial 

slip using a dissipation based arc-length method 

Md. Alhaz Uddin, Abdul Hamid Sheikh, David Brown, Terry Bennett and Brian Uy 

 

ABSTRACT 

An efficient one dimensional finite element model is developed for an accurate prediction 

of the inelastic response of steel-concrete composite beams with partial shear interaction 

using a higher-order beam theory (HBT). This is achieved by taking a third order variation 

of the longitudinal displacement over the beam depth for the two layers separately. The 

deformable shear studs used for connecting the concrete slab with the steel girder are 

modelled as distributed shear springs along the interface between these two material layers. 

A plasticity model based on von Mises yield criterion and a damage model are used to 

simulate the inelastic behaviour of beam materials. An arc-length method based on energy 

dissipation is employed to capture the post peak response successfully. The capability of the 

proposed model is assessed through its verification and validation using existing 

experimental results and numerical results produced by detailed finite element modelling of 

these beams. 

Keywords: Steel-concrete composite beam, Partial shear interaction, Higher-order beam 

theory, Inelastic material behaviour, Dissipation based arc-length method. 

 

1. INTRODUCTION 

Composite structures are widely used in various engineering activities for their superior 

structural performances. Steel-concrete composite beams belong to a specific type of 

composite structures, typically used in bridges, buildings and other civil engineering 

infrastructure. These structures consist of a concrete slab and a steel girder which are 

connected by steel shear studs to have composite action. The concrete slab is primarily 

utilised to carry the compressive stress whereas the steel girder carries the tensile stress to 

enhance the performance of the overall structural system. The shear connectors transfer shear 

forces at the interface between concrete and steel material layers. This leads to interfacial 

shear slip due to shear studs with finite stiffness which is commonly known as partial shear 
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interaction [1]. As the contribution of partial shear interaction on the structural behaviour is 

found to be significant (e.g. [2, 3]), this effect can’t be ignored in the analysis of these 

composite beams. This is an active area of research which is best demonstrated by the large 

number of studies on different aspects of composite beams. However, the main aim of the 

present study is to develop an efficient model for accurately predicting the inelastic response 

of composite beams. 

Newmark et al. [4] is one of the earliest researchers who developed an analytical model for 

composite beams where the effect of partial interaction was considered in the form of shear 

slip. This is a well-regarded model but only applicable to beams with simply supported 

boundaries and relatively simple loading due to the analytical nature of the model. In 

contrast, a numerical model based on finite element approximation can provide adequate 

generality in the analysis with sufficient accuracy. Thus a number of researchers (e.g. [5-9]) 

have developed finite element models for composite beams with partial interaction. However 

all these models [5-9] are based on elastic behaviour of beam materials. In reality, the 

materials of these beams are having inelastic deformations even with a low to moderate 

range of loading. In order to address this issue, Yasunori et al. [10] incorporated the effect 

of inelastic material behaviour in their finite element model of composite beams using the 

von Mises yield criterion. However, they [10] used a very simple material model based on 

an elastic perfectly-plastic idealisation for all materials including concrete which is not 

realistic especially for the tensile response of concrete. Similar studies have been carried out 

by Salari et al. [11] using a bi-linear elasto-plastic material model with a strain hardening 

parameter. A further development in this direction is due to Dall’Asta and Zona [12] and 

Erkmen and Attard [13] who have used realistic stress strain curves for the beam materials 

but Dall’Asta and Zona [12] have ignored the contribution of concrete in tension whereas 

Erkmen and Attard [13] have used the concept of tension stiffening for its modelling. A more 

comprehensive model is proposed by Liu et al. [14] where the tensile behaviour of concrete 

is simulated using a damage mechanics model which can precisely model the tensile 

response of plain concrete without reinforcement. Foraboschi [15] and Foraboschi et al. [16] 

attempted to solve the composite beam problem analytically but the structure is idealised in 

a different manner where the shear connector is modelled as a separate material layer with a 

finite thickness. Moreover, the inelastic material behaviour is consider only for this 

interfacial layer whereas the primary layers (concrete slab and steel girder) are treated as 

linear elastic materials. Anyway, all these models [4-16] are based on Euler-Bernoulli beam 

theory (EBT), which does not consider the effect of transverse shear deformation of the steel 
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and concrete layers. The effect of this shear deformation is significant in some situations 

such as beams with a small span-to-depth ratio, localized concentrated loads, clamped 

boundary conditions and some other cases. 

Thus there has been a growing interest in recent years to incorporate the effect of shear 

deformation and the Timoshenko’s beam theory (TBT) is typically used for this purpose 

(e.g., [17-21]). It is observed that all these investigators [17-21] have used linear elastic 

material behaviour to develop their models except Nguyen et al. [21], who have used a very 

simple constitutive model specifically for the concrete. Moreover, it should be noted that the 

actual variation of transverse shear stress over the beam depth is parabolic, whereas an 

average shear stress having a uniform distribution is taken in TBT to simplify the problem.  

In order to address this issue, TBT needs an arbitrary shear correction factor which helps to 

predict the global response such as deflection or vibration frequency well, but it is not 

sufficient for an accurate prediction of the local response such as the stress distributions 

within these structures [22-24]. Moreover, the calculation of the exact value of this shear 

correction factor for a composite beam with partial shear interaction is cumbersome in 

comparison with that of a single layer homogeneous beam. 

In order to address the aforementioned issues related to shear deformation of the beam 

material layers, a higher-order beam theory (HBT) has recently been developed by Sheikh 

and co-workers [22-24] for an accurate prediction of global as well as local responses of 

these composite beams. The cross-sectional warping of the beam layers produced by the 

transverse shear stress is modelled with a higher order (3rd order) variation of longitudinal 

displacement of the fibres over the beam depth. This beam theory (HBT) utilized the concept 

of Reddy’s higher order shear deformation theory [25] developed for multi-layered 

laminated composite plates modelled as single layered plates without interfacial slip. In these 

investigations [22-24], HBT has been implemented in a one dimensional finite element 

model which has exhibited very good performance, though these studies are restricted to 

linear elastic analysis of these composite beams with interfacial slip. 

Considering the aforementioned aspects, an attempt is made in this study to develop an 

efficient numerical model based on HBT for accurately predicting the inelastic response of 

composite beams. The inelastic material behaviour is responsible for inducing nonlinearity 

in the structural response, which can be manifested in the form of nonlinear load-deflection 

curves. These curves can sometimes have a descending branch after attaining the peak load 

due to the strain-softening of concrete. It is observed that most of the investigations carried 
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out on the inelastic response of composite beams [10-14, 21] could not capture the 

descending branch of the nonlinear load-deflection curve successfully. The solution of this 

typical nonlinear problem is quite challenging and a load control based technique cannot 

trace the descending branch of the load-deflection curve. In order to overcome this problem, 

a displacement control based technique may be used but it will fail if the load-deflection 

curve has a snap-back response. In this situation, an arc-length based solution technique 

seems to be the only possible option. 

The arc-length method was proposed by Riks [26] and subsequently enhanced by various 

investigators (e.g. Crisfield [27, 28]) for solving different nonlinear problems. Though these 

developments helped to solve complex geometric nonlinear problems successfully, but they 

encountered severe convergence problem in solving material nonlinear problems especially 

relating to concrete structures which have failure/crack localizations. In order to address this 

specific issue, the localized nature of damage has been utilised by May and Duan [29] to 

develop a new arc length method known as a damage localization approach. This method 

can provide a satisfactory solution of a problem [30] but it requires the position of damaged 

elements, which may be difficult to locate in a complex structural system. A further 

advancement in this direction is due to Gutiérrez [31] who proposed a dissipation based arc-

length method where the energy dissipated by the entire structure due to its damage and 

plastic deformations is utilised as a stepping parameter for controlling the incremental 

iterative process. The success of this method is primarily due to the stepping parameter as it 

is always positive regardless of the sign of the tangential stiffness. 

In this study, a computationally efficient one dimensional finite element model is developed 

using a higher order variation of the longitudinal displacement along the beam depth 

according to HBT and inelastic material behaviours of the beam constituents. The von Mises 

plasticity theory with an isotropic hardening rule is used for modelling the inelastic 

behaviour of steel girders, concrete slabs under compression, steel reinforcements, and steel 

shear studs. A damage mechanics model is used for modelling the inelastic behaviour of 

concrete under tension. A dissipation based arc-length method is employed to capture the 

post peak response successfully. Numerical examples of composite beams are solved by the 

proposed model. The results predicted by the models are validated with the published 

experimental results and the numerical results produced by a detailed two-dimensional finite 

element model of these beams using a reliable finite element software. As the number of 

results available in the inelastic range of composite beams is limited and no one has reported 
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any results for the stress distributions within these structures, a number of new results are 

presented for future references. 

 

2. MATHEMATICAL FORMULATION 

The formulation of the proposed model is based on the following major assumptions: 

a) the beam has an uniform cross-section along its length, b) the beam deformation is small 

which excludes any effect due to change in geometry, c) there is no vertical separation 

between two material layers, d) the applied load passes through the vertical plane of 

symmetrical of the beam which excludes any torsional effect, and e) local buckling of the 

steel I girder is not considered. 

 

2.1. Higher-order Beam Theory (HBT) 

Fig. 1 shows a steel-concrete composite beam which is typically a two layered composite 

beam with a flexible interface. According to the HBT, the variation of longitudinal 

displacement of the concrete and steel layers over their depths can be expressed as 

cccccccc yyyuu  32
0   (1) 

ssssssss yyyuu  32
0   (2) 

where uc0 and us0 are longitudinal displacements of the concrete slab and the steel girder at 

their reference axes (yc = 0 and ys = 0) respectively, c and s are bending rotations of these 

layers, and α and β are the higher order terms. As vertical separation between the layers is 

not commonly observed in a straight composite beam under a static load, it is not considered 

in this study. Thus the vertical displacement will be the same for both layers and it can be 

expressed as 

www sc   (3) 

The partial shear interaction between the concrete and steel layers is characterised by the slip 

at their interface. This is defined as the relative longitudinal displacement of these material 

layers and it can be expressed as 
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cs uus   (4) 

where 𝑢̅𝑐 is the longitudinal displacement at the bottom fibre of the concrete layer and 𝑢̅𝑠 is 

that at the top fibre of the steel layer. 

 

 

 

 

 

 

 

 

 

 

 

 

The shear strain for the upper material layer of the beam ( c ) at its top surface is zero, as the 

shear stress ( ccc G   ) becomes zero at this free surface. Using Eqs. (1) and (3), the shear 

strain at any point of the upper layer may be expressed as 

dx

dw
yy

x

w

y

u
ccccc

c

c
c 









 232   (5) 

The shear stress free condition at the top surface of the upper material layer can now be 

employed by substituting yc = hc/2 (Fig. 1) in the above equation which is lead to 

0
4

3 2 
dx

dw
hh ccccc   (6) 
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a) Side view of a typical steel-concrete composite beam  
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c) A portion of the composite beam   

Fig. 1. Typical Steel-concrete composite beam with displacement variations over the beam 

depth. 
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Similarly, the shear stress free condition at the bottom surface of the lower material layer (

0 sss G   at ys = -hs/2) can be employed to get the following equation 

0
4

3 2 
dx

dw
hh sssss   (7) 

Now, substituting yc = -hc/2 in Eq. (1), the longitudinal displacement at the bottom surface 

of the upper material layer cu  can be expressed as 

842

32

0
c

c
c

cc
c

cc

hhh
uu    (8) 

Similarly, substituting ys = hs/2 in Eq. (2), the longitudinal displacement at the top surface 

of the lower material layer su  can be expressed as 
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s
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s

ss

hhh
uu    (9) 

These four equations (6-9) are used to eliminate the four higher order non-physical terms 

( sscc  ,,, ) appeared in Eqs. (1) and (2) are these two equations are rewritten as 

 cccccccc DCuBuAu  0  (10) 

 ssssssss DCuBuAu  0  (11) 

where A, B, C and D are functions of y, cross-sectional properties of the two layers and their 

material properties. The explicit expression of these parameters are as follows: 
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In the equations above, ϕ (=dw/dx) is taken as an independent field variable to have a C⁰ 

continuous formulation for the finite element implementation of this beam theory. 
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2.2. Variational Formulations and its Finite Element Implementation  

The equilibrium equation can be derived using the principle of virtual work and it can be 

expressed as 

        qdxdwdxτdsdAdxσdεdAdxσdε
x

sh

x

s

A

T

s

x

c

A

T

c

x sc

  , (12) 

where d is used to show the variation of any parameter, cε and  sε  are strain vectors 

(consisting of longitudinal normal and transverse shear strains) of the concrete and steel 

layers respectively,  cσ and  sσ  are stress vectors (consisting of longitudinal normal and 

transverse shear stresses) of these layers, shτ  is the distributed shear force (per unit length) 

at their interface, q is the distributed external load (per unit length) acting on the beam, and 

A is the cross-sectional area. 

Using Eqs. (10) and (11), the strain vectors of the two layers may be written in terms of their 

cross-sectional matrices and one dimensional strain vectors (dependent on x only) as 
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where the subscript 𝑙 = 𝑐 for the concrete layer and 𝑙 =  𝑠 for the steel layer. The cross-

sectional matrices and one dimensional strain vectors are as follows. 
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For the finite element implementation of the proposed beam model, a displacement based 

quadratic isoparametric beam element with three nodes is used for a simple formulation and 

does not involve any unexpected numerical inconsistencies. However, a displacement based 

formulation can have a locking problem, which is eliminated by using the field consistent 

technique  [32].  The field variables of the element are uc0, cu , c, w, , us0, su and s, which 

can be expressed in terms of their nodal unknowns using interpolation functions of the 

element [24]. This leads to express the one dimensional strain vectors (15) in terms of the 

nodal displacement vector    as 
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where, [𝐵]𝑙 is the strain-displacement matrix for the concrete/steel layer [24]. Similarly, the 

interfacial slip (4) can be expressed in terms of a strain-displacement matrix for the 

interfacial slip  shB and nodal displacement vector [24] as 

      shcs Buus . (17) 

The virtual work due to the external load q as expressed on the right hand side of Eq. (12) 

can be further expressed in terms of the external load vector  extF and incremental nodal 

displacement vector  d  as 

   ext

T
Fddwqdx  , (18) 

where   qdxNF T
ext  ][  (19) 

The matrix ][N  in the above equation contains shape functions of the transverse 

displacement, w [24]. 

Substituting Eqs. (13), (16), (17) and (18) into Eq. (12), the equilibrium equation can be 

obtained and it is expressed as 
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For the solution of the above equation, the stresses are to be expressed in terms of strains 

which can subsequently be expressed in terms of nodal displacements    using Eqs. (16) 

and (17). However, for a material having inelastic deformations, the stress-strain relationship 

is nonlinear and must be expressed in its incremental form as the stresses cannot be expressed 

in terms of strains in their total form due to the load history dependent material behaviour. 

Thus the above equation cannot be solved directly and an iterative approach will be required 

for solving this nonlinear equation. To facilitate this, the left hand side of the equilibrium 

equation (20) is defined as the internal nodal force vector  intP (dependent on nodal 

displacement vector  ), which leads to an expression for Eq. (20) in a compact form as 

     extFP int  or        0int  extFP  (21) 
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The Newton Raphson method is used to solve the above equation iteratively where the nodal 

displacement vector   1


j
at the iteration j+1 can be computed from that obtained in the 

previous iteration  j
 as 
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From the above equation, the incremental nodal displacement  d  within an iteration can 

be written as 

 
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d   (23) 

Substituting Eqs. (20) and (21) into the above equation and defining its right hand side as 

the residual load vector    dR , it can be rewritten as 
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Now the incremental stresses in Eq. (24) can be expressed in terms of incremental strains 

using a suitable constitutive relationship (provided in the following section) as 

   ll
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l dEd  ][ ; dskd t
shsh    (25) 

where  ltE is the tangential material stiffness matrix (elasto-plastic/damage stiffness matrix) 

of the steel/concrete layer and t
shk  is the tangential material stiffness (elasto-plastic stiffness) 

of the shear connectors. Substituting Eqs. (13), (16), (17) and (25) into Eq. (24), the 

incremental equation can be written in its final form as 

    dRdKT   (26) 

where [KT] is the tangent stiffness matrix of the structure that can be expressed as  
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In order to ensure that the solution of the nonlinear equation is converged, the 

abovementioned iteration process will continue until the residual force vector  dR  is 

reduced to a specified tolerance as follows 



58 

   

   
Tol

FF

RR

ext

T

ext

T

100


 (28) 

where Tol  is the convergence tolerance which is taken as 1% in the present study. 

It should be noted that the external loading with its maximum value is not to be applied at 

once, and it is rather be applied gradually in a number of steps in order to avoid convergence 

problems in the iterative solution process and also to trace the entire equilibrium path. 

Moreover, this is a load control technique which will not be adequate to trace the post peak 

inelastic response of composite beams. This problem is typically solved by using a robust 

arc-length method which is presented in Section 2.4. 

 

2.3. Constitutive Relationship  

The von Mises yield criterion with an isotropic-hardening rule [33] is used for modelling the 

inelastic behaviour of steel girders, reinforcement and steel shear studs. This modelling 

approach is also applied to the region of concrete slab subjected to compressive stress for 

simplicity. A damage mechanics model [34, 35] is adopted to simulate the cracking 

behaviour of the concrete under tensile stress. 

 

2.3.1. Constitutive Relationship for Steel and Concrete in Compression 

According to the von Mises yield criterion, the stress state must be on (plastic loading) or 

within (elastic loading and unloading) the yield surface which may be written for the 

steel/concrete layer subjected to bending and shear stresses as 

0,,  lyleflf   (29) 

In the above equation, 𝜎𝑦,𝑙 is the uniaxial yield stress and 𝜎𝑒𝑓,𝑙 is the effective stress, which 

can be written in terms of bending stress l  and shear stress l  as 

22
, 3 lllef    (30) 
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In order to correlate a multiaxial stress state (usually found in a real problem) with the 

uniaxial yield stress, the uniaxial yield stress can be expressed in terms of equivalent plastic 

strain     3/
22
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where 𝜎𝑦0,𝑙  is the initial value of the uniaxial yield stress for a material layer and lH   is the 

strain hardening parameter of the layer.  

As mentioned in the previous section, the stress-strain relationship must be expressed in its 

incremental form due to inelastic material behaviour. Thus the strain vector is taken in its 

incremental form and can be expressed in terms of its elastic and plastic components as 
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e
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The elastic strain increment can simply be obtained from the incremental stress using 

Hooke's law as 
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where 𝐸𝑙 and 𝐺𝑙 are the elastic modulus and shear modulus of the material layer respectively. 

As an associated flow rule is used, the plastic strain increments can be determined [36] using 

Eq. (29) as 
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 (34) 

where 𝑑𝜆𝑙  is the incremental plastic strain multiplier and the vector  la  gives the direction 

of plastic flow, which is normal to the yield surface. Using the consistency condition of the 

yield function (29) along with the above equations (29, 30, 33 and 34), the incremental 

plastic strain multiplier can be derived following the usual operations used in a plasticity 

formulation [36] and it can be expressed as 
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For the von Mises yield criterion, the equivalent plastic strain increment will be the 

incremental plastic strain multiplier ld  [36].  Using Eqs. (33) to (35), the incremental stress-

strain relationship can be obtained which is expressed as 
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where l
epE ][  is the elasto-plastic constitutive matrix that can be used for l

tE ][  in Eq. (25). 

This constitutive relationship is also applied for the modelling of reinforcement bars by 

eliminating the contribution of shear stress/strain. 

 

2.3.2. Constitutive Relationship for Concrete in Tension 

The concrete under tensile stress (major principal stress) is treated as an elastic material up 

to its uniaxial ultimate tensile stress ( 0t ) where cracks are initiated. The crack initiation is 

detected according to Rankine’s failure criterion [37] as follows. 

00max  ttf   (37) 

where max is the maximum principle stress which can be evaluated using the following 

equation. 

2
2

max
42

c
cc 


   (38) 

The material behavior in tension is modelled with an elastic damage mechanics model taking 

a linear strain softening branch for simulating the post cracking response [35]. Fig. 2 shows 

a typical one dimensional damage model where the damage parameter ω ranges from 0 

(damage initiation) to 1 (complete damage) to characterize the extent of cracking. The 

damage parameter is used to quantify the loss of material stiffness due to cracking, which is 

illustrated with the unloading path from any point on the softening branch, in the form of its 

secant stiffness. The loading function for the damage can be expressed as  
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0),max( 0  toldefcrf   (39) 

where 0crf  indicates loading (i.e., damage growth) and  0crf  indicates unloading. The 

equivalent strain parameter ef  (similar to equivalent plastic strain in plasticity) in the above 

equation (scalar quantity) is taken as  
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eT

cef E
E


1

  (40) 

where old  is its value obtained in the previous iteration of the analysis and 0t  corresponds 

to that at the instance of damage initiation i.e., 0tt    (Fig. 2). In the case of unloading, the 

value of old  will be unaltered but it must be updated with the new value of ef  for loading 

in order to satisfy Eq. (39). Similarly, the damage parameter   will retain its old value for 

unloading but it is to be updated for damage growth (loading) as  
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where tu  corresponds to complete damage i.e., tut    (Fig. 2).  

In the modelling of concrete under tensile stress, it is observed that the solution is dependent 

on the mesh size in a traditional strength based analysis. This is a typical problem which is 

eliminated in the present study using the concept of crack band theory proposed by Bazant 

and Oh [38]. This concept is based on fracture mechanics principles which utilize fracture 

toughness Gf (energy required to produce a crack of unit area) as a material property. This 

will be utilised to estimate the value of tu used in Fig. 2 ( =1) considering the area under 

𝜀𝑡𝑜(𝜅𝑡0) 

Slope 𝐸𝑐
𝑒 

𝜔 = 0 

𝜔 = 1 

𝜎𝑡0 

𝜀𝑡 

𝜎𝑡 

𝜀𝑡𝑢(𝜅𝑡𝑢) 

Fig. 2. Uniaxial strain softening model in tension. 
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the stress strain curve as cff wGg /  where cw  is the crack band width and the energy Gf is 

assumed to be distributed over the crack band width [38]. This is an important concept that 

helps to treat the discrete nature of cracking within a continuum model. It is obvious that the 

exact location and size of the damage localisation over a finite length (i.e. a crack) cannot 

be predicted by a smeared crack model based on the usual local constitutive relationship 

adopted in the present study but crack band model will help to predict the overall response 

of the structure satisfactorily. As the element length el  is related to the crack band in a smear 

crack model, the final expression of tu  can be written as 
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tew

f

tu
l

G


   (42) 

where ewl  is defined as the characteristic length. The value of w  depends on the order of 

element which is 1.0 in the present case as a quadratic element is used [38]. 

With the damage parameter (41), the stress-strain relationship can be written as  
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where c
eE ])[1(  is the secant damage stiffness matrix (Fig. 2). 

Finally, the incremental stress-strain relationship of the damaged concrete may be written as 
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where the tangent damage stiffness matrix [𝐸𝑐𝑟] can be expressed with the following 

equation and it can be used in Eq. (25) for l
tE ][ . 
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The above equation is applicable for damage growth while [𝐸𝑐𝑟] will be the secant damage 

stiffness matrix c
eE ])[1(   for unloading.  
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2.3.3. Constitutive Relationship for Shear Connectors 

The shear connectors are idealised as a distributed spring layer which transfers a distributed 

shear force between steel and concrete layers at their interface tangentially. The von Mises 

yield criterion used to model the shear connectors can be written as 

yefscf    (46) 

where the effective shear stress (force per unit length) 𝜏𝑒𝑓 is the absolute value of the 

interfacial shear force 𝜏𝑠ℎ, and 𝜏𝑦 is the corresponding yield stress (force per unit length) 

that may be expressed in terms of the effective plastic shear slip p
efs  (absolute value of the 

plastic shear slip ps ) as 

 

p
efs

p
efscyy sH

0

0   (47) 

where 𝜏𝑦0  is the initial yield stress (force per unit length) of this interfacial shear, and 𝐻′𝑠𝑐 

is the hardening parameter. In this case, the slip (𝑠) is taking the role of strains and it is to be 

expressed in terms of its elastic (𝑠𝑒) and plastic (𝑠𝑝) components. Following the usual steps 

of plasticity, the increments of these plastic slip components may be expressed as 

shsh

e kdds /  (48) 

ds
kH

k
ds

shsc

shp


  (49) 

where 𝑘𝑠ℎ is the elastic stiffness of the distributed interfacial shear springs. Finally, the 

incremental relationship between interfacial shear force and slip may be written as 

ds
kH

k
kdskd

shsc

sh
sh

ep
shsh 












2

  (50) 

where 𝑘𝑠ℎ
𝑒𝑝

 is the elasto-plastic tangent stiffness for the shear connectors that can be utilized 

in Eq. (25) as t
shk . 
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2.4. Arc-length Technique 

The dissipation based arc-length method has initially been proposed by Gutiérrez [31] 

considering damage as the only energy dissipation mechanism. Subsequently, this method 

has been extended by Verhoosel et al. [39] to include plasticity as an additional mechanism, 

which is applied to the present problem. As the value of the external loading will not increase 

in the post peak range, the equilibrium equation (21) is expressed in terms of an unknown 

load factor (or multiplier)   as 

   FP int  (51) 

where  F  is the external load vector due to one unit of applied load. In order to avoid any 

convergence problems and trace the entire structural response in the pre-peak as well as post-

peak ranges, the equilibrium path is divided into a number of steps by adjusting the value of 

  and the nonlinear equation is solved iteratively within each load step. As   is also an 

unknown parameter and its value is adjusted by this technique, an additional equation is 

required which is taken in the form of a constraint as follows  

     0,,,, 00  deC   (52) 

where   00 ,  is a point on the equilibrium path (a converged solution at the end of a load 

step),   is the incremental nodal displacement vector for the next load step,   is the 

corresponding incremental load factor and de  is the prescribed dissipation energy required 

for estimating the step size. It should be noted that    is the value of    within a load step 

whereas  d  used in Section 2.2 is the value of    within an iteration. The incremental 

energy dissipation Ud of a structure due to inelastic deformations within a load step is used 

to define the constraint C in the above equation as  

dd eUC   (53) 

As the energy dissipation can be obtained from the work done by the external loads We (i.e., 

total energy supplied to the structural system) and the elastic energy Ue retained by the 

system, the incremental energy dissipation within a load step can be written as 

eed UWU    (54) 

With the external load vector as expressed in Eq. (51), the incremental work done by the 

external loads used in the above equation can be written as  
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    
T

e FW  (55) 

In case of a structure having plastic deformations, the strain will have an elastic component 

and a plastic component where the elastic strain can be used to obtain the elastic energy of a 

composite beam Ue and it can be expressed as 

          dxτsdvσεdvσεU sh
e

s

T

s
e

c

T

c
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e
2

1

2

1

2

1
 (56) 

Using the constitutive relationships of the different beam components, the elastic strains in 

the above equation can be replaced with the corresponding stresses as 

            


 dxτkτdvσEσdvσEσU shshshss
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scc
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111

2

1

2

1

2

1
 (57) 

Now the incremental elastic energy within a load step can be obtained from the above 

equation and it is written as  

            


 dxτkτdvσEσdvσEσU shshshss
eT

scc
eT

ce
111

  (58) 

Using the elasto-plastic constitutive relationships from Eq. (25) with reference to the starting 

point of the load step, the incremental stresses in the above equation can be expressed in 

terms of incremental strains as 

                


 dxτkskdvσEEdvσEEU shsh
t
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eT

s
tT

scc
eT

c
tT

ce
111

  (59) 

Using Eqs. (13), (16) and (17), the strains in the above equation can be expressed in the form 

of incremental nodal displacement vector and Eq. (59) can be rewritten as  

   FU
T

e
ˆ   (60) 

where  

                       


 dxτkkBdvσEEHBdvσEEHBF shsh
t
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T

shss
eT

s
tT

s

T

scc
eT

c
tT

c

T

c
111ˆ  (61) 

Using the forward Euler discretisation with respect to the converged solution   00 ,  of the 

previous time step, the constraint in Eq. (53) can be expressed with the help of Eqs. (54), 

(55) and (60) as  

       d

T
eFFC  00

ˆ  (62) 

In case of a structure having damage [39], the above equation can similarly be derived and 

it can be expressed as  
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       d

T
eFC  00

2

1
  (63) 

Now Eq. (52) is combined with Eq. (51) to have the augmented system of equations as 
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Now, the Newton Raphson method can be used to solve above equation iteratively as  
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where  
    
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Using Eqs. (62), (63) and relevant equations in Section 2.2, the above equation can be 

rewritten as  
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where      00 F̂FG    and 0h  for plasticity; and    FG 0
2

1
  and    0

2

1


T
Fh  for 

damage. The above equation in its present form is not suitable for its solution due to the 

incorporation of an additional row and column for including the additional unknown (load 

factor) which has destroyed the banded nature of the matrix system to be operated. In order 

to overcome this problem, the Sherman-Morrison formula [40] is used for solving the above 

equation as follows  
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where       dRKTI

1
  and      FKTII

1
 .  

Using Eqs. (65) and (68), the nodal displacement vectors and load factor can finally be 

updated as 

         j

II

j

f

j

I

jj





1
 (69) 

 j

f
jj  1  (70) 
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where
   

    hG

CG

II

T

I

T

f



  

As this arc-length method utilises the energy dissipated in a load step, the application of the 

method is not convenient at the initial loading steps where the structural deformations may 

be in the elastic range and have no energy dissipation. Thus a hybrid approach of solution 

strategy is adopted in the present study where the load control method is applied for some 

initial load steps and it is switched to the arc-length method when the energy dissipation dU  

in a load step exceeds minde , which is the minimum value of de  prescribed by the user. 

Actually, the value of de  is updated in each load step when the arc-length method is activated 

in order to reduce the solution time. The value of de  in a load step i+1 can be estimated with 

the value of dU  in the previous load step [41] as   

   
idid Ue 5.0

1



 (71) 

where )(25.0 pjj   in which j is the iteration number and, jp is the desired number of 

iterations to get convergence. In order to avoid any divergence problems, the value of de  

should be restricted within its minimum value minde  and maximum value maxde , which is 

another user specified value.  

 

2.5. Stress Update 

The nonlinear equilibrium equation is solved iteratively as mentioned in the above sections 

where the stresses are updated after every iteration as the total stress cannot be expressed in 

terms of total strain in the case of plastic deformations. In that situation, the incremental 

nodal displacements  j
d  obtained in an iteration j are used to evaluate the corresponding 

incremental strains  j

ld  using Eqs. (13) and (16) in their incremental form which are 

subsequently utilised to compute the incremental stresses  j

ldσ  of that iteration using the 

elastic constitutive relationship as 

    j

ll
ej

l dεEdσ ][  (72) 
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The above equation is written for a material layer but it is similarly applicable to the shear 

studs. Now the stresses can be updated by adding the incremental stresses  j

ldσ  with the 

stresses accumulated in the previous iteration   1j

lσ  as 

     j

l

j

l

j

l dσσσ 
1

 (73) 

The updated stresses are substituted into the yield criteria as given in Eq. (29) which will 

lead to 0lf  that indicates plastic deformations of the material or 0lf  for its elastic 

deformations. For plastic deformations ( 0lf ), the updated stress vector  j

lσ  estimated by 

Eq. (73) is unfortunately not the final stress vector and it is rather defined as the trial stress 

vector  l
tσ  which is adjusted to bring it on the yield surface. This is accomplished by using 

the backward Euler return technique [36], a robust stress return algorithm, in the present 

investigation. The starting estimate of the adjusted stress vector can be obtained from the 

trial stress vector as  

     ll
e

ll
t

l aEdσσ ][  (74) 

where 
      lll
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f
dλ


  (75) 

and  la  can be calculated using Eq. (34). Both  la  and ldλ  are calculated based on the trial 

stresses. As the above stress vector  lσ  does not usually satisfy the yield function, an 

iterative approach is used where the starting or first estimate of the stress vector is defined 

as  1

lσ  and the corresponding incremental plastic strain multiplier as 1
ldλ . The value of the 

stress vector and the incremental plastic strain multiplier is iteratively improved till a desired 

level of convergence is achieved as follows. 
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 (76) 

k
l

k
l

k
l λdλdλ 1  (77) 

where k ( 1 ) is the iteration used for the stress return algorithm. The expressions used to 

determine the value of  k

l  and k
lλ
  are given below.  
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69 

       
 

1





























k

l

l
l

ek
l

k

l

a
EdIM


  (80) 

      

         l

k

ll
ek

l

Tk

l

k

l

k

l

Tk

l
k

lk
l

HaEMa

rMaf




  (81) 

The superscript k used with any parameter in the above equations indicates that that 

parameter is calculated at iteration k. The vector norm of the residual stress  k

lr  with respect 

to the current stress  k

lσ  is used to check the convergence of the above iterative process. For 

the present problem, the derivative of  la  used in Eq. (80) can be written as  

 
 




























2
,

2

2
,

2
,

2
,

2

,
9

3
3

3
1

1

lef

l

lef

ll

lef

ll

lef

l

lefl

la


















 (82) 

As the equilibrium path is divided into a number of load steps and the nonlinear equilibrium 

equation is solved within each load step iteratively, the stress return algorithm presented 

above is implemented in a slightly different manner so as to avoid any convergence problem. 

For an iteration within a load step, the incremental strains accumulated from the beginning 

of that load step   j

l  are used instead of   j

ld  in Eq. (72) to get the incremental stresses 

  j

lσ  of that load step which are added with the converged stresses of the previous load step 

to evaluate the trial stresses of that iteration which is adjusted by the stress return algorithm 

presented above.  

 

3. NUMERICAL RESULTS  

3.1. Two Layered Composite Beam with Rectangular Section – Numerical Verification  

In this example, a composite beam consisting of two material layers having rectangular 

sections as shown in Fig. 3 is used for numerical verification of the proposed model. For this 

purpose, the beam is also analysed with a well-regarded finite element software (ABAQUS) 

where the numerical results produced by a detailed 2D model of the beam are utilised to 

compare the results predicted by the proposed model. For the upper material layer of the 

beam, the Hognestad model [42] as shown in Fig. 4 is used for defining its uniaxial stress-

strain curves that may be expressed as  
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   cucccccc f   00
' 183  (84) 

where 𝑓𝑐
′ is the peak compressive strength, 𝜀𝑐0 is the strain corresponding to 𝑓𝑐

′ and 𝜀𝑐𝑢 is 

the ultimate compressive strain.  

 

 

 

 

For the present problem, the values of these material parameters are taken as: 𝑓𝑐
′ = 25 MPa, 

𝜀𝑐0 = 0.002 and 𝜀𝑐𝑢 = 0.038 along with the elastic modulus of 20,000 MPa and Poisson’s 

ratio of 0.25 for the upper layer.  

 

 

 

 

 

 

For the lower layer of the beam, a hypothetical material is used and its uniaxial stress-strain 

relationship both in tension and compression is defined with a simple bi-linear model as 

shown in Fig. 5 where the strain softening branch is deliberately taken to produce a 

prominent descending branch of the load-deflection curve of the composite beam. This is 

actually a theoretical problem devised to show the capability of the proposed model in 

tracing the descending branch of the load-deflection curve successfully. The present analysis 

is carried out taking the ultimate stress fu = 40 MPa, elastic modulus E = 30,000 MPa, 

Poisson’s ratio ν = 0.25 and hardening parameter of the strain softening branch H ́ = -3000 

MPa for the lower material layer which is assumed to follow the von Mises plasticity model 
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Fig. 3. Composite beam having fixed supports at its two ends 

Fig. 4. Uniaxial stress-strain curve for the upper material layer (concrete) 
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both in tension and compression. For the sake of comparison of the proposed model with the 

ABAQUS model, the upper layer is also treated as a hypothetical material where von Mises 

plasticity theory is used in compression as well as tension regions. Moreover, the uniaxial 

stress-strain curve of the material in both compression and tension is defined by the 

Hognestad model [42], which is typically used for concrete in compression for all other 

examples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The interface between these material layers can be modelled by ABAQUS where the contact 

mechanics is typically used and the interfacial slip can be simulated by using a cohesive 

contact model which is similar to the damage model presented in Section 2.3.2. Though a 

plasticity based constitutive model proposed in Section 2.3.3 is used for modelling the shear 

connectors in other examples, a damage mechanics based model is used in this example to 

have a parity with the ABAQUS as this software does not have the capability of modelling 

an elasto-plastic interface. The formulation for the damage mechanics model of the shear 

connectors is not presented but it can easily be derived utilising the concepts presented in 

Sections 2.3.2 and 2.3.3. Fig. 6 shows the interfacial shear force (per unit length)-slip 
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Fig. 5. Uniaxial stress-strain curve for the lower material layer 

 

Fig. 6. Interfacial shear force (per unit length) slip relationship for shear connectors  
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relationship used for this damage model where the fracture energy (Gf) is used to estimate 

the maximum slip su. To define the damage model for the shear connectors (Fig. 6), the 

values of the different material parameters used are: ksh = 100 MPa, qmax = 150 MPa, su = 3 

mm.  

The beam is analysed with the proposed 1D finite element (FE) model using different 

number of elements and the results show that an acceptable level of convergence is achieved 

with 20 elements for this beam. The computing time needed to complete the analysis using 

the proposed model was 75.81 sec where an ordinary desktop computer (i5-3470T CPU @ 

2.90 GHz and RAM 8.0 GB, 64 bit operating system) was used. Though the proposed 

element is based on HBT (3rd order theory), it can easily be amended to TBT (1st order 

theory) by dropping the higher order terms. For the analysis of the beam using ABAQUS, 

the 2D plane stress rectangular element (CPS4R) are used to model both layers by 

discretising these layers along their lengths and depths assuming no normal stress across the 

beam width where the mesh convergence study is similarly conducted. The shear connectors 

are modelled using the cohesive contact model place at the interface between the elements 

used for upper and lower layers. The same computer is used for running this 2D analysis 

where the computing time consumed was 730.66 sec for solving the problem. It should be 

noted that the solver used by ABAQUS is expected to be more efficient than a relatively 

simple solver used in the computer program (FORTRAN) developed for implementing the 

proposed model. Moreover, it needs a significant amount of time for model generation in 

ABAQUS. 
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The variation of mid-span deflection with respect to the applied load predicted by the 

proposed 1D FE model based on HBT as well as TBT is presented in Fig. 7 along with the 

results produced by the detailed 2D FE model. The figures shows a good correlation between 

the results obtained from the three models where the performance of HBT is relatively better 

than TBT if compared with the 2D FE model. It also shows that the post-peak response of 

the beam is successfully traced by the proposed model and it performed better than 

ABAQUS in the sense that the nonlinear solution process of this software is terminated 

earlier than the proposed model. The variations of the vertical displacement and the 

interfacial slip along the beam length corresponding to 700 kN of the applied load (P) 

predicted by these approaches are presented in Fig. 8 and Fig. 9, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the variation of von Mises stress over the beam depth obtained at two sections of 

the beam by these three approaches for P = 700 kN is plotted in Fig. 10 and Fig. 11, which 
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shows a very good performance of HBT. The performance of TBT is not generally good due 

to the assumption of average shear strain and the performance is severely affected at the 

quarter span (Fig. 11) where the contribution of shear stress is predominant as the bending 

moment/stress is less at this section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Steel-concrete Composite Beam Subjected to Three Point Bending – Experimental 

Validation  

A 5.5 m long steel-concrete composite beam tested by Chapman and Balakrishnan [43] is 

used in this example for the experimental validation of the proposed model. The beam 
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Fig. 10. Von Mises stress at a section 1m away from a support of the two-layered composite 

beam 

 

Fig. 11. Von Mises stress at the quarter span of the two-layered composite beam  
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consisting of a concrete slab and a steel I-girder connected by steel shear studs as shown in 

Fig. 12 was simply supported at its two ends and subjected to a point load at the mid-span.  

 

 

 

 

 

 

 

The Hognestad model [42] as shown in Fig. 4 is used for the uniaxial stress-strain 

relationship of concrete in compression while the bi-linear model as shown in Fig. 2 is used 

for this in tension. The steel girder is assumed to follow a bi-linear model with a strain 

hardening branch as shown in Fig. 13 for its uniaxial stress-strain relationship both in tension 

and compression. For the shear connectors idealised as a distributed shear springs layer, a 

bi-linear model as shown in Fig. 14 is used to define the relationship between the interfacial 

shear force per unit length q and the shear slip s using two values of the hardening parameter 

which is zero in one case. The concrete slab is reinforced with longitudinal steel bars 

R12@150mm in its top and bottom regions (Fig. 12). The re-bars are modelled as 1D 

members under uniaxial stress where an elastic-perfectly plastic material behaviour is 

adopted. 
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Fig. 13. Bi-axial stress-strain curve for steel girder  

Fig. 12. Cross-section of composite beam 
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The material properties used for characterising the different components of the composite 

beam are given in Table 1 which also contains the material properties of the beam considered 

in the next example. The problem is solved by the proposed nonlinear model based on HBT 

using 20 elements, and the variation of mid-span deflection with respect to the applied load 

obtained with two different hardening parameters of the shear connectors are presented in 

Fig. 15 along with the experimental result obtained by Chapman and Balakrishnan [43]. Fig. 

15 also includes numerical results reported by Liang et al. [44] who obtained this result from 

a detailed 3D finite element model of the beam using ABAQUS. The figure shows a very 

good correlation between the results obtained from different approaches where the proposed 

model (considering no hardening for the shear connectors) is found to perform better than 

ABAQUS when compared with the experimental result. 
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Fig. 15. Vertical displacement at mid-span of composite beam. 
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Table 1. Material properties of composite beams  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: † = Single shear stud in a row 

‡= Double shear stud in a row 

 

Material Property Liang et al. [44] Tan and Uy [45] 

Concrete slab Elastic modulus, 𝐸𝑐 32,920 MPa 20,000 MPa 

Poisson’s ratio, 𝜈 0.15 0.10 

Compressive strength, 𝑓𝑐
′ 42.5 MPa 25 MPa 

Strain,  𝜀𝑐0 0.002 0.002 

Ultimate tensile stress,  𝑓𝑡 3.553 MPa 2.5 MPa 

Fracture energy, Gf 0.208 N/mm 0.1875 N/mm 

Ultimate tensile strain, 𝜀𝑡𝑢 0.0016 0.0019 

Steel girder Elastic modulus, 𝐸𝑠 205,000 MPa 200,000 MPa 

Poisson’s ratio, 𝜈 0.3 0.3 

Yield stress,  𝑓𝑦 265 MPa 300 MPa 

Ultimate stress, 𝑓𝑢 410 MPa 500 MPa 

Ultimate strain, 𝜀𝑢 0.25 0.11 

Shear connector Yield shear force, 𝑞𝑦 435 MPa  

Ultimate shear force, 

𝑞𝑚𝑎𝑥 

565 MPa 743.86 N/mm‡ 

396.49 N/mm† 

Elastic stiffness, 𝑘𝑠ℎ 2491.46 MPa 717.74 MPa‡ 

597.61 MPa† 

Maximum slip, 𝑠𝑢 6 mm 7 mm‡ 

10 mm† 

Reinforcement 

in concrete slab  
Modulus of elasticity, 𝐸𝑠 200,000 MPa 200,000 MPa 

Poisson’s ratio, 𝜈 0.3 0.25 

Yield stress,  𝑓𝑦 250 MPa 550 MPa 

Ultimate strain, 𝜀𝑢 0.25 0.11 
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3.3. Steel-concrete Composite Beam Under Four Point Bending – Experimental 

Validation 

A steel-concrete composite beam (Fig. 16) tested by Tan and Uy [45]  under four point 

bending is used in this example. The concrete slab (including re-bars) and steel girder are 

modelled in a similar manner as followed in the previous example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the simulation of steel shear studs used for connecting the concrete slab with the steel 

girder, the exponential model of Olgaard et al. [46] as shown in  Fig. 17 is used which can 

be given by 
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Fig. 16. Simply supported steel-concrete composite beam  

Fig. 17. Exponential model for the uniaxial stress-strain curve for shear connector 
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where qmax is the ultimate value of the interfacial shear force (per unit length) and su is the 

ultimate slip. This model (Fig. 17) is chosen on the basis of the trend of results obtained in 

the push out test [45].  

For the present study, two different beam specimens tested by Tan and Uy [45] are used 

where the number shear studs used in a row along the beam width is one in the first case 

while it is two in the other case. Table 1 includes all the material properties used for defining 

the different constituents of the composite beam. The beam is analysed with the proposed 

technique and the result obtained in the form of variation of mid-span deflection with respect 

to mid-span moment is presented in Fig. 18 along with the experimental results reported by 

Tan and Uy [45]. The figure shows a good correlation between the numerical and 

experimental results. For this statically determinant beam, the mid-span moment can easily 

be determined with the value of applied loads and their locations.  

 

 

 

 

 

 

 

 

 

 

3.4. Two Span Steel-concrete Composite Beam  

The problem of a two-span continuous beam consisting of a concrete slab and a steel I-girder 

connected by steel shear studs (Fig. 19) is studied using the proposed model which is 

carefully verified and validated in the above sections. Fig. 19 shows the dimensions of 

different components of the beam and its boundary and loading conditions chosen for the 

present study. The behaviour of concrete slab and shear connectors is modelled in a similar 
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manner as followed in the previous example. For the steel girder, an elastic-perfectly plastic 

with strain hardening model [14] as shown in Fig. 20 is employed for defining its uniaxial 

stress-strain relationship in both tension and compression. According to Liu et al. [14], the 

strain hardening branch of the stress-strain curve (Fig. 20) can be expressed as 

 
 

ussh
a

yuys

ssh

efff 




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






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

1  (86) 

where 𝑓𝑦 is the yield stress, 𝑓𝑢 is the ultimate stress, 𝜀𝑦 is the yield strain, 𝜀𝑠ℎ is the strain at 

the beginning of strain hardening, and 𝜀𝑢 is the ultimate strain. The material constant a used 

in Eq. (86) can be determined with the above parameters as 
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For the present problem, the values used for the material parameters of concrete are: 𝑓𝑐
′ = 25 

MPa, 𝜀𝑐0 = 0.002, 𝜀𝑐𝑢 = 0.038, 𝑓𝑡 = 2.5 MPa, Gf = 0.1875 N/mm, Ec = 20 GPa and νc = 0.20. 

Similarly, the material properties used for the steel girder are: 𝑓𝑦= 275 MPa, 𝑓𝑢= 500 MPa, 

𝜀𝑠ℎ= 0.025, 𝜀𝑢=0.11, Es = 200 GPa and νs = 0.25. For the shear connectors, the values of 

material properties are: qmax = 500 N/mm, ksh = 250 MPa and su = 6 mm. 
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Fig. 19. Two-span steel concrete composite beam. 
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The beam is analysed with the proposed nonlinear finite element model based on HBT as 

well as TBT. Moreover, the analysis is carried out with a very high value of qmax (
15100.1 

MPa) for modelling the shear connectors in addition to its usual value as mentioned above 

(500 MPa), which are defined as full interaction (FI) and partial interaction (PI) conditions 

respectively. The load-deflection curves obtained at one of the mid-span sections for all these 

cases (HBT, TBT, PI and FI) are presented in Fig. 21. It is observed that the difference 

between the deflection values predicted by HBT and TBT is more in the case of full 

interaction compared to partial interaction. The variations of von Mises stress over the beam 

depth obtained at a section 1.0 m away from one of the end supports corresponding to the 

applied load P = 200 kN are plotted in Fig. 22. It shows a significant deviation of results 

predicted by HBT and TBT where the deviation is more in the case of partial interaction. 

The variations of shear stress over the beam depth obtained at a quarter section from one of 

the end supports corresponding to the applied load P = 200 kN are plotted in Fig. 23. The 
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Fig. 21. Deflection under the point load on a span of the two span composite beam (Fig. 19). 
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figure clearly indicate that TBT is not capable of predicting the actual variation of shear 

stress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. SUMMARY AND CONCLUSIONS 

An accurate and computationally efficient finite element model is developed for a reliable 

prediction of the inelastic response of steel-concrete composite beams. The steel shear studs 

used to connect the steel girder with the concrete slab are idealised as interfacial distributed 

springs with finite stiffness which helps to model the partial shear interaction of the 

composite beam. The higher order beam theory is used to develop this one dimensional finite 

element model with better accuracy. The von-Mises yield function with an isotropic 
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Fig. 22. Von Mises stress at a section 1m away from one of the end support of the two span 

composite beam under point load (P = 200 kN) 

 

Fig. 23. Shear stress at a quarter section from one of the end support of the two span 

composite beam under point load (P = 200 kN) 
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hardening rule and associated flow rule is used to model the behaviour of steel girders, steel 

reinforcements, steel shear studs and concrete slabs in compression. A damage mechanics 

model is used for modelling concrete slabs in tension. The mesh sensitivity associate with 

the damage modelling of concrete, a quasi-brittle material, in tension is eliminated using the 

well-known crack band theory. The inelastic material behaviour imposed a typical 

nonlinearity in the present problem and the solution of the governing equations becomes 

challenging specifically for capturing the post peak response. In order to address this issue, 

an energy dissipation based arc length method is employed to solve the nonlinear equations 

which helped to trace the descending branch of the load deflection curve successfully. Before 

validation of the proposed model with benchmarking experimental results, the numerical 

verification of the model is carried out with the help of a two-layer composite beam. For this 

purpose, a detailed 2D model of the composite beam is developed using a reliable 

commercial finite element software to produce reliable numerical results which are 

compared with the results produced by the proposed 1D model. 

The proposed model is based on a 3rd order beam theory (HBT) but it can easily be converted 

to a lower order beam theory (e.g., TBT) by eliminating the higher order terms. The 

numerical analysis has confirmed that the model based on TBT is able to predict the global 

response satisfactorily with the help of a shear correction factor. However, it is observed that 

this factor is not sufficient even for an accurate prediction of the global response in some 

situation such as beams with a small span-to-depth ratio, localised concentrated loads and 

clamped boundary conditions. Moreover, the model based on TBT could not predicting the 

distribution of stresses (local response) across the beam section. On the other hand, the 

proposed model based on HBT could realistically predict the global as well as local 

responses of these beams without any arbitrary factor as it takes account of the actual 

parabolic variation of shear strain. The major advantage of the proposed model is it can 

predict results very close to those produced by detailed finite element modes using ABAQUS 

but the computational cost of the proposed model is significantly less than the ABAQUS 

model. Moreover, in some situations, the proposed model performed better than ABAQUS 

in the sense that the nonlinear solution process of this commercial software was terminated 

earlier than the proposed model. 

The proposed model is also used to examine the effect of different levels of shear interaction 

between the concrete and steel layers of the composite beam. It is observed that the full shear 

interaction condition predicted deflection less than that for the partial interaction as expected. 

For both full and partial interaction conditions, the difference between the results predicted 
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by HBT and TBT models is found to be appreciable. Based on the accuracy and range of 

applicability along with the computational efficiency of the proposed model, it is highly 

recommended for the analysis of composite beams having inelastic material behaviours. 
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6. APPENDIX 

Nomenclature 

Ac, As cross-sectional area of concrete and steel layers of the beam 

 lB  strain-displacement matrix for the l-th layer (l=c for concrete, l=s for steel) 

 shB   strain-displacement matrix for shear connectors 

 dR   residual force vector 

de   prescribed dissipation energy 

El elastic modulus for the l-th layer 

][ crE   tangent damage stiffness matrix for concrete 

l
epE ][   elasto-plastic constitutive matrix for the l-th layer 

fl  von Mises yield function for the l-th layer 

 extF   external load vector 

Gl  shear modulus for the l-th layer 

Gf fracture energy 

 lH   cross-sectional matrix for the l-th layer  
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lH   hardening parameter for the l-th layer 

scH    hardening parameter for shear connectors 

ksh elastic stiffness of distributed springs for shear connectors 

ep
shk   elasto-plastic tangent stiffness for shear connectors 

[KT]  tangent stiffness matrix 

el   element length 

N  shape function 

 intP  internal nodal force vector 

q  distributed external load  

s  interfacial slip between concrete and steel layers 

es   elastic shear slip between concrete and steel layers 

ps   plastic shear slip between concrete and steel layers 

p
efs   effective plastic shear slip between concrete and steel layers 

uc0  longitudinal displacement of the concrete layer at its centroidal or reference axis 

cu  longitudinal displacement at the bottom fibre of the concrete layer  

us0  longitudinal displacement of the steel layer at its reference axis 

su  longitudinal displacement at the top fibre of the lower layer 

w  transverse displacement 

cw   crack band width 

α , β  higher order terms 

    nodal displacement vector 

 cε ,  sε  strain vectors of concrete and steel layers 

 l
e   elastic strain vector for the l-th layer  

 lp   plastic strain vector for the l-th layer  

p
l  plastic normal strain for the l-th layer  

p
lef ,   equivalent plastic strain for the l-th layer 
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 l  one dimensional strain vector for the l-th layer 

p
l   plastic shear strain for the l-th layer 

ef   equivalent strain parameter 

ld   incremental plastic strain multiplier for the l-th layer 

   load factor (or multiplier) 

c, s  bending rotations of concrete and steel layers 

 cσ ,  sσ  stress vectors of concrete and steel layers 

lef ,   effective stress for the l-th layer 

ly,   uniaxial yield stress for the l-th layer 

lσ   bending stress for the l-th layer 

0t   uniaxial ultimate tensile stress 

max   maximum principle stress 

lτ   shear stress for the l-th layer 

sh   distributed shear force (per unit length) at the interface between concrete and steel 

layers 

ω  damage parameter 
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Chapter 4: Geometric and Material Nonlinear Model 

4.1 Introduction 

This chapter contains the manuscript entitled “Geometrically nonlinear inelastic analysis of 

steel-concrete composite beams with partial interaction using a higher-order beam theory”. 

It presents the development of a one dimensional finite element model for composite beams 

considering the effects of inelastic material behaviour and large deformation. The model 

presented in this chapter is developed by systematically combining all aspects considered to 

develop the two models presented in chapter 2 and chapter 3. The effect of large deformation 

is incorporated by using the Green-Lagrange strain vector whereas the inelastic material 

behaviour is modelled by the von Mises plasticity theory. A damage mechanics model is 

also used for modelling the inelastic behaviour of concrete under tension. It also implements 

the robust stress return algorithm for updating the stresses. In order to simulate a realistic 

response, different stress-strain relationships are used for the different materials. It is shown 

that a robust arc-length method used for solving the nonlinear equations helped to trace the 

descending branch of the load-deflection curve well. It also shown that the relative 

performances of the proposed model based on HBT, EBT and TBT. Based on the accuracy 

and range of applicability of the proposed model, it is recommended for the analysis of 

composite beams having large deformations as well as inelastic material behaviours. 

 

4.2 List of Manuscripts 
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4.4 Geometrically nonlinear inelastic analysis of steel-concrete composite beams with 

partial interaction using a higher-order beam theory 

Md. Alhaz Uddin, Abdul Hamid Sheikh, David Brown, Terry Bennett and Brian Uy 

 

ABSTRACT 

A comprehensive finite element model based on a higher-order beam theory (HBT) is 

developed for an accurate prediction of the response of steel-concrete composite beams with 

partial shear interaction. The formulation of the proposed one dimensional finite element 

model incorporated nonlinearities due to large deformations of the beam as well as inelastic 

material behaviour of its constituent components. The higher-order beam model is achieved 

by taking a third order variation of the longitudinal displacement over the beam depth for 

the steel and concrete layers separately. The deformable shear studs used for connecting the 

concrete slab with the steel girder are modelled as distributed shear springs along the 

interface between these two material layers. The Green-Lagrange strain vector is used to 

capture the effect of geometric nonlinearity due to large deflections. The von Mises plasticity 

theory with an isotropic hardening rule and a damage mechanics model are incorporated 

within the proposed finite element model for simulating the inelastic response of the beam 

materials. The nonlinear governing equations are solved by an incremental-iterative 

technique following the Newton-Raphson method. A dissipation based arc-length method is 

employed to capture the post peak response of these beams successfully. The capability of 

the proposed model is assessed through its validation and verification using existing 

experimental results and numerical results produced by detailed finite element modelling of 

these beams.  

Keywords: Composite beam, Partial shear interaction, Higher-order beam theory, Large 

deformation, Inelastic material response, Arc-length method. 

 

1.  INTRODUCTION 

Steel concrete composite beams have many applications in the construction industry due to 

their superior performances as structural members. In these typical structural configurations, 

the concrete layer is primarily utilised to resist the compressive stress whereas the steel layer 
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resists the tensile stress to enhance the performance of the overall structural system. The 

composite action is commonly achieved by connecting the concrete slab with the steel girder 

using steel shear studs. As the stiffness of these shear connectors is finite in reality, a shear 

slip is always present at the interface [1] between the concrete and steel layers which results 

in behaviour typically referred to as partial shear interaction. 

Newmark et al. [2] is one of the earliest researchers who developed an analytical model for 

simulating composite beams considering the effects of partial interaction. The Newmark 

model is one of the most popular models, but due to its analytical nature it is only applicable 

to composite beams having specific boundary and loading conditions. On the other hand, a 

numerical model using a technique such as the finite element method, possesses a better 

level of generality and is hence able to solve a wide range of problems. This has motivated 

a number of researchers (e.g. [3-7]) to develop finite element models for composite beams 

with partial interaction. However, these models [3-7] have been developed considering the 

effect of small deformation and elastic material behaviour which produces a simple linear 

solution to the problem. In reality, the loading can’t be restricted within such a small range 

and these composite beams often undergo large deformations with beam materials exhibiting 

an inelastic response.    

In order to address some of these issues, Yasunori et al. [8] incorporated the effect of inelastic 

material behaviour in their finite element model of composite beams using the von Mises 

yield criterion. However, they [8] used a very simple material model based on an elastic 

perfectly-plastic idealisation for all materials including concrete, which is not realistic 

especially for the tensile response of concrete. Similar studies have been carried out by Salari 

et al. [9] using a bi-linear elasto-plastic material model with a strain hardening parameter. A 

further development in this direction is due to Dall’Asta and Zona [10] and Erkmen and 

Attard [11] who have used realistic stress-strain curves for the beam materials. In their work 

Dall’Asta and Zona [10] have ignored the contribution of concrete in tension whereas 

Erkmen and Attard [11] have used the concept of tension stiffening for its modelling. 

However, the studies [8-11] did not consider the effects of large deformation in the 

modelling of composite beams. On the other hand, the effect of geometric nonlinearity due 

to large deformations is incorporated in the finite element models by Erkmen and Bradford 

[12] for the analysis of steel-concrete composite beams being curved in plane, and Battini et 

al. [13] and Ranzi et al. [14] for the two-layered straight composite beams. However, they 

[12-14] ignored the effects of inelastic material behaviour which is encountered even with a 

low to moderate range of loading. 
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A nonlinear model considering the effect of inelastic material behaviour along with the large 

deformation can ideally be the best model for predicting the response of these composite 

structures accurately. For this purpose, Hozjan et al. [15] developed a nonlinear finite 

element model considering the large deformation and the inelastic material behaviour of the 

constituents of composite beams with interfacial slip, but neglected the tensile behaviour of 

concrete. A comprehensive one dimensional finite element model is proposed by Liu et al. 

[16] where the tensile behaviour of concrete is simulated using a damage mechanics model 

which can precisely model the tensile response of plain concrete without reinforcement. 

However, all these models [3-16] are based on Euler-Bernoulli beam theory (EBT), which 

does not consider the effect of transverse shear deformation of the steel and concrete layers. 

The effect of this shear deformation is significant in some situations such as beams with a 

small span-to-depth ratio, localized concentrated loads, clamped boundary conditions and 

some other scenarios. 

Thus there has been a growing interest in recent years to incorporate the effects of shear 

deformation and the Timoshenko’s beam theory (TBT) is typically used for this purpose 

(e.g., [17-20]). It is observed that all these investigators [17-20] have used linear elastic 

material behaviour and small deflection theory to develop their models. Recently, Hijaj et 

al. [21] developed a model based on TBT considering the effect of large deformation. This 

has been extended further by Nguyen et al. [22] to incorporate the effect of inelastic material 

behaviour. However, they [22] have used a very simplified material model as well as treating 

the behaviour of concrete in tension and compression identically. Moreover, in this beam 

theory (TBT), the actual parabolic variation of shear stress over the beam depth is simplified 

by taking a constant average shear stress distribution over the beam depth. This 

simplification requires the use of a factor known as a shear correction factor to determine a 

satisfactory global response such as deflection or vibration frequency. This correction factor 

is not sufficient for an accurate prediction of the local response such as the stress 

distributions within these structures [23-25]. Furthermore, the calculation of the exact value 

of this shear correction factor for a composite beam with partial shear interaction is 

cumbersome in comparison with that of a single layer homogeneous beam. 

In order to address the aforementioned issues related to shear deformation of the beam layers, 

a higher-order beam theory (HBT) has recently been developed by Sheikh and co-workers 

[23-25] for an accurate prediction of global as well as local responses of these composite 

beams. The cross-sectional warping of the beam layers produced by the transverse shear 

stress is modelled with a higher order (3rd order) variation of longitudinal displacements of 
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the fibres over the beam depth. This beam theory (HBT) utilized the concept of Reddy’s 

higher order shear deformation theory [26] developed for multi-layered laminated composite 

plates modelled as single layered plates without interfacial slip. In these investigations [23-

25], HBT has been implemented with a one dimensional finite element model which has 

exhibited a very good performance, though these studies are restricted to linear elastic 

analysis of these composite beams having small deformations. 

Considering all the aforementioned aspects, an attempt is made in this study to develop an 

efficient numerical model based on HBT for accurately predicting the large deformation 

response of composite beams having inelastic material behaviour. The nonlinearity induced 

by the large deformation and inelastic material response is manifested in the form of 

nonlinear load-deflection curves. These curves can have a descending branch after attaining 

the peak load due to the strain-softening behaviour of concrete in its inelastic range. It is 

observed that most of the investigations carried out on the inelastic response of composite 

beams [8-11, 16, 22] could not capture the descending branch of the nonlinear load-

deflection curve successfully. The solution of this typical nonlinear problem is quite 

challenging and a load control based technique cannot trace the descending branch of the 

load-deflection curve. In order to overcome this problem, a displacement control based 

technique may be used, however this will also fail if the load-deflection curve has a snap-

back response. In this situation, an arc-length based solution technique seems to be the only 

possible option.  

The arc-length method was initially proposed by Riks [27] and subsequently enhanced by 

various investigators (e.g. Crisfield [28, 29]) for solving different nonlinear problems. 

Though these developments helped to solve complex geometric nonlinear problems 

successfully, they encountered severe convergence problems in solving material nonlinear 

problems especially relating to concrete structures which have failure/crack localizations. In 

order to address this specific issue, the localized nature of damage has been utilised by May 

and Duan [30] to develop an arc length method known as a damage localization approach. 

This method can provide a satisfactory solution to a problem [31] but it requires the position 

of damaged elements to be known, which may be difficult to locate in a complex structural 

system. A further advancement in this direction is due to Gutiérrez [32] who proposed a 

dissipation based arc-length method where the energy dissipated by the entire structure due 

to its damage and plastic deformations is utilised as a stepping parameter for controlling the 

incremental iterative process. The success of this method is primarily due to the stepping 

parameter which is always positive regardless of the sign of the tangential stiffness.  
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For the one dimensional finite element model developed in this study, the von Mises 

plasticity theory with an isotropic hardening rule is used for modelling the inelastic 

behaviour of steel girders, concrete slabs under compression, steel reinforcements, and steel 

shear studs. A damage mechanics model is used for modelling the inelastic behaviour of 

concrete under tension. The Green-Lagrange strain vector is used to capture the effect of 

geometric nonlinearity in the composite beam. A dissipation based arc-length method is 

employed to capture the post peak response successfully. Numerical examples of composite 

beams are solved by the proposed model. The results predicted by the models are validated 

with the published experimental results and the numerical results produced by a detailed 

two-dimensional finite element model of these beams using a reliable finite element 

software. As the number of results available in the inelastic range of composite beams having 

large deformations is limited and no one has reported any results for the stress distributions 

within these structures, a number of new results are presented for future references. 

 

2.  MATHEMATICAL FORMULATION  

2.1. Higher-order Beam Theory (HBT) 

Fig. 1 shows a steel-concrete composite beam which is typically a two layered composite 

beam with a flexible interface. According to the HBT, the variation of longitudinal 

displacement of the concrete and steel layers over their depths can be expressed as 

cccccccc yyyuu  32
0   (1) 

ssssssss yyyuu  32
0   (2) 

where uc0 and us0 are the longitudinal displacements of the concrete slab and the steel girder 

at their reference axes (yc = 0 and ys = 0) respectively, c and s are bending rotations of 

these layers, and α and β are the higher order terms. As vertical separation between the layers 

is not commonly observed in a straight composite beam under static loading, it is not 

considered in this study. Thus the vertical displacement will be identical for both layers and 

it can be expressed as 
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The partial shear interaction between the concrete and steel layers is characterised by the slip 

at their interface. This is defined as the relative longitudinal displacement of these material 

layers and it can be expressed as 

cs uus   (4) 

where 𝑢̅𝑐 is the longitudinal displacement at the bottom fibre of the concrete layer and 𝑢̅𝑠 is 

the longitudinal displacement at the top fibre of the steel layer. 

Utilising the shear stress free condition at the exterior surfaces (yc = hc/2 and ys = -hs/2), and 

taking cu and su as independent field variables, the higher order non-physical terms 

appearing in Eqs. (1) and (2) can be expressed in terms of other field variables [23]. Using 

Eq. (3) and the above conditions, Eqs. (1) and (2) can be rewritten in terms of all physical 

parameters as 

 cccccccc DCuBuAu  0  (5) 

 ssssssss DCuBuAu  0  (6) 

where A, B, C and D are functions of y, cross-sectional properties of the two layers and their 

material properties [24]. In the equations above, ϕ (=dw/dx) is taken as an independent field 

variable to have a C⁰ continuous formulation for the finite element implementation of this 

beam theory. 

 

𝑦𝑐  

𝑠 𝑢̅𝑐  

𝑢𝑠0 
𝜃𝑠 
𝑢𝑠 

𝑢𝑐  ℎ𝑐

2
 

𝑢𝑐0 
𝑥 

 

𝑦𝑠 

ℎ𝑠

2
 

ℎ𝑠

2
 

ℎ𝑐

2
 

Reference Axis 

s: Steel 

Reference Axis 

c: Concrete 

𝑥 

𝜃𝑐  

𝑢̅𝑠 

Fig. 1. Typical Steel-concrete composite beam with longitudinal displacement variations 

over the beam depth. 
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2.2. Variational Formulations and its Finite Element Implementation  

The equilibrium equation can be derived using the principle of virtual work and it can be 

expressed as 

        qdxdwdxτdsdAdxσdεdAdxσdε
x

sh

x

s

A

T

s

x

c

A

T

c

x sc

  , (7) 

where d is used to show the variation of any parameter,  cε and  sε  are strain vectors 

(consisting of normal and transverse shear strains) of the concrete and steel layers 

respectively,  cσ and  sσ  are stress vectors (consisting of bending and shear stresses) of 

these layers, shτ  is the distributed shear force (per unit length) at their interface, q is the 

distributed external load (per unit length) acting on the beam, and A is the cross-sectional 

area. 

The Green-Lagrange strain vector of the two layers may be written as 
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where  
kLε and  

kNε are the linear and nonlinear strain vectors in which the index 𝑘 = 𝑐 

for the concrete layer and 𝑘 =  𝑠 for the steel layer. Using Eqs. (5) and (6), the linear strain 

vectors may be written in terms of the cross-sectional matrix  
kLH  and the one dimensional 

linear strain vector  
kL  as 

     
kLkLkL εHε  , (9) 
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and   

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


dx

dw
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d
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0 . (11) 

For the finite element implementation of the proposed beam model, a displacement based 

quadratic isoparametric beam element with three nodes is used to have a simple formulation 

with no unexpected numerical inconsistencies. However, a displacement based formulation 

can exhibit locking phenomena, which is eliminated by using the field consistent technique 

[33].  The field variables of the element are uc0, cu , c, w, , us0, su and s, which can be 



101 

expressed in terms of their nodal unknowns using the interpolation functions of the element 

[25]. This leads to an expression for the one dimensional linear strain vectors (11) in terms 

of the nodal displacement vector    as 
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where a typical component of the linear strain-displacement matrix k
j

LB ][  corresponding to 

node j (1, 2 or 3) is given in [25] for the concrete/steel layer. 

Now the nonlinear strain vectors may be expressed as  
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Using Eqs. (5) and (6), the vector  k  may be expressed in terms of its cross-sectional 

matrices  
kNH  and one dimensional strain vectors  

kN  (dependent on x only) as 
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The matrix  kA  in Eq. (13) is dependent on displacements of the beam and is evaluated or 

updated in each iteration within the solution scheme of the nonlinear governing equations 

utilising k . 

The one dimensional strain vector shown in Eq. (16) can be expressed in terms of the nodal 

displacement vector as 
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Employing Eqs. (9), (12), (13), (14) and (17), the total strain vector as given in Eq. (8) can 

be expressed as 

                   


















kNkLkkNkkLkLk BBGHABHε
2

1

2

1
. (18) 

Taking the variation of Eq. (18), the incremental strain vector can be obtained [34] and it 

may be expressed as  

                   dBdBBdGHABHdε kkNkLkkNkkLkLk ][][][ . (19) 

Similarly, the incremental form of the interfacial slip (4) can be expressed in terms of a 

strain-displacement matrix for the interfacial slip  shB and nodal displacement vector [25] 

as  

      dBuudds shcs
. (20) 

The virtual work due to the external load q as expressed on the right hand side of Eq. (7) can 

be expressed further in terms of the external load vector  extF and incremental nodal 

displacement vector  d  as 

   ext

T
Fddwqdx  , (21) 
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where   qdxNF T
ext  ][  (22) 

The matrix ][N  in the above equation contains shape functions of the transverse 

displacement, w [25]. 

Substituting Eqs. (19), (20) and (21) into Eq. (7), the equilibrium equation can be obtained 

and expressed as 

           extsh

x

T

shs

A

T

s

x

c

A

T

c

x

FdxτBdAdxσBdAdxσB

sc

  . (23) 

The stresses in the above equation (23) can be expressed in terms of strains using appropriate 

constitutive relationships and these strains can subsequently be expressed in terms of nodal 

displacements  . However, the resulting equation cannot be solved for nodal 

displacements directly due to the nonlinear constitutive relationships produced by inelastic 

material behaviours and the displacement dependent nonlinear strain displacement matrices. 

The nonlinear stress-strain relationship must be expressed in its incremental form as the 

stresses cannot be expressed in terms of strains in their total form due to the load history 

dependent material behaviour. To facilitate this, the left hand side of the equilibrium 

equation (23) is defined as the internal nodal force vector  intP (dependent on the nodal 

displacement vector  ), which leads to an expression for Eq. (23) in a compact form as 

     extFP int  or        0int  extFP  (24) 

The Newton Raphson method is used to solve the above nonlinear equation iteratively where 

the nodal displacement vector   1


j
at the iteration j+1 can be computed from that obtained 

in the previous iteration  j
 as  

       
 
 
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1

11  (25) 

From the above equation, the incremental nodal displacement  d  within an iteration can 

be written as  

 
 

   



d   (26) 

Substituting Eqs. (23) and (24) into the above equation and defining its right hand side as 

the residual load vector     dR , it can be rewritten as 
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       

 .dRdxτdB

dAdxdσBdAdxσBddAdxdσBdAdxσBd
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



][

][][][][

 (27) 

The incremental strain displacement matrix of a material layer used in the above equation 

can be expressed with the use of Eq. (19) as 

      kkkkNkkNk BdAGHdABdBd ][][][][  . (28) 

Substituting the above equation in Eq. (27), the first and third terms in the left hand side of 

the equation may be expressed in terms of geometric stiffness matrices [34] and incremental 

nodal displacements as 

             dRdxτdBdAdxdσBdKdAdxdσBdK sh

x

T
shs

A

T
s

x

sc

A

T
c

x

c

sc

  ][][][   (29) 

where       dAdxBσBK

cA

cc

T

c

x

c    and       dAdxBσBK

sA

ss

T

s

x

s   . 

Now the incremental stresses appearing in the above equation can be expressed in terms of 

incremental strains using a suitable constitutive relationship (see the Section 2.3) by using 

Eqs. (19) and (20) as  

      dBEdεEdσ kk
t

kk
t

k ][][][  (30) 

and   dBkdskd sh
t
sh

t
shsh ][   (31) 

where k
tE ][ is the tangential material stiffness matrix (elasto-plastic/damage stiffness 

matrix) of the steel/concrete layer and t
shk  is the tangential material stiffness (elasto-plastic 

stiffness) of the shear connectors. 

After the substitution of Eqs. (30) and (31) into Eq. (29), the incremental equilibrium 

equation can finally be written as 

   dRdKT ][  (32) 

The tangent stiffness matrix [KT] in the above equation is the same as the term 
 
 


 which 

appeared in Eq. (26) and can be expressed as  

                      
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ss
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s

x

s

A

cc
tT

c

x

cT dxBkBdAdxBEBKdAdxBEBKK

cc

  (33) 
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The nonlinear equation (26) is solved in an iterative process (25) using Eqs. (27), (32) and 

(33). In order to achieve a converged solution, the iteration process will continue until the 

residual force vector  dR  is reduced to a specified tolerance as follows 

   

   
Tol

FF

RR

ext

T

ext

T

100


 (34) 

where Tol  is the convergence tolerance which is taken as 1% in the present study. 

It should be noted that the entire load is divided into a number of load steps and it is applied 

gradually in increments where the iterative solution technique is activated within each load 

step. Moreover, this is a load control technique which will not be adequate for tracing the 

post peak response of composite beams. This problem is solved by using a robust arc-length 

method which is presented in Section 2.4. 

 

2.3. Constitutive Relationship  

The von Mises yield criterion with an isotropic-hardening rule [35] is used for modelling the 

inelastic behaviour of steel girders, reinforcement and steel shear studs. This modelling 

approach is also applied to the region of concrete slab subjected to compressive stress for 

simplicity. A damage mechanics model [36, 37] is adopted to simulate the cracking 

behaviour of the concrete under tensile stress. 

 

2.3.1. Constitutive Relationship for Steel and Concrete in Compression 

According to the von Mises yield criterion, the stress state must be on (plastic loading) or 

within (elastic loading and unloading) the yield surface which may be written for the 

steel/concrete layer subjected to bending and shear stresses as 

0,,  kykefkf   (35) 

In the above equation, 𝜎𝑦,𝑘 is the uniaxial yield stress and 𝜎𝑒𝑓,𝑘 is the effective stress, which 

can be written in terms of bending stress k  and shear stress k  as 

22
, 3 kkkef    (36) 
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In order to correlate a multiaxial stress state (usually encountered in a real problem) with the 

uniaxial yield stress, the uniaxial yield stress can be expressed in terms of equivalent plastic 

strain     3/
22

,
p
k

p
k

p
kef   as 

p
kefkkyky

p
kef

H ,

0

,0,

,





   (37) 

where 𝜎𝑦0,𝑘  is the initial value of the uniaxial yield stress for a material layer and kH   is the 

strain hardening parameter of the layer.  

As mentioned in the previous section, the stress-strain relationship must be expressed in its 

incremental form due to inelastic material behaviour. Thus the strain vector is taken in its 

incremental form and can be expressed in terms of its elastic and plastic components as 

     k
p

k
e

k ddd    (38) 

The elastic strain increment can simply be obtained from the incremental stress using 

Hooke's law as 

     k
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p
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


  (39) 

where 𝐸𝑘 and 𝐺𝑘 are the elastic modulus and shear modulus of the material layer 

respectively. 

As an associated flow rule is used, the plastic strain increments can be determined [38] using 

Eq. (35) as 
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3
,

 (40) 

where 𝑑𝜆𝑘 is the incremental plastic strain multiplier and the vector  ka  gives the direction 

of plastic flow, which is normal to the yield surface. Using the consistency condition of the 

yield function (35) along with the above equations (36, 39 and 40), the incremental plastic 

strain multiplier can be derived following the usual operations used in a plasticity 

formulation [38] and it can be expressed as 

   

    kkk
eT

k

kk
eT

k
k

HaEa

dEa
d




][

][ 
  (41) 
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For the von Mises yield criterion, the equivalent plastic strain increment will be the 

incremental plastic strain multiplier kd  [38].  Using Eqs. (39) to (41), the incremental 

stress-strain relationship can be obtained which is expressed as 

               
     

 k

kkk
eT

k

T

k
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kkk
e

k
e

kk
ep

k d
HaEa

EaaE
EdEd 
















  (42) 

where k
epE ][  is the elasto-plastic constitutive matrix that can be used for k

tE ][  in Eq. (30). 

This constitutive relationship is also applied for the modelling of reinforcement bars by 

eliminating the contribution of shear stress/strain. 

 

2.3.2. Constitutive Relationship for Concrete in Tension 

The concrete under tensile stress (major principal stress) is treated as an elastic material up 

to its uniaxial ultimate tensile stress ( 0t ) where cracks are initiated. The crack initiation can 

be detected once the following equation is satisfied. 

00max  ttf   (43) 

where max is the maximum principle stress which can be evaluated using the following 

equation. 

2
2

max
42

c
cc 


   (44) 

The material behavior in tension is modelled with a damage mechanics approach taking a 

linear strain softening branch for simulating the post cracking response [37]. Fig. 2 shows a 

typical one dimensional damage model where the damage parameter ω ranges from 0 

(damage initiation) to 1 (complete damage) to characterize the extent of cracking. The 

damage parameter is used to quantify the loss of material stiffness due to cracking, which is 

illustrated with the unloading path from any point on the softening branch, in the form of its 

secant stiffness. The loading function for the damage can be expressed as  
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0),max( 0  toldefcrf   (45) 

where 0crf  indicates loading (i.e., damage growth) and  0crf  indicates unloading. The 

equivalent strain parameter ef  (similar to equivalent plastic strain in plasticity) in the above 

equation (scalar quantity) is taken as  

     cc
eT

cef E
E


1

  (46) 

where old  is its value obtained in the previous iteration of the analysis and 0t  corresponds 

to that at the instance of damage initiation i.e., 0tt    (Fig. 2). In the case of unloading, the 

value of old  will be unaltered but it must be updated with the new value of ef  for loading 

in order to satisfy Eq. (45). Similarly, the damage parameter   will retain its old value for 

unloading but it is to be updated for damage growth (loading) as  

)(

)(

0

0

ttuef

teftu









  (47) 

where tu  corresponds to complete damage i.e., tut    (Fig. 2).  

In the modelling of concrete under tensile stress, it is observed that the solution is dependent 

on the mesh size in a traditional strength based analysis. This is a typical problem which is 

eliminated in the present study using the concept of crack band theory proposed by Bazant 

and Oh [39]. This concept is based on fracture mechanics principles which utilize fracture 

toughness Gf (energy required to produce a crack of unit area) as a material property. This 

will be utilised to estimate the value of tu used in Fig. 2 ( =1) considering the area under 

the stress strain curve as cff wGg /  where cw  is the crack band width where the energy Gf 

Fig. 2. Uniaxial strain softening model in tension. 
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is assumed to be distributed over the crack band width [39]. This is an important concept 

that helps to treat the discrete nature of crack within a continuum model. As the element 

length el  is related to the crack band in a smear crack model, the final expression of tu  can 

be written as 

0

2

tew

f

tu
l

G


   (48) 

where ewl  is defined as the characteristic length. The value of w  depends on the order of 

element which is 1.0 in the present case as a quadratic element is used [39]. 

With the damage parameter (47), the stress-strain relationship can be written as  

   cc
e

c E  ])[1(   (49) 

where c
eE ])[1(  is the secant damage stiffness matrix (Fig. 2). 

Finally, the incremental stress-strain relationship of the damaged concrete may be written as 

   c
cr

c dEd  ][  (50) 

where the tangent damage stiffness matrix [𝐸𝑐𝑟] can be expressed with the following 

equation and it can be used in Eq. (30) for k
tE ][ . 

       c
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ttuef

ttu
c

ecr EE 
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)1(

0
2

0


  (51) 

The above equation is applicable for damage growth while [𝐸𝑐𝑟] will be the secant damage 

stiffness matrix c
eE ])[1(   for unloading. 

 

2.3.3. Constitutive Relationship for Shear Connectors 

The shear connectors are idealised as a distributed spring layer which transfers a distributed 

shear force between steel and concrete layers at their interface tangentially. The von Mises 

yield criterion used to model the shear connectors can be written as 

yefscf    (52) 

where the effective shear stress (force per unit length) 𝜏𝑒𝑓 is the absolute value of the 

interfacial shear force 𝜏𝑠ℎ, and 𝜏𝑦 is the corresponding yield stress (force per unit length) 
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that may be expressed in terms of the effective plastic shear slip p
efs  (absolute value of the 

plastic shear slip 
ps  ) as 

 

p
efs

p
efscyy sH

0

0   (53) 

where 𝜏𝑦0 is the initial yield stress (force per unit length) of this interfacial shear, and 𝐻′𝑠𝑐 

is the hardening parameter. In this case, the slip (s) is taking the role of strains and it is to be 

expressed in terms of its elastic (𝑠𝑒) and plastic (𝑠𝑝) components. Following the usual steps 

of plasticity, the increments of these plastic slip components may be expressed as 

shsh

e kdds /  (54) 

ds
kH

k
ds

shsc

shp


  (55) 

where 𝑘𝑠ℎ is the elastic stiffness of the distributed interfacial shear springs. Finally, the 

incremental relationship between interfacial shear force and slip may be written as 
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shsc
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ep
shsh 












2

  (56) 

where 𝑘𝑠ℎ
𝑒𝑝

 is the elasto-plastic tangent stiffness for the shear connectors that can be utilized 

in Eq. (31) as t
shk . 

 

2.4. Arc-length Technique 

The dissipation based arc-length method has initially been proposed by Gutiérrez [32] 

considering damage as the only energy dissipation mechanism. Subsequently, this method 

has been extended by Verhoosel et al. [40] to include plasticity as an additional mechanism, 

which is applied to the present problem. As the value of the external loading will not increase 

in the post peak range, the equilibrium equation (24) is expressed in terms of an unknown 

load factor (or multiplier)   as 

   FP int  (57) 

where  F  is the external load vector due to one unit of applied load. In order to avoid any 

convergence problems and trace the entire structural response in the pre-peak as well as post-
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peak ranges, the equilibrium path is divided into a number of steps by adjusting the value of 

  and the nonlinear equation is solved iteratively within each load step. As   is also an 

unknown parameter and its value is adjusted by this technique, an additional equation is 

required which is taken in the form of a constraint as follows  

     0,,,, 00  deC   (58) 

where   00 ,  is a point on the equilibrium path (a converged solution at the end of a load 

step),   is the incremental nodal displacement vector for the next load step,   is the 

corresponding incremental load factor and de  is the prescribed dissipation energy required 

for estimating the step size. It should be noted that    is the value of    within a load step 

whereas  d  used in Section 2.2 is the value of    within an iteration. The incremental 

energy dissipation Ud of a structure due to inelastic deformations within a load step is used 

to define the constraint C in the above equation as  

dd eUC   (59) 

As the energy dissipation can be obtained from the work done by the external loads We (i.e., 

total energy supplied to the structural system) and the elastic energy Ue retained by the 

system, the incremental energy dissipation within a load step can be written as 

eed UWU    (60) 

With the external load vector as expressed in Eq. (57), the incremental work done by the 

external loads used in the above equation can be written as  

    
T

e FW  (61) 

In the case of a structure having plastic deformations, the strain will have an elastic 

component and a plastic component. The elastic strain can be used to obtain the elastic 

energy of a composite beam Ue and it can be expressed as 
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 (62) 

Using the constitutive relationships of the different beam components, the elastic strains in 

the above equation can be replaced with the corresponding stresses as 

            
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 (63) 
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Now the incremental elastic energy within a load step can be obtained from the above 

equation and written as  

            
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ce
111

  (64) 

Using the elasto-plastic constitutive relationships from Eqs. (30) and (31) with reference to 

the starting point of the load step, the incremental stresses in the above equation can be 

expressed in terms of incremental strains as 
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Using Eqs. (19) and (20), the strains in the above equation can be expressed in the form the 

incremental nodal displacement vector and Eq. (65) can be rewritten as  

   FU
T

e
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where  
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Using the forward Euler discretisation with respect to the converged solution   00 ,  of the 

previous time step, the constraint in Eq. (59) can be expressed with the help of Eqs. (60), 

(61) and (66) as  

       d

T
eFFC  00

ˆ  (68) 

In the case of a structure having damage [40], the above equation can similarly be derived 

and expressed as  

       d

T
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1
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Now Eq. (58) is combined with Eq. (57) to determine the augmented system of equations as 
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The Newton Raphson method can be used to solve above equation iteratively as  
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where  
    
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Using Eqs. (68), (69) and relevant equations in Section 2.2, the above equation can be 

rewritten as  
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where      00 F̂FG    and 0h  for plasticity; and    FG 0
2

1
  and    0

2

1


T
Fh  for 

damage. The above equation in its present form is not suitable for its solution due to the 

incorporation of an additional row and column for including the additional unknown (load 

factor) which has destroyed the banded nature of the matrix system to be operated. In order 

to overcome this problem, the Sherman-Morrison formula [41] is used for solving the above 

equation as follows  
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where       dRKTI

1
  and      FKTII

1
 .  

Using Eqs. (71) and (74), the nodal displacement vectors and load factor can finally be 

updated as 
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As this arc-length method utilises the energy dissipated in a load step, the application of the 

method is not convenient at the initial loading steps where the structural deformations may 

be in the elastic range and have no energy dissipation. Thus a hybrid approach of solution 

strategy is adopted in the present study where the load control method is applied for some 

initial load steps and it is switched to the arc-length method when the energy dissipation dU  

in a load step exceeds minde , which is the minimum value of de  prescribed by the user. 

Actually, the value of de  is updated in each load step when the arc-length method is activated 
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in order to reduce the solution time. The value of de  in a load step i+1 can be estimated with 

the value of dU  in the previous load step [42] as   

   
idid Ue 5.0

1



 (77) 

where )(25.0 pjj   in which j is the iteration number and, jp is the desired number of 

iterations to get convergence. In order to avoid any divergence problems, the value of de  

should be restricted within its minimum value minde  and maximum value maxde , which is 

another user specified value. 

 

2.5. Stress Update 

The nonlinear equilibrium equation is solved iteratively as mentioned in the above sections 

where the stresses are updated after every iteration as the total stress cannot be expressed in 

terms of total strain in the case of plastic deformations. In that situation, the incremental 

nodal displacements  j
d  obtained in an iteration j are used to evaluate the corresponding 

incremental strains   j

kd  using Eq. (19) which are subsequently utilised to compute the 

incremental stresses   j

kdσ  of that iteration using the elastic constitutive relationship as 

   j

kk
ej

k dεEdσ ][  (78) 

The above equation is written for a material layer but it is similarly applicable to the shear 

studs. Now the stresses can be updated by adding the incremental stresses   j

kdσ  with the 

stresses accumulated in the previous iteration   1j

kσ  as 

     j

k

j

k

j

k dσσσ 
1

 (79) 

The updated stresses are substituted in the yield criteria as given in Eq. (35) which will lead 

to 0kf  that indicates plastic deformations of the material or 0kf  for its elastic 

deformations. For plastic deformations ( 0kf ), the updated stress vector   j

kσ  estimated by 

Eq. (79) are unfortunately not the final stress vector and it is rather defined as the trial stress 

vector  k
tσ  which is adjusted to bring it on the yield surface. This is accomplished by using 

the backward Euler return technique [38], a robust stress return algorithm, in the present 

investigation. The starting estimate of the adjusted stress vector can be obtained from the 

trial stress vector as  
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and  ka  can be calculated using Eq. (40). Both  ka  and kdλ  are calculated based on the 

trial stresses. As the above stress vector  kσ  does not usually satisfy the yield function, an 

iterative approach is used where the starting or first estimate of the stress vector is defined 

as  1

kσ  and the corresponding incremental plastic strain multiplier as 1
kdλ . The value of the 

stress vector and the incremental plastic strain multiplier is iteratively improved till a desired 

level of convergence is achieved as follows. 
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where n ( 1 ) is the iteration used for the stress return algorithm. The expressions used to 

determine the value of  n

k  and n
kλ
  are given below.  
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The superscript n used with any parameter in the above equations indicates that that 

parameter is calculated at iteration n. The vector norm of the residual stress  n

kr  with respect 

to the current stress  n

kσ  is used to check the convergence of the above iterative process. For 

the present problem, the derivative of  ka  used in Eq. (86) can be written as  
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As the equilibrium path is divided into a number of load steps and the nonlinear equilibrium 

equation is solved within each load step iteratively, the stress return algorithm presented 

above is implemented in a slightly different manner so as to avoid any convergence problem. 

For an iteration within a load step, the incremental strains accumulated from the beginning 

of that load step   j

k  are used instead of   j

kd  in Eq. (78) to get the incremental stresses 

  j

kσ  of that load step which are added with the converged stresses of the previous load step 

to evaluate the trial stresses of that iteration which is adjusted by the stress return algorithm 

presented above. 

 

3.  NUMERICAL RESULTS  

3.1. Two Layered Composite Beam having a Rectangular Section – Numerical 

Verification  

An 8.0 m long composite beam consisting of two layers having rectangular sections of equal 

width (200 mm) and equal depth (300 mm) is used in this section for the numerical 

verification of the proposed model. The beam is simply supported at its two ends and 

subjected to a point load P at its mid span. For the upper material layer of the beam, the 

Hognestad model [43] as shown in Fig. 3 is used for defining its uniaxial stress-strain curves 

that may be expressed as 
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Fig. 3. Uniaxial stress-strain curve for the upper material layer (concrete) 
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where 𝑓𝑐
′ is the maximum compressive strength, 𝜀𝑐0 is the strain corresponding to 𝑓𝑐

′ and 

𝜀𝑐𝑢 is the ultimate compressive strain. For the present problem, the values of these material 

parameters are taken as: 𝑓𝑐
′ = 30 MPa, 𝜀𝑐0 = 0.002 and 𝜀𝑐𝑢 = 0.038 along with the elastic 

modulus of 25 GPa and Poisson’s ratio of 0.25 for the upper layer. For the lower layer of the 

beam, a hypothetical material is used and its uniaxial stress-strain relationship both in tension 

and compression is defined with an elastic-perfectly plastic model. The present analysis is 

carried out taking the ultimate stress fu = 50 MPa, elastic modulus E = 40 GPa and Poisson’s 

ratio ν = 0.25 for the lower material layer. The  relationship between the interfacial shear 

force (per unit length) and the shear slip of the shear connectors is idealised as distributed 

interfacial springs and defined by the exponential model of Olgaard et al. [44] as shown in  

Fig. 4. This relationship is given by 

   u
s

sh sseq   5271.0
max 1  (91) 

where qmax is the ultimate value of the interfacial shear force (per unit length) and su is the 

ultimate slip. For the present analysis, the values of these parameters are taken as: ksh = 10 

MPa, qmax = 460 MPa, su = 6 mm. 

 

 

 

 

 

 

 

Though the effects of geometric nonlinearity (GN) due to large deformations as well as 

material nonlinearity (MN) due to inelastic material behaviour are incorporated in the 

proposed 1D finite element (FE) model, provision is kept to deactivate GN or MN in the 

computer program developed for implementing the model. This function is utilised to have 

three different options (1: with GN only, 2: with MN only, and 3: with both i.e. GN+MN) of 

the proposed model and they are used to analyse the beam to show the contribution of the 

individual nonlinearities and their combination. The beam is analysed with this 1D finite 

element model using different number of elements and the results show that the maximum 

Fig. 4. Exponential model for the uniaxial stress-strain curve for shear connector 
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number of elements required to get convergence is 30 which is used in all cases. Though the 

proposed model is based on HBT (3rd order theory), it can easily be amended to TBT (1st 

order theory) by dropping the higher order terms. 

For the numerical verification of the proposed model, this beam is also analysed with a well-

regarded finite element software (ABAQUS) where the 2D plane stress rectangular element 

(CPS4R) is used to model both layers by discretising these layers along their lengths and 

depths assuming no normal stress across the beam width. The shear connectors are modelled 

using the cohesive contact modelling tool of ABAQUS which is placed at the interface 

between the elements used for the upper and the lower layers. Both these nonlinearities are 

activated in this approach of analysis where the mesh refinement is similarly conducted to 

get a converged solution. For the sake of comparison of the proposed model with the 

ABAQUS model, the upper layer is treated as a hypothetical material in this example only 

where the von Mises plasticity theory is used in compression as well as tension regions. 

Moreover, the Hognestad model [43] is used to define the uniaxial stress-strain curve of the 

material in both compression and tension. This is typically used for concrete in compression 

only in other examples. 

 

 

 

 

 

 

 

 

 

The variation of mid-span deflection of the beam with respect to the applied load predicted 

by the three options (GN, MN and GN+MN) of the proposed 1D finite element (FE) model 

based on HBT is presented in Fig. 5. The figure shows that the GN contributed towards 

stiffening the beam whereas the MN softened the beam. Moreover, the MN has the dominant 

contribution which is responsible for producing a softening response when both these 

Fig. 5. Mid-span deflection of the two-layer composite beam 
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nonlinearities (GN+MN) are activated. Fig. 5 also includes the results obtained from 1D FE 

model (GN+MN) based on TBT to show the performance of HBT over TBT. The results 

obtained by the detailed 2D FE model are also included in Fig. 5 which shows a good 

agreement with the results predicted by the proposed 1D model (GN+MN) based on HBT. 

The figure also shows that the post-peak response of the beam is successfully traced by the 

proposed model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variations of the vertical displacement and the interfacial slip along the beam length 

corresponding to the applied load P = 175 kN predicted by the proposed 1D FE model 

(GN+MN) based on HBT as well as TBT and the detailed 2D FE model are presented in Fig. 

6 and Fig. 7, respectively. Similarly, the variation of von Mises stress over the beam depth 

obtained at quarter span of the beam predicted by these models for P = 175 kN is plotted in 

Fig. 8.  
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Fig. 6. Deflection along the length of the two-layered composite beam  

Fig. 7. Interfacial shear slip of two-layered composite beam along its length 
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For further investigations, the variation of bending and shear stress over the beam depth 

obtained at a section 1.0 m away from one of the end supports corresponding to P = 175 kN 

are plotted in Fig. 9 and Fig. 10 respectively. The results shown in Figs. 6 to 10 show a very 

good performance of the HBT model in all cases. The performance of TBT is affected due 

to the assumption of average shear strain and this is severe in Fig. 10.  

 

 

 

 

 

 

 

 

 

Fig. 8. Von Mises stress at the quarter span of two-layered composite beam 
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Fig. 9. Bending stress at a section 1 m away from a support of the two-layered composite 

beam 
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3.2. Steel-concrete Composite Beam subjected to Three Point Bending – 

Experimental Validation  

A 5.5 m long simply supported steel-concrete composite beam tested by Chapman and 

Balakrishnan [45] is used in this section for the experimental validation of the proposed 1D 

FE model (GN+MN) based on HBT. The beam consisting of a concrete slab and a steel I-

girder connected by steel shear studs as shown in Fig. 11 was tested under three point 

bending.  

 

 

 

 

 

 

 

The Hognestad model [43] as shown in Fig. 3 is used for the uniaxial stress-strain 

relationship of concrete in compression while the bi-linear model as shown in Fig. 2 is used 

for the concrete in tension. The steel girder is assumed to follow a bi-linear model with a 
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Fig. 10. Shear stress at a section 1 m away from a support of the two-layered composite 

beam 
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strain hardening branch as shown in Fig. 12 for its uniaxial stress-strain relationship both in 

tension as well as compression. For the shear connectors idealised as a distributed shear 

springs, a bi-linear model as shown in Fig. 13 is used to define the relationship between the 

interfacial shear force per unit length q and the shear slip s where the value of the hardening 

parameter is taken as 585 MPa in one case and zero in other  case. The concrete slab is 

reinforced with 4 longitudinal steel bars R12 in its top and bottom regions (Fig. 11). The re-

bars are modelled as 1D members under uniaxial stress where an elastic-perfectly plastic 

material behaviour is adopted. 

 

 

 

 

 

 

 

 

 

 

 

 

The material properties used for characterising the different components of the composite 

beam are given in Table 1 which also contains the material properties of the beam considered 

in the next example (Section 3.3). The problem is solved by the proposed 1D nonlinear FE 

model using 20 elements (based on a convergence study), and the variation of mid-span 

deflection with respect to the applied load obtained with the two hardening values of the 

shear connectors are presented in Fig. 14 along with the experimental result reported by 

Chapman and Balakrishnan [45]. Fig. 14 also includes the numerical results reported by 

Fig. 12. Bi-axial stress-strain curve for steel girder  

Fig. 13. Bi-axial stress-strain curve for shear connector 
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Liang et al. [46] who obtained these results from a detailed 3D nonlinear finite element 

model of the beam using ABAQUS. The figure shows a very good correlation between the 

results obtained from different approaches where the proposed model (considering no 

hardening for the shear connectors) is found to perform better than ABAQUS when 

compared with the experimental results. 

 

Table 1. Material properties of composite beams  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: † = Single shear stud in a row 

‡= Double shear stud in a row 

Material Property Liang et al. [46] Tan and Uy [47] 

Concrete slab Elastic modulus, 𝐸𝑐 32,920 MPa 20,000 MPa 

Poisson’s ratio, 𝜈 0.15 0.10 

Compressive strength, 𝑓𝑐
′ 42.5 MPa 25 MPa 

Strain,  𝜀𝑐0 0.002 0.002 

Ultimate tensile stress,  𝑓𝑡 3.553 MPa 2.5 MPa 

Fracture energy, Gf 0.208 N/mm 0.1875 N/mm 

Ultimate tensile strain, 𝜀𝑡𝑢 0.0016 0.0019 

Steel girder Elastic modulus, 𝐸𝑠 205,000 MPa 200,000 MPa 

Poisson’s ratio, 𝜈 0.3 0.3 

Yield stress,  𝑓𝑦 265 MPa 300 MPa 

Ultimate stress, 𝑓𝑢 410 MPa 500 MPa 

Ultimate strain, 𝜀𝑢 0.25 0.11 

Shear connector Yield shear force, 𝑞𝑦 435 MPa  

Ultimate shear force, 𝑞𝑚𝑎𝑥 565 MPa 743.86 N/mm‡ 

396.49 N/mm† 

Elastic stiffness, 𝑘𝑠ℎ 2491.46 MPa 517.74 MPa‡ 

397.61 MPa† 

Maximum slip, 𝑠𝑢 6 mm 7 mm‡ 

10 mm† 

Reinforcement 

in concrete slab  

Modulus of elasticity, 𝐸𝑠 200,000 MPa 200,000 MPa 

Poisson’s ratio, 𝜈 0.3 0.25 

Yield stress,  𝑓𝑦 250 MPa 550 MPa 

Ultimate strain, 𝜀𝑢 0.25 0.11 
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3.3. Steel-concrete composite beam under four point bending – experimental validation 

A 4 m long steel-concrete composite beam tested by Tan and Uy [47]  under four point 

bending is used in this example. The beam is simply supported at the two ends and subjected 

to two identical point loads acting symmetrically with a clearance of 4/3 m between them. 

The composite beam consists of a 500 mm wide and 120 mm thick concrete slab used for 

the upper layer, and a steel I girder (universal beam section 200UB29.8) for the lower layer. 

The concrete slab is reinforced with 4 longitudinal steel bars R12 in its top and bottom 

regions. The concrete slab (including re-bars) and the steel girder are modelled in a similar 

manner as followed in the previous example. For the modelling of shear connectors, the 

exponential model of Olgaard et al. [44] is used for this problem which is chosen on the basis 

of the trend of results obtained in the push out test [47]. 

For the present study, two different beam specimens tested by Tan and Uy [47] are used 

where the number of shear studs in a row at each shear stud location along the beam is one 

in the first case and two in the other case. Table 1 includes all the material properties used 

for defining the different constituents of the composite beam. The beam is analysed with the 

proposed model (GN+MN) and the result obtained in the form of variation of mid-span 

deflection with respect to the applied load is presented in Fig. 15 along with the experimental 

results reported by Tan and Uy [47]. The figure shows a good correlation between the 

numerical and experimental results.  

Fig. 14. Vertical displacement at mid-span of composite beam. 
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3.4. Steel-concrete composite beam with a T-section 

The problem of a 6.0 m long steel-concrete composite beam having a T-section as shown in 

Fig. 16 is used in this section to study the effect of interfacial shear stiffness and higher order 

terms used for defining the beam theory (HBT) on the response of the composite beam. The 

beam is simply supported at its two ends and subjected to a point load at its mid-span. The 

behaviour of the concrete slab and shear connectors is modelled in a similar manner as that 

followed in the previous example.  

 

 

 

 

 

 

For the steel girder, an elastic-perfectly plastic with strain hardening model [16] as shown in 

Fig. 17 is employed for defining its uniaxial stress-strain relationship in both tension and 

Fig. 15. Variation of mid-span deflection with respect to mid-span moment of the composite 

beam (Tan and Uy [47]). 
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Figure 16. Cross-section of the 6 m long simply supported composite beam 
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compression. According to Liu et al. [16], the strain hardening branch of the stress-strain 

curve (Fig. 17) can be expressed as 

 
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where 𝑓𝑦 is the yield stress, 𝑓𝑢 is the ultimate stress, 𝜀𝑦 is the yield strain, 𝜀𝑠ℎ is the strain at 

the beginning of strain hardening, and 𝜀𝑢 is the ultimate strain. The material constant a used 

in Eq. (92) can be determined with the above parameters as 
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For the present problem, the values used for the material parameters of concrete are: 𝑓𝑐
′ = 30 

MPa, 𝜀𝑐0 = 0.002, 𝜀𝑐𝑢 = 0.038, 𝑓𝑡 = 3.0 MPa, Gf = 0.197 N/mm, Ec = 26 GPa and νc = 0.15. 

Similarly, the material properties used for the steel girder are: 𝑓𝑦= 275 MPa, 𝑓𝑢= 400 MPa, 

𝜀𝑠ℎ= 0.025, 𝜀𝑢=0.11, Es = 200 GPa and νs = 0.25. For the shear connectors, the material 

properties are: qmax = 500 N/mm, ksh = 150 MPa and su = 6 mm.  

Though the proposed model is based on a 3rd order theory (HBT), it can easily be converted 

to a 1st order theory (TBT) by dropping the higher order terms (α and β) used in Eqs. (1) and 

(2). In this example, the beam is analysed by the proposed model (GN+MN) based on HBT 

as well as TBT to show the performance of these beam theories in the nonlinear range. 

Moreover, the analysis is carried out using a very high value of shear connector stiffness in 

terms of qmax = 
15100.1  MPa (Eq. (91)) as well as a moderate value (qmax = 500 MPa) of this 

Fig. 17. Uniaxial stress-strain curve (elastic perfectly plastic with strain hardening) for the 

steel girder 
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stiffness parameter, which are referred as full interaction (FI) and partial interaction (PI) 

conditions, respectively, in this example. The variation of mid-span deflection with respect 

to the applied load predicted by the different variants (HBT, TBT, PI and FI) of the proposed 

model is presented in Fig. 18. It shows that the higher order terms (α and β) used in HBT 

has some effect and the effect of the shear connector stiffness is substantial.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variations of bending and shear stresses over the beam depth obtained at quarter span of 

the beam corresponding to the applied load P = 250 kN are plotted in Fig. 19 and Fig. 20 

respectively. It is observed that the bending stresses (Fig. 19) obtained by these four 

considerations followed a similar pattern as observed for the mid-span displacement. 

Fig. 18. Mid-span deflection of the steel-concrete composite beam with T-section 
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Fig. 19. Bending stress at quarter span of composite beam with T-section under point load 

(P = 250 kN) 
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However, the effect of both shear connector stiffness and higher order terms (α and β) is 

significant for the shear stress (Fig. 20).  

 

 

 

 

 

 

 

 

4.  CONCLUSIONS 

An accurate and computationally efficient finite element model is developed for the reliable 

prediction of the large deformation inelastic response of steel-concrete composite beams. 

The steel shear studs used to connect the steel girder with the concrete slab are idealised as 

interfacial distributed springs with finite stiffness which enables the incorporation of partial 

shear interaction exhibited in composite beams. A higher order (3rd order) beam theory is 

used to model the cross-sectional warping which helped to accurately simulate the shear 

deformation of the beam without using the arbitrary shear correction factor used in 

Timoshenko’s beam theory.  

The von-Mises yield function with an isotropic hardening rule and associated flow rule is 

used to model the behaviour of steel girders, steel reinforcements, steel shear studs and 

concrete slabs in compression. A damage mechanics model is used for modelling concrete 

slabs in tension. The mesh sensitivity associated with the damage modelling of concrete, a 

quasi-brittle material, in tension is eliminated using the well-known crack band theory.  

The Green-Lagrange strain is used to develop the model for incorporating the effects of 

geometric nonlinearity produced by the large deformation of the beam. This large 

deformation along with the inelastic material behaviour imposed nonlinearity in the present 

Fig. 20. Shear stress at quarter span of composite beam with T-section under point load (P 

= 250 kN) 
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problem and the solution of this nonlinear equations becomes challenging specifically for 

capturing the post peak response. In order to address this issue, an energy dissipation based 

arc length method is employed to solve the nonlinear equations which helped to trace the 

descending branch of the load deflection curve successfully.  

The proposed one dimensional finite element model is validated with experimental results 

and verified with the numerical results obtained from a detailed 2D nonlinear finite element 

model of a composite beam developed using a reliable commercial finite element software. 

The numerical verifications as well as experimental validations show a very good 

performance of the proposed finite element model in all cases. Based on the accuracy and 

range of applicability of the proposed model, it is highly recommended for the analysis of 

composite beams having large deformation and/or inelastic material behaviours.  
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Chapter 5: Summary, Conclusions and Recommendations for Future Study 

5.1 Summary and Conclusions 

The higher-order beam theory (HBT) is used to develop nonlinear finite element models for 

steel-concrete composite beams with partial interactions. The deformable shear studs used 

for connecting the steel girder with the concrete slab are modelled as interfacial distributed 

springs with a finite stiffness which helps to model the partial shear interaction.  

The proposed one-dimensional nonlinear models are developed by considering the effect of 

both geometric and material nonlinearities for a reliable prediction of the nonlinear response 

of composite beams. The effects of geometric nonlinearity due to large deformations are 

incorporated in the present formulation by using Green-Lagrange strain vector. In addition, 

the material nonlinearity due to inelastic material behaviours is incorporated by using the 

von-Mises yield function with an isotropic hardening rule for the steel girders, steel 

reinforcements, steel shear studs and concrete slabs in compression. Moreover, a damage 

mechanics model is adopted to simulate the cracking behaviour of the concrete under tensile 

stress. Furthermore, the mesh sensitivity associated with the damage modelling of concrete 

is eliminated using the well-known crack band theory.  

An energy dissipation based robust arc-length method is employed to solve the nonlinear 

equations which helped to trace the descending branch of the load deflection curve 

successfully. The backward Euler stress return algorithm is incorporated in the present 

models for updating the stresses. In order to have a realistic material behaviour, different 

types of stress-strain curves are used for different materials in both compression and tension.  

The performance and range of applicability of the present models are shown by solving 

numerical examples of composite beams having different loading, supporting conditions, 

shear interactions and some other features. The results obtained by the proposed models are 

validated with experimental results. The model is also verified with numerical results 

obtained from a detailed 2D nonlinear finite element model of composite beams developed 

using a reliable commercial finite element software. Through these validation and 

verification, the major findings from the present research are outlined below:  

 The proposed model based on HBT can realistically predict the global as well as 

local responses of these beams without any arbitrary shear correction factor as it 

takes account of the actual parabolic variation of shear strain. 
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 The proposed model is developed based on a 3rd order beam theory (HBT) but it 

can easily be converted into a lower order beam theory (e.g., EBT, TBT) by 

eliminating the higher order terms. The numerical analysis has confirmed that the 

model based on EBT always underestimates the global response (e.g., deflection) 

of the beam as the structures become stiff for ignoring the effect of transverse 

shear deformation. 

 

 The model based on TBT is usually adequate for predicting the global response 

satisfactorily with the help of a shear correction factor which adjusts the shear 

stiffness appeared in the formulation due to incorporating the transverse shear 

deformation. However, this factor is not sufficient even for an accurate prediction 

of the global response in some situation such as beams with a small span-to-depth 

ratio, localised concentrated loads and clamped boundary conditions. Moreover, 

the model based on TBT is not adequate for predicting the distribution of stresses 

(local response) across the beam section. 

 

 The major advantage of the proposed model is it can predict results very close to 

those produced by detailed finite element modes using ABAQUS but the 

computational cost of the proposed model is significantly less than the ABAQUS 

model. Moreover, in some situations, the proposed model performed better than 

ABAQUS in the sense that the nonlinear solution process of this commercial 

software is terminated earlier than the proposed model. 

 

 The proposed model is also used to examine the effect of different levels of shear 

interaction between the two layers of the composite beam. It is observed that the 

full shear interaction condition predicted deflection less than that for the partial 

interaction as expected. For both full and partial interaction conditions, the 

difference between the results predicted by HBT and TBT models is appreciable.  

 

 The nonlinear response of these structures in the form of load-deflection curves 

predicted by the proposed model could successfully traced the descending branch 

after attaining the peak load. 

 

 It also observed from the load-deflection response of the composite beams that 

the effect of geometric nonlinearity due to large deformation contributes towards 

stiffening of the composite beams, whereas material nonlinearity due to inelastic 

material behaviour leads to softening of these beams. In all cases considered in 
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this investigation, the material nonlinearity is found to have the dominant 

contribution which is demonstrated by an overall softening response of the beams 

when both geometric and material nonlinearities are considered in combination. 

In that situation, the predict response of these beams are found to be more close 

to the experimental data. 

Based on the accuracy and range of applicability along with the computational efficiency of 

the proposed model, it is highly recommended for the analysis of composite beams having 

large deformation and/or inelastic material behaviours. 

 

5.2 Recommendations for Future Study 

Though a comprehensive numerical model is developed in this study for accurately 

predicting the nonlinear response of steel-concrete composite beams, a number of possible 

scopes exist for the extension of the model to capture many other features. Some of the 

obvious scopes of these future investigations are listed below: 

 The current model is restricted to the prediction of static response of composite 

beams having large deformations and inelastic material behaviours. Therefore, the 

model can be extended so as to capture the nonlinear dynamic response of these 

structures which are commonly encountered in a structure subjected to earthquake 

loading, blast loading, and other form of impact loading.  

 This model can be extended to buckling and post buckling analysis of the steel-

concrete composite beams which will find their applications in long slender bridges 

and other structures.  

 A current model is developed using a relatively simple constitute model for 

simulating the inelastic response of the concrete slab. Thus, a very good opportunity 

exists for the enhancement of the inelastic material model for concrete.  

 Some complex behaviors of reinforced concrete, such as aggregate interlocking, 

bond slip, tension stiffening and other effects, which are ignored in the current 

research can be incorporated in future studies. 

 The current models can be extended to incorporation the long term effects such as 

creep, shrinkage and temperature, specifically for the concrete slab, to predict 

accurate response under sustained loading. 

 




