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Abstract

Abstract
Biological visual processing is extremely flexible and provides pixel-

by-pixel adaptation. Millennia of evolution and natural selection

have provided inspiration for robust, efficient and elegant solutions

in artificial visual system designs. Physiological studies have shown

that non-linear adaptation of biological visual processing is evident

even at the first stage of the visual system pathway. Theory and

modelling have shown that adaptation in the early visual processing

is required to compress the high bandwidth visual environment into

a sensible form prior to transmission via the limited bandwidth

neuron channels. However, many current bio-inspired visual

systems have neglected the importance of having a reliable early

stage of visual processing. Having a robust and reliable early stage

design not only provides a better mimic of the biologr, but also

allows better design and understanding of higher order neurons in

the visual system pathway.

(C/¿g¡pter 3: A Non-linear Adaptiue Artificial Photoreceptor Ciranit -

Design and Implementation) The primary aim of this work was to

design and implement an elaborated artificial photoreceptor circuit

which faithfully mimics the actual biological photoreceptors, using

standard analogue discrete electronic components. I have

incorporated several key features of the biological photoreceptors in

the implementation, such as non-linear adaptation to background

luminance, adaptive frequency response and logarithmic encoding of

luminance. Initial parameters for the key features of the model were

based on existing literature and fine tuning of the circuit was done

after analysis of actual recordings from biological photoreceptors.
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Abstract

(Chapter 2: Dimmable Voltage-Controlled High Current LED Driuer

Sgstem for Vision Science ExperimenÚs/ The visual stimulus was a

critical component in performing the vision experiments, and has

historically been a limiting factor in performing experiments which

ask critical questions about responses to complicated scenes, such

as natural environments. The ability to reproduce the large dynamic

range of the real-world luminance was important to correctly test the

performance of the model. I evaluated the performance of several

existing light emitting diode (LED) drivers and commercial products

and found that none of them provided adequate dynamic range and

freedom from noise. I therefore designed and implemented a stable

multi-channel, high-current LED driver that allowed creation of light

stimuli with inexpensive analogue discrete electronic components,

and was used for the experiments described in this thesis. This LED

driver, which was properly calibrated to the real-world luminance,

was used in conjunction with à standard commercial data

acquisition card.

(An Btaborated. Electronic Prototgpe of a Biological PLntoreceptor -

Steady-state Analgsis (Chapter 4) & Dgnamic Analysis (Chapter 5))I

performed electrophysiological experiments measuring the responses

of the intact hoverfly photoreceptor cells (R1-6) using both

characterised and dynamic (naturalistic) stimuli. The analysed data

were used to fine tune the circuit parameters in order to realise a

faithful mimic of the actual biological photoreceptors. similar

experiments were performed on the artificial photoreceptor circuit to

thoroughly evaluate the robustness and performance of the circuit

against actual biological photoreceptors. Correlation and coherence

analyses were used to measure the performance of the circuit with

respect to its biological counterpart in both time and frequency

domains respectivelY.
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Chapter 6: Earlg Visual Processing Maximises Information for Higher

Order Neurons)The artificial photoreceptor circuit was then further

evaluated against a complex natural movie scene in which the full

dynamic rafl.ge of the original scenario was maintained' Again, I

performed experiments on both the circuit and actual biological

photoreceptors. Correlation and coherence analyses of the circuit

against the biological photoreceptors showed that the circuit was

robust and reliable even under complex naturalistic conditions. I

managed to design and implement an add-on electronic circuit to the

elaborated photoreceptor circuit that crudely mimicked the temporal

high-pass nature of the second order Large Monopolar cell (LMC) in

order to observe how the non-linear features in the early stage of

visual processing assists higher order neurons in efficiently coding

visual information.

Based on this research, I found that the first stage of visual

processing consists of numerous non-linearities, which have been

proven to provide optimal coding of visual information' The variable

frequency response curve of the hoverfly, Eristalis tenax was mapped

out against large range of background luminance. Previous studies

have suggested that such variability in frequency response was to

improve signal transmission quality in the insect visual pathway,

even though I have not made any quantitative measurements of the

improvements. I also found that high dynamic range images (32-bit

floating point numbers) are better representations of the real-world

luminance for naturalistic visual experiments compared to the

conventional 8-bit images. I have successfully implemented a circuit

that faithfully mimicked the biological photoreceptors and it has

been evaluated against characterised and dynamic stimuli. I found

that my circuit design was far better than using just a normal linear
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Abstract

phototransducer as the front-end of a vision system as it is more

capable of compressing visual information in a way which maximises

the information content before transmission to higher order neurons.
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Chapter 1: Introduction

Chapter 1: Introduction

7.7 Why Insect Visual SYstems?

A great deal can be learned from insect visual systems, as they are

the product of millennia of evolution and natural selection. The fact

that insects have survived and flourished points to the success of

these natural systems and this is one of the reasons why researchers

are drawing inspiration from nature to find robust, efficient and

elegant designs. Although the biological details of insect visual

systems have been studied for decades, it is only relatively recently

that research has focused on applying this knowledge to real-world

tasks. Research has shown that insect visual systems already have

several characteristics which are desirable for certain real-world

applications (Franceschini et al. 1992; Srinivasan et al. 1997;

Srinivasan et al. 1999; Srinivasan et al. 2OO4; Ruffier et al. 2005),

such as insect-inspired navigation for autonomous vehicles or

motion detection in surveillance systems.

One very useful aspect of insect visual systems is that they employ

various strategies to achieve good performance despite the biological

constraints. If you have ever wondered why flying insects are able to

manoeuvre at high speed through cluttered, complex environments

while easily avoiding obstacles in spite of their relatively tiny brains,

have no doubt that such magnificent manoeuvring aptitudes are not

1



Chapter 1: Introduction

capricious accidents - physiological evidence suggests that flight

control in the flying insects is primarily guided by a simple but clever

visual system of neurons tuned to very specific types of complex

motion (Collett et a]. 1975; Hausen 1982; Egelhaaf et al' 1988;

Egelhaaf et al. 2oo2l. For instance, small-target neurons found in

the optic ganglia of a fly are specifically responsible for visually

tracking small moving targets (mating and predation), even across

cluttered backgrounds (Nordström et al. 2006; Nordström et al'

2006l. Two types of specialised wide-field detection neurons also

exist which respond exclusively to either horizontal or vertical

motion respectively and which are thought to play a major role in

optomotor course stabilisation and figure-ground discrimination

(Gronenberg et al. 1990; Ibbotson et al. 1991). The remarkable

navigational skills of insects are thus closely matched by evolution to

the environments a¡d lifestyles in which those flight controls must

work.

An artificial visual system which emulates the features found in

insect visual pathways would theoretically be able to achieve

comparable performance in a real-world application, for example

making use of the robust motion detection capabilities of insects in a

collision avoidance system. Such an artificial visual system could

also provide more experimental flexibility in the study of other

aspects of insect vision, for example allowing very long recordings

from a "virtual neurono, und,er conditions which would not be

possible with actual insects. This could be a quick way of gathering

data to facilitate the investigation of models for certain higher order

neurons in the insect visual system.

2



Chapter 1: Introduction

'a.1.1 Evolutionary convergence in visual Processing

Apart from the potential benefit to improving the knowledge of insect

visual systems, there are also some ways in which this research may

benefit studies in other animals, including humans' Despite the

differences between the phototransduction processes of the primate

and fly photoreceptors, their visual systems have evolved to deal

with visual environments according to the salne underlying

computational principle of maximising visual information (van

Hateren tgg2l and thus employ similar strategies such as the

compression and conversion of naturally occurring intensity

variations into contrast variations in order to increase the dynamic

range of encoded information (van Hateren et al. 2006).

The primate cerebral cortex contains multiple representations of

visua_l space, of which MT or V5 is considered to be one of the most

important visual areas involved in processing information about

movement. Studies suggest that the primate visual cortex (MT or V5

area) has neurons that behave similarly to the motion sensitive

neurons in insects (Duffy et al. 1981; Duffy et al. 1991)' A similar set

of cells has been identified in the visual a-reas of human brains at

Brodmann's area 1g137,39 and 7 (Vainaet al.2001). In the case of

insects, motion sensitive neurons are largely found in the lobula

plate in the optic lobe of the visual system pathway (Hausen 1982;

Douglass et al. 1996). several types of neurons have been well

identified, such as the HS (horizontal system) and the VS (vertical

system) neurons, which are only activated whenever there is

hoùzontaT motion and vertical motion, respectively (Ibbotson et al.

lggl; Douglass et al. 1995). The overall similarity between

functional properties in the two animal groups makes it likely that

principles learned from studying one can be applied to the other'

3



Chapter 1: Introduction

Visual Illusions

one feature of visual systems which mammals, birds and insects

share in common is that of visual illusions. For example, the

taterfall illusion" which is one of the more famous illusions used

extensively to understand motion processing, is evident in both the

human (Anstis et al. 1993) and blowfly visual systems (srinivasan et

al. Ig7gl. A person that subsequently turns away from staring at

objects in motion, especially those which move very rapidly (e'g'

waterfalls or rivers), will experience an opposite visual direction in

motion even though the person is looking at a stationary object. The

phenomenon, also called the "motion a-fter-effect", can be explained

by adaptation in visual neurons that respond selectively to moving

contours in the scenes (Anstis et al. 1998; Harris et al. 2000). other

illusions such as illusory contours are also evident across several

types of animal (Nieder 2oo2). Illusory contours as shown in Figure

1-1 are contours which appear to make up meaningful shapes

perceived in fragmented visual stimuli. The ability to perceive

illusory contours which help distinguish an object from its

environment could be an important feature in the visual systems of

organisms.

Figure 1-1: Example of illusory contours. The outlines of the solid

.nãp.. imply the presence of an opaque white triangle superimposed

on the solid shaPes.

4



Chapter 1: Introduction

Adaptation

It is common for people to experience a sudden temporary

ublindness" after turning off the light in your room at night'

Similarly, right after turning the light on' several seconds may pass

before vision returns. These phenomena, called the light and dark

adaptations respectively, have evolved in our eyes to automatically

adjust their light sensitivity. This allows our eyes to accommodate

not only the dynamic range within a scene but also the luminance

difference between day and night of greater than six orders of

magnitude (JäÎemo Jonson et al. 1993). Again, insects such as flies

also experience similar phenomena, where the photoreceptor cells

will respond with a plateau level when the retina is suddenly

exposed to an extremely bright light source. Subsequent processes

take place, both anatomically, as investigated by Wallcott (19751,

where the rhabd.omeres move further away from the facet lens to

accept less light and photochemically, where the sensitivity of the

photoreceptor cells is adjusted in order to accommodate the bright

light level.

Insects as a Viable Model

Research into an artificial insect visual system could not only aid the

development of low-cost artificial seeing systems, especially in

applications such as collision avoidance devices, target tracking

systems and possibly 'bionic eyes' for the visually impaired, there is

also the potential for gaining further insight in the areas of insect

vision. In add.ition, the functional and physiological parallels

between insect and human vision may allow the study of certain

features in humans to benefit from this research. The usual method

of gathering results on primates includes conducting psychophysical

and. in-uiuo experiments. However, safely obtaining direct recording

5



Chapter 1: Introduction

of neuronal activity is a delicate procedure. v/ith insects, direct

recording is much more accessible despite their small size. As an

additional advantage study insects raises fewer ethical issues'

7.2 Information TheorY

Organisms in nature have evolved in such a way that their visual

systems are properly tuned towards the organism's ecological

purposes. This was investigated by Snyder et a-f in studies on the fly

Muscawhere theoretical parameters of compound eye geometry were

manually optimised for the best compromise between spatial

resolving power and contrast sensitivity and were found to agree

closely with the geometry found in actual insect eyes (Snyder et al'

1977; Snyder et al. 19771, suggesting that biological insect eyes are

optimised for these characteristics.

one important challenge faced by the visual systems of insects in

their ecological environment is that of efficiently encoding the visual

information present in the high dynamic range environment, within

the limited neuronal bandwidth available to such biological systems.

An example of an evolutionary adaptation to meet this challenge can

be found in the hoverfly Bristalis tenax, which in addition to being

excellent at hovering flight is capable of manoeuvring at an average

speed of approximately 10ms-r (Golding et al. 2001). In order to fly at

such speed without colliding into any obstacles, the hoverflies need

to have photoreceptors that are able to decode the high temporal

frequency visual contents. Physiological studies have shown that

Eristalis tenax lnas high bandwidth photoreceptors with a -3dB

corner frequency at approximately 10-90 Hz (Mah et al. 2006)' In

comparison, a slow moving insect such as Tipulid has low

6



Chapter 1: Introduction

bandwidth photoreceptors with a corner frequency of approximately

7-2OHz (Laughlin et al. 1993).

1.2.1 Efficiency and Redundancy in Early Visual Processing

What are the underlying principles or algorithms that govern such

robust visual systems? Attneave (1954) and Barlow (1961) suggest

that highly efficient encoding of visual information is carried out in

the first stage of sensory processing before transmission to higher

order visual neurons by eliminating redundancy in natural visual

information. Natural scenes contain a large amount of redundancies

due to the non-random variation of intensity values from point to

point, i.e. correlation (Simoncelli et al. 2001).

Several models have also been proposed to explain the underlying

mechanisms by which biological systems efficiently compress visual

information and these are largely based on maximising information

theory, which assumes that the early sensory processing is aimed at

maximising the information rate into the limited dynamic range of

the visual channels (van Hateren 19921. This theory allows a

quantitative prediction of how the sensory data are to be processed

by the early sensory system. The model developed by van Hateren

describes a neuronal compression algorithm that compresses visual

signals into an effective functional range for the following stages. The

theoretical output calculated by this model for naturalistic images

was found to closely resemble results from second order neural

recordings (van Hateren 1992; van Hateten 19921'

A second well-known model for second order neurons supposes that

predictive coding is also used to reduce the redundancy of the

scenes. Signals from the surrounding receptors can be linearly

7



Chapter 1: Introduction

summed and compared with the signal from the central receptor to

remove strongly correlated (and hence redundant) information.

Theoretical results for the receptive fields of second order neurons

(in particular, the large monopolar cells of Lucilia cuprinal based on

this model assuming predictive coding have been found to agree with

experimentally measured results (Srinivasal et aJ. 19821.

7.3 Light AdaPtation

An obvious example of redundancy reduction is light adaptation. In

studying the basic characteristics of the fly photoreceptor, we must

examine its response to different intensities of light, i.e. luminance.

The response of biological photoreceptors to both steady-state as

well as dynamic characterised stimuli such as impulse, step and

white noise analysis has been well studied (Baumann 1975;

Laughlin et ar. 1993) and shown to exhibit several non-linear

adaptive characteristics.

To characterise light adaptation in animal eyes, V Log I functions

have been widely used: A V Log I function represents the response of

a photoreceptor to impulse stimuli of varying intensities. In insects,

the effect of the photoreceptor's light adaptation response on its V

Log I function has previously been demonstrated with calliplwra

Stagta (Matic et al. 1981). Impulse responses against several

adapting backgrounds of the fly photoreceptors have been used to

plot the V Log I curves of the dark and light adapted responses' For

each adapting state, the V Log I curve has a sigmoidal shape and

can be simply equated to a self-shunting formula (The Lipetz

equation) shown in Equation 1-1.

8
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't/ (R1)' (Eq 1-1)
V^^ (rRI)" +I

Where I is the stimulus intensity, V is the amplitude of the

photoreceptor response, V-* is the Saturated response amplitude

and R is the reciprocal of the intensity yielding a response of 5Oo/"

V-*. The sigmoidal shape has been shown for several different

insect (Eguchi et al. 1894) and vertebrate photoreceptors (Burkhardt

Ie94l.

The adaptation to different levels of background luminance has

several effects. As the adapting background luminance increases,

the V Log I curve shifts towards the right. This means that for a

particular stimulus, the magnitude of the response will be smaller at

higher background intensities, and this represents a form of

automatic gain control. As a result, the photoreceptor does not code

luminance in absolute term, but rather contrast between the

stimulus and recently experienced stimuli. Contrast coding is also

highly dependent on the adapting background luminance as well as

the duration of contrast stimulus. At low background intensities,

photoreceptor responses are linear rega-rdless of the contrast step

durations (Juusola t9921. Upon close examination of the impulse

responses of biological photoreceptors, it can be observed that with a

dark-adapting background, the impulse responses ar.e generally

monophasic. For the same contrast input stimuli, if the background

intensity is increased, the impulses tend to become bi-phasic. Bi-

phasic impulse responses are more characteristic of a system which

rejects static stimuli (i.e. are high pass filters).

Increase in the background intensity has also been shown to cause

the phototransduction cascade and photoreceptor membrane to

9
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produce smaller but, faster and increasingly accurate voltage

responses to a given contrast (Juusola et al. 2001)' Biological

photoreceptors share the same characteristics as second order low

pass filters and studies have shown that as the background intensity

increases, the -3 dB corner frequency and thus frequency bandwidth

increases non-linearly, eventually saturating at a particular

frequency which varies between species (Juusola et al. 1995)'

Different species have a different range of bandwidth capabilities in

perceiving visual information (Howard et al. 1984). For instance,

fast-flying diptera have fast photoreceptors with higher corner

frequencies of between 50 and Io7 Hz, in comparison with dark-

adapted photoreceptors and those of slow flying species with corner

frequencies of lo-l2:Hz (Laughlin et al. 1993). As a result of their

high speed in coding luminance, these photoreceptors are usually

over compensated with t(+, which causes their impulse responses to

become bi-phasic (Laughlin et al. 1993; Weckström et al' 1995).

Higher surrounding temperatures have also been found to broaden

the signalling band.width, i.e. high body temperature offers

significant advantages in visual performance of an insect (Tatler et

al. 20OO; Juusola et al. 2OOI; Ftanz et al. 2OO2l. The extreme

temperature-sensitivity of biological photoreceptors makes it

important to maintain a constant temperature during experiments

and to consider the appropriate temperature given "normal operating

conditionso.

At lower background intensities, even low levels of light/noise such

as quantum bumps become increasingly apparent (Laughlin 1995)'

Thus, one hypothesis is that the variable corner frequency of the

photoreceptor is beneficial in that it allows the insect to reduce the

10



Chapter 1: Introduction

corner frequency and thereby attenuate high frequency noise, rather

tha¡ be flooded by it and unable to see anything'

As has been shown in previous studies (tested on H 1 neurons of the

blowfly), adaptive mechanisms in the early visual pathway are

responsible in maximising information transmission to higher order

neurons, e.g. motion sensitive and small target cells (Laughlin 1989;

Brenner et al. 2OOO). Similarly, this study will show through

intracellular recordings from the fly photoreceptors that the

adaptations in the early visual pathway maximise information

transmission, specifically for target detection neurons, with the effect

of enhancing the contrast of small targets against cluttered

backgrounds.

7.4 Modelling AqProaches

1.4.1 ComPuter Vision Modelling

In most engineered systems, the higher visual functions are typically

implemented through designed algorithms. computer vision, which

is a subfield of artificial intelligence, describes the programming of a

computer to nunderstand' features in a scene or image and usually

does not involve any biological inspiration in the process' Unlike

photoreceptors, artificial intelligent systems typically use modern

digital imaging, and sensors/amplifiers that have inherent linear

properties. In this area of research, visual problems are tackled by

programs or algorithms which make use of the digital processors of

computers. The performance of these often computationally

expensive solutions is dependent on the computing power of the

hardware and the efficiency of the programming algorithms and so

may not be ideal or practical for certain tasks. For example, a

previous work in controlling the vision system of a robot (Bteazeal

11
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2003) involved huge amounts of computing power. Similarly, a car

with nsmart visiono required severa-l desktop computers in the back

of the car (Dankers et al. 2005).

Digital computer vision per se is a very wide and challenging field

but will not be further discussed in this thesis, being presented here

simply as an alternative to the "bio-inspiredo approach to

implementing higher order visual functions such as visual

recognition and target tracking through biological modelling of

neuronal characteristics. Unfortunately, the present understanding

of such higher functions in biological systems is incomplete and

thus they have not as yet been fully reproduced in an engineered

system.

1.4.2 Bio-insPired Modelling

As an alternative to "traditional' computer vision, the bio-inspired

approach aims to develop novel systems by taking inspiration from

nature. It generally does not aim to accurately reproduce the

complete behaviour of the biological system, focusing instead on

certain useful features of interest to a real-world application. The

implementation of these features also does not need to be perfectly

faithful to the biological system but may be customised or

supplemented in order to improve the application performance. One

possible drawback to this approach is that although it may be well

suited for a specific application, it may not be as robust as the

biological system and may malfunction under certain conditions'

A well-known example of a bio-inspired application involves an

autonomous robot that uses a motion detection algorithm similar to

that of insects in order to solve a challenging navigational task such
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as obstacle avoidance (Franceschini et al. 19921. Other examples

include automated systems which make use of optical flow encoding

to perform hover stabilisation and landing (Barrows et al. 2OO4l, in a

similar manner to insects.

Many silicon chips based on analogue Very Large Scale Integration

(aVLSI) circuits have also been designed over the past decade in

order to emulate specific features of biological neurons such as

motion detection and small target detection (Tanner et al. 1988;

Etienne-Cummings et al. 1993; Sarpeshkar et al. 1993; Kramer et al.

1995; Liu 1996; Sarpeshkar et al. 1996; Kramer et al. 1997;

Yakovleff et al. 1998; Liu 1999; Delbrück et al. 2OO4l. One of the

earliest motion detector chips was by Tanner a¡d Mead (1984),

employing latches to store digitised samples of images for later

comparison with analogue images and performing multiplication

using switched current mirror design. A later sensor by Delbrück

(1993) used a unidirectional delay line as a tuned filter which needs

to be adjusted for particular velocities, thus requiring multiple

detectors to measure over a range of velocities. Studies have shown,

however, that the need for velocity tuning can be eliminated by a

front-end which provides automatic gain adjustment in a similar

manner to insect photoreceptors, thus improving the velocity

estimation of the detector (O'Carroll et al. 2006l. Pant and Higgins

(2OO4l constructed a chip using a modified version of Delbrück's

(1996) ad.aptive photoreceptor as a front-end to an elaborated

Reichardt Correlator to perform target-tracking in cluttered scenes.

Several other designs based on a Reichardt Correlator have also

been developed by Harrison and Koch (t999; 2000), incorporating

biologically-inspired circuit non-linearities which allow for improved

performance in noisy environments. Although there have been

various VLSI chips such as these designed for potential use in real-

13



Chapter 1: Introduction

world applications, few have actually been applied. One of the main

issues has been their limited ability to perform reliably in a wide

range of natural environments rather than under specific conditions.

1.4.3 Biomimetic Modelling

since the main aims of this study include both developing a simple

yet functional photoreceptor model and improving the understanding

of the visual systems of insects, a biomimetic approach has been

taken. A biomimetic approach is one that mimics all the

characteristics of a biological system as faithfully as possible,

without taking into consideration possible redundancies. This starts

from a detailed physiological understanding of the biological system

and its characteristics, typically expressed through mathematical

models. By faithfully emulating the biological system with a detailed

understanding of its function, one may develop a system that

provides a simple solution to many problems'

Modelling EarlY Processing

several mathematical models exist to mimic the neurons of the fly

eyes. Payne and Howafd (19S1) developed a simple log-normal model

to emulate photoreceptor responses. However this model mimics

only one important feature of the biological photoreceptors, i'e'

linear temporal response. Juusola (1995) developed a model widely

used in higher order neural modelling that makes use of complex

mathematical equations (Volterra series, cascades of linear and non-

linear stages) to model the dynamic non-linearity of the insect

photoreceptor as measured. by randomly modulated light stimuli.

Again, the emphasis is only on the non-linear compression feature of

the biological photoreceptors, neglecting the importance of non-

linear adaptation.
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Delbrück aIld Mead (1996) have recently designed and implemented

an analog VLSI chip of a photoreceptor model incorporating several

non-linear properties of biological photoreceptors such as light-

adaptation and logarithmic encoding. However, this design lacks

other useful non-linear features such aS a variable frequency

response (changing the corner frequencies of the system for better

signal-to-noise ratio). Furthermore' the circuit has not been

thoroughly tested under dynamic conditions and thus may or may

not perform properly in a complex real-world environment.

By using the same photoreceptor model described above as the

front-end visual processing, our own laboratory has implemented a

bio-inspired silicon chip to mimic higher order neuron (insect motion

detection) in the insect visual pathway (Shoemaker et al' 2001)' The

adaptive photoreceptor circuit outputs were fed to the cascaded

higher order neuron stages (motion sensitive neurons) that

integrated with contrast adaptation feature. This feature is

important in regulating the contrast output of the chip, i'e' to avoid

possible hard saturation. However, due to the limitations of the

technologz, there are issues with device mismatches in

implementing such a multi-pixel system.

Perhaps the best model to date for non-linear dynamics of the fly

photoreceptor is that of van Hateren and snippe (van Hateren et al.

2001). This parametric model uses a cascade of two dynamic divisive

feedback stages and one static non-linear stage. The output of this

model was shown to be highly correlated to that of the actual

photoreceptors in response to natural image scenes. In addition,

frequency domain analysis (coherence) also showed that the model is

a great mimic of the biological photoreceptors. However, this model
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takes no account of the change in temporal coding between

day/night, and hence is not "optimal" in terms of information theory'

Biomimetic Models for Higher Order Neurons

one of the first parametric models widely used in many

neuromorphic motion detector chip designs is the Classic Reichardt

Correlator model (Reichardt 1961). This design uses a linear

photodetector as the front-end processing, with a delay (low pass

filter) and a correlator (multiplier) to mimic the motion sensitive

neurons of insects. This model performs very well with standard

characterised stimuli input such as sinusoidal gratings, pulses and

steps.

An area of particular interest is modelling higher order neurons such

as the group of neurons (small target neurons) in the lobula plate of

an insect's eye which only activate whenever there is a small target

which falls in the region of interest of the insect's eyes. For instance,

Higgins and Pant (2OO4l have recently developed an elaborated

version of the small-target system model of Reichardt et al. (1989)

that may be used to allow a simulated fly to track a small moving

target in a cluttered background. This could have various potential

applications in visual target-tracking.

1.5 Natural Scenes

With current technologr, it is impossible to study the fly's visual

system intracellularly while having the subject manoeuvre freely in

their natural habitat and environments. Why should we use natural

environments and not just characterised stimuli such as pulses,

steps and white noise? Dynamic naturalistic stimuli are very
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important in characterising and evaluating the robustness of a non-

linear system (Niven et al. 2OO4l.If we \¡/ere to take a snap shot of a

natural scene and statistically analyse it, we would find that the

Scene possesses substantia-l spatiotemporal correlations, which

means that there is a lot of redundancy in the image' This has been

shown to have a significant effect, as the earliest mathematical

model of a biological motion detector, i.e. the classic Reichardt

Correlator (Reichardt 1961) fails to perform as a velocity estimator

when natural scenes are used as input stimuli, despite showing good

correlation to the biological systems using standard characterised

stimuli (Dror et al. 2001). Interestingly recent work on fly HS

neurons shows that they behave very differently when stimulated

with natural scenes and are excellent velocity coders (Shoemaker et

a1. 2005).

while recent work highlights the importance of appropriate natural

scenes, there are numerous technical difficulties in working with

such stimuli. Instead of trying to develop a technolory that would

allow scientists to perform experiments in the real-world, alternative

approaches have been used to work around this limitation while at

the same time producing similar results. For example, by creating a

flight afena in which the fly sits (stationary) and natural scenes are

artificially generated using computer displays or Light Emitting

Diodes (LED) (Horstmann et al. 2000; Schuster et al. 2oo2l. To

generate computer displays, software packages have previously been

developed, such as I/islon Egg (www.visionegg.org), which is a stable

and reliable open source program that harnesses the power of

current consumer graphic cafds to produce visual stimuli of

research quality using no specialised hardwale beyond a relatively

recent computer and graphic card. To reconstruct naturalistic

stimuli using LEDs, a single-pixel photodetector has been used to
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record the dynamic natural luminance along outdoor flight paths to

evaluate the motion-sensitive neurons in blowflies (t an Hateren

tee7l.
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Abstract
Recent advances in light emitting diode (LED) technologr make it

possible to produce visual stimuli that are bright enough to

represent real-world luminance levels. However, such technologr

requires a stable high current driver to constantly supply the

necessary currents to the LED. We have designed and implemented

a fully dimmable multi-channel voltage-controlled high current LED

driver system that is capable of running multiple ultra-bright LEDs

simultaneously during experiments. The performance of the system

was found to be highly robust and reliable for the purpose of visual

physiological experiments. When coupled with appropriate LEDs and

driven by a 16-bit control signal, the usable dynamic range exceeds

12OdB with a maximum luminance of approximately 70 000cd lm2,

an accuracy in excess of O.Icd/m2 at the low end of the luminance

range and a response time less than 0.25ms.

Dimmable Voltage-Controlled

LED Driver SYstem for Visual
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2.7. Introduction
Insect photoreceptor cells are capable of coding visual information

under various lighting conditions (Wuff et al. 1975; Laughlin et al'

1978; Weckström et 41. 1995). The response of these cells is highly

non-linear, displaying luminance adaptation to background intensity

for optimising the light information perceived from high dynamic

range real-world environments before transmission to higher order

neurons via limited bandwidth channels (Snyder et a1. 1977; Snyder

et al. 1977; van Hateren 19921. Physiological studies suggest that

the non-linear adaptive feature of a photoreceptor cell improves the

visual coding power of the photoreceptor by approximately 2-3 times

(giving a total signalling range of 8 log units), depending on species

(Matic et al. 1981; Laughlin 1939). Thus, in order to thoroughly

investigate the capability and operation of photoreceptors there is a

need to devise a system that is capable of artificially generating

natural scenes with a large luminance dynamic range. Such a

system must be laboratory based since it is not feasible to conduct

intracellular electrophysiological experiments outdoor with subjects

freely manoeuvring in the natural environments.

Recently, the usage of light-emitting diodes (LED) has become

ubiquitous in the field of vision science research, due to their high

performance and reliability. Unlike the previously commonly-used

Xenon Arc Lamps (Grum 1968), which require complicated and

expensive systems to run, LEDs have a relatively long lifespan and

consume only a fraction of the po\Mer. They are also cheap and

commercially available, which makes them an ideal low-cost light
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source for experiments in vision laboratories. The typical

conventional white bright LED (Smm) has a current rating of

approximately lOOmA and has the capability to emit a maximum of

10cd (Nichia CorPoration).

For a greater than 10 times increase in maximum light level and

only a small trade off in power consumption, LuxeonrM has

introduced an ultra-bright LED called the LuxeonrM Star LED' This

LED is estimated to have a very long operating life (up to 100k hours)

and is packaged with a heat sink mounted at its back for maximum

heat dissipation (better performance). It has a maximum current

rating at 35OmA and a maximum light-producing capability of 120cd,

making this LED the best candidate for many vision experiment

applications.

Since the LED consumes an appreciable amount of current (350m4

maximum) to generate maximum brightness, a stable high current

LED driver is required. There a-re many companies that manufacture

high current LED drivers specifically for the LuxeonrM Sta¡ LEDs'

Most of them are capable of producing a constant high-current

source but none are sufficiently stable to act as a current source

when operated at low levels, i.e. they are not lOO"/" dimmable. Such

instability in dimming is a particularly undesirable imperfection in

vision experiments. Table 2-l shows a list of the standard

commerciat LED drivers that were tested and proven to not meet our

requirements.
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Driver Model Size Lowest
Limit*

Accuracy Cost

lntegrated

lllumination
Svstems

Smart Dimming

Driver

Small 1-2o/o Hgh md

LUXDRIVETM BUCKPUCK3021 Small 1-2o/o Hiqh md

OPTOTRONIC@ OTDIM Medium 0.5-1% Hish md

LinearTechnology 1T1932 Very small 0.5-10/o

(SMD)

High ow

Agilent
Programmable DC

363x4-Series Large 0.5-1% Very High very high

Power

*Lowest linit - A stability point where anyttring dimmed below this limit starts to

display unwanted flickers.

Table 2-tz A list of standard commercial LED drivers that failed to
meet the requirements of our LED driver system due to poor signal

stability at low light levels (.L"/"1.

Most of these LED drivers claimed, to be fully dimmable but in actual

fact were not. At low light levels, the output current started to

oscillate and caused a flicker in the LED (the frequency of the flicker

was directly proportional to the output current of the driver)' Such

flickers in the light source are highly undesirable in photoreceptor

experiments since the photoreceptors can potentially pick up

frequencies below 2OOHz, depending on species (Howard 1981).

In this paper, we will discuss the design €¡.nd implementation of a

customised high current LED driver that is capable of running

multiple LuxeonrM Star LEDs simultaneously. The brightness of each

of the driven LEDs was carefully calibrated with a light detector from

a digital camera (Nikon D-70) and a low noise, high precision current

amplifier (PDA7 50, T etahertz Technologr IncrM) .
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2.2 Methods

The aforementioned problems with commercially available LED

drivers led us to the decision to custom build our o\¡/n LED driver. A

multi-channel voltage-controlled dimmable LED Driver was

implemented using standard discrete electronic components. The

driver circuit was initially built on a breadboard for testing and

prototyping purposes. The final working circuit was then

implemented on vero boards and housed in a plastic box.

2.2.1 Specifications

The prototype LED driver was capable of supplying current to three

LEDs (LuxeonrIvI Star) simultaneously. The driver \¡/as powered from

a r15V power supply and had a maximum current rating of 1.54.

Each channel had its own port for controlling the output current of

each driver to its corresponding LED. Heat sinks were attached to

some discrete components (OPA 547T1 in order to reduce any

thermal hysteresis at the output of the driver.

The completed circuit was enclosed in a plastic box and a +12V fan

was mounted to ensure that all the discrete components in the box

were operating at sufficiently low temperature. At the rear of the

plastic box, three tactile switches were available for turning

individual channels on or off. Figure 2-I shows the customised LED

driver in a plastic box.
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CTRLB I.EDB CTRI-C LEDC
aO

CTRLA ].EDA

@@@rsvo
sfffcHc swTcHB su/TlcHÀ

+16V

o
o
GND

FRONT VIEW REAR VIEW

Figure 2-1: Customised LED driver. Front (lefi) and rear view (right)

ofihe customised three-channel LED driver. CTRL A, B and C were

the input ports for the control signals of the LuxeonrM Star LEDs

corrrr.õt.d to output ports A, B and C respectively. Each channel had

a dedicated switcfr ãt the rear of the box and was powered with
11sVDC.

2.2.2 Gircuit lm Plementation

This driver was implemented based on a voltage controlled voltage

source (VCVS) configuration using standard electronic discrete

components. Figure 2-2 shows the circuit diagram of the three-

channel LED driver. The LED (green) was initially tested with a

standard voltage power supply to observe the luminance output

against voltage input. The LED started to display a dimly noticeable

(measured using light detector) amount of light at an input voltage of

about 1.6V. The LED then reached its maximum brightness with an

input voltage of approximately 3.3V.

A custom-written LabVIEWo software module was used to

communicate with a 16-bit data acquisition card (NI PCI622|,

Nationa-l InstrumentsrM) to send control signals ranging from -10V -
+ lOV to drive the LED. Since the LED only works in the range of

1.6V - 3.3V, a simple linear conversion circuit was designed based

on equation 2-7 to fully utilise the dynamic range of the data

acquisition card to maximise signal resolution.
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Output = Cs 
+2.54V

tt.76
(Eq 2-1)

CS is a control signal from the data acquisition card which ranges

from - lOV to lOV. These signals were de-gained using an inverting

amplifier and constantly summed with a constant voltage of 2.54Y.

The de-gained signals were then inverted in sign before being fed to a

subsequent unity gain amplifier. This simple unity gain voltage

amplifier (standard non-inverting amplifier configuration) was

designed and implemented using a high current operational

amplifier (OPA 547T1 and a couple of resistors in order to drive the

LED.

2.2.3 Calibration

The LED driver system was cafefully calibrated using a photodiode

amplifier (PDA7SO, Terahertz Technolory IncrM). The calibrated

system was then mapped to a real world luminance values, cdlmz by

use of a camera spot meter (Nikon D70).

Linearisation of the LED Driver System

LEDs are semiconductors that produce light with luminance linearly

proportional to the input current source. Since our LED driver was

designed to be a voltage-controlled voltage source, the output

lumina¡ce of the system varied non-linearly with respect to the

control signal and hence the system had to be linearised. This

involved measuring the output current using the photodiode

amplifier and recording the relationship between the output current

and input control signals, to be used in a look-up table for the

purpose of producing a linear output. The new linearised system had

its control signal defined in terms of percentage and output

luminance defined in terms of current.
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I

A

Figure 2-22 An electronic schematic diagram of a three-channel LED

driver. The control signal from the data acquisition system was

connected to the input port nFrom Ctrl Signal Ch A'. A low noise

operationat amplifier was used in order to perform the operation
.iro*tr in Eq Z-t to provide the rescaled version (higher dynamic
range) of the control signal prior to transmission to the high current

"-ptiîi.r 
(OpA S4TT¡. An output port at "To LED Ch A was
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connected to the LED to produce light output' The remaining two
channels (Ch B and Ch C were duplicates of Ch A'

Brightness Measurement

There were several methods of measuring the real-world luminance

(cd,lm2l of the LED driver system and the cheapest way was to use

the light meter in a conventional digital camera (Nikon D-70)' The

camera was preset with an ISO of 2OO, spot-metering mode and

infinite focus. It was then mounted on a tripod and by holding the

capture button of the calnera half-way, the light meter of the camera

measured the luminance level of the object that was in the middle of

the viewfinder of the camera. The light meter had to be fixed at OEV

level to indicate that it is measuring the right exposure value and

this could be done by adjusting the combinations of aperture size

and. shutter speed of the camera. From the values obtained, the

corresponding brightness of the LED could then be converted to unit

of luminance, cd,lrnz based on the following equations (The

photometric system)

Ev = Av +Tv = ^9v 
+Bv (E,q2-21

V/here:

Ev = ExposureValue

Av = Aperturevalue= 
tÎ1'
ln2

Tv =Timevqru, -ln(t-t)ln2

Sv = SpeedVølue =

Bv = BrightnessValue =':u!
ln2
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N is the f-stop number of the camera lens, t is the time in seconds of

the shutter speed, Bfl is the object luminance in foot-Lamberts, Bv is

the object brightness in cd,lmz and S is the ISO speed of the camera

film.

Figure 2-3 shows the non-linear relationship between the input

control signal and the output intensity of the LED driver system- At

low input control signal levels (between -8.37V and -2.52V1,

increasing the control signal voltage only caused minor increments

in output intensity, i.e. more accurate control of the luminance was

available in this area. As soon as the control signals increased from -

2.52V to 1.47V, the output intensities increased drastically in a non-

linear fashion. From I.+7V to 8.43V, the output looked very close to

a linear response.

2.3 Results
Non-Linearised LED Driver SYstem

100
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o01

o oo1

o oool

o ooool
-lo 5 10

Control Signal, V

1

àe
*,'õ
eo

=

Figure 2-3: Output of the non-linearised LED driver system' The

.yãt.- produced no output when the control signa-l was at -8'37V
and maximum output when the control signal was at 8.43V.
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Figure 2-a ßight Axis) illustrates the linearised output of the LED

driver system where the current measured had a linear relationship

with the input control signal. The lowest current measured was at

OnA while the highest current was measured at approximately 261tA.

On the left axis of the same figure the relationship between the

brightness of the LED (cd/m2) against the linearised control signal

(%) is shown. The calculated values based on equation 2-2 suggest a

linear relationship between the brightness values and the control

signal input. A simple linear fitted curve algorithm was used to fit a

curve to the calculated raw data. By having this fitted curve equation,

The real world brightness values of any type of stimuli can be easily

retrieved. The lowest displayable brightness va-lue was calculated to

be approximately o.o7cd/m2 while the highest (based on

extrapolation of the fitted curve) was more than 70 OOOcdlm2.

Linearised LED Driver SYstem
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Figure 2-42 (Right Axis) Output of a linearised LED driver system.
Th; output current measured was directly proportional to the
percentage of the input intensity (control signals). Measurements
\¡/ere takén on a logarithmic scale starting from O"/o to l00o/o of the
control signal input. (Lefi Axis)Linear mapping of the equivalent real
world brightness value based on the percentage of the input
intensity. Á simple linear equation was fitted to the raw data with an

equation Bv (cd/m2l = 713.43*(control signal). The fitted curve had a
high correlation value of r2>O.99
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- 
Fitted Curve - Linear
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2.4 Díscussions

The LED driver system was implemented using standard discrete

electronic components and the LuxeonrM Star LED was used as the

front-end of the system to emit light. Calibrations of the system had

confirmed that the system was capable of producing light ranges

from 0.07 - 70 OO0cd.lmz. By linearising the system (see Figure 2-31,

a simple equation was found for converting the control signal in

percentage to actual brightness values in cd/mz (Bv :713-43*control

signal).

Such a reliable system provides a cheap solution to many visual

experiments, particularly for those that require high intensity

playback whilst having full control over the system. Additionally, the

low current input (<20m4) of the control signal ports for the driver

also allow it to be controlled by any standard type of data acquisition

system.

Several electrophysiological experiments have been successfully

performed using the LED driver system as a means of displaying

light stimuli. The system is able to display characterised (pulse, step

and white noise) and dynamic (naturalistic) stimuli for the purpose

of our experiments (Mah et al. 2005).

2.4.1 Light Emitting Diode (LED)

The LuxeonrM Star LED has the capability to reproduce a sufficiently

stable bright light from a 35OmA constant current source with

junction temperature maintained at or below 90"C. The LED was

specifically chosen to be green since insect photoreceptors are green-

sensitive (Horridge et al. 19751. There were several reasons why we

used LEDs instead of other light sources (bulb or lights from a
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monitor). Firstly, the LED light source was reasonably cheap and

durable. Secondly, the LED produced a constant luminance (not

flickering) since a constant voltage or current source was used to

power the LED. Lastly, the colour temperature of the LED was

invariant within its optimum operating range. Furthermore, it was

commercially available in electronic stores.

2.4.2 Brightness Value - Extrapolation

The light meter of the conventional digital camera (Nikon D70) that

was used for calibrations had an exposure value (EV) diaf precision

of IO.3EV. For small EV, the camera had a good accuracy (< lcd/m2)

in measuring luminance. As the EV increased, the accuracy of the

cannera decreased (, 30 000 cd/m2l dramatically due to the

limitation of the precision of the EV dial, i.e. the light meter of the

digital carnera became less reliable in determining brightness values

aS the exposure value increased. Therefore, we only used the

calculation points from O-5O"/o of the control signal input for linear

curve fitting. A linear algorithm was used during curve fitting

because the luminance output of the LED driver system had a linear

relationship with the current measured from the photodiode

amplifier and the current was linearly proportional to the control

signal input (see Figure 2-31.
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Abstract
We present here an analogue circuit implementation of a bio-

inspired non-linear adaptive artificial photoreceptor using discrete

electronic components. This analogue neuromorphic circuit is

designed and built based on the understanding and detailed studies

of the biological photoreceptors of the hoverflies, Eristalis tenax. An

amplified photodiode (TSL251) is used as the front-end of the

analogue circuit to convert photon eners¡ into electrical energr for

the circuit to process. The circuit consists of two non-linear divisive

feedback stages and one static non-linear stage. We have tested and

evaluated the analogue circuit using artificial light stimuli and

confirmed that this circuit is capable of performing robustly in any

lighting conditions and could be beneficial as a pre-processor for

higher order neuron designs.

Ke¡nrords: Artificial Photoreceptor, Neuromorphic Circuit, Adaptive Photoreceptor.
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3.7. Introduction
Insects, especially flies, have remarkably fewer neurons in their

visual pathway as compafed to humans. Despite their simple visual

systems, insects are able to manoeuvre through complex

environment with remarkable ease and accuracy. Such great

evolutionarily aptitudes have inspired many engineers to design and

implement robust, reliable bio-inspired vision systems such as

motion detection, target tracking and collision avoidance systems,

simply because nature has the solution to these problems.

There are several methods of implementing a bio-inspired circuit. If

cost is not an issue, fabricating a circuit using the state-of-the-art

analogue VLSI (Very Large Scale Integrated Circuit) technologr is

probably the way to go. Millions of transistors can be packed into a

single small-sized silicon chip, depending on the complexity of the

circuit design. Analogue VLSI silicon chips usually consume only a

small amount of power, which is a key requirement of many

applications.

The next best option is to use FPGA (Field Programmable Gate Array)

technologr. Logic gates can be pre-programmed into an FPGA chip

(e.g. SPARTAN) in order to execute an algorithm which performs the

same function as the circuit. Unlike the VLSI technologr, the same

chip can be reprogrammed anytime to function differently since the

chip is mainly controlled by a software program. No doubt, this

feature is beneficial if the circuit implementation requires tuning for

better performance.

However, the most commonly used method in circuit implementation

is board- prototyping, where discrete analogue circuit components

are put together on breadboards/veroboards to realise a design. This
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method is very economical for evaluating circuit designs since the

components are commercially available and relatively cheap

compared to the other methods mentioned earlier.

In this paper, we discuss the design and implementation of an

elaborated bio-inspired artificial photoreceptor circuit. This circuit

was built using discrete electronic components (analogue) on

breadboards based on a mathematical model previously proposed by

van Hateren and Snippe (van Hateren et al. 2OO1), together with

some additional elaborations to better mimic the actual biological

photoreceptors.

This analogue neuromorphic circuit mimicked most of the important

characteristics of a biological photoreceptor. It was capable of

automatically adapting to any background intensities in order to

increase its input dynamic range' similar to the biological

photoreceptors (Laughlin et al. 1978; Matic et al. 1981; Laughlin

1989). Not only that, the circuit also incorporated a static non-linear

Naka-Rushton stage in order to mimic the sigmoidal soft saturation

of the biological photoreceptor response against input pulse intensity.

Automatic variable corner frequency control was also integrated in

the analogue circuit for realising an adaptive frequency response

feature of the biological photoreceptors (Laughlin et al. 1993).

This faithful photoreceptor circuit could potentially serve as a

reliable front-end for many higher order neurons designs such as

motion detection and target tracking neurons. Not only that, this

circuit also provides a solution to experiments that were previously

considered to be impossible such as experiments that require many

hours of recording in a single session. It is a-lso impossible to

perform intracellular experiments on an insect while having the

4l



Chapter 3: Photoreceptor Circuit Implementation

insect manoeuvring freely in natural environments. However, with

this analogue circuit real-time recordings in this complicated

naturalistic scenario can now be done.

3,2 Methods

3.2.1 Specifications

The artificial adaptive photoreceptor circuit was built using standard

analogue discrete electronic components. It consists of one input

from an amplified photodiode (TSL251) and one photoreceptor-like

output. The circuit is tuned to take in a minimum voltage of 0V and

a maximum voltage of 4V from the amplified photodiode. Anything

above that will cause some unwanted clippings at the output. The

output of the artificiat adaptive photoreceptor circuit ranges from 0

to lV. Table 3- 1 summarises all the electrical properties of the

analogue circuit.

Min Typical Max

Number of lnputs

Number of Outputs

lnput voltage

lnput rated current

t15

100m4 500m4

Table 3-1: Electrical properties of the artificial photoreceptor circuit

3.2.2 Computer Modelling - Matlab and Simulink

We started off by modelling the non-linear photoreceptor model

mathematically using Matlab and Simulink software . This model was

implemented based on a mathematical model proposed by van

Hateren and Snippe (2001), with some additional modifications to
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better mimic the biological photoreceptors. Figure 3-1 shows the

Simulink block diagram of our mathematical model design. Since it

was not feasible to design a circuit with an infinite output response,

an additional block called the saturation block was integrated in our

mathematical model to limit the signal of the model. In this case, \¡¡e

limited the signal magnitude such that the minimum is -15 and the

maximum is +15. As for the static non-linear stage, we modified the

Naka-Rushton equation that was proposed by van Hateren and

Snippe. Instead of using input/(1+input), we changed it to

input/(0.05+input). This was to shift the input dynamic range of the

model so that it was feasible for implementation.

Artificial Phoüoreceptor Model

lnput
DIV DIV NakaRushton

LP,1

Output

S¡mul¡nk Model

Figure 3-1: Simulink mathematical block diagram of the adaptive
noã-ütt.at photoreceptor model. LPl, LP2 and LP3 are low pass

filters with a time constant of I.764 ms, 397.84 ms and 3.978 s
respectively. EXP is a simple exponential function kl (exp (k2*input))
where kI = 2.57 andk2 = 10.

Lpl and LP2 were both second and first order filters respectively.

Time constants for these low pass filters \¡¡ere also modified to fine

tune the output responses of the mathematical model design in

order to approximately match those in physiological recordings (Mah

et al. 2OO5). The steady-state equation of the model was described as

below:

ü(0.05+u)

LP3

Saturat¡on EXP
LP2
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output (Eq 3-1)

wherel =
.Fp"t exp(-fr2.[nput)

kt

Output from the first divisive feedback stage was passed through the

second divisive feedback stage. At this stage, the signal was

automatically adjusted (adaptive) based on the input background

value and the time course of the adaptation was fully controlled by

the time constant set in the first order filter, LP3. The output signal

from the second divisive feedback stage was then compressed non-

linearly in the final static non-linear Naka-Rushton stage. The

Simulink model was then tested and evaluated with a range of

intensity steps and impulses by using custom programs written in

Matlab.

3.2.3 Electronic Circuit Modelling - SPICE Simulation

The finalised mathematical model of the artificial photoreceptor was

used as a basis to design a prototype SPICE model. This SPICE

model was used as a guide prior to implementing a prototype circuit.

Standard electronic discrete component blocks in the simulation

softwa¡e rü/ere used to build the SPICE model. This was to ensure the

SPICE model was feasible for actual circuit prototyping. Steady-state

tests such as impulse and step response tests were done on the

SpICE model to eva-luate and test its response. Parameter values of

some stages of the model were changed to better mimic the biological

photoreceptor. Figure 3-2 shows the schematic diagram of the SPICE

model.
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This SPICE model consisted of several additional elaborations that

were not modelled in our mathematical model discussed previously.

The reason for not having them in the mathematical model was

simply because of the limitations in the Matlab and Simulink

software which are unable to incorporate certain complex functional

blocks during simulation.

SPICE Model - AÉificial Photoreceptor Circuit

MDOUT

Lighl Sourcs

Llghl

qvHo lD2l
oarn Adlusbr(oA2l

Flltd ILP

R11 u

R12

c8 LowP.ss Filtor lLP3l

R14

R15

R16

Dltre lül
aaln Adluster loAll

PrsfrPllnsr

R6

c2

R9

Low Pass FrklLP2l

R37

Vactrol Control Slgnal

R33

R31

R32

R30

c10

Figure B-22 A schematic diagrams of the artificial photoreceptor
circuit SPICE model.
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An amplified photodiode with an output (Vpnoto) ranging from 0-4V

was used to convert photon enersr into its corresponding electrical

eners/ (current) before transmitting it into the circuit. This voltage is

linearly proportional to the input intensity (Bv in cdlmzl at the

photodiode, according to equation 3-6. The signal from the amplified

photodiode was initially passed through a linear preamplifier stage

prior to any non-linear processes. The amplified signal was then

transmitted to the Variable Low Pass filter, VLP the gain, Kwp and

frequency response, Fwp of which were dependent on the average

luminance measured by the Vactrol Control Signal stage, VCS.

K _ -(33110t +R"*)
wP - 36xlo3

(Eq 3-2)

I (Eq 3-3)F-,
29.77 xl0-6 33v103 I Ruo"

V/here &,o" --3.09x102e exp(-38. I¡CS) - 5.66x1022 exp(-27.56C5) (Eq 3'4)

C,S = 1.481+ O.237Vpna" (Eq 3-5)

Bv (Eq 3-6)V phoro t7s0

The output signal from the VLP stage \Mas used as a numerator for

the first divider stage, D 1 and the output signal from the first order

low pass filter, LP2 was used as the denominator. Notice that the

circuit configuration of the divider, D 1 was set according to the

following equation:
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(Eq 3-7)

where Wor was the output of Dt, and Xz, Yz, Uz and Zz were

connected to electric ground (0V). Yl was the input of the VLP and

because Xl was connected to a constant voltage 0.1V, hence the

equation becomes:

vLP)

Wrr=ffi*',

(0 lx
Wot =

InputfromLP2
(Eq 3-8)

The output of Dl was deliberately degained by 10 times in order to

overcome one of the instability constraints of the divider chip, which

was that the input magnitude X has to be less than I.25U. Thus, a

gain adjuster stage, GAl \¡/as cascaded straight after the D1 stage for

compensating the gain loss in the divider stage, D 1.

The output of GAl was then transmitted as a numerator to a second

divider stage, D2. Agatn, this divider was designed to have a gain

loss of 10 times in order to overcome the same chip limitation as

previously noted. The output signal from GA2 was then filtered with

a low pass filter to remove any unwanted high frequency noise. The

hltered signal was passed through both the low pass filter, LP3 and

the final compressive non-linear stage, Naka-Rushton. The low pass

filtered signal from LP3 was exponentially amplified in the

exponential stage according to the equation:

ExpOut = kl* exp(k2* input) (Eq 3-9)
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where kl = 13.3 and k2 = -4.3. The output signal from the

exponential stage was used aS the denominator for the second

divider stage, D2.

The Naka-Rushton stage was designed using a simple divider

configuration, similar to Dl and D2. The input magnitude X for the

divider, D3 was fed with a signal coming from the second divider, D2

and the input magnitude Y was powered with a constant voltage, lV.

Below is the equation that describes the final Naka-Rushton stage:

WD
W,,

Wo, +0.05
(Eq 3-10)

3.2.4 Circuit PrototYPing

Once we had the finalised SPICE model, the artificial adaptive

photoreceptor circuit was implemented using discrete electronic

components. All the components were connected according to the

SPICE model on breadboards. Variable resistors were used at some

parts of the circuit to allow for the possibility of fine tuning its

output. Standard Smm single core wires were used for

interconnecting the discrete components to realise a working circuit.
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3.3 Results

3.3.1 Matlab and Simulink Model

Pulse Responses - BG: 1OmVa b Step Responses - BG 60mV

>lEIOIÕlNI>lEI
RI

5ms

1s

10 0ôv

016V

c V LOG lCurves

0.9

0.8

o1

0.5

o.4

0 56V

BG: 10mV
' BG:60mV

BG: 1 1OmV

- 

BG: 160mV

lnput, V

Figure 3-3: Matlab and Simulink output of the neuromorphic
phãtoreceptor model. a. Pulse response curves with pulses of Sms at
relative background luminance of 10mV. b. Step response curves
with steps of 1.5s at relative background luminance of 60mV - step

sizes: o.lozv,0.o9v,0.1lv,0.16V,0.56V, 1.06V and 10.06v. c. v
LOG I curves with different relative background luminance (10mV,

60mV, 110mV and 160mV).

Figure 3-3a shows the pulse responses of the Matlab and Simulink

model with several pulse intensities at relative background

0 11V

0 09v

0 07v

1o'1oo1010'
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luminance of 10mV. The model responded non-linearly to the pulse

intensities, with obvious hyperpolarisation effects during offset of

input stimuli. Notice that the time taken for the hyperpolarisation

effects to recover to its initial resting potential state increased as the

pulse intensity increased. The stimuli durations were increased

from Sms to 1.5s and the corresponding step responses are as

shown in Figure 3-3b. During a bright step (in relative to its

background luminance) simulation, the model depolarised at stimuli

onset, following a long exponential decaying adaptation to its
background luminance. From the pulse responses of various pulse

intensities and background luminance, the non-linearity of the

model can be further illustrated as shown in Figure 3-3c. These V

LOG I curves have a sigmoid-like function and they were shifted to

the right as the background luminance increased. The magnitude of

the right shift was not proportional to the input pulse intensity.
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3.3.2 SPICE Model

Pulse Responses - BG. 1OmV
b Step Responses - BG: 60mV
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Figure 3-4: SPICE output of the neuromorphic photoreceptor model'

a. Þulse response curves with pulses of 5 ms at relative background
luminance õf lOmV. b. Step response curves with steps of 1.5s at
relative background luminance of 60mV- step sizes: 0.07V, 0.09V,

0.11V,0.16V,0.56V, 1.06V and 10.06v. c. v LoG I curves with
different relative background luminance (10mV, 60mV, 110mV,

160mV).

Figure 3-4a shows the pulse responses of the SPICE model with

various pulse intensities. Again, the SPICE model responded non-

linearly to the input pulse stimuli, together with clear

hyperpolarisation effects on the offset stimuli, which increased in

I
0
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magnitude as the pulse intensity increased. This model was also

tested with various step intensities for several background

luminances. Figure 3-4b shows the step responses of the model with

background luminance at 6OmV. Similar to the Matlab and Simulink

model, this model showed clear luminance adaptation, typically

during the onset of the input step stimuli. Not only that, the model

also showed great hyperpolarisation effect during the offset of the

stimuli, where the magnitude of the hyperpolarisation increased as

the step intensity increased. Again, by further analysing the pulse

responses under several background luminances, the corresponding

V LOG I characteristic curves were plotted (Figure 3-4d). Notice that

the V LOG I curves shifted to the right as the background

luminances increased and all the curves showed a sigmoid-like

function.
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3.3.3 Actual Circuit

Figure 3-5 shows the final circuit that was implemented on

breadboards. The circuit performed very close to the actual biological

photoreceptors such as adaptive logarithmic encoding of luminance.

Detailed evaluations of the circuit are discussed in the following

chapters.

Figure 3-5: Prototype circuit implemented on breadboards.

The circuit could be minimized in the future by using small surface

mount components (SMT) on a printed circuit board (PCB). Not only

would this reduce the overall size of the circuit, it would also reduce

the circuit noise, i.e. increase the signal to noise ratio. Figure 3-6

shows the three- dimensional rendered PCB design of the circuit.
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t
t
I
I
t
I

T

Figure 3-6: printed Circuit Board design of the artificial insect
phãtoreceptor circuit. It uses both front and back layers with an

actual size of approximately 60mm x 60mm.

3.4 Discussions

Insect photoreceptors are highly non-linear, displaying adaptation to

both luminance and contrast under natural conditions (Baumann

1975; Matic et al. 1981). From an engineering perspective, it is not

easy to model a non-linear system. However, a reliable mathematical

model that was proposed by van Hateren and Snippe (2001) has

allowed us to use it as a basic model to our elaborated prototype

circuit design. Additional enhancements to the basic model, which

were based on the physiological understanding of the actual

photoreceptors, have allowed us to implement a much more faithful

circuit model of the actual biological photoreceptors. This robust,

reliable circuit has proven to be beneficial in higher order neuron

designs (O'Carroll et al. 2006l, where data recorded from the output

54



Chapter 3: Photoreceptor Circuit Implementation

of the circuit can be used to feed in to the higher order neuron

designs for detailed eva-luation.

This faithful circuit not only provides a solution to better higher

order neuron designs but it also allows one to further develop one's

understanding of the biological photoreceptor cells. Experiments

that require exhaustive duration, which are not feasible for a single

cell recording (intracellularly), a-re no longer a problem with this

photoreceptor circuit. Not only that, the circuit can be mounted on a

robotic platform and record real-time responses in naturalistic

environments, which again is not feasible to be performed on an

actual biological photoreceptor.
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Abstract

We describe here an elaborated neuromorphic model based on the

photoreceptors of flies and realised in both software and using

discrete circuit components. The design of the model is based on

optimisations and further elaborations to the mathematical model

initially developed by van Hateren and Snippe that has been shown

to work in computer simulations of both steady-state and limited

dynamic (natural) conditions. The model includes an adaptive time

constant, non-linear adaptive gain control, logarithmic saturation

and a non-linear adaptive frequency response mechanism. It

consists of a linear phototransduction stage, a dynamic filter stage,

two divisive feedback loops and a static non-linearity. In order to test

the biological accuracy of the model impulses and step responses

were used to test a¡d evaluate the steady-state characteristics of

both the biological (fly) and artificial (new neuromorphic model)

photoreceptors. These tests showed that the model responded in an
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almost identical way to the actual insect photoreceptor cells. The

model showed a decreasing response to impulsive stimuli when the

background intensity was increased, indicating that the circuit

adapted to background luminance in order to improve the overall

operating range and better encode the contrast of the stimulus

rather than luminance. The model also showed the same change in

its frequency response characteristics as the biological

photoreceptors, with the corner frequency of the circuit ranging from

IOHz - gOHz depending on the current state of adaptation. Our

model provides an excellent platform for future experiments that

could be carried out in scenarios where in-uiuo intracellular

recording from biological photoreceptors would be impractical or

impossible.

Key words: Insect Vision, Visual System, Adaptive Photoreceptor, Neuromorphic,

Bio- inspired, Artificial Vision

Correspondence to: Eng- Leng Mah (email: eng. mah(Aadelaide. edu' au)

4,1. Introduction
The biological visual system is capable of adapting to light in order

to enhance the encoded information from the earliest stages of visual

processing (Wuff et al. 1975; Laughlin et al. 1978; Weckström et al.

1995; van Hateren et al. 2005). In any one state of adaptation,

depending on species, biological eyes can only effectively detect

changes in light intensity of approximately 2-3 Iog units (Wallcott

I975j. Since the luminance transition from day to night is

approximately 8 log units, adaptation mechanisms are required to

alter the effective range in which the visual system operates. Such

mechanisms are mainly due to anatomical changes ¿¡.nd biochemical
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processes in the photoreceptor cells, which take place during light-

adaptation (Baumann 1975; Baumann 2000).

All artificial imaging systems require a means of transducing light

into a usable electrical signal, however most vision use a linear

detector stage (Francheschini et al. 1992; Moini et al. 1997; Netter et

al. 2OO2). Both theory and modelling have shown that non-

linearities, such as those seen in biological photoreceptors, improve

the coding of visua-l information (Laughlin 1989). van Hateren and

Snippe (2001) recently developed a mathematical model for non-

linear luminance coding by fly photoreceptors. They incorporated

several elements directly inspired by studying key stages of the

blowfly visual system. Their model, when implemented in software

provided an excellent fit to biological photoreceptor data under both

steady-state and limited dynamic conditions; while several other

models (such as direct logarithmic encoding, which does not

incorporate adaptation) have been shown to be inferior in either

steady-state behaviour or once more complex optical flow is
introduced (Dror et al. 2001).

The van Hateren and Snippe model was proposed primarily to

explain dynamic behavior under photopic conditions. An additional

feature of the physiologr of the fly photoreceptor not accounted for

by this model is that (and unlike mammalian cones) it is also

adapted to low light levels by virtue of a large change in time

constant (nearly 10 fold change in corner frequency) (Weckström et

al. 1995). Coupled to additional changes in the underlying

transduction cascade, this allows fly photoreceptors to operate over

an extended luminance range.

59



Chapter 4: Steady-state AnalYsis

several different analogue vision chips have been built to mimic the

response of biological systems to a variety of visual stimuli (Tanner

et al. 1988; Delbrück 1993 Etienne-cummings et al. 1993;

Sarpeshkar et al. 1993; Kramer et al. 1995; Delbrück et al. 1996;

Liu 1996; Moini et al. 1996; Sarpeshkar et al. 1996; Kramer et al'

t997; Yakovleff et al. 1998; Liu 1999; Delbrück et a-1. 2OO4l and

Some of these have taken advantage of the 'neuromorphic'approach,

incorporating some principles akin to those in biological visua-l

processing, with varying degrees of success Perhaps the most

successful of these neuromorphic designs is that of Delbrück et al

(1996), who have implemented an artificial photoreceptor chip by

using neuromorphic analogue Very Large Scale Integrated (aVLSI)

technologr (Delbrück 1993; Delbrück et al. 1996; Delbrück et al'

2OO4l. These chips provided rudimentary approximations to several

key aspects of biological photoreceptors, including non-linear

luminance adaptation and logarithmic coding. While these designs

may provide an improvement over simple linear detectors under

many conditions, to date they have not been tested against their

biological counterpart under dynamic conditions that would be

experienced during normal behaviour. Also steady state testing of

these d.evices reveals no evidence of the 'soft' saturation which is

found at high luminance in biological photoreceptors and which was

incorporated into the parametric model of van Hateren et al (2001).

And which was reported by Dror et al (2001) to be advantageous for

post-detector visual processing. Despite these limitations, the

Delbrück model is currently one of the best developed neuromorphic

hardware models for biological photodetection, and has been

incorporated by other groups into similar neuromorphic chip designs

as a front-end for higher-level processing tasks (Shoemaker et aI'

2OOl; Shoemaker et al. 2005)'
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De Vries-Rose + Weber + Non-linearity (after van Hateren & Snippe 2001)

lnput(t) Output(t)

Figure 4-1: A mathematical model proposed by van Hateren and
Snippe to mimic the insect photoreceptor cell. LP1, LP2 and LP3 are
low pass filters. To the left of the LP3 is an exponential stage with a
function of kr*exp (kz*x) +c. NLl is the static non-linear stage
(Equation 4-Il.

Figure 4-I shows a simplified block diagram of the previously

proposed mathematical model (van Hateren et al. 2001). It consisted

of a cascade of two dynamic non-linear stages and a static non-

linear stage. The first dynamic non-linear divisive feedback loop

compresses fast and large transients and causes a semi-logarithmic

response in the steady-state. The second non-linear divisive

feedback loop is responsible for slow adaptation (4-5s) to large steps

in intensity, and also acts as an automatic gain control for the

system. Any remaining peaks that would drive the photoreceptor out

of its dynamic range are handled by the final compressive non-

linearity.

The purpose of this paper was to implement and evaluate a robust,

adaptive non-linear artificial insect photoreceptor model in analogue

circuitry, complete with details (such as real-world limitations and

optimised values for each stage) omitted from the van Hateren and

Snippe model. Our model also incorporates further elaborations

such as an adaptive time-constant that even more closely mimic the

response of biological photoreceptors. The implementation of this

neuromorphic model, which faithfully mimics biological

photoreceptors, could be beneficial when studying how the
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photoreceptors perceive complex Scenes in natural environments,

since it is practically impossible to perform in-uiuo intracellular

experiments with an animal that is moving freely. The analogue

nature of the implementation also acts as a powerful tool in

sampling data of any scenarios and thus provides reliable, data for

the design of higher order neurons - discrete time animation such as

computer screen displays, which are widely used in visually

stimulating higher order neurons in an insect visual pathway, may

introduce non-linear artefacts during recordings. In addition, any

physiological experiments that were previously considered non-

feasible due to their extreme duration can no\M be realised by having

this implementation, thus improving the consistency in data

collection and testing experimental designs. V/e chose a discrete

component approach to designing this model because it allows us

more flexibility in implementation of key stages that are missing

from earlier VLSI devices. Although impractical for implementation

in multi-pixel applications, our model provides an excellent basis for

future experiments in real-world scenarios where direct intracellular

recording of fly photoreceptors would be impractical.

4.2 Methods

4.2.1. Stim uli Generation

Pre-programmed visual stimuli were presented to the fly

photoreceptors and the prototype photoreceptor circuit using an

ultra bright green Light Emitting Diode (LED; Luxeon Star,

Luxeonrt). The LED was electrically isolated using an optical fibre

core light guide to eliminate electrical artefacts. The optical fibre core

also diffused light source from the LED to provide an extended

luminance 'patch' source at 45" across the eyes of the fly. The LED
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was driven by a custom designed calibrated high current amplifier

(35OmA maximum current output) and the luminance level was fully

controlled via a 16-bit data acquisition card (NI PCI6221, National

InstrumentJt¡. The non-linear response of the LED with input

voltage was calibrated using a high precision photodiode (265, UDT

InstrumentJt¡ and photodiode amplifier (PD4750, Tetahettz

Technologt Inctt) to derive a transfer function that was used to

produce a linearised response curve for the system' The maximum

playback luminance of the LED was recorded to be approximately

TO,OOOcd l^' (IOOQ, similar to the luminescence of the sþ close to

the sun on bright day. Due to the non-linear action of the LED close

to threshold it was possible to accurately modulate extremely dim

stimuli (O.0OO Io/ol at the lower end while still being able to deliver

very bright stimuli. The usable dynamic range was 6 log units

(12OdB), which is greater than that permitted by a 16-bit linear

system which would have a range of 4.8 log units (96d8) or a

standard 8-bit display system (2.4 Iog units; 4SdB). A high precision

S-axes Cadan-Arm system was used to move the light source during

experiments so that the stimulus patch was centred on the receptive

field.

Two sets of stimuli were generated to investigate the non-linearities

of the fly photoreceptors and the prototype circuit. Impulse

responses were obtained from the photoreceptor or prototype circuit

using brief flashes of light on top of predefined constant background

intensity. The intensity of the brief flashes, typically of lms (for

frequency analysis) and Sms (for time domain analysis) durations,

ranged from O% (near dark) to lOO"/o. The responses were then used

to produce stimulus (V LOG I) curves (Matic et al. 1981; Laughlin et

al. 1993) and to study the frequency responses of the photoreceptors
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and the prototype circuit against different background intensities

(steady- state adaPtation).

By increasing the duration of the flashes to 3s, step responses were

obtained. Such long stimulus durations allowed the photoreceptor to

(partially) adapt to the stimulus level. The step response stimuli set

was used to investigate the adaptation rate of the photoreceptors,

and the prototype circuit, under different background illumination

conditions.

4.2.2 Electrophysiological Recordings

A number of electrophysiological experiments were conducted to

eva-luate the responses of biological photoreceptors to the stimuli. All

experiments were performed intracellularly on the photoreceptors of

intact hoverflies (Eristatis tenaxl at a temperature range of 22-24"C.

Individual R1-6 photoreceptor cells were penetrated with a

manipulated micropipette filled with 2.0M KCI, with a resistance of

100-20OMO. The microelectrode was connected to a pre-amplifier

(npi, BAIS) and the amplified output was passed through a high

precision SOHz adaptive noise removal filter (Quest Scientific, Hum

Bug) to eliminate unwalted power line interference. The output of

the Hum Bug was monitored using a digital oscilloscope (TDS210'

TektronixrM) and recorded using a 16-bit data acquisition card

system (NI PCI6221, National Instrumentsrt) and custom software

written in LabVIEW@ at a sampling rate of SkHz. All the experiments

on either biological receptor or the circuit were done in a darkened

room
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LPCU

NvLPl

LPULP

4.2.3 Gircuit Modelling and Recordings

lnput(t) 0utput(t)

Figure 4-22 A. simplified block diagram of a single pixel adaptive
photor..eptor model. LPCU was the low pass control unit that
iunctioned to prouide a control voltage signal to the variable low pass

filter, VLP1, based on the average luminance measured. Since this
circuit design is a continuous system, the control voltage signals
from the LPCU continuously changed according to the luminance
history of that point. VLP1 used the control voltage signal to
automatically determine the parameter settings in order to provide

an appropriate output signal and frequency range for the remaining
stagés. Signal output from the first divisive feedback was then sent
to the second divisive feedback stage and at the same time to the low
pass filter, LP2 as a feedback signal for the first divisive feedback
st"ge. The long (a-ss) term adaptation of the system was

autãmatically controlled via a cascade of LP3 (low pass filter) and the

exponential stage. The final stage, NLl was responsible for

"o*p..."ing 
the output signal and producing a sigmoidal transfer-

function.

The prototype circuit was initially designed using Matlab and

Simulink software. The parameter values of the model were then re-

designed and re-evaluated to make sure that it was feasible to be

implemented using discrete electronic components. This new

mathematical model, shown in Figure 4-2, was then used as a base

for the next d.esign level, a SPICE circuit model, which was designed

using the DXP Circuit Simulation Software. All the components used

to build the SPICE model were real components available for

purchase. Impulse and step response tests were simulated to

evaluate the output response of the SPICE model. The finalised

SPICE model was then used as a reference model for the hardware
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prototype implementation using discrete electronic components. The

same test stimuli described above were used to evaluate and study

the implemented prototype circuit.

The circuit consisted of a variable gain and corner frequency filter

(VCFF) stage, two divisive feedback stages and one static non-linear

stage. The low pass control unit (LPCU), shown in Figure 4-2,

automatically adjusted both the gain and corner frequency of the

variable low pass filter (vLP). The adjustment was based on a heavily

low-pass filtered version of the input stimulus. If the average

background luminance was low the LPCU sent a voltage signal to

VLP in order to reduce the corner frequency and increase the gain of

the circuit and vice versa for high inputs. Since different biological

species have different performance requirements, and thus have

different speed photoreceptors, the LPCU, as with other sections of

the circuit, was designed to be fully adjustable.

Low pass filter, LP2, was used as part of the first divisive feedback

stage to realise a logarithmic steady-state response with dynamics

similar to biological photoreceptors. The long time constant of the

circuit was controlled via the parameters settings of the low pass

filter, LP3, and the cascaded exponential stage. The longer the time

constant of LP3 the longer it took the circuit to adapt from its

original steady-state level and vice versa'

The final stage, NL1, logarithmically saturated the circuit output in a

similar way to biological photoreceptors. Equation 4- 1 shows the

mathematical formula used to realise such saturation:

NLI (Eq a-1)
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v/here ,NLf is the non-linear output of the system and 'c' a

constant. The output of the system was always less than 1 and

produced a smooth saturation curve when the input was large with

respect to c.

4.2.4 Circuit Design

The prototype circuit was designed and implemented in stages based

on the block diagram shown in Figure 4-2. Discrete analogue

components were used to build each stage on breadboards and a-11

the stages were evaluated. prior to combining them as one complete

circuit.

A linear amplified photodetector (TSL251) was used as the front end

of the circuit to transform light signals into electrical signals. To

avoid any hard saturation at the output of the photodetector, a

neutral density filter (1/8) was used to cover the field of view of the

photodetector. The filtered photodetector, which had an output

ranged from O-4V, was thus capable of performing linearly

(unsaturated) even though it \Mas seeing a 70,000 cdlm2 light

source.

Signals from the photodetector \Mere averaged in the LPCU using a

standard active low pass filter. The averaged signal, which was an

approximation to the mean background luminance, was used aS a

measuring point to trigger the variable resistor in VLPI. The design

made VLP1 a variable gain and frequency low pass filter that was

dependant on recent luminance history.

LP2 and LP3 rü/ere both first order low pass filters. They were

constructed as active filters using standard low noise JFET
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operational amplifiers, resistors and capacitors. Because the circuit

was powered with 115V, the signal output from both the filters was

designed in such a way that they would not hit the power supply

rails, i.e. no hard saturation.

Standard analogue divider chips (AD734l were used to realise the

mathematical division stages in the circuit. Because it is

mathematically impossible to have a zero denominator in division,

dark current leakage from the photodetector was deliberately not

calibrated to zero in order to create îorL-zero initial conditions for

these stages.

4.2.5 Data Analyses

Relative Gain

By using the impulse responses at a various background luminance

levels, the relative gains were calculated based on equation 4-2-

RelativeGain=
Inp u t P u I s e I n t e n s i ty (Yo)

@qa-21

where Output is the peak of the impulse response relative to the

background potential and Input Pulse Intensitg is the percentage

brightness of the impulse stimulus.

Frequency Response

In order to analyse the linear component of the frequency response

of the photoreceptor cells, lms impulse stimuli were used during

experiments. Small impulses were used to ensure that they were low
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enough not to elicit significant non-linear behaviour, i.e. the impulse

responses had to be monophasic (Matic et al. 1981). From the

impulse responses, the frequency responses were determined by

fitting a simple log-normal curve, shown in equation 4-3 (Payne et al.

1981), and then calculating the Fourier Transforms of the curve

fitted responses.

v(t) = a.exp[-(1og(tl;u-ll2l2o2l (Eq a-3)

where V(t) is the output voltage at time t, a is the amplitude scaling

factor, o is the standard deviation and p is the mean of the log

transformed Gaussian curve.
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4.3 Results

4.3.'l Pulse ResPonse
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Figure 4-3: Pulse responses of the actual insect photoreceptor cell.
A. Pulse responses of the actual insect photoreceptor cell with a
background luminance of Oo/o (auerage of 5 trials for each intensitg
step, 1 celt). B. Pulse responses of the insect photoreceptor with a
baõkground luminance of O.Io/o (auerage of 3 trials for each intensitg
step, 1 cett). C. Relative gain of the photoreceptor cells for both
backgrounds O%o and 0.1%o (auerage of 3 cells). Error bars are one

standard error of the mean. The system displayed a much greater
relative gain to low intensity stimuli at BG 07o, i.e. the gain of the
system reduced as the background light increased. D. Normalised
pulses responses of the cell when the background luminance was at
O.Iy" (auerage of 3 trials for each intensitg steps, 1 cell). These pulses
were highly non-linear, had no general trend to each other when
normaliõed and show hyperpolarisation effects, the result of
adaptation to the level of light. Time of stimuli, shown below data
traces, was sms.
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The first stage of investigating the biological photoreceptor cells was

to conduct a series of pulse responses, where brief flashes of light

were used to stimulate the photoreceptors from varying background

illuminations. Figure 4-3a shows typical responses of the fly

photoreceptor cells to Sms pulses of light when the light was off

between pulses, i.e. pulses were delivered from near darkness. The

recording of each flash was set to be 59s apart in order to ensure

that the photoreceptor was properly adapted to its original

adaptation state before recording consecutive responses. Notice that

the peak of the pulse response (Figure a-3al increased non-linearly

as the pulse intensity increased and saturated (plateaued) as the

pulse intensity approached 100%. The time taken for the response to

return to the pre-stimulus level increased as the size of the stimulus

increased.

In order to study the response of the photoreceptors under different

background lighting conditions, the pulse response test rü¡as

repeated with changes to the pre- and post-stimulus intensity levels.

Instead of using Oo/" between stimuli, the LED was offset to a

constant background intensity. Figure 4-3b shows an example of the

pulse responses of the fly photoreceptor with a constant background

intensity of 0.1%o. Notice that there is not much of a difference with

the general shapes of the pulse responses compared to the

responses when the LED was off between stimuli (Figure 4-3a). The

peak of the response increased as the pulse intensity increased and

it also tended to saturate at large stimulus levels. However, there

were some significant differences with the duration of the pulse

responses. The width of the response was longer when the LED was

O%o between trials compared to when it was set to O.Io/o, i.e. the cell

took longer to depolarise from resting potential to peak potential and

back to the original resting potential when the background was
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lower. Another observation, shown in Figure 4-3c, which is probably

not as obvious from Figures 4-3a and b is that the relative gain

(shown in equation 4-2) of the responses against the impulse

intensity was higher when the background illumination was lower;

i.e. at low input pulse intensities the relative gain of the system was

higher at lower illumination levels. However, both of the curves start

to meet at a stimulus level of approximately IO"/", which is the point

where the cell reached its saturation threshold.

Figure 4-3d shows the normalised figure of the pulse responses of

the light-adapted cell. Notice that the responses were all biphasic,

i.e. they contained hyperpolarised peaks. The pulse width only

underwent a relatively small amount of change throughout the whole

range of input pulse intensities as the frequency range of the system

was set by the slowly adapting LPCU.
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Figure 4-42 Pulse responses of the prototype circuit. A. Pulse

reJponses of the prototype circuit with a background luminance of
Oo/o (auerage of 5 triats for each intensitg step). B. Pulse responses of
the circuiiwith a background luminance of 0.lo/o (auerage of 3 tials
for each intensitg step). C. Relative gain of the circuit output for both
backgrounds Oolo and 0.1%. This graph shows significant pulse gain
differences at the different background levels (similar to the
biological data in Figure 4-3c). D. Normalised pulses responses of
the circuit when the background luminance was O.lo/o (auerage of 3
trials for each intensitg step). As with the recordings from biological
photoieceptors these responses were highly non-lineaf and showed

hyperpolarisation effects. Time of stimuli, shown below data traces,
was sms.

73



Chapter 4: Steady-state AnalYsis

Using similar techniques aS above, the experiments were repeated on

the hardware prototype circuit. Figure 4-4a shows the pulse

responses of the prototype circuit against different input pulses

when the LED was off between stimuli. The pulse responses were

similar to the responses of the photoreceptors as shown in Figure 4-

3a. Again, as the input pulse intensity increased, the peak response

of the circuit increased as well. The peak output also tended to

saturate as the pulse intensity got larger. Figure 4-4b shows that

apart from a decrease in the response duration there were no

significant changes with the overall shape of the circuit responses

when a low level background illumination was introduced between

stimuli.

Figure 4-4c shows the relative gain curves of the circuit. As with the

biological results, the circuit had a higher relative gain when the

background level was lower. Both of the gain curves start to meet at

the point (l}%l when the circuit reached the saturation threshold.

Again, by normalising the pulse responses of the circuit, it was

possible to evaluate the non-linearity of the circuit (Figure a-4d). The

output signals \Mere monophasic when the input pulse intensities

were low. As the pulse intensity increased, the signal outputs tended

to produce a biphasic response and the hyperpolarised signals took

hundreds of milliseconds to return to its resting potential (much

longer compared to the actual photoreceptor responses). As with the

biological data there was a small, but noticeable, change in the

width of the responses as the input pulse intensity changed.
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4.3.2 Step ResPonse
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Figure 4-5: Step responses of the actual insect photoreceptor. A.

Stãp responses of the insect photoreceptor cell at background Oo/o

@uàrage- of 5 trials for each intensitg step, 1 cell). The adaptive
ieature of the photoreceptor can be clearly seen during the onset of
the stimulus. Lower intensity step responses have a higher
adaptation rate (decay much faster) compared to the ones with a
brighter intensity steps. B. Step responses of the insect
phõtoreceptor cell at background 0.l"/o (auerage of 3 trials for each

intensitg "t.p, 1 cell). Significant adaptation is observed even though
the stimulus intensity is dim (O.22%1. Huge post-stimulus
hyperpolarisation effects (undershoots) occurred when the onset step

intenéities \Mere large (75% and 100%). Time of stimuli, shown below
data traces, was 3s.

The same stimuli used to generate pulse responses were used for

step responses but the stimulus on time was increased from Sms to

3s. Figure 4-5a shows the step responses of the photoreceptor cell.

The ce1l was tested with steps of different brightness. Note that the

cell adapted to the stimulus intensity during the stimulus period'

The cell was initially adapted to 0% background intensity. As soon
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as the stimulus started the output ramped to its maximum response

followed by a period of adaptation. During the post-stimulus period,

the cell response showed evidence of adaptation, significant

hyperpolarisation (undershoot), even to the smallest stimuli.

Similar experiments were repeated in order to evaluate the rate of

adaptation under different background lighting conditions. Figure 4-

5b shows an example of one of these experiments. There were no

obvious differences in the general shape of the response under Oo/" ot

O . lo/o background levels.

A Step Responses (BG 0%) B Step Responses (BG 0 1%)

E

1s
1s

l5o/o 75o/o

E

-- 0.46% --

_-001% --

- - 046o/o

- - 02T/o

Ptulolwo Circuil Pttlolypø Cinuil

Figure 4-612 A. Step responses of the prototype circuit at background
O"/o (auerage of 5 triats for each intensitg step). B. Step responses of
the circuiiat background O.Io/o (auerage of 3 trials for eachintensitg
step). As with the biologicat data (Figure 4-5) the rate of adaptation
deðreased with the size of the stimulus while hyperpolarisation after
the cessation of the stimulus increased. Time of stimuli, shown
below data traces, \¡/as 3s.
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Again, the step response tests were repeated on the prototype

circuit. Figure 4-6a shows the output step responses of the circuit at

O% background. The circuit responses were very similar to the

actual neurobiological data collected (Figure 4-5a1. The circuit

responded to the constant input level by reducing the output level

and also showed a hyperpolarisation when the stimulus was

removed.

In ord.er to further investigate the robustness of the circuit it was

tested under different background lighting conditions. The pre- and

post-stimulus LED intensity were set at O.lo/o and the outputs are

shown in Figure 4-6b. Notice that the outputs of the circuit were

again very similar to the neurobiological data.
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4.3.3 V LOG I
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Figure 4-72 V Log I curves of the insect photoreceptor cells and

prõtotype circuit. A. V LOG I curves of the insect photoreceptor cells:

bC O%-1"uerage of 4 cells - 3 trials per ce11), BG 0.lo/" (avetages of 6
cells - i tti¿J per ce11), BG lo/o (average of 4 cells -3 tria'ls per cell)

and BG 5% (avèrage of 4 cells - 3 trials per ce11). Error bars show

one standard error of the mean. B. V LOG I curves of the prototype

circuit. Similar to the biological visual system responses, the V LOG

I curves of the prototype circuit shift to the right and down as the
background intènsity increases. The responses are linearly related
(1-2 Tog units) to the input pulse intensity up to a stimulus of
àppto*i*ately 17o. As the input pulse intensity increased from Io/o to

aþþroximately TO"/o, the responses tended to behave logarithmically

".rä, 
a.pendant on the background intensity, inputs beyond 7O"/"

resulted in a saturating output.

From the pulse responses obtained in the previous section, it was

possible to characterise the cell responses by plotting the peak

response of the cell, relative to the pre-stimulus mean' against the

1og of the corresponding input pulse intensity (V LOG I). Figure 4-7a

shows the V LOG I curves of the insect photoreceptor. Note that the

photoreceptor was a highly non-linear system. There were only

minor changes with the peak magnitude when the input pulse

intensities were very low. As the input pulse intensity reached a

detection threshold, the cell started to respond logarithmically to the

input signal (straight line on a log-scale) for approximately 2-3 log

units, depending on the adaptation state. The cell then reached a
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saturation level above which the sensitivity of the cell to increasing

stimulus intensity reduced. Note also that the response curves

shifted to the right and down as the background intensity increased.

This was a consequence of the adaptation of the cell to the different

background levels.

The same analysis was repeated on the circuit data and shown in

Figure 4-7b. The circuit output showed similarities to the

neurobiological data. The curves were shifted to the right and down

as the background intensity increased. At any one adapting state,

the prototype circuit has an effective visual information coding range

of approximately 2-3 log units (similar to the neurobiological data

recorded).

4.3.4 Frequency Response
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Figure 4-8: Frequency responses of the insect photoreceptor cells. A.

Normalised impulse responses of the insect photoreceptor cell
(auerage of 1O trials for bothintensitg steps, 1 cell). B. The calculated
-3dB points (corner frequency) of the biological photoreceptor
againsl the corresponding relative background luminance (auerage of
3 cetts). Error bars show one standard error of the mean.

Figure 4-8a shows the normalised impulse responses at two different

background adaptation states: O"/" and 75"/o. The photoreceptor
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responded much slower when the background luminance was at Oo/o

(pulse width of SOms) compared to when the background luminance

was at 75o/o (pulse width of 7ms). Figure 4-8b shows the corner

frequencies (3-dB point) of the cell against various background

luminances. The corner frequency of the cell ranged from

approximately IOHz to gOHz and the speed of roll-off in the cut-off

region was indicative of a second order system (-4}dBldecade),

independent of the background luminance. The corner frequency of

the cell increased non-linearly with the background luminance until

a saturation point at a background of approximately 57o.
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Figure 4-92 Frequency responses of the prototype circuit. A.

Noimalised impulse responses of the prototype circuit (auerage of 2O

triats for both intensitg steps). B. This graph shows the calculated
corne; frequencies of the circuit against its corresponding relative
background luminance.

Similar analysis was done on the impulse responses obtained from

the prototype circuit, and is shown in Figure 4-9. The corner

frequency range of the circuit was approximately the same as the

biologica-l photoreceptor. It was designed to be a second order low

pass system. The circuit shows high non-linearity with the changes

of the corner frequencies against various background luminance

levels.
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4.4 Discussions

We have presented an elaborated version of a hardware prototype

circuit of a biological photoreceptor cell and described how the

elaborated circuit has successfully mimicked most of the important

characteristics of the cell. Although this paper only discussed the

evaluations of the circuit against non-realistic conditions (steady-

state impulse and step response tests), these tests were sufficient to

permit the accurate design, implementation and tuning of all stages

in the prototyPe circuit.

This elaborated artificiat insect photoreceptor circuit was made as a

more faithful mimic of the biological system than existing

neuromorphic chip designs. Unlike many other designs this

elaborated circuit is embedded with much more complicated features

that mimics almost all features of biological photoreceptors.

The first feature is the soft saturation of the V LOG I curves' The

elaborated circuit shows a significant saturation at the output when

the input pulse intensity is high. This cha¡acteristic is a product of

the final static non-linear stage (Naka-Rushton Stage). Instead of a

hard saturation (Delbrück et al. 19961 this final stage smoothly

saturates the output of the circuit in a similar way to the

neurobiological data.

Another important feature, which has not been incorporated into

any current neuromorphic designs, is the variable gain and corner

frequency stage, which acts in a similar way to an automatic shutter

in a digital system. At low light levels the gain of the system is

increased and the corner frequency lowered (increasing integration

time). Studies have shown that a variable corner frequency

photoreceptor may improve the visual information coding in
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biological visual systems (rWeckström et al. 1995; van Hateren et al.

2001). This makes sense because under dark conditions the visual

system has to slow down in order to allow time for a sufficient

number of photons to enter the eyes for a reliable image to be formed

(similar to conventional camera). By slowing down the system, and

rejecting higher frequency components where there is little or no

signal, the overall signal to noise ratio will increase; i.e. trade off

between speed and signal-to-noise ratio. Similarly, when the

background luminance is sufficiently high, the system is sped up in

order to avoid early saturations and permit a more rapid response to

stimuli.

Such a robust, elaborated adaptive artificial photoreceptor model not

only provides a feasible front-end solution to many neuromorphic

designs but it could also provide a reliable solution for many

neurobiologists to use aS a front-end for more elaborate systems

which afe designed to copy higher-order functions of the visual

system such as the calculation of wide-field motion and the

identification and tracking of targets.
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Abstract

Phototransduction processes in fly photoreceptor cells are highly

non-linear, displaying adaptation to background luminance, thus

increasing the dynamic range of visual information perceived.

Physiological studies suggest that this adaptive feature of the fly

photoreceptor cells is capable of improving the effective dynamic

range up to approximately 8 log units, depending on species. A

number of neuromorphic models of insect visual systems have been

proposed, with the front-end photodetector being a near linear input

system. In this paper we analysed and evaluated the necessity of

having a robust, elaborated adaptive photodetector model as the

front-end of an artificial visual system. A neuromorphic model was

used for comparison with neurophysiological recordings from fly

photoreceptor cells. Two types of naturalistic images \Mere used

during experiments: (i) traditional (8-bit) natural scene panoramic

images and (ii) high dynamic range (32-bit single precision floating-
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point) natural scene panoramic images. The same ultra bright light

emitting diode was used to playback the panoramic images as time

series of intensities to both the fly photoreceptor and the

neuromorphic model. Time and frequency domain analyses were

used to compare the similarity of the neuromorphic model to the

actual neurobiological data. To summarise the findings: (i) the

neuromorphic model was a good mimic of actual photoreceptor cells

under complicated naturalistic conditions, (iÐ the neuromorphic

model responded in an almost invariant way to large changes in

image intensity (iii) the neuromorphic model had a larger signal to

noise ratio than a simple linear model under low lighting conditions,

(iv) varying the playback speed (relative motion) of the panoramas

had no significant impact on the robustness of the neuromorphic

model.

Key words: Insect Photoreceptor, Insect Visual System, Adaptive Photoreceptor,

Neuromorphic, Bio-inspired Vision, Naturalistic Stimuli

correspondence to : Eng- Leng Mal. (email: enq. mah@adelaide. edu. au)

5.1 Introduction
Light intensities in real-world environments can varJ¡ considerably,

especially during partially cloudy days. Despite the changes in

surrounding light intensities, most animals are still able to navigate

properly without experiencing significant problems. This

compensation for varlring light levels is not a conscious activity as

visual systems have built-in light adaptation mechanisms to

increase the effective range of perceived visual information

(Baumann t975; Laughlin et aI. 1978; Matic et al. 1981; Fain et al.

2OOl; Silva et al. 2OO1). Insects in particular have naturally,

throughout millennia of evolution, developed an elegant solution to
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cope with high-bandwidth environments efficiently using their low-

bandwidth visual systems. Physiologica-l studies suggest that by

having an adaptive mechanism anima-ls, and insects, are able to

increase their ability to visualise anything in a range of about 8 log

units of intensity (Laughlin 1939). A number of researchers have

modelled and implemented parts of insect visual systems, most

notably the motion sensitive pathways, but many have neglected the

importance of faithfully simulating earlier stages of visual

processing, despite realising the fact that light adaptation occurs in

the early stage of the insect visual pathway, i'e. photoreceptor stage

(Kramer et al. 1995; Delbrück et al. 1996; Sarpeshka-r et al. 1996;

Liu 1999).

Without a good photoreceptor stage, the signals that propagate

through the rest of the system might not produce a reliable output

for the following higher order stages. For instance, the classic

Reichardt Correlator model which uses linear detectors as the front-

end to represent the photoreceptors poorly mimics the biological

motion detectors as a velocity estimator, especially under dynamic

(naturalistic) situations (Dror et al. 2OOI; Rajesh et al. 2OO4), while

these authors showed that inclusion of some static nonlinearity to

mimic some aspects of photoreceptor-like processing improved

performance. Their models lacked the dynamic adaptation to

luminance and contrast that has been shown to be necessary to

mimic biological photoreceptor responses under similar conditions

(van Hateren et al.2001). Therefore, there is a need to devise a

robust, elaborated front-end photodetector that properly mimics the

biological photoreceptor cells that is robust in both the artificial and

real-world environments.
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It is impossible to conduct an in-uiuo experiment on insect

photoreceptor cells while having the insects manoeuvring freely in

the natural environment, since aJI in-uiuo recordings have to be done

without any movements between recording apparatus and the insect

brain. However, by having a reliable neuromorphic photoreceptor

model, it is now possible to reliably predict the photoreceptor

responses of a manoeuvring insect to the complex dynamic natural

environment (Lindemann et al. 2005). The neuromorphic

photoreceptor can be mounted on a robotic platform to manoeuvre

around in the natural environment to collect photoreceptor data in

real-time.

5.2 Methods

In this article, we have analysed and evaluated our elaborated

neuromorphic photoreceptor model against 18 naturalistic scenes;

five Low Dynamic Range (LDR) 8-bit panoramic images and thirteen

High Dynamic Range (HDR) 32-bit panoramic images. Analysis

shows that the neuromorphic model was a very close mimic of the

biological photoreceptor cells in both the time (correlation) and

frequency (coherence) domains. The neuromorphic model was tested

for the effects of different maximum playback intensities (8-bit

panoramas) and different playback speed (32-bit panoramas).

The 8-bit format LDR images were used in initial experiments.

However, since the real-world luminance covers a much larger

range, it is important that we be able to generate a system that

realises a better representation of the real-world luminance. Playing

back the luminance dynamic with only 256 steps can only produce a

contrast between the dullest non-zero value and the brightest value
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of 1:255, i.e. a poor representation of the real-world contrast. Since

our system is capable of performing at a better dynamic range

(1:1O6), later experiments were carried out using a set of 32-bit HDR

panoramic images.

5.2.1 Stimuli Generation

The visual stimuli were presented to the fly photoreceptors and the

neuromorphic model using an ultra bright green Light Emitting

Diode (LED; Luxeon Star, Luxeont*). The LED was driven by a

calibrated high current amplifier (350ml{ maximum current output)

and the luminance level \Mas fully controlled via a 16-bit data

acquisition card (NI PCI622I, National Instrumentstt). The non-

linear response of the LED with input voltage was recorded using a

high precision photodio de (265, UDT Instrumentsr*) and photodiode

amplifier (PDA7SO, Terahettz Technolog' fnJM) combination. This

transfer function was then used to produce a linearised response

curve for the system. The maximum playback luminance of the LED

was recorded to be approximately 7O,OOOCd /^" (IOO%"1, comparable

to the luminance of the sþ close to the sun on a bright day.

Due to the non-linear action of the LED close to threshold it was

possible to accurately modulate extremely dim stimuli (0.0001o/ol at

the lower end while still being able to deliver very bright stimuli. The

usable dynamic range was six log units (120d8), which is greater

than that permitted by a 16-bit linear system which would have a

range of 4.8 log units (96d8). The LED was electrically isolated using

an optical fibre core light guide to eliminate electrical noise

interferences. A high precision S-axis Cardan-Arm system was used

to move the light source during experiments. The tip of the light-

89



Chapter 5: Dynamic Analysis (Panoramas)

guide was placed close enough to the detector under test (either

biological or artificial) to fill its acceptance angle. In other words, the

LED was effectively an extended source' But since the stimuli played

out through it had been sampled in a manner that takes into

account the normal optics and sampling of the fly eye, we can use

this approach to reconstruct the Scene in two-dimensions aS

encoded by the eye.

5.2.2 Panoramic lmages - Generation

Two sets of images were used during experiments: (i) 8-bit LDR

panoramic images. (iÐ 32-bit HDR panoramic images. The images

were captured using a high resolution digital camera (Nikon D-70)

mounted on a panoramic tripod head, with the centre of rotation

aligned with the lens nodal point. Images rvvere taken at 30o

increments and a p¿rnorama stitching software was used to stitch

the images together to complete the whole 360" horizontd. field of

view. Windy days were avoided during image capture in order to

minimise any movements or changes to the scene settings because

any differences between the adjacent images could introduce

stitching artifacts. Figure 5- 1 further illustrates the methodoloSr

discussed above.
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Figure 5-1: Panoramic image generation setup. Twelve images (i -
xii) were taken using a digital camera mounted on a panoramic
tripod Aefr).411 the images were stitched together to form a complete
360' (horizontal) panorama (righf).

More effort was spent generating the high dynamic range images in

order to better represent the real-world luminance. Similarly to the

8-bit images, several images were taken before stitching them

together to form a panoramic image. However, instead of just a
single shot per 30", three shots of the same scene were taken at a

time with different shutter speeds. The camera was preset to an f-

stop number of eleven and the first shutter speed was adjusted such

that the brightest part of the scene did not saturate the calnera's

dynamic range. The two subsequent shots of the same Scene \Mere

taken using progressively faster shutter speeds. A total of I2x3

shots \Mere taken per panoramic image and all of the shots were

saved as .NEF (raw format). NEF images \Ã¡ere converted to 16-bit

TIFF format in Photoshop, but left in a raw (unprocessed) state for

subsequent processing. One panorama was constructed for each

shutter speed using PTGui software and all the processes and

output were kept at 16-bit format. The non-linear encoding of

luminance by the camera was corrected (Debevec et al. 1997) and

the images combined and converted to 32-bit floating point using a

custom program written in LabVIEW@.

I
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8-b¡t Panoramic Images

All the 8-bit panoramic images were scaled to 1000x150 pixels

(360x5a deg). In order to closely mimic the optical characteristics of

a fly, the panoramic images were then pre-blurred with a 1' half-

width Gaussian function in Photoshop. 36 rows were sampled

during experiments to mimic a.n inter-receptor angle of 1.3'

(Stavenga 2OO3; Straw et al. 2006l. Only the green channel of the

images was presented since the majority of the photoreceptors are

green sensitive (Smakman et a-1. 1936). Figure 5-2 further illustrates

the procedures discussed above.
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Figure 5-2: 8-bit panoramic image generation. The original images
weie taken in a full colour format and they were stitched together to
form a full colour panorama as shown (8000xI2OO pixels). Since the
flies photoreceptors are green colour sensitive, the panor¿una was
deliberately filtered in Photoshop to only keep the information from
the green channel. The panorama was then converted to the grey

scale format for better representation on the screen. A half-width of
1o Gaussian blur was applied to the grey-scaled panorama to
emulate the optical blur of the insects' eyes. The panorama was
down-sampled and converted to a natural time series of intensities.
Rl to R36 were the rows of the down-sampled panoralna and they
were played from the left to the right of the panorama during
experiments, i.e. a spinning drum effect.
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For this paper, we used five different 8-bit panoramas. Each of the

panoramas was played back at eight different maximum intensities

in order to thoroughly evaluate the artificial circuit under various

luminance conditions: O.!"/o, O.íy", I"/o, 5"/o, lÙo/o, 3OV", 50% and

lOOo/". The panoramas were displayed at tkHz, i.e. simulating a

rotational speed of 360"/s.

32-bit Pano ramic Im a ges

The HDR panoramas were scaled to 8000x1600 pixels (360x72 deg)

and had a 1.4" half-width Gaussian blur, which matches the size of

the receptors in the bright zone of Ðristalis tenax (Stavenga 2003). In

order to emulate an inter-receptor angle of 1" (Straw et aI' 2006)' the

panoramas were converted to 80OOx62 and the first row played twice

to reduce start-up noise (onset saturation due to low luminance pre-

adaptive states). Note that the inter-receptor angle of the 32-bit

panoramas \Mas based on the horizontal measurement on a hex-

sampled grid. Hence, the vertical distance had a factor of 1/cos (30")

and it must be included for the above calculations of resolutions to

be correct (Figure 5-3).

The HDR panoramas were played back at real-world luminance

levels and various speeds: 45"/s, 90'/s, 180'/s, 360" ls,72O" f s and

I44O" I s.
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Hexagonal Representation of Flies Compound Eyes

lnter-receptor angle (1 deg)
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Figure 5-3: Hexagonal representation of fly's compound eye where
each hexagonal box represents a single facet lens. 1" inter-receptor
angle was used to calculate the amount of rows of the panorama
required for experiments.

5.2.3 Electrophysiolog ical Recordings

A number of electrophysiological experiments were conducted to

evaluate the responses of biological photoreceptors to the stimuli. All

experiments were recorded in the fronto-dorsal obright-zone" (Straw

et al. 2006l photoreceptors of intact hoverflies (Eristalis tenaxl. Since

photoreceptors are temperature sensitive (Tatler et al. 2000),

temperature \Mas controlled and maintained in the range 23-25"C.

Individual photoreceptor cells were penetrated with a manipulated
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micropipette filled with 2.OM KCI, with a resistance of 100-200MO'

The microelectrode was connected to a pre-amplifier (BA1S npi) and

the amplified output was connected to a high precision SoHz filter

(Hum Brg, Quest Scientific) to eliminate unwanted power line

interference. The output of the Hum Bug was monitored using a

digital oscilloscope (TDS210, TektronbJM). Results were recorded

using the 16-bit data acquisition card system (NI PCI6221, National

Instrumentstt) and custom software written in LabVIEW@.

5.2.4 Neuromorph¡c Modelling and Recordings

The neuromorphic model was designed and implemented using

electronic discrete components available off the shelf. The

neuromorphic model was built on breadboards for testing and

evaluation purposes. Initial modelling was done using Matlab &

Simulink and DXP simulation suite software. A working model was

then used as a basic model to implement the neuromorphic model

which consisted of a cascade of several dynamic a¡d static non-

linear stages to mimic the response of a true biological photoreceptor

(Mah et al. 2006) (ChaPter 3).

Stimuli similar to those used during electrophysiological recordings

were applied to the prototype circuit to obtain results for comparison

purposes. An amplified photodiode (TSL251) was used as the light

detector for the neuromorphic model. Data were recorded using the

16-bit data acquisition card system and custom software written in

LabVIEWo.
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5.2.5 Data AnalYses

Mathematical approaches were used to evaluate the similarity

between the biological photoreceptors and artificial photoreceptor

circuit in both time (correlation) and frequency (coherence) domains.

Averages were obtained from data with multiple trials and 95"/"

confidence interval was used to statistically measure the error

margin. Both analyses were performed using custom software

written in LabVIEW@.

Panoramic Images - Reconstruction

All the results obtained during experiments were resynthesised and

rescaled (1000x150 for the LDR panoramas and 1000x200 for the

HDR panoramas) from the neurona-l recordings using a custom

program written in LabvlEW@ for image reconstruction.

Noise Limit

A Fast Fourier Transform (Fm) was used to measure the noise limit

for all data collected from the 8-bit panoramas. Since the data were

sampled at IkHz, it was reasonable to assume that the wide-band

signal which becomes discernable as a plateau region near the

Nyquist limit (i.e. SOOHz) was white noise. Thus, the average po\Mer

spectra of the frequencies ranging from 450-500H2 were measured

to determine the mean noise level (dB) for that particular panorama

scene. The upper bound of this noise level (at mean + 95"/o CI of the

mean) was then used as a point to statistically (p>0.05) determine

the noise-limit frequency of any porwer spectra obtained from the

experiments, i.e. the noise-limit frequency of the recording was

located at the point where the recorded spectrum rose above this
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upper bound curve. Any regions of the spectrum below this level can

be considered to be noise.

Power Spectrum - Noise

Photoreceptor

-. - - - -' Mean Noise Level

-tJpps¡ 

li¡if

-1 00

U 500 1000 1500 2000 2500

Frequency, Hz

Figure 5-4: Power spectrum of the noisy biological photoreceptor
.eõpottse to a stimulus with an intensity equal to the median
intensity of a scene (Barr-Smith)from a 32-bit panoralna. The upper
limit (mean+9So/o CI of the mean) curve was fitted to the spectrum,
clearly showing the departure from the mean noise level at lower

frequencies

A similar method was applied to measure the noise limit for the 32-

bit panorama power spectra, which were sampled at SkHz. However,

to determine the white noise level for the 32-bit panoramas, a

recording was made to measure the response of the biological

photoreceptor to a stimulus equal to the median intensity of one of

the thirteen panoramic images (Barr-smith). It was found that the

resulting noise po\Mer spectrum exhibited a non-linear curve at lower

frequencies, instead of a constant value. As a result of this, an upper

bound curve was fitted to the spectrum to obtain the noise upper

bound (Figure 5-4). This fitted curve was then used to determine the
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noise-limit frequency in the 32-bit panorama spectra in a similar

manner as with the 8-bit recordings.

Peak Value, Average Passband and Corner Frequency

Since it would be difficult to visually measure the performance of the

non-linear photoreceptor circuit against the linear system or the

actual biological photoreceptors, three important parameters (peak

value, average passband and corner frequency) were obtained from

the analysed coherence curves as illustrated in Figure 5-5. The peak

value was taken as the maximum coherence value of the curve and

the corner frequency was measured when the coherence value was

O.7. The average passband was calculated by averaging the

coherence values when the power spectrum \Mas above a defined

noise-limit frequency (obtained from the power spectrum curve).
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Figure 5-5: Coherence analysis parameters. The maximum value of
the curve was assigned as the peak value parameter. The corner
frequency was located where the coherence value was at 0.7. The

arreiage passband was obtained by averaging the coherence values
between the frequency band of 0 and noise-limit frequency.
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5.3 Results

5.3.1 8-bit lmages

Figure 5-6 shows the reconstructed images from the output

responses of both the biological and artificial non-linear

photoreceptors to one scene played back at a variety of luminance

levels. Notice that the output images for both were very dim when

the maximum playback intensities were very low (O.I% and 0.5%).

As the intensity increased, the images became more visible as the

contrast of the images was greatly enhanced. More details of the

images were observed after being processed by the photoreceptors.

The darker bits of the image were amplified and the brighter parts

darkened. Similar output responses were observed for the other 4

panoramas (ApPendíx: Fígure A1'4)
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Reference lmage
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Figure 5-6: Reconstructed output images flom both the actual
biõlogical photoreceptors (auerage of 4 trials) and the _artificial
photõrec.piot (no repeaf.s/ at several maximum brightness playbacks
--o.I"/o,o.sy", 

lo/o,50/o, Ioo/o,30"/o,500/o and 100%. The image at the

top of the figure was used as a reference for all mathematical
analyses.

Power Spectrums

Figure 5-7 shows the power spectra of the photoreceptor output

images to a single LDR scene at various maximum playback

intensities. The power spectrum curves shifted closer to that of the

reference image curve as the maximum playback intensity increased,

i.e. more details from the panoramas were captured by both the
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biological photoreceptors and the artificial photoreceptor as the

playback intensity increased. Notice also that the power spectrum

curves for the circuit were generally weaker compared to the

biological output during dim playback intensities (0.17o, O.5o/o, lo/o

and, 5o/ol. This may due to the imperfect matching of the circuit

corner frequency to the actual biological photoreceptors. As the

intensity increased (IOo/",3Oo/",5Oo/o and 100%), the power spectrum

curves of the biological photoreceptors and the circuit became

similar. The curves also tended not to shift that much as both the

biological and artificial photoreceptors reached their saturation level.

Figure 5-8 shows the average power spectra of all five images at

various intensities. Again, the power spectrum curves shifted to the

right as the playback intensity increased. The power spectrum

curves for the artificial photoreceptor were lower compared to the

actual biological photoreceptors during dim intensity playbacks

(O.lo/o, O.5o/o, lo/o,5o/o and 10þ. As the playback intensity increased,

both of the curves tended to saturate at the same level.
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Figure 5-72 Power spectra under various maximum playback
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where anything below the line \Mas considered noise'
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Figure 5-8: Average po\¡ver spectrums from five panoramic images
(S-bit) under various maximum playback intensities (0.I"/o, O.5"/",

\olo,5"1", IOo/o,3O"/o,5O"/o and 100%). The dotted lines on the graphs
were used as a noise level indication where anything below the line
was considered noise.
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Correlation Analyses

Figure 5-9 shows the average correlation analysis between the

artificial insect photoreceptor and the actual biological photoreceptor

cells. A linear system was used as an experimental control. The

artificial photoreceptor showed a great correlation to the biological

cells for all the panoramic images with majority of them having an

average 12 value of greater than 0.8 (better than the linear system

which had, 12 . O.71. The artificial photoreceptor had an average (for

all light levels except O.l%l l8.92o/o improvement in the correlation

coefficient over the simple linear system. Also note that the artificial

photoreceptor was mimicking the biological photoreceptor optima-lly

for all five images where the maximum playback intensity was at 17o

with a,n average Ú=O.892x0.028 (mean + 95"/" CI of the mean)

compared to the linear system with an average r2=0.835t0.039.

However, the correlations tended to depreciate as the maximum

playback intensity increased.
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Figure 5-9: Average correlation of the output of the actual biological
phãtoreceptor cells (auerage of 5 P ualues from fiue different images
under the same maximum ptagback intensitg; 4 trials each) against
the artificial insect photoreceptor circuit (no repeats)- Error bars
show the standard errors.
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The correlation of the artificial non-linear photoreceptor response to

the biological photoreceptor was always higher than for the linear

system except at the playback intensity of O.lo/".In this instance the

artificial photoreceptor was incapable of demonstrating a good

correlation (rz:O.45610.231) with the biological photoreceptors

compared to the linear system (tz=O.673r0.213), likely due to noise

at the input to the system caused by the use of a linear photodiode

(rsl, 2stl.

Coherence Analyses

Figure 5-10 shows the coherence analysis output of an image

(Close.png) against various maximum playback intensities. Notice

that the coherence curves were shifted to the right as the playback

intensity increased. At low intensity (O.f/"), the artificial

photoreceptorwashighlycohered('o.Tlwiththebiological
photoreceptors and had a corner spatial frequency of approximately

O.lcycles/". As the maximum playback intensity increased, the

artificial photoreceptor became highly cohered with the biological

photoreceptors for a larger range of spatial frequencies. However, aS

the maximum playback intensities lvere beyond 5-IOo/", the curves

tended not to shift any further (saturated). The corner spatial

frequency of the saturated curves was at approximately O.Scycles/'

for this particular image.
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Figure 5-1O: Coherence analysis between the actual biological
phãtoreceptor cells (4 trio;ts) and the artificial photoreceptor circuit
(no repeaús/ at various maximum intensity playbacks.

Figure 5- 1 1 shows the output of two important analysed parameters:

average passband coherence values and average corner frequencies

from the five different panoramas. Notice that the overall average

passband coherence values (Figure 5-11a) of the linear photodiode

against biological photoreceptors were lower compared to the

average coherence values of the artificial photoreceptor, i.e. the

photoreceptor circuit was performing robustly under all the playback

intensities. Note that the photoreceptor circuit performed its best

during the 5% maximum intensity playback with average passband

value of O.847hO.O26 CI. The lowest average passband value

calculated for the photoreceptor circuit against biological

photoreceptors was 0.70T\0.046 CI at the playback intensity of

O.Io/o.

_0,10/o

-0.5%1o/o

_50/o

-10olo
-30%_50%

-100%
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The low average passband values (in general) for the linear

photodiode system against the biological photoreceptor strengthen

the fact that the photoreceptor circuit was mimicking the actual

biological photoreceptors better than the simple linear system.

Notice that the lowest average passband values for the linear system

was 0.65510.044 CI at playback intensity of 0.1% while the highest

was 0.769t0.028 CI at 5oo/o maximum intensity playback'

The average corner spatial frequencies (Figure 5- 1 lb) for both the

linear photodiode and artificial photoreceptor tended to increase as

the maximum playback intensities increased, i.e. the coherence

curves were shifted to the right as the playback intensities

increased. They both saturated at approximately O.45cycles/" during

high intensity playback (beyond 5-1070).

109



Chapter 5: Dynamic Analysis (Panoramas)
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Figure 5-11: Coherence analysis pa,rameters of the 8-bit panoramic
images. a. Average passband values calculated from the coherence
analyses of the 8-bit images for both the photoreceptor circuit and
linear photodiode against actual biological photoreceptors (auerages
of 5 mean ualues from 5 different images under the same plagback
intensitg; 4 triats each). Error bars show tlne 95o/o confidence interval.
b. Average corner frequencies from the coherence analyses for both
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images under the same ptagback intensitg; 4 trials each). Error bars
show ttre 95o/" confidence interval.
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5.3.2 32-bit lmages

The following figure shows the reconstructed images of both the

recorded biological photoreceptors output and the artificial

photoreceptor output (Figure 5-121. Notice that as the playback

speed increased, the images seen by both the biological

photoreceptors and the artificial photoreceptor were blurred (360"/s,

72O" ls and 1440" lsl. Similar output responses were observed for

the rest of the 12 panoramas (Appendíx: Figure A5'76)'

Reference lmage

Ban -Smih, png (1 000x2ffi Pixeß)

Photoræeptor Cell Output Ailificial Cell0utput

45 deg/s

90 degls

180 deg/s

360 degls

720 degls

1440 degla

Figure 5.-1r2z Reconstructed output images from both the actual
biological photoreceptors (auerage of 4 trials) and the prototype
circult fui repeats) at several playback speeds 45"f s, 90'/s,
I8O"/s, 360./s,72;O"/s and l44o"ls. The image at the top of the
figure was used as a reference for all mathematical analyses.
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Power Spectrum

Figure 5-13 shows the average power spectrums of 13 different

images at the 6 different speeds: 45'f s, 90"/s, 180"/s, 360"/s,

72O" /s and 1440" ls. According to the power spectrum curves, the

artificial photoreceptor output shared a very similar output enersr

level with the biological photoreceptors output. As the speed of the

panorama playback increased, the eners/ at high spatial frequency

for both the artificiat photoreceptor and the biological output

decreased. At the lowest speed (45"/s), the power spectrum curves

for both the artificial photoreceptor and biological cells were

saturated at the noise-limit-frequencies of 1.836cyc1es/" and

0.683cycles/', respectively. The saturation point decreased as the

speed increased with a minimum saturation point of 0.317cyc1es/"

(artificial photoreceptor) and o.283cyc1es/" (biological cells) at the

playback speed of 1440"/s.

The power spectra of the photodiode output (linear system) were

used as the control to the experiments. Note that, as the playback

speed increased, both the power spectra from the photoreceptor

circuit and biological photoreceptors tended to shift to the left, away

from the linear system power spectra. In other words, high spatial

frequency components of the panoramic images were filtered by the

non-linearities of the biological and artificial photoreceptors as the

playback speed increased.
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Average Power Spectrum
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Figure 5-13: Average power Spectrums from thirteen panorama
imäges (32-bit) und,er various playback speeds (45'/s, 90"/s,
180'/s, 360" I s, 72O" f s and 1440'/s).

Correlation AnalYsis

Figure 5-14 shows the average correlation analyses between the

artificial photoreceptor and the actual biological photoreceptor cells.
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Again, a linear system was used as a control experiment. The

artificial photoreceptor showed an excellent correlation to the

biologicat cells for all the panoramic images and had an average 12

value > 0.8 (greater than the linear system - approximately 0.6). Also

notice that the artificial photoreceptor was mimicking the biological

photoreceptors optimally for all the 13 images when the playback

speed was at 9O'/s with an average rz=O.862x0.049. However, the

correlations tended to depreciate as the playback speed increased,

i.e. the similarity between the artificial photoreceptor the actual

biological photoreceptors in the time domain decreased as the

playback speed increased. This was because as the playback speed

increased, the long time constant decaying of the biological

photoreceptors became significantly slower as compared to the

adaptation rate of the artificial photoreceptor.
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Average Correlations
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Figure 5-14: Average correlations of the actual biological
photoreceptor cells (auerage oJ 73 12 ualues from 13 different images

under the same plagback speed; 4 triats each) against the artificial
insect circuit (no repeats). Error bars show the

standard errors. The 13 different panoramic images (32-bit quality)

that were used to test and evaluate both the actual PhotorecePtor
and the artificial circuit were Barr-Smith, Block, Botanic, Bush.es, car
pørk, close, creek Bed, Lab, Mt Lofta, Outdoor, Rock Garden, shadout

and Tree.

Coherence Analysis

Figure 5-1Sa shows the average passband values for the artificial

photoreceptor and linear photodiode against the actua-l biological

photoreceptors of 13 different panoramas. Again, the average

passband values for the artificial photoreceptor against the actual

biological photoreceptors were higher for all playback speeds as

compared to the simple linear system. However, as the playback

speed increased, the average passband values for both the biological

photoreceptors and artificial photoreceptor decreased' For the

+ Cell vs. Linear (Control)

+Cellvs, Circuit

180 360

Speed, deg/s
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artificial photoreceptor, the maximum average passband was

measured at 0.735t0.035 CI during the playback speed of 45"/s

while the minimum was measured at 0.31610.068 CI during the

playback speed of I44O" ls. As for the linear system, the va-lues

measured for the average passband were smaller as compafed to the

artificial photoreceptor. The lowest point measured from the linear

photodiod.e curve was at 0.274\0.060 CI during the highest playback

speed (1440" lsl, while the highest point measured was at

0.529t0.024 CI during the playback speed of 45'/s'

Figure 5- 15b shows the average corner frequencies from the same 13

images. The corner frequencies for both the artificial photoreceptor

and linear photodiode decreased as the playback speed increased

with average corner frequency ranging from O'49 cycles/' at 45'/s to

O.O66cycles/' at 1440" ls for the artificial photoreceptor and 0'36

cycles/" at 45" ls to 0.o55cyc1es/' at I44O" ls for the linear

photodiode. The percentage of difference between the average corner

frequencies of the artificial photoreceptor and the linear photodiode

had became less significant as the playback speed increased.
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Average Passband Coherence Values

a

08

07

06

05

04

03

02

01

0

I

I I
{

I

Iooeo
o<o
O I

45 90

¡ Circuit ra. Cell

o Photodiode w, Cell

o Circuit re Cdl

n Photodiodels Cell

180 360

Speed, deg/s

Average Cut Off Frequencies

1440

3?litPanonmic lmages

720

b
06

o nÃ
o vv

ooÐ
O 

^/o v+

;o
5 nq
q
o

L
E n1
ñè

cl)

f0

õ

0

45 90 720 1440

32hit Panoranic lmages

Figure 5-15: Coherence analysis parameters of the 32-bit panoramic
imãges. a. Average passband values calculated from the coherence
anafses of the {Z-Ait images for both the photoreceptor circuit and
linear photodiode against actual biological photoreceptors (auerages

of 13 *.o, ualues from 13 different images under the same plagback
intensitg; 4 trials each). Error bars show tlrre 95o/o confidence interval.
b. Averáge corner frequencies from the coherence analyses for both
the photoreceptor circuit and linear photodiode against actual
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5.4 Discussion

The mathematical analyses, both in the time (correlation) and

frequency (coherence) domains have shown that our artificial

photoreceptor was a good mimic of actua-l photoreceptor cells under

complicated naturalistic conditions. The artificial photoreceptor

responded in an almost invariant way to large changes in image

intensity. The adaptive non-linear features (automatic gain control

and variable corner frequency) that were implemented in the

artificial photoreceptor had endowed the artificial photoreceptor with

a greater signal to noise ratio than a simple linear model under low

lighting conditions. Also, various speed playbacks (relative motion) of

the HDR panoramas were used to thoroughly evaluate of the

artificial photoreceptor. Such variations in speed have been shown to

have no significant impact on the robustness and reliability of the

artificial photoreceptor, in spite of the minor decrease in the P

values as the playback speed increased as shown in Figure 5-14. By

having a robust artificial photoreceptor, researchers are now able to

reliably collect data that was impossible to obtain

electrophysiologically of the biological photoreceptors for an

extensive period of time. The collected data can be used as input

stimuli for better evaluating and investigating higher order neurons

models.

5.4.1 Effects of Light Level

Insect photoreceptor cells ar.e responsible for transmitting light

information into electrical signals for higher order cells in the insect

visual pathway before reaching the brain as visual interpretations

(Carlson et al. lg79l. Many researchers have directly modelled the

photoreceptor cells with a linear light detector since the main

characteristic of a light detector is to convert photon enerry to
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electrical signal. However, numerous studies have suggested that

insect photoreceptors are not just a simple linear light detector

(rü/allcott 1975; Payne et ar. 1981). Results from the current

experiments have clearly shown that our artificial photoreceptor is a

better mimic to the biological photoreceptors compared to the simple

linear detector.

Insect photoreceptors are highly non-linear, displaying adaptation to

light and background luminances (Baumann t975; Laughlin et al.

1978; Matic et al. 1981; Laughlin et al. 1993). Studies suggest that

adaptation mechanisms are naturally equipped to maximise visual

information perceived (Snyder et al. 1976; Laughlin 1989; van

Hateren lgg2). Input light signals to the photoreceptors will be

automatically readjusted based on its current states of adaptation.

Input signals that are too bright will be reduced and vice versa, i.e.

an automatic gain control system. Such a mechanism is mainly due

to the anatomical changes and photochemical processes in the

photoreceptor cells, which take place during light-adaptation

(Wallcott lg75l. Thus, even extremely dim intensity playbacks

between o.l"/o and 0.5% (Figure 5-2) were enough to stimulate the

biological photoreceptors. The photoreceptors automatically adapted

to such dim playbacks and readjusted their gain by amplifying the

input light signals for better visual information coding. The artificial

photoreceptor, equipped with similar adaptive mechanisms, shows

high correlation with the biological photoreceptors for various

maximum playback intensities except during extreme conditions

such as 0.1%o. For this case, the artificial photoreceptor was unable

to perform that well due to the insufficient gain settings of the circuit

during low lighting conditions and the limitations of the signal to

noise ratio of the photodetector (TSL 251) used in the circuit'
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Changes in the maximum intensity of the playbacks did not only

change the gain settings of the photoreceptors. Experimentation has

also suggested that insect photoreceptor cells exposed to different

lighting conditions will have different frequency responses (Laughlin

et al. 1993). Insect photoreceptors, which are approximated as

second order low paSS filters, change their frequency response

ranges by shifting their corner frequencies non-linearly (Mah et al'

2OO5). Such effects cafl be evidenced from the output power

spectrum curves of both the biological photoreceptors and the

artificial photoreceptor (Figure 5-Tl.During dim playbacks (0' 1% and

o.50/"1, the corner frequencies of the photoreceptors \Mere 10w, hence

only allowing the low frequency signals to pass through. As the

maximum playback intensity increased, the photoreceptors

increased their frequency ranges and allowed more signals to

propagate through. According to our previous studies, .EnsÚalis tenax

has photoreceptors with a corner frequency range from

approximately IOHz to gOHz and they started to saturate at the

maximum corner frequency at approximately 3500 cdlmz (Mah et al'

2006l. Such saturation effects can be clearly observed on the power

spectrum curves in Figure 5-7, where there al.e no significant

changes to the power spectrum curves as the playback intensities

exceed 5%o. However, notice that the power spectrum curves of the

circuit reached saturation at a slightly different point. The artificial

photoreceptor started to saturate at approximately IOo/" maximum

intensity playback. This was because the frequency response of the

circuit was limited by physical components.

Because of the changes of the corner frequency of the system, the

coherence curves of the systems also had to change accordingly'

During dim playbacks, the coherence curve had a much lower corner

frequency compared to brighter intensity playbacks because the

r20



Chapter 5: Dynamic Analysis (Panoramas)

systems had already filtered out the higher frequencies. Thus, the

coherence curves shifted to right as the intensity increased.

5.4.2 Effects of SPeed

photoreceptor cells are capable of sampling light information at a

temporal corner frequency ranging from tOHz to 9OHz, depending on

their light adaptation state (Mah et al' 2006). The temporal

properties of a photoreceptor are functionally related to its spatial

properties through image velocities. When an image moves' the

higher spatial frequencies generate the higher temporal frequencies.

For a given image velocity, high spatial frequencies will be lost if the

temporal frequencies they generate are too fast for the photoreceptor

to code (Snyder et al. 19771. As the playback speed increased, the

higher spatial frequencies were lost due to the temporal limitation of

the photoreceptors. The photoreceptors were incapable of resolving

most of the details of the panoramas due to the small amount of

eners/ at high spatial frequencies. The reconstructed output images

thus appeared to be blurry (see Figure 5-14).

As mentioned, the artificial photoreceptor was implemented and

equipped with all the adaptive non-linear features of a photoreceptor

cell. Thus, the outputs of the artificial photoreceptor showed great

similarity with the biologica-l photoreceptors. The power spectrum

curves for both the biological photoreceptors and the artificial

photoreceptor shifted to the left as the playback speed increased'

Such shifts led to the d.ecrease in the corner frequency of the

coherence curves (see Figure 5-15b).

How could these non-linearities make a better front-end for high-

order processing tasks? Under low background lighting' insect

12t



Chapter 5: Dynamic Analysis (Panoramas)

photoreceptors increase their gain in order to amplify the bad

lighting conditions for better information coding. However,

increasing the gain of the photoreceptors might be detrimental due

to the photon bump noise. We believe this is why dark-adapted

photoreceptors have a lower corner frequency response compared to

the light-adapted ones - in order to eliminate unwanted high

frequency noise, i.e. to increase the signal to noise ratio. Information

that has been effectively compressed through the non-linearities of

the photoreceptors is then transmitted to limited bandwidth higher

order neurons such as motion sensitive neurons and small target

neurons to perform specific tasks'
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Chapter 6: Neuromorph¡c Photoreceptor

Model Maximises Information for Higher

Order Neurons
ENG-LENG MAH, RUSSELL SA BRINKWORTH ANd DAVID C. O,CARROLL

Discipline of Physiolory, School of Molecular and Biomedical Science and the

Centre for Biomedical Engineering, The Universit5r of Adelaide SA 5005, Australia.

Abstract
A faithful neuromorphic model of the biological photoreceptor cell

has been designed and implemented using standard analogue

discrete electronic components. This analogue neuromorphic model

has been thoroughly tested and evaluated against actual

photoreceptor cells of the hoverfly, Eristalis tenax using high

dynamic range movie stimuli. Correlation and coherence analyses

show that the analogue circuit is an excellent mimic of the biological

photoreceptors with an ¡2 value of 0.89010.030 (meantstandard

deviation). We then show how the early visual processing actually

maximises the transmission of visual information through the

limited-bandwidth higher order neuron channels in the insect visual

pathway. A simple linear model was used as a control in the

experiments. Snap shots from the movie showed that the early visual

processing had compressed without loss of salience and hence the

loss of visual information after transmission to the higher order
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neurons was minimised. Significant improvements were observed

through the whole movie as compafed to the simple linear model.

Such a robust, reliable neuromorphic model could be beneficial to

many applications such as target tracking, motion detector and

surveillance systems.

Key words: Insect Photoreceptor, Insect Visual System, Adaptive Photoreceptor,

Neuromorphic, Bio-inspired Vision

Correspondence to: Eng- Leng Ma]- (email: eng. mah(Aadelaide. edu. au)

6.7. Introduction
Biological visual processing involves complex, highly non-linear

photochemical processes that are significantly challenging to model

compared to a linear System, yet many engineers, being aware of the

elegant solutions that nature may provide, are taking inspiration

from biological systems in developing "neuromorphicn models

(Delbrück et al. 1996; Liu 1996; Moini et al. 1996; Sarpeshkar et al.

1996; Kramer et al. t997; Delbrück et al. 2OO4l. For instance, the

aerobatic manoeuvring capabilities of the hoverfly, Eristalis tenax,

which are directly due to having an "intelligent" visual system,

provide a bio-inspired solution to many potential real-world

applications such as collision avoidance, unmanned aerial vehicle

(UAV) and motion detector systems.

physiological studies suggest that non-linearities of the biological

visual processing are evid.ent even at the earliest stage of visual

processing in the visual pathway - the photoreceptor cells (Baumann

197S;'ü/allcott I975; Payne et al. 1981; Baumann 2000). Theory and

modelling have shown that the non-linearities that occur in the early

visual processing are responsible for maximising the visual

information transmitted via the limited-bandwidth higher order
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neurons in the visual pathway (Snyder et al. 1976; Snyder et al.

1977; van Hateren L992). However, many bio-inspired models have

completely neglected the importance of having a reliable, good front-

end processing stage. Take for instance the classic Reichardt

Correlator model (motion sensitive), which only uses a linear front-

end system at the early visual processing. Despite responding well to

standard characterised stimuli, this model has been shown to be

inferior under complicated naturalistic stimuli (Dror et al. 2OOl;

Rajesh et al. 2OO4l. A neuromorphic motion detector chip designed

by Delbrück and Mead (1996) is another example of bio-inspired

model that uses a non-faithful model of the phototransduction stage

as the front-end of the visual processing. Although the chip has been

tested and proven to operate under characterised stimuli such as

pulse and step tests, it has yet to be demonstrated to perform under

complex dynamic naturalistic stimuli.

Therefore, we have designed and implemented an elaborated

photoreceptor circuit that faithfully mimics the biological

photoreceptors (Mah et al. 2006l. The photoreceptor circuit consists

of several non-linearities stages that is derived and fine tuned from

electrophysiological experiments. We also built an additional circuit

to mimic the insect large monopolar cell and cascade it to the output

of the photoreceptor circuit in order to demonstrate and evaluate the

importance of having a robust, reliable photoreceptor stage as the

front-end processing for higher order neuron designs.
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6.2 Methods

6.2.1 Stimuli Generation (Movie)

"Moving" Scene - High Dynamic Range Movie

A specialised high precision monochrome 14-bit video camera (XCD-

VSg, Sonyrvr) was used to pre-record the movie (naturalistic scenes).

The video camera, which was equipped with green channel filter

(N52-534, Edmundru) and 90" wide angle lens (TF2.8DA-8,

FujinonrM), was mounted on a robotic platform and the movements

of the robot were fully controlled using a wireless remote control.

Video images \¡/ere streamed at 25 frames/s to a laptop using the

firewire IEEE I3g4 output port of the video camera. The video

camera was programmed to alter the shutter speed after each frame

(total of 5 shutter speed.s used) thus increasing the dynamic range of

the images captured at the expense of temporal resolution, providing

detail in both the dark and light parts of the scene. A custom

LabView@ software was used to communicate with an external data

acquisition card in order to acquire all the video images.

The camera was mounted on top of the robot in order to avoid

having the robot appeæ in the area of interest of the video camera.

Below the camera was a counter balance System in order to reduce

vibrations during video recording. A pair of optical encoders was

mounted on both sides of the wheels to transduce the motion of the

wheels. This was particularly useful for regeneration of the path

travelled by the robot during video recording session.

The recorded video images were Gaussian blurred with half width of

I.4" in LabVIEW@ based on the average facet diameter of 40pm in

order to mimic the optical properties of the compound eyes
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(Stavenga 2OO3; Straw et al. 2006l. Figure 6-1 shows how the video

images were finalised as a natural time series of intensities (NTSI) for

visual experiments.

r3

ln

n-

t2

t1

(x1 y1)

max test

(xa,yb)

t1 -- rtn

(x1,y2) (xa,Y2l

test-seriess
'õ
Éo
É

0
Time, sec

t1 otn t1 tln
(xa,yb)(x1y1) (xa,y1) (x1 yb)

Figure 6-1: Construction of the natural time series of intensities.
Each frame of the movie had a*b pixels and each pixel that went
through time tr to t,' formed a pixel-time series. The pixel-time series
were played back by stitching the back of the series to the front of
the next series and in between each column of the pixel-time series
\Mere some test-series (squa-re \À¡aves) to assure the quality of the
recordings. The m€ximum test was only done once in the whole
movie playback in order to measure the maximum response of the
biological cell or the artificial photoreceptor.

The recorded movie \À/as played back in a vertical raster fashion

starting from the top left pixel. Since the starting scene of the movie

was approximately the same as the ending Scene of the movie, each

pixel through time, or known as the pixel-time Series, was connected

front-to-back to form a long time series of intensities for visual
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experiments and test-series (square waves) was placed in between

each column of the pixel-time series for offline quality assurance

purposes.

ttstationarytt Scene

A digital camcorder (Sony DCR-TRVISE) was mounted on a tripod

stationarily to record the movie at 25 frames/s. We then deliberately

changed the brightness of the movie (offline) into 6 intensity bands

(1OO%, 5O"/o, Io/o, Io/o,5O"/o and 1007d to create extreme luminance

conditions. Again, the recorded movie was played back in a vertical

raster fashion starting from the top left pixel as described in the

previous section.

6.2.2 Data Reconstruct¡on

All the raw data recorded from the visual experiments were saved in

a special custom format in LabView@ and the data were

reconstructed back to images using custom software written in

LabView@. The images were then compiled to form a movie sequence

using QuicKlime@ Pro.

6.2.3 Large Monopolar Cell Gircuit Design

This circuit rü/as a temporal model of a Large Monopolar Cell of the

insect visual pathway and did not incorporate any of the known

spatial processing. The circuit model was designed based on the

current existing literature (James 1990). The model was sufficient to

highlight the performance of the photoreceptor circuit against a

simple linear phototransduction system in maximising visual

information tra¡rsmitted. Figure 6-2 shows the schematic diagram of

the LMC circuit. The circuit consisted of a multiplication stage, a

Naka-Rushton stage, a variable high-pass filter stage, and a high-
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pass control stage. The multiplication stage was used to square the

output of the photorecePtor.

An additional offset of approximately 0.1V was introduced to

eliminate the possibility of having a negative voltage enter the

multiplication stage since the multiplier chip (AD633JN, Analog

Devices) used was only capable of operating in the positive region' A

and B were both amplifier stages with gain factors of 10 and 2.72

respectively.

The output of the multiplier stage was then fed into the Naka-

Rushton stage using the following equation,

NROU| --
A* (B * PhotoOut + offset)2 (Eq 6- 1)

(k + A{' (B * Photoout + offset)2)

where k=0.03V. The Naka-Rushton stage was designed and

implemented using a standard divider chip (AD734AQ, Analog

Devices). Output from the Naka-Rushton stage was then fed into the

first order variable high-pass filter where the frequency response of

the filter, Furp wâs automatically controlled by the high-pass control

stage based on the mean luminance measured at that time. The

variable high-pass filter was designed in such a \May that the -3dB

point of the filter frequency response (corner frequency) increased

non-linearly as the mean background luminance increased

(Equation 6-21, similar to the biological responses (Laughlin et al.

1993). The -3dB point stopped changing (saturated) at

approximately lOHz when the mean background luminance was

greater than T}Ocd.lmz. The final output was then inverted using a

standard unity gain inverting amplifier stage.
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(Eq 6-2)

Where &o" =3.09x102e exp(-38.12C5)- 5.658x1022 exp(-27.56CS) (Eq 6-3)

CS --1.487 +l.970Von^" (Eq 6-a)

Bv (Eq 6-5)Vphoø
1750

c3

t6

Figure 6-22 A schematic diagram of a second order neuron circuit.
Thé output signal from the photoreceptor circuit was cascaded to the
second order neuron circuit. The luminance (Bv, in cd/m2) was
averaged to obtain the background value. The vactrol control signal
stage fnUy controls the frequency response of the variable high pass

filter was dependent on this background luminance.

6.2.4 Data analyses

Correlation and coherence analyses were used to measure the

performance of the photoreceptor circuit against biological

photoreceptors under both time and frequency domains. The

analyses were done on each pixel time-series of the high dynamic

R5

R?
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range movie and results were averaged along all pixels (90 x 58 pixel

time-series). All results are given as mean I SD'

Coherence SignifTcance Levels

From the coherence analyses, we were able to calculate the

significance level (95% CI) of the coherence curve using the equation

6-6.

tJtÐ) (Eq 6-6)c2 =l-d

Where c is the coherence value, o is the confidence interval value

and n is the amount of sample. Since we were working on 90 x 58

pixel time-series, the g5o/o CI of the coherence curve has a value of

o.o24.

Contrast Metric

A contrast metric was chosen as the measure of how detectable the

target was in the scene. The size of the target in the scene \Mas

approximately two pixels by one pixel. A background a-rea rv\¡as

defined around the target, with a perimeter of two pixels from the

target (28 nearest-neighbouring pixels). A basic contrast metric

would be to compare the mean intensities of the target (Ptet) and

background (pou*) areas. However, to help account for the target

being detectable due to its internal structure, a root sum of squares

(RSS) method was used, which makes use of the variance of the

target (o'.*d as given by Equation 6-7.

RSS = [(P.*- Ëur.e)2 + szq¡lr/2 (Eq 6-7)
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6.2.5 Electrophysiological recording

Electrophysiological recordings \¡/ere done intracellularly, with a

manipulated micropipette filled with 2.0 M KCI was inserted into the

brain of an intact fly to record its neuronal activities. Experiments

\¡¡ere done in a dark room with the controlled temperature range of

23-25.C. Results were recorded using a 16-bit data acquisition card

system (NI PCI6221, National Instrument$M) and custom software

written in LabVIEW@.

r34



Chapter 6: Dynamic Analysis (Movie)

6.3 Results

6.3.1 Gorrelation AnalYsis

The average neuronal data (3 trials) acquired from the intact flies

were pre-analysed in order to make Sure of their consistency.

Correlation analyses were performed between the trials with

12:0.91010.046 for N1 and N2, 12=0.91510.047 for N1 and N3, and

r2=O.913r0.057 for N2 and N3.

Correlation Analysis: Linear Photodiode vs, Raw lnput
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Figure 6-3: Correlation analysis for the linear photodiode against
r"ir itrpnt. a. Histogram of the overall correlation of 90x58 pixel-time
series for the linear photodiode system against raw input (n=1). b'
Average correlation output (58 rows) of the linear photodiode against
raw input for 90 columns (n=1)-

0102030 60 70 80 90
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In order to make sure that the stimuli were generated accordingly, a

comparison between the raw input data and the linear photodiode

output were performed. Figure 6-3a shows the histogram of the

analysed correlation value for the linear photodiode output against

raw input data of the stimuli. Note that the histogram shows that

the correlation value was at 1 at all the time, i.e. the photodiode had

generated the desired stimuli playback for all the 90x58 pixel-time

series.

Figure 6-3b shows average correlation values of 58 rows for each

column, for 90 columns in total. The results demonstrate strong

correlation between the linear photodiode output and the raw input

data of the stimuli throughout the whole 90x58 pixel-time series.

Again, this indicates that the photodiode was operating satisfactorily.
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Correlation Analysis: Linear Photodiode vs. Celland Circuit
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Figure 6.-42 Correlation analysis for the linear photodiode against
biõlogical cells and circuit. a. Histogram of the overall correlation of
9Ox5ã pixel-time series for the linear photodiode system against
photoreteptor circuit (n=1) and actual biological photoreceptor cells
'(n=3, 3O ietts, 72 animals/. b. Average correlation output (58 rows) of
ih. lin."t photodiode against actual biological photoreceptor cells for
90 columns (n=3, 3O cells, 72 animats/. c. Average correlation output
(58 rows) of the linear photodiode against photoreceptor circuit for
ÒO columns (n=1). Errors bars indicate the standard deviations.
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Figure 6-4a shows the histogram of the analysed correlation data

between the linear photodiode system and photoreceptors (both

biological and artificial circuit). For the biological photoreceptor cells,

the peak of the histogram distribution occurred at 8.58% of the time

with rz value of 0.780. The maximum and minimum 12 values were

calculated to be 0.903 and 0.137 respectively. with a very similar

histogram distribution, the photoreceptor circuit was performing at

maximum 12 value of 0.864 and minimum at 12 value of 0.685' The

peak of the histogram distribution occurred at 9.o2o/o of the time

with 12 value of 0.788.

Again, correlation values for each column were averaged and unlike

the results in Figure 6-3b, the analysed results show in Figure 6-4b

demonstrate significant differences between the linear photodiode

system and the biological photoreceptor cells, in which the average

ç2 value across the whole 90x58 pixel-time series was at

o.79I!O.O42.

Figure 6-4c shows the detailed average correlation output of each

individual column for the linear photodiode system against

photoreceptor circuit. The average 12 value for all the individual

pixel-time series was calculated to be o.78110.037. Note that there

are obvious fluctuations at the analyses output for the biological

photoreceptors compared to those in Figure 6-4b. This was because

the biological recordings were done in a separate cells and animals.
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Figure 6-5: Correlation analysis for the photoreceptor circuit against

biò-logical cells. a. Histogram of the average correlation. b. Average

correlation output (58 rows) of photoreceptor circuit against

biological photoreceptor cells output for 90 columns' b' Average

correlation output 168 rows) of the non-linear photoreceptor circuit
against actual Liological photoreceptor cells for 90 columns (n=3, 3O

.áU", 72 animats/. Eiror bars indic¡ e the standard deviations.

All the previous correlation analyses have shown how the linear

photodiode differs from both the biological photoreceptor cell and the

non-linear photoreceptor circuit. Figure 6-5a shows the histogram of

the analysed correlation value of the photoreceptor circuit against

actual biological photoreceptor cells. Notice that the distribution of
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the histogram is very different compared to the results shown

previously. The overall data was centred at a higher correlation value,

which leads to higher median value of 0.894' The maximum and

minimum values were calculated to be 0.950 and 0.109 respectively.

The peak of the histogram distribution occurred at I2.32"/o of the

time with 12 value of 0.915.

Figure 6-5b shows the detailed average correlation values for each

individual column of the movie. It has a maximum ¡2 value of

0.85310.021 and a minimum rz value of 0.733t0.025. Unlike the

previous results shown in Figure 6-4b and 6-5c, the average

correlation values for all 90 columns of the pixel-time series are

generally higher. Not only that, there \Mere also more obvious

fluctuations in the data simply because the data used in the

analyses were recorded of a few different cells and animals.
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6.3.2 Coherence AnalYsis

Goherence Analysis: Linear Photodiode vs. Raw lnput
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Figure 6-6: Coherence analysis for the linear photodiode against raw
infiut. a. Normalised, power spectrum curves of the linear photodiode

"y"t.* 
(P1) and raw input (P2). b. Coherence curve of the linear

photodiode system against raw input data.

Figure 6-6a shows the power spectrum analysis curves of the linear

photodiode system and raw data stimuli. The blue curve, Pl

represents the power spectrum curve of the linear photodiode

system and the red curve, P2 tepresents the power spectrum curve
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of the raw input stimuli. There are no significant differences between

these two curves, indicating that the linear photodiode system

reproduced the raw input stimuli very closely in the frequency

domain throughout the frequency range of interest, despite a few

noisy spikes in the blue curve at high frequencies which may very

well be due to interference noise from the data acquisition method.

The coherence analysis for both the linear photodiode system and

the raw data stimuli is illustrated on the coherence curve shown in

Figure 6-6b. Again, because of the close similarity between the linear

photodiode system output and the raw input stimuli in the

frequency domain, the coherence value is unity for most of the

frequency range.
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Coherence Analysis: Linear Photodiode vs. Circuit
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Fígure 6-7: Coherence analYsis for
photoreceptor circuit. a. Normalised
linear photodiode sYstem (P1) and
Coherence curve of the linear
photoreceptor circuit.

Coherence

the linear photodiode against
po\¡/er spectrum curves of the
photoreceptor circuit (P2) b.
photodiode system against

Figure 6-7a shows the normalised power spectrum curves of the

linear system and the adaptive photoreceptor circuit (Pl and P2)'

Both the curves show the l/f function as expected from a complex

natural scene (Simoncelli et af. 2001). Most of the power was
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concentrated at the low frequencies. The maximum and minimum

power measured were -16.55d8 and -l62.2OdB (noise limit)

respectively.

Figure 6-7b shows how similar the linear photodiode system is to the

raw input data in frequency domain. The coherence curve indicates

that the linear photodiode system was very similar for frequency

range from O.lHz to tOOHz with a maximum coherence value of

0.995. The coherence curve rolled off as the frequency increased

with a corner frequency of approximately 87H2. Any coherence

values above 2ooHz exceeded the minimum significance limit

(Equation 6-6) of the curves.
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Coherence Analysis: Linear Photodiode vs. Cells
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Figure 6-8a shows the power spectrum curves for both the linear

photodiode system and the average biological photoreceptor cells

output. The actual biological cell output showed relatively higher

power at the low frequency compared to the linear photodiode

system. As the frequency increased beyond O.2Hz, the cell output

dropped down below the linear photodiode system at approximately
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Figure 6-8: Coherence analysis for the linear photodiode against
biõlogical cells. a. Normalised power spectrum curves of the linear
photõdiode system (P1) and actual biological cells (P2) b. Coherence

ð.r*. of the linear photodiode system against actual biological cells.
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SdB differences until 2-3H2. Beyond 3Hz, the cells tended to have a

stronger power output compared to the linear photodiode system

and at about lSOHz and beyond, the power spectrum of the cells

started to pick up some noise spikes. such interference has no

significant impact to our results since the frequency of interest for

our experiments is way below the noise limit.

Figure 6-8b shows the coherence analysis curve of the linear

photodiode system against the actual biological cells output'

Because the biological cells output were highly non-linear, the

coherence values obtained throughout the whole frequency range of

interest were not close to one. The coherence curve started to roll off

as the frequency increased with the corner frequency of 72Hz' The

maximum coherence value measured was 0.9801 (at O.Og7lHzl'

Note that there is a spike at approximately SOHz, which was due to

the Hum Bug noise filtering system used in the recording equipment'

Any coherence values above l49.7IHz exceeded the minimum

significance limit (Equation 6-6) of the curves.
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Figure 6-9: Coherence analysis for the photoreceptor circuit
biological cells. a. Normalised power spectrum curves
photõreceptor circuit (P1) and actual biological çslls
-Coherence curve of the photoreceptor circuit against
biological cells.

The normalised power spectrum curves, Pl and P2 shown in Figure

6-9a represent the energr curves for both the photoreceptor circuit

and the biological photoreceptor cells respectively. Both of the curves

shared a very similar power spectrum curves up to approximately
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lOHz, in which the biological photoreceptor cells tended to have

higher eners/ (approximately lOdB more) to code high frequencies.

Again, noise interference is observed in the power spectrum curve of

the biological photoreceptor cells after ISOHz.

Because the photoreceptor circuit was a faithful design of the real

biological photoreceptor cells, the average coherence value measured

in the curve shown in Figure 6-9b are generally above 0.9. The

coherence curve started to roll-off as the frequency increased with

the corner frequency of approximately 73H2. Any coherence values

above 134.66H2 exceeded the minimum significance limit (Equation

6-6) of the curves. Again, there was a noise spike al, SOHz that was

mainly due to the electrical interference from the Hum Bug.

6.3.3 Higher Order Neuron Experiment

ttMoving" Scene

Figure 6-10 shows a collage of a single snap shot (frame #8123) from

a 10 second movie (playback speed of lkHz) that was presented to

both the linear photodiode circuit and the adaptive photoreceptor

circuit, the outputs of which were cascaded to the LMC circuit model

for comparison purposes (refet to supplemcntary møterial ín the

CD¡ The top left section of the figure shows the input stimuli of the

experiment. The input stimuli were fed to the non-linear

photoreceptor circuit (top right) and the corresponding output was

transmitted through the LMC circuit. Note that the resulting output

of the LMC circuit (bottom right) had clearly spotted the 'small

target' in the scene (circled in red), despite the tiny size of the target.

This can be compared to the output of the LMC circuit which

employed the linear photodiode as the front end of visual processing
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(bottom left), which poorly highlighted the small target that was

deliberately integrated in the stimuli scene. Not only was it hard to

discern the small target in the scene, the output did not seem to

contain much of the other salient features in the scene such as trees

and shadows.

Figure 6-10: Frame #8123 - A collage snapshot of an outdoor movie'

Thã top left section represents the input stimuli and the top right
shows the output response of the photoreceptor circuit. Both bottom
left and righf repreóent the second order neuron circuit (LMC)

output thaihad the linear photodiode and non-linear photoreceptor
circuit as input, resPectivelY.
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Figure 6-11: Performance comparison between the output of the

,.roã-ü.t.ut + LMC and linear + LMC. a. Contrast metric (RSS value)

between the target and the local surround (next-nearest neighbours)
for both the non-linear photoreceptor + LMC and linear + LMC. The

data was smoothed by using zero-phase 11 frames of moving
averages filter for display purposes. b. Histograms of the non-linear
photoieceptor + LMC against the linear + LMC, with a bin size of 1'
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As can be seen from Figure 6-Ila, the detectability of the small

target throughout the duration of the scene was generally improved

when the non-linear photoreceptor was used at the front-end to the

LMC circuit as compared with a linear photoreceptor.

This is more clearly illustrated in the histogram of RSS values

(Figure 6-11b). The modal value for both photoreceptors was found

to be 17. The histogram for the non-linear photoreceptor exhibits a

lower frequency of RSS values around this modal value, instead

having a much greater proportion of frames with high RSS values of

28 and above. The mean improvement in RSS value over the linear

photoreceptor was 75.5 %. This improvement is also reflected in the

higher median Rss value of 29.26 and maximum value of 12I

obtained with the non-linear photoreceptor as compared with a

median of 19.45 and a maximum of 105 0btained with the linear

photoreceptor.

ttWalkingot Scene

The experiments \¡/ere repeated with a different movie scene (refer to

supplemcntary møteríal in the CD/. Figure 6- 12 shows a collage

snapshot of a movie (playback speed of 4OOHz) where 2 people were

walking towards the middle of the scene and one of them attempted

to hide behind the tree trunk. The scene was deliberately

programmed to have several bands of maximum intensity playback

(100%, 5}o/o, l%, Io/o, 5O"/o and 1007.) in order to demonstrate an

extreme lighting condition and how our non-linear adaptive

photoreceptor circuit provides better visual information to higher

order neurons as compared to the simple linear photodiode system.
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Figure 6-t2¿ Frame #850 - A collage snapshot of an outdoor movie

with camera mounted stationary on a tripod. Top left section
represents the input stimuli with variable bands of maximum
plãyback intensities (1oo%, 5oo/", lo/o, Io/o,5Oo/" and 100%). The top
iigút section shows the output from the photoreceptor circuit. The

orftput of the photoreceptor was cascaded to the LMC circuit and the
re"ùlt is shown in the bottom right section. The bottom left section is
a result from the LMC circuit that was cascaded with the linear
photodiode as the front-end detector.

Again, note that with the linear photodiode system as the front-end

of the visual processing, îo information was captured by the LMC

circuit, particularly in the darkest a-rea, 1% (bottom left). However,

the LMC output (bottom right) employing the non-linear adaptive

photoreceptor circuit as the front-end (top right) demonstrated its

capability to compress visual information elegantly before

transmitting them to the higher order neuron to process. Note that

even in the darkest area of the scene, the LMC circuit was capable of

highlighting the two people in the middle.
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Measured Luminance Variation Over Time
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Figure 6-13: Measured luminance va-riation over 1400 frames that
weie played back at 4OOHz, with traces of 2.5 percentile and-.97.5
perce;tilê also shown, representing the lower and upper limits
iespectively of a 95o/o CI around the mean. The mean values were

calòulated only from the middle part of all the frames (1% intensity
bands). a. The output of the LMC circuit that had the non-linear
photoreceptor circuit as the front-end of visual processing: b. The

õutput of the LMC circuit that had the linear photodiode circuit as

the front-end of visual processing.

To further investigate the benefits of having the non-linearities of the

photoreceptors at the front-end of visual processing' the mean

values of the LMC responses were calculated for each frame of the

played back movie. Figure 6-13a shows the measured mean

luminance of the LMC output that had a non-linear photoreceptor

cascaded at the front-end stage of visual processing, together with

the upper and lower limits of a 95%o CI interval around the mean.

Note that during the first 400 frames of the movie, the mean values

increased sharply followed by a gradual decay, with similar

behaviour in both the upper and lower limit curves. unlike the mean

values curve, which remained approximately constant (0V) for the

rest of the frames, the upper value curve showed significantly larger

variation in the scene starting from frame number 530. This was

when the person approaching from the left entered the middle part

of the scene and caused, an increase in the standard deviation'
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Notice that there was no obvious change to the lower limit curve

simply because the person who entered the scene from the left

mainly caused depolarisations at the output of the LMC circuit'

The second person entered the scene from the right, starting at

frame number 754. At this point, the upper limit curve once again

starts to rise due to the increase of luminance variations in the

scene. At about the same time, the lower limit curve starts to have

Some changes simply because the second person creates Some

hyperpolarisations responses at the output of the LMC circuit' When

both people walked away from the middle part of the scene, the

amount of luminance variations decreased and thus the difference

between the limit curves and the mean curve decreased accordingly.

The benefits of having a non-linear stage at the front-end of visual

processing can be clearly seen when the results in Figure 6- 13a are

compared to the results in Figure 6- 13b, in which a linear

photodiode circuit was used as the front-end to the LMC circuit.

Both the lower and upper limit curves show no obvious fluctuations

around the mean value curve. In other words, the LMC circuit did

not detect any person walking into the scene throughout the whole

movie.

4.4 Discussions

Biological visual processing involves complex non-linearities, which

theory and modelling have suggested are responsible for maximising

visual information perceived in the real-world environment (Snyder

et ar. 1976; Snyder et al. 1977; van Hateren 19921. The

neuromorphic model that we designed and implemented has clearly

demonstrated how the non-linear compression stage evident in early

r54



Chapter 6: Dynamic Analysis (Movie)

visual processing (photoreceptor cells) actually does assist in

optimising the visual information prior to transmitting it to the

limited-bandwidth higher order neuron channels. Even though

biological visuai processing, especially in insects such as flies, has

relatively low visual resolution compared to that in humans, it is still

capable of resolving visual information due to nature's "intelligent"

compression technique. Such a biological compression technique

would no doubt provide an elegant solution to many current existing

surveillance camera sYstems.
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Chapter 7= Conclusion

Biological visual systems are highly non-linear, displaying

adaptation to background luminance. Theories and models have

suggested that these complex non-linearities which occur at the very

beginning of the visual system pathway (photoreceptor cells) not only

provide an nintelligent', compression technique for the high

bandwidth visual information received by the photoreceptor, but at

the same time assist in the processing of information in higher order

neurons (Snyder et al. 1977; Laughlin et al. 1978; Laughlin 1989;

van Hateren 1992; vafl. Hateren 1992; van Hateren 1992; Brenner et

al. 2OOO). This represents a key feature in the biological visual

systems of

performance

insects which all0ws them to achieve excellent

with limited-bandwidth neuronal channels' By

developing and implementing a neuromorphic model for a biological

photoreceptor I have shown that these advantages can be realised in

practical applications.

This study makes significant contributions in the aÍea of insect

visual system modelling, including the design, construction and

testing of a working neuromorphic photoreceptor circuit, the

development of experimental equipment to obtain high quality

biological photoreceptor recordings and confirm the validity of the

neuromorphic circuit, and the investigation of the effectiveness of
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photoreceptor non-linearities in assisting information processing in

higher order neurons.

7.7 Neuromorphic Photoreceptor circuit Design

The main objective of this project was to implement a neuromorphic

model of a biological photoreceptor cell based on the mathematical

model proposed by van Hateren and snippe (2001) with additional

elaborations to better mimic the actual biological photoreceptors'

The prototype neuromorphic circuit was constructed on breadboards

using discrete electronic circuit components. This neuromorphic

circuit has the capability to accept light input that is as bright as

real-world luminance and at the same time perform very similarly to

the actual biological photoreceptor. An amplified photodiode (TSL

2511, which had an output range of o-4v was used as the light

detector for the photoreceptor circuit. Accordingly, the photoreceptor

circuit was designed and implemented to accept voltage ranging from

o-4v, with an output voltage of o-lv. A preliminary design of the

circuit using printed circuit board technologr indicates that the

overall circuit size could be minimized, mainly using surface mount

components. This analog circuit would not only have low power

consumption but at the same time can be made portable for outdoor

experiments.

7.2 Construction of Experimental Equipment

The real-world environment presents very high dynamic range (HDR)

visual information. Thus, it was vital that the circuit design be

evaluated against the actual biological photoreceptors using high

quality 32-bit HDR scenes. During the experiments on the biological

and artificial photoreceptor cells, artificial natural scenes comprised

of high dynamic range images were applied as stimuli, using a light
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emitting diode (LED). In order to properly reproduce the dynamic

range of the real-world luminance, a high current LED driver was

custom-built to drive a green Luxeon Star LED and calibrated to be

able to produce light intensities ranging from O cdlm2 to 70000

cd,lmz. Unlike other commercially available LED drivers, this high

current LED driver system was fully dimmable, providing stable,

flicker-free output even at low light intensities. This was vital in

performing high quality visual experiments, particularly since a

dependable low intensity light source was required to accurately

characterize ttle frequency response of the photoreceptor in a dark-

adapted state.

7.9 Biological Photoreceptor Features

The photoreceptor characteristics of the fly Eristalis tenax a].e

properly illustrated in chapter 4 of this thesis, in particular the

relationship between the corner frequencies of the photoreceptors

and the background luminance. The corner frequency increased

non-linearly as the background luminance increased from toHz and

tended to saturate at approximately gOHz when the background

luminance was above 35OOcd/m2. This well-defined steady-state

characteristic of the biological photoreceptor allowed us to further

enhance the circuit design to closely mimic the biological

photoreceptor. This additional elaboration to the circuit successfully

demonstrated the practicality of a variable corner frequency system

that was dependent on the background luminance'

This feature \Mas important as studies have indicated that a variable

bandwidth system allows the insect to maximize the signal to noise

ratio of the visual information. In a dark background, the biological

photoreceptors are very sensitive to light due to the increase in
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photoreceptor gain. Even extremely low intensity stimuli between

T1cd,lmz are sufficient to stimulate the photoreceptors. As a result of

this, they are very likely to pick up high frequency noise/interference

such as photon noise. Thus, in order to ensure that the

photoreceptors perform optimally, they sacrifice their signal

bandwidth by reducing their corner frequency and hence achieve a

higher signal-to-noise ratio in the perceived visual information.

Conversely, because it is very unlikely that the photoreceptors will

pick up any high frequency noise during a light-adapted state, the

photoreceptors increase their corner frequencies for better

bandwidth performance. By implementing this feature in a

neuromorphic model, it is possible to develop an automatic gain

control that is optimised in an information theoretical sense.

7.4 Photoreceptor Circuit Pettormance

In order to fine tune the neuromorphic circuit and evaluate it

against the actual biological photoreceptor cells, steady-state

analyses were performed on both the circuit and the actual

photoreceptors. Since it was practically impossible to perform any in-

uiuo experiments outdoors, all electrophysiological recordings were

d.one in the laboratory, with a simple linear photodiode output used

as an experimental control.

The measured corner frequency of the circuit varied with

background intensity from lOHz to 9OHz, closely matching the

experimental results obtained from the biological photoreceptor. The

V Log I curves also exhibited the expected adaptive characteristic.

Correlation and coherence analyses showed that the circuit was

capable of emulating the biological photoreceptor faithfully in both
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time and frequency domains, with an t2 value of 0.890t0'030 (mean

+ standard deviation) based on high dynamic range stimuli'

Despite the high level of correlation, there were minor differences

between the response of the biological photoreceptor and that of the

photoreceptor circuit. Under extremely low intensity conditions such

as a luminance of 70cd lm', the performance of the photoreceptor

circuit suffered from insufficient gain. This was found to be due to

the limitations of the components themselves, in particular the

signal-to-noise ratio of the photodetector used (TSL 25t1, which was

the lowest-noise cost-effective component available. Additionally, the

photoreceptor circuit corner frequency saturated at a slightly higher

background intensity as compared with the biological photoreceptor.

This was because we had no control over the non-linear

characteristic of the light-dependent resistor component used' While

it may be possible to incorporate additional circuitry to compensate

for or minimize this minor discrepancy, a decision was made not to

do so as this would potentially involve greatly increased design

complexity and thus development time.

7.5 Benefits of Non-linear Photoreceptor Features

Since the implemented photoreceptor circuit was found to be a

faithful mimic of the actual photoreceptor cells, the circuit was used

to study the response of the photoreceptors in a naturalistic moving

scene. To investigate the theory that the non-linear attributes of

photoreceptors improve the quality of visual processing in higher

ord.er neurons, the performance of the adaptive non-linear

photoreceptor circuit was compared with a simple linear detector.

This was accomplished by feeding the visual signal from a real scene

through the photoreceptor circuit prior to transmission to a second
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order neuron, which was implemented in this project by a circuit

mimicking the large monopolar cell (LMC) in the insect visual

pathway.

The results showed that there were significant improvements to the

visual information at the LMc output when the photoreceptor circuit

was used as the front-end of the visual processing unit as compared

to having a simple linear detector. A small target that was

deliberately integrated into the naturalistic scenes was easily picked

out by the photoreceptor circuit + LMC, which may explain how a

low resolution hoverfly has the capability to detect its prey in a

cluttered background as recently demonstrated for higher order

neurons (Nordström et al. 2006l' Additionally, under extreme

lighting conditions such as the one demonstrated in Chapter 6, the

LMC output managed to pick out movements that occurred even in

the darkest area of the scene.

7.6 Future work and Potential Applications

The neuromorphic circuit was implemented purely to investigate the

feasibility of designing and implementing a circuit based on a

biological photoreceptor. Thus, some parts of the circuit design may

be not optimized, or even not required for certain applications'

Ultimately, implementing the photoreceptor circuit on a chip using

vLsI technologr would offer increased portability and open up many

potential aPPlications.

one obvious potential real-world application that alose from this

project was to use a multi-pixel photoreceptor circuit as the front-

end for surveillance calnera systems. The pixel-by-pixel adaptation

of insect eyes provides a solid solution to many existing problems in

the standard surveillance camera system, especially when extreme
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lighting conditions are encountered in the scene, such aS sun flare

and headlight flare. In situations like these, existing calneras with

global automatic gain control will adjust the gain of the entire scene,

causing loss of important details in other parts of the scene'

However, by having pixel-by-pixel adaptation in the front-end of the

calnera, scenes with features that are too bright will not experience

any detrimental effects in other parts of the scene. This is because

each pixel has its own built-in automatic gain control system.

The superior performance of the photoreceptor circuit due to its

intrinsic logarithmic coding and other adaptive non-linear attributes

makes it a desirable option as the front-end for other artificial

systems which perform tasks such as tracking and motion detection.

The potential for fast and robust response could be beneficial in

military applications such as visual target-tracking in missile

guidance or other \¡/eapon systems.

Aside from industry-related applications, a portable unit based on

the photoreceptor circuit could allow greater flexibility in collecting

experimental data for further studies in insect vision. Since it has

been shown to faithfully reproduce the characteristics of the

biological fly photoreceptors, it can be used to obtain a reliable set of

data for evaluating or benchmarking models of higher order

neurons. similarly, it may find use as an educational tool to aid in

demonstrating certain characteristics of the insect visual system'
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Photoreceptor Cell OutPut
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Figure A-1: Reconstructed output images (Gardens) from both- the

""î,r¿ 
biological photoreceptors (auerage of 4 tri6.ls)and the artificial

photoreceptor (no repeats)at several maximum

- O.lyo, O.5o/o, loh, 5o/o, lOo/o, 3oo/o, SOth and 10

top of the figure was used as a reference
analyses.
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Photoreceptor Cell OutPut

Reference lmage

0.1o/o

0.5%

1o/o

1Yo

10o/o

30%

50%

100%

Hanlin.png (1000 x 150 Pixels)

Artiflcial Cell OutPut

Figure A-2: Reconstructed output images (Ha.mlin) from both- the

""îrr"t 
biological photoreceptors (auerage of 4 tri',ls)and the_artificial

photor."eptãr @o repeats)ät several maximum brightness playbacks
-- 

o.l"/o, o.5"/o, Iyo, i"/o, IOo/o, 300/o, 500/o and 100%. The image at the

top of the figure was used as a reference for all mathematical

analyses.
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Reference lmage
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Figure A-3: Reconstructed output images (Løb) from both the actual
biõlogical photoreceptors (auerage of 4 trials) and the -artificial
photõrecepior (no repeats/ at several maximum brightness playbacks

- O.l"/o, O.5"/o,'I"/o, iyo, l}o/o, 3oo/o, 5Oo/o and IOOo/o. The image at the

top of the figure was used as a reference for all mathematical

analyses.
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Photoreceptor Cell OutPut
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Figure A-4: Reconstructed output images (ReceptioQ \om both the

""i,rul 
biological photoreceptors (auerage of 4 trials)and the_artificial

photoreceptõr @o repeats)at several maximum brightness playbacks

- o.I"/o, O.50/o,'Iyo, i"/o, IOo/o, goo/o,50% and looo/o. The image at the

top of the figure was used as a reference for all mathematical
analyses.
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Photoreceptor Cell Ouþut
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Figure A-5: Reconstructed output images (Block) from both the

"Jrr"l biological photoreceptors (auerage of 4 trials) and the

prototype cirãuit (no repeaús/ at several playback speeds - 45" f s,

ö0./", i80.7", 36ò'/", i2O" ¡.t and, l44O'/s. The image at the top of
the'figure was used as a reference for all mathematical analyses'
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Photoreceptor Cell OutPut

Reference
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Bota ni c. png (1 0 0 0x200 Pixels)
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Figure A-6: Reco images (Botønic) from both the

".îrr"t biological (auerage of 4 trials) and the

prototype cirãuit everal playback speeds - 45" f s,
'éO'/", îaO.¡s, 36 1440" ls. The image at the top of

the figure was used as a reference for all mathematical analyses.
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Photoreceptor Cell OutPut

Refelence
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Bushes. png (1 000x200 Pixeß)
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Figure A-7: Reconstructed output images (Bu^shes) from both the

"Ju"t 
biological photoreceptors (auerage o! 4 trials) and the

frototype cirãuit ¡no ,"p.oti/ at several playback speeds - 45' f s,

ö0"/", î80"¡", SOO" ¡", i2O" ¡'" and, 144O"/s. The image at the top of

the figure was used as a reference for all mathematical analyses.
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Photoreceptor Gell OutPut

Reference lmage
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Ftgure A-8: Reconstructed output images (Car Park) from both the

aJual biological photoreceptors (auerage o! 4 trials) and the

piotátyp. cirãuit ¡ào ,.p"ors7 at several playback speeds - 45" f s,

õ0./", î80.7", ZOO" ¡", i2O" ¡'" ^o, 
t44O" /s. The image at the top of

the figure was used as a reference for all mathematical analyses.
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Reference lmage

Clo se. png (1 000x200 Ptxels)

Photoreceptor Cell OutPut Artificial Cell 0uþut
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Figure A-9: Reconstructed output images (C]ose) from both the

""în¿ 
biological photoreceptors (auerage of 4 trials) and the

prototype cirãuit (no repeaús/ at several playback speeds - 45'/s,
ö0./", i80"7", 360" /s, T2O" ¡s and t44O'/s. The image at the top of

the figure was used as a reference for all mathematical analyses'
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Photoreceptor Cell OutPut

Reference
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Creek Bed,png (1000x200 ¡tixeß)
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Figure A-1O: Reconstructed output images (Creek Bed) from -both
thã actual biological photoreceptors (auerage of 4 trials/ and the

prototype circuii (no iepeaús/ at several playback speeds - 45" f s,

ö0"/., i8O"¡., 36ò'¡s, iZO'i" and I44O"/s. The image at the top of

the figure was used as a reference for all mathematical analyses.
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Photoreceptor Cell 0utPut

Refelence
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Lab. png (1 000x200 Pixe I s)

Artificial CellOuþut

FigureA-loutputimagesP"b)fromboththe
aclual biol ors (auerage of 4 trials) and the

prototype c at several playback speeds - 45" fs,
bO./., i8O. and l44O'/s. The image at the top of

the figure was used as a reference for all mathematical analyses.
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Photoreceptor Cell OutPut

tlt Lofly ,png (1 000x200 Pixels)
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Figure A-lr2z Reconstructed output images (Mt Lofig)from both the

."în"l biological photoreceptors (auerage of 4 tric';ls) and the

prototype cirãuit (no repeaús/ at several playback speeds - 45" f s,

ö0./., iaO.7s, 36ò'/s, i2O" ¡'s and l44O'/s. The image at the top of

the figure was used as a reference for all mathematical analyses'
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Photoreceptor Cell OutPut

Reference lmage
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Figure A-13: Reconstructed output images (Outdoor)from both the

""în"t biological photoreceptors (auerage of 4 trials) and the

prototype cirãuit (io repeats¡ at several playback speeds - 45" f s,

ö0./., îgO./s, 36ò"/s , i2O" ¡'" ^o, 1440" ls. The image at the top of

the figure was used as a reference for all mathematical analyses.
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Photoreceptor Cell OutPut

Reference
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Rock Garde n, p rry ( 000x2N Pixeß)
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Figure A-1{z Reconstructed output images (Rock Garden)from both

the actual biological photoreceptors (auerage of 4 trials/ and- the

ptototyp. circuit" (no iepeats/ at several playback speeds - 45" f s,

õ0./", i8O'7., 36ò"¡s, iZO" ¡'" and, I44O"/s. The image at the top of

the figure was used as a reference for all mathematical analyses.

179



Appendix

Reference

S le dow. png (1 0tt0x200 pixeß)
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Figure A-15: Reconstructed output images (Sluadow) from both the
actual biological photoreceptors (auerage of 4 trials) and the
prototype circuit (no repeaús/ at several playback speeds - 45" f s,

90"/s, 180'/s,360'/s, 72O"/s and I44O"/s. The image at the top of
the figure was used as a reference for all mathematical analyses.
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Photoreceptor Cell OutPut

Refelence
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Tree, png (1 000x200 Pixeß)

Artificial Cell OutPut

FigureA-lfromboththe
""t,r"l biol trials) and the

prototypec sPeeds-45"fs'
ö0./", i80. I44O" ls. The image at the top of

the figure was used as a reference for all mathematical analyses.
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