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ABSTRACT

Recent studies using direct live cell imaging have reported that individual B lymphocytes have
correlated transit times between their G1 and S/G2/M phases. This finding is in contradiction with
the influential model of Smith and Martin that assumed the bulk of the total cell cycle time
variation arises in the G1 phase of the cell cycle with little contributed by the S/G2/M phase. Here
we extend these studies to examine the relation between cell cycle phase lengths in two B
lymphoma cell lines. We report that transformed B lymphoma cells undergo a short G1 period
that displays little correlation with the time taken for the subsequent S/G2/M phase.
Consequently, the bulk of the variation noted for total division times within a population is
found in the S/G2/M phases and not the G1 phase. Models that reverse the expected source of
variation and assume a single deterministic time in G1 followed by a lag + exponential distribu-
tion for S/G2/M fit the data well. These models can be improved further by adopting two
sequential distributions or by using the stretched lognormal model developed for primary
lymphocytes. We propose that shortening of G1 transit times and uncoupling from other cell
cycle phases may be a hallmark of lymphocyte transformation that could serve as an observable
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phenotypic marker of cancer evolution.

Introduction

Understanding the relationship between times
spent within each internal phase of the cell cycle
is of critical importance for interpreting prolifera-
tion studies widely used in biological research. The
question is long-standing and heavily influenced
by classic studies that identified a stochastic con-
tribution to cell cycle times [1-5]. For example,
drawing on filming data, Smith and Martin pro-
posed a transitional model of cell cycle progression
where a deterministic ‘lag’ and an exponential
waiting phase gave excellent approximations of
the total time for cell division [1].

Given that the time for replication of DNA was
thought to be constant, Smith and Martin attrib-
uted the stochastic, exponential component to the
G1 phase. Their model imagined that a radioactive
decay-like mechanism motivated the exit of cells
from the G1 phase of cell cycle before entering the
more time constant S/G2/M phase. This model,
expressed as a series of differential equations, has

been widely adopted and used to estimate the
proportion of cells in each phase of the cell cycle
in a population of dividing cells [6-11].

Despite the utility of this model, recent imaging
technologies have allowed the direct visualization
and tracking of cell cycle phases in living cells.
One widely used method introduced by Sakaue-
Sawano and colleagues [12], Fluorescent
Ubuigtination-based ~ Cell ~ Cycle Indicator
(FUCCI), enables monitoring of cell-cycle at the
single cell level, and has revealed lengths of cell
cycle phases in cardiomyocytes, melanoma cells,
intestinal stem cells and neural stem cells [13-
16]. Using this FUCCI system to monitor cell
cycle phases in dividing lymphocytes, Dowling
and colleagues reported that B and T lymphocytes
did not conform to the Smith-Martin model as
they did not exhibit an exponential G1 phase
[17]. Rather, dividing B and T lymphocytes dis-
played stretched cell cycles where time spent in G1
and S/G2/M phases was correlated in individual
cells, and each phase represented a relatively
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constant proportion of the length of the total cell
cycle phase [17]. As a common feature of trans-
formed cells is the deregulation of their cell cycles
[18-22] we sought to examine the cell cycles of
transformed B lymphocytes for comparison to
healthy cells. We reasoned this analysis would
provide insight into how immortalisation might
alter the internal regulation of cell growth.

For this analysis we combined the FUCCI cell
cycle reporter system [12] with single cell ima-
ging to ask whether transformed B lymphocytes
have a similar cell cycle structure to healthy B
lymphocytes and display correlations in phase
lengths, or have developed an alternative rela-
tionship. We report that, the S/G2/M phase in B
lymphoma cells accounts for most of the var-
iance in total division time. Moreover, regulation
of G1 and S/G2/M phases appears to be largely
independent, as we found no evidence for strong
correlation of duration of these phases. These
studies provide further evidence against the gen-
erality of the Smith and Martin model and sug-
gest that transformation can subvert the normal
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Results

Fluorescent profiles of FUCCI expression in
transformed B lymphocytes

FUCCI expression was first established in both
the murine B cell plasmacytoma, J558 [23], and
the B lymphoma line, 1.29 [24] (Figure 1(a)).
The two reporter constructs, mAG-hGeminin
and mKO2-hcdtl, were introduced by lentiviral
transduction and sequentially sorted for mAG-
hGeminin and mKO2-hcdtl expression. Single
clone lines were established that demonstrated
stable expression of each FUCCI component up
to and exceeding 30 days (Figure 1(a) and S1).
Having established FUCCI-J558 and FUCCI-
1.29 lines we adapted a single cell imaging sys-
tem previously used to investigate cell cycle
lengths [17,25,26]. Single cells seeded in micro-
grids were filmed over 60 hours to observe 1-3
division rounds, and we developed an imaging
analysis pipeline (described in Methods) to
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Figure 1. Sorting protocol to create FUCCI cancer B cell lines. (a) Schematic description of FUCCI cell line generation. FUCCI-J558 B
plasmacytoma and FUCCI-1.29 B lymphoma cell lines were created by co-transduction with mAG-hGeminin and mKO2-cdt1,
consecutive sorting on MAG-hGeminin (Sort 1, green fluorescence) then mKO2-cdt1 (Sort 2, red fluorescence) expression, and
single cell cloning culture. Clones with stable expression of at least 30 days were selected for further experiments. Generation of
FUCCI-1.29 is shown in Fig. S1. (b) Imaging pipeline to cell cycle phase measurements. Examples of still images taken from time lapse
imaging of FUCCI B cell lines. Time lapse movies were separated into stacks, processed, tracked and analyzed through Trackmate
software, with green and red fluorescence measurements at each timepoint extracted and plotted for each cell within a lineage tree.
Temporal changes in fluorescence and marked delineations in G1, S/G2/M and total division times are shown. For the purposes of
the study G1 is measured from the point of division to the red peak, t“™*, and $/G2/M as t'-t"™ Example fluorescence profiles
from a single sibling cell delineating demarcation of phases. The imaging experiment data was pooled from N = 2 experiments, with
2 cell line clones each for FUCCI-J558 and FUCCI-1.29, imaged in duplicate for each experiment. Scale bar: 20um.



measure the onset of G1 (°¥™%) and S/G2/M
(t4V-tredma) (Figure 1(b)).

Cell cycle phases of transformed B cell cycles
display converse smith-martin kinetics

We then sought to establish the kinetic profile of
cell cycle phases for each transformed B lympho-
cyte line. The average times for division in
FUCCI-J558 (13.1 h, s.d 1.5 h) and FUCCI-1.29
(13.4 h, s.d 1.9 h) (Figure 2(a)), were similar to
published times for stimulated primary B cells at
11.9 h [17]. However, when broken down further
to times in G1 and S/G2/M, the period and pro-
portion in G1 phase was notably different to that
reported for primary B cells [17] (Figure 2(a)).
First, transformed B cells spent shorter times in
G1 (FUCCI J558: 1.5 h, 14% of total division,
FUCCI-1.29: 241 h, 18% of total division)
(Figure 2(a)) compared to that previously observed
in CpG stimulated primary B cells (G1: 3.3 h, 27%
of total division [17]). Second, when the patterns
of variation were further interrogated, the bulk of
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the variation in total division time could be
assigned to the S/G2/M rather than GI phase
(Figure 2(a), see table), converse to the classic
view of Smith and Martin [1]. We also examined
the relation between time spent in G1 and S/G2/M
phases. In healthy B cells the proportion of time
spent in G1 was found to be a relatively fixed
proportion of the total division time enabling a
convenient stretched model of cell cycle length
[17]. In contrast the correlation between G1 and
S/G2/M phase lengths of individual tumor cells
was found to be weak to non-existent (J558:
r =—0.15; 1.29 r = 0.35) (Figure 2(b)) and therefore
inconsistent with the key finding that motivated
the development of the stretched cell cycle model.

Cell cycle phases do not conform to an age
independent, exponential mechanism

One of the goals of our studies is to develop
relatively simple parameterised mathematical
models of cell proliferation that can be used to
predict proportions of cells in different cell cycle
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Figure 2. Cell cycle phases of transformed B cell cycles display converse Smith-Martin kinetics. (a) Distribution histograms of time (h)
and proportion of time spent in either G1 or S/G2/M. Bar plots of cell cycle phases for both FUCCI-J558 and FUCCI-1.29 cancer B cells
are shown with sample mean, standard deviation and variance in hours (y, s.d, v), with a summary of the variances summarized is
listed in a table. (b) S/G2/M versus vs G1 time (h) plotted for J558 (red) and 1.29 (orange) B lymphoma cells. The Pearson correlation
of coefficient and p-value is shown. N = 25 FUCCI-J558, N = 33 FUCCI-1.29 cells chosen randomly from its sibling pair for correlation

comparisons.
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phases. Such models are useful for estimating cell
cycle times, for example, from mixed population
data showing proportion of cells in cell cycle
phases, or by pulse labeling cells for DNA uptake
[27,28]. As there was little correlation between
time in Gl and S/G2/M phases for both cell
types, the total division time can be approximated
as the sum of two independent phase distributions.
Therefore, we assessed patterns of variation for
each phase independently. To visualize fitting
accuracy for a variety of models we adopted the
alpha plot method of Smith and Martin [1] and
applied it to the FUCCI-]J558 and FUCCI-1.29
data, Figure 3. The alpha plot is a form of survival
plot showing the proportion of cells that have
divided over time when synchronized to their pre-
vious mitosis (time 0). Note that all models were
fitted directly to G1 and S/G2/M measurements,
and the alpha plots were merely used for visualiza-
tion post-fitting. In this plot the total division

times (tDiv) represent distribution of the total
division time predicted as the convolution of fitted
G1 and S/G2/M distributions. In Figure 3 different
models for describing the distributions for total
division times and their internal phases are com-
pared (see Methods). The two-parameter Smith-
Martin model, constructed as an exponential time
in G1 plus a deterministic lag time for S/G2/M
(black line), fitted total division times well, how-
ever, returned a poor estimation of time for indi-
vidual cell cycle phases. Furthermore, a simple
exponential function provided a poor estimation
of the stochastic variation in either phase, suggest-
ing that a simple two-parameter model such as a
constant lag for G1, and an exponential decay for
S/G2/M is not very accurate (Figure 3, black line).
For the purposes of mathematical modeling espe-
cially in the context of ordinary differential equa-
tion (ODE) type models, assuming deterministic
or exponentially distributed times is particularly
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Figure 3. Duration of G1 and S/G2/M can be accurately explained by an age-dependent mechanism. Alpha-plots of G1, S/G2/M and
total division times. The Exponential + Lag (Smith-Martin), Lag + Lag, Exponential, Gaussian + Gaussian, Gamma + Gamma,
Lognormal + Lognormal, and Stretched Lognormal fits for G1 and S/G2/M respectively are shown. Akaike Information Criterion with
a correction for small sample size (AlCc) values for the different alpha plot fits are shown to the right in a table. AlCc values were
computed for G1 and S/G2/M measurements treated as separate datasets (columns “G1” and “S/G2/M”), and also for G1 and S/G2/M
measurements treated as a single dataset (column “G1 and S/G2/M”). Note that models containing a lag involve a deterministic
component and therefore an AlCc value cannot be calculated. The stretched lognormal model is fit simultaneously to G1 and S/G2/
M data, therefore, AlCc values for G1 and S/G2/M data are not computed separately. N = 25 FUCCI-J558, N = 33 FUCCI-1.29 cells

chosen randomly from its sibling pair for modeling comparisons.



convenient. We find that such approximations can
be reasonable for our data but require three para-
meters in total- one for modeling G1 and two for
modeling S/G2/M. In particular, we note the coef-
ficient of variation for the G1 phase is small
(FUCCI-J558:18.0% and FUCCI-1.29:25.2%), thus
as an approximation GI1 phase can be assumed to
be constant. Moreover, the S/G2/M time distribu-
tion can be approximated using a deterministic lag
followed by an exponential decay (Figure 3, Red
line). Thus, a model assuming a deterministic lag
for G1 phase, and a further deterministic lag plus
an exponential for S/G2/M provided satisfactory
fits for each cell cycle phase and for total division
times (Figure 3, red line). Such a model is well
suited for ODE formulations.

The accuracy of model fits can be further
improved by incorporating commonly used
age-dependent probability distributions. In
Figure 3 we have compared Gaussian (blue
line), Gamma (yellow line) and Lognormal
(green line) fits for each cell cycle phase.
Interestingly, we find that for both G1 and S/
G2/M phases, each of these distributions gives
equally good fits, and calculating the total divi-
sion time as the sum of two such distributions
yield similarly parsimonious fits as measured by
Akaike Information Criterion with a correction
for small sample sizes (AICc) (See tables in
Figure 3). Figure 3, in the right panel, illus-
trates how  GI+S/G2/M  Gaussian, or
Lognormals or Gamma distributions can be
concatenated to yield satisfactory description
of cell cycle phases and total division times.
We also compared these four parameter models
to fits based on the stretched cell cycle model
that adopts 3 parameters (two parameters of a
lognormal, and a stretching parameter, Figure 3
pink line) [17]. We found that, despite the lack
of strong correlation between G1 and S/G2/M
measurements, the stretched cell cycle model
resulted in a similar performance as indicated
by AICc. Overall, for the purposes of mathema-
tical modeling for our data, the stretched model
can still be used with the convenience of need-
ing to estimate one less parameter, as compared
to the models with independent distributions
for the two parts. At the same time, G1 (lag),
S/G2/M (lag + exponential) model (Figure 3,
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red line), which is attractive from the point of
view of mathematical convenience for ODE-
based modeling, still gives a reasonable approx-
imation to data.

Distinct correlations for clonal relatives

Intraphase correlations in familial pedigrees can
provide evidence for the transfer of deterministic
factors that influence cell cycle time across genera-
tions. For example, the model of Smith and Martin
predicted, incorrectly for many cell types, that G1
duration should be uncorrelated in siblings [29].
To reveal heritable mechanisms influencing cell
cycle phase transitions in FUCCI-J558 and
FUCCI-1.29, we investigated sibling and other
familial correlations within our imaging data.
Mirrored bar graphs showing times, and propor-
tions allocated for each cell cycle phase for each
pair of siblings, suggested a high degree of correla-
tion (Figure 4(a)). The correlation was relatively
strongly positive for both cells (Pearson’s correla-
tion coefficient r, FUCCI J558: 0.593, FUCCI 1.29:
0.663, Figure 3(b)), although weaker than observed
for primary B cells (Pearson’s correlation coeffi-
cient r = 0.91 [30]).

The lymphoma cells in our study displayed
strong correlation in the G1 phase in siblings and
cousins, and these correlations were higher than
observed in G1 length times between mother and
daughter cells (Figure 4(c)). There were also mod-
erate correlations for S/G2/M times, but correla-
tions were weaker in all relationships (sibling,
mother-daughter and cousins) compared to that
seen for G1 phase (Figure 4(d)). These data show
higher relatedness for G1 times in siblings and
cousins compared to mother to daughter, consis-
tent with intergenerational carriage of a cell cycle
regulator. Cyclical generational correlations have
been noted for other cells [31], although the
mechanism is currently unknown.

Discussion

Here we investigated cell cycle phase relationships
in transformed, long-term cultured B cell lines.
We expected lymphoma-derived cell lines to differ
from primary cultured B cells, as they have under-
gone multiple rounds of selection; initially during
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Figure 4. Cell cycle phase bar plots in sibling cells show familial features. (a) Sibling bar length plots representing total division times for
sibling pairs, the red dot denotes the red fluorescence peak (red), green fluorescence length (green), or no fluorescence (black). Siblings’
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Figure 5. A model for G1 phase minimisation during B lymphocyte transformation. Healthy B lymphocytes cycle as normally, where
total division times may vary slightly but each G1 and S/G2/M phases can be scaled against each other according to the stretched
cell cycle model. During oncogenic transformation, deregulation of G1 restriction point targets, such as increased myc, altered CDK4/
6 levels, decrease cyclin D1 or p53 null mutations results in a minimisation of G1 time and variation, with most of the variation

occurring at S/G2/M.

oncogenic transformation, and subsequently dur-
ing long term culture. Surprisingly, we found the
average division time was similar to primary acti-
vated B lymphoblasts as were the patterns of var-
iation in total division times, with both having
consistent  right-skewed  distributions  [17].
Moreover, a modest to strong heritability of divi-
sion times was observed for siblings, mothers and
daughters and for cousins, suggesting that the
transmission of factors that influence division
times are passed through multiple generations, as
also seen for primary B cells [17]. However, when
time in G1 and S/G2/M were revealed with FUCCI
reporters, two significant differences between pri-
mary and transformed cells became apparent.
First, the time for G1 with later cell cycle phases
in individual lymphoma cells showed only weak, if
any, correlation, in contrast to the relatively strong
concordance in primary B lymphocytes [17].
Second, the time taken to traverse Gl was short,
as observed with other lymphoblast lines [32],
resulting in the bulk of the variation in cell cycle
time being attributable to the S/G2/M phase.

It appears that transformation has played a role
in minimizing the time taken to complete the G1
phase, and not the S/G2/M phase for both cell
types (Figure 5). This is perhaps expected, as exit
from G1 is a major restriction point before DNA
synthesis and the level of numerous proteins,
including known oncogenes, regulate this decision.
Molecular changes that would eliminate the usual
controls that govern the decision to divide include
deregulated c-Myc, Cyclin D/E, and p53, and these
genes are found mutated in up to 90% of B lym-
phomas [33-41]. It is also likely that the removal

of limiting steps in cell cycle progression by dereg-
ulating the production of regulatory proteins can
explain the reduced correlations in times for Gl
and S/G2/M in individual lymphoma cells com-
pared to primary B cells. An alternative interpreta-
tion is that a direct loss of a quiescent state, GO, is
a feature of B lymphocyte transformation as
healthy B lymphocytes are usually able to re-
acquire a quiescent, small, non-dividing state
[42,43]. There are two reasons why this might
not be the case. First, cyclins and p53, for instance,
may indeed regulate quiescence in many cell types
including B lymphocytes [44-49], but data eviden-
cing that genes regulating quiescence in B lympho-
cytes as important tumor suppressors appear less
convincing. For example, mice deficient for the
quiescent regulator KLF4 show no spontaneous B
cell expansion or malignancy [50]. Second, as our
comparison to healthy B lymphocytes is restricted
to cells undergoing active division, they can be
directly compared to transformed B cells which
also do not go through a quiescent phase.
Quiescent healthy lymphocytes can also be identi-
fied with ease with imaging with the FUCCI repor-
ter as they show no progressive increase in cell size
and accumulate much higher levels of FUCCI red
than cycling cells [51,52]. Hence, while loss of GO
is an interesting biological consideration, as no
quiescent cells (healthy or transformed) are being
analyzed and compared in this study, the lack of
GO alone cannot explain the differences we
observe. Thus, we propose that dysregulation lead-
ing to a shortened time in G1, and the loss of
correlation with later cell cycle phases could serve
as an early hallmark of oncogenic transformation.
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A major goal of our study is to inform the rational
development of parsimonious, robust models of cell
division that can predict the proportion and lengths
of cells in different cell cycle phases within popula-
tions of unsynchronised cells. Such models are
widely applied to, for example, DNA labeling data
[27] or BrdU cell pulse data [28]. To build a com-
pletely accurate statistical model of cell cycle pro-
gression that includes time in transitional phases and
inheritance features would require considerable
complexity and will likely be over-parameterised
for fitting to population data that reports only pro-
portions of cells in each phase. Our goal is simpler,
like Smith and Martin, we aim for a robust model
that can be easily applied. To minimize the number
of parameters, cell cycle models must make appro-
priate simplifying assumptions that can be tested by
the type of information acquired here for the timing
of cell cycle phase transitions. As a common fitting
protocol is based on variations of the Smith-Martin
model we tested this model in different configura-
tions. The Smith-Martin model expects an exponen-
tial waiting time in GI1, and a relatively invariant
time for S/G2/M. As for primary B cells this model
was found to be quite successful for predicting var-
iation in total division times but failed completely for
internal cell cycle phases. To develop and test more
accurate variations, we identified two major sources
of error in the Smith-Martin model. First, we found
no evidence that an age-independent exponential
waiting time underlies the source of time variation
in any phase. Second, the Smith-Martin model
assumed that the bulk of the time variation occurred
in G1 phase was incorrect as the principal source of
variation was in S/G2/M rather than in G1.

Our analysis and search for alternative models led
us to compare three-parameter variants. We found
the minimum successful formulation suitable for an
ODE-based model assumed a single deterministic
time for G1, followed by a lag and exponential fit for
S/G2/M phases. Thus, by reversing the major source
of variation from G1 to S/G2/M phases and replacing
the exponential waiting time with a delayed distribu-
tion, the Smith-Martin model can be much improved
as the basis for ODE-based models. Similarly, models
that assume a deterministic time in G1, followed by an
age-dependent distribution for S/G2/M, such as a
lognormal, or Gamma, also provide excellent fits
(data not shown). In deference to the original, we

labeled these minimal, reverse variation models as
converse Smith-Martin models. We also found that
more complex, four parameter models that assume
two consecutive, independent phases and therefore
result in a convolution of two distributions (ie. log-
normal to lognormal) also yield excellent outcomes.
The stretched model was developed to be consis-
tent with the experimental finding of strong correla-
tion between Gl and S/G2/M phases [17]. This
strong correlation is found for primary B cells but
interestingly not the lymphoma cells studied here.
Nevertheless, the stretched model gives similarly
parsimonious fitting results to the lymphoma data,
presumably as it efficiently serves to construct two
consecutive distributions from only three para-
meters. Taken together, this study and that of
Dowling et al. [17] argue strongly against the view
that time spent in the S/G2/M phases of the cell cycle
does not contribute significantly to variation in cell
division times. In contrast we find that variation
within S/G2/M phase of B lymphoblast cells is sig-
nificant, independent of the G1 phase, and to an
extent, heritable from mother to daughter cells.
Comparisons of the stretched cell cycle features
seen in healthy B lymphocytes to other trans-
formed lymphocyte lines will likely provide further
insight into which features of cell cycle can serve
as general hallmarks of cancer transformation. In
this way we believe the FUCCI reporter system
coupled with alternative models of cell cycle
times offers a powerful method to determine the
individual and collective impact of somatic gene
changes on the multiple drivers of transformation.

Methods

Generation of FUCCI B cell lines and in vitro
culture

Fluorescence Ubiquitin Cell Cycle Indicator (FUCCI)
lentiviral constructs mAG-hGeminin and mKO2-
hcdtl on a CSII-EF lentiviral backbone were obtained
from RIKEN (http://www.brc.riken.jp/lab/cfm/aim/
lentivirus.html). Viral supernatant harvested 24 and
48 hours after calcium phosphate-mediated transfec-
tion of 293T cells were placed in a 6-well plate to
which 1 x 10° J558 plasmacytoma [23] or 1.29 lym-
phoma cells [24] were added and spun for 1.5 hours,
37°C, 1200 G. Transduced B cells were sorted


http://www.brc.riken.jp/lab/cfm/aim/lentivirus.html
http://www.brc.riken.jp/lab/cfm/aim/lentivirus.html

sequentially for mAG-hGeminin then mKO2-hcdtl
expression then designated “FUCCI”. Single FUCCI-
J558 or FUCCI-1.29 cell clones were selected for stable
expression after 30 days. 3.3x10" cells in 300 ul were
placed in 8-well chamber slides for imaging (see Time
lapse imaging and Image Processing).

Time lapse imaging and image processing

The chamber slide (p-Slide 8 well, Ibidi, 80826) con-
taining 70-um microgrids (Microsurfaces, MGA-70-
01) and cells were transferred to an environment-
controlled [37°C, 5% (vol/vol) CO,, humidified]
Zeiss Axiovert 200M microscope. A Zeiss Plan-
Apochromat 20 x objective (N.A. 0.8) was used, and
fluorescence and bright-field images were captured
with a PCO.edge sCMOS camera (5.5 megapixels).
The light source was a Zeiss Colibri module con-
trolled by Zen Blue software fitted with 490 nm and
565 nm beam splitters, as well as 470 nm and
540-580 nm light-emitting diodes, which were used
to excite mAG-hGeminin and mKO2-hcdtl respec-
tively. Cell filtering, segmentation and tracking was
done using a semi-automated custom script using
Trackmate software in FIJI v1.51p and can be down-
loaded at https://bitbucket.org/DrLachie/fucci-line
age-code. Tracks were manually corrected on red
and green fluorescence. Lengths of G1 and S/G2/M
was measured by the onset of red peak fluorescence
and data values were exported in Python for further
mathematical modeling.

Mathematical modeling

For each of the cell lines our dataset comprised pairs
of sibling cells in generation 1 as counted from the
beginning of the movie. One randomly selected sib-
ling from each pair was used for scatterplots and
histograms in Figure 2 and accompanying statistics.
One randomly selected sibling was also used for sub-
sequent modeling. Models listed in Figure 3 were
fitted directly to G1 and S/G2/M durations, and the
alpha plots were only used for visualization post fit-
ting. The “lag” in the constant lag model for Gl
(respectively, S/G2/M) was taken as the mean of G1
(respectively, S/G2/M) durations. The “lag, exponen-
tial” model for the S/G2/M component was fitted by
fitting an exponentially modified Gaussian using
method of moments, and then disregarding the
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variance of the Gaussian distribution. Thus the lag
was taken as the mean of the Gaussian component.
All other models were fit using maximum likelihood
estimation, and the relative performance of the fits
was assessed using Akaike Information Criterion with
a correction for small sample sizes (AICc) [53].
Mother-daughter and cousin-cousin relations were
assessed on an extended version of the dataset that
included six cells for each family: two cells in genera-
tion 1 and four cells in generation 2. The generation 1
cells in the extended dataset are the same as in the
main dataset. In some instances, the number of
families represented in the extended dataset were
smaller than the number of pairs in the main dataset
because some families could be tracked only up to
generation 1.
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