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Mangroves provide many ecosystem services including a considerable capacity to
sequester and store large amounts of carbon, both in the sediment and in the
above-ground biomass. Assessment of mangrove above-ground carbon stock relies
on accurate measurement of tree biomass, which traditionally involves collecting direct
measurements from trees and relating these to biomass using allometric relationships.
We investigated the potential to predict tree biomass using measurements derived from
unmanned aerial vehicle (UAV), or drone, imagery. This approach has the potential to
dramatically reduce time-consuming fieldwork, providing greater spatial survey coverage
and return for effort, and may enable data to be collected in otherwise hazardous or
inaccessible areas. We imaged an Avicennia marina (grey mangrove) stand using an
RGB camera mounted on a UAV. The imaged trees were subsequently felled, enabling
physical measurements to be taken for traditional biomass estimation techniques, as
well as direct measurements of biomass and tissue carbon content. UAV image-based
tree height measurements were highly accurate (R2 = 0.98). However, the variables that
could be measured from the UAV imagery (tree height and canopy area) were poor
predictors of tree biomass. Using the physical measurement data, we identified that
trunk diameter is a key predictor of A. marina biomass. Unfortunately, trunk diameter
cannot be directly measured from the UAV imagery, but it can be predicted (with some
error) using models that incorporate other UAV image-based measurements, such as
tree height and canopy area. However, reliance on second-order estimates of trunk
diameter leads to increased uncertainty in the subsequent predictions of A. marina
biomass, compared to using physical measurements of trunk diameter taken directly
from the trees. Our study demonstrates that there is potential to use UAV-based
imagery to measure mangrove A. marina tree structural characteristics and biomass.
Further refinement of the relationship between UAV image-based measurements and
tree diameter is needed to reduce error in biomass predictions. UAV image-based
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estimates can be made far more quickly and over extensive areas when compared
to traditional data collection techniques and, with improved accuracy through further
model-calibration, have the potential to be a powerful tool for mangrove biomass and
carbon storage estimation.

Keywords: blue carbon, allometry, unmanned aerial vehicle, photogrammetry, coastal wetlands

INTRODUCTION

Coastal vegetation is an important biological carbon sink, capable
of sequestering greater amounts of carbon per unit area than
terrestrial forests (Mcleod et al., 2011). The greatest proportion of
carbon in coastal systems, commonly referred to as “blue carbon”,
is stored below ground in the sediment, with a smaller proportion
stored in the above-ground biomass (Nellemann and Corcoran,
2009). Among the three key blue carbon ecosystems (mangroves,
seagrasses and saltmarshes), mangroves have the greatest above
ground biomass and carbon storage, due to their larger, woody
growth forms (Alongi, 2014).

The capacity for mangroves to sequester and store
carbon is of global significance and has led to international
initiatives and policy instruments, recognizing the value of
mangroves for mitigating anthropogenic carbon emissions.
These include the 2013 Coastal Wetlands Supplement to the
Intergovernmental Panel on Climate Change (IPCC) Guidelines
for National Greenhouse Gas Inventories (IPCC, 2014); the
United Nations Framework Convention on Climate Change
(UNFCCC) Reducing Emissions from Deforestation and Forest
Degradation (REDD+) scheme; and a number of carbon
financing mechanisms that include mangrove systems (Plan
Vivo, 2013; Emmer et al., 2015; Wylie et al., 2016); although there
are currently only a handful of projects that are actually trading
carbon credits from mangroves. The use of “default values” for
mangrove carbon sequestration and storage (usually based on
global averages; IPCC, 2014) is permitted by these initiatives
and instruments. However, these default values are considered
inadequate to account for the spatial heterogeneity of carbon
stored in above-ground mangrove biomass (Kelleway et al.,
2016; Owers et al., 2016, 2018a), which is dependent on factors
such as geographic setting, species composition and growth
form (Hickey et al., 2018 and references therein). Consequently,
carbon financing and accounting methods recommend and
reward the use of accurate, site-based measurements of
mangrove above- and below-ground carbon pools that capture
variability and improve confidence in carbon stock estimates
(Gibbs et al., 2007; Kauffman and Donato, 2012; Howard et al.,
2014; IPCC, 2014). However, the mangrove above-ground
carbon pool is generally poorly quantified (Owers et al., 2018b).

Direct measurement of mangrove biomass is traditionally
done using established forest inventory techniques that involve
the laborious collection of tree measurements (e.g., height,
canopy/crown area, diameter at breast height) within designated
plots, which are then used in allometric equations that relate
these non-destructive tree measurements to tree above ground
biomass (Kauffman and Donato, 2012; Picard et al., 2012).
Biomass estimates for mangroves can subsequently be converted

to estimates of above ground carbon using a standard multiplier
of 0.45–0.50 (IPCC, 2014). Estimates of biomass and carbon
per tree can be scaled-up to area estimates using averaged
values and tree density metrics from the surveyed plots, on the
assumption that these are representative of the wider mangrove
area. Collecting in situ measurements from mangrove trees is
time and resource demanding, as well as potentially hazardous,
particularly in dense mangrove stands or remote sites with
limited accessibility and the risk of contracting potentially fatal
diseases transmitted by mosquitoes or encountering predatory
animals (e.g., crocodiles). These impediments can lead to poor
survey coverage and measurement errors when carrying out
in situ surveys of mangroves. In areas where it is not safe, practical
or affordable to collect physical measurements from mangroves,
default carbon values (rather than site-based values) may be
used to estimate site carbon stocks (IPCC, 2014). However, this
introduces a large amount of uncertainty to the above-ground
biomass and derived carbon estimates and results in lower carbon
market prices (Gibbs et al., 2007; Kauffman and Donato, 2012;
Howard et al., 2014).

Remote sensing techniques offer approaches for collecting
data on mangrove distribution and structure (Hamilton et al.,
2018) that avoid many of the challenges of traditional methods.
Global and regional estimates of mangrove height, canopy
area, succession, biomass and derived carbon stocks have been
made by extracting structural information from various remotely
sensed products. These approaches used data from Shuttle
Radar Topography Mission (SRTM) (Rahman and Aslan, 2017);
Synthetic Aperture Radar (SAR) systems (Lee et al., 2015);
the Advanced Land Observing Satellite (ALOS) Panchromatic
Remote-sensing Instrument for Stereo Mapping (PRISM) (Aslan
et al., 2018); and combinations of the previously mentioned active
(i.e., radar) and passive (e.g., Landsat) remotely sensed products
(Aslan et al., 2016). These landscape-scale estimates of mangrove
biomass and carbon stocks are extremely valuable and have
a variety of applications (e.g., national carbon accounting and
monitoring change at a broad scale) (Aslan et al., 2016). However,
they generally lack the fine-scale spatial resolution required to
inform accurate, site-based assessments of mangrove biomass
and carbon stocks and are not intended to capture fine-scale
heterogeneity (Owers et al., 2018a). Such resolution is achievable
through well-designed, extensive, in situ surveys that are stratified
in such a way that they capture heterogeneity across a site (for
example associated with geomorphology, species composition
and tidal inundation levels). However, as discussed above, there
are often practical barriers to carrying out such surveys. Owers
et al. (2018b) demonstrated the use of a terrestrial laser scanner
for generating accurate and precise site-level estimates of biomass
(and derived estimates of carbon) in mangroves. However, the
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impracticalities of this method, such as the size/weight and cost
of the instrument, as well as the difficulty of collecting good data
in dense canopy (Wilkes et al., 2017), mean it may be unsuitable
for mapping mangrove biomass in the majority of cases.

There is a clear need for an easy-to-deploy, comparatively
cheap method for collecting high spatial resolution data on
mangrove structure at a local scale. Such a method could
support the site-level assessment and monitoring of mangrove
biomass for carbon accounting and crediting purposes, which
is currently likely to be cost prohibitive to carbon crediting
project proponents (Bell-James, 2016). The use of Unmanned
Aerial Vehicles (UAVs) for ecological research and management
has grown significantly in the last decade (Anderson and
Gaston, 2013) including applications for collection of structural
measurements from plants, predominantly driven by forestry
(e.g., Panagoitidis et al., 2017) and agriculture (Bendig et al.,
2015). These approaches are increasingly being applied to
conservation and management, particularly in terrestrial forest
ecosystems (Paneque-Gálvez et al., 2014; Messinger et al.,
2016), but have not yet been widely applied for mapping
coastal vegetation (although see Otero et al., 2018). UAVs have
the potential to provide a relatively low-cost, low-risk and
quick approach to surveying mangrove above-ground biomass
compared to on-the-ground forest inventory methods (Otero
et al., 2018). In addition, they can collect much higher spatial
resolution data than most other remote sensing approaches
(although see Owers et al., 2018b), with the ability to generate
cm-resolution, three-dimensional canopy models over hundreds
of hectares; making them the ideal tool for high resolution,
site-based assessments of mangrove above-ground biomass
and carbon stocks.

In this study, we aim to establish proof-of-concept for the
accurate (i.e., as close as possible to the true value) measurement
of Avicennia marina (grey mangrove) tree biomass using
variables derived from UAV-imagery. Destructive sampling of
the imaged trees generated data for calibration and validation of
allometric relationships. This enabled us to (1) test the accuracy
of UAV image-based tree measurements and biomass predictions
from our new models based only on UAV-estimated variables;
(2) assess how well previously published allometric equations
approximate our South Australian A. marina tree biomass, based
on variables estimated from the UAV imagery; and (3) compare
the best estimates of biomass based on UAV-derived data to those
based on traditional field-based forest inventory approaches.

MATERIALS AND METHODS

The mangrove study area was at North Arm Creek, north
of Adelaide, in South Australia (−34.825, 138.560; Figure 1).
Avicennia marina is a predominantly tropical species and is at the
edge of its range in South Australia. It is the only mangrove found
in the state and is a protected species of native vegetation, which
cannot be removed without permission according to the South
Australian Native Vegetation Act 1991. Specific and limited
areas of A. marina trees were planned for removal as part of a
state road construction project (removal was permitted by the

South Australian Native Vegetation Council, application number
2015/3111/292). We converted the vegetation clearance into an
opportunity to gather destructive samples and were granted
limited access to the site by the construction company. Our
access constraints dictated our study area, survey and sampling
approach, as well as constraining our sample size. The study
methodology is outlined in Figure 2.

UAV Data Collection and Processing
Prior to mangrove clearance, we marked 10 individual trees
within the mangrove stand using lengths of plastic pipe tipped
with uniquely colored flags. The pipes were strapped to the
main trunk of each tree and were taller than the trees such that
that the colored flags emerged above the tree canopy and were
visible to the UAV flying overhead. The locations of the 10 trees
that were imaged by the UAV and subsequently removed are
shown in Supplementary Figure S1. They were sampled along
a transect that ran approximately from north to south and was
perpendicular to the nearby North Arm Creek.

A 20 megapixel Sony RX100iii camera was hard mounted onto
a 3DR Iris + UAV to capture RGB images of the mangroves.
An automated lawnmower type pattern was flown at 40 m
above ground level with 80% overlap and side lap. These
image-capture parameters were selected to yield a suitable point
cloud to represent the complex canopy structure and enable
measurement of canopy height. A georectified orthomosaic
with a nominal spatial resolution of 1.5 cm was subsequently
generated (Dittmann et al., 2017) with Pix4D Mapper Pro
photogrammetry software. We manually digitized the canopies
of the 10 individually marked trees from the orthomosaic. The
digitized canopy extents were used to compute the canopy area
(m2) of each tree. The maximum height (m) of each tree’s canopy
was measured from the point cloud, determined as the difference
between the highest point within each canopy and the height of
the bare ground visible at the nearest gap in the canopy.

Forest Inventory Data Collection
After completing the UAV imaging, the marked trees (n = 10)
were felled by cutting at ground level (therefore no below ground
biomass was removed or provided). In addition to the 10 trees
we had marked, we were also provided with an additional
10 trees that were unmarked. Because they were unmarked,
these additional trees were not individually identifiable on the
UAV imagery, but could still be used to establish allometric
relationships for predicting the biomass of A. marina trees in
South Australia. The subset of A. marina trees used in the UAV
study (n = 10) were imaged and felled on 29th June 2017. The
10 additional trees that were harvested, but not imaged, were
felled within 2-weeks of the UAV imaging. The exact positions of
the un-imaged trees were not provided to us by the construction
company that removed them; but they were collected from the
same general area as the UAV imaged trees. Wet weights of all
trees were measured on the same day as harvesting.

We took the following measurements from the felled trees
(n = 20): total height, total wet weight, diameter at 30 cm (basal
diameter; D30) and diameter at breast height (130 cm; DBH).
Total tree diameter at 130 cm (DBH) and 30 cm (D30) was
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FIGURE 1 | Map of survey and sampling location at North Arm Creek (indicated by green dot), north of Adelaide in South Australia (approximate site location:
–34.8245, 138.5602).

calculated for multi-stemmed trees using the square root of the
sum of the squared diameter values from all stems in each tree.
We were unable to directly measure the canopy area of the trees,
as we did not have access to them prior to harvesting. After
harvesting, we were unable to suspend the trees in such a way
as to recreate the natural shape of the canopies.

Lab Analyses of Tree Biomass and
Carbon
After taking measurements from the whole trees, we separated
each tree into three compartments: trunk, branches and
foliage (including leaves, fruits and inflorescences) (Kauffman
and Donato, 2012). We took the total wet weight of each
compartment of each tree and collected a minimum of
three sub-samples for dry weight measurement and further
lab analyses. The dry weight of each sub-sample was
measured after oven-drying at 60◦C until a constant weight
was achieved. The total dry weight (i.e., biomass) of each
compartment of each tree was calculated by multiplying the
compartment’s wet weight by the average wet:dry weight ratio
from all sub-samples.

We analyzed sub-samples of trunk, branch and foliage (99,
83, and 84 samples, respectively) for carbon content using a
Nu Instruments isotope ratio mass spectrometer (IRMS). The
majority of samples (foliage, small-medium branches and small-
medium diameter trunk samples) were ground and homogenized
directly in a steel ball mill to a fine grain size. For larger
diameter branch and trunk samples, we collected material for
analysis using cross-sectional transects with a micro-drill. This

produced a fine powder which was homogenized manually
before being analyzed. Using cross sectional transects ensured
the material analyzed from the larger diameter branch and
trunk samples was representative of the different types of wood
and bark present. Ground samples were then analyzed in the
IRMS (average weight of sample = 2.309 mg, range = 2.006 –
2.499 mg). After analysis, we generated estimates of tree
compartment carbon content and total tree carbon content. This
involved multiplying the biomass estimate for each compartment
of each tree by the average proportion of carbon in each
compartment (pooled across all trees), then summing the
compartment carbon values for each tree (to get total tree
carbon content).

Data Analyses
Data analyses were performed on a suite of measured and
modeled metrics relevant to biomass. We had both physical
(n = 20 trees) and UAV image-based (n = 10 trees) measurements
of tree height, as well as UAV image-based measurements of
canopy area. In addition, data from the UAV imagery was
used to model DBH and D30 (see further details below), which
could not be directly measured from the imagery. We also
had the measured biomass and carbon content of each tree
from destructive harvesting. This enabled us to compare a
variety of approaches for modeling biomass and determine
which was the most accurate for use on our South Australian
A. marina trees.

For clarity throughout this manuscript, we have used
different terms to distinguish “regression models” and “allometric
equations”. We refer to regression models when we have built
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FIGURE 2 | Schematic of workflow used in the study, which was initiated with tree marking prior to UAV flight, with subsequent harvesting of trees and analyses of
tree samples and imagery.

the models with our own data from the UAV imagery and used
these to make predictions of parameters such as diameter metrics
and tree biomass. This is an arbitrary distinction, but one that
we feel makes our various analyses easier to distinguish, discuss
and compare. We use the term allometric equations (which
are essentially formulae derived from regression models) when
we are referring to previously published relationships between
tree measurements and biomass, or attempting to develop new
relationships with our own data from destructive harvesting. The
allometric equations are deterministic in that they contain fixed
coefficients and constants and only require the user to input
parameter values for the appropriate predictor variables (i.e.,
measurement values of tree height, diameter or canopy area).

Unmanned aerial vehicle image-based measures of tree height
were assessed against field measured tree height using correlation
analysis. A suite of linear regression models of DBH and D30 were
built using different combinations of image-based measurements
as predictor variables (tree height and canopy area) and the best
of these was selected and used to generate predictions of DBH
and D30 for each tree (calibrated and validated using our direct
measurements of these variables from the felled trees). We then
generated a further set of linear regression models of tree biomass
as a function of single or multiple UAV image-based predictor
variables (tree height, canopy area, DBH and D30). Note that we

did not include second order (derived) variables (DBH and D30)
in the same models as the UAV image-based variables they were
derived from (height and/or canopy area).

All model variables were logged (using natural log unless
stated otherwise) as is standard in allometric approaches.
However, to assess model prediction ability, the predicted
log (biomass) estimates from models were back-transformed
to produce estimates in kg that could be compared to the
measured biomass values. Back-transformation can lead to
biased estimates, so we multiplied the estimates from the
models by a correction factor to adjust for this. The correction
factor was calculated using the method from Sprugel (1983):
Exp (model root mean square error/2). Model evaluation
statistics (R2 and AIC) are provided, as well as mean model
prediction error based on the difference between observed
(directly measured) tree biomass and model-prediction of
biomass for each tree using leave-one-out cross validation.
Analyses were carried out in the R Statistical Software
(R Core Team, 2017).

We also generated a range of linear regression models that
used the physically measured attributes of all 20 harvested
trees as predictor variables for tree biomass. These models are
expressed as allometric equations, based on their coefficients
and intercepts, and were evaluated based on mean prediction
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error (see details above). In addition to these newly generated
allometric relationships (based on our own destructive sampling
data), we also tested the accuracy of 10 previously published
allometric equations for estimating the biomass of A. marina
trees. The published equations we used were taken from
studies of A. marina trees from Western Australia (Clough
et al., 1998), Northern Territory (Comley and McGuinness,
2005) and New South Wales (Owers et al., 2018a); none of
these studies included trees from South Australia. We did
not take physical measurements of canopy area from our
sampled trees, but we did estimate canopy area for the trees
that were imaged by the UAV; this prevents the application
of any published allometric equations that include canopy
area to the full dataset of 20 harvested trees. We used
mean prediction error (difference in kg between observed and
predicted tree biomass) to compare all the tested allometric
equations (previously published and new) against each other
and the models of biomass based only on image-based
predictor variables.

RESULTS

Direct Tree Measurements
Trees ranged from 2.1 – 6.7 m tall, weighing between 6.1 and
208.1 kg (Table 1). Raw tree measurement data for all felled trees
(n = 20) and summary data for the subset of trees that were
imaged by the UAV (n = 10) are provided in the Supplementary
Data Worksheet and Supplementary Table S1. The average
proportion biomass (dry weight as a proportion of total wet
weight) for the tree compartments were 0.55 (std = 0.06, n = 104),
0.53 (std = 0.05, n = 94) and 0.37 (std = 0.02, n = 97) for
trunk, branch and foliage, respectively. The elemental analysis
found that all tree compartments contained similar total carbon
percentages, with averages of 44.5% for trunk samples (std = 2.15,
n = 99), 44.3% for branch samples (std = 2.05, n = 83) and
44.4% for foliage samples (std = 1.54, n = 84). The overall average
carbon content, pooled across all tree compartments was 44.3%
(std = 1.96, n = 287).

TABLE 1 | Summary statistics for physical measurement data collected from the
20 harvested trees used in this study.

Measured variable Average SD Range

Tree height (m) 3.89 1.39 2.1– 6.7

Tree weight (kg) 42.76 42.40 6.1–208.1

DBH (cm) 6.38 3.69 2.1–17.1

D30 (cm) 9.29 2.61 5.3–17.0

Trunk biomass (kg) 8.28 8.80 1.7–42.5

Branch biomass (kg) 9.56 11.59 0.4–54.2

Foliage biomass (kg) 2.81 2.22 0.6–10.6

Tree total biomass (kg) 21.03 22.78 3.1–110.2

Trunk carbon (kg) 3.68 3.92 0.8–18.9

Branch carbon (kg) 4.18 5.06 0.2–23.7

Foliage carbon (kg) 1.23 0.99 0.3–4.7

Total tree carbon (kg) 9.28 10.04 1.4–48.6

Estimation of Tree Structural Variables
From UAV Canopy Height Model
The imagery captured with the UAV was processed to yield
an orthomosaic (Figure 3A) suitable for measuring canopy
area and a structure-from-motion point cloud suitable for
measuring canopy height (Figure 3B). Estimates of canopy
area, taken from the orthomosaic, ranged from 0.2 to 3.4 m2

(average = 1.2 m2, std = 0.8 m2). Directly measured tree
height and UAV image based tree height measured from the
point cloud had a strongly positive correlation (R2 = 0.98;
Figure 4A).

The full suite of models generated for predicting tree DBH
and D30 from UAV-estimates of tree height and canopy area
are provided in the (Supplementary Tables S2, S3), with only
the best models described here. The best model of log (DBH)
included the single predictor variable log (UAV image-based tree
height), had an R2 of 0.54 and a mean prediction error of 0.21
log (cm) (Figure 4B). The best model for prediction of D30
included both UAV image-based tree height and canopy area as
predictors, had an R2 of 0.52 and a mean prediction error of 0.08
log (cm) (Figure 4C).

Avicennia marina Tree Biomass
Estimation Using Models and Published
Allometric Equations
We tested a suite of new models and previously published
allometric equations, but focus here only on those that
performed the best in terms of prediction accuracy, assessed
by cross validation and calculation of mean prediction error
(details of all models and equations are provided in the
Supplementary Tables S4–S6).

Direct Estimation of A. marina Tree
Biomass Based on Models With
UAV-Derived Predictor Variables
The best model of A. marina biomass predicted using just
the UAV image-based variables (n = 10 trees) included only
D30 as a predictor (Supplementary Table S4). Although it was
the top-ranked of the candidate models we tested, it did not
predict biomass very accurately; with a mean prediction error
of 17.4 kg. This large average prediction error is predominantly
due to the model’s under-prediction of the largest tree, which
had an observed biomass of >110 kg, as well as slight over-
prediction of smaller tree biomass values (see “UAV Model” box
in Figure 5B).

Assessment of the Best Allometric
Relationship for A. marina Tree Biomass
From South Australian Trees
From the suite of new allometric equations we developed using
the direct measurements from 20 felled trees, the best predictions
of tree biomass were achieved with an equation that included
both measured DBH and D30 as predictor variables (“Jones” in
Table 2). This equation resulted in a mean prediction error of
4.33 kg when tested on the full dataset (n = 20 trees). A summary

Frontiers in Marine Science | www.frontiersin.org 6 January 2020 | Volume 6 | Article 784

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00784 January 16, 2020 Time: 16:5 # 7

Jones et al. Measuring Mangrove Biomass With Drones

FIGURE 3 | (A) an orthomosaic and (B) a structure-from-motion point cloud of mangroves mapped using a 3DR Iris + UAV with a Sony RX100 20-megapixel
camera mounted. Both images were generated from multiple overlapping photographs using Pix 4D Mapper Pro software.

of all the new allometric equations we developed and tested using
the direct tree measurement dataset (n = 20 trees) is provided in
Supplementary Table S5.

Of the 10 previously published allometric equations that we
fit to the measured data from all harvested trees (n = 20),
we found that those developed by Comley and McGuinness
(2005) and Owers et al. (2018a); eqn. 8) achieved the lowest
(i.e., best) prediction errors, being 6.24 and 6.66 kg, respectively.
However, both these allometric equations predicted biomass less
accurately than the best new allometric equation developed in
this study from the tree measurement data collected in South
Australia (Table 2 and Figure 5A). The top three allometric
equations for predicting biomass consistently relied on diameter
measurements (either DBH, D30 or both) as predictors with the
Owers equation also including tree height (see Comley, Owers 8
and Jones; Table 2).

Comparison of Approaches: Predicting
Biomass Using UAV-Derived Predictor
Variables
When we used the allometric models to predict tree biomass
based on UAV image-based measurements (n = 10 trees), as
opposed to physical measurements taken from the trees, the
prediction error generally increased (Table 2). This error is
due to over-prediction of biomass for smaller trees combined
with an inability to adequately predict the largest tree’s biomass
(Figure 5B) and is likely the result of a smaller sample size.
Although ranked second for biomass prediction accuracy when
using physically measured variables (from the larger data set
of 20 trees), we found that the Comley and McGuinness
(2005) equation predicted tree biomass particularly poorly when
using the UAV image-based measurements (mean prediction
error = 20.47 kg; Table 2 and Figure 5B). Our own, newly
developed allometric equation remained one of the best for
biomass prediction when using UAV image-based measurements,

albeit with considerable increases in prediction error compared
to using the same equation with direct physical measurements of
variables (Table 2; see “Jones” box in Figure 5).

DISCUSSION

This study explored the potential for using imagery collected
by UAVs to model the above-ground biomass of mangroves,
specifically A. marina (grey mangrove) trees from South
Australia. To that end, this study had two main parts. The first
tested the ability of existing and new allometric equations to
predict tree above-ground biomass, which was achieved through
destructive sampling (n = 20 trees) and recording relevant
biophysical data (tree structural measurements, biomass and
carbon content) for use in allometric equations. The second part
of the study was an assessment of the utility of UAV image-
based measurements for estimating tree above-ground biomass,
and a comparison of this approach to more traditional forest
inventory and allometry-based methods. We acquired drone
imagery to generate a three-dimensional model and orthomosaic,
enabling measurement of tree height and canopy area, which
were subsequently used to model DBH and D30. We then tested
the potential for predicting above-ground biomass in two ways:
(1) directly from the UAV image based measurements of tree
structure (height, canopy area, DBH and D30) and (2) using UAV-
image based measurements of tree structural characteristics in
allometric equations.

Our new allometric equation for predicting above-
ground biomass of A. marina performed better than the
previously published equations we tested (when estimating
from field measured data), achieving a mean prediction
error of 4.33 kg (>1.6 kg better than the next-best model).
This is perhaps unsurprising as the other equations were
based on samples of the same species from regions of
Australia in areas that are bio-climatically distinct from
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FIGURE 4 | Plots of UAV image-based model-predictions against physically
measured values. (A) Linear model showing the relationship between the
logged measurements of tree height from the UAV image-based
structure-from-motion point cloud and the logged measurements of tree
height taken from the felled trees. Linear model predictions of (B) log (DBH) as
a function of UAV image-based measurements of tree height plotted against
the log of physical measurements of tree DBH; and (C) log (D30) as a function
of UAV image-based measurements of tree height and canopy area plotted
against the log of physically measured tree D30. Shading = 95% confidence
intervals.

South Australia (Clough et al., 1998; Comley and McGuinness,
2005; Owers et al., 2018a). It is likely that the environmental
conditions in South Australia, at the temperate edge of the range
of this predominantly tropical species, will differ markedly from

the other geographic areas where allometric relationships for the
species have been developed.

We were able to measure tree height from the UAV image data
with very high accuracy (height, R2 = 0.98), as well as model two
other structural variables that are important for above-ground
biomass estimation with reasonable accuracy [log (DBH) and
log (D30); R2 = 0.54 and 0.52, respectively]. However, estimation
of above-ground biomass from UAV image-based measurements
or derived variables was relatively poor, with the best mean
prediction error achieved in any of the models being 13.1 kg
(Table 2). We expect that prediction errors would improve with
a larger sample size.

Testing A. marina Allometric Equations
on South Australian Trees
Avicennia marina is the only species of mangrove that grows
in the hot and dry climate of South Australia, where it is
reported to have a different growth form compared to other
regions where the species is found (Clough, 1982). Kauffman
and Donato (2012) stress the importance of using species-
specific and regionally relevant allometric equations when
assessing mangrove biomass for carbon reporting purposes. This
recommendation is supported by the findings of Owers et al.
(2018a) who identified spatial variability in both biomass and
carbon storage in A. marina and other mangroves based on
structure and growth form. As far as we are aware, there were
previously no published allometric equations for A. marina
based on trees sampled in South Australia. Therefore, we felt it
important to test the appropriateness of a range of previously
published allometric equations for A. marina on our South
Australian trees, as well as attempting to develop new, more
accurate, allometric equations for our study region. We note that
Kauffman and Donato (2012) recommended that at least 15–
20 trees should be used to develop an allometric model that is
representative of a particular species and region, and Roxburgh
et al. (2015) found that a minimum of 17 trees was required
to fit an allometric equation with standard deviation within 5%
of the mean observed tree biomass. The variation in measured
tree structural variables (Table 1) indicates that although the
sample design and sampling area were constrained, we managed
to collect trees that represented a wide range of sizes, weights and
growth forms; as opposed to only collecting trees with similar
growth characteristics, which would limit the generalization of
our results (Roxburgh et al., 2015).

The full dataset of 20 harvested trees enabled us to robustly
test both previously published and new allometric relationships,
to establish the most appropriate equation for South Australian
A. marina. Unfortunately, we could not include four of the
equations previously developed by Owers et al. (2018a) in our
assessment, because these required measurements of canopy
area, which we were not able to physically measure on all 20
trees. Canopy or crown area was shown to be an important
predictor of tree biomass in Owers et al. (2018a) study on
A. marina, which was undertaken in a different region of
Australia as well as for other mangrove species (e.g., Fu and
Wu, 2011; Yin and Wang, 2019) and other types of trees
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FIGURE 5 | Boxplots of predicted biomass (kg) from a selection of the best performing allometric equations [Comley and McGuinness (2005); Owers et al. (2018a)
and Jones – this study] when fit to (A) physically measured tree data from all harvested trees (n = 20) and (B) predictions from the same equations, but using UAV
image-based measurements of variables to predict biomass (rather than physically measured variables). Predictions of tree biomass from the best model that was
trained directly on the UAV image-based measurement data are also shown in (B) (“UAV Model”). Horizontal dark line shows the median biomass prediction, upper
and lower box extents show the first and third quartiles respectively, whiskers extend to 1.5 times the interquartile range and black points indicate outliers.
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TABLE 2 | A comparison of biomass prediction accuracy (based on both physical tree measurements and UAV image-based tree measurements) using previously
published allometric equations and the best allometric relationship established from the trees in this study (“Jones”).

Name and source Predictors Physical measurements from all
trees (n = 20): mean prediction

error (kg)

Physical measurements from
UAV trees (n = 10): mean

prediction error (kg)

UAV image-based
measurements (n = 10): mean

prediction error (kg)

Jones DBH + D30 4.33 5.08 13.11

Comley DBH 6.24 7.44 20.47

Owers 8 Height + DBH + D30 6.66 8.48 15.71

Owers 12 Height + DBH 7.46 9.94 16.56

Owers 10 Height + DBH 8.31 10.74 17.07

Owers 6 Height + DBH + D30 8.49 11.05 16.70

Owers 5 Height + DBH + D30 10.41 13.70 17.61

Owers 11 Height + DBH 11.09 15.43 18.21

Owers 7 Height + DBH + D30 11.09 15.77 17.98

Clough D30 12.43 11.73 16.99

Owers 9 Height + DBH 14.33 19.65 17.54

The table shows mean prediction error (kg) for each model, tested on three different sets of data: (1) the physically measured variables from all 20 harvested trees; (2)
the measured variables from the 10 trees that were imaged by the UAV and (3) the predicted variables extracted or derived from the UAV imagery. Orange highlighting
indicates the model with the best prediction accuracy across all three datasets. Mean prediction error was calculated for each model by averaging the difference between
observed and model predicted tree biomass (in kg). The formulae for the allometric equations are provided in the (Supplementary Table S6). Citations for the listed
allometric models: Clough et al. (1998); Comley and McGuinness (2005), Owers et al. (2018a).

(e.g., Popescu et al., 2003). However, two other previous studies
[by Clough et al. (1998) and Comley and McGuinness (2005)]
did not use canopy area as a predictor variable in their
allometric equations for A. marina biomass. In the models we
developed for predicting biomass directly from UAV image-
based tree measurements, canopy area was not a good predictor
variable and was not selected in the best performing models
(for further discussion see sections “Tree Structure Variables
Estimated Using the UAV Imagery” and “Predictions of Tree
Biomass Based on UAV Derived Variables”). The importance
of canopy area as a predictor of biomass for this species is
likely to be based on regional differences in growth form,
which varies widely across the species’ range in Australia
(Clough, 1982).

Of the previously published allometric equations for
predicting A. marina biomass from tree measurements, Comley
and McGuinness (2005) and equation 8 from Owers et al.
(2018a) performed the best. However, we demonstrated that
the new equation developed from our own data resulted in
the lowest mean prediction error. All three of these equations
relied on diameter measurements as predictors of biomass
(with the Owers et al., 2018a equation also including tree
height), but varied in their coefficient values (Table 2). This
strong relationship between trunk diameter metrics and tree
biomass is supported by previous studies on mangroves (e.g.,
Chave et al., 2005; Dharmawan and Siregar, 2008; Komiyama
et al., 2008; Kauffman and Cole, 2010). The dependence on
diameter measurements for accurate tree biomass predictions
is likely to be strengthened in A. marina as it often grows in a
multi-stemmed form (Clough et al., 1998), therefore a single
height or canopy area estimate may not be representative of the
total trunk and branch biomass associated with the tree’s multiple
stems. The combined DBH and/or D30 measurements which
we calculated, based on the sum of the squared diameter values
from all stems, account for multiple stems in a single tree and

are therefore likely to be a representative predictor of biomass in
multi-stemmed trees.

Tree and Compartment Carbon Content
Our analyses of carbon content provided average values (∼ 44%)
that are lower than the multiplier values commonly used for
converting mangrove biomass to carbon when specific carbon
concentrations are not available for a region, site or species
(0.45–0.5) (Kauffman and Donato, 2012; IPCC, 2014). They
are also slightly lower than recent estimates of carbon content
for A. marina from New South Wales (Australia) reported by
Owers et al. (2018a). The same study found differences in carbon
content based on species and growth form, although these results
were based on a smaller sample population (four individual
A. marina trees, as opposed to our 20 trees), so may be expected
to show greater variation. We analyzed over 230 samples from
the different compartments of 20 trees and found no notable
variation between tree compartments (trunk, branch, foliage) or
between trees. We are confident that our results are representative
of A. marina from the sampled region and recommend the use
of these values when estimating above ground carbon storage for
this species in South Australia.

Tree Structure Variables Estimated Using
the UAV Imagery
The structure-from-motion point cloud that we generated from
the UAV imagery provided very accurate estimates of tree height
(R2 = 0.98). We also estimated canopy area from the orthomosaic,
but could not assess the accuracy of these estimates because
we were not able to take physical measurements of canopy
area from the harvested trees prior to felling. Unfortunately,
neither height nor canopy area were good predictors of tree
biomass for our trees (Supplementary Tables S4, S5). This
may be because many of the trees were multi-stemmed, with
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no apparent relationship between tree height or canopy area
and the number of stems. This leads us to hypothesize that
in the case of multi-stemmed trees, a single (maximum)
height value or canopy area value may not be representative
of the considerable woody biomass of the multiple stems
beneath; resulting in these tree measurements being poor
predictors of biomass.

Tree trunks are hidden beneath the canopy when looking
down from above, therefore point clouds and orthomosaics
derived from UAV imagery cannot resolve trunk structure,
preventing direct estimates of tree diameter from the imagery.
It may be possible, in some settings, to use ground-based or
airborne LiDAR instruments to generate detailed point clouds
of entire trees, including trunks and branches that are under
the canopy (Owers et al., 2018b). However, the limitations
of this approach include the expense of the instrument, its
size and weight, and the need to be able to scan entire trees
without obstruction, which is unlikely in dense forests with
intermingled mangrove canopies. In lieu of direct estimates
of diameter from the imagery, we built linear models to
predict DBH and D30 based on tree height and canopy
area variables extracted from the 3D structural information
in the UAV imagery. There was some error associated with
these model predictions, with model R2 values of 0.54 for
the best model of DBH and 0.52 for the best model of
D30. This error most likely impacted the accuracy of our
biomass estimates from models and allometric equations which
included diameter variables from UAV imagery as predictors
of tree biomass.

Predictions of Tree Biomass Based on
UAV Derived Variables
We found that using UAV image-based estimates of tree
structural variables in allometric equations led to less accurate
biomass estimates compared to when using forest inventory
techniques to obtain physical measurements (Figure 5). In
particular, the models and equations based on UAV image-
based measurements were unable to predict the biomass of
the largest tree, though it was predicted with reasonable
accuracy by the allometric equations fit to physically measured
tree data (Figure 5). The decreased accuracy of biomass
estimates from equations and models fit to UAV image-based
measurement data is likely due to the propagation of errors
beginning from image measurements of canopy structure,
which were then used to estimate structural variables (such as
trunk diameter).

The considerable difference in the ability of the best
allometric equations to accurately estimate tree biomass when
using measured vs. UAV-image estimated variables (Figure 5 and
Table 2) highlights the sensitivity of the allometric equations
to measurement errors, and the need for any UAV imaged
based measurement method to obtain accurate estimates of
the key tree structural characteristics. The measurements taken
from the UAV-based imagery were extremely accurate for
tree height, but the model-predicted diameter estimates of
diameter had significant error associated with them. This is

problematic because the best allometric equations (evaluated
using physical measurements from the trees) are those that
rely on diameter measurements (DBH and D30). As discussed
above in section: “Tree Structure Variables Estimated Using
the UAV Imagery”, trunk diameter cannot be estimated
directly from the UAV photogrammetric products (point
cloud and orthomosaic). Although the models using UAV
imagery currently achieve low predictive power for tree
diameter (and subsequently the image-derived measurements
are poor predictors of biomass), we propose that small
sample size (n = 10) reduces our ability to constrain the
relationship between canopy area, tree height and diameter
metrics. Nonetheless, this preliminary assessment of the UAV
approach to mangrove biomass prediction offers some promising
initial results.

The relationship between tree height, canopy area and
trunk diameter may be better constrained with additional
data collected from trees using traditional field methods.
Therefore, the models of DBH and D30 can be refined
without the need for further destructive sampling of this
protected species of native vegetation. If the predictive
relationship between height, canopy area and diameter
can be improved, it would result in lower prediction error
for diameter metrics from UAV image-based estimates
of height and canopy area. This in turn would lead to
more robust estimates of A. marina biomass from methods
using UAV imagery.

Due to the reliance on diameter measurements for accurate
prediction of A. marina biomass in our study area (and thus a
requirement for accurate derivation of diameter measurements
from UAV imagery), the ultimate biomass prediction method
may incorporate a hybrid approach of field- and image-
based measures (Otero et al., 2018). Such an approach
would involve the use of site-based measures of diameter
that could be used to calibrate UAV image-based biomass
prediction models over a broader area. Once developed, this
method would allow for far greater survey coverage than is
achievable with on-the-ground surveys, as well as avoiding many
of the assumptions inherent in forest inventory approaches
when upscaling from small survey sub-plots to larger areas.
Collecting data from UAV imagery over an entire study area,
rather than sub-plots within it, would also implicitly account
for heterogeneity in factors affecting mangrove growth and
productivity such as micro-topography, inundation regime, light
availability and ecotones. The effect of these factors on tree
biomass and growth could only be accounted for with a forest
inventory approach if it was extremely well-designed, with
stratified survey coverage that sampled across the variability
within the site.

CONCLUSION

Our study demonstrates the potential for using imagery collected
by a UAV to build three-dimensional models of mangrove
tree structure and extract variables from these for estimation
of above-ground biomass and carbon. The results show that
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although the UAV image-based height measurements are very
accurate, image based estimates of tree above-ground biomass are
not currently as accurate as field-based estimates and therefore
do not currently provide the same power as on-the-ground
measurements for predicting mangrove above-ground biomass.
However, considering the unusual access to felled A. marina
trees, a species protected under the South Australian Native
Vegetation Act 1991, the samples presented a rare opportunity
to gain this valuable insight. The exceptional circumstances that
provided access to the study site and felled trees was the result
of a strong partnership between industry, government and the
research team.

Having identified that the critical predictors of biomass for
South Australian A. marina are diameter metrics, it is now
possible to move forward with refining our ability to predict these
from UAV-based aerial imagery. UAV image-based estimates can
be made far more quickly over extensive areas when compared to
traditional forest inventory data collection techniques and, with
improved accuracy through further model-calibration, have the
potential to be a powerful tool for mangrove biomass estimation.
The findings and recommendations from this study can support
the ongoing development of novel, site-based methods for
accurate and cost-effective quantification of mangrove above-
ground biomass and carbon for blue carbon accounting and
crediting purposes.
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