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Topical Review

The interplay of interfaces, supramolecular assembly, and
electronics in organic semiconductors

Belinda J Boehm, Huong TL Nguyen and David M Huang
Department of Chemistry, School of Physical Sciences, The University of Adelaide, SA
5005, Australia

E-mail: david.huang@adelaide.edu.au

Abstract. Organic semiconductors, which include a diverse range of carbon-based small
molecules and polymers with interesting optoelectronic properties, offer many advantages
over conventional inorganic semiconductors such as silicon and are growing in importance
in electronic applications. Although these materials are now the basis of a lucrative
industry in electronic displays, many promising applications such as photovoltaics remain
largely untapped. One major impediment to more rapid development and widespread
adoption of organic semiconductor technologies is that device performance is not easily
predicted from the chemical structure of the constituent molecules. Fundamentally, this
is because organic semiconductor molecules, unlike inorganic materials, interact by weak
non-covalent forces, resulting in significant structural disorder that can strongly impact
electronic properties. Nevertheless, directional forces between generally anisotropic organic-
semiconductor molecules, combined with translational symmetry breaking at interfaces,
can be exploited to control supramolecular order and consequent electronic properties in
these materials. This review surveys recent advances in understanding of supramolecular
assembly at organic-semiconductor interfaces and its impact on device properties in a number
of applications, including transistors, light-emitting diodes, and photovoltaics. Recent
progress and challenges in computer simulations of supramolecular assembly and orientational
anisotropy at these interfaces is also addressed.

Keywords: soft condensed matter, organic electronics, molecular anisotropy, computer
simulation, coarse graining, multiscale modelling
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1. Introduction

Semiconductors underpin much of the technology that drives modern society, from computers
to mobile phones and solar panels. Although this technology is dominated by inorganic
materials such as silicon, organic semiconductors comprising carbon-based molecules and
polymers are rapidly growing in importance, and are now the basis of a lucrative industry,
particularly for electronic device displays. Organic semiconductors offer many advantages
over conventional inorganic materials: they can be processed from solution by energy-efficient
methods and only thin films are needed to produce functional devices, saving on material
requirements and costs, and making them compatible with high-throughput printing processes
and flexible substrates [1]. They can also potentially enhance inorganic semiconductor device
performance, e.g. as singlet-fission or triplet-annihilation layers to improve light harvesting in
silicon solar cells [2]. Nevertheless, many promising applications of organic semiconductors
remain largely untapped, such as photovoltaics and energy-efficient lighting.

One of the main impediments to more rapid development and widespread adoption of
organic semiconductor technologies is that device performance cannot easily be predicted
from the chemical structure of the constituent molecules. Fundamentally, this is because
molecules in organic semiconductor materials are held together by relatively weak non-
covalent forces, resulting in significant structural disorder that can impact device properties
in ways that are hard to predict. In addition, organic semiconductor thin films are generally
formed by deposition onto a substrate from the vapor or solution phase in a nonequilibrium
process that is challenging to describe by simple theory. Inorganic semiconductors, on the
other hand, generally have ordered crystal structures that simplify prediction of electronic
properties. Consequently, organic semiconductor device optimization often proceeds by trial-
and-error, with material properties and processing conditions varied until a desired result is
achieved. Thus, given the many applications of organic semiconductors, a more predictive
approach will have major commercial and societal impacts.

One general property of almost all organic semiconductor molecules is the significant
anisotropy in their shape and thus in their interactions. In principle, this molecular anisotropy
can provide a handle by which structural order in organic semiconductors can be controlled. In
particular, translational symmetry breaking at an interface can induce preferential orientation
of anisotropic molecules [3]. Ordering (and disorder) of organic semiconductor molecules
at interfaces is known to have a large effect on electronic device performance in diverse
applications and it is therefore important to understand the numerous mechanisms for its
control. For example, aligning molecules with a permanent dipole moment at the interface
between photo-active layer and electron contact in an organic solar cell can improve the power
conversion efficiency by making the contact more selective to electrons over holes [4]. The
alignment of organic semiconductor molecules with respect to the dielectric surface in organic
field effect transistors (OFETs) strongly impacts charge-carrier mobility [5]. In organic light-
emitting diodes (OLEDs), preferential alignment of host and guest emitter molecules with
respect to the substrate surface can significantly boost the out-coupling efficiency of light by
aligning guest transition dipole moments [6]. In organic photovoltaics (OPVs), significant
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variations in device efficiency have been correlated with molecular alignment at the interfaces
between nanoscale domains of electron donor and acceptor materials [7]. A schematic
representation of these interfaces is shown in figure 1.

(a) (b) (c)

Figure 1. Schematic of general organic semiconductor interfaces addressed in this review:
(a) semiconductor-dielectric interface for OFETs; (b) semiconductor host-guest mixture on a
substrate for OLEDs; and (c) bulk-heterojunction electron donor-acceptor interface for OPVs.

Many examples, both experimental (e.g. [7–10]) and computational (e.g. [11–15]), of
semiconducting molecules displaying preferential alignment at interfaces can be found in the
literature, but few general rules for predicting interfacial orientation from chemical structure
or processing conditions appear to exist. Many factors have been implicated in control of
interfacial orientation, including, among others, molecular shape [14, 16–18], the presence,
length, and composition of side chains [8–10, 19], backbone planarity [20], temperature
[14, 15, 17], and solvent choice [14, 20, 21] and understanding the reasons behind these
factors is important for the rational design of high performing organic semiconductors.

Although these interfaces are clearly important for understanding electronic processes in
organic semiconductor-based devices, they are generally buried, making them experimentally
difficult to characterize [22, 23]. While bulk morphology is relatively simple to characterize,
morphology at the interface has been shown to often be different to that in the bulk, with
changes in bulk morphology not necessarily correlated with that at the interface, and vice
versa [24–26]. Although microstructural information can be gleaned from experimental
techniques such as NEXAFS [27], X-ray diffraction rocking [24], GIXD [25], and soft X-ray
scattering techniques such as R-SoXS and P-SoXS [28], molecular simulation can provide
greater detail of the structures and processes occurring at these interfaces, with the advantage
that it can often be directly coupled to an analysis of electronic structure and exciton and
charge-carrier dynamics.

The use of molecular simulation to study organic-semiconductor interfaces has been
recently reviewed [29], so it is not our goal to analyze in great depth the methods commonly
used to study these systems, nor the general morphology at the interfaces. Instead we aim to
provide an overview of the general role of molecular anisotropy at these interfaces and how
it can be controlled to improve device performance through an understanding of the general
physical principles that affect the interfacial microstructure. Additionally, we touch on the
links between physical structure at the interfaces and electronic structure and charge transport
characteristics to better understand the factors that improve or reduce device performance.

We also do not specifically focus on organic semiconductor single crystals, which have
been extensively and comprehensively reviewed previously [30–37]. Studies of single crystals
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have provided much important insight into the control of the bulk morphology of single-
component small-molecule organic-semiconductor systems and the interfacial morphology of
semiconductor–substrate interfaces with matching lattices, in which orientation with respect
to the substrate is controlled by matching lattice vectors of a particular semiconductor
crystal plane with those of the substrate surface, resulting in aligned epitaxial growth
[35]. However, such findings are not generally applicable to understanding the principles
that govern interfacial microstructure and orientational ordering across different organic–
semiconductor materials and device types, which are often significantly disordered and/or
consist of multiple components. Even for a single crystal, the interface with a substrate is
generally expected to be disordered and may even have a different structure from the bulk
due to mismatched lattices and semiconductor–substrate interactions. Thus, such interfaces
are expected and in some cases have been shown to be governed the same principles and
processes discussed below for general organic-semiconductor systems with disorder.

The outline of this review is as follows. We initially describe the theoretical background
relevant to the ordering of anisotropic molecules at interfaces in section 2 before examining
the role of these interfaces and the effects of molecular alignment at these interfaces in OFETs,
OLEDs, and bulk heterojunction (BHJ) OPVs in section 3. In section 4 we survey the
available literature on interfacial orientational ordering of organic semiconductors with the
aim of identifying general physical principles for predicting interfacial orientation. Finally,
in section 5, we discuss computer simulation methods for improving understanding of the
structure and supramolecular assembly of organic-semiconductor interfaces, along with the
challenges associated with accurately capturing experimentally relevant length and time scales
in these simulations.

The chemical structures of molecules and functional groups relevant to this work are
shown in figure 2.

2. Theoretical Background

The interesting optoelectronic properties of organic semiconductors arise from significant
delocalization of π electrons due to extended conjugation (alternation of single and double
or triple bonds) in the molecular structure, as illustrated in figure 2. Accordingly, organic
semiconductor molecules generally consist of highly anisotropic rigid subunits such as
fused aromatic rings. This molecular shape anisotropy has consequences for the interfacial
supramolecular assembly of organic semiconductors and optoelectronic processes, as detailed
in this and the following sections.

The presence of an interface between a system of anisotropic particles with another phase
(e.g. a gas, solid, liquid) breaks the translational symmetry of the system and can induce
orientational ordering at the interface, even when the bulk phase is isotropic. For a collection
of biaxially anisotropic particles, in which each particle has three inequivalent principal axes,
the possible preferred orientations with respect to the interface can be classified into three
extremes – end-on, face-on, or edge-on (figure 3) – with the actual orientation for a specific
system possibly being intermediate between these extremes. For conjugated molecules such
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Figure 2. Chemical structures of a number of molecules and functional groups relevant to this
work.

as organic semiconductors, variations in the preferred orientation will change the orientation
of the π-stacking direction with respect to the interface, which has implications for exciton
and charge dynamics.

end-on face-on edge-on

Figure 3. Classification of orientations of a collection of biaxially anisotropic particles with
respect to a surface. Arrows indicate the direction of the shortest molecular axis, which is
generally the π-stacking direction in organic semiconductors. The surface is shown in grey.

Orientational ordering of anisotropic particles at interfaces has long been studied,
particularly in the domain of liquid crystals [3], in which experimental, theoretical, and
computational studies on this topic have been extensively reviewed [38–41]. Most of this work
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has focused on the equilibrium behavior of single-component fluids of uniaxial mesogens, in
which each molecule has one inequivalent and two equivalent principal axes. Thus, the full
complexity of organic-semiconductor systems, which often comprise multi-component blends
of biaxial molecules whose microstructure is formed under non-equilibrium conditions,
cannot be fully understood based on these studies. Nevertheless, this extensive body of work
provides a basic conceptual framework for understanding interfacial alignment of organic
semiconductors.

In the field of liquid crystals, orientational ordering with respect to an interface is
called surface anchoring [38], and is classified as homeotropic, planar, or tilted, depending
on whether the (non-equivalent) axis of the (uniaxial) molecule is perpendicular, parallel,
or oblique to the plane of the interface. Early Landau–de Gennes-type phenomenological
theories [42], in which the free energy is expanded in powers of a nematic order parameter,
have provided useful insight into surface anchoring, but do not lend themselves to simple
interpretation in terms of the microscopic properties of the intermolecular interactions. With
more recent work using molecular field theories (e.g. generalised van der Waals theories and
classical density functional theories) [39] and molecular simulations [40], a clearer picture is
emerging of the molecular parameters that govern interfacial orientational ordering of liquid
crystals.

One general finding of these studies is that the direction of interfacial alignment of
liquid crystals is non-universal [40, 43], and depends on the details of the intermolecular
interactions, such as the competition between anisotropic repulsive and attractive interactions
[44]. Using a generalised van der Waals theory, it has even been shown that different terms in
a spherical harmonic expansion of the anisotropic attractive interactions of a model mesogen
can have opposite effects on interfacial alignment [43], revealing the subtle interplay of factors
that control orientational ordering. Nevertheless, some general trends can be gleaned from
theoretical and computational studies of model liquid crystal interfaces.

Most theoretical and computational studies have focused on the liquid–vapor interface
or nematic–isotropic interface between coexisting nematic and isotropic liquid phases of
a single-component fluid. For purely repulsive intermolecular interactions, orientational
ordering is governed by excluded-volume entropic effects, which result in perpendicular
alignment of prolate molecules at the vapor interface [43, 44]. On the other hand,
for molecules with both (short-range) repulsive interactions and (longer range) attractive
interactions, various alignments are obtained depending on the anisotropy of the molecular
shape and interaction strength. Most molecular simulations of liquid crystals with attractive
interactions have used the Gay–Berne (GB) potential [40, 45], which is a general anisotropic
potential energy function that depends on the relative position and orientation of pairs of
ellipsoidal molecules. For a uniaxial molecule, the molecular shape anisotropy in the GB
potential is characterized by the parameter κ , which is the ratio of the molecule length to
breadth, while the interaction strength anisotropy is characterized by the parameter κ ′, which
is the ratio of the attractive well depth for side-to-side versus end-to-end interactions. For both
prolate [46–48] and oblate spheroids [48] for a range of temperatures and κ and κ ′ values,
alignment at the vapor interface has been shown to be controlled by the κ/κ ′ ratio, with
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κ/κ ′ > 1 yielding planar (parallel) alignment and κ/κ ′ < 1 giving perpendicular alignment.
This behavior was rationalized based on the relative energies of different cleavage planes of
close-packed ordered arrays of molecules. This essentially amounts to the exposed interface
being the one with the lowest interfacial tension, and suggests that interfacial ordering is
energetically rather than entropically controlled by the parameters chosen in these systems.

Compared with the vapor interface, orientational ordering of a liquid crystal at a solid
interface is complicated by the influence of the interaction with the solid. Thus, theoretical
and computational studies of this situation have been more limited and a general theoretical
understanding is lacking [39]. For purely repulsive hard-core interactions between prolate
molecules and with a solid surface, entropic excluded-volume effects favor planar alignment
with the surface [49], opposite to the perpendicular alignment found for similar molecules at
the vapor interface [44]. Similarly, semiflexible polymers, which in a sense can be considered
highly anisotropic prolate molecules, confined by a repulsive solid surface tend to align
parallel to it [50]. For molecules with both repulsive and attractive interactions with each other
and with the solid substrate, the interfacial ordering depends on the details of the substrate–
molecule interaction strength and anisotropy [51]. For example, planar anchoring is observed
for strong coupling between model GB ellipsoidal particles and a solid substrate at which the
substrate–molecule interactions favor this alignment. On the other hand, for a fluid confined
between solid and vapor interfaces that is weakly coupled to a solid, the alignment at the solid
surface is controlled by that at the vapor interface at temperatures below the nematic–isotropic
transition [51].

For interactions of anisotropic particles at the interface with another fluid, the strength
of the interactions between the particles is, again, an important factor for controlling
interfacial alignment [52], and so general predictive rules for orientational ordering have
to our knowledge not been developed. For purely repulsive interactions between a mixture
of hard spheres and vanishingly thin needles, classical density functional theory has shown
that the needles have a slight preference for planar anchoring at the sphere–needle interface
in the demixed state [53]. On the other hand, for molecules with both repulsive and
attractive interactions, molecular dynamics (MD) simulations of a system of model GB rods
and Lennard-Jones (LJ) spheres have shown that increasing the strength of the interactions
between the size of the rod and the spheres gives a preference for planar anchoring, while
stronger interactions between the end of the rod and the spheres gives perpendicular alignment
[52]. These effects are summarized in figure 4.

3. Role of interfaces and supramolecular assembly

It has long been known that molecular anisotropy at interfaces is important for
enhancing charge transport and device performance, with Sirringhaus et al. [54] reporting
significantly higher field-effect transistor (FET) mobility with edge-on orientations of poly(3-
hexylthiophene-2,5-diyl) (P3HT) than face-on orientations of the same molecule almost
20 years ago [54]. Since then, many studies of have found similar correlations between
orientation and device performance for OLED [6, 55–57], OPV [7–9], and OFET [5, 58, 59]
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Figure 4. (a) Orientation of (left) hard rods at the interface with a solid substrate, or (center)
a vapor, and (right) needles at a fluid interface. An ellipsoid with purely repulsive interactions
has been shown to have a preference for parallel alignment at the solid and fluid interface,
and perpendicular at the vapor. (b) Orientation of an ellipsoid, having both attractive and
repulsive interactions, with its vapor, and (c) with a spherical fluid. For an ellipsoid at
the vapor interface (b), increasing the side–side interaction strength (decreasing κ’, left) or
increasing aspect ratio (increasing κ , right) gives a parallel orientation for both prolate (top)
and oblate (bottom) ellipsoids. The red arrow indicates the axis that defines orientation. The
direction perpendicular to this defines the side–side direction. At the interface with a fluid (c),
orientation depends on the strength of the interactions between either the end or side of the
ellipsoid with the spheres.

devices. In general, in-plane alignment of the transition dipole moment of emitter molecules
with respect to the substrate gives better optical properties in OLEDs [55], a face-on alignment
at donor–acceptor interfaces appears to be generaly preferred for good performance in BHJ
organic solar cells (OSCs) [7–9], and edge-on alignment is found in most high-performance
OFETs [54, 60], although face-on structures may still give good mobility in some cases
[61, 62]. It is therefore important that alignment at these interfaces can be controlled.

3.1. Semiconductor–substrate interfaces in organic transistors

In organic transistors, charge transport occurs in an organic semiconductor material that has
been deposited onto the surface of a dielectric, with transport restricted to an accumulation
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layer within a few nm of the semiconductor–dielectric interface [63–66]. The microstructure
at this interface therefore has a significant effect on the charge-carrier mobility, which is the
key performance metric of OFETs and also plays an important role in OLEDs and OPVs.
Indeed, a linear correlation between molecular tilt angle at the interface and OFET saturation
mobility has recently been shown [58]. Additionally, a number of studies have shown that,
although semicrystalline semiconductors show similar charge mobilities on different dielectric
surfaces, the mobility of amorphous semiconductors depends strongly on the properties of the
dielectric [62, 67–70]. Thus, understanding the structures at the interface, which can differ
significantly from that in the bulk [25, 27], is important for improving device performance.
Thus, the many studies on bulk morphology are not necessarily relevant for correlating
electronic processes and morphology in these devices.

The orientational order (edge-on or face-on) and, for polymers, the direction of the
backbone with respect to the source and drain electrodes play a significant role in organic
transistor performance. An edge-on alignment to the dielectric surface, where the π-stacking
direction is parallel to the substrate, is expected to enhance charge mobility. This is due to the
much higher mobility of charge carriers in the π-stacking direction, related to the substantial
overlap of the π-orbitals, than through the insulating aliphatic chains (figure 5), which would
occur in a face-on orientation [71]. For polymers, a backbone direction parallel to the charge-
transport direction (i.e. between source and drain electrodes) will give the fastest charge
transport, as charge carriers can move along the backbone (figure 5) [71]; however, this will
be a function of chain length as shorter polymer chains will require more interchain hops along
this direction [71]. On the other hand, small molecules give the greatest performance when
the π-stacking direction is the same direction as charge transport, as this facilitates hopping
between adjacent small molecules in the desired direction [72]. Indeed, when methods that
induce order in certain directions are used for the generation of films, highly anisotropic
charge transport has been observed [73, 74].
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Figure 5. Architecture of a bottom-gate bottom-contact OFET at the dielectric interface.
Polymers are shown in an edge-on conformation with backbone either (a) parallel or (b)
perpendicular to the required charge transport direction. Charge transport is fastest along
the polymer backbone, slower, but still fast, in the π-stacking direction, and slowest along the
lamellar stacking direction.
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The effect of liquid-crystalline order in organic semiconductors on charge transport has
been comprehensively reviewed [72], from which some general conclusions can be drawn
about the influence of molecular anisotropy. Disc-shaped molecules give one-dimensional
columnar structures featuring good π-orbital overlap and high charge transport, but also a
large susceptibility to defects [72]. Rod-like mesogens on the other hand, give smectic phases
that do not pack as closely as the columnar phases formed by discs but are more resilient
to defects due to the possibility of two-dimensional charge transport. Finally, board-like
polymers, such as polythiophenes, combine both the close π-stacking of the discs with the
two-dimensional charge transport of rods, giving enhanced charge carrier mobility [72].

A number of factors have been shown to influence edge-on versus face-on orientation
with respect to the dielectric interface, ranging from the molecular weight (for polymers)
[27, 75, 76], to the side chain [5, 16] and backbone [16, 20] structure, the substrate
composition [11, 16, 60, 74, 77, 78], deposition technique [71, 73, 79, 80], and the solubility
of the material [16, 20, 21, 27, 58, 74, 81]. These methods will be discussed in greater detail in
following section in the general context of controlling anisotropy in organic semiconductors.
However, as the direction of the backbone of polymer semiconductors with respect to source
and drain electrodes is uniquely applicable to organic transistors, this factor will be be
examined here.

The solubility of organic polymers has been shown to be an important consideration
when considering device morphology as the choice of solvent can either drive or prevent
self-aggregation leading to significant changes in directionality, influencing the charge
transport. For example, for bar-coated films of the commonly used semiconducting
polymer poly[N,N’-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-
5,5’-(2,2’-bithiophene) (P(NDI2OD-T2)), it was found that when a solvent was used in which
significant pre-aggregation in the solution occurred, charge transport was highly anisotropic,
being significantly greater parallel to the deposition direction than perpendicular to it [74].
The same effect was not observed for the same polymer in a solvent in which the extent
of pre-aggregation was lower, with similar mobilities in both directions, indicating a more
isotropic film. The mobility in the deposition direction was almost an order of magnitude
higher than that for a film prepared by spin-coating, which would be expected to produce
more isotropic films. By contrast, in the perpendicular direction the mobility was significantly
lower, emphasizing the importance of this anisotropy for high-performing devices [74].

For molecules with a permanent dipole moment, preferential alignment of these dipole
moments has implications for energetic disorder and thus for charge-carrier mobility [82, 83].
Energetic disorder can also be affected by interactions with the dielectric, which can be
controlled by interfacial orientation. Richards et al. [84] showed using a simple analytical
model that the electronic structure at the semiconductor–dielectric interface can differ
significantly from that in the bulk and is significantly influenced by the dielectric constant
of the dielectric material [84]: a higher dielectric constant caused a broadening of the density
of states and greater energetic disorder due to the interaction between the randomly oriented
dipoles in the gate dielectric and the charges in the semiconductor, leading to a reduction
in mobility. However, the effect was shown to decay rapidly with distance (within a few Å
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from the interface), so could be limited through the introduction of something separating the
semiconductor backbone and dielectric, such as a self-assembled monolayer (SAM) of an
insulating material. The inclusion of a SAM was shown to give a more ordered energetic
landscape and improved performance [85]. Even a thin layer of alkyl chains, such as the
side-chains of an edge-on orienting polymer, has been shown to be sufficient to reduce the
broadening of the density of states and effectively remove the dependence of charge mobility
on substrate dielectric constant [67], highlighting again the importance of interface orientation
on transistor performance.

3.2. Host–guest/substrate interfaces in organic light-emitting diodes

The active layer of an OLED is composed predominantly of a host charge-transporting
material, commonly a conjugated small molecule but sometimes a polymer, doped with an
emitter material. These materials are vacuum or solution deposited onto a solid substrate to
make the device. The orientation of both the emitter and the host with respect to the substrate
are therefore relevant, although they are expected to be influenced by similar factors.

The orientation of the emitter molecule in OLEDs has a significant effect on device
performance, with in-plane (horizontal) alignment of the molecule’s transition dipole moment
with respect to the substrate, corresponding to light emission in the perpendicular (vertical)
direction, increasing light out-coupling efficiency and external electroluminescence quantum
efficiency and thus boosting performance [6, 55–57]. Controlling emitter orientation has thus
been the subject of extensive study in recent years. A number of factors have been shown
to influence the alignment of emitter molecules with respect to their substrate, including the
choice of host [18, 86], the shape of the emitter molecule [14, 18], strength of interactions
with the substrate [14, 82, 83], emitter chemical structure [87], the presence of permanent
dipole moments [88], processing technique [87, 89], and temperature [14, 15, 17, 56, 90–93].

OLED devices are often produced by vapor deposition, through which good control of
in-plane alignment can be achieved. The active layers of these materials often lack long-
range crystalline order, and can be considered glasses. The anisotropy of vapor-deposited
organic glasses has been extensively studied and found to be primarily controlled by the ratio
of the substrate temperature (Tsub) to the glass transition temperature (Tg). For a series of rod-
[17] and disc-like [93] small molecules of various aspect ratios, at Tsub � Tg a significant
preference for face-on alignment with respect to the substrate was found. At temperatures
just below Tg, the rod-like molecules transitioned towards end-on structures, before becoming
isotropic at and above Tg, although disc-shaped mesogens were found to form robust columnar
phases in an end-on orientation even above Tg [93]. Similarly, rod-like mesogen itraconazole
was also found to maintain end-on structure at and above Tg [94]. Greater orientational
anisotropy around Tg was also found for longer molecules [14, 17, 55]. Additionally, all-
atom MD simulations of ethylbenzene, a model glassy system which can be considered
to have similar structural properties to common organic semiconductors showed the same
dependence on Tsub [90]. Furthermore, coarse-grained (CG) MD simulations of rod-like or
disc-like molecules showed the same trends as found experimentally despite the models only
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being parameterized to reproduce the molecular shape and not the specific interactions of the
experimentally studied molecules [15, 17, 91]. This dependence on temperature also agrees
with MD studies of vapor-deposited glasses of Alq3, a common host material in OLEDs [12],
further atomistic MD studies on a series of rod-shaped molecules [14], and experimental
studies of a similar, but shorter, rod-shaped molecule in a randomly oriented host [56]. It
should be noted that the aforementioned studies predominantly examined single-component
systems, while the active layer in OLEDs contains an emitter molecule doped into a host
matrix, generally at low concentrations. However similar trends have been observed for two-
component systems. Jiang et al. [92] showed, through experimental studies of the blue light
emitter DSA-Ph, a rod-like small molecule, in Alq3, a similar dependence on the Tsub:Tg

ratio, which was effectively independent of concentration. The Tsub dependence described is
outlined in figure 6.

Increasing substrate temperature

Tsub << Tg Tsub < Tg Tsub Tg

weak

mesogen

strong 

mesogen

weak

mesogen
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mesogen

Figure 6. Effect of substrate temperature of the orientation of (top) rod- and (bottom)
disc-like molecules with both solid and vapor interfaces. While both rod- and disc-shaped
molecules are initially deposited in a face-on orientation at the solid substrate, at sufficiently
high temperatures reorientation of rod-shaped molecules towards a end-on structure has been
observed, before becoming isotropic at Tsub ≈ Tg. Disc-shaped molecules did not show such
a marked preference for end-on at intermediate temperatures and formed isotropic glasses
at higher temperature. Strong mesogens of both shapes were shown to form robust end-on
structures at intermediate temperatures that are maintained up to and up to above Tg.

To explain these trends, deposition has been proposed to proceed by a ‘surface
equilibration mechanism’. The free surface of the deposited glass has been shown to have
significantly higher mobility than the bulk so that as deposition occurs, for sufficiently high
substrate temperatures, molecules near the surface are able to reorient towards the equilibrium
orientation for this interface [95]. Interestingly, for the range of molecules studied, this
preferred orientation was end-on, which is consistent with the orientation expected for
mesogens with purely repulsive intermolecular interactions at the vapor interface (section 2),
although the attractive interactions present in real systems may mean that this behaviour is
not universal. At low substrate temperatures, the deposition of additional layers kinetically
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traps the layers below in the face-on orientation that molecules most likely adopt when they
first collide with the surface. This effect, as well as other factors that effect orientation in
anisotropic organic glasses, has been recently reviewed [95, 96] and the reader is referred to
these for further details.

Although mechanisms for achieving good control over parallel alignment are known for
vapor-deposition processing methods, films fabricated through solution processing techniques
have been shown to give generally isotropic films [87, 89]. As solution processability is
one of the reasons organic semiconductors are so attractive, controlling alignment through
these methods is of general interest. Senes et al. [18] recently investigated some methods for
controlling the orientation of the transition dipole moment of a rod-like molecule in solution-
processed OLEDs, finding that better parallel alignment of the transition dipole moment,
which was aligned with the long axis of the molecule, could be achieved through the use
of a semiflexible polymeric host molecule that showed preferential alignment in the plane of
the substrate, as expected from the discussion in section 2. Thermal annealing of the system
was shown to further increase anisotropy to levels comparable with vacuum-deposited layers.
Additionally, through comparison of a number of different emitter molecules with different
backbone shapes, they found that molecules with elongated, more rod-like, backbones more
readily formed parallel aligned structures, an effect which has also been observed for vapor-
deposited films [14, 17, 55].

3.3. Bulk-heterojunction donor–acceptor interfaces in organic photovoltaics

The photoactive layer of OPV devices generally consists of a blend of an electron donor
and an electron acceptor material called a BHJ that is phase separated on the nanoscale [28].
Charge separation and recombination at the donor–acceptor interface is a major factor limiting
device efficiency [97]. The microstructure, including molecular orientation, at electron donor–
acceptor interfaces in BHJ OPVs plays a potentially important, but as yet unclear, role in
determining good device performance. Charge generation at donor–acceptor interfaces is
known to be more efficient than predicted by classical electrostatic models at a structureless
interface [98], suggesting that the inhomogeneity of the interface may play a role in enhancing
charge separation. Indeed, changes in orientation have been implicated in increasing the
efficiency of charge generation [99], improving efficiency of separation and charge transport
away from the interface [100], and reducing exciton recombination during charge separation
[7, 9].

A number of possible mechanisms for enhanced charge separation and reduced
recombination have been proposed (which potentially all play a role) that depend on
the interfacial microstructure. For example, the electron–hole binding free energy at the
interface has been shown theoretically to be reduced by delocalization of charges [98]
or by increased energetic disorder [101], which would be expected to be enhanced and
diminished, respectively, by increased structural order at the interface. Structural variations
at the interfaces could also induce electronic-energy gradients that promote charge separation
[102]. Computational studies have also shown that the electric field due to aligned molecular
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quadrupoles at the interface can drive charge separation [100], with the direction of the
field and thus the spatial variation of the interfacial electronic energies sensitive to the
molecular orientation at the interface [103, 104]. Furthermore, interfacial alignment will
affect the electronic coupling between donor and acceptor. It has been suggested that a face-on
orientation at the interface is generally preferred, as it increases orbital overlap between donor
and acceptor [7, 9]. Additionally, the energy of interfacial charge transfer states (CTSs) is very
sensitive to the arrangement of donor and acceptor at the interface [105]; for a pentacene:C60
interface, a face-on orientation has been shown computationally to give a higher energy CTS,
attributed largely to a change in the electron affinity of the C60 acceptor due to the induced
electrical field, which is expected to reduce non-radiative recombination and voltage loss in
an OPV device [106].

With the myriad potential roles of molecular orientation at OPV heterojunction
interfaces, controlling orientation at these interfaces is an important step towards better
predictability and reproducibility of device properties. Furthermore, the ability to measure
or predict the interfacial molecular orientation is crucial to clarifying the relative importance
of the various charge-separation mechanisms discussed above. Measurements of orientational
order at donor–acceptor interfaces have only recently become possible with the development
of polarized soft X-ray scattering (P-SoXS) techniques [28], and so data relating interface
orientation to molecular structure or processing conditions remains limited. As described
in section 2, controlling intermolecular interactions between materials at the interface is
important for directing orientation. Increasing the planarity of the molecule is one means to
do this, as it would increase the extent of the interaction between donor and acceptor. This has
been achieved by adding fluorine atoms along the conjugated polymer backbone, which has
been shown to give a preference for a face-on orientation and better device performance [7]. In
this case, intramolecular interaction between appropriately positioned fluorine and backbone
sulfur atoms restrict backbone rotation, increasing planarity of the conjugated backbone [107].
Alternatively, increasing the extent of conjugation, such as by the substitution of alkyl side
chains for conjugated alkylthienyl ones, would likewise be expected to enhance interactions
between molecules, and has indeed been shown to increase the extent of face-on orientation
and enhance performance for a mixture of polymer-donor and non-fullerene acceptor [8, 9].

4. Towards general principles for controlling interfacial orientation

As noted in the previous section, the orientation of semiconductors with respect to their
interfaces is an important property for improving performance in a variety of organic-
electronic device types, from BHJ organic solar cells to OLEDs and organic transistors. In this
section, we examine the factors that have been shown to influence the interfacial orientation
of organic semiconductors and attempt to unify these observations into some general rules
for controlling molecular orientation. These factors will be broadly classified into material
properties, and thermodynamic and processing conditions. While Osaka and Takimiya [10]
have recently reviewed structural and processing methods for controlling backbone orientation
in semiconducting polymers, we aim to extend this more broadly to non-polymeric organic
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semiconductors and to other factors that have been shown to influence anisotropy in both in-
plane and out-of-plane directions at interfaces. While not an exhaustive review of the literature
of control of interface anisotropy, we have endeavored to identify the key properties that to
influence interface orientation based on research to date.

4.1. Material properties

The properties of the molecules themselves (semiconductors, substrates, and solvents) play
an important role in controlling the orientation of semiconductors at interfaces. Through
modification of the molecular shape, both energetic and entropic driving forces can be
modulated to give preference to different orientations, while intermolecular interactions can
also directly influence the alignment properties of semiconductors.

4.1.1. Shape anisotropy

Rod-shaped molecules: aspect ratio As explained in section 2, hard prolate particles, with
purely repulsive interactions, preferentially align perpendicular to a vapor interface [43, 44],
and parallel to a solid interface [49] due to excluded-volume entropic effects (figure 4).
This type of behaviour has been observed experimentally in a number of real systems for
a range of molecules of different shapes and lengths. Studies of vapor deposition, in which
molecules were deposited from the gas phase onto a solid substrate, have shown that rods of
various lengths prefer to orient perpendicularly to the vapor interface following deposition
[14, 17, 93, 95]. In this case, as they were deposited, the molecules oriented parallel
to the substrate, but at higher temperatures the surface molecules (at the vapor interface)
reoriented towards an end-on (perpendicular) orientation, and, if mesogenic, formed strongly
end-on liquid-crystalline phases [93, 94]. This mechanism is discussed in greater detail in
section 3.2. The orientation preferences described are not unexpected, having been shown to
be the preferred orientation for purely repulsive prolate particles. Given that the influence of
attractive interactions are expected to effect orientational preference [47, 48], it is interesting
to note that all of the molecules studied exhibited the same alignment behavior. Coarse-
grained molecular simulations of particles parameterized just to reproduce molecular shape
have shown similar trends to both experimental and all-atom simulations [15, 17], indicating
that molecular shape is an important parameter for determining orientation at the vapor
interface.

In addition, longer molecules have been shown, through computationally studies, to show
stronger orientational anisotropy than their shorter counterparts [14, 17]. We note that these
studies did not distinguish between face-on and edge-on orientations as they generally used
models with uniaxial symmetry, but it seems reasonable that a similar argument can be applied
to this additional orientational anisotropy and that high aspect-ratio molecules will initially
orient with a face-on preference in vapor deposition.
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Rods vs discs As for molecules with other shapes, vapor-deposited disc-shaped molecules of
varying size have also been shown, through MD simulation, to orient predominantly face-on
to the substrate at low temperatures [15, 93]. At high temperatures, again, orientation becomes
isotropic, but for disks that are strong mesogens, a transition to an edge-on columnar stacking
at Tsub close to and above Tg has been observed [93]. As with the rods, this is consistent
with the reorientation of ordered structures when free to rotate to give the equilibrium end-on
structure.

Backbone length and planarity As described above, increasing the length of the molecular
backbone has been shown to give more extreme orientational preference, whether parallel or
end-on. Alternatively, for polymers, the planarity of the backbone has also been shown to
play a role in interfacial orientation. Chen et al. [20] found that while coplanar backbones can
give either face-on or edge-on orientation depending on the solubility of the compound, slight
deviations from coplanarity predominantly gives edge-on orientation.

4.1.2. Intermolecular interactions As discussed in section 2, changes to non-bonded
(attractive) intermolecular interactions for fixed molecular-shape anisotropy can lead to
dramatic changes to surface anchoring (e.g. from planar to perpendicular). Thus, these
interactions are expected to strongly influence molecular orientation at organic semiconductor
interfaces. Strong attraction between the face of an organic semiconductor and a solid or
another molecule would give a face-on orientation, whereas if the interactions between the
face of the conjugated molecule and the substrate were unfavorable, or the interactions of
the substrate with the molecules edges stronger, an edge-on orientation would be preferred.
This is consistent with reports from molecular simulation of a semiconducting polymer
at different solid interfaces where low substrate–semiconductor interaction strength gives
edge-on oriented polymer and high interaction strength gives face-on [11]. In addition to
influencing the orientation at the interface, the strength of the interaction can also influence
the distance from the interface to which the orientational order is maintained, with stronger
van der Waals (vdW) interactions between substrate and semiconductor have been shown to
give a thicker oriented interface [14].

In the organic-semiconductor field, intermolecular interactions at interfaces are often
characterized in terms of surface energy. Correlations between substrate surface energy and
interfacial alignment have recently been observed for semiconducting polymer films, with
lower surface energy associated a more edge-on interfacial orientation than a higher energy
surface [108]. This is consistent with favourable interactions between the polymer alkyl side
chains with the similar sidechains of a low-energy SAM-treated surface, which is maximized
in the edge-on orientation. Similar correlations have been observed in the organic single-
crystal literature, with crystal orientation and grain morphology showing a strong dependence
on substrate properties [109], and orientated growth being achieved through adjustment of
surface energy and epitaxial growth due to similar lattice parameters [30, 35]. In line with
the results of semicrystalline polymers, crystalline pentacene, for example, has been shown
to adopt a perpendicular orientation with respect to a low surface energy substrate, as this
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exposes its lowest energy face to the substrate, while adopting a face-on interaction with
high-energy substrates where its higher energy face interacts with the substrate [109].

As described in section 2 for molecules at a vapor interface, increasing end–end
interaction strength has been shown to give greater parallel alignment. Practically, one means
of achieving this is through the use of rod-like molecules that are able to form weak hydrogen
bonding networks end-to-end with each other. These stronger end–end interactions have been
shown to give more horizontally aligned vapor deposited films than otherwise very similar
molecules without the hydrogen bonding capability [110]. A number of other means of
tuning interaction strength between semiconductor and substrate exist, including factors such
as changing the chemical composition of the backbone, side chain modification, and changes
in molecular shape, which will be discussed in detail in the subsequent sections.

Atomic substitution: fluorination Atomic substitution, such as the substitution of hydrogen
for the highly electronegative fluorine is a powerful means for tuning interaction strength.
As fluorine is fairly small, the substitution can be made without adversely impacting steric
constraints. The addition of intramolecular non-bonded interactions between backbone
fluorine and sulfur atoms has been shown, for example, to be a useful method for inducing
liquid-crystalline order in solution-processed conjugated polymers as it induces backbone
planarization at high concentration, promoting the formation of aggregates displaying liquid
crystal-like behaviour [107] (figure 7). At donor–acceptor interfaces in polymer–fullerene
solar cells, face-on orientation of fluorinated polymer at the interface has been observed, while
the non-fluorinated equivalent was slightly edge-on [7, 10].
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Figure 7. Restriction of backbone rotation due to F–S interactions (dashed blue). The red
bonds, indicated with an arrow, are less free to rotate in the fluorinated molecule.

Side chains Side chains for organic semiconductors are predominantly engineered to alter
the solubility and thus influence the aggregation properties of the molecule in solution, which
can be directly tuned by changing side chain density, length, or connectivity. The effect of
aggregation on orientation will be discussed later in the context of solubility, but we note that
side chain arrangements that are likely to prevent aggregation, such as bulky and densely
distributed alkyl chains, have been shown to give face-on morphologies for conjugated
polymers at a solid surface, while those that promote ordered packing, such as linear, sparsely
distributed chains are more likely to give edge-on structures [10, 16]. Additionally, Osaka
et al. [19] reported that difference in side chain length for a polymer with two different side
chains on each monomer can strongly impact orientation at the substrate interface. Side chains
that were approximately the same length were found to give face-on structures, while if the
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side chains were significantly different in length an edge-on orientation was preferred [19].
Finally, polymer regioregularity, where the monomers are all coupled in the same head-to-tail
fashion in the polymer chain, should enhance the formation of ordered aggregates which may
also influence anisotropy [111].

While factors such as side chain length and density affect packing through changes to
steric interactions, changing the side chains to modulate the strength of interactions at a
semiconductor interface is also an interesting method to influence orientation. For example,
stronger interactions could be introduced between molecules at the interface by replacing
pure alkyl side chains with alkylthienyl chains to give 2D conjugated structures. This has
been shown to give a more face-on orientation at the donor–acceptor interface in all-polymer
solar cells [8, 9].

4.1.3. Polymer specific factors: molecular weight and chain stiffness Polymer molecular
weight (MW) is known to have a substantial effect on device performance [27, 76, 112–
116] with higher MW polymers generally (although not always) giving better performance.
Although not applicable to small-molecule semiconductors, polymer MW is known to affect
whether the molecule orients edge-on or face-on with respect to its substrate, which may at
least in part explain its effect on device performance. Osaka and Takimiya [10] previously
surveyed the literature for the effect of MW on backbone orientation and found that in
general, high MW polymers form edge-on morphologies with respect to their interfaces,
while low MW generally gives randomly oriented polymers. It should be noted, however,
that this depends on the polymer itself, and may not be completely generalizable for all
polymers. For example, more recently, Nahid et al. [58] found that for semiconducting
polymer P(NDI2OD-T2), the presence of rod-like aggregates formed by low MW polymers
in poor solvents [27] gave a more edge-on orientation at the polymer–air interface and
better mobility than their higher MW counterparts. However, they also noted that although
decreasing MW gave a more edge-on orientation in the bulk, there was little difference at the
dielectric interface, which remained predominantly edge-on over all MWs. Nevertheless, this
indicates that different classes of polymer may behave differently with respect to MW, and
other factors may need to be considered, in particular the shape and size of aggregates formed,
which will be discussed in greater detail below.

In their MD and theoretical studies of generic conjugated polymers at substrate
interfaces, Zhang et al. [117] found that increasing MW increased the distance from the
substrate at which polymers were still aligned. Although isotropic in the bulk, when coming
in contact with the surface, the polymers aligned parallel to the surface, to a distance
approximately equal to the polymer’s persistence length for polymers longer than this length.
For longer and stiffer chains, this ordered layer was found to be thicker, due to a larger nematic
coupling parameter, with longer molecules retaining some order even slightly beyond the
persistence length. They found that a higher MW was associated with a greater preference
for the parallel orientation. However, as their simulations considered uniaxial molecules, they
were unable to distinguish between edge-on and face-on orientations of the polymer.
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4.2. Thermodynamic and processing conditions

4.2.1. Temperature Temperature is an important property for controlling interface
orientation as it controls both the equilibrium microstructure and the rate at which the
structure evolves towards equilibrium. Considering the example of vapor deposition, Tsub

significantly lower than semiconductor Tg has been shown to give parallel alignment of a
range of disk- and rod-shaped molecules, while an increase in temperature to just below Tg

shifts the alignment of rods towards perpendicular. A further increase in temperature beyond
Tg leads to isotropic phases [12, 14, 15, 17, 56, 90–93]. As discussed previously, this is
attributed to a surface equilibration mechanism in which only the top couple layers of the
deposited film are sufficiently mobile to allow realignment of molecules [95]. The molecules
are initially deposited in the face-on orientation and then have only a finite amount of time
to realign before they are buried. At low temperatures, the molecules are kinetically trapped
in the as-deposited face-on orientation. As the temperature is increased, the molecules can
reorient towards the equilibrium orientation, which appears to be edge-on for a range of
small-molecule organic semiconductors, before their orientation is trapped by the deposition
of further layers on top. Above Tg interactions between molecules are generally not strong
enough to maintain order and anisotropy is lost. Although this phenomenon may also be
explained by a change in the thermodynamically favoured morphology with temperature as
the balance of entropy to enthalpy changes, studies of deposition rate found [95] at lower
deposition rates a favored edge-on orientation was reached at lower Tsub, which suggests that
the ability to reorganize before becoming trapped under additional layers is the driving factor
for the observed temperature dependence.

Temperature in other processing methods may also be expected to influence
semiconductor alignment for similar reasons. As devices are often fabricated under non-
equilibrium conditions, the orientation they are initially deposited at (either from vapor
or solution) can potentially become kinetically trapped. For semiconducting polymer
P(NDI2OD-T2), annealing of a solution processed system above its melting point has been
shown to change the orientation at the top surface and in the bulk from face-on to edge-on
[118], while blade coating at similar temperatures has been shown to induce a greater degree
of edge-on polymer [73]. For P3HT at the donor-acceptor interface with a fullerene, interfacial
orientation has similarly been shown to shift towards edge-on with annealing [10, 119]. For
these cases, it is interesting to note that in all cases of which we are aware the edge-on
orientation appears to be the equilibrium structure, but as surface anchoring orientation is
not expected to be universal, this may not be favored in general. Further investigation into
the equilibrium structures of anisotropic particles (both polymeric and single molecule) at
interfaces is necessary to better understand this.

4.2.2. Solvent As solution processing methods are common in the production of organic-
electronic devices, solvent is a simple parameter to tune, and is known to have a significant
effect on polymer conformation. It has been proposed that high mobility in polymer
semiconductors can be achieved using poor solvents that induce a greater degree of pre-
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aggregation (aggregation in solution prior to deposition on the substrate), as these can give
enhanced liquid-crystalline ordering [21], which is generally associated with more regular
alignment. Even for non-liquid-crystalline materials, the formation of large aggregates has
been observed to give rise to edge-on orientations at the substrate interface [16, 73]. The larger
the aggregate, the greater the effect and the stronger the preference for edge-on structures
[73]. This is consistent with recent reports of correlation between the extent of aggregation of
P(NDI2OD-T2) in solution and edge-on orientation at the film–air interface [58]. However,
previous reports have observed the opposite trend for the same polymer, with pre-aggregation
leading to a predominantly face-on orientation, though not specifically at the interface [120].
These opposing trends can be reconciled with the knowledge that this polymer has been shown
to preferentially display edge-on orientation at the film–air interface, and face-on orientation
relative to the air interface in the bulk [121], suggesting that the orientation at the substrate
surface may be templated by the orientation at the vapor interface or in the bulk depending on
the deposition conditions.

As with temperature, although the molecules examined seem to consistently favour
edge-on orientations when aggregates are formed, there is no obvious physical principle
that describes this dependency, nor is it clear whether an edge-on orientation for aggregates
is preferred more generally. Again, studies employing generic models may be useful for
elucidating the effects of aggregate formation on interfacial orientation. As solubility can
be tuned by a number of factors, such as side-chain modifications or choice of solvent and
solvent additives, this provides a relatively simple way of controlling interface orientation, so
a more thorough understanding of how it affects interfacial ordering would be beneficial.

4.2.3. Processing techniques: external forces Processing techniques are well known to
influence the anisotropy of molecular interfaces with techniques that introduce shear or
flow forces, such as blade or bar coating, giving more anisotropic films than, for example,
spin coating [73, 80, 87, 89]. These non-equilibrium methods rely on the introduction
of orientation-specific forces to promote different morphologies and alignment directions.
Methods such as blade coating are able to give extended alignment of both fiber direction and
orientation of polymeric materials, with significant alignment of chains in the shear direction
observed [71, 73, 80]. Similarly, the application of an external magnetic field has been shown
to give alignment of the backbone of a conjugated polymer [122] or discotic mesogen [123]
parallel to the field due to anisotropy in the molecule’s diamagnetic susceptibility. Likewise,
alignment of P3HT fibres in the direction of an applied electric field has been observed,
giving increased charge mobility [124]. Light has also been shown to be able to specifically
align liquid crystals [125] although has not been studied explicitly in relation to organic
semiconductors. A number of other methods for aligning and orienting polymer films by
means of processing conditions and techniques have been recently reviewed [71] and the
reader is referred to that work for greater detail.

Additionally, these processing techniques have been extensively used for crystalline
organic semiconductors, with mechanical stretching, external magnetic- or electric-fields and
solution deposition methods such as zone casting all having been shown to give good control
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over orientation [30]. Alternatively, concentration and temperature gradients, tilted substrates,
and solution shearing have all also been shown to allow for control of crystallization direction
[34]. Modulation of the shear rate, for example, has been shown to change the packing density
of small molecule TIPS-pentacene, with the optimal rate giving a closer π–π stacking distance
and enhanced charge carrier mobility [34].

4.3. Summary

From the preceding discussion, it should be clear that, although there are many factors which
have been shown to influence interfacial anisotropy of organic semiconductors, many of them
have not yet been systematically studied. Although some interesting trends are starting to
develop further study is required if general principles for controlling molecular alignment
at semiconductor interfaces are desired. While compelling mechanisms for some effects
have been proposed, such as the surface equilibration mechanism for vapor deposited films,
others, such as the effect of solution aggregation or processing temperature on orientation
cannot yet be described universally through general physical principles. Likewise, although
orientation of uniaxial repulsive particles at the vapor interface, and to a lesser extent solid
and fluid interfaces, is fairly well understood, the role of attractive interactions, which are
important for real materials, and the balance between repulsive and attractive interactions, is
less clear. A better understanding of these interactions may enhance our understanding of the
preferential alignment observed in relation to modifications such as aggregation, fluorination,
and backbone structure.

5. Modeling organic semiconductor interfaces

As the microstructure at interfaces in organic semiconductor devices is known to be important
for device performance, being able to characterize the interfacial microstructure and its
relationship to electronic processes would facilitate the design of better devices. Although
possible, it is often experimentally challenging to characterize these interfaces as they are
generally buried within the device [22, 23]. Additionally, it is difficult, if not impossible, to
extract molecular-level detail from experimental data of organic semiconductor films due to
their significant disorder. With the ability to directly simulate and visualize these interfaces on
an atomic scale, computer simulations are an attractive method for uncovering the intricacies
of structure and assembly mechanisms of organic semiconductor interfaces. This section
reviews applications of computer simulations to elucidate the microstructure and assembly
of organic semiconductor interfaces. Since most of the computer-simulation techniques
discussed in this section and their general use to study organic-semiconductor morphology
has previously been comprehensively reviewed previously [29, 126, 127], the techniques
themselves will only briefly be described here, with the focus being on applications that clarify
the role of interface anisotropy.

We will also not go into detail on methods for simulating the electronic structure
and electronic processes at organic semiconductor interfaces, as these methods have



Interfaces in organic semiconductors 22

been extensively reviewed in the past [104, 128, 129]. Since fully quantum-mechanical
simulations that account for both nuclear and electronic degrees of freedom are unfeasible
for simulating microstructure formation, a general computational approach that has been
widely adopted for investigating the microstructure dependence of electronic processes in
organic semiconductors is to use computationally efficient classical methods that do not
explicitly account for electronic degrees of freedom to simulate the physical structure and
structural evolution and then to apply a quantum-mechanical or mixed quantum–classical
approach [104, 128, 129] to the obtained physical structure to calculate electronic properties.
This approach is expected to be reasonable, as the structural dynamics responsible for
microstructure formation are generally not expected to be strongly influenced by the electronic
processes in these systems. Thus, this section will focus only on the first step of this approach:
the simulation of the physical structure of organic-semiconductor interfaces.

5.1. All-atom simulations

A number of different methods can be applied to simulate molecular systems and provide
geometries that can be used for detailed electronic calculations. Broadly, these can be
classified as MD or Monte Carlo (MC) simulations. MD is particularly useful for the study
of organic semiconductor interfaces as it allows direct study of the system dynamics and can
therefore capture nonequilibrium processes that can be important in organic-semiconductor
interface formation. On the other hand, MC algorithms generally sample configurations from
an equilibrium statistical ensemble and therefore are most adapted to simulating equilibrium
states. Nevertheless, hybrid grand canonical (GC) MC–MD simulations, which involve MC
particle insertion and deletion steps, can be effective for studying nonequilibrium interface
formation in the presence of processes such as solvent evaporation. For further details on
these methods, the reader is referred to [130] and [131].

A distinction should be made between atomistic (all-atom) and CG particle-based
simulations. In atomistic simulations, every atom is treated explicitly, whereas CG models
group atoms together into a single interaction site, decreasing the degrees of freedom of the
system at the expense of atomic resolution with the goal of reducing computational expense.
Both methods will be discussed here.

5.1.1. Background of molecular dynamics Classical MD is a molecular-simulation
technique that in essence integrates Newton’s classical equations of motion to study the
evolution of a molecular system over time [130, 131]. Interactions between particles are
defined through a force field which is used to give the total potential energy as the sum of
all bonded and non-bonded interactions in a system. A number of standard force fields exist
which are generally transferable between a large number of molecules. However, these force
fields often need to be modified in order to accurately model the intermonomer dihedral-angle
potentials in polymers, which are strongly affected by the π conjugation inherent to organic
semiconductors [132, 133].
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5.1.2. Study of physical structure and assembly The use of atomistic MD simulation to
study the physical structure and assembly at organic semiconductor interfaces is becoming
more common as computational power increases. In particular, the process of vapor
deposition has been extensively studied by MD for a variety of substrates and small molecules
[13–15, 57, 90, 134–138] (figure 8). While these simulations generally agree well with
experimentally observed phenomena, such as the dependence of orientation on Tsub, they also
provide further insight into the mechanisms of the process. Muccioli et al. [13], for example,
simulated vapor deposition of pentacene onto a C60 substrate. As pentacene molecules were
added, they found that they initially lay flat on the surface, before diffusing rapidly and
beginning to aggregate. As the aggregates on the surface grew, they coalesced into a film
covering the surface with random horizontal alignment. As more pentacenes are added to the
first monolayer, the molecules rearranged to form an end-on morphology with a herringbone
pattern. Additional layers then follow a similar mechanism [13].

In a similar vein, the deposition of host–emitter systems onto a substrate, relevant to
OLEDs, has been studied using atomistic MD simulation [57, 135]. Emitter molecules
with different degrees of molecular anistropy, Ir(ppy)3 and Ir(ppy)2(acac), were found to
have a preferred orientation with respect to a graphene substrate, resulting in anisotropy in
the alignment of the transition dipole moment for phosphescent emission (obtained from
quantum-chemical calculations of isolated emitters) that was consistent with experimental
light-outcoupling measurements [57] (figure 8). The alignment of the highly symmetric
Ir(ppy)3 in particular was proposed to be driven by alignment of the anisotropic host material
4,4’-bis(N-carbazolyl)biphenyl (CBP) [57].

MD simulations have also recently been used to study the preferred orientation of a
semiconducting oligmer in solution at various interfaces. At the solution vapor interface,
the orientation of the oligomer was found to be edge-on, while when sandwiched between
two solid substrates weak semiconductor-substrate interactions gave edge-on orientation and
strong interactions face-on. When between a solid substrate and a free vapor interface, edge-
on orientation was observed at the vapor interface and either edge- or face-on at the solid
surface depending on the substrate [11]. From these simulations it was concluded that if
interaction between the π-conjugated plane (face) of the molecules was more energetically
favourable than the interactions of the same plane with the interface (either gas phase or
solid), the edge-on configuration was preferred. On the other hand, face-on orientation with
respect to the substrate was preferred if interactions with substrate surface were stronger than
interactions between the conjugated faces of the molecules [11].

In OPVs, the size of BHJ domains is generally too large to be feasibly simulated
atomisitically, being on the order of 10 nm [139]. However, simulations of model systems
representative of sections of these interfaces have provided valuable insight. For example,
calculations of the open-circuit voltage (VOC), based on quantum-chemical calculations
of electronic energies using configurations obtained from short MD simulations of planar
interfaces of a number of different molecules in specific orientations at a C60 surface, have
given excellent agreement with experimental values; this allowed the authors to rationalize the
high performance of a particularly high-performing series of organic semiconductor through
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Figure 8. (a) Snapshots of a simulation of vapor deposition of a host–emitter OLED system
onto a graphene substrate (black, thick line representation) [57]. The host is CBP (grey lines)
and the emitter is Ir(ppy)2(acac) (green). Hydrogens are omitted for clarity. (b) Transition
dipole moment (TDM) orientation for Ir(ppy)2(acac) (filled diamonds) and Ir(ppy)3 (unfilled
squares) from deposition simulations [57]. A value of |sinφ | of 0 corresponds to horizontal
alignment of the transition dipole moment and 1 to vertical, as shown in the overlaid structures.
The TDMs for both molecules are assumed to lie along the Ir–N bonds. In the structures, only
one TDM is shown for clarity as a black arrow. (c) Chemical structures of Ir(ppy)2(acac),
Ir(ppy)3, and CPB. For the iridium complexes: green = carbon, blue = nitrogen, red = oxygen,
grey = iridium, white = hydrogen. The molecules in (a) are colored accordingly.

the favourable energetic effects induced by its interfacial orientation [100]. Elsewhere,
MD simulations have shown that at a pentacene–C60 interface, C60 molecules are able to
burrow into the surface of face-on, but not end-on, oriented pentacenes [140], giving a more
disordered region and the type of interphase structures shown elsewhere to lead to enhanced
charge separation [141].

5.1.3. Challenges for all-atom simulation of interfaces Despite these successes, there are
still a number of challenges associated with all-atom simulations of organic semiconductor
interfaces. Potentially the largest of these challenges is accessing the relevant length and
time scales for modeling processes in organic semiconductor materials, which can contain
many millions (or more) of atoms and involve processes occurring on up to the second scale,
or even longer for annealing processes. Although simulations of up to 100 million atoms
(for 100 ns) [142], or up to the millisecond timescale for smaller systems using specialized
hardware [143], are possible, typical simulations can only study a couple million atoms on the
nanosecond (or microsecond at best) timescale, meaning that slower processes occurring on
longer timescales are not able to be explicitly studied. This is particularly relevant when
considering the scale of structural variations at interfaces, which generally involve large
systems whose assembly occurs over large time periods, which can be unfeasible to simulate
atomistically. All-atom simulations of polymers have also generally been limited to chain
lengths of 10s of monomers, which is 1–2 orders of magnitude smaller than those studied
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experimentally in organic semiconductor systems, limiting the ability to realistically capture
polymer microstructure using such models.

In order to deal with the problems of size and time scale, while still maintaining atomistic
detail, a number of approaches may be taken, potentially at a cost to quantitative accuracy.
Wang et al. [144], in their study of a polymer-fullerene system representative of a BHJ donor–
acceptor interface, point out that a phase-segregated morphology cannot be fully achieved
with the system sizes available to MD. They instead used a higher fullerene concentration
than would be used experimentally to be able to qualitatively understand the behaviour at
the interface [144]. Alternatively, Yoo et al. [137] proposed the ‘frozen-bulk’ method for
studies of interfaces in vapor-deposition simulations. They proposed that, at large distances
from the interface and at a temperature lower than Tg, the orientation of the bulk region
does not significantly change. The motion of these regions was therefore frozen to allow
for more efficient simulation [137]. Ratcliff et al. [136] also used positional fixing to enhance
computational efficiency for the MC simulation of vapor deposition. In this work, once the
molecules were deposited their positions were fixed. However, it has since been shown that
there should still be quite significant movement of the molecules after deposition so this
method may not accurately capture all the details of the deposition process [135]. Bagchi
et al. [12] looked at the problem slightly more abstractly, and, as the surface structure of
vapor-deposited glasses has been shown to be very similar to that of the equilibrium liquid
[17, 95], simulated this equilibrium liquid surface, which is likely to display much faster
dynamics than the glass, instead.

5.2. Coarse-grained molecular simulations

While atomistic simulations provide details of specific interactions at interfaces, and give an
atomic understanding of the processes occurring at these interfaces, they are often limited
by the size of the system and time scales of the processes of interest. A common way
to address these problems is the use of CG molecular simulations, in which the number of
degrees of freedom in the system is greatly reduced by approximating a collection of atoms as
a single interacting site, increasing the simulation efficiency of the calculation. It is especially
important that larger length scales than are feasible atomistically to be reached when one
considers, for example, the molecular weight dependence of interface morphology of polymer
semiconductors [24, 27, 75, 76] or the domain sizes in BHJs which are typically on the order
of around 10 nm [139]. In contrast to all-atom simulations, CG simulations have been shown
to be able to reach appropriate length scales with enough accuracy to model aggregation
of conjugated polymer chains in solution [145] and phase separation in conjugated polymer
BHJs [114, 146, 147] (see figure 9).

5.2.1. Background of coarse-grained molecular dynamics (CG MD) simulations The
process of coarse-graining is summarized schematically in figure 10. Groups of atoms
expected to have correlated motion are grouped into larger sites whose interactions are
parametrized to (hopefully) capture the behavior of the real all-atom system. The
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C60

P3HT

Figure 9. BHJ P3HT:C60 donor–acceptor interface from CG MD simulation [146].

total potential energy of the system is calculated as a sum of bonded and non-bonded
interactions between CG sites. Two general approaches have been used to parameterize
CG interactions: the top-down approach, in which interactions are chosen to reproduce
experimental thermodynamic data [147], or the bottom-up approach, in which the interactions
are tuned to reproduce the physical and thermodynamic properties of an all-atom model [148].
A number of systematic bottom-up CG methods have been developed, with the goal being to
achieve thermodynamic consistency between the CG and all-atom models, e.g. by matching
forces [149] or structural distribution functions[150] or minimizing the relative entropy [151]
between the two models. Readers are referred to [148] for a comprehensive review of coarse-
graining methods.

(a) spherical sites (b) ellipsoidal sites

Figure 10. An example of coarse graining of small conjugated molecule sexithiophene into
(a) six spherical sites, or (b) a single ellipsoidal site. The spherical model represents each
thiophene unit as a sphere connected by their centers of mass (black lines to black dots), while
the ellipsoidal model is a representation of how this molecule could be coarse-grained into a
single anisotropic particle.
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5.2.2. Spherical vs anisotropic sites and potentials To date, CG models have predominantly
employed spherical sites for the calculation of non-bonded pair interactions. Although these
models have been able to reproduce experimental anisotropic behaviour when the overall
molecule (an accumulation of isotropic CG sites) is anisotropic (figure 9) [15, 17, 91, 117,
145], many organic semiconductors consist of large planar subunits with very rigid backbones,
so representing them as a collection of spheres may not be accurate or efficient. This
is especially problematic when considering properties such as π-stacking distance, which
are known to be important for device performance. An alternative is to use anisotropic,
either ellipsoidal [152, 153] or disc-shaped [154], particles. As these sites now have a
quantifiable orientation, anisotropic non-bonded potentials are required to model the inter-
site interactions as a function not only of distance, but also of orientation. Although these
anisotropic interactions are slower to calculate than isotropic ones, a reduction in the number
of sites (figure 10) for a given level of accuracy can compensate for this. Interpretation of
simulation results of an anisotropic model with fewer degrees of freedom and parameters is
also potentially simpler. A number of anisotropic non-bonded potentials exist that account
for both the distance and orientation dependence of the potential energy when considering
ellipsoidal sites. Most commonly used are the GB [45, 155], and RE-squared [156–158]
potentials, which are effective for ellipsoidal particles. Further details can be found in the
literature [156–159].

An alternative potential, more suited to the flat disc-like molecules common for organic
semiconductors, has been recently reported [154]. Although not a new potential, being
originally published over 40 years ago [160], the S-function expansion has only recently
been applied to organic semiconductors, and with good success [154]. Again, details of this
potential can be found elsewhere [154, 160] so will not be discussed here, other than to note
that it may better describe the interactions between these disk-like particles than either the GB
or RE-squared potentials.

5.2.3. Study of physical structure and assembly CG MD models can give valuable insights
into mechanistic details of microstructure and assembly processes in organic semiconducting
device that cannot be easily studied experimentally and may be computationally inaccessible
by all-atom models. CG models have only been applied in the last decade or so to studying
organic-semiconductor structure and so, compared with all-atom simulations, CG simulations
of organic-semiconductor interfaces remain quite limited.

Simple CG simulations, using general models with interactions that were not
parameterized to match any specific system, but rather just to reproduce the shape of
the molecules of interest, have helped to provide a molecular understanding of the
dependence of orientation at the interface on Tsub for vapor-deposited glasses [15, 17, 91].
Lyubimov et al. [91] showed, through the use of a rod-like model of small-molecule
semiconductor N,N’-bis(3-methylphenyl)-N,N’-diphenylbenzidine (TPD), represented as six
spherical sites connected by springs to maintain the desired shape, similar behaviour as
observed experimentally for these systems (horizontal orientation at low Tsub and a slight
vertical preference at Tsub just below Tg), and were able to propose the surface equilibration
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mechanism described in section 3.2. Significantly, this and related work [15, 17] showed that
even without explicit parameterization for atomistic systems, and not including the effects of
dipole moments or polarizability, CG models that approximately represent molecular shape
and interaction strength are able to reproduce anisotropic structural characteristics consistent
with experiments.

Using a generic CG MD model, Zhang et al. [117] simulated a semiflexible polymer melt
at a disordered, impenetrable interface to examine the effect of nematic coupling, influenced
by chain length and stiffness, on surface-induced alignment. They showed that the polymer
preferentially orients parallel to the surface, forming an aligned layer of about a persistence
length thick. For longer and stiffer chains, the thickness of the aligned layer is increased due
to stronger nematic coupling. From this, it is predicted that the conjugated polymer P3HT can
form an alignment layer of approximately 4.5 nm thick, with stiffer polymers likely forming
even thicker layers. This sort of orientational alignment is especially relevent for charge
transport in OFETs, for which order near the interface is more important than that in the bulk.

Both bottom-up [146, 153, 161–166] and top-down [147] CG MD models have been
used to simulate the microstructure and formation of BHJ donor–acceptor interfaces for both
small molecules [153, 166] and polymers [146, 147, 161–165], a process that would be very
challenging to study using an all-atom model. Even using a CG model, realistically simulating
BHJ formation is difficult, and most of these studies simulated donor–acceptor interface
formation in the liquid phase at elevated temperatures rather than simulating the process of
solvent evaporation normally involved in BHJ formation. Even when solvent evaporation
has been considered [147, 153], solvent evaporation rates have been many times those in
experiments.

Nevertheless, these simulations provide useful molecular-level insight into the donor–
acceptor interface, although only a couple of these studies have addressed the issue of
interfacial molecular orientation. In particular, CG simulations of model P3HT:PCBM
polymer:fullerene interfaces, in which the polymer chains were oriented edge-on, face-
on, or end-on to the interface, or in which the polymer chains were amorphous, indicated
that the interfacial energy was lower for the ordered configurations than in the amorphous
one and that the energy was lowest at the face-on interface [165]. This suggested
that ordering was favored at the interface compared with the bulk, which was indeed
observed, and that the face-on interface was the most stable [165]. These results
have implications for OPVs, as the face-on configuration is widely believed to optimize
charge separation. On the other hand, Lee and Pao [153] used an ellipsoidal-site CG
model of the anisotropic small-molecule semiconductor 2,5-di(2-ethylhexyl)-3,6-bis(5”-
n-hexy-[2,2’,5’,2”]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrolo-1,4-dione (SMDPPEH) blended
with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) in the solvent chlorobenzene, the
latter two represented by CG spheres, to simulate the effects on the nanomorphology of
solvent evaporation and shear forces mimicking the process of blade-coating. They showed
that increasing the shear rate led to more stacking of the SMDPPEH, which is likely to
promote hole transport, but also results in larger isolated PC61BM domains, hindering exciton
dissociation. Thus, they concluded that an optimal shear rate exists that balances these two
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characteristics, and gives the greatest charge transport [153].

5.2.4. Challenges for coarse-grained simulation of organic semiconductors As with
atomistic MD simulations, CG simulations are not without their challenges. In particular,
the loss of molecular detail can be problematic as details about specific interactions, which
may be important for understanding device properties, may be lost in the CGing procedure.
It is therefore important that the desire for efficiency (fewer sites) be balanced with the need
for accuracy. For good predictions, the model must be able to capture important intra- and
intermolecular rearranglements which may necessitate a greater number of sites in order to
prevent information loss [167, 168].

Another desirable feature of a CG model, which is not necessarily easy to achieve, is
transferability to thermodynamic conditions beyond which it was parameterized. Again,
a model that is able to capture the molecular rearrangements that occur at changing
tempteratures is important [167]. Although this is generally likely to require a greater number
of sites, transferability may also be improved with the use of anisotropic sites which may
retain the relevant degrees of freedom and better describe rotations of planar molecules which
cannot be captured with spherical sites. Indeed, Bowen et al. [154] noted that their anisotropic
disc model for fused ring perylene diimides (PDIs) was likely to be more transferable than
other CG models due to the significant amount of detail that is able to be maintained by the
anisotropic sites [154]. This was due to the sections that were CGed into discs being rigid
moieties that generally did not show drastic rearrangements. Accordingly, little information
was lost in the CGing procedure and the model was expected to behave more like its atomistic
counterpart.

A further degree of transferability that can be challenging in CG models is that of a
force field for a specific molecule to other molecules in the same class, which maybe differ
by just a side chain. For example, the three-site P3HT model of Huang et al. [146] shows
good accuracy for the structural properties of the molecule for which it was parameterized,
but on extension to other poly(3-alkylthiophene)s (P3ATs) with longer alkyl chains it has
been shown that this model is no longer able to reproduce experimental properties [168].
Slight adjustments to this model, by changing the strength of the interactions between side-
chain sites and those between backbone sites, were able to give qualitative agreement with
experimental properties, but were still unable to achieve quantitative accuracy [168]. Root
et al. [168] noted that, again, the anisotropic shape of the thiophene ring may be important for
accurately predicting structural properties and a spherical site model may not be sufficient.

Additionally, despite their increase in accessible time scale relative to atomistic MD,
CG models are still unable to achieve the time scales relevant to processes such as solvent-
based film deposition. Although as computing power increases these time scales should begin
to become more accessible, alternative methods, such as the continuum methods discussed
below or hybrid approaches using CG semiconductors and a continuum or implicit solvent
will likely be necessary to realistically model such processes. However, care must be taken to
account for hydrodynamic interactions (particularly for polymers) [169] and the concentration
dependence of the CG interactions when solvent degrees of freedom are integrated out.
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5.3. Continuum simulations

Continuum or field-based models of fluid structure, such as classical density functional
theories [170] or statistical field theories (including self-consistent field theory (SCFT)) [171]
describe the fluid in terms of a spatially varying probability density field instead of by
the coordinates of discrete particles, in contrast to the all-atom and coarse-grained particle
models described in the preceding sections. In practice, such continuum models are solved
numerically on a discrete lattice. They offer distinct advantages over particle-based models,
in particular in being able to access much longer length and time scales, which is especially
relevant for modeling long polymer chains at high densities, for which relaxation times can
be prohibitively long even for simulations of CG particle-based models.

Nevertheless, applications of continuum models to studying organic-semiconductor
microstructure, let alone the ordering of organic semiconudctors at interfaces, have been
very limited. This is in part due to the (arguably) greater theoretical complexity of these
models compared with particle-based models and the lack of freely available, general-purpose
software for solving such models numerically [172], with no such software existing to our
knowledge that accounts for orientational degrees of freedom. Furthermore, these continuum
theories generally assume equilibrium conditions, with the solution to the model being the set
of field variables (e.g. the probability density of a particular molecule type at a position and
orientation) that minimizes a system free energy that is a functional of the fields. Although
dynamic variants of continuum models have been developed [170, 171], they generally
assume time evolution of the field variables on the equilibrium free energy surface, which
is not obviously correct far from equilibrium. This may limit applicability for modeling the
microstructure of the significant proportion of organic-semiconductor systems formed under
non-equilibrium conditions.

Most continuum simulations of organic semiconductors (e.g [173, 174]) have used
models in which the field variables depend only on position and not on orientation, and so
are incapable of modeling orientational ordering. Only a handful of studies[117, 175, 176]
have accounted for molecular orientation.

Zhang et al. [117] studied the orientational ordering of semiflexible polymer chains
at an impenetrable surface using an SCFT model of Gaussian chains in which the chain
configuration depended on both the position and orientation with respect to the surface. The
model was parameterized to represent chains of the conjugated polymer P3HT. Consistent
with previous findings for semiflexible polymers [50], the surface was found to induce
alignment of the chains parallel to the surface, with the thickness of the aligned layer on the
order of the persistence length. Nevertheless, since the model did not account for monomer
orientation, it was not able to distinguish edge-on versus face-on alignment of interest in
electronic applications.

Shah and Ganesan [175] used SCFT to model the self-assembled bulk-heterojunction
morphologies of donor–acceptor rod–coil block copolymers between two surfaces
representing solar-cell electrodes. Their model included a Flory–Huggins term for the rod–
coil repuslive interaction, a Gaussian stretching energy for the coil blocks, and the anisotropic
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Maier–Saupe potential for orientational ordering of the rod blocks. The solar-cell device
properties were simulated using a classical drift–diffusion model of charge and exciton
dynamics that accounted for the effect of orientational anisotropy through a hole mobility
that was a function of the orientational order parameter in the rod block obtained from
the SCFT model. Using these simulations, the effect of substrate–polymer interactions,
rod–coil miscibility, and the degree of orientation order on solar-cell performance was
studied. Nevertheless, the consideration of only block copolymers, which allows microphase
separation to be observed at equilibrium, constrains the orientational order at the donor–
acceptor interface by chain connectivity; so the model is of limited utility for understanding
orientational ordering at interfaces between donors and acceptors on different molecules,
which are used in most bulk-heterojunction devices.

6. Summary and outlook

As highlighted in this review, the structure at interfaces in organic semiconductor based
devices is known to be important for device function with, for example, in-plane alignment
with respect to the substrate of the transition dipole moment in OLEDs giving better
optical properties, face-on alignment at donor–acceptor interfaces in BHJ OSCs, and edge-
on alignment at the dielectric interface in OFETs generally associated with increased
performance. It is therefore important to develop an understanding of the potential ways
to control interface structure for the realization of efficient, commercializable, organic
electronics. Although many specific examples exist of orientational ordering of organic
semiconductors at interfaces and its consequences for electronic processes and device
properties, a general understanding of the factors that control interfacial alignment in these
systems remains lacking, even for equilibrium systems. While the alignment of uniaxial
nematics at the vapor interface has been widely studied [43, 44, 47, 48], their alignment
at solid and fluid interfaces is less well understood, particularly when both repulsive and
attractive intermolecular interactions are present. For biaxial nematics, which are more
representative of organic semiconductors, the literature is even more sparse with few, if any,
studies on their general alignment at either solid, fluid, or vapor interfaces.

In this work we have attempted to collate the many observations, from both experimental
and computational work, about factors that affect interfacial microstructure and reconcile
these, where possible, with general physical principles to develop some general guidelines
for achieving orientational control. In general, it can be concluded that

(i) vapor deposition of small molecules is controlled by substrate temperature, with higher
substrate temperatures giving a slight preference to end-on orientation at the air interface,
consistent with studies of purely repulsive anisotropic particles at the vapor interface
(although the effect that strong attractive interactions in a real system would have on this
alignment is unclear),

(ii) annealing of solution-processed polymer films appears to give preference to edge-on
structure at the solid interface in many cases, although it is unclear whether this is
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universal and further study is required to explain this observation,

(iii) the strength of attractive interactions between the side or end of the molecule with other
molecules and a solid or fluid can control orientation,

(iv) aggregation of polymers in solution prior to deposition appears to generally favor edge-
on orientations while single molecules favor face-on, although the reasons for this, and
whether it is is a general property beyond the systems studied, is unclear,

(v) and, for semiconductors that display liquid-crystalline properties, the use of external
forces, such as shear or magnetic fields, is a potentially powerful method for controlling
orientation.

We note that in many cases the studies used to determine these properties generally only
focus on a specific polymer or small molecule. Further studies using simple generic models
of semiconductor-like molecules, in addition to systematic experimental studies, would be of
great use in better understanding the interplay between the properties described above, and
developing a general framework for deliberate and precise control of interfacial orientation.
For BHJ OPVs in particular, very little experimental data is available on the structure at
donor–acceptor interfaces. With the advent of polarized soft X-ray scattering techniques
that allow for experimental characterization of buried interfaces, systematic experimental
studies would be of great value in both verifying computational models and developing greater
understanding and accurate predictions of interface structure. Computationally, the use of CG
models, parameterized to model the typical range of interactions in organic semiconductors,
would be useful to extend the known surface-anchoring effects of equilibrium systems of
uniaxial molecules to biaxial molecules (where face-, end-, and edge-on orientations can be
distinguished), nonequilibrium conditions, and the examination of the interplay of attractive
and repulsive interactions. Particularly in cases in which trends are beginning to emerge
but for which universality has not yet been confirmed, such as in the influence of solution
aggregation or temperature on interfacial orientation, these systematic studies have the
potential to be of great worth. A more thorough understanding of the physical principles
underlying the observed orientational preferences, coupled with knowledge of how these
structural changes correlate with changes in electronic properties and device efficiency, is
therefore the next logical step towards improving the performance of organic semiconductors.
The ability to predict solid-state microstructure and electronic properties and processes from
the molecular structure of the component materials promises to facilitate a first-principles
approach to the design of high-performance organic semiconductors with application in next-
generation electronic devices.

Finally, the use of computer simulations to study organic semiconductor-substrate
interfaces is a very powerful method to correlate structural anisotropy with electronic
processes, as well as directly visualizing molecular structure in the regions of interest.
There are a number of challenges associated with both atomistic (accessing the relevant
length and time scales), and CG (transferability, loss of information) simulations, but these
are rapidly being addressed. The use of anisotropic CG sites is of particular interest as
these should better be able represent the important structural features of the predominantly
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disk-like molecules prominent in the organic semiconductor literature and enable the
significantly longer simulations required to capture the second-scale (or longer) processes
important for self-assembly at interfaces. Further development of continuum models that can
describe orientation order or hybrid CG–continuum models could be particularly fruitful for
realistically modelling the nonequilibrium deposition processes involved in the formation of
organic-semiconductor interfaces.
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