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Abstract

Abstract

Biological visual processing is extremely flexible and provides pixel-
by-pixel adaptation. Millennia of evolution and natural selection
have provided inspiration for robust, efficient and elegant solutions
in artificial visual system designs. Physiological studies have shown
that non-linear adaptation of biological visual processing is evident
even at the first stage of the visual system pathway. Theory and
modelling have shown that adaptation in the early visual processing
is required to compress the high bandwidth visual environment into
a sensible form prior to transmission via the limited bandwidth
neuron channels. However, many current bio-inspired visual
systems have neglected the importance of having a reliable early
stage of visual processing. Having a robust and reliable early stage
design not only provides a better mimic of the biology, but also
allows better design and understanding of higher order neurons in

the visual system pathway.

(Chapter 3: A Non-linear Adaptive Artificial Photoreceptor Circuit -
Design and Implementation) The primary aim of this work was to
design and implement an elaborated artificial photoreceptor circuit
which faithfully mimics the actual biological photoreceptors, using
standard analogue discrete electronic components. I have
incorporated several key features of the biological photoreceptors in
the implementation, such as non-linear adaptation to background
luminance, adaptive frequency response and logarithmic encoding of
luminance. Initial parameters for the key features of the model were
based on existing literature and fine tuning of the circuit was done

after analysis of actual recordings from biological photoreceptors.
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Abstract

(Chapter 2: Dimmable Voltage-Controlled High Current LED Driver
System for Vision Science Experiments) The visual stimulus was a
critical component in performing the vision experiments, and has
historically been a limiting factor in performing experiments which
ask critical questions about responses to complicated scenes, such
as natural environments. The ability to reproduce the large dynamic
range of the real-world luminance was important to correctly test the
performance of the model. I evaluated the performance of several
existing light emitting diode (LED) drivers and commercial products
and found that none of them provided adequate dynamic range and
freedom from noise. I therefore designed and implemented a stable
multi-channel, high-current LED driver that allowed creation of light
stimuli with inexpensive analogue discrete electronic components,
and was used for the experiments described in this thesis. This LED
driver, which was properly calibrated to the real-world luminance,
was used in conjunction with a standard commercial data

acquisition card.

(An Elaborated Electronic Prototype of a Biological Photoreceptor -
Steady-state Analysis (Chapter 4) & Dynamic Analysis (Chapter 5))1
performed electrophysiological experiments measuring the responses
of the intact hoverfly photoreceptor cells (R1-6) using both
characterised and dynamic (naturalistic) stimuli. The analysed data
were used to fine tune the circuit parameters in order to realise a
faithful mimic of the actual biological photoreceptors. Similar
experiments were performed on the artificial photoreceptor circuit to
thoroughly evaluate the robustness and performance of the circuit
against actual biological photoreceptors. Correlation and coherence
analyses were used to measure the performance of the circuit with
respect to its biological counterpart in both time and frequency

domains respectively.




Abstract

Chapter 6: Early Visual Processing Maximises Information for Higher
Order Neurons) The artificial photoreceptor circuit was then further
evaluated against a complex natural movie scene in which the full
dynamic range of the original scenario was maintained. Again, I
performed experiments on both the circuit and actual biological
photoreceptors. Correlation and coherence analyses of the circuit
against the biological photoreceptors showed that the circuit was
robust and reliable even under complex naturalistic conditions. I
managed to design and implement an add-on electronic circuit to the
elaborated photoreceptor circuit that crudely mimicked the temporal
high-pass nature of the second order Large Monopolar Cell (LMC) in
order to observe how the non-linear features in the early stage of
visual processing assists higher order neurons in efficiently coding

visual information.

Based on this research, I found that the first stage of visual
processing consists of numerous non-linearities, which have been
proven to provide optimal coding of visual information. The variable
frequency response curve of the hoverfly, Eristalis tenax was mapped
out against large range of background luminance. Previous studies
have suggested that such variability in frequency response was to
improve signal transmission quality in the insect visual pathway,
even though I have not made any quantitative measurements of the
improvements. I also found that high dynamic range images (32-bit
floating point numbers) are better representations of the real-world
luminance for naturalistic visual experiments compared to the
conventional 8-bit images. I have successfully implemented a circuit
that faithfully mimicked the biological photoreceptors and it has
been evaluated against characterised and dynamic stimuli. I found

that my circuit design was far better than using just a normal linear
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Abstract

phototransducer as the front-end of a vision system as it is more
capable of compressing visual information in a way which maximises

the information content before transmission to higher order neurons.
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Chapter 1: Introduction

Chapter 1: Introduction

1.1 Why Insect Visual Systems?

A great deal can be learned from insect visual systems, as they are
the product of millennia of evolution and natural selection. The fact
that insects have survived and flourished points to the success of
these natural systems and this is one of the reasons why researchers
are drawing inspiration from nature to find robust, efficient and
elegant designs. Although the biological details of insect visual
systems have been studied for decades, it is only relatively recently
that research has focused on applying this knowledge to real-world
tasks. Research has shown that insect visual systems already have
several characteristics which are desirable for certain real-world
applications (Franceschini et al. 1992; Srinivasan et al. 1997,
Srinivasan et al. 1999; Srinivasan et al. 2004; Ruffier et al. 2005),
such as insect-inspired navigation for autonomous vehicles or

motion detection in surveillance systems.

One very useful aspect of insect visual systems is that they employ
various strategies to achieve good performance despite the biological
constraints. If you have ever wondered why flying insects are able to
manoeuvre at high speed through cluttered, complex environments
while easily avoiding obstacles in spite of their relatively tiny brains,

have no doubt that such magnificent manoeuvring aptitudes are not
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capricious accidents - physiological evidence suggests that flight
control in the flying insects is primarily guided by a simple but clever
visual system of neurons tuned to very specific types of complex
motion (Collett et al. 1975; Hausen 1982; Egelhaaf et al. 1988;
Egelhaaf et al. 2002). For instance, small-target neurons found in
the optic ganglia of a fly are specifically responsible for visually
tracking small moving targets (mating and predation), even across
cluttered backgrounds (Nordstrém et al. 2006; Nordstrém et al.
2006). Two types of specialised wide-field detection neurons also
exist which respond exclusively to either horizontal or vertical
motion respectively and which are thought to play a major role in
optomotor course stabilisation and figure-ground discrimination
(Gronenberg et al. 1990; Ibbotson et al. 1991). The remarkable
navigational skills of insects are thus closely matched by evolution to
the environments and lifestyles in which those flight controls must

work.

An artificial visual system which emulates the features found in
insect visual pathways would theoretically be able to achieve
comparable performance in a real-world application, for example
making use of the robust motion detection capabilities of insects in a
collision avoidance system. Such an artificial visual system could
also provide more experimental flexibility in the study of other
aspects of insect vision, for example allowing very long recordings
from a “virtual neuron”, under conditions which would not be
possible with actual insects. This could be a quick way of gathering
data to facilitate the investigation of models for certain higher order

neurons in the insect visual system.
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1.1.1 Evolutionary Convergence in Visual Processing

Apart from the potential benefit to improving the knowledge of insect
visual systems, there are also some ways in which this research may
benefit studies in other animals, including humans. Despite the
differences between the phototransduction processes of the primate
and fly photoreceptors, their visual systems have evolved to deal
with visual environments according to the same underlying
computational principle of maximising visual information (van
Hateren 1992) and thus employ similar strategies such as the
compression and conversion of naturally occurring intensity
variations into contrast variations in order to increase the dynamic

range of encoded information (van Hateren et al. 20006).

The primate cerebral cortex contains multiple representations of
visual space, of which MT or V5 is considered to be one of the most
important visual areas involved in processing information about
movement. Studies suggest that the primate visual cortex (MT or V5
area) has neurons that behave similarly to the motion sensitive
neurons in insects (Duffy et al. 1981; Duffy et al. 1991). A similar set
of cells has been identified in the visual areas of human brains at
Brodmann’s area 19/37, 39 and 7 (Vaina et al. 2001). In the case of
insects, motion sensitive neurons are largely found in the lobula
plate in the optic lobe of the visual system pathway (Hausen 1982;
Douglass et al. 1996). Several types of neurons have been well
identified, such as the HS (horizontal system) and the VS (vertical
system) neurons, which are only activated whenever there is
horizontal motion and vertical motion, respectively (Ibbotson et al.
1991; Douglass et al. 1995). The overall similarity between
functional properties in the two animal groups makes it likely that

principles learned from studying one can be applied to the other.
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Visual Illusions

One feature of visual systems which mammals, birds and insects
share in common is that of visual illusions. For example, the
‘waterfall illusion’, which is one of the more famous illusions used
extensively to understand motion processing, is evident in both the
human (Anstis et al. 1998) and blowily visual systems (Srinivasan et
al. 1979). A person that subsequently turns away from staring at
objects in motion, especially those which move very rapidly (e.g.
waterfalls or rivers), will experience an opposite visual direction in
motion even though the person is looking at a stationary object. The
phenomenon, also called the “motion after-effect”, can be explained
by adaptation in visual neurons that respond selectively to moving
contours in the scenes (Anstis et al. 1998; Harris et al. 2000). Other
illusions such as illusory contours are also evident across several
types of animal (Nieder 2002). Illusory contours as shown in Figure
1-1 are contours which appear to make up meaningful shapes
perceived in fragmented visual stimuli. The ability to perceive
illusory contours which help distinguish an object from its
environment could be an important feature in the visual systems of

organisms.

Figure 1-1: Example of illusory contours. The outlines of the solid
shapes imply the presence of an opaque white triangle superimposed
on the solid shapes.
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Adaptation

It is common for people to experience a sudden temporary
“plindness” after turning off the light in your room at night.
Similarly, right after turning the light on, several seconds may pass
before vision returns. These phenomena, called the light and dark
adaptations respectively, have evolved in our eyes to automatically
adjust their light sensitivity. This allows our eyes to accommodate
not only the dynamic range within a scene but also the luminance
difference between day and night of greater than six orders of
magnitude (Jaremo Jonson et al. 1998). Again, insects such as flies
also experience similar phenomena, where the photoreceptor cells
will respond with a plateau level when the retina is suddenly
exposed to an extremely bright light source. Subsequent processes
take place, both anatomically, as investigated by Wallcott (1975),
where the rhabdomeres move further away from the facet lens to
accept less light and photochemically, where the sensitivity of the
photoreceptor cells is adjusted in order to accommodate the bright

light level.

Insects as a Viable Model

Research into an artificial insect visual system could not only aid the
development of low-cost artificial seeing systems, especially in
applications such as collision avoidance devices, target tracking
systems and possibly “bionic eyes” for the visually impaired, there is
also the potential for gaining further insight in the areas of insect
vision. In addition, the functional and physiological parallels
between insect and human vision may allow the study of certain
features in humans to benefit from this research. The usual method
of gathering results on primates includes conducting psychophysical

and in-vivo experiments. However, safely obtaining direct recording
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of neuronal activity is a delicate procedure. With insects, direct
recording is much more accessible despite their small size. As an

additional advantage study insects raises fewer ethical issues.

1.2 Information Theory

Organisms in nature have evolved in such a way that their visual
systems are properly tuned towards the organism’s ecological
purposes. This was investigated by Snyder et al. in studies on the fly
Musca where theoretical parameters of compound eye geometry were
manually optimised for the best compromise between spatial
resolving power and contrast sensitivity and were found to agree
closely with the geometry found in actual insect eyes (Snyder et al.
1977; Snyder et al. 1977), suggesting that biological insect eyes are

optimised for these characteristics.

One important challenge faced by the visual systems of insects in
their ecological environment is that of efficiently encoding the visual
information present in the high dynamic range environment, within
the limited neuronal bandwidth available to such biological systems.
An example of an evolutionary adaptation to meet this challenge can
be found in the hoverfly Eristalis tenax, which in addition to being
excellent at hovering flight is capable of manoeuvring at an average
speed of approximately 10ms ! (Golding et al. 2001). In order to fly at
such speed without colliding into any obstacles, the hoverflies need
to have photoreceptors that are able to decode the high temporal
frequency visual contents. Physiological studies have shown that
Eristalis tenax has high bandwidth photoreceptors with a -3dB
corner frequency at approximately 10-90 Hz (Mah et al. 2006). In

comparison, a slow moving insect such as Tipulid has low
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bandwidth photoreceptors with a corner frequency of approximately
7-20Hz (Laughlin et al. 1993).

1.2.1 Efficiency and Redundancy in Early Visual Processing

What are the underlying principles or algorithms that govern such
robust visual systems? Attneave (1954) and Barlow (1961) suggest
that highly efficient encoding of visual information is carried out in
the first stage of sensory processing before transmission to higher
order visual neurons by eliminating redundancy in natural visual
information. Natural scenes contain a large amount of redundancies
due to the non-random variation of intensity values from point to

point, i.e. correlation (Simoncelli et al. 2001).

Several models have also been proposed to explain the underlying
mechanisms by which biological systems efficiently compress visual
information and these are largely based on maximising information
theory, which assumes that the early sensory processing is aimed at
maximising the information rate into the limited dynamic range of
the visual channels (van Hateren 1992). This theory allows a
quantitative prediction of how the sensory data are to be processed
by the early sensory system. The model developed by van Hateren
describes a neuronal compression algorithm that compresses visual
signals into an effective functional range for the following stages. The
theoretical output calculated by this model for naturalistic images
was found to closely resemble results from second order neural

recordings (van Hateren 1992; van Hateren 1992).

A second well-known model for second order neurons supposes that
predictive coding is also used to reduce the redundancy of the

scenes. Signals from the surrounding receptors can be linearly
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summed and compared with the signal from the central receptor to
remove strongly correlated (and hence redundant) information.
Theoretical results for the receptive fields of second order neurons
(in particular, the large monopolar cells of Lucilia cuprina) based on
this model assuming predictive coding have been found to agree with

experimentally measured results (Srinivasan et al. 1982).

1.3 Light Adaptation

An obvious example of redundancy reduction is light adaptation. In
studying the basic characteristics of the fly photoreceptor, we must
examine its response to different intensities of light, i.e. luminance.
The response of biological photoreceptors to both steady-state as
well as dynamic characterised stimuli such as impulse, step and
white noise analysis has been well studied (Baumann 1975;
Laughlin et al. 1993) and shown to exhibit several non-linear

adaptive characteristics.

To characterise light adaptation in animal eyes, V Log I functions
have been widely used: A V Log I function represents the response of
a photoreceptor to impulse stimuli of varying intensities. In insects,
the effect of the photoreceptor’s light adaptation response on its V
Log I function has previously been demonstrated with Calliphora
Stygia (Matic et al. 1981). Impulse responses against several
adapting backgrounds of the fly photoreceptors have been used to
plot the V Log I curves of the dark and light adapted responses. For
each adapting state, the V Log I curve has a sigmoidal shape and
can be simply equated to a self-shunting formula (The Lipetz

equation) shown in Equation 1-1.
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max

(Eq 1-1)

Where [ is the stimulus intensity, V is the amplitude of the
photoreceptor response, Vmax is the saturated response amplitude
and R is the reciprocal of the intensity yielding a response of 50%
Vmax. The sigmoidal shape has been shown for several different
insect (Eguchi et al. 1894) and vertebrate photoreceptors (Burkhardt
1994).

The adaptation to different levels of background luminance has
several effects. As the adapting background luminance increases,
the V Log I curve shifts towards the right. This means that for a
particular stimulus, the magnitude of the response will be smaller at
higher background intensities, and this represents a form of
automatic gain control. As a result, the photoreceptor does not code
luminance in absolute term, but rather contrast between the
stimulus and recently experienced stimuli. Contrast coding is also
highly dependent on the adapting background luminance as well as
the duration of contrast stimulus. At low background intensities,
photoreceptor responses are linear regardless of the contrast step
durations (Juusola 1992). Upon close examination of the impulse
responses of biological photoreceptors, it can be observed that with a
dark-adapting background, the impulse responses are generally
monophasic. For the same contrast input stimuli, if the background
intensity is increased, the impulses tend to become bi-phasic. Bi-
phasic impulse responses are more characteristic of a system which

rejects static stimuli (i.e. are high pass filters).

Increase in the background intensity has also been shown to cause

the phototransduction cascade and photoreceptor membrane to
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produce smaller but, faster and increasingly accurate voltage
responses to a given contrast (Juusola et al. 2001). Biological
photoreceptors share the same characteristics as second order low
pass filters and studies have shown that as the background intensity
increases, the -3 dB corner frequency and thus frequency bandwidth
increases non-linearly, eventually saturating at a particular

frequency which varies between species (Juusola et al. 1995).

Different species have a different range of bandwidth capabilities in
perceiving visual information (Howard et al. 1984). For instance,
fast-flying diptera have fast photoreceptors with higher corner
frequencies of between 50 and 107 Hz, in comparison with dark-
adapted photoreceptors and those of slow flying species with corner
frequencies of 10-12Hz (Laughlin et al. 1993). As a result of their
high speed in coding luminance, these photoreceptors are usually
over compensated with K+, which causes their impulse responses to
become bi-phasic (Laughlin et al. 1993; Weckstrom et al. 1995).

Higher surrounding temperatures have also been found to broaden
the signalling bandwidth, i.e. high body temperature offers
significant advantages in visual performance of an insect (Tatler et
al. 2000; Juusola et al. 2001; Franz et al. 2002). The extreme
temperature-sensitivity of biological photoreceptors makes it
important to maintain a constant temperature during experiments
and to consider the appropriate temperature given “normal operating

conditions”.

At lower background intensities, even low levels of light/ noise such
as quantum bumps become increasingly apparent (Laughlin 1995).
Thus, one hypothesis is that the variable corner frequency of the

photoreceptor is beneficial in that it allows the insect to reduce the
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corner frequency and thereby attenuate high frequency noise, rather

than be flooded by it and unable to see anything.

As has been shown in previous studies (tested on H1 neurons of the
blowfly), adaptive mechanisms in the early visual pathway are
responsible in maximising information transmission to higher order
neurons, e.g. motion sensitive and small target cells (Laughlin 1989;
Brenner et al. 2000). Similarly, this study will show through
intracellular recordings from the fly photoreceptors that the
adaptations in the early visual pathway maximise information
transmission, specifically for target detection neurons, with the effect
of enhancing the contrast of small targets against cluttered

backgrounds.

1.4 Modelling Approaches

1.4.1 Computer Vision Modelling

In most engineered systems, the higher visual functions are typically
implemented through designed algorithms. Computer vision, which
is a subfield of artificial intelligence, describes the programming of a
computer to “understand” features in a scene or image and usually
does not involve any biological inspiration in the process. Unlike
photoreceptors, artificial intelligent systems typically use modern
digital imaging, and sensors/amplifiers that have inherent linear
properties. In this area of research, visual problems are tackled by
programs or algorithms which make use of the digital processors of
computers. The performance of these often computationally
expensive solutions is dependent on the computing power of the
hardware and the efficiency of the programming algorithms and so
may not be ideal or practical for certain tasks. For example, a

previous work in controlling the vision system of a robot (Breazeal
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2003) involved huge amounts of computing power. Similarly, a car
with “smart vision” required several desktop computers in the back
of the car (Dankers et al. 2005).

Digital computer vision per se is a very wide and challenging field
but will not be further discussed in this thesis, being presented here
simply as an alternative to the “bio-inspired” approach to
implementing higher order visual functions such as visual
recognition and target tracking through biological modelling of
neuronal characteristics. Unfortunately, the present understanding
of such higher functions in biological systems is incomplete and
thus they have not as yet been fully reproduced in an engineered

system.

1.4.2 Bio-inspired Modelling

As an alternative to “traditional” computer vision, the bio-inspired
approach aims to develop novel systems by taking inspiration from
nature. It generally does not aim to accurately reproduce the
complete behaviour of the biological system, focusing instead on
certain useful features of interest to a real-world application. The
implementation of these features also does not need to be perfectly
faithful to the biological system but may be customised or
supplemented in order to improve the application performance. One
possible drawback to this approach is that although it may be well
suited for a specific application, it may not be as robust as the

biological system and may malfunction under certain conditions.

A well-known example of a bio-inspired application involves an
autonomous robot that uses a motion detection algorithm similar to

that of insects in order to solve a challenging navigational task such

12
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as obstacle avoidance (Franceschini et al. 1992). Other examples
include automated systems which make use of optical flow encoding
to perform hover stabilisation and landing (Barrows et al. 2004), in a

similar manner to insects.

Many silicon chips based on analogue Very Large Scale Integration
(aVLSI) circuits have also been designed over the past decade in
order to emulate specific features of biological neurons such as
motion detection and small target detection (Tanner et al. 1988;
Etienne-Cummings et al. 1993; Sarpeshkar et al. 1993; Kramer et al.
1995; Liu 1996; Sarpeshkar et al. 1996; Kramer et al. 1997;
Yakovleff et al. 1998; Liu 1999; Delbriick et al. 2004). One of the
earliest motion detector chips was by Tanner and Mead (1984),
employing latches to store digitised samples of images for later
comparison with analogue images and performing multiplication
using switched current mirror design. A later sensor by Delbriick
(1993) used a unidirectional delay line as a tuned filter which needs
to be adjusted for particular velocities, thus requiring multiple
detectors to measure over a range of velocities. Studies have shown,
however, that the need for velocity tuning can be eliminated by a
front-end which provides automatic gain adjustment in a similar
manner to insect photoreceptors, thus improving the velocity
estimation of the detector (O'Carroll et al. 2006). Pant and Higgins
(2004) constructed a chip using a modified version of Delbriick’s
(1996) adaptive photoreceptor as a front-end to an elaborated
Reichardt Correlator to perform target-tracking in cluttered scenes.
Several other designs based on a Reichardt Correlator have also
been developed by Harrison and Koch (1999; 2000), incorporating
biologically-inspired circuit non-linearities which allow for improved
performance in noisy environments. Although there have been

various VLSI chips such as these designed for potential use in real-
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world applications, few have actually been applied. One of the main
issues has been their limited ability to perform reliably in a wide

range of natural environments rather than under specific conditions.

1.4.3 Biomimetic Modelling

Since the main aims of this study include both developing a simple
yet functional photoreceptor model and improving the understanding
of the visual systems of insects, a biomimetic approach has been
taken. A biomimetic approach is one that mimics all the
characteristics of a biological system as faithfully as possible,
without taking into consideration possible redundancies. This starts
from a detailed physiological understanding of the biological system
and its characteristics, typically expressed through mathematical
models. By faithfully emulating the biological system with a detailed
understanding of its function, one may develop a system that

provides a simple solution to many problems.

Modelling Early Processing

Several mathematical models exist to mimic the neurons of the fly
eyes. Payne and Howard (1981) developed a simple log-normal model
to emulate photoreceptor responses. However this model mimics
only one important feature of the biological photoreceptors, i.e.
linear temporal response. Juusola (1995) developed a model widely
used in higher order neural modelling that makes use of complex
mathematical equations (Volterra series, cascades of linear and non-
linear stages) to model the dynamic non-linearity of the insect
photoreceptor as measured by randomly modulated light stimuli.
Again, the emphasis is only on the non-linear compression feature of
the biological photoreceptors, neglecting the importance of non-

linear adaptation.

14
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Delbriick and Mead (1996) have recently designed and implemented
an analog VLSI chip of a photoreceptor model incorporating several
non-linear properties of biological photoreceptors such as light-
adaptation and logarithmic encoding. However, this design lacks
other useful non-linear features such as a variable frequency
response (changing the corner frequencies of the system for better
signal-to-noise ratio). Furthermore, the circuit has not been
thoroughly tested under dynamic conditions and thus may or may

not perform properly in a complex real-world environment.

By using the same photoreceptor model described above as the
front-end visual processing, our own laboratory has implemented a
bio-inspired silicon chip to mimic higher order neuron (insect motion
detection) in the insect visual pathway (Shoemaker et al. 2001). The
adaptive photoreceptor circuit outputs were fed to the cascaded
higher order neuron stages (motion sensitive neurons) that
integrated with contrast adaptation feature. This feature is
important in regulating the contrast output of the chip, i.e. to avoid
possible hard saturation. However, due to the limitations of the
technology, there are issues with device mismatches in

implementing such a multi-pixel system.

Perhaps the best model to date for non-linear dynamics of the fly
photoreceptor is that of van Hateren and Snippe (van Hateren et al.
2001). This parametric model uses a cascade of two dynamic divisive
feedback stages and one static non-linear stage. The output of this
model was shown to be highly correlated to that of the actual
photoreceptors in response to natural image scenes. In addition,
frequency domain analysis (coherence) also showed that the model is

a great mimic of the biological photoreceptors. However, this model
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takes no account of the change in temporal coding between

day/night, and hence is not “optimal” in terms of information theory.

Biomimetic Models for Higher Order Neurons

One of the first parametric models widely used in many
neuromorphic motion detector chip designs is the Classic Reichardt
Correlator model (Reichardt 1961). This design uses a linear
photodetector as the front-end processing, with a delay (low pass
filter) and a correlator (multiplier) to mimic the motion sensitive
neurons of insects. This model performs very well with standard
characterised stimuli input such as sinusoidal gratings, pulses and

steps.

An area of particular interest is modelling higher order neurons such
as the group of neurons (small target neurons) in the lobula plate of
an insect’s eye which only activate whenever there is a small target
which falls in the region of interest of the insect’s eyes. For instance,
Higgins and Pant (2004) have recently developed an elaborated
version of the small-target system model of Reichardt et al. (1989)
that may be used to allow a simulated fly to track a small moving
target in a cluttered background. This could have various potential

applications in visual target-tracking.

1.5 Natural Scenes

With current technology, it is impossible to study the fly’s visual
system intracellularly while having the subject manoeuvre freely in
their natural habitat and environments. Why should we use natural
environments and not just characterised stimuli such as pulses,

steps and white noise? Dynamic naturalistic stimuli are very
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important in characterising and evaluating the robustness of a non-
linear system (Niven et al. 2004). If we were to take a snap shot of a
natural scene and statistically analyse it, we would find that the
scene possesses substantial spatiotemporal correlations, which
means that there is a lot of redundancy in the image. This has been
shown to have a significant effect, as the earliest mathematical
model of a biological motion detector, i.e. the classic Reichardt
Correlator (Reichardt 1961) fails to perform as a velocity estimator
when natural scenes are used as input stimuli, despite showing good
correlation to the biological systems using standard characterised
stimuli (Dror et al. 2001). Interestingly recent work on fly HS
neurons shows that they behave very differently when stimulated
with natural scenes and are excellent velocity coders (Shoemaker et
al. 2005).

While recent work highlights the importance of appropriate natural
scenes, there are numerous technical difficulties in working with
such stimuli. Instead of trying to develop a technology that would
allow scientists to perform experiments in the real-world, alternative
approaches have been used to work around this limitation while at
the same time producing similar results. For example, by creating a
flight arena in which the fly sits (stationary) and natural scenes are
artificially generated using computer displays or Light Emitting
Diodes (LED) (Horstmann et al. 2000; Schuster et al. 2002). To
generate computer displays, software packages have previously been
developed, such as Vision Egg (www.visionegg.org), which is a stable
and reliable open source program that harnesses the power of
current consumer graphic cards to produce visual stimuli of
research quality using no specialised hardware beyond a relatively
recent computer and graphic card. To reconstruct naturalistic

stimuli using LEDs, a single-pixel photodetector has been used to
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record the dynamic natural luminance along outdoor flight paths to

evaluate the motion-sensitive neurons in blowflies (van Hateren

1997).
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Chapter 2: Dimmable Voltage-Controlled
High Current LED Driver System for Visual

Science Experiments
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Abstract

Recent advances in light emitting diode (LED) technology make it
possible to produce visual stimuli that are bright enough to
represent real-world luminance levels. However, such technology
requires a stable high current driver to constantly supply the
necessary currents to the LED. We have designed and implemented
a fully dimmable multi-channel voltage-controlled high current LED
driver system that is capable of running multiple ultra-bright LEDs
simultaneously during experiments. The performance of the system
was found to be highly robust and reliable for the purpose of visual
physiological experiments. When coupled with appropriate LEDs and
driven by a 16-bit control signal, the usable dynamic range exceeds
120dB with a maximum luminance of approximately 70 000cd/m?,
an accuracy in excess of 0.1cd/m? at the low end of the luminance

range and a response time less than 0.25ms.
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2.1. Introduction

Insect photoreceptor cells are capable of coding visual information
under various lighting conditions (Wuff et al. 1975; Laughlin et al.
1978; Weckstrém et al. 1995). The response of these cells is highly
non-linear, displaying luminance adaptation to background intensity
for optimising the light information perceived from high dynamic
range real-world environments before transmission to higher order
neurons via limited bandwidth channels (Snyder et al. 1977; Snyder
et al. 1977; van Hateren 1992). Physiological studies suggest that
the non-linear adaptive feature of a photoreceptor cell improves the
visual coding power of the photoreceptor by approximately 2-3 times
(giving a total signalling range of 8 log units), depending on species
(Matic et al. 1981; Laughlin 1989). Thus, in order to thoroughly
investigate the capability and operation of photoreceptors there is a
need to devise a system that is capable of artificially generating
natural scenes with a large luminance dynamic range. Such a
system must be laboratory based since it is not feasible to conduct
intracellular electrophysiological experiments outdoor with subjects

freely manoeuvring in the natural environments.

Recently, the usage of light-emitting diodes (LED) has become
ubiquitous in the field of vision science research, due to their high
performance and reliability. Unlike the previously commonly-used
Xenon Arc Lamps (Grum 1968), which require complicated and
expensive systems to run, LEDs have a relatively long lifespan and
consume only a fraction of the power. They are also cheap and

commercially available, which makes them an ideal low-cost light
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source for experiments in vision laboratories. The typical
conventional white bright LED (5mm) has a current rating of
approximately 100mA and has the capability to emit a maximum of

10cd (Nichia Corporation).

For a greater than 10 times increase in maximum light level and
only a small trade off in power consumption, Luxeon™ has
introduced an ultra-bright LED called the Luxeon™ Star LED. This
LED is estimated to have a very long operating life (up to 100k hours)
and is packaged with a heat sink mounted at its back for maximum
heat dissipation (better performance). It has a maximum current
rating at 350mA and a maximum light-producing capability of 120cd,
making this LED the best candidate for many vision experiment

applications.

Since the LED consumes an appreciable amount of current (350mA
maximum) to generate maximum brightness, a stable high current
LED driver is required. There are many companies that manufacture
high current LED drivers specifically for the Luxeon™ Star LEDs.
Most of them are capable of producing a constant high-current
source but none are sufficiently stable to act as a current source
when operated at low levels, i.e. they are not 100% dimmable. Such
instability in dimming is a particularly undesirable imperfection in
vision experiments. Table 2-1 shows a list of the standard
commercial LED drivers that were tested and proven to not meet our

requirements.

27



Chapter 2: Visual Stimulus System

Driver Model Size Lowest Accuracy Cost
Limit*

Integrated Smart Dimming Small 1-2% High mid

{lumination Driver

Systems

LUXDRIVE™ BUCKPUCK3021 Small 1-2% High mid

OPTOTRONIC® OTDIM Medium 0.5-1% High mid

Linear Technology ~ LT1932 Very small 0.51% High low
(SMD)

Agilent 363xA-Series Large 0.5-1% Very High very high

Programmable DC
Power Supplies

*Lowest limit — A stability point where anything dimmed below this limit starts to
display unwanted flickers.

Table 2-1: A list of standard commercial LED drivers that failed to
meet the requirements of our LED driver system due to poor signal
stability at low light levels (<1%).

Most of these LED drivers claimed to be fully dimmable but in actual
fact were not. At low light levels, the output current started to
oscillate and caused a flicker in the LED (the frequency of the flicker
was directly proportional to the output current of the driver). Such
flickers in the light source are highly undesirable in photoreceptor
experiments since the photoreceptors can potentially pick up

frequencies below 200Hz, depending on species (Howard 1981).

In this paper, we will discuss the design and implementation of a
customised high current LED driver that is capable of running
multiple Luxeon™ Star LEDs simultaneously. The brightness of each
of the driven LEDs was carefully calibrated with a light detector from
a digital camera (Nikon D-70) and a low noise, high precision current

amplifier (PDA750, Terahertz Technology Inc™).
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2.2 Methods

The aforementioned problems with commercially available LED
drivers led us to the decision to custom build our own LED driver. A
multi-channel voltage-controlled dimmable LED Driver was
implemented using standard discrete electronic components. The
driver circuit was initially built on a breadboard for testing and
prototyping purposes. The final working circuit was then

implemented on vero boards and housed in a plastic box.

2.2.1 Specifications

The prototype LED driver was capable of supplying current to three
LEDs (Luxeon™ Star) simultaneously. The driver was powered from
a t15V power supply and had a maximum current rating of 1.5A.
Each channel had its own port for controlling the output current of
each driver to its corresponding LED. Heat sinks were attached to
some discrete components (OPA 547T) in order to reduce any

thermal hysteresis at the output of the driver.

The completed circuit was enclosed in a plastic box and a +12V fan
was mounted to ensure that all the discrete components in the box
were operating at sufficiently low temperature. At the rear of the
plastic box, three tactile switches were available for turning
individual channels on or off. Figure 2-1 shows the customised LED

driver in a plastic box.
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Figure 2-1: Customised LED driver. Front (left) and rear view (right)
of the customised three-channel LED driver. CTRL A, B and C were
the input ports for the control signals of the Luxeon™ Star LEDs
connected to output ports A, B and C respectively. Each channel had
a dedicated switch at the rear of the box and was powered with
+15VDC.

2.2.2 Circuit Implementation

This driver was implemented based on a voltage controlled voltage
source (VCVS) configuration using standard electronic discrete
components. Figure 2-2 shows the circuit diagram of the three-
channel LED driver. The LED (green) was initially tested with a
standard voltage power supply to observe the luminance output
against voltage input. The LED started to display a dimly noticeable
(measured using light detector) amount of light at an input voltage of
about 1.6V. The LED then reached its maximum brightness with an

input voltage of approximately 3.3V.

A custom-written LabVIEW® software module was used to
communicate with a 16-bit data acquisition card (NI PCI6221,
National Instruments™) to send control signals ranging from -10V -
+10V to drive the LED. Since the LED only works in the range of
1.6V — 3.3V, a simple linear conversion circuit was designed based
on equation 2-1 to fully utilise the dynamic range of the data

acquisition card to maximise signal resolution.
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+2.54V (Eq 2-1)

cs
Output =
RARSTER

CS is a control signal from the data acquisition card which ranges
from -10V to 10V. These signals were de-gained using an inverting
amplifier and constantly summed with a constant voltage of 2.54V.
The de-gained signals were then inverted in sign before being fed to a
subsequent unity gain amplifier. This simple unity gain voltage
amplifier (standard non-inverting amplifier configuration) was
designed and implemented using a high current operational
amplifier (OPA 547T) and a couple of resistors in order to drive the
LED.

2.2.3 Calibration

The LED driver system was carefully calibrated using a photodiode
amplifier (PDA750, Terahertz Technology Inc™). The calibrated
system was then mapped to a real world luminance values, cd/m? by

use of a camera spot meter (Nikon D70).

Linearisation of the LED Driver System

LEDs are semiconductors that produce light with luminance linearly
proportional to the input current source. Since our LED driver was
designed to be a voltage-controlled voltage source, the output
luminance of the system varied non-linearly with respect to the
control signal and hence the system had to be linearised. This
involved measuring the output current using the photodiode
amplifier and recording the relationship between the output current
and input control signals, to be used in a look-up table for the
purpose of producing a linear output. The new linearised system had
its control signal defined in terms of percentage and output

luminance defined in terms of current.
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Figure 2-2: An electronic schematic diagram of a three-channel LED
driver. The control signal from the data acquisition system was
connected to the input port “From Ctrl Signal Ch A”. A low noise
operational amplifier was used in order to perform the operation
shown in Eq 2-1 to provide the rescaled version (higher dynamic
range) of the control signal prior to transmission to the high current
amplifier (OPA 547T). An output port at “To LED Ch A was
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connected to the LED to produce light output. The remaining two
channels (Ch B and Ch C were duplicates of Ch A.

Brightness Measurement

There were several methods of measuring the real-world luminance
(cd/m?) of the LED driver system and the cheapest way was to use
the light meter in a conventional digital camera (Nikon D-70). The
camera was preset with an ISO of 200, spot-metering mode and
infinite focus. It was then mounted on a tripod and by holding the
capture button of the camera half-way, the light meter of the camera
measured the luminance level of the object that was in the middle of
the viewfinder of the camera. The light meter had to be fixed at OEV
level to indicate that it is measuring the right exposure value and
this could be done by adjusting the combinations of aperture size
and shutter speed of the camera. From the values obtained, the
corresponding brightness of the LED could then be converted to unit
of luminance, cd/m2? based on the following equations (The

photometric system)

Ev=Av+Tv=Sv+By (Eq 2-2)

Where:
Ev = ExposureValue

InN?
In2
Inz™)
In2
In(0.3S)

In2
In Bfl

In2

Av = ApertureValue =

Tv = TimeValue =

Sv = SpeedValue =

Bv = BrightnessValue =
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N is the f-stop number of the camera lens, t is the time in seconds of
the shutter speed, Bfl is the object luminance in foot-Lamberts, Bv is
the object brightness in cd/m? and S is the ISO speed of the camera

film.

Figure 2-3 shows the non-linear relationship between the input
control signal and the output intensity of the LED driver system. At
low input control signal levels (between -8.37V and -2.52V),
increasing the control signal voltage only caused minor increments
in output intensity, i.e. more accurate control of the luminance was
available in this area. As soon as the control signals increased from -
2.52V to 1.47V, the output intensities increased drastically in a non-
linear fashion. From 1.47V to 8.43V, the output looked very close to

a linear response.

2.3 Results
Non-Linearised LED Driver System

100

10

01‘

Intensity, %

0.01
0.001 +
0.0001
0.00001

-10 5 0 5 10

Control Signal, V

Figure 2-3: Output of the non-linearised LED driver system. The
system produced no output when the control signal was at -8.37V
and maximum output when the control signal was at 8.43V.
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Figure 2-4 (Right Axis) illustrates the linearised output of the LED
driver system where the current measured had a linear relationship
with the input control signal. The lowest current measured was at
OnA while the highest current was measured at approximately 26pA.
On the left axis of the same figure the relationship between the
brightness of the LED (cd/m?) against the linearised control signal
(%) is shown. The calculated values based on equation 2-2 suggest a
linear relationship between the brightness values and the control
signal input. A simple linear fitted curve algorithm was used to fit a
curve to the calculated raw data. By having this fitted curve equation,
The real world brightness values of any type of stimuli can be easily
retrieved. The lowest displayable brightness value was calculated to
be approximately 0.07cd/m? while the highest (based on

extrapolation of the fitted curve) was more than 70 000cd/m?.

Linearised LED Driver System
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Figure 2-4: (Right Axis) Output of a linearised LED driver system.
The output current measured was directly proportional to the
percentage of the input intensity (control signals). Measurements
were taken on a logarithmic scale starting from 0% to 100% of the
control signal input. (Left Axis) Linear mapping of the equivalent real
world brightness value based on the percentage of the input
intensity. A simple linear equation was fitted to the raw data with an
equation Bv (cd/m?) = 713.43*(control signal). The fitted curve had a
high correlation value of r2>0.99
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2.4 Discussions

The LED driver system was implemented using standard discrete
electronic components and the Luxeon™ Star LED was used as the
front-end of the system to emit light. Calibrations of the system had
confirmed that the system was capable of producing light ranges
from 0.07 — 70 000cd/m2. By linearising the system (see Figure 2-3),
a simple equation was found for converting the control signal in
percentage to actual brightness values in cd/m? (Bv =7 13.43*control

signal).

Such a reliable system provides a cheap solution to many visual
experiments, particularly for those that require high intensity
playback whilst having full control over the system. Additionally, the
low current input (<20mA) of the control signal ports for the driver
also allow it to be controlled by any standard type of data acquisition

system.

Several electrophysiological experiments have been successfully
performed using the LED driver system as a means of displaying
light stimuli. The system is able to display characterised (pulse, step
and white noise) and dynamic (naturalistic) stimuli for the purpose

of our experiments (Mah et al. 2005).

2.4.1 Light Emitting Diode (LED)

The Luxeon™ Star LED has the capability to reproduce a sufficiently
stable bright light from a 350mA constant current source with
junction temperature maintained at or below 90°C. The LED was
specifically chosen to be green since insect photoreceptors are green-
sensitive (Horridge et al. 1975). There were several reasons why we

used LEDs instead of other light sources (bulb or lights from a
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monitor). Firstly, the LED light source was reasonably cheap and
durable. Secondly, the LED produced a constant luminance (not
flickering) since a constant voltage or current source was used to
power the LED. Lastly, the colour temperature of the LED was
invariant within its optimum operating range. Furthermore, it was

commercially available in electronic stores.

2.4.2 Brightness Value - Extrapolation

The light meter of the conventional digital camera (Nikon D70) that
was used for calibrations had an exposure value (EV) dial precision
of +0.3EV. For small EV, the camera had a good accuracy (< lcd/m?)
in measuring luminance. As the EV increased, the accuracy of the
camera decreased (> 30 000 cd/m? dramatically due to the
limitation of the precision of the EV dial, i.e. the light meter of the
digital camera became less reliable in determining brightness values
as the exposure value increased. Therefore, we only used the
calculation points from 0-50% of the control signal input for linear
curve fitting. A linear algorithm was used during curve fitting
because the luminance output of the LED driver system had a linear
relationship with the current measured from the photodiode
amplifier and the current was linearly proportional to the control

signal input (see Figure 2-3).
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Abstract

We present here an analogue circuit implementation of a bio-
inspired non-linear adaptive artificial photoreceptor using discrete
electronic components. This analogue neuromorphic circuit is
designed and built based on the understanding and detailed studies
of the biological photoreceptors of the hoverflies, Eristalis tenax. An
amplified photodiode (TSL251) is used as the front-end of the
analogue circuit to convert photon energy into electrical energy for
the circuit to process. The circuit consists of two non-linear divisive
feedback stages and one static non-linear stage. We have tested and
evaluated the analogue circuit using artificial light stimuli and
confirmed that this circuit is capable of performing robustly in any
lighting conditions and could be beneficial as a pre-processor for

higher order neuron designs.

Keywords: Artificial Photoreceptor, Neuromorphic Circuit, Adaptive Photoreceptor.
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3.1. Introduction

Insects, especially flies, have remarkably fewer neurons in their
visual pathway as compared to humans. Despite their simple visual
systems, insects are able to manoeuvre through complex
environment with remarkable ease and accuracy. Such great
evolutionarily aptitudes have inspired many engineers to design and
implement robust, reliable bio-inspired vision systems such as
motion detection, target tracking and collision avoidance systems,

simply because nature has the solution to these problems.

There are several methods of implementing a bio-inspired circuit. If
cost is not an issue, fabricating a circuit using the state-of-the-art
analogue VLSI (Very Large Scale Integrated Circuit) technology is
probably the way to go. Millions of transistors can be packed into a
single small-sized silicon chip, depending on the complexity of the
circuit design. Analogue VLSI silicon chips usually consume only a
small amount of power, which is a key requirement of many

applications.

The next best option is to use FPGA (Field Programmable Gate Array)
technology. Logic gates can be pre-programmed into an FPGA chip
(e.g. SPARTAN) in order to execute an algorithm which performs the
same function as the circuit. Unlike the VLSI technology, the same
chip can be reprogrammed anytime to function differently since the
chip is mainly controlled by a software program. No doubt, this
feature is beneficial if the circuit implementation requires tuning for

better performance.

However, the most commonly used method in circuit implementation
is board- prototyping, where discrete analogue circuit components

are put together on breadboards/veroboards to realise a design. This
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method is very economical for evaluating circuit designs since the
components are commercially available and relatively cheap

compared to the other methods mentioned earlier.

In this paper, we discuss the design and implementation of an
elaborated bio-inspired artificial photoreceptor circuit. This circuit
was built using discrete electronic components (analogue) on
breadboards based on a mathematical model previously proposed by
van Hateren and Snippe (van Hateren et al. 2001), together with
some additional elaborations to better mimic the actual biological

photoreceptors.

This analogue neuromorphic circuit mimicked most of the important
characteristics of a biological photoreceptor. It was capable of
automatically adapting to any background intensities in order to
increase its input dynamic range, similar to the biological
photoreceptors (Laughlin et al. 1978; Matic et al. 1981; Laughlin
1989). Not only that, the circuit also incorporated a static non-linear
Naka-Rushton stage in order to mimic the sigmoidal soft saturation
of the biological photoreceptor response against input pulse intensity.
Automatic variable corner frequency control was also integrated in
the analogue circuit for realising an adaptive frequency response

feature of the biological photoreceptors (Laughlin et al. 1993).

This faithful photoreceptor circuit could potentially serve as a
reliable front-end for many higher order neurons designs such as
motion detection and target tracking neurons. Not only that, this
circuit also provides a solution to experiments that were previously
considered to be impossible such as experiments that require many
hours of recording in a single session. It is also impossible to

perform intracellular experiments on an insect while having the
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insect manoeuvring freely in natural environments. However, with
this analogue circuit real-time recordings in this complicated

naturalistic scenario can now be done.

3.2 Methods

3.2.1 Specifications

The artificial adaptive photoreceptor circuit was built using standard
analogue discrete electronic components. It consists of one input
from an amplified photodiode (TSL251) and one photoreceptor-like
output. The circuit is tuned to take in a minimum voltage of OV and
a maximum voltage of 4V from the amplified photodiode. Anything
above that will cause some unwanted clippings at the output. The
output of the artificial adaptive photoreceptor circuit ranges from O
to 1V. Table 3-1 summarises all the electrical properties of the

analogue circuit.

Min Typical Max
Number of Inputs 1
Number of Outputs 1
Input voltage +15
Input rated current 100mA 500mA

Table 3-1: Electrical properties of the artificial photoreceptor circuit.

3.2.2 Computer Modelling — Matlab and Simulink

We started off by modelling the non-linear photoreceptor model
mathematically using Matlab and Simulink software. This model was
implemented based on a mathematical model proposed by van

Hateren and Snippe (2001), with some additional modifications to
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better mimic the biological photoreceptors. Figure 3-1 shows the
Simulink block diagram of our mathematical model design. Since it
was not feasible to design a circuit with an infinite output response,
an additional block called the saturation block was integrated in our
mathematical model to limit the signal of the model. In this case, we
limited the signal magnitude such that the minimum is -15 and the
maximum is +15. As for the static non-linear stage, we modified the
Naka-Rushton equation that was proposed by van Hateren and
Snippe. Instead of using input/(l+input), we changed it to
input/(0.05+input). This was to shift the input dynamic range of the

model so that it was feasible for implementation.

Artificial Photoreceptor Model
LP1

DIV
input i DIV Naka-Rushton
] i

LP2 g

' Saturation EXP

Figure 3-1: Simulink mathematical block diagram of the adaptive
non-linear photoreceptor model. LP1, LP2 and LP3 are low pass
filters with a time constant of 1.764 ms, 397.84 ms and 3.978 s
respectively. EXP is a simple exponential function k1 (exp (k2*input))
where k1 = 2.57 and k2 = 10.

*

ES

Simulink Mode!

LP1 and LP2 were both second and first order filters respectively.
Time constants for these low pass filters were also modified to fine
tune the output responses of the mathematical model design in
order to approximately match those in physiological recordings (Mah
et al. 2005). The steady-state equation of the model was described as

below:
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output = ( (Eq 3-1)

0,05+A]

; ‘ 1o i
whereA:\meput exp(—k w/mput).

k1

Output from the first divisive feedback stage was passed through the
second divisive feedback stage. At this stage, the signal was
automatically adjusted (adaptive) based on the input background
value and the time course of the adaptation was fully controlled by
the time constant set in the first order filter, LP3. The output signal
from the second divisive feedback stage was then compressed non-
linearly in the final static non-linear Naka-Rushton stage. The
Simulink model was then tested and evaluated with a range of
intensity steps and impulses by using custom programs written in

Matlab.

3.2.3 Electronic Circuit Modelling — SPICE Simulation

The finalised mathematical model of the artificial photoreceptor was
used as a basis to design a prototype SPICE model. This SPICE
model was used as a guide prior to implementing a prototype circuit.
Standard electronic discrete component blocks in the simulation
software were used to build the SPICE model. This was to ensure the
SPICE model was feasible for actual circuit prototyping. Steady-state
tests such as impulse and step response tests were done on the
SPICE model to evaluate and test its response. Parameter values of
some stages of the model were changed to better mimic the biological
photoreceptor. Figure 3-2 shows the schematic diagram of the SPICE

model.
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This SPICE model consisted of several additional elaborations that
were not modelled in our mathematical model discussed previously.
The reason for not having them in the mathematical model was
simply because of the limitations in the Matlab and Simulink
software which are unable to incorporate certain complex functional

blocks during simulation.

SPICE Model - Artificial Photoreceptor Circuit

ts
TUsisbie LowPass | | Divide (D1)
. Fiter p1LF) : | Galn Adjuster (GA1
Preamplifier | FVRE | et wee )
TSNS e PN | s : - % | Ve
e r2 | c1 i LI~ 1 H
1 1 Moo ¥ 1 0PI o P g - M { | MDOUT
Light Source [} Wee { { 1) = i OPS i
| voboto . | | | | i B : | I
| "1 opl e =] il b ] e 0, 1o L gz
- A L1 i c2 R4 | OPZ 1 ! L] a— | e |
| L I1 1 | & | !
: Aee Rl
Low Pass Filter (LP2)
et
Vactrol Control Signal et . f)lP.l i mf
Tttt =100 1 163 4 i
i e RSSI._R;l- R37 | | e [
e - o
i Mee | |
e ot ——{ Tl | | oo
1 loP13 - 2 b sl
Ligrl 1 & rr R30 | [T — [~
| ¥) ) | = A6 oP1E
Ve c1o - = e Naka-Rushion
vee | L . i
et | 1
2R32 ; | e : e
- ! 0 Y & ‘| 1]
I lopiz gt = {
bt f T i Oltpid
[ e g pave Y upd
: : ] owee | e
Divide (D2) o K ol i3
C -+ 1 | | Galn Adjuster (GA2) | 1 ) wee
MDOUT  #vee il Hee B
it} Tl | -Vee | Low Pass
I | Wl wll i ; [ Filter {LP1)
0P =L i
i | oe7 L —
!RW‘.;! {ut 1) { 10 1~ R13
e || | LR11% al
1 — o | +ee
) Ner | |
| R123
|
P Exponential ‘
| | o2 o: L, Wee
b : T | T
[e3 | : T [ Tre2
e ‘ "R <y o8 | Low Pass Filter (LP3)
{ : | }
v il ] v oS R18
L) ': Lo L (F. | 1 'W‘_I'-| 080 - - e ‘
uld, R24 | R2 L1 s
2 W = oﬂul R14
Nee | ) e TC8 i
20 5 Rig [SCEr |
R165'r

Figure 3-2: A schematic diagrams of the artificial photoreceptor
circuit SPICE model.
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An amplified photodiode with an output (Vpnoto) ranging from 0-4V
was used to convert photon energy into its corresponding electrical
energy (current) before transmitting it into the circuit. This voltage is
linearly proportional to the input intensity (Bv in cd/m?) at the
photodiode, according to equation 3-6. The signal from the amplified
photodiode was initially passed through a linear preamplifier stage
prior to any non-linear processes. The amplified signal was then
transmitted to the Variable Low Pass filter, VLP the gain, Kvir and
frequency response, Fvip of which were dependent on the average

luminance measured by the Vactrol Control Signal stage, VCS.

K —(33x10° +R,.)
P 36x10°

(Eq 3-2)

|

Fyp = b 3
29.77x107°4/33x10° + R,

(Eq 3-3)

Where R, =3.09x10% exp(-38.12CS) - 5.66x10% exp(-27.56CS) ~ (Eq 3-4)

CS=1481+0237,,,  (Eq 3-5)
By
V.,  o=— Eq 3-6
photo 1750 ( q )

The output signal from the VLP stage was used as a numerator for
the first divider stage, D1 and the output signal from the first order
low pass filter, LP2 was used as the denominator. Notice that the
circuit configuration of the divider, D1 was set according to the

following equation:
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= (Xl —XZ)(YI _Y2)+Z2
(UI_UZ)

W (Eq 3-7)

where Wp: was the output of Di, and Xz, Y2, Uz and Z» were
connected to electric ground (0V). Y1 was the input of the VLP and
because X1 was connected to a constant voltage 0.1V, hence the

equation becomes:

_ (0.1Y(InputfromVLP)

W,
InputfromLP2

(Eq 3-8)

The output of D1 was deliberately degained by 10 times in order to
overcome one of the instability constraints of the divider chip, which
was that the input magnitude X has to be less than 1.25U. Thus, a
gain adjuster stage, GA1 was cascaded straight after the D1 stage for

compensating the gain loss in the divider stage, D1.

The output of GA1 was then transmitted as a numerator to a second
divider stage, D2. Again, this divider was designed to have a gain
loss of 10 times in order to overcome the same chip limitation as
previously noted. The output signal from GA2 was then filtered with
a low pass filter to remove any unwanted high frequency noise. The
filtered signal was passed through both the low pass filter, LP3 and
the final compressive non-linear stage, Naka-Rushton. The low pass
filtered signal from LP3 was exponentially amplified in the

exponential stage according to the equation:

ExpOut = k1* exp(k2* input) (Eq 3-9)
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where k1 = 13.3 and k2 = -4.3. The output signal from the
exponential stage was used as the denominator for the second

divider stage, D2.

The Naka-Rushton stage was designed using a simple divider
configuration, similar to D1 and D2. The input magnitude X for the
divider, D3 was fed with a signal coming from the second divider, D2
and the input magnitude Y was powered with a constant voltage, 1V.

Below is the equation that describes the final Naka-Rushton stage:

W,

Wy, =—22—
P W, +0.05

(Eq 3-10)

3.2.4 Circuit Prototyping

Once we had the finalised SPICE model, the artificial adaptive
photoreceptor circuit was implemented using discrete electronic
components. All the components were connected according to the
SPICE model on breadboards. Variable resistors were used at some
parts of the circuit to allow for the possibility of fine tuning its
output. Standard 5mm single core wires were used for

interconnecting the discrete components to realise a working circuit.
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3.3 Results

3.3.1 Matlab and Simulink Model
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Figure 3-3: Matlab and Simulink output of the neuromorphic
photoreceptor model. a. Pulse response curves with pulses of Sms at
relative background luminance of 10mV. b. Step response curves
with steps of 1.5s at relative background luminance of 60mV - step
sizes: 0.07V, 0.09V, 0.11V, 0.16V, 0.56V, 1.06V and 10.06V. c. V
LOG I curves with different relative background luminance (10mV,

60mV, 110mV and 160mV).

Figure 3-3a shows the pulse responses of the Matlab and Simulink

model with several pulse

intensities at relative background
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luminance of 10mV. The model responded non-linearly to the pulse
intensities, with obvious hyperpolarisation effects during offset of
input stimuli. Notice that the time taken for the hyperpolarisation
effects to recover to its initial resting potential state increased as the
pulse intensity increased. The stimuli durations were increased
from 5ms to 1.5s and the corresponding step responses are as
shown in Figure 3-3b. During a bright step (in relative to its
background luminance) simulation, the model depolarised at stimuli
onset, following a long exponential decaying adaptation to its
background luminance. From the pulse responses of various pulse
intensities and background luminance, the non-linearity of the
model can be further illustrated as shown in Figure 3-3c. These V
LOG I curves have a sigmoid-like function and they were shifted to
the right as the background luminance increased. The magnitude of

the right shift was not proportional to the input pulse intensity.
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3.3.2 SPICE Model

a Pulse Responses - BG: 10mV b Step Responses - BG: 60mV

c VLOG | Curves
\ ]
1
09} |
| 056V
0.8
= |
= 07| L
2 >
° g6l — —BG 10mV | - == 016V
- BG: 60mV b f
- — - BG: 110mv |
05 ——— BG: 160mV ; Y
l ............... 009\/
04 == . - . Eos t —— 1 747
-2 -1 0 1
10 10 10 10 —
Input, vV

Figure 3-4: SPICE output of the neuromorphic photoreceptor model.
a. Pulse response curves with pulses of 5 ms at relative background
luminance of 10mV. b. Step response curves with steps of 1.5s at
relative background luminance of 60mV- step sizes: 0.07V, 0.09V,
0.11V, 0.16V, 0.56V, 1.06V and 10.06V. c. V LOG I curves with
different relative background luminance (10mV, 60mV, 110mV,
160mV).

Figure 3-4a shows the pulse responses of the SPICE model with
various pulse intensities. Again, the SPICE model responded non-
linearly to the input pulse stimuli, together with clear

hyperpolarisation effects on the offset stimuli, which increased in
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magnitude as the pulse intensity increased. This model was also
tested with various step intensities for several background
luminances. Figure 3-4b shows the step responses of the model with
background luminance at 60mV. Similar to the Matlab and Simulink
model, this model showed clear luminance adaptation, typically
during the onset of the input step stimuli. Not only that, the model
also showed great hyperpolarisation effect during the offset of the
stimuli, where the magnitude of the hyperpolarisation increased as
the step intensity increased. Again, by further analysing the pulse
responses under several background luminances, the corresponding
V LOG I characteristic curves were plotted (Figure 3-4d). Notice that
the V LOG 1 curves shifted to the right as the background
luminances increased and all the curves showed a sigmoid-like

function.
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3.3.3 Actual Circuit

Figure 3-5 shows the final circuit that was implemented on
breadboards. The circuit performed very close to the actual biological
photoreceptors such as adaptive logarithmic encoding of luminance.
Detailed evaluations of the circuit are discussed in the following

chapters.

Figure 3-5: Prototype circuit implemented on breadboards.

The circuit could be minimized in the future by using small surface
mount components (SMT) on a printed circuit board (PCB). Not only
would this reduce the overall size of the circuit, it would also reduce
the circuit noise, i.e. increase the signal to noise ratio. Figure 3-6

shows the three- dimensional rendered PCB design of the circuit.
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Figure 3-6: Printed Circuit Board design of the artificial insect
photoreceptor circuit. It uses both front and back layers with an
actual size of approximately 60mm x 60mm.

3.4 Discussions

Insect photoreceptors are highly non-linear, displaying adaptation to
both luminance and contrast under natural conditions (Baumann
1975; Matic et al. 1981). From an engineering perspective, it is not
easy to model a non-linear system. However, a reliable mathematical
model that was proposed by van Hateren and Snippe (2001) has
allowed us to use it as a basic model to our elaborated prototype
circuit design. Additional enhancements to the basic model, which
were based on the physiological understanding of the actual
photoreceptors, have allowed us to implement a much more faithful
circuit model of the actual biological photoreceptors. This robust,
reliable circuit has proven to be beneficial in higher order neuron

designs (O'Carroll et al. 2006), where data recorded from the output
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of the circuit can be used to feed in to the higher order neuron

designs for detailed evaluation.

This faithful circuit not only provides a solution to better higher
order neuron designs but it also allows one to further develop one’s
understanding of the biological photoreceptor cells. Experiments
that require exhaustive duration, which are not feasible for a single
cell recording (intracellularly), are no longer a problem with this
photoreceptor circuit. Not only that, the circuit can be mounted on a
robotic platform and record real-time responses in naturalistic
environments, which again is not feasible to be performed on an

actual biological photoreceptor.
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Abstract

We describe here an elaborated neuromorphic model based on the
photoreceptors of flies and realised in both software and using
discrete circuit components. The design of the model is based on
optimisations and further elaborations to the mathematical model
initially developed by van Hateren and Snippe that has been shown
to work in computer simulations of both steady-state and limited
dynamic (natural) conditions. The model includes an adaptive time
constant, non-linear adaptive gain control, logarithmic saturation
and a non-linear adaptive frequency response mechanism. It
consists of a linear phototransduction stage, a dynamic filter stage,
two divisive feedback loops and a static non-linearity. In order to test
the biological accuracy of the model impulses and step responses
were used to test and evaluate the steady-state characteristics of
both the biological (fly) and artificial (new neuromorphic model)

photoreceptors. These tests showed that the model responded in an
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almost identical way to the actual insect photoreceptor cells. The
model showed a decreasing response to impulsive stimuli when the
background intensity was increased, indicating that the circuit
adapted to background luminance in order to improve the overall
operating range and better encode the contrast of the stimulus
rather than luminance. The model also showed the same change in
its frequency response characteristics as the biological
photoreceptors, with the corner frequency of the circuit ranging from
10Hz — 90Hz depending on the current state of adaptation. Our
model provides an excellent platform for future experiments that
could be carried out in scenarios where in-vivo intracellular
recording from biological photoreceptors would be impractical or

impossible.

Key words: Insect Vision, Visual System, Adaptive Photoreceptor, Neuromorphic,

Bio-inspired, Artificial Vision
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4.1. Introduction

The biological visual system is capable of adapting to light in order
to enhance the encoded information from the earliest stages of visual
processing (Wuff et al. 1975; Laughlin et al. 1978; Weckstrom et al.
1995; van Hateren et al. 2005). In any one state of adaptation,
depending on species, biological eyes can only effectively detect
changes in light intensity of approximately 2-3 log units (Wallcott
1975). Since the luminance transition from day to night is
approximately 8 log units, adaptation mechanisms are required to
alter the effective range in which the visual system operates. Such

mechanisms are mainly due to anatomical changes and biochemical
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processes in the photoreceptor cells, which take place during light-

adaptation (Baumann 1975; Baumann 2000).

All artificial imaging systems require a means of transducing light
into a usable electrical signal, however most vision use a linear
detector stage (Francheschini et al. 1992; Moini et al. 1997; Netter et
al. 2002). Both theory and modelling have shown that non-
linearities, such as those seen in biological photoreceptors, improve
the coding of visual information (Laughlin 1989). van Hateren and
Snippe (2001) recently developed a mathematical model for non-
linear luminance coding by fly photoreceptors. They incorporated
several elements directly inspired by studying key stages of the
blowfly visual system. Their model, when implemented in software
provided an excellent fit to biological photoreceptor data under both
steady-state and limited dynamic conditions; while several other
models (such as direct logarithmic encoding, which does not
incorporate adaptation) have been shown to be inferior in either
steady-state behaviour or once more complex optical flow is
introduced (Dror et al. 2001).

The van Hateren and Snippe model was proposed primarily to
explain dynamic behavior under photopic conditions. An additional
feature of the physiology of the fly photoreceptor not accounted for
by this model is that (and unlike mammalian cones) it is also
adapted to low light levels by virtue of a large change in time
constant (nearly 10 fold change in corner frequency) (Weckstrom et
al. 1995). Coupled to additional changes in the underlying
transduction cascade, this allows fly photoreceptors to operate over

an extended luminance range.
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Several different analogue vision chips have been built to mimic the
response of biological systems to a variety of visual stimuli (Tanner
et al. 1988; Delbriick 1993; Etienne-Cummings et al. 1993;
Sarpeshkar et al. 1993; Kramer et al. 1995; Delbriick et al. 1996;
Liu 1996; Moini et al. 1996; Sarpeshkar et al. 1996; Kramer et al.
1997; Yakovleff et al. 1998; Liu 1999; Delbriick et al. 2004) and
some of these have taken advantage of the ‘neuromorphic’ approach,
incorporating some principles akin to those in biological visual
processing, with varying degrees of success . Perhaps the most
successful of these neuromorphic designs is that of Delbriick et al
(1996), who have implemented an artificial photoreceptor chip by
using neuromorphic analogue Very Large Scale Integrated (aVLSI)
technology (Delbriick 1993; Delbriick et al. 1996; Delbrick et al.
2004). These chips provided rudimentary approximations to several
key aspects of biological photoreceptors, including non-linear
luminance adaptation and logarithmic coding. While these designs
may provide an improvement over simple linear detectors under
many conditions, to date they have not been tested against their
biological counterpart under dynamic conditions that would be
experienced during normal behaviour. Also steady state testing of
these devices reveals no evidence of the ‘soft’ saturation which is
found at high luminance in biological photoreceptors and which was
incorporated into the parametric model of van Hateren et al (2001).
And which was reported by Dror et al (2001) to be advantageous for
post-detector visual processing. Despite these limitations, the
Delbriick model is currently one of the best developed neuromorphic
hardware models for biological photodetection, and has been
incorporated by other groups into similar neuromorphic chip designs
as a front-end for higher-level processing tasks (Shoemaker et al.
2001; Shoemaker et al. 2005).

60



Chapter 4: Steady-state Analysis

De Vries-Rose + Weber + Non-linearity (after van Hateren & Snippe 2001)

Output(t)

Figure 4-1: A mathematical model proposed by van Hateren and
Snippe to mimic the insect photoreceptor cell. LP1, LP2 and LP3 are
low pass filters. To the left of the LP3 is an exponential stage with a
function of ki*exp (k2*x) +c. NL1 is the static non-linear stage
(Equation 4-1).

Figure 4-1 shows a simplified block diagram of the previously
proposed mathematical model (van Hateren et al. 2001). It consisted
of a cascade of two dynamic non-linear stages and a static non-
linear stage. The first dynamic non-linear divisive feedback loop
compresses fast and large transients and causes a semi-logarithmic
response in the steady-state. The second non-linear divisive
feedback loop is responsible for slow adaptation (4-5Ss) to large steps
in intensity, and also acts as an automatic gain control for the
system. Any remaining peaks that would drive the photoreceptor out
of its dynamic range are handled by the final compressive non-

linearity.

The purpose of this paper was to implement and evaluate a robust,
adaptive non-linear artificial insect photoreceptor model in analogue
circuitry, complete with details (such as real-world limitations and
optimised values for each stage) omitted from the van Hateren and
Snippe model. Our model also incorporates further elaborations
such as an adaptive time-constant that even more closely mimic the
response of biological photoreceptors. The implementation of this
neuromorphic model, which faithfully mimics Dbiological

photoreceptors, could be beneficial when studying how the
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photoreceptors perceive complex scenes in natural environments,
since it is practically impossible to perform in-vivo intracellular
experiments with an animal that is moving freely. The analogue
nature of the implementation also acts as a powerful tool in
sampling data of any scenarios and thus provides reliable, data for
the design of higher order neurons - discrete time animation such as
computer screen displays, which are widely used in visually
stimulating higher order neurons in an insect visual pathway, may
introduce non-linear artefacts during recordings. In addition, any
physiological experiments that were previously considered non-
feasible due to their extreme duration can now be realised by having
this implementation, thus improving the consistency in data
collection and testing experimental designs. We chose a discrete
component approach to designing this model because it allows us
more flexibility in implementation of key stages that are missing
from earlier VLSI devices. Although impractical for implementation
in multi-pixel applications, our model provides an excellent basis for
future experiments in real-world scenarios where direct intracellular

recording of fly photoreceptors would be impractical.

4.2 Methods

4.2.1. Stimuli Generation

Pre-programmed visual stimuli were presented to the fly
photoreceptors and the prototype photoreceptor circuit using an

ultra bright green Light Emitting Diode (LED; Luxeon Star,

LuxeonTM). The LED was electrically isolated using an optical fibre
core light guide to eliminate electrical artefacts. The optical fibre core
also diffused light source from the LED to provide an extended

luminance ‘patch’ source at 45° across the eyes of the fly. The LED
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was driven by a custom designed calibrated high current amplifier
(350mA maximum current output) and the luminance level was fully
controlled via a 16-bit data acquisition card (NI PCI6221, National

Instruments ). The non-linear response of the LED with input

voltage was calibrated using a high precision photodiode (265, UDT
Instruments' ") and photodiode amplifier (PDA750, Terahertz

Technology IncTM) to derive a transfer function that was used to
produce a linearised response curve for the system. The maximum

playback luminance of the LED was recorded to be approximately

70,000cd/ m’ (100%), similar to the luminescence of the sky close to
the sun on bright day. Due to the non-linear action of the LED close
to threshold it was possible to accurately modulate extremely dim
stimuli (0.0001%) at the lower end while still being able to deliver
very bright stimuli. The usable dynamic range was 6 log units
(120dB), which is greater than that permitted by a 16-bit linear
system which would have a range of 4.8 log units (96dB) or a
standard 8-bit display system (2.4 log units; 48dB). A high precision
5-axes Cadan-Arm system was used to move the light source during
experiments so that the stimulus patch was centred on the receptive
field.

Two sets of stimuli were generated to investigate the non-linearities
of the fly photoreceptors and the prototype circuit. Impulse
responses were obtained from the photoreceptor or prototype circuit
using brief flashes of light on top of predefined constant background
intensity. The intensity of the brief flashes, typically of 1ms (for
frequency analysis) and 5ms (for time domain analysis) durations,
ranged from 0% (near dark) to 100%. The responses were then used
to produce stimulus (V LOG I) curves (Matic et al. 1981; Laughlin et
al. 1993) and to study the frequency responses of the photoreceptors
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and the prototype circuit against different background intensities

(steady-state adaptation).

By increasing the duration of the flashes to 3s, step responses were
obtained. Such long stimulus durations allowed the photoreceptor to
(partially) adapt to the stimulus level. The step response stimuli set
was used to investigate the adaptation rate of the photoreceptors,
and the prototype circuit, under different background illumination

conditions.

4.2.2 Electrophysiological Recordings

A number of electrophysiological experiments were conducted to
evaluate the responses of biological photoreceptors to the stimuli. All
experiments were performed intracellularly on the photoreceptors of
intact hoverflies (Eristalis tenax) at a temperature range of 22-24°C.
Individual R1-6 photoreceptor cells were penetrated with a
manipulated micropipette filled with 2.0M KCI, with a resistance of
100-200MQ. The microelectrode was connected to a pre-amplifier
(npi, BA1S) and the amplified output was passed through a high
precision 50Hz adaptive noise removal filter (Quest Scientific, Hum
Bug) to eliminate unwanted power line interference. The output of

the Hum Bug was monitored using a digital oscilloscope (TDS210,
TektronixTM) and recorded using a 16-bit data acquisition card
system (NI PCI6221, National InstrumentsTM) and custom software
written in LabVIEW® at a sampling rate of 5kHz. All the experiments

on either biological receptor or the circuit were done in a darkened

room.
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4.2.3 Circuit Modelling and Recordings

Input(t) Output(t)

Figure 4-2: A simplified block diagram of a single pixel adaptive
photoreceptor model. LPCU was the low pass control unit that
functioned to provide a control voltage signal to the variable low pass
filter, VLP1, based on the average luminance measured. Since this
circuit design is a continuous system, the control voltage signals
from the LPCU continuously changed according to the luminance
history of that point. VLP1 used the control voltage signal to
automatically determine the parameter settings in order to provide
an appropriate output signal and frequency range for the remaining
stages. Signal output from the first divisive feedback was then sent
to the second divisive feedback stage and at the same time to the low
pass filter, LP2 as a feedback signal for the first divisive feedback
stage. The long (4-5s) term adaptation of the system was
automatically controlled via a cascade of LP3 (low pass filter) and the
exponential stage. The final stage, NL1 was responsible for
compressing the output signal and producing a sigmoidal transfer-
function.

The prototype circuit was initially designed using Matlab and
Simulink software. The parameter values of the model were then re-
designed and re-evaluated to make sure that it was feasible to be
implemented using discrete electronic components. This new
mathematical model, shown in Figure 4-2, was then used as a base
for the next design level, a SPICE circuit model, which was designed
using the DXP Circuit Simulation Software. All the components used
to build the SPICE model were real components available for
purchase. Impulse and step response tests were simulated to
evaluate the output response of the SPICE model. The finalised

SPICE model was then used as a reference model for the hardware
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prototype implementation using discrete electronic components. The
same test stimuli described above were used to evaluate and study

the implemented prototype circuit.

The circuit consisted of a variable gain and corner frequency filter
(VCFF) stage, two divisive feedback stages and one static non-linear
stage. The low pass control unit (LPCU), shown in Figure 4-2,
automatically adjusted both the gain and corner frequency of the
variable low pass filter (VLP). The adjustment was based on a heavily
low-pass filtered version of the input stimulus. If the average
background luminance was low the LPCU sent a voltage signal to
VLP in order to reduce the corner frequency and increase the gain of
the circuit and vice versa for high inputs. Since different biological
species have different performance requirements, and thus have
different speed photoreceptors, the LPCU, as with other sections of

the circuit, was designed to be fully adjustable.

Low pass filter, LP2, was used as part of the first divisive feedback
stage to realise a logarithmic steady-state response with dynamics
similar to biological photoreceptors. The long time constant of the
circuit was controlled via the parameters settings of the low pass
filter, LP3, and the cascaded exponential stage. The longer the time
constant of LP3 the longer it took the circuit to adapt from its

original steady-state level and vice versa.

The final stage, NL1, logarithmically saturated the circuit output in a
similar way to biological photoreceptors. Equation 4-1 shows the

mathematical formula used to realise such saturation:

NI = Input (Eq 4-1)

Input +c¢
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Where ‘NL1’ is the non-linear output of the system and %’ a
constant. The output of the system was always less than 1 and
produced a smooth saturation curve when the input was large with

respect to c.

4.2.4 Circuit Design

The prototype circuit was designed and implemented in stages based
on the block diagram shown in Figure 4-2. Discrete analogue
components were used to build each stage on breadboards and all
the stages were evaluated prior to combining them as one complete

circuit.

A linear amplified photodetector (TSL251) was used as the front end
of the circuit to transform light signals into electrical signals. To
avoid any hard saturation at the output of the photodetector, a
neutral density filter (1/8) was used to cover the field of view of the
photodetector. The filtered photodetector, which had an output
ranged from 0-4V, was thus capable of performing linearly
(unsaturated) even though it was seeing a 70,000 cd/m? light

Source.

Signals from the photodetector were averaged in the LPCU using a
standard active low pass filter. The averaged signal, which was an
approximation to the mean background luminance, was used as a
measuring point to trigger the variable resistor in VLP1. The design
made VLP1 a variable gain and frequency low pass filter that was

dependant on recent luminance history.

LP2 and LP3 were both first order low pass filters. They were

constructed as active filters using standard low noise JFET
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operational amplifiers, resistors and capacitors. Because the circuit
was powered with £15V, the signal output from both the filters was
designed in such a way that they would not hit the power supply

rails, i.e. no hard saturation.

Standard analogue divider chips (AD734) were used to realise the
mathematical division stages in the circuit. Because it is
mathematically impossible to have a zero denominator in division,
dark current leakage from the photodetector was deliberately not
calibrated to zero in order to create non-zero initial conditions for

these stages.

4.2.5 Data Analyses

Relative Gain

By using the impulse responses at a various background luminance

levels, the relative gains were calculated based on equation 4-2.

Output(V')
InputPulselntensity(%)

RelativeGain = (Eq 4-2)

where Output is the peak of the impulse response relative to the
background potential and Input Pulse Intensity is the percentage

brightness of the impulse stimulus.

Frequency Response

In order to analyse the linear component of the frequency response
of the photoreceptor cells, 1ms impulse stimuli were used during

experiments. Small impulses were used to ensure that they were low
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enough not to elicit significant non-linear behaviour, i.e. the impulse
responses had to be monophasic (Matic et al. 1981). From the
impulse responses, the frequency responses were determined by
fitting a simple log-normal curve, shown in equation 4-3 (Payne et al.
1981), and then calculating the Fourier Transforms of the curve

fitted responses.

V(t) = a.exp[-(log(t/n))?/20%] (Eq 4-3)

where V(t) is the output voltage at time t, a is the amplitude scaling
factor, o is the standard deviation and p is the mean of the log

transformed Gaussian curve.
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4.3 Results

4.3.1 Pulse Response

A
Pulse Responses (BG 0%) Pulse Responses (BG 0.1%)
>
C
“"\’—ins - 50ms
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Nomnalised Relative Gain of the Photoreceptor Cell Normalised Pulse Responses (BG 0.1%)

§ P 02%
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o BGO1% 50ms

01 1 10 100

Hyperpolarised Peaks

Figure 4-3: Pulse responses of the actual insect photoreceptor cell.
A. Pulse responses of the actual insect photoreceptor cell with a
background luminance of 0% (average of 5 trials for each intensity
step, 1 cell). B. Pulse responses of the insect photoreceptor with a
background luminance of 0.1% (average of 3 trials for each intensity
step, 1 cell). C. Relative gain of the photoreceptor cells for both
backgrounds 0% and 0.1% (average of 3 cells). Error bars are one
standard error of the mean. The system displayed a much greater
relative gain to low intensity stimuli at BG 0%, i.e. the gain of the
system reduced as the background light increased. D. Normalised
pulses responses of the cell when the background luminance was at
0.1% (average of 3 trials for each intensity steps, 1 cell). These pulses
were highly non-linear, had no general trend to each other when
normalised and show hyperpolarisation effects, the result of
adaptation to the level of light. Time of stimuli, shown below data
traces, was Sms.
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The first stage of investigating the biological photoreceptor cells was
to conduct a series of pulse responses, where brief flashes of light
were used to stimulate the photoreceptors from varying background
illuminations. Figure 4-3a shows typical responses of the fly
photoreceptor cells to 5ms pulses of light when the light was off
between pulses, i.e. pulses were delivered from near darkness. The
recording of each flash was set to be 59s apart in order to ensure
that the photoreceptor was properly adapted to its original
adaptation state before recording consecutive responses. Notice that
the peak of the pulse response (Figure 4-3a) increased non-linearly
as the pulse intensity increased and saturated (plateaued) as the
pulse intensity approached 100%. The time taken for the response to
return to the pre-stimulus level increased as the size of the stimulus

increased.

In order to study the response of the photoreceptors under different
background lighting conditions, the pulse response test was
repeated with changes to the pre- and post-stimulus intensity levels.
Instead of using 0% between stimuli, the LED was offset to a
constant background intensity. Figure 4-3b shows an example of the
pulse responses of the fly photoreceptor with a constant background
intensity of 0.1%. Notice that there is not much of a difference with
the general shapes of the pulse responses compared to the
responses when the LED was off between stimuli (Figure 4-3a). The
peak of the response increased as the pulse intensity increased and
it also tended to saturate at large stimulus levels. However, there
were some significant differences with the duration of the pulse
responses. The width of the response was longer when the LED was
0% between trials compared to when it was set to 0.1%, i.e. the cell
took longer to depolarise from resting potential to peak potential and

back to the original resting potential when the background was
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lower. Another observation, shown in Figure 4-3c, which is probably
not as obvious from Figures 4-3a and b is that the relative gain
(shown in equation 4-2) of the responses against the impulse
intensity was higher when the background illumination was lower;
i.e. at low input pulse intensities the relative gain of the system was
higher at lower illumination levels. However, both of the curves start
to meet at a stimulus level of approximately 10%, which is the point

where the cell reached its saturation threshold.

Figure 4-3d shows the normalised figure of the pulse responses of
the light-adapted cell. Notice that the responses were all biphasic,
i.e. they contained hyperpolarised peaks. The pulse width only
underwent a relatively small amount of change throughout the whole
range of input pulse intensities as the frequency range of the system

was set by the slowly adapting LPCU.
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Figure 4-4: Pulse responses of the prototype circuit. A. Pulse
responses of the prototype circuit with a background luminance of
0% (average of 5 trials for each intensity step). B. Pulse responses of
the circuit with a background luminance of 0.1% (average of 3 trials
for each intensity step). C. Relative gain of the circuit output for both
backgrounds 0% and 0.1%. This graph shows significant pulse gain
differences at the different background levels (similar to the
biological data in Figure 4-3c). D. Normalised pulses responses of
the circuit when the background luminance was 0.1% (average of 3
trials for each intensity step). As with the recordings from biological
photoreceptors these responses were highly non-linear and showed
hyperpolarisation effects. Time of stimuli, shown below data traces,

was Sms.

73



Chapter 4: Steady-state Analysis

Using similar techniques as above, the experiments were repeated on
the hardware prototype circuit. Figure 4-4a shows the pulse
responses of the prototype circuit against different input pulses
when the LED was off between stimuli. The pulse responses were
similar to the responses of the photoreceptors as shown in Figure 4-
3a. Again, as the input pulse intensity increased, the peak response
of the circuit increased as well. The peak output also tended to
saturate as the pulse intensity got larger. Figure 4-4b shows that
apart from a decrease in the response duration there were no
significant changes with the overall shape of the circuit responses
when a low level background illumination was introduced between

stimuli.

Figure 4-4c shows the relative gain curves of the circuit. As with the
biological results, the circuit had a higher relative gain when the
background level was lower. Both of the gain curves start to meet at
the point (10%) when the circuit reached the saturation threshold.

Again, by normalising the pulse responses of the circuit, it was
possible to evaluate the non-linearity of the circuit (Figure 4-4d). The
output signals were monophasic when the input pulse intensities
were low. As the pulse intensity increased, the signal outputs tended
to produce a biphasic response and the hyperpolarised signals took
hundreds of milliseconds to return to its resting potential (much
longer compared to the actual photoreceptor responses). As with the
biological data there was a small, but noticeable, change in the

width of the responses as the input pulse intensity changed.
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4.3.2 Step Response

A Step Responses (BG 0%) B Step Responses (BG 0.1%)
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Figure 4-5: Step responses of the actual insect photoreceptor. A.
Step responses of the insect photoreceptor cell at background 0%
(average of 5 trials for each intensity step, 1 cell). The adaptive
feature of the photoreceptor can be clearly seen during the onset of
the stimulus. Lower intensity step responses have a higher
adaptation rate (decay much faster) compared to the ones with a
brighter intensity steps. B. Step responses of the insect
photoreceptor cell at background 0.1% (average of 3 trials for each
intensity step, 1 cell). Significant adaptation is observed even though
the stimulus intensity is dim (0.22%). Huge post-stimulus
hyperpolarisation effects (undershoots) occurred when the onset step
intensities were large (75% and 100%). Time of stimuli, shown below
data traces, was 3s.

The same stimuli used to generate pulse responses were used for
step responses but the stimulus on time was increased from Sms to
3s. Figure 4-5a shows the step responses of the photoreceptor cell.
The cell was tested with steps of different brightness. Note that the
cell adapted to the stimulus intensity during the stimulus period.

The cell was initially adapted to 0% background intensity. As soon
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as the stimulus started the output ramped to its maximum response
followed by a period of adaptation. During the post-stimulus period,
the cell response showed evidence of adaptation, significant

hyperpolarisation (undershoot), even to the smallest stimuli.

Similar experiments were repeated in order to evaluate the rate of
adaptation under different background lighting conditions. Figure 4-
5b shows an example of one of these experiments. There were no
obvious differences in the general shape of the response under 0% or

0.1% background levels.

A Step Responses (BG 0%) B Step Responses (BG 0.1%)

Profotype Circuit Prototype Cimust

Figure 4-6: A. Step responses of the prototype circuit at background
0% (average of 5 trials for each intensity step). B. Step responses of
the circuit at background 0.1% (average of 3 trials for each intensity
step). As with the biological data (Figure 4-5) the rate of adaptation
decreased with the size of the stimulus while hyperpolarisation after
the cessation of the stimulus increased. Time of stimuli, shown
below data traces, was 3s.

76



Chapter 4: Steady-state Analysis

Again, the step response tests were repeated on the prototype
circuit. Figure 4-6a shows the output step responses of the circuit at
0% background. The circuit responses were very similar to the
actual neurobiological data collected (Figure 4-5a). The circuit
responded to the constant input level by reducing the output level
and also showed a hyperpolarisation when the stimulus was

removed.

In order to further investigate the robustness of the circuit it was
tested under different background lighting conditions. The pre- and
post-stimulus LED intensity were set at 0.1% and the outputs are
shown in Figure 4-6b. Notice that the outputs of the circuit were

again very similar to the neurobiological data.
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Figure 4-7: V Log I curves of the insect photoreceptor cells and
prototype circuit. A. V LOG I curves of the insect photoreceptor cells:
BG 0% (average of 4 cells — 3 trials per cell), BG 0.1% (averages of 6
cells — 3 trials per cell), BG 1% (average of 4 cells -3 trials per cell)
and BG 5% (average of 4 cells — 3 trials per cell). Error bars show
one standard error of the mean. B. V LOG I curves of the prototype
circuit. Similar to the biological visual system responses, the V LOG
I curves of the prototype circuit shift to the right and down as the
background intensity increases. The responses are linearly related
(1-2 log units) to the input pulse intensity up to a stimulus of
approximately 1%. As the input pulse intensity increased from 1% to
approximately 70%, the responses tended to behave logarithmically
and, dependant on the background intensity, inputs beyond 70%
resulted in a saturating output.

From the pulse responses obtained in the previous section, it was
possible to characterise the cell responses by plotting the peak
response of the cell, relative to the pre-stimulus mean, against the
log of the corresponding input pulse intensity (V LOG I). Figure 4-7a
shows the V LOG I curves of the insect photoreceptor. Note that the
photoreceptor was a highly non-linear system. There were only
minor changes with the peak magnitude when the input pulse
intensities were very low. As the input pulse intensity reached a
detection threshold, the cell started to respond logarithmically to the
input signal (straight line on a log-scale) for approximately 2-3 log

units, depending on the adaptation state. The cell then reached a
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saturation level above which the sensitivity of the cell to increasing
stimulus intensity reduced. Note also that the response curves
shifted to the right and down as the background intensity increased.
This was a consequence of the adaptation of the cell to the different

background levels.

The same analysis was repeated on the circuit data and shown in
Figure 4-7b. The circuit output showed similarities to the
neurobiological data. The curves were shifted to the right and down
as the background intensity increased. At any one adapting state,
the prototype circuit has an effective visual information coding range
of approximately 2-3 log units (similar to the neurobiological data

recorded).

4.3.4 Frequency Response

A Normalised Impulse Responses B Corner Frequency vs. Background Luminance
100
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Figure 4-8: Frequency responses of the insect photoreceptor cells. A.
Normalised impulse responses of the insect photoreceptor cell
(average of 10 trials for both intensity steps, 1 cell). B. The calculated
-3dB points (corner frequency) of the biological photoreceptor
against the corresponding relative background luminance (average of
3 cells). Error bars show one standard error of the mean.

Figure 4-8a shows the normalised impulse responses at two different

background adaptation states: 0% and 75%. The photoreceptor
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responded much slower when the background luminance was at 0%
(pulse width of 50ms) compared to when the background luminance
was at 75% (pulse width of 7ms). Figure 4-8b shows the corner
frequencies (3-dB point) of the cell against various background
luminances. The corner frequency of the cell ranged from
approximately 10Hz to 90Hz and the speed of roll-off in the cut-off
region was indicative of a second order system (-40dB/decade),
independent of the background luminance. The corner frequency of
the cell increased non-linearly with the background luminance until

a saturation point at a background of approximately 5%.
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Figure 4-9: Frequency responses of the prototype circuit. A.
Normalised impulse responses of the prototype circuit (average of 20
trials for both intensity steps). B. This graph shows the calculated
corner frequencies of the circuit against its corresponding relative
background luminance.

Similar analysis was done on the impulse responses obtained from
the prototype circuit, and is shown in Figure 4-9. The corner
frequency range of the circuit was approximately the same as the
biological photoreceptor. It was designed to be a second order low
pass system. The circuit shows high non-linearity with the changes
of the corner frequencies against various background luminance

levels.
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4.4 Discussions

We have presented an elaborated version of a hardware prototype
circuit of a biological photoreceptor cell and described how the
elaborated circuit has successfully mimicked most of the important
characteristics of the cell. Although this paper only discussed the
evaluations of the circuit against non-realistic conditions (steady-
state impulse and step response tests), these tests were sufficient to
permit the accurate design, implementation and tuning of all stages

in the prototype circuit.

This elaborated artificial insect photoreceptor circuit was made as a
more faithful mimic of the biological system than existing
neuromorphic chip designs. Unlike many other designs this
elaborated circuit is embedded with much more complicated features

that mimics almost all features of biological photoreceptors.

The first feature is the soft saturation of the V LOG I curves. The
elaborated circuit shows a significant saturation at the output when
the input pulse intensity is high. This characteristic is a product of
the final static non-linear stage (Naka-Rushton Stage). Instead of a
hard saturation (Delbriick et al. 1996) this final stage smoothly
saturates the output of the circuit in a similar way to the

neurobiological data.

Another important feature, which has not been incorporated into
any current neuromorphic designs, is the variable gain and corner
frequency stage, which acts in a similar way to an automatic shutter
in a digital system. At low light levels the gain of the system is
increased and the corner frequency lowered (increasing integration
time). Studies have shown that a variable corner frequency

photoreceptor may improve the visual information coding in
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biological visual systems (Weckstrom et al. 1995; van Hateren et al.
2001). This makes sense because under dark conditions the visual
system has to slow down in order to allow time for a sufficient
number of photons to enter the eyes for a reliable image to be formed
(similar to conventional camera). By slowing down the system, and
rejecting higher frequency components where there is little or no
signal, the overall signal to noise ratio will increase; i.e. trade off

between speed and signal-to-noise ratio. Similarly, when the
background luminance is sufficiently high, the system is sped up in
order to avoid early saturations and permit a more rapid response to

stimuli.

Such a robust, elaborated adaptive artificial photoreceptor model not
only provides a feasible front-end solution to many neuromorphic
designs but it could also provide a reliable solution for many
neurobiologists to use as a front-end for more elaborate systems
which are designed to copy higher-order functions of the visual
system such as the calculation of wide-field motion and the

identification and tracking of targets.
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Chapter 5: Dynamic Analysis (Panoramas)

Chapter 5: Response of a Neuromorphic
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Abstract

Phototransduction processes in fly photoreceptor cells are highly
non-linear, displaying adaptation to background luminance, thus
increasing the dynamic range of visual information perceived.
Physiological studies suggest that this adaptive feature of the fly
photoreceptor cells is capable of improving the effective dynamic
range up to approximately 8 log units, depending on species. A
number of neuromorphic models of insect visual systems have been
proposed, with the front-end photodetector being a near linear input
system. In this paper we analysed and evaluated the necessity of
having a robust, elaborated adaptive photodetector model as the
front-end of an artificial visual system. A neuromorphic model was
used for comparison with neurophysiological recordings from fly
photoreceptor cells. Two types of naturalistic images were used
during experiments: (i) traditional (8-bit) natural scene panoramic

images and (ii) high dynamic range (32-bit single precision floating-
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point) natural scene panoramic images. The same ultra bright light
emitting diode was used to playback the panoramic images as time
series of intensities to both the fly photoreceptor and the
neuromorphic model. Time and frequency domain analyses were
used to compare the similarity of the neuromorphic model to the
actual neurobiological data. To summarise the findings: (i) the
neuromorphic model was a good mimic of actual photoreceptor cells
under complicated naturalistic conditions, (i) the neuromorphic
model responded in an almost invariant way to large changes in
image intensity (iii) the neuromorphic model had a larger signal to
noise ratio than a simple linear model under low lighting conditions,
(iv) varying the playback speed (relative motion) of the panoramas
had no significant impact on the robustness of the neuromorphic

model.

Key words: Insect Photoreceptor, Insect Visual System, Adaptive Photoreceptor,

Neuromorphic, Bio-inspired Vision, Naturalistic Stimuli
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5.1 Introduction

Light intensities in real-world environments can vary considerably,
especially during partially cloudy days. Despite the changes in
surrounding light intensities, most animals are still able to navigate
properly ~without experiencing significant problems. This
compensation for varying light levels is not a conscious activity as
visual systems have built-in light adaptation mechanisms to
increase the effective range of perceived visual information
(Baumann 1975; Laughlin et al. 1978; Matic et al. 1981; Fain et al.
2001; Silva et al. 2001). Insects in particular have naturally,

throughout millennia of evolution, developed an elegant solution to
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cope with high-bandwidth environments efficiently using their low-
bandwidth visual systems. Physiological studies suggest that by
having an adaptive mechanism animals, and insects, are able to
increase their ability to visualise anything in a range of about 8 log
units of intensity (Laughlin 1989). A number of researchers have
modelled and implemented parts of insect visual systems, most
notably the motion sensitive pathways, but many have neglected the
importance of faithfully simulating earlier stages of visual
processing, despite realising the fact that light adaptation occurs in
the early stage of the insect visual pathway, i.e. photoreceptor stage
(Kramer et al. 1995; Delbriick et al. 1996; Sarpeshkar et al. 1996;
Liu 1999).

Without a good photoreceptor stage, the signals that propagate
through the rest of the system might not produce a reliable output
for the following higher order stages. For instance, the classic
Reichardt Correlator model which uses linear detectors as the front-
end to represent the photoreceptors poorly mimics the biological
motion detectors as a velocity estimator, especially under dynamic
(naturalistic) situations (Dror et al. 2001; Rajesh et al. 2004), while
these authors showed that inclusion of some static nonlinearity to
mimic some aspects of photoreceptor-like processing improved
performance. Their models lacked the dynamic adaptation to
luminance and contrast that has been shown to be necessary to
mimic biological photoreceptor responses under similar conditions
(van Hateren et al. 2001). Therefore, there is a need to devise a
robust, elaborated front-end photodetector that properly mimics the
biological photoreceptor cells that is robust in both the artificial and

real-world environments.
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It is impossible to conduct an in-vivo experiment on insect
photoreceptor cells while having the insects manoeuvring freely in
the natural environment, since all in-vivo recordings have to be done
without any movements between recording apparatus and the insect
brain. However, by having a reliable neuromorphic photoreceptor
model, it is now possible to reliably predict the photoreceptor
responses of a manoeuvring insect to the complex dynamic natural
environment (Lindemann et al. 2005). The neuromorphic
photoreceptor can be mounted on a robotic platform to manoeuvre
around in the natural environment to collect photoreceptor data in

real-time.

5.2 Methods

In this article, we have analysed and evaluated our elaborated
neuromorphic photoreceptor model against 18 naturalistic scenes;
five Low Dynamic Range (LDR) 8-bit panoramic images and thirteen
High Dynamic Range (HDR) 32-bit panoramic images. Analysis
shows that the neuromorphic model was a very close mimic of the
biological photoreceptor cells in both the time (correlation) and
frequency (coherence) domains. The neuromorphic model was tested
for the effects of different maximum playback intensities (8-bit

panoramas) and different playback speed (32-bit panoramas).

The 8-bit format LDR images were used in initial experiments.
However, since the real-world luminance covers a much larger
range, it is important that we be able to generate a system that
realises a better representation of the real-world luminance. Playing
back the luminance dynamic with only 256 steps can only produce a

contrast between the dullest non-zero value and the brightest value
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of 1:255, i.e. a poor representation of the real-world contrast. Since
our system is capable of performing at a better dynamic range
(1:109), later experiments were carried out using a set of 32-bit HDR

panoramic images.

5.2.1 Stimuli Generation

The visual stimuli were presented to the fly photoreceptors and the

neuromorphic model using an ultra bright green Light Emitting

Diode (LED; Luxeon Star, LuxeonTM). The LED was driven by a
calibrated high current amplifier (350mA maximum current output)

and the luminance level was fully controlled via a 16-bit data

acquisition card (NI PCI6221, National InstrumentsTM). The non-

linear response of the LED with input voltage was recorded using a
high precision photodiode (265, UDT Instruments' ') and photodiode

amplifier (PDA750, Terahertz Technology IncTM) combination. This
transfer function was then used to produce a linearised response

curve for the system. The maximum playback luminance of the LED

was recorded to be approximately 70,000Cd/ m’ (100%), comparable

to the luminance of the sky close to the sun on a bright day.

Due to the non-linear action of the LED close to threshold it was
possible to accurately modulate extremely dim stimuli (0.0001%) at
the lower end while still being able to deliver very bright stimuli. The
usable dynamic range was six log units (120dB), which is greater
than that permitted by a 16-bit linear system which would have a
range of 4.8 log units (96dB). The LED was electrically isolated using
an optical fibre core light guide to eliminate electrical noise
interferences. A high precision 5-axis Cardan-Arm system was used

to move the light source during experiments. The tip of the light-
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guide was placed close enough to the detector under test (either
biological or artificial) to fill its acceptance angle. In other words, the
LED was effectively an extended source. But since the stimuli played
out through it had been sampled in a manner that takes into
account the normal optics and sampling of the fly eye, we can use
this approach to reconstruct the scene in two-dimensions as

encoded by the eye.

5.2.2 Panoramic Images - Generation

Two sets of images were used during experiments: (i) 8-bit LDR
panoramic images. (ii) 32-bit HDR panoramic images. The images
were captured using a high resolution digital camera (Nikon D-70)
mounted on a panoramic tripod head, with the centre of rotation
aligned with the lens nodal point. Images were taken at 30°
increments and a panorama stitching software was used to stitch
the images together to complete the whole 360° horizontal field of
view. Windy days were avoided during image capture in order to
minimise any movements or changes to the scene settings because
any differences between the adjacent images could introduce
stitching artifacts. Figure 5-1 further illustrates the methodology

discussed above.
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Figure 5-1: Panoramic image generation setup. Twelve images (i -
xii) were taken using a digital camera mounted on a panoramic
tripod (left). All the images were stitched together to form a complete
360° (horizontal) panorama (right).

More effort was spent generating the high dynamic range images in
order to better represent the real-world luminance. Similarly to the
8-bit images, several images were taken before stitching them
together to form a panoramic image. However, instead of just a
single shot per 30°, three shots of the same scene were taken at a
time with different shutter speeds. The camera was preset to an f-
stop number of eleven and the first shutter speed was adjusted such
that the brightest part of the scene did not saturate the camera’s
dynamic range. The two subsequent shots of the same scene were
taken using progressively faster shutter speeds. A total of 12x3
shots were taken per panoramic image and all of the shots were
saved as .NEF (raw format). NEF images were converted to 16-bit
TIFF format in Photoshop, but left in a raw (unprocessed) state for
subsequent processing. One panorama was constructed for each
shutter speed using PTGui software and all the processes and
output were kept at 16-bit format. The non-linear encoding of
luminance by the camera was corrected (Debevec et al. 1997) and
the images combined and converted to 32-bit floating point using a

custom program written in LabVIEW®.
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8-bit Panoramic Images

All the 8-bit panoramic images were scaled to 1000x150 pixels
(360x54 deg). In order to closely mimic the optical characteristics of
a fly, the panoramic images were then pre-blurred with a 1° half-
width Gaussian function in Photoshop. 36 rows were sampled
during experiments to mimic an inter-receptor angle of 1.3°
(Stavenga 2003; Straw et al. 2006). Only the green channel of the
images was presented since the majority of the photoreceptors are
green sensitive (Smakman et al. 1986). Figure 5-2 further illustrates

the procedures discussed above.
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Original Panorama (8000x1200 pixels)

l Green Channel

l Gray Scale

Gaussian Blurred (half-width of 1 degree) & Down-sampled (1000x150 pixels)

|
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l 36 rows (inter-receptor angle of 1.3 degree)

R1TR2R3 R33

LED Brightnesses, %

Pixel, n
Raw Data Input Stimulus

Figure 5-2: 8-bit panoramic image generation. The original images
were taken in a full colour format and they were stitched together to
form a full colour panorama as shown (8000x1200 pixels). Since the
flies photoreceptors are green colour sensitive, the panorama was
deliberately filtered in Photoshop to only keep the information from
the green channel. The panorama was then converted to the grey
scale format for better representation on the screen. A half-width of
1° Gaussian blur was applied to the grey-scaled panorama to
emulate the optical blur of the insects’ eyes. The panorama was
down-sampled and converted to a natural time series of intensities.
R1 to R36 were the rows of the down-sampled panorama and they
were played from the left to the right of the panorama during
experiments, i.e. a spinning drum effect.
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For this paper, we used five different 8-bit panoramas. Each of the
panoramas was played back at eight different maximum intensities
in order to thoroughly evaluate the artificial circuit under various
luminance conditions: 0.1%, 0.5%, 1%, 5%, 10%, 30%, 50% and
100%. The panoramas were displayed at 1kHz, i.e. simulating a

rotational speed of 360°/s.

32-bit Panoramic Images

The HDR panoramas were scaled to 8000x1600 pixels (360x72 deg)
and had a 1.4° half-width Gaussian blur, which matches the size of
the receptors in the bright zone of Eristalis tenax (Stavenga 2003). In
order to emulate an inter-receptor angle of 1° (Straw et al. 2006}, the
panoramas were converted to 8000x62 and the first row played twice
to reduce start-up noise (onset saturation due to low luminance pre-
adaptive states). Note that the inter-receptor angle of the 32-bit
panoramas was based on the horizontal measurement on a hex-
sampled grid. Hence, the vertical distance had a factor of 1/cos (30°)
and it must be included for the above calculations of resolutions to

be correct (Figure 5-3).

The HDR panoramas were played back at real-world luminance
levels and various speeds: 45°/s, 90°/s, 180°/s, 360°/s, 720°/s and
1440°/s.
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Hexagonal Representation of Flies Compound Eyes

Inter-receptor angle (1 deg)

1.155 unit IA%

Figure 5-3: Hexagonal representation of fly’s compound eye where
each hexagonal box represents a single facet lens. 1° inter-receptor
angle was used to calculate the amount of rows of the panorama
required for experiments.

5.2.3 Electrophysiological Recordings

A number of electrophysiological experiments were conducted to
evaluate the responses of biological photoreceptors to the stimuli. All
experiments were recorded in the fronto-dorsal “bright-zone” (Straw
et al. 2006) photoreceptors of intact hoverflies (Eristalis tenax). Since
photoreceptors are temperature sensitive (Tatler et al. 2000),
temperature was controlled and maintained in the range 23-25°C.

Individual photoreceptor cells were penetrated with a manipulated
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micropipette filled with 2.0M KCI, with a resistance of 100-200MQ.
The microelectrode was connected to a pre-amplifier (BA1S npi) and
the amplified output was connected to a high precision S0Hz filter
(Hum Bug, Quest Scientific) to eliminate unwanted power line

interference. The output of the Hum Bug was monitored using a

digital oscilloscope (TDS210, TektroniXTM). Results were recorded
using the 16-bit data acquisition card system (NI PCI6221, National

InstrumentsTM) and custom software written in LabVIEW®,

5.2.4 Neuromorphic Modelling and Recordings

The neuromorphic model was designed and implemented using
electronic discrete components available off the shelf. The
neuromorphic model was built on breadboards for testing and
evaluation purposes. Initial modelling was done using Matlab &
Simulink and DXP simulation suite software. A working model was
then used as a basic model to implement the neuromorphic model
which consisted of a cascade of several dynamic and static non-
linear stages to mimic the response of a true biological photoreceptor
(Mah et al. 2006) (Chapter 3).

Stimuli similar to those used during electrophysiological recordings
were applied to the prototype circuit to obtain results for comparison
purposes. An amplified photodiode (TSL251) was used as the light
detector for the neuromorphic model. Data were recorded using the
16-bit data acquisition card system and custom software written in
LabVIEW®.
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5.2.5 Data Analyses

Mathematical approaches were used to evaluate the similarity
between the biological photoreceptors and artificial photoreceptor
circuit in both time (correlation) and frequency (coherence) domains.
Averages were obtained from data with multiple trials and 95%
confidence interval was used to statistically measure the error
margin. Both analyses were performed using custom software

written in LabVIEW®,

Panoramic Images — Reconstruction

All the results obtained during experiments were resynthesised and
rescaled (1000x150 for the LDR panoramas and 1000x200 for the
HDR panoramas) from the neuronal recordings using a custom

program written in LabVIEW® for image reconstruction.

Noise Limit

A Fast Fourier Transform (FFT) was used to measure the noise limit
for all data collected from the 8-bit panoramas. Since the data were
sampled at 1kHz, it was reasonable to assume that the wide-band
signal which becomes discernable as a plateau region near the
Nyquist limit (i.e. 500Hz) was white noise. Thus, the average power
spectra of the frequencies ranging from 450-500Hz were measured
to determine the mean noise level (dB) for that particular panorama
scene. The upper bound of this noise level (at mean + 95% CI of the
mean) was then used as a point to statistically (p>0.05) determine
the noise-limit frequency of any power spectra obtained from the
experiments, i.e. the noise-limit frequency of the recording was

located at the point where the recorded spectrum rose above this
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upper bound curve. Any regions of the spectrum below this level can

be considered to be noise.

Power Spectrum - Noise

40
20
0
@ 20 Photoreceptor
s Mean Noise Level
g

— Upper Limit

0 500 1000 1500 2000 2500

Frequency, Hz

Figure 5-4: Power spectrum of the noisy biological photoreceptor
response to a stimulus with an intensity equal to the median
intensity of a scene (Barr-Smith) from a 32-bit panorama. The upper
limit (mean+95% CI of the mean) curve was fitted to the spectrum,
clearly showing the departure from the mean noise level at lower
frequencies

A similar method was applied to measure the noise limit for the 32-
bit panorama power spectra, which were sampled at 5kHz. However,
to determine the white noise level for the 32-bit panoramas, a
recording was made to measure the response of the biological
photoreceptor to a stimulus equal to the median intensity of one of
the thirteen panoramic images (Barr-Smith). It was found that the
resulting noise power spectrum exhibited a non-linear curve at lower
frequencies, instead of a constant value. As a result of this, an upper
bound curve was fitted to the spectrum to obtain the noise upper

bound (Figure 5-4). This fitted curve was then used to determine the
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noise-limit frequency in the 32-bit panorama spectra in a similar

manner as with the 8-bit recordings.

Peak Value, Average Passband and Corner Frequency

Since it would be difficult to visually measure the performance of the
non-linear photoreceptor circuit against the linear system or the
actual biological photoreceptors, three important parameters (peak
value, average passband and corner frequency) were obtained from
the analysed coherence curves as illustrated in Figure 5-5. The peak
value was taken as the maximum coherence value of the curve and
the corner frequency was measured when the coherence value was
0.7. The average passband was calculated by averaging the
coherence values when the power spectrum was above a defined

noise-limit frequency (obtained from the power spectrum curve).
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Figure 5-5: Coherence analysis parameters. The maximum value of
the curve was assigned as the peak value parameter. The corner
frequency was located where the coherence value was at 0.7. The
average passband was obtained by averaging the coherence values
between the frequency band of 0 and noise-limit frequency.

100



Chapter 5: Dynamic Analysis (Panoramasj

5.3 Results

5.3.1 8-bit Images

Figure 5-6 shows the reconstructed images from the output
responses of both the biological and artificial non-linear
photoreceptors to one scene played back at a variety of luminance
levels. Notice that the output images for both were very dim when
the maximum playback intensities were very low (0.1% and 0.5%).
As the intensity increased, the images became more visible as the
contrast of the images was greatly enhanced. More details of the
images were observed after being processed by the photoreceptors.
The darker bits of the image were amplified and the brighter parts
darkened. Similar output responses were observed for the other 4

panoramas (Appendix: Figure Al-4)
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Figure 5-6: Reconstructed output images from both the actual
biological photoreceptors (average of 4 trials) and the artificial
photoreceptor (no repeats) at several maximum brightness playbacks
~ 0.1%, 0.5%, 1%, 5%, 10%, 30%, 50% and 100%. The image at the
top of the figure was used as a reference for all mathematical
analyses.

Power Spectrums

Figure 5-7 shows the power spectra of the photoreceptor output
images to a single LDR scene at various maximum playback
intensities. The power spectrum curves shifted closer to that of the
reference image curve as the maximum playback intensity increased,

i.e. more details from the panoramas were captured by both the
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biological photoreceptors and the artificial photoreceptor as the
playback intensity increased. Notice also that the power spectrum
curves for the circuit were generally weaker compared to the
biological output during dim playback intensities (0.1%, 0.5%, 1%
and 5%). This may due to the imperfect matching of the circuit
corner frequency to the actual biological photoreceptors. As the
intensity increased (10%, 30%, 50% and 100%), the power spectrum
curves of the biological photoreceptors and the circuit became
similar. The curves also tended not to shift that much as both the

biological and artificial photoreceptors reached their saturation level.

Figure 5-8 shows the average power spectra of all five images at
various intensities. Again, the power spectrum curves shifted to the
right as the playback intensity increased. The power spectrum
curves for the artificial photoreceptor were lower compared to the
actual biological photoreceptors during dim intensity playbacks
(0.1%, 0.5%, 1%, 5% and 10%). As the playback intensity increased,

both of the curves tended to saturate at the same level.
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Figure 5-7: Power spectra under various maximum playback
intensities (0.1%, 0.5%, 1%, 5%, 10%, 30%, 50% and 100%). The
dotted lines on the graphs were used as a noise level indication
where anything below the line was considered noise.
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Figure 5-8: Average power spectrums from five panoramic images
(8-bit) under various maximum playback intensities (0.1%, 0.5%,
1%, 5%, 10%, 30%, 50% and 100%). The dotted lines on the graphs
were used as a noise level indication where anything below the line
was considered noise.
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Correlation Analyses

Figure 5-9 shows the average correlation analysis between the
artificial insect photoreceptor and the actual biological photoreceptor
cells. A linear system was used as an experimental control. The
artificial photoreceptor showed a great correlation to the biological
cells for all the panoramic images with majority of them having an
average r2 value of greater than 0.8 (better than the linear system
which had r2 < 0.7). The artificial photoreceptor had an average (for
all light levels except 0.1%) 18.92% improvement in the correlation
coefficient over the simple linear system. Also note that the artificial
photoreceptor was mimicking the biological photoreceptor optimally
for all five images where the maximum playback intensity was at 1%
with an average r2=0.892+0.028 (mean * 95% CI of the mean)
compared to the linear system with an average r2=0.835+0.039.
However, the correlations tended to depreciate as the maximum

playback intensity increased.

Average Correlations
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Figure 5-9: Average correlation of the output of the actual biological
photoreceptor cells (average of 5 r? values from five different images
under the same maximum playback intensity; 4 trials each) against
the artificial insect photoreceptor circuit (no repeats). Error bars
show the standard errors.
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The correlation of the artificial non-linear photoreceptor response to
the biological photoreceptor was always higher than for the linear
system except at the playback intensity of 0.1%. In this instance the
artificial photoreceptor was incapable of demonstrating a good
correlation (r?=0.456+0.231) with the biological photoreceptors
compared to the linear system (r2=0.673+0.213), likely due to noise
at the input to the system caused by the use of a linear photodiode
(TSL 251).

Coherence Analyses

Figure 5-10 shows the coherence analysis output of an image
(Close.png) against various maximum playback intensities. Notice
that the coherence curves were shifted to the right as the playback
intensity increased. At low intensity (0.1%), the artificial
photoreceptor was highly cohered (> 0.7) with the biological
photoreceptors and had a corner spatial frequency of approximately
0.1cycles/°. As the maximum playback intensity increased, the
artificial photoreceptor became highly cohered with the biological
photoreceptors for a larger range of spatial frequencies. However, as
the maximum playback intensities were beyond 5-10%, the curves
tended not to shift any further (saturated). The corner spatial
frequency of the saturated curves was at approximately 0.5cycles/®

for this particular image.
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Figure 5-10: Coherence analysis between the actual biological
photoreceptor cells (4 trials) and the artificial photoreceptor circuit
(no repeats) at various maximum intensity playbacks.

Figure 5-11 shows the output of two important analysed parameters:
average passband coherence values and average corner frequencies
from the five different panoramas. Notice that the overall average
passband coherence values (Figure 5-11a) of the linear photodiode
against biological photoreceptors were lower compared to the
average coherence values of the artificial photoreceptor, i.e. the
photoreceptor circuit was performing robustly under all the playback
intensities. Note that the photoreceptor circuit performed its best
during the 5% maximum intensity playback with average passband
value of 0.847+0.026 CI. The lowest average passband value
calculated for the photoreceptor circuit against biological
photoreceptors was 0.707+0.046 CI at the playback intensity of
0.1%.
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The low average passband values (in general) for the linear
photodiode system against the biological photoreceptor strengthen
the fact that the photoreceptor circuit was mimicking the actual
biological photoreceptors better than the simple linear system.
Notice that the lowest average passband values for the linear system
was 0.655+0.044 CI at playback intensity of 0.1% while the highest
was 0.769+0.028 CI at 50% maximum intensity playback.

The average corner spatial frequencies (Figure 5-11b) for both the
linear photodiode and artificial photoreceptor tended to increase as
the maximum playback intensities increased, i.e. the coherence
curves were shifted to the right as the playback intensities
increased. They both saturated at approximately 0.45cycles/° during

high intensity playback (beyond 5-10%).
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Figure 5-11: Coherence analysis parameters of the 8-bit panoramic
images. a. Average passband values calculated from the coherence
analyses of the 8-bit images for both the photoreceptor circuit and
linear photodiode against actual biological photoreceptors (averages
of 5 mean values from 5 different images under the same playback
intensity; 4 trials each). Error bars show the 95% confidence interval.
b. Average corner frequencies from the coherence analyses for both
the photoreceptor circuit and linear photodiode against actual
biological photoreceptors (averages of 5 mean values from 5 different
images under the same playback intensity; 4 trials each). Error bars
show the 95% confidence interval.
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5.3.2 32-bit Images

The following figure shows the reconstructed images of both the
recorded Dbiological photoreceptors output and the artificial
photoreceptor output (Figure 5-12). Notice that as the playback
speed increased, the images seen by both the biological
photoreceptors and the artificial photoreceptor were blurred (360°/s,
720°/s and 1440°/s). Similar output responses were observed for

the rest of the 12 panoramas (Appendix: Figure A5-16).

Reference Image

Barr-Smith.png {1000x200 pixels)

Artificial Cell Output

ik
-

180 deg/s

&\1‘ - : £ r -‘: :

Figure 5-12: Reconstructed output images from both the actual
biological photoreceptors (average of 4 trials) and the prototype
circuit (no repeats) at several playback speeds - 45°/s, 90°/s,
180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of the
figure was used as a reference for all mathematical analyses.
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Power Spectrum

Figure 5-13 shows the average power spectrums of 13 different
images at the 6 different speeds: 45°/s, 90°/s, 180°/s, 360°/s,
720°/s and 1440°/s. According to the power spectrum curves, the
artificial photoreceptor output shared a very similar output energy
level with the biological photoreceptors output. As the speed of the
panorama playback increased, the energy at high spatial frequency
for both the artificial photoreceptor and the biological output
decreased. At the lowest speed (45°/s), the power spectrum curves
for both the artificial photoreceptor and biological cells were
saturated at the noise-limit-frequencies of 1.836cycles/° and
0.683cycles/°, respectively. The saturation point decreased as the
speed increased with a minimum saturation point of 0.317cycles/®
(artificial photoreceptor) and 0.283cycles/° (biological cells) at the
playback speed of 1440°/s.

The power spectra of the photodiode output (linear system) were
used as the control to the experiments. Note that, as the playback
speed increased, both the power spectra from the photoreceptor
circuit and biological photoreceptors tended to shift to the left, away
from the linear system power spectra. In other words, high spatial
frequency components of the panoramic images were filtered by the
non-linearities of the biological and artificial photoreceptors as the

playback speed increased.
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Figure 5-13: Average power spectrums from thirteen panorama
images (32-bit) under various playback speeds (45°/s, 90°/s,
180°/s, 360°/s, 720°/s and 1440°/s).

Correlation Analysis

Figure 5-14 shows the average correlation analyses between the

artificial photoreceptor and the actual biological photoreceptor cells.
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Again, a linear system was used as a control experiment. The
artificial photoreceptor showed an excellent correlation to the
biological cells for all the panoramic images and had an average r?
value > 0.8 (greater than the linear system — approximately 0.6). Also
notice that the artificial photoreceptor was mimicking the biological
photoreceptors optimally for all the 13 images when the playback
speed was at 90°/s with an average r2=0.862+0.049. However, the
correlations tended to depreciate as the playback speed increased,
i.e. the similarity between the artificial photoreceptor the actual
biological photoreceptors in the time domain decreased as the
playback speed increased. This was because as the playback speed
increased, the long time constant decaying of the biological
photoreceptors became significantly slower as compared to the

adaptation rate of the artificial photoreceptor.
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Average Correlations
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Figure 5-14: Average correlations of the actual biological
photoreceptor cells (average of 13 r* values from 13 different images
under the same playback speed; 4 trials each) against the artificial
insect photoreceptor circuit (no repeats). Error bars show the
standard errors. The 13 different panoramic images (32-bit quality)
that were used to test and evaluate both the actual photoreceptor
and the artificial circuit were Barr-Smith, Block, Botanic, Bushes, Car
Park, Close, Creek Bed, Lab, Mt Lofty, Outdoor, Rock Garden, Shadow
and Tree.

Coherence Analysis

Figure 5-15a shows the average passband values for the artificial
photoreceptor and linear photodiode against the actual biological
photoreceptors of 13 different panoramas. Again, the average
passband values for the artificial photoreceptor against the actual
biological photoreceptors were higher for all playback speeds as
compared to the simple linear system. However, as the playback
speed increased, the average passband values for both the biological

photoreceptors and artificial photoreceptor decreased. For the
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artificial photoreceptor, the maximum average passband was
measured at 0.735+0.035 CI during the playback speed of 45°/s
while the minimum was measured at 0.31620.068 CI during the
playback speed of 1440°/s. As for the linear system, the values
measured for the average passhand were smaller as compared to the
artificial photoreceptor. The lowest point measured from the linear
photodiode curve was at 0.274+0.060 CI during the highest playback
speed (1440°/s), while the highest point measured was at
0.529+0.024 CI during the playback speed of 45°/s.

Figure 5-15b shows the average corner frequencies from the same 13
images. The corner frequencies for both the artificial photoreceptor
and linear photodiode decreased as the playback speed increased
with average corner frequency ranging from 0.49 cycles/°® at 45°/s to
0.066¢cycles/° at 1440°/s for the artificial photoreceptor and 0.36
cycles/° at 45°/s to 0.055cycles/° at 1440°/s for the linear
photodiode. The percentage of difference between the average corner
frequencies of the artificial photoreceptor and the linear photodiode

had became less significant as the playback speed increased.
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Figure 5-15: Coherence analysis parameters of the 32-bit panoramic
images. a. Average passband values calculated from the coherence
analyses of the 32-bit images for both the photoreceptor circuit and
linear photodiode against actual biological photoreceptors (averages
of 13 mean values from 13 different images under the same playback
intensity; 4 trials each). Error bars show the 95% confidence interval.
b. Average corner frequencies from the coherence analyses for both
the photoreceptor circuit and linear photodiode against actual
biological photoreceptors (averages of 13 mean values from 13
different images under the same playback intensity; 4 trials each).
Error bars show the 95% confidence interval.
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5.4 Discussion

The mathematical analyses, both in the time (correlation) and
frequency (coherence) domains have shown that our artificial
photoreceptor was a good mimic of actual photoreceptor cells under
complicated naturalistic conditions. The artificial photoreceptor
responded in an almost invariant way to large changes in image
intensity. The adaptive non-linear features (automatic gain control
and variable corner frequency) that were implemented in the
artificial photoreceptor had endowed the artificial photoreceptor with
a greater signal to noise ratio than a simple linear model under low
lighting conditions. Also, various speed playbacks (relative motion) of
the HDR panoramas were used to thoroughly evaluate of the
artificial photoreceptor. Such variations in speed have been shown to
have no significant impact on the robustness and reliability of the
artificial photoreceptor, in spite of the minor decrease in the r?
values as the playback speed increased as shown in Figure 5-14. By
having a robust artificial photoreceptor, researchers are now able to
reliably collect data that was impossible to obtain
electrophysiologically of the biological photoreceptors for an
extensive period of time. The collected data can be used as input
stimuli for better evaluating and investigating higher order neurons

models.

5.4.1 Effects of Light Level

Insect photoreceptor cells are responsible for transmitting light
information into electrical signals for higher order cells in the insect
visual pathway before reaching the brain as visual interpretations
(Carlson et al. 1979). Many researchers have directly modelled the
photoreceptor cells with a linear light detector since the main

characteristic of a light detector is to convert photon energy to
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electrical signal. However, numerous studies have suggested that
insect photoreceptors are not just a simple linear light detector
(Wallcott 1975; Payne et al. 1981). Results from the current
experiments have clearly shown that our artificial photoreceptor is a
better mimic to the biological photoreceptors compared to the simple

linear detector.

Insect photoreceptors are highly non-linear, displaying adaptation to
light and background luminances (Baumann 1975; Laughlin et al.
1978; Matic et al. 1981; Laughlin et al. 1993). Studies suggest that
adaptation mechanisms are naturally equipped to maximise visual
information perceived (Snyder et al. 1976; Laughlin 1989; van
Hateren 1992). Input light signals to the photoreceptors will be
automatically readjusted based on its current states of adaptation.
Input signals that are too bright will be reduced and vice versa, i.e.
an automatic gain control system. Such a mechanism is mainly due
to the anatomical changes and photochemical processes in the
photoreceptor cells, which take place during light-adaptation
(Wallcott 1975). Thus, even extremely dim intensity playbacks
between 0.1% and 0.5% (Figure 5-2) were enough to stimulate the
biological photoreceptors. The photoreceptors automatically adapted
to such dim playbacks and readjusted their gain by amplifying the
input light signals for better visual information coding. The artificial
photoreceptor, equipped with similar adaptive mechanisms, shows
high correlation with the biological photoreceptors for various
maximum playback intensities except during extreme conditions
such as 0.1%. For this case, the artificial photoreceptor was unable
to perform that well due to the insufficient gain settings of the circuit
during low lighting conditions and the limitations of the signal to

noise ratio of the photodetector (TSL 251) used in the circuit.
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Changes in the maximum intensity of the playbacks did not only
change the gain settings of the photoreceptors. Experimentation has
also suggested that insect photoreceptor cells exposed to different
lighting conditions will have different frequency responses (Laughlin
et al. 1993). Insect photoreceptors, which are approximated as
second order low pass filters, change their frequency response
ranges by shifting their corner frequencies non-linearly (Mah et al.
2005). Such effects can be evidenced from the output power
spectrum curves of both the biological photoreceptors and the
artificial photoreceptor (Figure 5-7). During dim playbacks (0.1% and
0.5%), the corner frequencies of the photoreceptors were low, hence
only allowing the low frequency signals to pass through. As the
maximum playback intensity increased, the photoreceptors
increased their frequency ranges and allowed more signals to
propagate through. According to our previous studies, Eristalis tenax
has photoreceptors with a corner frequency range from
approximately 10Hz to 90Hz and they started to saturate at the
maximum corner frequency at approximately 3500 cd/m? (Mah et al.
2006). Such saturation effects can be clearly observed on the power
spectrum curves in Figure 5-7, where there are no significant
changes to the power spectrum curves as the playback intensities
exceed 5%. However, notice that the power spectrum curves of the
circuit reached saturation at a slightly different point. The artificial
photoreceptor started to saturate at approximately 10% maximum
intensity playback. This was because the frequency response of the

circuit was limited by physical components.

Because of the changes of the corner frequency of the system, the
coherence curves of the systems also had to change accordingly.
During dim playbacks, the coherence curve had a much lower corner

frequency compared to brighter intensity playbacks because the
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systems had already filtered out the higher frequencies. Thus, the

coherence curves shifted to right as the intensity increased.

5.4.2 Effects of Speed

Photoreceptor cells are capable of sampling light information at a
temporal corner frequency ranging from 10Hz to 90Hz, depending on
their light adaptation state (Mah et al. 2006). The temporal
properties of a photoreceptor are functionally related to its spatial
properties through image velocities. When an image moves, the
higher spatial frequencies generate the higher temporal frequencies.
For a given image velocity, high spatial frequencies will be lost if the
temporal frequencies they generate are too fast for the photoreceptor
to code (Snyder et al. 1977). As the playback speed increased, the
higher spatial frequencies were lost due to the temporal limitation of
the photoreceptors. The photoreceptors were incapable of resolving
most of the details of the panoramas due to the small amount of
energy at high spatial frequencies. The reconstructed output images

thus appeared to be blurry (see Figure 5-14).

As mentioned, the artificial photoreceptor was implemented and
equipped with all the adaptive non-linear features of a photoreceptor
cell, Thus, the outputs of the artificial photoreceptor showed great
similarity with the biological photoreceptors. The power spectrum
curves for both the Dbiological photoreceptors and the artificial
photoreceptor shifted to the left as the playback speed increased.
Such shifts led to the decrease in the corner frequency of the

coherence curves (see Figure 5-15b).

How could these non-linearities make a better front-end for high-

order processing tasks? Under low background lighting, insect
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photoreceptors increase their gain in order to amplify the bad
lighting conditions for better information coding. However,
increasing the gain of the photoreceptors might be detrimental due
to the photon bump noise. We believe this is why dark-adapted
photoreceptors have a lower corner frequency response compared to
the light-adapted ones - in order to eliminate unwanted high
frequency noise, i.e. to increase the signal to noise ratio. Information
that has been effectively compressed through the non-linearities of
the photoreceptors is then transmitted to limited bandwidth higher
order neurons such as motion sensitive neurons and small target

neurons to perform specific tasks.
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Chapter 6: Neuromorphic Photoreceptor
Model Maximises Information for Higher

Order Neurons
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Abstract

A faithful neuromorphic model of the biological photoreceptor cell
has been designed and implemented using standard analogue
discrete electronic components. This analogue neuromorphic model
has been thoroughly tested and evaluated against actual
photoreceptor cells of the hoverfly, Eristalis tenax using high
dynamic range movie stimuli. Correlation and coherence analyses
show that the analogue circuit is an excellent mimic of the biological
photoreceptors with an r2 value of 0.890+0.030 (meanz*standard
deviation). We then show how the early visual processing actually
maximises the transmission of visual information through the
limited-bandwidth higher order neuron channels in the insect visual
pathway. A simple linear model was used as a control in the
experiments. Snap shots from the movie showed that the early visual
processing had compressed without loss of salience and hence the

loss of visual information after transmission to the higher order
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neurons was minimised. Significant improvements were observed
through the whole movie as compared to the simple linear model.
Such a robust, reliable neuromorphic model could be beneficial to
many applications such as target tracking, motion detector and

surveillance systems.

Key words: Insect Photoreceptor, Insect Visual System, Adaptive Photoreceptor,
Neuromorphic, Bio-inspired Vision
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6.1. Introduction

Biological visual processing involves complex, highly non-linear
photochemical processes that are significantly challenging to model
compared to a linear system, yet many engineers, being aware of the
elegant solutions that nature may provide, are taking inspiration
from biological systems in developing “neuromorphic” models
(Delbriick et al. 1996; Liu 1996; Moini et al. 1996; Sarpeshkar et al.
1996; Kramer et al. 1997; Delbriick et al. 2004). For instance, the
aerobatic manoeuvring capabilities of the hoverfly, Eristalis tenax,
which are directly due to having an “intelligent” visual system,
provide a bio-inspired solution to many potential real-world
applications such as collision avoidance, unmanned aerial vehicle

(UAV) and motion detector systems.

Physiological studies suggest that non-linearities of the biological
visual processing are evident even at the earliest stage of visual
processing in the visual pathway - the photoreceptor cells (Baumann
1975; Wallcott 1975; Payne et al. 1981; Baumann 2000). Theory and
modelling have shown that the non-linearities that occur in the early
visual processing are responsible for maximising the visual

information transmitted via the limited-bandwidth higher order
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neurons in the visual pathway (Snyder et al. 1976; Snyder et al.
1977; van Hateren 1992). However, many bio-inspired models have
completely neglected the importance of having a reliable, good front-
end processing stage. Take for instance the classic Reichardt
Correlator model (motion sensitive), which only uses a linear front-
end system at the early visual processing. Despite responding well to
standard characterised stimuli, this model has been shown to be
inferior under complicated naturalistic stimuli (Dror et al. 2001;
Rajesh et al. 2004). A neuromorphic motion detector chip designed
by Delbriick and Mead (1996) is another example of bio-inspired
model that uses a non-faithful model of the phototransduction stage
as the front-end of the visual processing. Although the chip has been
tested and proven to operate under characterised stimuli such as
pulse and step tests, it has yet to be demonstrated to perform under

complex dynamic naturalistic stimuli.

Therefore, we have designed and implemented an elaborated
photoreceptor circuit that faithfully mimics the biological
photoreceptors (Mah et al. 2006). The photoreceptor circuit consists
of several non-linearities stages that is derived and fine tuned from
electrophysiological experiments. We also built an additional circuit
to mimic the insect large monopolar cell and cascade it to the output
of the photoreceptor circuit in order to demonstrate and evaluate the
importance of having a robust, reliable photoreceptor stage as the

front-end processing for higher order neuron designs.
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6.2 Methods
6.2.1 Stimuli Generation (Movie)

“Moving” Scene - High Dynamic Range Movie

A specialised high precision monochrome 14-bit video camera (XCD-
V50, Sony™) was used to pre-record the movie (naturalistic scenes).
The video camera, which was equipped with green channel filter
(N52-534, Edmund™) and 90° wide angle lens (TF2.8DA-8,
Fujinon™), was mounted on a robotic platform and the movements
of the robot were fully controlled using a wireless remote control.
Video images were streamed at 25 frames/s to a laptop using the
firewire IEEE1394 output port of the video camera. The video
camera was programmed to alter the shutter speed after each frame
(total of 5 shutter speeds used) thus increasing the dynamic range of
the images captured at the expense of temporal resolution, providing
detail in both the dark and light parts of the scene. A custom
LabView® software was used to communicate with an external data

acquisition card in order to acquire all the video images.

The camera was mounted on top of the robot in order to avoid
having the robot appear in the area of interest of the video camera.
Below the camera was a counter balance system in order to reduce
vibrations during video recording. A pair of optical encoders was
mounted on both sides of the wheels to transduce the motion of the
wheels. This was particularly useful for regeneration of the path

travelled by the robot during video recording session.

The recorded video images were Gaussian blurred with half width of
1.4° in LabVIEW® based on the average facet diameter of 40pm in

order to mimic the optical properties of the compound eyes
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(Stavenga 2003; Straw et al. 2006). Figure 6-1 shows how the video
images were finalised as a natural time series of intensities (NTSI) for

visual experiments.
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Figure 6-1: Construction of the natural time series of intensities.
Each frame of the movie had a*b pixels and each pixel that went
through time ti to tn formed a pixel-time series. The pixel-time series

were played back by stitching the back of the series to the front of
the next series and in between each column of the pixel-time series
were some test-series (square waves) to assure the quality of the
recordings. The maximum test was only done once in the whole
movie playback in order to measure the maximum response of the
biological cell or the artificial photoreceptor.

The recorded movie was played back in a vertical raster fashion
starting from the top left pixel. Since the starting scene of the movie
was approximately the same as the ending scene of the movie, each
pixel through time, or known as the pixel-time series, was connected

front-to-back to form a long time series of intensities for visual
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experiments and test-series (square waves) was placed in between
each column of the pixel-time series for offline quality assurance

purposes.

“Stationary” Scene

A digital camcorder (Sony DCR-TRV15E) was mounted on a tripod
stationarily to record the movie at 25 frames/s. We then deliberately
changed the brightness of the movie (offline) into 6 intensity bands
(100%, 50%, 1%, 1%, 50% and 100%) to create extreme luminance
conditions. Again, the recorded movie was played back in a vertical
raster fashion starting from the top left pixel as described in the

previous section.

6.2.2 Data Reconstruction

All the raw data recorded from the visual experiments were saved in
a special custom format in LabView® and the data were
reconstructed back to images using custom software written in
LabView®. The images were then compiled to form a movie sequence

using QuickTime® Pro.

6.2.3 Large Monopolar Cell Circuit Design

This circuit was a temporal model of a Large Monopolar Cell of the
insect visual pathway and did not incorporate any of the known
spatial processing. The circuit model was designed based on the
current existing literature (James 1990). The model was sufficient to
highlight the performance of the photoreceptor circuit against a
simple linear phototransduction system in maximising visual
information transmitted. Figure 6-2 shows the schematic diagram of
the LMC circuit. The circuit consisted of a multiplication stage, a

Naka-Rushton stage, a variable high-pass filter stage, and a high-
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pass control stage. The multiplication stage was used to square the

output of the photoreceptor.

An additional offset of approximately 0.1V was introduced to
eliminate the possibility of having a negative voltage enter the
multiplication stage since the multiplier chip (AD633JN, Analog
Devices) used was only capable of operating in the positive region. A
and B were both amplifier stages with gain factors of 10 and 2.72

respectively.

The output of the multiplier stage was then fed into the Naka-

Rushton stage using the following equation,

A*(B* PhotoOut + offset)’

NRQOut =
(k + A* (B* PhotoOut + offset)*)

(Eq 6-1)

where k=0.03V. The Naka-Rushton stage was designed and
implemented using a standard divider chip (AD734AQ, Analog
Devices). Output from the Naka-Rushton stage was then fed into the
first order variable high-pass filter where the frequency response of
the filter, Fyup was automatically controlled by the high-pass control
stage based on the mean luminance measured at that time. The
variable high-pass filter was designed in such a way that the -3dB
point of the filter frequency response (corner frequency) increased
non-linearly as the mean background luminance increased
(Equation 6-2), similar to the biological responses (Laughlin et al.
1993). The -3dB point stopped changing (saturated) at
approximately 10Hz when the mean background luminance was
greater than 700cd/m?2. The final output was then inverted using a

standard unity gain inverting amplifier stage.
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1

Fpp=——""—" Eq 6-2
VHI 60x10 6 7{1{“?‘: ( q )

Where R, =3.09x10% exp(-38.12CS) - 5.658x10 exp(-27.56CS) (Eq 6-3)

CS =1.487+1.970V,,,, (Eq 6-4)
By
=— Eq 6-5
photo 1750 ( q )

Figure 6-2: A schematic diagram of a second order neuron circuit.
The output signal from the photoreceptor circuit was cascaded to the
second order neuron circuit. The luminance (Bv, in cd/m?) was
averaged to obtain the background value. The vactrol control signal
stage fully controls the frequency response of the variable high pass
filter was dependent on this background luminance.

6.2.4 Data analyses

Correlation and coherence analyses were used to measure the
performance of the photoreceptor circuit against biological
photoreceptors under both time and frequency domains. The

analyses were done on each pixel time-series of the high dynamic
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range movie and results were averaged along all pixels (90 x 58 pixel

time-series). All results are given as mean + SD.

Coherence Significance Levels

From the coherence analyses, we were able to calculate the
significance level (95% CI) of the coherence curve using the equation
6-6.

c :l—a( [ﬁ)] (Eq 6-6)

Where c is the coherence value, o is the confidence interval value
and n is the amount of sample. Since we were working on 90 x 58
pixel time-series, the 95% CI of the coherence curve has a value of
0.024.

Contrast Metric

A contrast metric was chosen as the measure of how detectable the
target was in the scene. The size of the target in the scene was
approximately two pixels by one pixel. A background area was
defined around the target, with a perimeter of two pixels from the
target (28 nearest-neighbouring pixels). A basic contrast metric
would be to compare the mean intensities of the target (i) and
background (ubkg) areas. However, to help account for the target
being detectable due to its internal structure, a root sum of squares
(RSS) method was used, which makes use of the variance of the

target (0% as given by Equation 6-7.

RSS = [(1tgt- Mbkg)? + 0%ege] /2 (Eq 6-7)
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6.2.5 Electrophysiological recording

Electrophysiological recordings were done intracellularly, with a
manipulated micropipette filled with 2.0 M KCI was inserted into the
brain of an intact fly to record its neuronal activities. Experiments
were done in a dark room with the controlled temperature range of
23-25°C. Results were recorded using a 16-bit data acquisition card
system (NI PCI6221, National Instruments™) and custom software
written in LabVIEW®.
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6.3 Results

6.3.1 Correlation Analysis

The average neuronal data (3 trials) acquired from the intact flies
were pre-analysed in order to make sure of their consistency.
Correlation analyses were performed between the trials with
2=0.910+0.046 for N1 and N2, r2=0.915+0.047 for N1 and N3, and
r2=0.913+0.057 for N2 and N3.

Correlation Analysis: Linear Photodiode vs. Raw Input
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Figure 6-3: Correlation analysis for the linear photodiode against
raw input. a. Histogram of the overall correlation of 90x58 pixel-time
series for the linear photodiode system against raw input (n=1). b.
Average correlation output (58 rows) of the linear photodiode against
raw input for 90 columns (n=1).
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In order to make sure that the stimuli were generated accordingly, a
comparison between the raw input data and the linear photodiode
output were performed. Figure 6-3a shows the histogram of the
analysed correlation value for the linear photodiode output against
raw input data of the stimuli. Note that the histogram shows that
the correlation value was at 1 at all the time, i.e. the photodiode had
generated the desired stimuli playback for all the 90x58 pixel-time

series.

Figure 6-3b shows average correlation values of 58 rows for each
column, for 90 columns in total. The results demonstrate strong
correlation between the linear photodiode output and the raw input
data of the stimuli throughout the whole 90x58 pixel-time series.

Again, this indicates that the photodiode was operating satisfactorily.
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Correlation Analysis: Linear Photodiode vs. Cell and Circuit
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Figure 6-4: Correlation analysis for the linear photodiode against
biological cells and circuit. a. Histogram of the overall correlation of
90x58 pixel-time series for the linear photodiode system against
photoreceptor circuit (n=1) and actual biological photoreceptor cells
(n=3, 30 cells, 12 animals). b. Average correlation output (58 rows) of
the linear photodiode against actual biological photoreceptor cells for
90 columns (n=3, 30 cells, 12 animals). c. Average correlation output
(58 rows) of the linear photodiode against photoreceptor circuit for
90 columns (n=1). Errors bars indicate the standard deviations.
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Figure 6-4a shows the histogram of the analysed correlation data
between the linear photodiode system and photoreceptors (both
biological and artificial circuit). For the biological photoreceptor cells,
the peak of the histogram distribution occurred at 8.58% of the time
with 12 value of 0.780. The maximum and minimum r? values were
calculated to be 0.903 and 0.137 respectively. With a very similar
histogram distribution, the photoreceptor circuit was performing at
maximum r2 value of 0.864 and minimum at r2 value of 0.685. The
peak of the histogram distribution occurred at 9.02% of the time
with r2 value of 0.788.

Again, correlation values for each column were averaged and unlike
the results in Figure 6-3b, the analysed results show in Figure 6-4b
demonstrate significant differences between the linear photodiode
system and the biological photoreceptor cells, in which the average
2 value across the whole 90x58 pixel-time series was at
0.791+0.042.

Figure 6-4c shows the detailed average correlation output of each
individual column for the linear photodiode system against
photoreceptor circuit. The average r2 value for all the individual
pixel-time series was calculated to be 0.781+0.037. Note that there
are obvious fluctuations at the analyses output for the biological
photoreceptors compared to those in Figure 6-4b. This was because

the biological recordings were done in a separate cells and animals.
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Correlation Analysis: Circuit vs. Cells
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Figure 6-5: Correlation analysis for the photoreceptor circuit against
biological cells. a. Histogram of the average correlation. b. Average
correlation output (58 rows) of photoreceptor circuit against
biological photoreceptor cells output for 90 columns. b. Average
correlation output (58 rows) of the non-linear photoreceptor circuit
against actual biological photoreceptor cells for 90 columns (n=3, 30
cells, 12 animals). Error bars indicate the standard deviations.

All the previous correlation analyses have shown how the linear
photodiode differs from both the biological photoreceptor cell and the
non-linear photoreceptor circuit. Figure 6-5a shows the histogram of
the analysed correlation value of the photoreceptor circuit against

actual biological photoreceptor cells. Notice that the distribution of
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the histogram is very different compared to the results shown
previously. The overall data was centred at a higher correlation value,
which leads to higher median value of 0.894. The maximum and
minimum values were calculated to be 0.950 and 0.109 respectively.
The peak of the histogram distribution occurred at 12.32% of the
time with r2 value of 0.915.

Figure 6-5b shows the detailed average correlation values for each
individual column of the movie. It has a maximum r? value of
0.853+0.021 and a minimum r2 value of 0.733£0.025. Unlike the
previous results shown in Figure 6-4b and 6-5c, the average
correlation values for all 90 columns of the pixel-time series are
generally higher. Not only that, there were also more obvious
fluctuations in the data simply because the data used in the

analyses were recorded of a few different cells and animals.
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6.3.2 Coherence Analysis

Coherence Analysis: Linear Photodiode vs. Raw Input
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Figure 6-6: Coherence analysis for the linear photodiode against raw
input. a. Normalised power spectrum curves of the linear photodiode
system (P1) and raw input (P2). b. Coherence curve of the linear
photodiode system against raw input data.

Figure 6-6a shows the power spectrum analysis curves of the linear
photodiode system and raw data stimuli. The blue curve, Pl
represents the power spectrum curve of the linear photodiode

system and the red curve, P2 represents the power spectrum curve
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of the raw input stimuli. There are no significant differences between
these two curves, indicating that the linear photodiode system
reproduced the raw input stimuli very closely in the frequency
domain throughout the frequency range of interest, despite a few
noisy spikes in the blue curve at high frequencies which may very

well be due to interference noise from the data acquisition method.

The coherence analysis for both the linear photodiode system and
the raw data stimuli is illustrated on the coherence curve shown in
Figure 6-6b. Again, because of the close similarity between the linear
photodiode system output and the raw input stimuli in the
frequency domain, the coherence value is unity for most of the

frequency range.
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Coherence Analysis: Linear Photodiode vs. Circuit
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Figure 6-7: Coherence analysis for the linear photodiode against
photoreceptor circuit. a. Normalised power spectrum curves of the
linear photodiode system (P1) and photoreceptor circuit (P2) b.
Coherence curve of the linear photodiode system against

photoreceptor circuit.

Figure 6-7a shows the normalised power spectrum curves of the
linear system and the adaptive photoreceptor circuit (P1 and P2).
Both the curves show the 1/f function as expected from a complex

natural scene (Simoncelli et al. 2001). Most of the power was
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concentrated at the low frequencies. The maximum and minimum
power measured were -16.55dB and -162.20dB (noise limit)

respectively.

Figure 6-7b shows how similar the linear photodiode system is to the
raw input data in frequency domain. The coherence curve indicates
that the linear photodiode system was very similar for frequency
range from 0.1Hz to 100Hz with a maximum coherence value of
0.995. The coherence curve rolled off as the frequency increased
with a corner frequency of approximately 87Hz. Any coherence
values above 200Hz exceeded the minimum significance limit

(Equation 6-6) of the curves.
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Coherence Analysis: Linear Photodiode vs. Cells
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Figure 6-8: Coherence analysis for the linear photodiode against
biological cells. a. Normalised power spectrum curves of the linear
photodiode system (P1) and actual biological cells (P2) b. Coherence
curve of the linear photodiode system against actual biological cells.

Figure 6-8a shows the power spectrum curves for both the linear
photodiode system and the average biological photoreceptor cells
output. The actual biological cell output showed relatively higher
power at the low frequency compared to the linear photodiode
system. As the frequency increased beyond 0.2Hz, the cell output

dropped down below the linear photodiode system at approximately
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5dB differences until 2-3Hz. Beyond 3Hz, the cells tended to have a
stronger power output compared to the linear photodiode system
and at about 150Hz and beyond, the power spectrum of the cells
started to pick up some noise spikes. Such interference has no
significant impact to our results since the frequency of interest for

our experiments is way below the noise limit.

Figure 6-8b shows the coherence analysis curve of the linear
photodiode system against the actual biological cells output.
Because the biological cells output were highly non-linear, the
coherence values obtained throughout the whole frequency range of
interest were not close to one. The coherence curve started to roll off
as the frequency increased with the corner frequency of 72Hz. The
maximum coherence value measured was 0.9801 (at 0.0971Hz).
Note that there is a spike at approximately 50Hz, which was due to
the Hum Bug noise filtering system used in the recording equipment.
Any coherence values above 149.71Hz exceeded the minimum

significance limit (Equation 6-6) of the curves.
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Coherence Analysis: Circuit vs. Cells
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Figure 6-9: Coherence analysis for the photoreceptor circuit against
biological cells. a. Normalised power spectrum curves of the
photoreceptor circuit (P1) and actual biological cells (P2). b.
Coherence curve of the photoreceptor circuit against actual
biological cells.

The normalised power spectrum curves, P1 and P2 shown in Figure
6-9a represent the energy curves for both the photoreceptor circuit
and the biological photoreceptor cells respectively. Both of the curves

shared a very similar power spectrum curves up to approximately
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10Hz, in which the biological photoreceptor cells tended to have
higher energy (approximately 10dB more) to code high frequencies.
Again, noise interference is observed in the power spectrum curve of

the biological photoreceptor cells after 150Hz.

Because the photoreceptor circuit was a faithful design of the real
biological photoreceptor cells, the average coherence value measured
in the curve shown in Figure 6-Ob are generally above 0.9. The
coherence curve started to roll-off as the frequency increased with
the corner frequency of approximately 73Hz. Any coherence values
above 134.66Hz exceeded the minimum significance limit (Equation
6-6) of the curves. Again, there was a noise spike at 50Hz that was

mainly due to the electrical interference from the Hum Bug.

6.3.3 Higher Order Neuron Experiment

“Moving” Scene

Figure 6-10 shows a collage of a single snap shot (frame #8123) from
a 10 second movie (playback speed of 1kHz) that was presented to
both the linear photodiode circuit and the adaptive photoreceptor
circuit, the outputs of which were cascaded to the LMC circuit model
for comparison purposes (refer to supplementary material in the
CD). The top left section of the figure shows the input stimuli of the
experiment. The input stimuli were fed to the non-linear
photoreceptor circuit (top right) and the corresponding output was
transmitted through the LMC circuit. Note that the resulting output
of the LMC circuit (bottom right) had clearly spotted the ‘small

target’ in the scene (circled in red), despite the tiny size of the target.

This can be compared to the output of the LMC circuit which

employed the linear photodiode as the front end of visual processing
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(bottom left), which poorly highlighted the small target that was
deliberately integrated in the stimuli scene. Not only was it hard to
discern the small target in the scene, the output did not seem to

contain much of the other salient features in the scene such as trees

and shadows.

Figure 6-10: Frame #8123 - A collage snapshot of an outdoor movie.
The top left section represents the input stimuli and the top right
shows the output response of the photoreceptor circuit. Both bottom
left and right represent the second order neuron circuit (LMC)
output that had the linear photodiode and non-linear photoreceptor

circuit as input, respectively.
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Figure 6-11: Performance comparison between the output of the
non-linear + LMC and linear + LMC. a. Contrast metric (RSS value)
between the target and the local surround (next-nearest neighbours)
for both the non-linear photoreceptor + LMC and linear + LMC. The
data was smoothed by using zero-phase 11 frames of moving
averages filter for display purposes. b. Histograms of the non-linear
photoreceptor + LMC against the linear + LMC, with a bin size of 1.
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As can be seen from Figure 6-1l1a, the detectability of the small
target throughout the duration of the scene was generally improved
when the non-linear photoreceptor was used at the front-end to the

LMC circuit as compared with a linear photoreceptor.

This is more clearly illustrated in the histogram of RSS values
(Figure 6-11b). The modal value for both photoreceptors was found
to be 17. The histogram for the non-linear photoreceptor exhibits a
lower frequency of RSS values around this modal value, instead
having a much greater proportion of frames with high RSS values of
28 and above. The mean improvement in RSS value over the linear
photoreceptor was 75.5 %. This improvement is also reflected in the
higher median RSS value of 29.26 and maximum value of 121
obtained with the non-linear photoreceptor as compared with a
median of 19.45 and a maximum of 105 obtained with the linear

photoreceptor.

“Walking” Scene

The experiments were repeated with a different movie scene (refer to
supplementary material in the CD). Figure 6-12 shows a collage
snapshot of a movie (playback speed of 400Hz) where 2 people were
walking towards the middle of the scene and one of them attempted
to hide behind the tree trunk. The scene was deliberately
programmed to have several bands of maximum intensity playback
(100%, 50%, 1%, 1%, 50% and 100%) in order to demonstrate an
extreme lighting condition and how our non-linear adaptive
photoreceptor circuit provides better visual information to higher

order neurons as compared to the simple linear photodiode system.
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Figure 6-12: Frame #850 — A collage snapshot of an outdoor movie
with camera mounted stationary on a tripod. Top left section
represents the input stimuli with variable bands of maximum
playback intensities (100%, 50%, 1%, 1%, 50% and 100%). The top
right section shows the output from the photoreceptor circuit. The
output of the photoreceptor was cascaded to the LMC circuit and the
result is shown in the bottom right section. The bottom left section is
a result from the LMC circuit that was cascaded with the linear
photodiode as the front-end detector.

Again, note that with the linear photodiode system as the front-end
of the visual processing, no information was captured by the LMC
circuit, particularly in the darkest area, 1% (bottom left). However,
the LMC output (bottom right) employing the non-linear adaptive
photoreceptor circuit as the front-end (top right) demonstrated its
capability to compress visual information elegantly before
transmitting them to the higher order neuron to process. Note that
even in the darkest area of the scene, the LMC circuit was capable of

highlighting the two people in the middle.
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Measured Luminance Variation Over Time
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Figure 6-13: Measured luminance variation over 1400 frames that
were played back at 400Hz, with traces of 2.5 percentile and 97.5
percentile also shown, representing the lower and upper limits
respectively of a 95% CI around the mean. The mean values were
calculated only from the middle part of all the frames (1% intensity
bands). a. The output of the LMC circuit that had the non-linear
photoreceptor circuit as the front-end of visual processing. b. The
output of the LMC circuit that had the linear photodiode circuit as
the front-end of visual processing.

To further investigate the benefits of having the non-linearities of the
photoreceptors at the front-end of visual processing, the mean
values of the LMC responses were calculated for each frame of the
played back movie. Figure 6-13a shows the measured mean
luminance of the LMC output that had a non-linear photoreceptor
cascaded at the front-end stage of visual processing, together with
the upper and lower limits of a 95% CI interval around the mean.
Note that during the first 400 frames of the movie, the mean values
increased sharply followed by a gradual decay, with similar
behaviour in both the upper and lower limit curves. Unlike the mean
values curve, which remained approximately constant (OV) for the
rest of the frames, the upper value curve showed significantly larger
variation in the scene starting from frame number 530. This was
when the person approaching from the left entered the middle part

of the scene and caused an increase in the standard deviation.
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Notice that there was no obvious change to the lower limit curve
simply because the person who entered the scene from the left

mainly caused depolarisations at the output of the LMC circuit.

The second person entered the scene from the right, starting at
frame number 754. At this point, the upper limit curve once again
starts to rise due to the increase of luminance variations in the
scene. At about the same time, the lower limit curve starts to have
some changes simply because the second person creates some
hyperpolarisations responses at the output of the LMC circuit. When
both people walked away from the middle part of the scene, the
amount of luminance variations decreased and thus the difference

between the limit curves and the mean curve decreased accordingly.

The benefits of having a non-linear stage at the front-end of visual
processing can be clearly seen when the results in Figure 6-13a are
compared to the results in Figure 6-13b, in which a linear
photodiode circuit was used as the front-end to the LMC circuit.
Both the lower and upper limit curves show no obvious fluctuations
around the mean value curve. In other words, the LMC circuit did
not detect any person walking into the scene throughout the whole

movie.

4.4 Discussions

Biological visual processing involves complex non-linearities, which
theory and modelling have suggested are responsible for maximising
visual information perceived in the real-world environment (Snyder
et al. 1976; Snyder et al. 1977; van Hateren 1992). The
neuromorphic model that we designed and implemented has clearly

demonstrated how the non-linear compression stage evident in early
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visual processing (photoreceptor cells) actually does assist in
optimising the visual information prior to transmitting it to the
limited-bandwidth higher order neuron channels. Even though
biological visual processing, especially in insects such as flies, has
relatively low visual resolution compared to that in humans, it is still
capable of resolving visual information due to nature’s “intelligent”
compression technique. Such a biological compression technique
would no doubt provide an elegant solution to many current existing

surveillance camera systems.
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Biological visual systems are highly non-linear, displaying
adaptation to background luminance. Theories and models have
suggested that these complex non-linearities which occur at the very
beginning of the visual system pathway (photoreceptor cells) not only
provide an ‘“intelligent” compression technique for the high
bandwidth visual information received by the photoreceptor, but at
the same time assist in the processing of information in higher order
neurons (Snyder et al. 1977; Laughlin et al. 1978; Laughlin 1989;
van Hateren 1992; van Hateren 1992; van Hateren 1992; Brenner et
al. 2000). This represents a key feature in the biological visual
systems of insects which allows them to achieve excellent
performance with limited-bandwidth neuronal channels. By
developing and implementing a neuromorphic model for a biological
photoreceptor I have shown that these advantages can be realised in

practical applications.

This study makes significant contributions in the area of insect
visual system modelling, including the design, construction and
testing of a working neuromorphic photoreceptor circuit, the
development of experimental equipment to obtain high quality
biological photoreceptor recordings and confirm the validity of the

neuromorphic circuit, and the investigation of the effectiveness of
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photoreceptor non-linearities in assisting information processing in

higher order neurons.

7.1 Neuromorphic Photoreceptor Circuit Design

The main objective of this project was to implement a neuromorphic
model of a biological photoreceptor cell based on the mathematical
model proposed by van Hateren and Snippe (2001) with additional
elaborations to better mimic the actual biological photoreceptors.
The prototype neuromorphic circuit was constructed on breadboards
using discrete electronic circuit components. This neuromorphic
circuit has the capability to accept light input that is as bright as
real-world luminance and at the same time perform very similarly to
the actual biological photoreceptor. An amplified photodiode (TSL
251), which had an output range of 0-4V was used as the light
detector for the photoreceptor circuit. Accordingly, the photoreceptor
circuit was designed and implemented to accept voltage ranging from
0-4V, with an output voltage of 0-1V. A preliminary design of the
circuit using printed circuit board technology indicates that the
overall circuit size could be minimized, mainly using surface mount
components. This analog circuit would not only have low power
consumption but at the same time can be made portable for outdoor

experiments.

7.2 Construction of Experimental Equipment

The real-world environment presents very high dynamic range (HDR)
visual information. Thus, it was vital that the circuit design be
evaluated against the actual biological photoreceptors using high
quality 32-bit HDR scenes. During the experiments on the biological
and artificial photoreceptor cells, artificial natural scenes comprised

of high dynamic range images were applied as stimuli, using a light
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emitting diode (LED). In order to properly reproduce the dynamic
range of the real-world luminance, a high current LED driver was
custom-built to drive a green Luxeon Star LED and calibrated to be
able to produce light intensities ranging from 0 cd/m?2 to 70000
cd/m2. Unlike other commercially available LED drivers, this high
current LED driver system was fully dimmable, providing stable,
flicker-free output even at low light intensities. This was vital in
performing high quality visual experiments, particularly since a
dependable low intensity light source was required to accurately
characterize the frequency response of the photoreceptor in a dark-

adapted state.

7.3 Biological Photoreceptor Features

The photoreceptor characteristics of the fly Eristalis tenax are
properly illustrated in Chapter 4 of this thesis, in particular the
relationship between the corner frequencies of the photoreceptors
and the background luminance. The corner frequency increased
non-linearly as the background luminance increased from 10Hz and
tended to saturate at approximately 90Hz when the background
luminance was above 3500cd/m?2. This well-defined steady-state
characteristic of the biological photoreceptor allowed us to further
enhance the circuit design to closely mimic the biological
photoreceptor. This additional elaboration to the circuit successfully
demonstrated the practicality of a variable corner frequency system

that was dependent on the background luminance.

This feature was important as studies have indicated that a variable
bandwidth system allows the insect to maximize the signal to noise
ratio of the visual information. In a dark background, the biological

photoreceptors are very sensitive to light due to the increase in
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photoreceptor gain. Even extremely low intensity stimuli between
70cd/m?2 are sufficient to stimulate the photoreceptors. As a result of
this, they are very likely to pick up high frequency noise /interference
such as photon noise. Thus, in order to ensure that the
photoreceptors perform optimally, they sacrifice their signal
bandwidth by reducing their corner frequency and hence achieve a
higher signal-to-noise ratio in the perceived visual information.
Conversely, because it is very unlikely that the photoreceptors will
pick up any high frequency noise during a light-adapted state, the
photoreceptors increase their corner frequencies for better
bandwidth performance. By implementing this feature in a
neuromorphic model, it is possible to develop an automatic gain

control that is optimised in an information theoretical sense.

7.4 Photoreceptor Circuit Performance

In order to fine tune the neuromorphic circuit and evaluate it
against the actual biological photoreceptor cells, steady-state
analyses were performed on both the circuit and the actual
photoreceptors. Since it was practically impossible to perform any in-
vivo experiments outdoors, all electrophysiological recordings were
done in the laboratory, with a simple linear photodiode output used

as an experimental control.

The measured corner frequency of the circuit varied with
background intensity from 10Hz to 90Hz, closely matching the
experimental results obtained from the biological photoreceptor. The
V Log I curves also exhibited the expected adaptive characteristic.
Correlation and coherence analyses showed that the circuit was

capable of emulating the biological photoreceptor faithfully in both
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time and frequency domains, with an r? value of 0.890£0.030 (mean

+ standard deviation) based on high dynamic range stimuli.

Despite the high level of correlation, there were minor differences
between the response of the biological photoreceptor and that of the
photoreceptor circuit. Under extremely low intensity conditions such
as a luminance of 70cd/m2, the performance of the photoreceptor
circuit suffered from insufficient gain. This was found to be due to
the limitations of the components themselves, in particular the
signal-to-noise ratio of the photodetector used (TSL 251), which was
the lowest-noise cost-effective component available. Additionally, the
photoreceptor circuit corner frequency saturated at a slightly higher
background intensity as compared with the biological photoreceptor.
This was because we had no control over the non-linear
characteristic of the light-dependent resistor component used. While
it may be possible to incorporate additional circuitry to compensate
for or minimize this minor discrepancy, a decision was made not to
do so as this would potentially involve greatly increased design

complexity and thus development time.

7.5 Benefits of Non-linear Photoreceptor Features

Since the implemented photoreceptor circuit was found to be a
faithful mimic of the actual photoreceptor cells, the circuit was used
to study the response of the photoreceptors in a naturalistic moving
scene. To investigate the theory that the non-linear attributes of
photoreceptors improve the quality of visual processing in higher
order neurons, the performance of the adaptive non-linear
photoreceptor circuit was compared with a simple linear detector.
This was accomplished by feeding the visual signal from a real scene

through the photoreceptor circuit prior to transmission to a second
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order neuron, which was implemented in this project by a circuit
mimicking the large monopolar cell (LMC) in the insect visual
pathway.

The results showed that there were significant improvements to the
visual information at the LMC output when the photoreceptor circuit
was used as the front-end of the visual processing unit as compared
to having a simple linear detector. A small target that was
deliberately integrated into the naturalistic scenes was easily picked
out by the photoreceptor circuit + LMC, which may explain how a
low resolution hoverfly has the capability to detect its prey in a
cluttered background as recently demonstrated for higher order
neurons (Nordstrém et al. 2006). Additionally, under extreme
lighting conditions such as the one demonstrated in Chapter 6, the
LMC output managed to pick out movements that occurred even in

the darkest area of the scene.

7.6 Future Work and Potential Applications

The neuromorphic circuit was implemented purely to investigate the
feasibility of designing and implementing a circuit based on a
biological photoreceptor. Thus, some parts of the circuit design may
be not optimized or even not required for certain applications.
Ultimately, implementing the photoreceptor circuit on a chip using
VLSI technology would offer increased portability and open up many

potential applications.

One obvious potential real-world application that arose from this
project was to use a multi-pixel photoreceptor circuit as the front-
end for surveillance camera systems. The pixel-by-pixel adaptation
of insect eyes provides a solid solution to many existing problems in

the standard surveillance camera system, especially when extreme
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lighting conditions are encountered in the scene, such as sun flare
and headlight flare. In situations like these, existing cameras with
global automatic gain control will adjust the gain of the entire scene,
causing loss of important details in other parts of the scene.
However, by having pixel-by-pixel adaptation in the front-end of the
camera, scenes with features that are too bright will not experience
any detrimental effects in other parts of the scene. This is because

each pixel has its own built-in automatic gain control system.

The superior performance of the photoreceptor circuit due to its
intrinsic logarithmic coding and other adaptive non-linear attributes
makes it a desirable option as the front-end for other artificial
systems which perform tasks such as tracking and motion detection.
The potential for fast and robust response could be beneficial in
military applications such as visual target-tracking in missile

guidance or other weapon systems.

Aside from industry-related applications, a portable unit based on
the photoreceptor circuit could allow greater flexibility in collecting
experimental data for further studies in insect vision. Since it has
been shown to faithfully reproduce the characteristics of the
biological fly photoreceptors, it can be used to obtain a reliable set of
data for evaluating or benchmarking models of higher order
neurons. Similarly, it may find use as an educational tool to aid in

demonstrating certain characteristics of the insect visual system.
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Figure A-1: Reconstructed output images (Gardens) from both the
actual biological photoreceptors (average of 4 trials) and the artificial
photoreceptor (no repeats) at several maximum brightness playbacks
— 0.1%, 0.5%, 1%, 5%, 10%, 30%, 50% and 100%. The image at the
top of the figure was used as a reference for all mathematical
analyses.
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Hamlin.png (1000 x 150 pixels)
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Figure A-2: Reconstructed output images (Hamlin) from both the
actual biological photoreceptors (average of 4 trials) and the artificial
photoreceptor (no repeats) at several maximum brightness playbacks
~ 0.1%, 0.5%, 1%, 5%, 10%, 30%, 50% and 100%. The image at the
top of the figure was used as a reference for all mathematical
analyses.
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Lab.png (1000 x 150 pixels}
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Figure A-3: Reconstructed output images (Lab) from both the actual
biological photoreceptors (average of 4 trials) and the artificial
photoreceptor (no repeats) at several maximum brightness playbacks
~ 0.1%, 0.5%, 1%, 5%, 10%, 30%, 50% and 100%. The image at the
top of the figure was used as a reference for all mathematical
analyses.
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Reception.png (1000 x 150 pixels)

Artificial Cell Output

0.1%

0.5%

1%

5%

10%

30%

50%

100%

Figure A-4: Reconstructed output images (Reception) from both the
actual biological photoreceptors (average of 4 trials) and the artificial
photoreceptor (no repeats) at several maximum brightness playbacks
~ 0.1%, 0.5%, 1%, 5%, 10%, 30%, 50% and 100%. The image at the
top of the figure was used as a reference for all mathematical
analyses.
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Figure A-5: Reconstructed output images (Block) from both the
actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-6: Reconstructed output images (Botanic) from both the
actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-7: Reconstructed output images (Bushes) from both the
actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-8: Reconstructed output images (Car Park) from both the
actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-9: Reconstructed output images (Close) from both the
actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-10: Reconstructed output images (Creek Bed) from both
the actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-11: Reconstructed output images (Lab) from both the
actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-12: Reconstructed output images (Mt Lofty) from both the
actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-13: Reconstructed output images (Outdoor) from both the
actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-14: Reconstructed output images (Rock Garden) from both
the actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-15: Reconstructed output images (Shadow) from both the
actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Figure A-16: Reconstructed output images (Tree) from both the
actual biological photoreceptors (average of 4 trials) and the
prototype circuit (no repeats) at several playback speeds — 45°/s,
90°/s, 180°/s, 360°/s, 720°/s and 1440°/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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