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Abstract  

Spinal cord injury (SCI) is a devastating condition that affects more than 15,000 people in 

Australia. As there is no treatment or cure available, patients are often burdened with a lifetime of 

disability and co-morbidity. Growing evidence supports the use of stem cells to repair the spinal 

cord following injury, with dental pulp stem cells (DPSCs) in particular showing superior 

regenerative capacity and modulation of immune responses following injury. However, studies 

demonstrate that only approximately 1% of transplanted DPSCs survive due to harsh inflammatory 

conditions during SCI, thus limiting their full therapeutic benefits. Therefore, attempts to enhance 

the survival and viability of DPSCs should be investigated. Utilising fluorescence activated cell 

sorting, the present study characterised the inflammatory responses of peripheral blood 

mononuclear cells (PBMCs) in a clinically relevant rat model of contusion SCI, showing 

phenotypic variations between SCI, Sham and non-injured animals. Moreover, a novel approach 

was used to precondition DPSCs with PBMCs taken 3 days post-injury. Cytotoxicity analysis 

revealed that cytotoxicity is significantly higher following 7 days of culture than 3, particularly 

following pro-inflammatory TNF- conditioning (p<0.05), but less cytotoxic than when DPSCs 

were cultured alone. Interestingly, following pro-inflammatory conditioning, co-cultured DPSCs 

were found to release significant amounts of IL-6 (p<0.0001), which may be involved in 

modulating the pro-inflammatory environment. This data suggests that preconditioning of DPSCs 

and PBMCs in co-culture for 3 days is a suitable ex vivo strategy to enhance the viability and 

immunomodulatory behaviour of DPSCs. 
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Introduction 

 

 

Spinal cord injury (SCI) is a debilitating condition caused by direct insult to the spinal cord. It results 

in the long-term loss of functional mobility and/or sensation due to impaired conduction of 

descending motor and ascending sensory signals, and greatly increases the chance of morbidity and 

mortality.1, 2 It is estimated that there are 15,000 Australians currently living with SCI3 with 374 new 

cases in 2016-2017 alone.4 Despite a wealth of knowledge on the pathophysiology of SCI, there is 

still no treatment to stop or revert the neurological deficits within the spinal cord following injury.  

 

Central nervous system (CNS) injuries elicit secondary injury cascades (Fig. 1) within minutes that 

exacerbate neurological damage, creating a non-permissive environment for physiological 

regeneration.5 This includes acute haemorrhagic swelling,6 excitotoxicity,7 oxidative stress, ionic 

imbalances,8, 9 inflammatory cell recruitment and neuroinflammation,10  all of which lead to neural 

and glial apoptosis and axon demyelination,7, 11 thus worsening functional outcomes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Multiple secondary injury cascades (including inflammation and cell death) follow the 

primary injury and exacerbate damage. Schematic extracted from Scholpa and Schnellmann.12 

 

Inflammation is upstream of many secondary injury cascades and is both a driver and consequence 

of excitotoxicity, oxidative stress and ionic imbalances.13 However, immune cells can change their 
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phenotype based on environmental cues (Fig. 2) and thus have varying effects on CNS tissue. Pro-

inflammatory M1 polarised cells are activated by interferon-gamma (IFN-), lipopolysaccharide 

(LPS) and tumour necrosis factor (TNF),14, 15 releasing cytokines that contribute to pathogen 

destruction and phagocytosis, but cause collateral damage to healthy neurons and glia.15, 16 

Conversely, anti-inflammatory M2 cells are activated by interleukin-4 (IL-4), IL-13 and IL-1017 and 

work to promote tissue protection and repair18, 19 through functions such as angiogenesis, axon 

growth, tissue remodelling20 and suppression of pro-inflammatory effects.15 

 

These inflammatory responses involve immune cells including lymphocytes (T-cells, B-cells), 

neutrophils and monocytes (microglia, macrophages). In the spinal cord following injury, the first 

responders are resident microglia which clear debris and fight infection.21, 22 Neutrophils appear in 

the SCI lesion within 4-6h23 and release proteases6 and oxidative factors that injure neurons and glia 

and cause demyelination.24 Monocytes then infiltrate the spinal cord, reaching maximal numbers 

within 7-10 days and persist for weeks to months after injury.23 Microglia/macrophages, which are 

indistinguishable within the CNS, exhibit mainly pro-inflammatory phenotypes in SCI, leading to 

excessive oxidative factor release and neurotoxicity.20 Microglia/macrophages also function as 

antigen presenting cells, recruiting T and B-cells to the injury site which release further pro-

inflammatory cytokines.25 
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Figure 2. Pro-inflammatory (M1) and anti-inflammatory (M2) immune cell polarisation and their 

respective cell products (cytokines) and responses. Schematic extracted from Martinez and 

Gordon.15  

 

Furthermore, immune function becomes dysregulated in chronic SCI due to insufficient dampening 

of the pro-inflammatory response, leading to increased neural and glial degeneration and death.21, 23, 

26 Blocking TNF-27 and the pro-inflammatory IL-1 cytokine28 has been shown to reduce apoptosis 

and demyelination in the spinal cord, highlighting the detrimental effects of pro-inflammation in 

SCI.23, 24 Therefore, inflammatory responses within SCI greatly impact functional outcomes,29, 30 

supporting the premise that targeting pro-inflammatory responses acutely would aid in SCI recovery 

and prevent chronic dysregulation.13 

 

Despite inflammation and immune cells having a notorious reputation in injury and disease, studies 

have demonstrated the efficacy of activated immune cell engraftment as a potential targeted treatment 

strategy for SCI which circumvents the adverse effects of pharmaceuticals,31, 32 directly promoting 

recovery whilst encouraging appropriate inflammatory responses. Prewitt et al. first showed that 
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implantation of microglia/macrophages into transected nerves in rodents significantly promoted axon 

regeneration.33 Following this, studies engrafted preconditioned anti-inflammatory peripheral 

macrophages following SCI, which increased wound healing and nerve regeneration in rodent 

studies13, 34 and showed safety in human trials.35 Contradictory to long-standing knowledge of 

immune cell populations, studies have shown that unlike microglia, infiltrating peripheral 

macrophages perform anti-inflammatory roles,36, 37 including wound healing and decreasing lesion 

size, and improve locomotor function following SCI.38 However, treatment with anti-inflammatory 

macrophages alone has limitations, supported by findings describing a 20-40% phenotype loss of 

transplanted cells, favouring pro-inflammatory phenotypes once within the harsh acute SCI 

microenvironment.20 Additionally, low functional recovery within Phase 1 and 2 human clinical trials 

limits translation from bench-to-bedside.35, 39 Therefore, further studies are needed to develop novel 

strategies to increase the viability of anti-inflammatory immune cell populations, particularly blood-

derived macrophages, following SCI.  

 

Mesenchymal stem cells (MSCs) have been investigated within the field of neuroregeneration for 

decades, and, importantly, interact with immune cells to modulate inflammatory responses.40-44 This 

includes decreasing apoptosis and lesion size, reducing the effects of pro-inflammatory cytokines 

such as IL-1 and TNF-, inhibiting immune cell proliferation45, 46 and releasing anti-inflammatory 

cytokines,42 peripherally and within the spinal cord.47, 48 Notably, a bidirectional relationship exists 

in which anti-inflammatory immune cells support the viability of stem cells18 by providing trophic 

effects,49 inducing cell renewal50 and promoting growth.51   

 

Neural crest derived dental pulp stem cells (DPSCs) are multipotent, self-renewing stem cells with 

MSC-like characteristics52, 53 (Fig. 3), that exert similar modulatory effects on immune cells as 

MSCs.54-58 These cells have a high regenerative capacity and higher proliferation rate than other MSC 
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populations,59 and can be extracted in a non-invasive and autologous manner from dental tissue,60, 61 

thus limiting considerations of ethics and cell rejection.  

 

 

Figure 3. DPSCs can be extracted non-invasively from dental tissue and have various 

differentiation potentials and clinical applications. Schematic extracted from Li et al.62 

 

As in MSC populations,47, 63 studies utilising DPSCs show survival rates of approximately 1-2% 

following CNS engraftment,57, 64 validating further investigation. Despite low survival, DPSCs have 

shown significant regeneration within the CNS and following SCI. In a rat stroke model, DPSCs 

promoted neuro-behavioural improvement with a ~2% survival rate.64 Similarly, DPSCs engrafted 

into SCI rat models significantly increased regeneration of nerve tracts and improved locomotor 

function.65, 66  

 

Neural cells 
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The independent administration of the two aforementioned preclinical SCI therapies (immune cell 

administration and DPSC administration) has great potential; however, issues concerning phenotype 

loss and low survival create gaps in knowledge. An increasing number of studies have outlined the 

potential of combinatorial treatment strategies for SCI that overcome the harsh inflammatory 

microenvironment whilst preserving neural and glial function.9, 67, 68 Therefore, the present study 

employed a novel approach of merging the two therapies into one, multifaceted treatment mechanism. 

This strategy takes advantage of the symbiotic relationship between DPSCs and immune cells in order 

to increase their viability and immunomodulatory behaviour in vivo, and could enhance their 

neuroregenerative and neuroprotective potentials following engraftment. However, little is known 

regarding DPSC and immune cell co-culture and its effects on cell viability and immunomodulation 

ex vivo. Additionally, a limited understanding of the behaviour of peripheral immune cell populations 

following SCI limits the knowledge of when these cells can be extracted and administered as 

combinatorial therapies.  

 

Hypothesis and aims 

We hypothesise that preconditioning DPSCs and peripheral blood mononuclear cells (PBMCs), 

comprised of T-cells, B-cells and monocytes, will reveal immunomodulatory activities and enhance 

the viability of both DPSCs and PBMCs for future engraftment into a SCI model. 

The aims of this project are, therefore, 1) to characterise how SCI changes the proportion of PBMC 

populations at different time-points following injury; 2) to identify a time-point for PBMC extraction 

and utilisation for novel preconditioning paradigms; and, 3) to investigate the effects of DPSC and 

PBMC preconditioning on cytotoxicity and immunomodulation ex vivo.  

 

By showing that DPSCs and PBMCs can be preconditioned through co-culture to induce 

immunomodulatory activity and increase viability, their regenerative potential can then be further 

investigated in vivo. Knowledge gained from these studies could be used to develop a novel SCI 
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treatment mechanism that not only boosts cellular regeneration, but also limits the negative effects of 

inflammation. On a wider scale, this project could aid in the development of a viability model for 

DPSC survival, which may be used in a range of chronic pathologies both within the CNS and 

peripherally, particularly in those linked to an imbalance of inflammatory responses. 
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Methods 

 

 

Animal surgeries. Adult female Sprague-Dawley rats (10-12 weeks; Bioresources, SAHMRI) were 

housed in a 12h light/dark cycle and fed ad libitum. Animals were sedated with Diazepam (1.75 

mg/kg) and anaesthetised using isoflurane (2.0-2.5% v/v). Surgical sites were triple swabbed with 

ethanol and betadine solution and a longitudinal incision was made through the skin to reveal the 

spinal column. Partial laminectomy at T9-T11 was conducted to expose the spinal cord without 

disrupting the meninges. Using an Infinite Horizon impactor device (Precision Systems), animals 

received a moderate-severe T10 contusion (200kDyne) to the dorsal surface of the spinal cord.69 The 

incision site was closed with nylon sutures and wound clips. Surgical control (Sham) animals received 

laminectomies only, whilst non-injured animals served as negative controls. Saline and 

Buprenorphine (0.01mL/100g bodyweight; 0.0324mg/kg) were administered post-operatively and 

then twice daily until 5 days post-injury (dpi), then once daily until 7 dpi.  Benacillin (0.02mL/100g 

bodyweight; 64mg/kg [150mg/mL procaine penicillin, 150mg/mL benzathine penicillin, 20mg/mL 

procaine hydrochloride]) was administered immediately after and at 2, 4 and 6 dpi. Bladders of SCI 

rodents were manually expressed twice daily until normal bladder function returned (7-10 dpi). All 

procedures performed complied with the Australian Code for the Care and Use of Animals for 

Scientific Purposes (National Health and Medical Research Council (8th edition, 2013) with approval 

from the SAHMRI Animal Ethics Committee (SAM247; SAM413.19). 

 

PBMC isolation. Animals were deeply anaesthetised with isoflurane (5% v/v) and humanely killed 

via cardiac puncture: whole blood samples (4-8mL) from non-injured (n=5), Sham (n=30) and SCI 

animals (n=30) were harvested using a 25-gauge needle and split into two heparinised vacutainers 

(Greiner Bio-One) per animal, at 1, 2, 3, 7, 14 and 28 dpi. PBMCs were isolated via density gradient 

centrifugation using Lymphoprep (STEMCELL Technologies), according to the manufacturer 

instructions. Briefly, blood samples were diluted 1:1 with Dulbecco’s phosphate-buffered saline 

(DPBS; Thermo Fisher), centrifuged at 1200g for 10min, washed with DPBS and centrifuged at 500g 
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for 10min twice and resuspended in 50% (v/v) foetal bovine serum (FBS) (Thermo Fisher; Australian 

Origin), 40% (v/v) RPMI 1640 (Thermo Fisher) and 10% (v/v) dimethyl sulfoxide (Sigma). Each 

animal sample was split into four cryotubes, placed in Mr Frosty freezing containers (Thermo Fisher) 

overnight at -80C, and stored until further processing.70  

 

Fluorescence activated cell sorting (FACS). FACS analysis utilising a modified 9-colour staining 

panel71 was conducted to sort PBMC populations and obtain proportions of each as percentages of 

the total PBMC sample, to investigate aims 1 and 2. PBMC samples were thawed at 37C and washed 

with RPMI and 20% FBS and centrifuged at 500g for 10min twice. After incubating with viability 

assay and blocking with bovine serum albumin and CD32 (0.5g/L) for 15min at room temperature, 

1x106 cells/100L were incubated with conjugated antibodies obtained from BD Biosciences against 

CD45  (BUV 395 OX-1; 0.1g/L), CD4 (Horizon V450; 0.025g/L), CD3 (BV605 1F4; 

0.2g/L), CD45R (BUV 737 HIS24; 0.1g/L), RT1D (BV480 OX-17; 0.2g/L), CD161a (Alexa 

647 10/78; 0.1g/L), CD8a (BV786 OX-8; 0.2g/L), and from BioLegend against CD43 (PC7; 

0.2g/L), CD11b (FITC RUO; 0.5g/L), and CD172a (PE OX-41; 0.5g/L), as well as Brilliant 

Stain Buffer Plus (1:10; BD Biosciences) for 30min at 4C. Cell sorting was conducted using a FACS 

Aria Fusion cytometer (BD Biosciences). The gating strategy involved first removing debris, non-

living cells, cells stuck together and cells not positive for the hemopoietic marker CD45. PBMCs 

were then sorted sequentially, first using CD3 to sort T-cells, which were also separated by CD4 and 

CD8 expression. B-cells were sorted by CD45R expression and monocytes by CD43 and CD11b 

expression.  

 

PBMC and DPSC co-culture. Human DPSCs were donated by the Mesenchymal Stem Cell 

Laboratory (University of Adelaide) and isolated as previously described.59, 72 DPSCs were cultured 

in -MEM (Thermo Fisher) supplemented with 10% FBS, 2mM glutamine (Thermo Fisher), 100 

units/mL penicillin plus 100g/mL streptomycin (Thermo Fisher) and 100M L-ascorbate (Sigma) 
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and incubated at 37C in 5% CO2. 24h before co-culture, DPSCs at passage 6 were transferred to 48-

well plates at 5x103 cells/well resuspended in RPMI culture medium supplemented as above and 

incubated further. After 24h, 3d SCI (n=3) and 3d Sham (n=3) rat PBMC samples were thawed, 

washed twice with RPMI and seeded at 5x103 cells/well, on top of DPSC cultures or as monocultures, 

and supplemented with fresh culture medium. Culture medium only wells served as negative controls. 

Culture media was changed 24h following PBMC addition, and then every 48h, thus leaving adherent 

monocytes73 and DPSCs within wells.  

 

Cell culture preconditioning and cytotoxicity analysis. To investigate aim 3, cytotoxicity analysis 

was conducted after conditioning with inflammatory cytokines to determine the effects of co-culture, 

as well as DPSC-only and rat PBMC-only culture, on cell viability, using the CytoTox96
® Non-

Radioactive assay (Promega) according to manufacturer instructions. Wells were stimulated with pro- 

(TNF-, IFN-, granulocyte-macrophage colony-stimulating factor; GM-CSF) or anti-inflammatory 

(macrophage colony-stimulating factor; M-CSF) rat recombinant proteins (25ng/L) (STEMCELL 

Technologies) after 48h of culture. Non-stimulated wells served as negative controls. Half of the 

culture media was replaced with fresh recombinant protein media every 48h. Cell culture supernatants 

(n=3/condition) were collected and used to determine the level of lactate dehydrogenase release in 

each well as a measure of cytotoxicity74 after 3 and 7 days of culture, measuring absorbance at 490nm 

on a GloMax® Discover (Promega) plate reader.  

 

Measurement of DPSC cytokine release (Cytometric Bead Array). To determine the effect of 

preconditioning on DPSC inflammatory cytokine release as part of aim 3, supernatants collected from 

3 day co-culture wells were analysed using a Cytometric Bead Array - Human Soluble Protein Master 

Buffer Kit (BD Biosciences), according to manufacturer instructions. Briefly, 50L of each sample 

supernatant (n=3/condition) was added to a 96-well plate, followed by 50L of mixed IL-6, IL-1 

and TNF- Capture Bead solution and incubated for 1 hour. 50L of the corresponding mixed 
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Detection Reagent solution was then added and incubated for 2 hours. Fluorescence of each sample 

was analysed using a BD LSRFortessa™ X20 Flow Cytometer (BD Biosciences).  

 

Data and Statistical analysis. FACS cytometric data were analysed using FlowJo v10.7.1 (Becton 

Dickinson & Company). PBMC population proportions at different time-points and between Sham 

and SCI groups were analysed using mixed ANOVA. Cytotoxicity following inflammatory 

conditioning after 3 and 7 days and DPSC cytokine release were analysed using two-way ANOVAs. 

Sidak’s post hoc tests were utilised for multiple comparisons. Statistical analyses were conducted 

using GraphPad Prism v8.0 and were expressed as group mean ± SEM. Results were considered 

statistically significant at p<0.05. All data assumes normality unless otherwise stated.    
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Results   

 

Characterisation of PBMC populations reveals trends within Sham and SCI responses, and 

identifies a novel monocyte sub-population.  

Quantification of the proportion of PBMC samples utilising FACS analysis (Fig. 1) revealed no 

significant differences between non-injured, Sham or SCI groups in the proportion of B-cells 

(CD45R+) at any time-point over 28 dpi (p=0.15; Fig. 2A). Similarly, no significant differences were 

observed within total T-cell (CD3+) proportions (p=0.12) or cytotoxic (CD8+; p=0.41) and helper 

(CD4+; p=0.070) T-cell sub-populations (Fig. 2B-D). However, trends were noticed whereby 

proportions of B-cells were consistently reduced when comparing SCI to Sham animals up to 14 dpi. 

At 28 dpi, the proportion of B-cells in SCI increased (27.12%  11) compared to Sham (10.78%  

0.77). T-cell proportions trended higher at 2 (44.92%  8.0) and 3 dpi (37.28%  4.4) in SCI compared 

to Sham (24.15%  3.0 and 26.43%  4.7, respectively), with helper T-cell proportions increasing at 

3 dpi. Conversely, cytotoxic T-cell proportions were reduced at 2, 3 and 7 dpi following SCI.  

Although there were no significant differences between non-injured, Sham or SCI groups in total 

monocyte proportions (p=0.77), or CD43highCD11bhigh (p=0.10) and CD43lowCD11bhigh (p=0.35) 

monocyte sub-populations at any time-point, notable trends were observed (Fig. 2E-G). At 1 and 2 

dpi, CD43lowCD11bhigh (44.53%  13) and CD43highCD11bhigh (35.77%  6.8) monocyte sub-

populations increased following SCI when compared to Sham (28.70%  8.4 and 10.79%  6.8, 

respectively). Notably, a novel monocyte sub-population (CD43midCD11blow) not previously reported 

in SCI literature in rats was identified, which made up the greatest proportion of the total monocyte 

population (54.95%  8.6 in non-injured animals). CD43midCD11blow sub-populations were 

consistently lower in SCI animals when compared to Sham at 1, 2, 3, 14 and 28 dpi (Fig. 2H). 
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Figure 1. FACS analysis identified distinct immune cell populations. Representative gating strategy 

utilised to sort and identify CD3+ and CD4+ or CD8+ T-cells, CD45R+ B-cells, CD43+/SSC-A 

monocytes and CD43highCD11bhigh and CD43lowCD11bhigh monocyte sub-populations. Red ellipses 

indicate a novel monocyte sub-population (CD43midCD11blow) not previously identified in rats. 
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Figure 2. FACS analysis reveals non-significant trends between SCI and Sham PBMC proportions 

at different time-points. A, B, E Total B-cell, T-cell and monocyte populations, respectively, as 

proportions of the total PBMC sample. C, D CD8+ and CD4+ T-cell sub-populations as proportions 

of the total T-cell amount. F-H CD43highCD11bhigh, CD43lowCD11bhigh and CD43midCD11blow sub-

populations as proportions of the total monocyte amount. Time-point 0 indicates the mean of non-

injured animal PBMC proportions (n=5). Values expressed as mean  SEM; p>0.05. n=5.  

 

Conditioning of PBMCs, DPSCs and DPSC+PBMC co-cultures ex vivo with various rat 

inflammatory cytokines for 7 days increases cytotoxicity.  

Following conditioning with TNF-, IFN-, TNF-+IFN-, GM-CSF and M-CSF, PBMCs within 

both Sham (p<0.0001) and SCI groups (p<0.0001) showed significantly increased cytotoxicity 

following 7 days of conditioning when compared to 3 days (Fig. 3A-F). However, no significant 

differences were recorded between conditions at day 3, in both Sham and SCI groups (p=0.86), nor 

were Sham conditions significantly different from SCI conditions (p=0.29). 
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Figure 3. Conditioning of PBMCs from SCI and Sham animals with rat inflammatory cytokines has 

higher cytotoxicity following 7 days of conditioning. A No conditioning and conditioning with B TNF-

, C IFN-, D TNF-+IFN-, E GM-CSF and F M-CSF is significantly more cytotoxic following 7 

days of culture than 3 days, within both Sham and SCI PBMCs. Values expressed as mean  SEM; 

**p<0.01, ***p<0.001, ****p<0.0001. n=3.  
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Following conditioning with TNF-, IFN-, TNF-+IFN-, GM-CSF or M-CSF, cytotoxicity of 

DPSCs was significantly higher after 7 days of TNF- (p<0.0001), IFN- (p=0.0022) and TNF-

+IFN- (p=0.0071) stimulation, compared to 3 days. Following 7 days of conditioning, TNF- 

stimulated DPSCs had significantly higher cytotoxicity than those stimulated with GM-CSF 

(p=0.0068) or M-CSF (p=0.0053), and non-conditioned DPSCs (p=0.014) (Fig. 4). 

 

Figure 4. Conditioning of DPSCs with rat pro-inflammatory cytokines has higher cytotoxicity 

following 7 days of conditioning. Conditioning with the pro-inflammatory cytokines TNF-, IFN- 

and TNF-+IFN- is significantly more cytotoxic at 7 days of culture than 3. Values expressed as 

mean  SEM; *p<0.05, **p<0.01, ****p<0.0001. n=6.  

 

Cytotoxicity analysis was conducted following 3 and 7 days of co-culture of DPSCs and PBMCs. 

Following 7 days of conditioning, cytotoxicity was significantly increased in non-conditioned Sham 

co-cultures (p=0.007), and non-conditioned (p=0.005) and TNF- stimulated (p=0.02) SCI co-

cultures, compared to 3 days (Fig. 5A-F). No statistical significance was observed between different 

stimulation conditions following 3 days of conditioning (p=0.28) in either Sham or SCI groups.  
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Figure 5. Conditioning of DPSC+PBMC co-cultures with rat inflammatory cytokines reveals 

increased cytotoxicity following 7 days in TNF- and control conditions only. A No conditioning and 

conditioning with B TNF- is significantly more cytotoxic at 7 days of culture than 3 in co-cultures 

containing SCI PBMCs. No conditioning has greater cytotoxicity following 7 days of culture in co-

cultures containing Sham PBMCs. Conditioning with C IFN-, D TNF-+IFN-, E GM-CSF and F 

M-CSF reveals no statistical differences between culture time-points. Values expressed as mean  

SEM; *p<0.05, **p<0.01. n=3.  

 

Ex-vivo conditioning of DPSC+PBMC co-cultures with rat pro-inflammatory cytokines increases 

the release of IL-6 protein from DPSCs. 

Quantification of cytokines released from DPSCs co-cultured with PBMCs from Sham and SCI 

animals following 3 days of conditioning was performed utilising Cytometric Bead Array assays. 

Stimulation of DPSCs with TNF- and TNF-+IFN- significantly increased the release of IL-6 

cytokine by DPSCs, within both Sham (p<0.0001) and SCI co-culture groups (p<0.0001), when 

compared to no conditioning (Fig. 6A). Additionally, IL-6 release was significantly higher following 

TNF-+IFN- stimulation in SCI co-cultures compared to Sham (p<0.0001). No significant 

differences in IL-1 release were observed between Sham and SCI animals (p=0.93; Fig. 6B) or 

within any stimulation condition (p=0.95). No changes in TNF- were detected due to the abundance 

of protein being below the lower detectable limits of the array assay (data not shown).  
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Figure 6. DPSC+PBMC co-culture with rat inflammatory cytokines increases the release of IL-6 

protein from DPSCs. A IL-6 release is significantly increased following conditioning with TNF- 

and TNF-+IFN-. TNF-+IFN- conditioning in SCI co-culture has significantly higher IL-6 

release compared to Sham co-culture. B Changes in IL-1 release were not significant within any 

condition. Values expressed as mean  SEM; ****p<0.0001. n=3.   
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Discussion   

 

 

DPSC engraftment has previously been investigated as a strategy to regenerate the injured spinal 

cord65, 66 and address the lack of effective SCI treatment. However, low cell survival rates and 

viability within this hostile tissue environment limits translation from bench-to-bedside. Similarly, 

immune cell engraftment following SCI regulates pathological pro-inflammation following SCI,13, 34 

but is limited in its regenerative efficacy. Therefore, this study aimed to characterise how SCI changes 

PBMC populations in a clinically relevant contusion model of SCI, and to identify critical timepoints 

for PBMC extraction and utilisation in novel DPSC preconditioning co-culture models that could 

increase survival and viability of engrafted cells. Additionally, co-culture was conducted to further 

develop the limited understanding of the immunomodulatory effects of DPSCs and PBMCs ex vivo.  

 

Immune cells infiltrate the spinal cord within the first week following SCI, persisting at upregulated 

numbers for weeks to months75 and contribute to the exacerbation of secondary damage. FACS 

analysis showed acute, biphasic trends within each PBMC population following SCI, suggesting that 

PBMCs are recruited at these time-points, which could correspond to the biphasic opening of the 

blood-spinal cord-barrier at 1-2 and 6-10 dpi.76, 77 In parallel, the increases in T-cell and monocyte 

proportions at 1 and 7 dpi within our study coincide with T-cell and monocyte influxes within the 

spinal cord at the same time-points.26, 75, 78 Conversely, the decreased proportion of other PBMCs 

following SCI, such as B-cells, may be explained by immunodeficiency following SCI that limits the 

recruitment of immune cells to the spinal cord.79 

 

Acute trends in Sham responses may be useful to decipher a functional immune response that, if 

mimicked, could promote healing following SCI, addressing the gap of no viable SCI treatment. In 

particular, because studies have shown that peripheral monocyte/macrophage activation is beneficial 

following SCI,13, 33, 38 their responses within Sham peripheral blood could be pivotal. In our study, 

CD43lowCD11bhigh and CD43midCD11blow monocyte sub-populations varied most between Sham and 
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SCI groups. CD43low monocytes have previously been described as ‘classically activated,’ and are 

involved in pathogen clearance and more pronounced pro-inflammatory functions.71, 80, 81 

Contrastingly, CD43high ‘non-classically activated’ monocytes are smaller and less readily recruited 

within pro-inflammatory responses.82, 83 CD43lowCD11bhigh proportions remained higher in SCI 

compared to Shams, particularly at 3 dpi, thus corroborating CD43low descriptions. CD43mid 

monocytes have been suggested to be a transitional sub-population between the two subsets in 

humans and mice, but have not previously been identified in rats.83, 84 Additionally, low CD11b 

expression indicates an earlier state of monocyte/macrophage maturation.81, 85 Therefore, the novel 

CD43midCD11blow sub-population may be a developing subset more amenable to modulation. 

However, further studies are needed to determine which level of CD43/CD11b expression is most 

beneficial for SCI recovery. Co-culture of monocytes with DPSCs within specific inflammatory 

conditions could then be a viable mechanism to achieve this expression. Additionally, further studies 

are needed to identify whether monocyte sub-populations exhibit anti- or pro-inflammatory 

phenotypic genes20, 86 following SCI utilising real-time quantitative polymerase chain reaction, in 

order to support the selection of a time-point for their extraction that is most viable for SCI immune 

cell administration therapies.   

 

As no statistical significance was recorded, 3 dpi was chosen as the PBMC extraction time-point for 

culture experiments, due to consistent variations between Sham and SCI trends at this time-point in 

multiple PBMC populations. Additionally, this was done to provide ample time for co-culture whilst 

still remaining clinically relevant, in terms of administration of PBMC+DPSC cell therapy during a 

sub-acute time-point, shown to be most beneficial for stem cell engraftment.87 Within PBMC 

monoculture, 7 days of culture significantly increases cytotoxicity in all conditions. Interestingly, 

however, following 7 days of culture, only pro-inflammatory treatment with TNF-, IFN- and TNF-

+IFN- significantly increased cytotoxicity in DPSC monoculture. This is in line with previous 

studies that have highlighted the detrimental effects of TNF- and trophic effects of anti-
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inflammatory cytokines on DPSC viability,88 and suggests that GM-CSF and M-CSF conditioning 

may limit cytotoxicity of DPSCs beyond 3 days of culture. 

 

DPSC+PBMC co-culture was conducted to address the limited understanding of DPSC and PBMC 

interactions on cytotoxicity and immunomodulation. Once again, 3 days of culture was less cytotoxic 

than 7, particularly following TNF- conditioning. Compared to DPSC monoculture, cytotoxicity 

following TNF-, IFN- and TNF-+IFN- conditioning was reduced during the co-culture 

experiment,  highlighting symbiotic immunomodulatory interactions between PBMCs and DPSCs 

reported previously.51, 54 This provides evidence that preconditioning of DPSCs and SCI PBMCs 

through co-culture may be beneficial before engraftment into the injured spinal cord. Similarly, 3 day 

culture is most effective at maintaining cell viability, answering one of the main gaps addressed in 

this study. However, further studies are necessary to confirm the exact mechanisms by which 

cytotoxicity is reduced following co-culture.  

    

The cytokine assay showed, for the first time, that within TNF- and TNF-+IFN- pro-

inflammatory conditions, DPSCs significantly upregulate their secretion of IL-6, particularly 

following co-culture with SCI PBMCs. IL-6 protects DPSCs and MSCs from apoptosis, aiding wound 

healing in vitro following inflammation89 and increasing proliferation.90 Importantly, IL-6 is released 

during DPSC and MSC immunoregulatory functions,91 and works to inhibit the synthesis of pro-

inflammatory factors such as IL-1 and TNF-.92 Additionally, DPSC IL-6 secretion aids in anti-

inflammatory macrophage polarisation.93 These findings support the premise that co-culture of SCI 

PBMCs with DPSCs under pro-inflammatory conditions induces anti-inflammatory functional 

behaviour of DPSCs, which may modulate PBMCs to acquire anti-inflammatory phenotypes, thus 

answering a key gap in knowledge. However, conflicting studies suggest that IL-6 release is 

detrimental to recovery following SCI, due to its involvement in exacerbating pro-inflammation,94 

recruiting inflammatory cells,95, 96 and neuropathic pain.97 Therefore, further in vivo studies are 
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needed to identify whether engraftment of DPSCs secreting high levels of IL-6 into a SCI model 

worsens recovery, or whether the immunomodulatory properties of DPSCs inhibit the negative effects 

of IL-6. In parallel, investigation should be conducted into whether particular time-points following 

SCI, during which TNF- levels are highest, should be avoided for DPSC engraftment. 

  

This study has characterised changes in PBMC populations following SCI, and has shown that 

PBMCs extracted 3 dpi are suitable to achieve co-culture of PBMCs and DPSCs that has low 

cytotoxicity when cultured for 3 days, thus supporting our main hypothesis. Furthermore, we have 

shown that co-culture within pro-inflammatory conditions may be beneficial to induce anti-

inflammatory functions of DPSCs. Future in vivo studies are necessary to elucidate the effects of this 

preconditioning on DPSC and PBMC survival and viability following engraftment into a SCI model, 

which may lead to the development of a novel neuroregenerative and immunomodulatory SCI 

treatment. 
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