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Abstract

Efficient Fully-Convolutional Networks for Image Perception

by Hao Chen

Neural architecture search is widely applied to design networks to outperform
manually designed architectures. However, it is not trivial to be directly applied
to challenging perception tasks such as object detection since previous methods
often rely on manually designed complex operations such as RoI pooling and
RCNN heads. Thus, we look for universal fully-convolutional representations
for perception tasks, which are easy to optimise and deploy because of their sim-
ple structures. They perform well on dense prediction tasks such as semantic
segmentation, where the networks consist of a backbone module for visual fea-
ture extraction and a task-specific module for result generation. Designing the
task-specific modules helps us understand how these networks tackle perception
tasks and is also crucial for performance and efficiency improvements. However,
fully-convolutional networks fall behind two-stage approaches on instance-level
tasks such as object detection and instance segmentation. To solve this prob-
lem, we focus on designing fully-convolutional frameworks for instance detection
tasks and study the task-specific structures and improve their performance by
devising efficient neural architecture search algorithms. Our approach starts
by designing fully-convolutional models for instance detection tasks. With de-
formable convolution, we tackle the local-incoherence problem for top-down
instance segmentation, resulting in a fully-convolutional model with equivalent
expressiveness as a typical two-stage model. We also propose BlendMask, a
fully-convolutional instance segmentation network that is faster and more ac-
curate than the state-of-the-art two-stage models. Then we demonstrate the
benefit of having uniform representation by designing the first a panoptic seg-
mentation network solving instance and semantic segmentation with a single
branch. Targeting to improve the design of task-specific modules for fully-
convolutional perception models, we devised efficient neural architecture search
algorithms and applied them to video segmentation and object detection.

http://www.adelaide.edu.au
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Chapter 1

Introduction

Research in 2D machine perception involves designing algorithms for under-
standing scenes represented by 2D images, such as detecting and segmenting
general objects. In recent years, deep neural network based methods have been
the dominant approach because of its high expressiveness and the emergence
of massive datasets. Neural networks for perceptions typically consist of two
parts, a backbone module for visual feature extraction and a task-specific mod-
ule for predicting the final results. Many researches focus on the design of
task-specific modules, which is crucial for both the understanding of the tasks
and performance/efficiency improvements.

These perception models have been playing a crucial part in many applica-
tions such photography, augmented reality and autonomous driving and been
widely embedded in many devices such as mobile phone and drones. They have
to be computation and power efficient to be approachable to these low-end de-
vices and have to be compact enough to fit into the storage, which requires
great effort in the architecture design and acceleration.

Recently, neural architecture search (NAS) methods have attracted much
attention and outperformed manually designed architectures. However, many
of them focus on classification and cannot be directly applied to higher-level
perception tasks. An additional task-specific head following the networks found
for classification is required, to process the general visual features and generate
the final predictions. Sometimes, these algorithms fail to generalize to the
target perception task because they tend to overfit the simpler proxy task with
smaller dataset where search is conducted. In addition, it is intuitive that the
best models for classification may not be the best for higher-level perception
tasks because perceptions tasks often require richer spatial information and
representations with higher resolution.

Comparing to classification tasks, NAS on perception tasks such as semantic
segmentation and object detection is not widely studied. Many perception tasks
require more complicated network structures whose search space is difficult to
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design. Particularly, these more complex tasks requires more data and longer
training schedules, which makes the searching process inefficient.

Albeit being challenging, we find this area worth further studying for both
empirical and theoretical reasons. In this thesis, we introduce our works on
designing fully-convolutional frameworks for complex perception tasks e.g. in-
stance segmentation and efficient NAS algorithms to optimize the structure of
these perception networks. To make search possible for perception tasks, we
design unified powerful yet simple representation for instance-level tasks suit-
able for the search space design. We further design acceleration strategies to
make to searching process efficient on tasks such as segmentation and object
detection.

1.1 Motivation

Even though many perception tasks have a similar goal of classifying the object
in scenes, models for different tasks often have drastically different architectures.
This leaves great difficulties if we attempt to merge the models in multi-task
setting to share their intermediate features and reduce computational cost. For
example, panoptic segmentation [1] is a task that combines semantic segmen-
tation and instance segmentation, where each pixel is assigned to a class label
and different instances have different labels. If we rely on a two-stage method
for instance segmentation, we have to use a separate decoder for semantic seg-
mentation, leaving no room for feature sharing.

Instead, using a fully-convolutional approach for perception task not only
provides great flexibility for merging different heads in multi-task learning but
also leaves great room for architecture design optimisation. We looking for
universal fully-convolutional encoder-decoder framework for various perception
tasks and design automated algorithms targeting task-specific decoder architec-
ture optimisation.

Specifically, we formulate instance-level perception models in the form of
fully-convolutional networks, which previous state-of-the-art is two-stage meth-
ods such as Mask R-CNN [2]. Reduce the expressiveness gap [3] and improve
the performance to surpass their two-stage counterparts in the field of object
detection and instance segmentation. These models have been widely adopted
by the researchers and have been established as new strong baselines.

Based on these frameworks, we design NAS algorithms to search for compact
and powerful task-specific modules, which is not trivial. Usually, NAS algo-
rithms require expensive computation cost since evaluating each sample takes
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a complete training. We proposed a acceleration strategy, namely RL-NAS [4]
tailored for fully-convolutional sub-network search which speeds up the whole
process dramatically. Based on RL-NAS, we are able to search for dynamic cells
for video segmentation [5] and neck/head structures for object detection [6]. In
addition, for different tasks, the search space and training strategies also need
to be carefully chosen. Among the first researchers to explore NAS for percep-
tion tasks, we are happy to provide our empirical findings to the field as some
guidelines.

1.2 Contribution and Thesis Outline

We design efficient models for various perception tasks with the help of neu-
ral architecture search. This thesis proposes fully-convolutional framework for
instance-level tasks and efficient searching algorithms for the task-specific mod-
ules, as listed in Table 1.1. The contributions of this thesis are:

• A comprehensive study of top-down fully-convolutional instance segmen-
tation network. To address its major problem, we devise an intermediate
model, called SmalMask, that reduces the gap between one-shot and two-
stage by improving the local-coherence of mask prediction module with
deformable convolutions.

• A fast and accurate fully-convolutional instance segmentation framework,
called BlendMask, that enjoys the advantages of both previous top-down
and bottom-up approaches, which surpasses its two-stage counterpart
Mask R-CNN particularly in the mask quality and inference time con-
sistency.

• The first unified fully-convolutional panoptic segmentation framework,
called DR1Mask, that is twice more efficient than previous methods be-
cause a single very compact module is used for both instance segmentation
and semantic segmentation.

• An reinforcement learning based neural architecture search algorithm, RL-
NAS, for semantic segmentation, which focuses on finding efficient task-
specific sub modules in fully-convolutional networks. In particular, we
apply this algorithm to study the effect of dynamic cells in video segmen-
tation networks.

• Equipped with this algorithm, we discovered a state-of-the-art object de-
tection architecture, called NAS-FCOS, which is made possible by the
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fully-convolutional one-stage framework, FCOS (Fully-Convolutional One-
Shot Object Detection).

Perception Tasks Conventional
(complex)

Fully-
Convolutional
(easy to optimize)

NAS (efficient)

Semantic
Segmentation

- DeepLab [7] RL-NAS [4],
Chapter 6 [5]

Object Detection Faster R-CNN [8] FCOS [9] Chapter 7 [6]
Instance
Segmentation

Mask R-CNN [2] Chapter
3 [3],4 [10]

Future work

Panoptic
Segmentation

Panoptic FPN [1] Chapter 5 [11] Future work

Table 1.1. Thesis contributions: We propose simple and
easy to optimize fully-convolutional frameworks for instance seg-
mentation which surpass previous state-of-the-art conventional
methods and NAS algorithms targeting on dynamic structure in
video segmentation and object detection. I have contributed to
the work in italic. Works in bold font are the ones of which I am

the (co-) first author.

Chapter 2 provides the background for problems and techniques we use
in this thesis, i.e. deep learning based 2D machine perception tasks and neu-
ral architecture search algorithms. We survey related fully-convolutional ap-
proaches for perception tasks including semantic segmentation, object detec-
tion and instance segmentation and algorithms for automatic network design.
Among them, two of my collaborative works, RL-NAS [4] and FCOS [9] are the
most important foundation for the work in this thesis.

Chapter 3 describes one major shortcoming for top-down instance segmen-
tation models, i.e. local feature alignment and our proposed fix with deformable
convolution. Resulting in a fully-convolutional structure, SmalMask, that has
equivalent expressive power comparing to the two-stage counterpart. The con-
tent of this chapter is based primarily on [3].

Chapter 4 presents a better fully-convolutional framework for instance seg-
mentation called BlendMask. It preserves the local-coherence with a bottom-up
module and represent the instance-wise information with a top-down module.
BlendMask breaks the mask resolution limitation of two-stage methods while
being more efficient. The content of this chapter is based primarily on [10].

Chapter 5 demonstrates the benefit of fully-convolutional framework for
perception task in multi-task learning. By designing a more efficient dynamic
module, we present the first unified panoptic segmentation network, DR1Mask,
that segments thing and stuff from a single feature. DR1Mask is two times
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faster than previous SOTA approaches. The content of this chapter is based
primarily on [11].

Chapter 6 describes an example of applying RL-NAS to video semantic seg-
mentation. We study the choice of temporal propagation modules, aka dynamic
cells empirically, by quantifying the distribution of such operations during the
process of neural architecture search. In addition, we discovered an efficient ar-
chitecture for video segmentation. The content of this chapter is based primarily
on [5].

Chapter 7 presents our work of improving FCOS-based object detection
modules with RL-NAS. We are able to efficiently search a top-performing detec-
tion architecture within 4 days using 8 V100 GPUs. The discovered architecture
surpasses state-of-the-art object detection models by 1.5 to 3.5 points in AP on
the COCO dataset. The content of this chapter is based primarily on [6].

In Chapter 8 we summarize this thesis and discuss future directions for
fully-convolutional perception networks.
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Chapter 2

Background

2.1 2D Perception Tasks

2D perception tasks are targeted to interpret scenes similar to humans use their
eyes. The tasks can vary in their level of concept and granularity. On one end
there is dense prediction tasks which assign a prediction target to each pixel. On
the other end there is instance-level tasks such as object detection which only
requires sparse output signals related to the whole instances. Many tasks lie in
between, requiring information from both sides, such as instance segmentation
and human pose estimation. In this section, I will go through the basics and
introduce recent approaches to these tasks.

2.1.1 Static semantic segmentation

Most recent approaches in static semantic segmentation have been exploiting
fully convolutional neural networks [12]. Typical methods are based either on
the encoder-decoder structure with skip-connections [12], [13], dilated convolu-
tional layers [14]–[16], or the combination of the above [17]. Per-frame instanti-
ations of these networks are usually computationally expensive, hence, several
works have considered building light-weight segmentation architectures [18],
[19]. Nevertheless, due to the lack of information propagation between frames,
these networks perform poorly on videos and are unable to provide consistent
results.

2.1.2 Dynamic semantic segmentation

One of the first lines of work in video segmentation has been built upon the
usage of the optical flow [20], in which features extracted from the previous
frame are propagated to the current one via warping. This usually results in a
slight computational overhead, although as noted by Gadde et al. [21] an eas-
ily attainable noisy estimate of the optical flow still carries significant benefits.
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Nevertheless, the optical flow does not fair well in situations when scenes are
undergoing substantial changes with novel objects constantly appearing and
multiple occlusions being present. Thus, Jain et al. [22] have proposed to com-
bine the optical flow estimate with a relatively cheaper approximation of the
current frame using a smaller network. Xu et al. [23] have chosen to assign
different image regions to two different networks to process: while the first one
- deep and slow - works on regions that have significantly changed, the second
one - shallow - predicts new features based on the optical flow information. In
a similar vein, Nilsson and Sminchisescu [24] have propagated labels from the
previous frame at only those pixels where the optical flow estimate is reliable.

A seemingly different approach, proposed by Li et al. [25], instead predicts
local convolutional kernels based on the low-level representation of the current
frame that are applied on the prediction from the previous frame. Importantly,
while the current estimate is being used for next frame, a more accurate one is
being computed in parallel for future re-use.

In yet another line of work, Chandra et al. [26] have adapted Deep Gaussian
Random Field [27] to handle temporal information by predicting besides unary
and spatial pairwise terms also temporal pairwise terms, efficiently propagating
features between frames.

2.1.3 Object Detection

The frameworks of deep neural networks for object detection can be roughly
categorized into two types: one-stage detectors [28] and two-stage detectors [2],
[8].

Two-stage detection frameworks first generate class-independent region pro-
posals using a region proposal network (RPN), and then classify and refine
them using extra detection heads. In spite of achieving top performance, the
two-stage methods have noticeable drawbacks: they are computationally ex-
pensive and have many hyper-parameters that need to be tuned to fit a specific
dataset.

In comparison, the structures of one-stage detectors are much simpler. They
directly predict object categories and bounding boxes at each location of feature
maps generated by a single CNN backbone.

Note that most state-of-the-art object detectors (including both one-stage
detectors [28]–[30] and two-stage detectors [8]) make predictions based on an-
chor boxes of different scales and aspect ratios at each convolutional feature
map location. However, the usage of anchor boxes may lead to high imbalance
between object and non-object examples and introduce extra hyper-parameters.
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Anchor-free object detection Recent advances in object detection un-
veil the possibilities of removing bounding box anchors [9], [31]–[34], largely
simplifying the detection pipeline. This much simpler design improves the box
average precision (APbb) by 2.7% comparing to its anchor-based counter-part
RetinaNet [28]. One possible reason responsible for the improvement is that
without the restrictions of predefined anchor shapes, targets are freely matched
to prediction features according to their effective receptive field.

2.1.4 Instance Segmentation

Detect-then-segment instance segmentation The dominant instance seg-
mentation paradigms take the two-stage methodology, first detecting the objects
and then predicting the foreground masks on each of the proposals. The suc-
cess of this framework partially is due to the alignment operation, RoIAlign [2],
which provides local-coherence for the second-stage RoI heads missing in all one-
stage top-down approaches. However, two issues exist in two-stage frameworks.
For complicated scenarios with many instances, inference time for two-stage
methods is proportional to the number of instances. Furthermore, the resolu-
tion for the RoI features and resulting mask is limited. We discuss the second
issue in detail in Section 4.4.3.

These problems can be partly solved by replacing a RoI head with a simple
crop-and-assemble module. In FCIS, Li et al. [35] add a bottom module to
a detection network, for predicting position-sensitive score maps shared by all
instances. This technique was first used in R-FCN [36] and later improved in
MaskLab [37]. Each channel of the k2 score maps corresponds to one crop of
k × k evenly partitioned grid tiles of the proposal. Each score map represents
the likelihood of the pixel belongs to a object and is at a certain relative po-
sition. Naturally, a higher resolution for location crops leads to more accurate
predictions, but the computation cost also increases quadratically. Moreover,
there are special cases where FCIS representation is not sufficient. When two
instances share center positions (or any other relative positions), the score map
representation on that crop is ambiguous, it is impossible to tell which instance
this crop is describing.

In YOLACT [38], an improved approach is used. Instead of using position-
controlled tiles, a set of mask coefficients are learned alongside the box pre-
dictions. Then this set of coefficients guides the linear combination of cropped
bottom mask bases to generate the final mask. Comparing to FCIS, the respon-
sibility for predicting instance-level information is assigned to the top-level. We
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argue that using scalar coefficients to encode the instance information is sub-
optimal.

Bottom-up Beside the predict-then-segment approaches, it is also possible
to segment instances from the bottom up. These methods takes a predict-then-
group route. They first learn a instance-aware feature map for each pixel, then
they apply some grouping methods to predict instances. A straight-forward
grouping algorithm is clustering[39]. Depends on the properties of the learned
instance-aware embeddings, it is possible to apply all kinds of grouping meth-
ods, such as graph-based algorithms [40]. Some proposal-based models are
distantly related, as they perform patch-based grouping guided by detection
results. FCIS [35] assembles score map crops from corresponding locations like
InstanceFCN [41]; YOLACT [38] performs a weighted sum on the proposal
regions of the embeddings. We limit our search to top-down dense instance
segmentation for its simplicity.

2.2 Neural Architecture Search

2.2.1 Differentiable NAS

NAS methods aim to find high-performing architectures in an automated way.
However, it has not been widely adopted in common deep learning research
workflow since it is usually time consuming. We have seen great improvements
from 24, 000 GPU-days [42] to 0.2 GPU-day [43]. The trick is to first construct
a supernet containing the complete search space and train the candidates all at
once with bi-level optimization and efficient weight sharing [44], [45]. But the
large memory allocation and difficulties in approximated optimization prohibit
the search for more complex structures.

Recently researchers [46]–[48] propose to apply single-path training to reduce
the bias introduced by approximation and model simplification of the supernet.
DetNAS [49] follows this idea to search for an efficient object detection archi-
tecture. One limitation of the single-path approach is that the search space is
restricted to a sequential structure. Single-path sampling and straight through
estimate of the weight gradients introduce large variance to the optimization
process and prohibit the search for more complex structures under this frame-
work. Within this very simple search space, NAS algorithms can only make
trivial decisions like kernel sizes for manually designed modules.
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2.2.2 Reinforcement Learning Based Methods

Reinforcement learning (RL) [50] studies sequential decision making processes
to maximize the cumulative rewards. It can be applied to perform gradient free
optimisation. Here, we consider the reinforcement learning-based approach [51],
where a separate recurrent neural network (controller) outputs a sequence of to-
kens describing an architecture that should provide highest score on the holdout
validation set.

To speed up reward evaluation of RL-based NAS, the work of [4] proposes to
use progressive tasks and other training acceleration methods. By caching the
encoder features, they are able to train semantic segmentation decoders with
very large batch sizes very efficiently. In the sequel of this paper, we refer to
this technique as fast decoder adaptation.

2.2.3 NAS for perception tasks

Two results in static segmentation are worth mentioning: Chen et al. [52] used
a random search to find a single set of operations (so-called ‘cell’) on the top of
the DeepLab architecture [16], while Nekrasov et al. [53] exploited RL to find
a cell together with the topological structure of the encoder-decoder type of
architecture.

We borrow one of the architectures found by Nekrasov et al.as our static
baseline, and extend their NAS approach for video segmentation. Since we are
only searching for the dynamic component that connects different instantiations
of the already pre-trained static segmentation network, we are able to train and
evaluate each candidate in a short amount of time, the trait that is extremely
important for all NAS methods.

However, directly applying this technique to object detection tasks does
not enjoy similar speed boost, because they are either not in using a fully-
convolutional model [54] or require complicated post processing that are not
scalable with the batch size [28].

Object detection models are different from single-path image classification
networks in their way of merging multi-level features and distributing the task
to parallel prediction heads. Feature pyramid networks (FPNs) [1], [54]–[57],
designed to handle this job, plays an important role in modern object detection
models. NAS-FPN [55] targets on searching for an FPN alternative based on
one-stage framework RetinaNet [28]. Feature pyramid architectures are sam-
pled with a recurrent neural network (RNN) controller. The RNN controller
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is trained with reinforcement learning (RL). However, the search is very time-
consuming even though a proxy task with ResNet-10 backbone is trained to
evaluate each architecture.

Since all these three kinds of research ( [49], [55] and ours) focus on ob-
ject detection framework, we demonstrate the differences among them that
DetNAS [49] aims to search for the designs of better backbones, while NAS-
FPN [55] searches the FPN structure, and our search space contains both FPN
and head structure.
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Chapter 3

Smooth and Aligned Features for
Real-Time Instance Segmentation

3.1 Introduction

Recently, fully convolutional object detection methods have drawn much at-
tention because of their simple yet neat structures. Unifying the framework
of instance segmentation with fully convolutional object detectors is of great
interest, which can lead to easier analysis and more flexible network design. In
this chapter we draw connections between fully convolutional framework and
the better engineered two-stage approach, Mask R-CNN. To reduce the perfor-
mance gap between these two, we investigate the effect of local-coherence and
positional information on instance segmentation. Where we carry out a thor-
ough evaluation of current adaptive receptive field operations and anti-aliasing
samplers. We propose a predictor module named RoIPred, which outperforms
other dense mask predictors. Furthermore, we reduce redundant computation
of the predictor module by casting it to a two-stage representation. The re-
sulting model, SmalMask2, is a simple instance segmentation framework which
enjoys the advantages of both sides, scalable design, efficient computation and
improved performance. Our real-time model SmalMask2-RT is 2.7 mAP better
than the YOLACT model while having similar inference time, and the full-
fledged model SmalMask2+ attains 0.7 mAP higher while being 5× more effi-
cient than its TensorMask counterpart.

3.2 Background

The top performing object detectors and instance segmenters follow a two-stage
paradigm. A region proposal network (RPN) first predicts proposal candidates,
or regions of interest (RoIs). For the secend stage, a group of light-weight
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subnetworks, namely ‘heads’ refines the features inside RoIs and generate pre-
dictions [8]. In contrast, a dense object predictor/segmenter takes an end-to-end
paradigm. It predicts the targets directly with a fully convolutional network [9],
[28], [58]. Some of the most successful examples of the two frameworks shares
some common points: they often use a feature pyramid network (FPN) to gen-
erate feature maps of different sizes to deal with objects of different scales.

Two-stage object detectors were considered to be slower than the dense de-
tectors because of the per-region subnetwork computation [36] and more com-
plex post-processing. Here we want to clarify further: it is not always true. In
practice, with the typical number of foreground proposals being around 1000,
modern two-stage models such as Faster R-CNN [8] can be both faster and
more accurate than a typical one-stage model such as RetinaNet [28]1, since
the head computation is actually efficient for simple bounding box regression.
Some one-stage methods move the head computation to a parallel tower after
the feature pyramid, which can be more costly because the features are at a
higher resolution than the head RoIs. There is a speed-accuracy trade-off by
balancing the tower vs. head computation.

When it comes to instance segmentation, the head vs. tower speed-accuracy
trade-off leans towards the head much more. As the task for each instance be-
comes more difficult, it is more efficient to focus on RoIs and make the head
more complex. Otherwise, a large portion of computation could be wasted on
background locations. But this does not put the effort of studying dense in-
stance segmenters in vain. First, they are easier to be incorporated into modern
one-stage object detectors[9], which are proved to be competitive in efficiency
and performance. Second, the computation cost for the fully convolutional
paradigm does not scale with the number of foreground objects as two-stage
methods do. Last but not least, they provide a nice baseline for studying the
dense feature learning in convolutional neural networks, which is our focus in
this chapter.

DeepMask [59] is regarded as the first deep dense instance segmenter, which
performs a per-pixel instance prediction on the feature maps. A convolution
layer predicts mask logits with a fixed size as a flattened vector. This straight-
forward representation lays down the foundations and leave some challenging
problems. The feature map the mask predictor samples are usually either mis-
aligned with the target. This can happen when the feature is not capable of
describing the whole instance.

1Please refer to the model zoo of the official Detectron2 repository: https://github.
com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md.

https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md


3.2. Background 15

Dai et al. [41] propose to mitigate the feature misalignment by assembling
features from different patches. Chen et al. [60] goes one step further by intro-
ducing a densely aligned representation for each location of the target instance
mask. By aligning every pixel with the high-resolution target mask, their Ten-
sorMask is able to achieve performance similar to the two-stage Mask R-CNN.
However, using the aligned representation introduces great representation re-
dundancy which slows down the model severely.

Feature pyramids in dense object detectors suffer from position resolution
degradation introduced by strided convolutions. For other dense prediction
tasks, this can be dealt with by refining the features with an encoder-decoder
framework. However, the dense instance mask prediction layer requires larger
receptive field but usually has a much smaller sampling density than an RoI
pooler (5 × 5 convolution vs. 14 × 14 RoIAlign). This requires the features to
sample on to be more compact as well. In practice, we map targets to higher
levels of FPN in dense object detectors than in their two-stage counter-parts.
The downside of this is that comparing to lower levels, higher levels lack spatial
information.

Because of these existing issues, it is difficult to design a dense instance
segmenter as efficient as Mask R-CNN. In TensorMask [60], to match the per-
formance, head computation is increased which makes the running time three
times as long as Mask R-CNN.

In this chapter, we try to answer the following two questions:

1. What is the gap between dense instance segmenters and the two-stage
approaches?

2. Can we reduce this gap and propose a form of algorithms in between these
two which enjoy the advantages from both sides?

Our work is driven by the goal of trying to empower one-stage framework
with the following two properties:

Aligned Features It is common in object detection networks to align fea-
tures according to anchors or proposals. In two-stage frameworks, feature mis-
alignment in RoI sampling [8] can be mitigated with RoIAlign [2]. For one-
stage methods, the alignment process is often done with a convolution layer
or its variations. RefineDet [61] uses several vanilla convolutions to refine fea-
tures associated with anchors. Guided anchor instead uses the proposal shape
to generate offset field for a deformable convolution layer [62], which is used
to align the feature. Chen et al. [63] propose RoIConv, which is a deformable
convolution with offsets calculated from an RPN network. This operation is
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more aligned to the proposal, and is equivalent to a dense RoIAlign followed by
a fully connected layer.

We perform an extensive investigate of different feature aligning layers. Our
method is different from RoIConv in that we apply the aligned operation directly
to the last prediction layer, which we argue helps preserving local-coherence.
And we use ground-truth instead of prediction to generate the sampling loca-
tions. Experiments show that this increases stability to the local supervisions
and improves the final performance.

Smooth Features In signal processing, a low-pass filter is often applied to
the signal before downsampling to avoid aliasing. Zhang [64] applied this idea
to convolutional neural networks to avoid unstable classification results acting
to small image shifts. The conventional strided convolution is replaced by a con-
volution with stride 1, following a BlurPool operation, which is implemented as
a strided blur convolution kernel. We apply this low-pass filter to our backbone
network before the features getting downsampled by strided-convolutions.

We first conduct extensive experiments to investigate the above listed prob-
lems to search for the answers. Then we then compare our solution directly to
its two-stage equivalent and analyze the pros and cons of each method. Our
study and experiments proves that by reducing the head computation, two-stage
models can be more efficient than dense models while avoiding their represen-
tation issues. Our result is a simple architecture, SmalMask (SMooth and
ALigned Mask Predictor), closely tied to a state-of-the-art one-stage object de-
tector, FCOS [9], by adding only one layer to the top for mask prediction. More
specifically, our contributions are:

• A single layer remedy called RoIPred for aligning dense instance segmen-
tation features is devised.

• We apply blurred convolution to reduce sampling alias in strided convo-
lutions.

• Mask prediction quality is further improved.

• We incorporate this solution to both dense and two-stage paradigms, re-
sulting in two models, SmalMask and SmalMask2.

• Learning from the weight-sharing and behavior in the dense model, we
propose to use multi-scale poolers to deal with the scale imbalance problem
in two-stage models.

• Comparing to previous best performing dense instance segmenter, Ten-
sorMask [60], SmalMask is five times faster, achieving on par mask APs.
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Figure 3.1. An illustration of the tower for dense instance
segmentation. Blue and orange blocks are the original modules
and features of FCOS. For the shared structure, we only add a
one-layer mask predictor module (green) on top of the bounding

box tower.

3.3 Methods

Our dense instance segmentation model SmalMask can be viewed as a hybrid
of FCOS [9] and DeepMask [59].

FCOS uses Feature Pyramid Networks [54] as its backbone structure, using
multi-scale features (pyramids) to predict objects of different sizes. This frame-
work provides feature augmentation and normalizes target scales for different
levels. This also plays a crucial role in dealing with object overlaps which can
potentially create target ambiguity [9].

We add a dense mask prediction module to the feature pyramid of FCOS.
While DeepMask generates mask of the same size as the input, we force this
module to generate masks of fixed size (28 × 28), then project the predictions
onto the corresponding detection results. Considering the computation effi-
ciency, we design two versions of SmalMask:

• The separate SmalMask has an independent mask-tower followed by the
mask prediction layer.

• The shared SmalMask adds minimal computation overhead to the FCOS
towers. The mask prediction layer is added to the box-tower.

In Figure 3.1, we illustrate the mask prediction tower of shared SmalMask. For
the separate structure, the mask head instead use another independent tower
of four convolutions. In Section 3.3.1, we discuss the design of mask prediction
layer to improve local-coherence.

Similar to other dense approaches, our baseline model is vulnerable to the
addressed problems:
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• Local-coherence missing: It is difficult for the dense feature to encode
information of the entire mask, which requires some points to be aware of
patterns very far from themselves. Moreover, the supervision is invariant
to their relative positions inside the box.

• Representation redundancy: All locations within the box foreground
has to predict the same mask repeatedly.

• Positional information loss: The highest level havs a resolution of
merely about ten pixels, which is very hard to preserve positional fidelity
after traditional strided downsampling.

In the following sections, we introduce our fixes to these problems. More
specifically, we devise an aligned mask predictor to retain local-coherence of
the features before prediction and its two-stage equivalent to avoid representa-
tion redundancy. Anti-aliasing and sampling tricks are applied to reduce the
downsampling information corruption almost for free.

3.3.1 Aligned Mask Predictors

Different from the feature adaptation layers in object detectors [61], [63], [65],
which adjust the features during the tower computation, we want to keep the
features aligned, i.e., coherent to their locations. So we directly apply feature
alignment to the final prediction layer. We enable the predictor to adjust re-
ceptive field according to detections. We compare vanilla convolution to two
types of deformable convolutions, DefConv, the one with unsupervised offset
and modulations [66] and two other predictors with proposal-guided offsets.

We now introduce RoIPred, our attempt to fix the local-coherence with an
aligned mask predictor. RoIPred is a deformable convolution with bounding box
guided offsets. For an input feature X ∈ RN×C×H×W , the RoIPred generates
mask predictions M ∈ RN×(M×M)×H×W given a set of bounding boxes B ∈
RN×4×H×W :

M = RoIPred(X,B). (3.1)

Given bounding box target or prediction b = (l, t, r, b) ∈ R4
≥0, which is the

distance from the point to the left, top, right, and bottom border, we compute
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Figure 3.2. Offsets computation and
feature sampling for RoIPred with ker-
nel size 3 × 3 guided by the bounding
box represented with black rectangle.
The bounding box is evenly divided
into nine crops. RoIPred uses the fea-
tures interpolated at the crop centers.
The offsets are computed accordingly.

the offsets (ox,oy) ∈ Rh × Rw for RoIPred with kernel size h× w as:

ox(i) =
(l + r)(2i+ 1)

2w
− l (3.2)

oy(j) =
(t+ b)(2j + 1)

2h
− t, (3.3)

where (i, j) ∈ {0, 1, . . . , w − 1} × {0, 1, . . . , h − 1}. An example of sampling
features for a 3 × 3 RoIPred is illustrated in Figure 3.2. This is equivalent to
RoiAlign with bin size 1× 1.

Like RoIAlign, RoIPred can adjust its receptive field according to the region
of interest. This makes the features pre-prediction to focus on their neighbour
regions and thus help with retaining the local-coherence.

Where should we get the box supervisions, from the ground truth (gt) or
the predicted detections? To answer this question, we design multiple teacher
forcing schedules to choose ground truth or predictions as box supervision. The
‘w/o’ schedule always uses box predictions; The ‘random’ schedule use ground
truth with probability 1−i/90, 000, where i is the current iteration number; The
‘fix’ schedule uses ground truth for the first 18k iterations; The ‘w/’ schedule
always uses the ground truth.

We discover that it is better to always use the ground truth. Some may
argue that using predictions at the later stage of training may help the model
to generalize at inference time. However, it is not the case. Since only the
ground truth box is aligned with our mask target, using ground truth boxes for
RoIPred is the best for keep local-coherence.

Figure 3.3 shows the prediction tower structures with different mask pre-
dictor modules. All modules uses a 5 × 5 convolution module to predict a
mask. RoIConv is the adaptation layer used by Chen et al. [63] and RoIPred
is our proposed predictor. The difference is between RoIConv and RoIPred is
that in RoIConv feature adaptation is before the convolution prediction, but in
RoIPred, the alignment and prediction happens at the same time. We compare
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later is more reasonable because further convolution operations
on the deformed feature map after alignment does not have clear

meaning.

their performance in Section 3.5.1.

3.3.2 Smooth Features

In the dense object detector FCOS, a set of sizes of interest define the matching
mechanism of objects to separate levels. A location is regarded as a positive
sample for a certain level, if the location is inside a box and distance from it to
the farthest edge of the box falls into the sizes of interest of that level, [a, b). For
a feature pyramid with P levels, the sizes of interest is defined as the positions.
of the pth level with stride 2p−1s is defined as be [2p−2L, 2p−1L), where L is the
canonical length for level 1.

By mapping objects of different sizes to different levels, FCOS is able to
learn a scale-invariant representation across the feature pyramid. However, it is
very sensitive to the sizes of interest. If we assign an object to a level too low,
the local-coherence is lost because of limited receptive field. On the other hand,
if we assign it to a level too high, position information is lost because of the
distortion in upsampling. In this section, we connect this phenomena with the
position information loss and describe our solution to the importance of smooth
features for our instance segmenter rooted signal processing techniques.

Downsampling by strided convolution and our RoIPred can introduce distor-
tions to our sampled features. This artifact is called aliasing, which is common
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when representing a high-resolution image at a lower resolution. The original
features we predict masks from have sampling strides ranging from 8 to 128.
The position information is gradually distorted moving from the lower to higher
levels. Two challenges rises from this effect: 1) How can we reduce the position
information loss? 2) How can we adjust our sampling strategy accordingly?

It is common to use low-pass filters such as sinc filter for spatial anti-aliasing
in computer graphics [67]. This makes the signal smooth to spatial variance.
Zhang [64] applied this technique to image classification and conditional image
generation. The idea is to filter the feature with a convolutional blur kernel be-
fore downsampling. This makes the network more robust to input shift corrup-
tions. We use this trick to avoid aliasing introduced during the downsampling.
By making the sampled feature more smooth, we can prevent the corruption
of position information. More specifically, we replace the strided convolutions
ConvK,s in the backbone with BlurConvK,s where K is the kernel size and s is
the stride:

BlurConvK,s(X) = BlurM,s ◦ConvK,1(X), (3.4)

where X ∈ RN×C×H×W is the input feature and BlurM,s is a Gaussian blur
kernel of sizeM×M and stride s. Thus, instead of downsampling directly with
the original convolution, we first apply the convolution and then a blur filter
without downsampling, then sample the features with stride s.

To better retain positional information, we make the mask predictor down
to sample from lower levels, where the fine-grained information is rich. In
FCOS [9], each level is assigned to a maximum length of object corresponding
to this stride, restricting them to predict object bounding boxes and masks
spanning from 8 to 16 pixels on the feature map. We hypothesize that the level
of features for box regression is not optimal for mask prediction, we should
move the mask prediction to lower levels where the instance details are better
stored. But if we move them too low, the aliasing effect increases again, since
this decrease the sampling frequency of the mask predictor. Therefore, we
experiment moving the mask prediction lower only by one level.

We name this trick ‘lower-level mask sampling’. The formal definition is
following. Given bounding boxes Bs ∈ RN×4×W

s
×H

s , where s is the feature
stride with regarding to the input size, to sample features X2ls from l layers
lower, we use a RoIPred with stride 2l:

Ms = RoIPred2l(X2ls,Bs), (3.5)
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so that the mask prediction and locations are corresponding to the original
features.

3.4 Two-Stage Interpretation

Because of the connections between RoIPred and RoIAlign, we can implement
SmalMask in a two-stage fashion. The advantage of using two-stage framework
is that we can save computations to only focus on the most likely foreground
regions.

SmalMask2 We only transfer the shared SmalMask, to avoid adding an
independent mask tower. The most straight-forward two-stage implementation
of SmalMask is illustrated in Figure 3.4. We call this new model SmalMask2.
In SmalMask2, RoIPred is replaced with a two-stage light-weight RoI head,
SmalMask, which is a RoIAlign with sample ratio 1 followed by a fully connected
layer. RoIPred and SmalMask have the same effect and their parameters are
the same.

We only compute masks on the features inside the RoIs. RoIs are given by
ground-truth bounding boxes during training and predicted boxes after post-
processing during inference. Since out of the box losses are masked out and
predictions are not selected, SmalMask2 has essentially the same computation
as its dense counterpart SmalMask. The comparison between SmalMask and
SmalMask2 has shed some light on the design of efficient instance segmenters.
By reducing their head computation, two-stage models can be more efficient
than dense models while avoiding the representation issues of the dense models.

We want to retain the level-matching mechanism in FCOS [9] which has
been proved effective in the dense approach. So we match boxes by their longer
sides instead of areas in the conventional RoIAlign: a box is assigned to a level
if its longer side length falls into the sizes of interest of the corresponding level.
For a feature pyramid with P levels, we set the sizes of interest of the pth level
with stride 2p−1s to be [2p−2L, 2p−1L), where L is the canonical length for level
1. As discussed in Section 3.3.2, we can adjust the canonical length for the
pooler to sample smooth features for mask prediction.

Multi-Scale Poolers Even though the features and operations are the same
at inference phase, the two models are not equivalent during training. The most
significant difference is the number of foreground features used in mask training.
In the two-stage approach, each ground truth proposal is matched to one FPN
level according to the pooler’s setting. But in the fully convolutional approach,
it is typical for an object to be assigned to two levels, with the center locations
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Figure 3.4. Two-stage implementation of RoIPred, SmalHead
is an RoIAlign layer followed by a fully-connected layer.

on the lower one and border locations on the higher one. Since the tower weights
are shared across FPN levels, training with features from multiple levels has a
similar effect as within-network multi-scale augmentation [68].

Without this augmentation, our two-stage mask predictor suffers from under-
fitting. We propose a training time augmentation structure, termed multi-scale
poolers, i.e., retaining this augmentation by creating two poolers with different
canonical lengths during training. During inference, only the main pooler with
larger canonical length is used. According to our empirical study, this is helpful
in fixing the scale imbalance problem and has a similar effect as SNIPER [69].

SmalMask2-RT We design a compact version of our model, SmalMask-
RT, to compare with YOLACT [38], a recent real-time instance segmentation
method: i) the number of convolution layers in the prediction head is reduced
to three; ii) and we merge the classification tower and box tower into one by
sharing their features.

3.5 Experiments

Our experiments are reported on the MSCOCO 2017 instance segmentation
datatset [70]. It contains 123K images with 80-class instance labels. Our models
are trained on the train2017 split (115K images) and the ablation study is
carried out on the val2017 split (5K images). Final results are on test-dev.
The evaluation metrics are COCO mask average precision (AP), AP at IoU 0.5
(AP50), 0.75 (AP75) and AP for objects at different sizes APS, APM , and APL.
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Method tower AP AP50 AP75

Conv separate 29.2 52.3 29.5
shared 29.0 52.3 28.7

DefConv separate 29.7 52.6 30.4
shared 29.6 52.6 29.9

RoIConv [63] separate 30.6 53.4 31.5

RoIPred separate 31.3 53.4 32.7
shared 30.8 53.7 31.8

Table 3.1. Performance of box-aligned predictor: All
predictors have kernel size 5× 5.

Training details Unless specified, for the ablation study, ImageNet pre-
trained ResNet-50 [71] is used as our backbone network. We use the separate
SmalMask with four consecutive 3 × 3 convolutions. All networks are trained
with the 1× schedule of FCOS [9], i.e., we train our model for 90K iterations
with batch size 16 in 4 GPUs and base learning rate 0.01 with constant warm-up
of 1k iterations. The learning rate is reduced by a factor of 10 at iteration 60K
and 80K. Input images are resized to have shorter side 800 and longer side at
maximum 1333. All hyper-parameters are set to be the same with FCOS [9].

Testing details The unit for inference time is ‘ms’ in all our tables. For
the ablation experiments, performance and time of our models are measured
with one image per batch on one 1080Ti GPU.

3.5.1 Ablation Experiments

We investigate the effectiveness of our aligned mask module by carrying out
ablation experiments on the follow variations.

Aligned mask predictors We compare the performance of aligned pre-
dictors described in Section 3.3.1. Table 3.1 shows the results of replacing the
aligned RoIPred with normal convolution (Conv), deformable convolution (De-
fConv) and RoIConv. The proposed RoIPred shows obvious advantage over
other predictors. We guess deformable convolution cannot handle the align-
ment problem for two reasons: 1) It does not have access to the accurate box
information, so the align quality is lower. 2) Offsets are not perfectly aligned
with the supervisions. Comparing to RoIConv which also uses the gt boxes,
our RoIPred is still 0.7 mAP better. The reason we assume is that it is bet-
ter to keep the features aligned until the prediction. The prediction layer in
RoIConv after the aligned sampler can no longer refine its information because
each location is independent.
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Kernel Time AP AP50 AP75

3× 3 88 30.9 53.2 32.0
5× 5 115 31.3 53.4 32.7
7× 7 153 31.4 53.7 32.8

Table 3.2. Kernel sizes difference: The model we use for
the experiments is the separate version of SmalMask.

TF? AP AP50 AP75

w/o 30.4 52.9 31.5
random 30.4 52.9 31.5

fix 30.4 53.0 31.5
w/ 31.3 53.4 32.7

Table 3.3. Box supervision schedules comparison: TF is
abbreviation for teacher forcing. The four configurations corre-
sponds to our four schedules of when to use ground truth super-

vision.

What is the optimal kernel size? We measure the average inference
time and performance for RoIPred with different kernel sizes. The results are
shown in Table 3.2. By increasing the kernel size of RoIPred from 3×3 to 7×7,
the performance keeps improving. We do not try sizes larger than 7×7 because
the improvement from 5 × 5 is very subtle, however, it increases the inference
time by 38ms. We decide to use 5× 5 because of the speed trade-off.

Should we use teacher forcing? We test the effectiveness of ground
truth supervision for the offsets. Four different schedules are tested. The w/o
schedule always uses box predictions; The random schedule use ground truth
with probability 1− i/90, 000, where i is the current iteration number; The fix
schedule uses ground truth for the first 18k iterations; The w/ schedule always
uses the ground truth. During training, we want the segmentation targets to be
local-coherent. As shown in Table 3.3, the one that always uses ground truth
has clear advantage to the others since it can always provide the most accurate
segmentation targets. The other three schedules do not have clear difference
from one another.

How to assign levels and sizes for mask predictions? We conjecture
that mask prediction should be predicted from features with higher resolution
comparing to bounding box prediction. So we conduct experiments changing
the feature level assignments of the RoIPred predictors. Three configurations
are tested, the original assignment (P3–P7), top level down by one (P3–P6,
P6), and all levels except the first down by one (P3, P3–P6). As shown in
Table 3.4, even though simply moving the top predictor does not help with the
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Levels L AP APS APM APL

P3–P7 64 31.3 15.5 34.4 43.5
P3–P6, P6 64 31.1 15.2 34.4 43.2
P3, P3–P6 64 31.7 15.3 34.9 44.3

P3, P3–P6 7× 7 64 31.7 15.5 35.0 44.6
P3, P3–P6 128 31.4 15.2 35.1 43.7
P3, P3–P6 48 31.6 15.0 35.1 44.3

Table 3.4. Comparison of level selections and sizes of
interest: The levels are the feature names from the pyramid
where we predict masks from. P3–P7 is the baseline model using
the same feature levels for box and mask predictions; P3–P6, P6
means moving the top level prediction from P7 to P6; P3, P3–P6
means moving all predictors except the first down by one level.
We also include experiments with different canonical length L.
All predictions use a 5 × 5 RoIPred as the predictor except the

one specified 7× 7.

Operator BatchNorm AP AP50 AP75

Conv freeze 30.8 53.0 32.2
train 31.4 53.8 32.4

BlurConv freeze 31.4 54.1 32.8
train 31.9 54.5 33.4

Table 3.5. Improvements of anti-aliased downsampling:
Conv is the normal strided convolution. BlurConv is the op-
erator described in eq. 3.4. In the second column, freeze means
that batchnorm is not updated, and train means that batchnorm

parameters are trained.

Model L AP APS APM APL

SmalMask2
96 32.3 15.9 35.4 45.4
128 32.1 16.1 35.3 44.9

64, 128 32.5 16.5 35.6 45.1

SmalMask2-RT 128 29.0 12.9 31.9 43.0
64, 128 29.5 11.8 32.4 44.1

Table 3.6. Two-stage results: Both models are trained with
resize augmentation. SmalMask2 has shorter size [640, 800],
and SmalMask2-Rt [440, 550]. Models are implemented with
Detectron2. L is the canonical length of pooler(s) used dur-
ing training. During testing, the pooler with largest L is used.
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Method Backbone Epochs Time AP AP50 AP75 APS APM APL

Mask R-CNN*
R-50

72 > 90 36.8 59.2 39.3 17.1 38.7 52.1
TensorMask 72 > 380 35.5 57.3 37.4 16.6 37.0 49.1

SmalMask2+ 36 76.0 36.1 59.0 38.2 21.5 39.0 44.5
Mask R-CNN*

R-101
72 > 118 38.3 61.2 40.8 18.2 40.6 54.1

TensorMask 72 > 400 37.3 59.5 39.5 17.5 39.3 51.6
SmalMask2+ 36 97.9 38.0 60.8 40.6 22.5 40.8 47.5

Table 3.7. Comparison with state-of-the-art on the COCO-
Things test-dev. Our SmalMask2+ models are based on
Detectron2. Speed is measured with a single 1080Ti. We in-
crease the receptive field for the R101 SmalMask2+ predictor

from 5× 5 to 7× 7.

Method Backbone NMS Resolution Time APbb AP AP50 AP75

YOLACT R-101 Fast 550× 550 34.2 32.5 29.8 48.3 31.3
700× 700 46.7 33.4 30.9 49.8 32.5

Mask R-CNN R-50 Batched 550× ∗ 63.4 39.1 35.3 56.5 37.6
SmalMask2-RT 38.3 39.0 32.5 54.1 34.1

Table 3.8. Real-time setting comparison of speed and ac-
curacy with other state-of-the-art methods on COCO val2017.
Metrics for YOLACT are obtained using their official code and
trained model. Mask R-CNN and SmalMask models are trained
and measured using Detectron2. Resolution 550×∗means using

shorter side 550 in inference.

accuracy, moving all predictors down in parallel improves the performance. This
is because lower features have higher resolution for masks, and the number of
objects assigned to each level is more balanced. We also notice that increasing
the predictor kernel size after lower level sampling does not leads to significant
improvement.

We also modify the canonical length L for different levels after we notice the
advantage of using lower level features for prediction. From the original 64 to 80

(larger) and 48 (smaller). Also shown in Table 3.4, both modifications cannot
further improve the performance, because these also affects the bounding box
detection.

Smooth downsampling Replacing the strided convolutions in the back-
bone with BlurConv yields 0.6 AP improvement (Table 3.5). The improvement
is consistent if we update the batch norm parameters, which results in 0.5 AP
improvement.
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3.5.2 Two-Stage Version

We train our two-stage version SmalMask2 and SmalMask2-RT with 1× sched-
ule. Both models do not have independent mask tower, and SmalMask2-RT has
a single tower with three convolution layers for joint classification and box re-
gression. Both models are trained with multi-scale augmentation, input for the
RT models are smaller (550). We demonstrate the effect of multi-scale poolers
in Table 3.6. SmalMask performs better with a single pooler with L = 96 than
L = 128. But adding an auxilieary pooler with L = 64 increases the mask AP
by 0.4 on SmalMask2 and 0.5 on SmalMask2-RT.

3.5.3 Main Results

We compare Mask R-CNN [2] and TensorMask [60] on COCO test− dev with
our two models, SmalMask2+ with shorter side 800, and the real-time version
SmalMask2-RT with shorter side 550. Both models utilize SmalHead for predic-
tion and use BlurConv for downsampling. Since our ablation models are heavily
under-fitted, we increase the training iterations to 270K (3× schedule), tuning
learning rate down at 180K and 240K. Following Chen et al.’s strategy [60], we
use multi-scale training with shorter side randomly sampled from [640, 800] and
[440, 550] respectively.

As shown in Table 5.8, SmalMask2+ outperforms TensorMask using only
half of the training iterations. The R101 model achieves better accuracy. Smal-
Mask2 is also more efficient. Measured on V100 GPU, the best R-101 Smal-
Mask2 runs at 0.07s/image, vs. TensorMask’s 0.38s per image, vs. Mask R-
CNN’s 0.09s per image [60]. Since our SmalHead has only one FC layer, the
additional time for complex scenes is nearly negligible. On the contrary, for two-
stage Mask R-CNN, the head computation is much longer, and the inference
time increases significantly if the number of predicted instances grows.

YOLACT resizes all images to square, changing the aspect ratios of inputs.
Also, a paralleled NMS algorithm called Fast NMS is used in YOLACT. We do
not adopt these two configurations because they are not conventionally used in
instance segmentation researches. In YOLACT, a speedup of 12ms is reported
by using Fast NMS. We instead use the Batched NMS in Detectron2, which
could be slower than Fast NMS but does not sacrifice the accuracy.

Results in Table 3.8 shows that SmalMask2-RT is 11ms faster and 1.4 AP
higher than YOLACT-700, making our model competitive under the real-time
settings.
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3.6 Conclusion

We revisit the relationships between dense and two-stage approaches for in-
stance segmentation using a simple baseline duo, SmalMask and SmalMask2.
Based on both models, we propose multiple solutions to improve the local-
coherence and positional information for mask prediction, and their underlying
connections are discovered. Our main findings are 1) many tricks for dense mod-
els and two-stage models are interchangeable 2) by reducing head computation,
two-stage models can be more efficient than the dense models while avoiding
their representation issues. Our SmalMask2 is a simple and effective frame-
work for instance segmentation. It outperforms the more complex TensorMask
while being five times faster. Furthermore the real-time version SmalMask2-RT
achieves 32.5 mAP at 26 FPS evaluated on a single 1080Ti. We believe our
SmalMask2 could serve as a simple baseline for many other instance-level dense
prediction tasks.
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Chapter 4

BlendMask: Fully-Convolutional
Framework for Instance
Segmentation

4.1 Introduction

Instance segmentation is one of the fundamental vision tasks. Recently, fully
convolutional instance segmentation methods have drawn much attention as
they are often simpler and more efficient than two-stage approaches like Mask
R-CNN. To date, almost all such approaches fall behind the two-stage Mask
R-CNN method in mask precision when models have similar computation com-
plexity, leaving great room for improvement. In this chapter, we achieve im-
proved mask prediction by effectively combining instance-level information with
semantic information with lower-level fine-granularity. Our main contribution
is a blender module which draws inspiration from both top-down and bottom-
up instance segmentation approaches. The proposed BlendMask can effectively
predict dense per-pixel position-sensitive instance features with very few chan-
nels, and learn attention maps for each instance with merely one convolution
layer, thus being fast in inference. BlendMask can be easily incorporated with
the state-of-the-art one-stage detection frameworks and outperforms Mask R-
CNN under the same training schedule while being 20% faster. A light-weight
version of BlendMask achieves 34.2% mAP at 25 FPS evaluated on a single
1080Ti GPU card. Because of its simplicity and efficacy, we hope that our
BlendMask could serve as a simple yet strong baseline for a wide range of
instance-wise prediction tasks.
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Figure 4.1. Blending process. We illustrate an example of
the learned bases and attentions. Four bases and attention maps
are shown in different colors. The first row are the bases, and the
second row are the attentions. Here ⊗ represents element-wise
product and ⊕ is element-wise sum. Each basis multiplies its

attention and then is summed to output the final mask.

4.2 Background

The top performing object detectors and segmenters often follow a two-stage
paradigm. They consist of a fully convolutional network, region proposal net-
work (RPN), to perform dense prediction of the most likely regions of interest
(RoIs). A set of light-weight networks, a.k.a. heads, are applied to re-align
the features of RoIs and generate predictions [8]. The quality and speed for
mask generation is strongly tied to the structure of the mask heads. In addi-
tion, it is difficult for independent heads to share features with related tasks
such as semantic segmentation which causes trouble for network architecture
optimization.

Recent advances in one-stage object detection prove that one-stage meth-
ods such as FCOS can outperform their two-stage counterparts in accuracy
[9]. Enabling such one-stage detection frameworks to perform dense instance
segmentation is highly desirable as 1) models consisting of only conventional
operations are simpler and easier for cross-platform deployment; 2) a unified
framework provides convenience and flexibility for multi-task network architec-
ture optimization.

Dense instance segmenters can date back to DeepMask [59], a top-down
approach which generates dense instance masks with a sliding window. The
representation of mask is encoded into a one-dimensional vector at each spatial
location. Albeit being simple in structure, it has several obstacles in training
that prevent it from achieving superior performance: 1) local-coherence between
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features and masks is lost; 2) the feature representation is redundant because a
mask is repeatedly encoded at each foreground feature; 3) position information
is degraded after downsampling with strided convolutions.

The first issue was studied by Dai et al. [41], who attempt to retain local-
coherence by keeping multiple position-sensitive maps. This idea has been ex-
plored to its limits by Chen et al. [60], who proposes a dense aligned represen-
tation for each location of the target instance mask. However, this approach
trades representation efficiency for alignment, making the second issue difficult
to resolve. The third issue prevents heavily downsampled features to provide
detailed instance information.

Recognizing these difficulties, a line of research takes a bottom-up strat-
egy [40], [72], [73]. These methods generate dense per-pixel embedding fea-
tures and use some techniques to group them. Grouping strategies vary from
simple clustering [39] to graph-based algorithms [40] depending on the embed-
ding characteristics. By performing per-pixel predictions, the local-coherence
and position information is well retained. The shortcomings for bottom-up ap-
proaches are: 1) heavy reliance on the dense prediction quality, leading to sub-
par performance and fragmented/joint masks; 2) limited generalization ability
to complex scenes with a large number of classes; 3) requirement for complex
post-processing techniques.

In this chapter, we consider hybridizing top-down and bottom-up approaches.
We recognize two important predecessors, FCIS [35] and YOLACT [38]. They
predict instance-level information such as bounding box locations and combine
it with per-pixel predictions using cropping (FCIS) and weighted summation
(YOLACT), respectively. We argue that these overly simplified assembling de-
signs may not provide a good balance for the representation power of top- and
bottom-level features.

Our objective is similar to TensorMask [60], which also discusses the align-
ment problem in dense instance segmenters and tries to reduce the gap between
dense and two-stage approaches. TensorMask uses a proposal-free segmentation
framework, making the dense prediction of large masks more compute-intensive.
Its proposed align representation requires each point to encode redundant seg-
mentation information for neighbourhood predictions, which makes the model
run three times slower than Mask R-CNN. Different from their approach, we
choose a proposal-based framework, more similar to Mask R-CNN and we reuse
same set of features for all dense mask predictions within the same object, which
makes our model efficient.

To break through these limitations, we propose a new proposal-based mask



34
Chapter 4. BlendMask: Fully-Convolutional Framework for Instance

Segmentation

generation framework, termed BlendMask. The top- and bottom-level repre-
sentation workloads are balanced by a blender module.

We base of instance segmentation network on a simple anchor-free object
detector FCOS. The benefits of using anchor-free object detector are twofold.
First, it is important to map target sizes with proper pyramid levels to fit
the effective receptive field for the features. Second, removing anchors enables
us to assign heavier duties to the top-level instance prediction module without
introducing overall computation overhead. For example, inferring shape and
pose information alongside the bounding box detection would take about eight
times more computation for anchor-based frameworks than ours.

This makes it intractable for anchor based detectors to balance the top vs.
bottom workload (i.e., learning instance-aware maps1 vs. bases). We assume
that this might be the reason why YOLACT can only learn one single scalar
coefficient for each prototype/basis given an instance when computation com-
plexity is taken into account. Only with the use of anchor-free bounding box
detectors, this restriction is removed.

Both levels are guaranteed to describe the instance information within their
best capacities. As shown in our experiments in Section 4.4, our blender
module improves the performance of bases combination methods comparing
to YOLACT and FCIS by a large margin without increasing computation com-
plexity.

Refining coarse masks with lower-level features BlendMask merges
top-level coarse instance information with lower-level fine-granularity. This idea
resembles MaskLab [37] and Instance Mask Projection (IMP) [74], which con-
catenates mask predictions with lower layers of backbone features. The differ-
ences are clear. Our coarse mask acts like an attention map. The generation is
extremely light-weight, without the need of using semantic or positional super-
vision, and is closely tied to the object generation. As shown in Section 4.3.4,
our lower-level features have clear contextual meanings, even though not explic-
itly guided by bins or crops. Further, our blender does not require a subnet on
top of the merged features as in MaskLab [37] and IMP [74], which makes our
method more efficient. In parallel to this work recent two single shot instance
segmentation methods have shown good performance [75], [76].

Higher-level features correspond to larger receptive field and can better cap-
ture overall information about instances such as poses, while lower-level features
preserve better location information and can provide finer details. One of the
focuses of our work is to investigate ways to better merging these two in fully

1Attention maps for BlendMask and simple weight scalars for YOLACT.
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convolutional instance segmentation. More specifically, we generalize the oper-
ations for proposal-based mask combination by enriching the instance-level in-
formation and performing more fine-grained position-sensitive mask prediction.
We carry out extensive ablation studies to discover the optimal dimensions,
resolutions, alignment methods, and feature locations. Concretely, we are able
to achieve the followings:

• We devise a flexible method for proposal-based instance mask generation
called blender, which incorporate rich instance-level information with ac-
curate dense pixel features. In head-to-head comparison, our blender sur-
passes the merging techniques in YOLACT [38] and FCIS [35] by 1.9 and
1.3 points in mAP on the COCO dataset respectively.

• We propose a simple architecture, BlendMask, which is closely tied to the
state of the art one-stage object detector, FCOS [9], by adding moldiest
computation overhead to the already simple framework.

• One obvious advantage of BlendMask is that its inference time does not
increase with the number of predictions as conventional two-stage methods
do, which makes it more robust in real-time scenarios.

• The performance of BlendMask achieves mAP of 37.0% with the ResNet-
50 [77] backbone and 38.4% mAP with ResNet-101 on the COCO dataset,
outperforming Mask R-CNN [2] in accuracy while being about 20% faster.
We set new records for fully convolutional instance segmentation, surpass-
ing TensorMask [60] by 1.1 points in mask mAP with only half training
iterations and 1/5 inference time.

To our knowledge, BlendMask may be the first algorithm that can out-
perform Mask R-CNN in both mask AP and inference efficiency.

• BlendMask can naturally solve panoptic segmentation without any mod-
ification (refer to Section 4.4.4), as the bottom module of BlendMask can
segment ‘things and stuff ’ simultaneously.

• Compared with Mask R-CNN’s mask head, which is typically of 28 × 28

resolution, BlendMask’s the bottom module is able to output masks of
much higher resolution, due to its flexibility and the bottom module not
being strictly tied to the FPN. Thus BlendMask is able to produce masks
with more accurate edges, as shown in Figure 4.4. For applications such
as graphics, this can be very important.

• The proposed BlendMask is general and flexible. With minimal modifi-
cation, we can apply BlendMask to solve other instance-level recognition
tasks such as keypoint detection.
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Figure 4.2. BlendMask pipeline Our framework builds upon
the state-of-the-art FCOS object detector [9] with minimal mod-
ification. The bottom module uses either backbone or FPN fea-
tures to predict a set of bases. A single convolution layer is added
on top of the detection towers to produce attention masks along
with each bounding box prediction. For each predicted instance,
the blender crops the bases with its bounding box and linearly
combine them according the learned attention maps. Note that
the Bottom Module can take features either from ‘C’, or ‘P’ as

the input.

4.3 Methodology

4.3.1 Overall pipeline

BlendMask consists of a detector network and a mask branch. The mask branch
has three parts, a bottom module to predict the score maps, a top layer to
predict the instance attentions, and a blender module to merge the scores with
attentions. The whole network is illustrated in Figure 4.2.

Bottom module Similar to other proposal-based fully convolutional meth-
ods [35], [38], we add a bottom module predicting score maps which we call
bases, B. B has a shape of N ×K × H

s
× W

s
, where N is the batch size, K is

the number of bases, H ×W is the input size and s is the score map output
stride. We use the decoder of DeepLabV3+ in our experiments. Other dense
prediction modules should also work without much difference. The input for
the bottom module could be backbone features like conventional semantic seg-
mentation networks [7], or the feature pyramids like YOLACT and Panoptic
FPN [1].

Top layer We also append a single convolution layer on each of the detec-
tion towers to predict top-level attentions A. Unlike the mask coefficients in
YOLACT, which for each pyramid with resolution Wl ×Hl takes the shape of
N ×K ×Hl ×Wl, our A is a tensor at each location with shape N × (K ·M ·
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M) × Hl ×Wl, where M ×M is the attention resolution. With its 3D struc-
ture, our attention map can encode instance-level information, e.g. the coarse
shape and pose of the object. M is typically smaller2 than the mask predic-
tions in top-down methods since we only ask for a rough estimate. We predict
it with a convolution with K ·M ·M output channels. Before sending them
into the next module, we first apply FCOS [9] post-process to select the top
D box predictions P = {pd ∈ R4

≥0|d = 1 . . . D} and corresponding attentions
A = {ad ∈ RK×M×M |d = 1 . . . D}.

Blender module is the key part of our BlendMask. It combines position-
sensitive bases according to the attentions to generate the final prediction. We
discuss this module in detail in the next section.

4.3.2 Blender module

The inputs of the blender module are bottom-level bases B, the selected top-
level attentions A and bounding box proposals P . First we use RoIPooler in
Mask R-CNN [2] to crop bases with each proposal pd and then resize the region
to a fixed size R×R feature map rd.

rd = RoIPoolR×R(B,pd), ∀d ∈ {1 . . . D}. (4.1)

More specifically, we use sampling ratio 1 for RoIAlign, i.e. one bin for each
sampling point. The performance of using nearest and bilinear poolers are
compared in Table 4.6. During training, we simply use ground truth boxes as
the proposals. During inference, we use FCOS prediction results.

Our attention size M is smaller than R. We interpolate ad from M ×M to
R×R, into the shapes of R = {rd|d = 1 . . . D}.

a′d = interpolateM×M→R×R(ad), ∀d ∈ {1 . . . D}. (4.2)

Then a′d is normalize with softmax function along the K dimension to make it
a set of score maps sd.

sd = softmax(a′d), ∀d ∈ {1 . . . D}. (4.3)

2The largest M we try is 14.
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Then we apply element-wise product between each entity rd, sd of the regions
R and scores S, and sum along the K dimension to get our mask logit md:

md =
K∑
k=1

skd ◦ rkd, ∀d ∈ {1 . . . D}, (4.4)

where k is the index of the basis. We visualize the mask blending process with
K = 4 in Figure 4.1.

4.3.3 Configurations and baselines

We consider the following configurable hyper-parameters for BlendMask:

• R, the bottom-level RoI resolution,

• M , the top-level prediction resolution,

• K, the number of bases,

• bottom module input features, it can either be features from the backbone
or the FPN,

• sampling method for bottom bases, nearest-neighbour or bilinear pooling,

• interpolation method for top-level attentions, nearest neighbour or bilin-
ear upsampling.

We represent our models with abbreviation R_K_M. For example, 28_4_4
represents bottom-level region resolution of 28 × 28, 4 number of bases and
4 × 4 top-level instance attentions. By default, we use backbone features C3
and C5 to keep aligned with DeepLabv3+ [7]. Nearest neighbour interpolation
is used in top-level interpolation, for a fair comparison with FCIS [35]. Bilinear
sampling is used in the bottom level, consistent with RoIAlign [2].

4.3.4 Semantics encoded in learned bases and attentions

By examining the generated bases and attentions on val2017, we observe this
pattern. On its bases, BlendMask encodes two types of local information, 1)
whether the pixel is on an object (semantic masks), 2) whether the pixel is on
certain part of the object (position-sensitive features).

The complete bases and attentions projected onto the original image are
illustrated in Figure 4.3. The first two bases (red and blue) detects points on
the upper-right and bottom-left parts of the objects. The third (yellow) base
activates on points more likely to be on an object. The fourth (green) base only
activates on the borders of objects. Position-sensitive features help us separate
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(a) Bottom-Level Bases (b) Top-Level attentions

Figure 4.3. Detailed view of learned bases and atten-
tions. The left four images are the bottom-level bases. The
right image is the top-level attentions. Colors on each position
of the attentions correspond to the weights of the bases, indicat-

ing from which part of which base is the mask assembled.

overlapping instances, which enables BlendMask to represent all instances more
efficiently than YOLACT [38]. The positive semantic mask makes our final
prediction smoother than FCIS [35] and the negative one can further suppress
out-of-instance activations. We compare our blender with YOLACT and FCIS
counterparts in Table 4.1. BlendMask can learn more accurate features than
YOLACT and FCIS with much fewer number of bases (4 vs. 32 vs. 49, see
Section 4.4.2).

4.4 Experiments

Our experiments are reported on the MSCOCO 2017 instance segmentation
datatset [70]. It contains 123K images with 80-class instance labels. Our models
are trained on the train2017 split (115K images) and the ablation study is
carried out on the val2017 split (5K images). Final results are on test-dev.
The evaluation metrics are COCO mask average precision (AP), AP at IoU 0.5
(AP50), 0.75 (AP75) and AP for objects at different sizes APS, APM , and APL.

Training details Unless specified, ImageNet pre-trained ResNet-50 [71] is
used as our backbone network. DeepLabv3+ [7] with channel width 128 is used
as our bottom module. For ablation study, all the networks are trained with the
1× schedule of FCOS [9], i.e., 90K iterations, batch size 16 on 4 GPUs, and base
learning rate 0.01 with constant warm-up of 1k iterations. The learning rate is
reduced by a factor of 10 at iteration 60K and 80K. Input images are resized to
have shorter side 800 and longer side at maximum 1333. All hyperparameters
are set to be the same with FCOS [9].
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Method AP AP50 AP75

Weighted-sum 29.7 52.2 30.1
Assembler 30.3 52.5 31.3

Blender 31.6 53.4 33.3

Table 4.1. Comparison of different strategies for merg-
ing top and bottom modules. Here the model used is
28_4_4. Weighted-sum is our analogy to YOLACT, reducing
the top resolution to 1 × 1. Assembler is our analogy to FCIS,
where the number of bases is increased to 16, matching each of

the region crops without the need of top-level attentions.

Testing details The unit for inference time is ‘ms’ in all our tables. For
the ablation experiments, performance and time of our models are measured
with one image per batch on one 1080Ti GPU.

4.4.1 Ablation experiments

We investigate the effectiveness of our blender module by carrying out ablation
experiments on the configurable hyperparameters in Section 4.3.3.

Merging methods: Blender vs. YOLACT vs. FCIS Similar to our
method, YOLACT [38] and FCIS [35] both merge proposal-based bottom re-
gions to create mask prediction. YOLACT simply performs a weighted sum of
the channels of the bottom regions; FCIS assembles crops of position-sensitive
masks without modifications. Our blender can be regarded as a generaliza-
tion where both YOLACT and FCIS merging are special cases: The blender
with 1 × 1 top-level resolution degenerates to YOLACT; and FCIS is the case
where we use fixed one-hot blending attentions and nearest neighbour top-level
interpolation.

Results of these variations are shown in Table 4.1. Our blender surpasses
the other alternatives by a large margin. We assume the reason is that other
methods lack instance-aware guidance on the top. By contrast, our blender has
a fine-grained top-level attention map, as illustrated in Figure 4.3.

Top and bottom resolutions: We measure the performances of our model
with different top- and bottom-level resolutions, trying bottom pooler resolution
R being 28 and 56, with R/M ratio from 14 to 4. As shown in Table 4.2, by
increasing the attention resolution, we can incorporate more detailed instance-
level information while keeping the running time roughly the same. Notice that
the gain slows down at higher resolutions revealing limit of detailed information
on the top-level. So we don’t include larger top settings with R/M ratio smaller
than 4.
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R M Time AP APS APM APL

28
2 72.7 30.6 14.3 34.1 42.5
4 72.9 31.6 14.8 35.2 45.0
7 73.9 32.0 15.3 35.6 45.0

56
4 72.9 32.5 14.9 36.1 46.0
7 74.1 33.1 15.1 36.6 47.7
14 77.7 33.3 16.3 36.8 47.4

Table 4.2. Resolutions: Performance by varying top-
/bottom-level resolutions, with the number of bases K = 4 for
all models. Top-level attentions are interpolated with nearest
neighbour. Bottom module uses backbone features C3, C5. The
performance increases as the attention resolution grows, saturat-

ing at resolutions of near 1/4 of the region sizes.

Different from two-stage approaches, increasing the bottom-level bases pool-
ing resolution does not introduce much computation overhead. Increasing it
from 28 to 56 only increases the inference time within 0.2ms while mask AP
increases by 1 point. In further ablation experiment, we set R = 56 and M = 7

for our baseline model if not specified.
Number of bases: YOLACT [38] uses 32 bases concerning the inference

time. With our blender, the number of bases can be further reduced, to even
just one. We report our models with number of bases varying from 1 to 8.
Different from normal blender, the one-basis version uses sigmoid activation on
both the base and the attention map. Results are shown in Table 4.3. Since
instance-level information is better represented with the top-level attentions,
we only need 4 bases to get the optimal accuracy. K = 4 is adopted by all
subsequent experiments.

Bottom feature locations: backbone vs. FPN We compare our bottom
module feature sampling locations. By using FPN features, we can improve
the performance while reducing the running time (see Table 4.4). In later
experiments, if not specified, we use P3 and P5 of FPN as our bottom module
input.

K AP AP50 AP75

1 30.6 52.9 31.6
2 31.2 53.4 32.3
4 33.1 54.1 34.9
8 33.0 53.9 34.9

Table 4.3. Number of bases: Performances of 56_K_7 mod-
els. For the configuration of one basis, we use sigmoid activation
for both top and bottom features. Our model works with a small

number of bases.
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Features M Time (ms) AP AP50 AP75

C3, C5 7 74.1 33.1 54.1 34.9
14 77.7 33.3 54.1 35.3

P3, P5 7 72.5 33.3 54.2 35.3
14 76.4 33.4 54.3 35.5

Table 4.4. Bottom feature locations: Performance with
bottom resolution 56× 56, 4 bases and bilinear bottom interpo-
lation. C3, C5 uses features from backbone. P3, P5 uses features

from FPN.

Interpolation M AP AP50 AP75

Nearest 7 33.3 54.2 35.3
14 33.4 54.3 35.5

Bilinear 7 33.5 54.3 35.7
14 33.6 54.6 35.6

Table 4.5. Top interpolation: Performance with bottom
resolution 56 × 56, 4 bases and bilinear bottom interpolation.
Nearest represents nearest-neighbour upsampling and bilinear is

bilinear interpolation.

Interpolation method: nearest vs. bilinear In Mask R-CNN [2], RoIAlign
plays a crucial role in aligning the pooled features to keep local-coherence. We
investigate the effectiveness of bilinear interpolation for bottom RoI sampling
and top-level attention re-scaling. As shown in Table 4.5, changing top inter-
polation from nearest to bilinear yields a marginal improvement of 0.2 AP.

The results of bottom sampling with RoIPool [78] (nearest) and RoIAlign [2]
(bilinear) are shown in Table 4.6. For both resolutions, the aligned bilinear
sampling could improve the performance by almost 2AP. Using aligned features
for the bottom-level is more crucial, since it is where the detailed positions
are predicted. Bilinear top and bottom interpolation are adopted for our final
models.

Other improvements: We experiment on other tricks to improve the per-
formance. First we add auxiliary semantic segmentation supervision on P3
similar to YOLACT [38]. Then we increase the width of our bottom module
from 128 to 256. Finally, we reduce the bases output stride from 8 to 4, to pro-
duce higher-quality bases. We achieve this by using P2 and P5 as the bottom
module input. Table 4.7 shows the results. By adding semantic loss, detection
and segmentation results are both improved. This is an interesting effect since
the instance segmentation task itself does not improve the box AP. Although
all tricks contribute to the improvements, we decide to not use larger basis
resolution because it slows down the model by 10ms per image.
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Alignment R M AP AP50 AP75

Nearest 28 7 30.5 53.0 31.6
56 14 31.9 53.6 33.4

Bilinear 28 7 32.4 54.4 34.5
56 14 33.6 54.6 35.6

Table 4.6. Bottom Alignment: Performance with 4 bases
and bilinear top interpolation. Nearest represents the original
RoIPool in Fast R-CNN [78] and bilinear is the RoIAlign in Mask

R-CNN [2].

Bottom Time (ms) APbb AP AP50 AP75

DeepLabV3+ 76.5 38.8 33.6 54.6 35.6
+semantic 76.5 39.2 34.2 54.9 36.4

+128 78.5 39.1 34.3 54.9 36.6
+s/4 86.4 39.2 34.4 55.0 36.8

Proto-P3 85.2 39.0 34.4 54.9 36.8
Proto-FPN 78.8 39.1 34.4 54.9 36.8

Table 4.7. Other improvements: We use 56_4_14x14 with
bilinear interpolation for all models. ‘+semantic’ is the model
with semantic supervision as auxiliary loss. ‘+128’ is the model
with bottom module channel size being 256. ‘+s/4’ means us-
ing P2,P5 as the bottom input. Decoders in DeepLab V3+ and
YOLACT (Proto) are compared. ‘Proto-P3’ has channel width
of 256 and ‘Proto-FPN’ of 128. Both are trained with ‘+seman-

tic’ setting.

We also implement the protonet module in YOLACT [38] for comparison.
We include a P3 version and an FPN version. The P3 version is identical to the
one used in YOLACT. For the FPN version, we first change the channel width
of P3, P4, and P5 to 128 with a 3× 3 convolution. Then upsample all features
to s/8 and sum them up. Following are the same as P2 version except that
we reduce convolution layers by one. Auxiliary semantic loss is applied to both
versions. As shown in Table 4.7, changing the bottom module from DeepLabv3+
to protonet does not modify the speed and performance significantly.

4.4.2 Main result

Quantitative resultsWe compare BlendMask with Mask R-CNN [2] and Ten-
sorMask [60] on the COCO test-dev dataset3. We use 56_4_14 with bilinear
top interpolation, the DeepLabV3+ decoder with channel width 256 and P3,

3To make fair comparison with TensorMask, the code base that we use for main
result is maskrcnn_benchmark. Recently released Detectron2 fixed several issues of
maskrcnn_benchmark (ROIAlign and paste_mask) in the previous repository and the per-
formance is further improved.
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Method Backbone NMS Resolution Time (ms) APbb AP AP50 AP75

YOLACT
R-101

Fast 550× 550 34.2 32.5 29.8 48.3 31.3
YOLACT Fast 700× 700 46.7 33.4 30.9 49.8 32.5

BlendMask-RT Batched 550× ∗ 47.6 41.6 36.8 61.2 42.4
Mask R-CNN R-50 Batched 550× ∗ 63.4 39.1 35.3 56.5 37.6

BlendMask-RT 36.0 39.3 35.1 55.5 37.1

Table 4.9. Real-time setting comparison of speed and ac-
curacy with other state-of-the-art methods on COCO val2017.
Metrics for YOLACT are obtained using their official code and
trained model. Mask R-CNN and BlendMask models are trained
and measured using Detectron2. Resolution 550× ∗ means us-
ing shorter side 550 in inference. Our fast version of BlendMask
significantly outperforms YOLACT in accuracy with on par ex-

ecution time.

P5 input. Since our ablation models are heavily under-fitted, we increase the
training iterations to 270K (3× schedule), tuning learning rate down at 180K
and 240K. Following Chen et al.’s strategy [60], we use multi-scale training
with shorter side randomly sampled from [640, 800]. As shown in Table 4.8, our
BlendMask outperforms both the modified Mask R-CNN with deeper FPN and
TensorMask using only half of their training iterations.

BlendMask is also more efficient. Measured on a V100 GPU, the best R-101
BlendMask runs at 0.07s/im, vs. TensorMask’s 0.38s/im, vs. Mask R-CNN’s
0.09s/im [60]. Furthermore, a typical running time of our blender module is
merely 0.6ms, which makes the additional time for complex scenes nearly neg-
ligible On the contrary, for two-stage Mask R-CNN with more expensive head
computation, the inference time increases by a lot if the number of predicted
instances grows.

Real-time setting We design a compact version of our model, BlendMask-
RT, to compare with YOLACT [38], a real-time instance segmentation method:
i) the number of convolution layers in the prediction head is reduced to three,
ii) and we merge the classification tower and box tower into one by sharing
their features. We use Proto-FPN with four convolution layers with width 128
as the bottom module. The top FPN output P7 is removed because it has
little effect on the detecting smaller objects. We train both BlendMask-RT and
Mask R-CNN with the ×3 schedule, with shorter side randomly sampled from
[440, 550].

There are still two differences in the implementation comparing to YOLACT.
YOLACT resizes all images to square, changing the aspect ratios of inputs.
Also, a paralleled NMS algorithm called Fast NMS is used in YOLACT. We do
not adopt these two configurations because they are not conventionally used in
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instance segmentation researches. In YOLACT, a speedup of 12ms is reported
by using Fast NMS. We instead use the Batched NMS in Detectron2, which
could be slower than Fast NMS but does not sacrifice the accuracy. Results
in Table 4.9 shows that BlendMask-RT is 7ms faster and 3.3 AP higher than
YOLACT-700. Making our model also competitive under the real-time settings.

Qualitative results We compare our model with the best available official
YOLACT and Mask R-CNN models with ResNet-101 backbone. Masks are
illustrated in Figure 4.4. Our model yields higher quality masks than Mask R-
CNN. The first reason is that we predicts 56×56 masks while Mask R-CNN uses
28 × 28 masks. Also our segmentation module mostly utilizes high resolution
features that preserve the original aspect-ratio, where Mask R-CNN also uses
28× 28 features.

Note that YOLACT has difficulties discriminating instances of the same
class close to each other. BlendMask can avoid this typical leakage. This
is because its top module provides more detailed instance-level information,
guiding the bases to capture position-sensitive information and suppressing the
outside regions.

4.4.3 Discussions

Comparison with Mask R-CNN Similar to Mask R-CNN, we use RoIPooler
to locate instances and extract features. We reduce the running time by moving
the computation of R-CNN heads before the RoI sampling to generate position-
sensitive feature maps. Repeated mask representation and computation for
overlapping proposals are avoided. We further simplify the global map repre-
sentation by replacing the hard alignment in R-FCN [36] and FCIS [35] with
our attention guided blender, which needs ten times less channels for the same
resolution.

Another advantage of BlendMask is that it can produce higher quality
masks, since our output resolution is not restricted by the top-level sampling.
Increasing the RoIPooler resolution of Mask R-CNN will introduce the following
problem. The head computation increases quadratically with respect to the RoI
size. Larger RoIs requires deeper head structures. Different from dense pixel
predictions, RoI foreground predictor has to be aware of whole instance-level
information to distinguish foreground from other overlapping instances. Thus,
the larger the feature sizes are, the deeper sub-networks is needed.

Furthermore, it is not very friendly to real-time applications that the in-
ference time of Mask R-CNN is proportional to the number of detections. By
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Method Backbone PQ SQ RQ PQTh PQSt

Panoptic-FPN [1] R-50 41.5 79.1 50.5 48.3 31.2
BlendMask 42.5 80.1 51.6 49.5 32.0

Panoptic-FPN [1] R-101 43.0 80.0 52.1 49.7 32.9
BlendMask 44.3 80.1 53.4 51.6 33.2

Table 4.10. Panoptic results on COCO val2017. Panoptic-
FPN results are from the official Detectron2 implementation,
which are improved upon the original published results in [1].

contrast, our blender module is very efficient (0.6ms on 1080 Ti). The addi-
tional inference time required after increasing the number of detections can be
neglected.

Our blender module is very flexible. Because our top-level instance attention
prediction is just a single convolution layer, it can be an almost free add-on to
most modern object detectors. With its accurate instance prediction, it can
also be used to refine two-stage instance predictions.

4.4.4 Panoptic Segmentation

We use the semantic segmentation branch of Panoptic-FPN [1] to extend Blend-
Mask to the panoptic segmentation, which is a combination of semantic and
instance segmentation. Its metric panoptic quality (PQ) captures performance
for all classes (stuff and things). We use annotations of COCO 2018 panoptic
segmentaiton task. All models are trained on train2017 subset and tested on
val2017. We train our model with the default FCOS [9] 3× schedule with
scale jitter (shorter image side in [640, 800]. To combine instance and semantic
results, we use the same strategy as in Panoptic-FPN, with instance confidence
threshhold 0.2 and overlap threshhold 0.4.

Results are reported in Table 4.10. Our model is consistently better than its
Mask R-CNN counterpart, Panoptic-FPN. We assume there are three reasons.
First, our instance segmentation is more accurate, this helps with both thing and
stuff panoptic quality because instance masks are overlaid on top of semantic
masks. Second, our pixel-level instance prediction is also generated from a
global feature map, which has the same scale as the semantic prediction, thus
the two results are more consistent. Last but not least, since the our bottom
module shares structure with the semantic segmentation branch, it is easier for
the network to share features during the closely related multi-task learning.
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4.4.5 More Qualitative Results

We visualize qualitative results of Mask R-CNN and BlendMask on the val-
idation set in Fig. 4.5. Four sets of images are listed in rows. Within each
set, the top row is the Mask R-CNN results and the bottom is BlendMask.
Both models are based on the newly released Detectron2 with use R101-FPN
backbone. Both are trained with the 3× schedule. The Mask R-CNN model
achieves 38.6% AP and ours 39.5% AP.

Since this version of Mask R-CNN is a very strong baseline, and both models
achieve very high accuracy, it is very difficult to tell the differences. To demon-
strate our advantage, we select some samples where Mask R-CNN has trouble
dealing with. Those cases include:

• Large objects with complex shapes (Horse ears, human poses). Mask
R-CNN fails to provide sharp borders.

• Objects in separated parts (tennis players occluded by nets, trains divided
by poles). Mask R-CNN tends to include occlusions as false positive or
segment targets into separate objects.

• Overlapping objects (riders, crowds, drivers). Mask R-CNN gets uncertain
on the borders and leaves larger false negative regions. Sometimes, it
assigns parts to the wrong objects, such as the last example in the first
row.

Our BlendMask performs better on these cases. 1) Generally, BlendMask
utilizes features with higher resolution. Even for the large objects, we use
stride-8 features. Thus details are better preserved. 2) As shown in previous
illustrations, our bottom module acts as a class agnostic instance segmenter
which is very sensitive to borders. 3) Sharing features with the bounding box
regressor, our top module is very good at recognizing individual instances. It
can generate attentions with flexible shapes to merge the fine-grained segments
of bottom module outputs.

4.4.6 Evaluating on LVIS annotations

To quantify the high quality masks generated by BlendMask, we compare our
results with on the higher-quality LVIS annotations [80]. Our model is compared
to the best high resolution model we are aware of, recent PointRend [81], which
uses multiple subnets to refine the local features to get higher resolution mask
predictions. The description of the evaluation metric can be found in [81].
Table 4.11 shows that the evaluation numbers will improve further given more
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Method Backbone resolution COCO AP LVIS AP?

Mask R-CNN X101-FPN 28× 28 39.5 40.7
PointRend X101-FPN 224× 224 40.9 43.4
BlendMask R-101+dcni3 56× 56 41.1 44.1

Table 4.11. Comparison with PointRend. Mask R-CNN
and PointRend results are quoted from Table 5 of [81]. Our
model is the last model in Table 4.8. Our model is 0.2 points
higher on COCO and 0.7 points higher on LVIS annotations.
Here LVIS AP? is COCO mask AP evaluated against the higher-

quality LVIS annotations.

accurate ground truth annotations. Our method can benefits from the accurate
bottom features and surpasses the high-res PointRend results.

4.5 Conclusion

We have devised a novel blender module for instance-level dense prediction tasks
which uses both high-level instance and low-level semantic information. It is
efficient and easy to integrate with different main-stream detection networks.

Our framework BlendMask outperforms the carefully-engineered Mask R-
CNN without bells and whistles while being 20% faster. Furthermore, the
real-time version BlendMask-RT achieves 34.2% mAP at 25 FPS evaluated on
a single 1080Ti GPU card. We believe that our BlendMask is capable of serving
as an alternative to Mask R-CNN [2] for many other instance-level recognition
tasks.
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ours ours YOLACT M-RCNN

ours ours YOLACT M-RCNN

ours ours YOLACT M-RCNN

ours ours YOLACT M-RCNN

Figure 4.4. Detailed comparison with other methods.
The large image on the left side is the segmentation result of
our method. We further zoom in our result and compare against
YOLACT [38] (31.2% mAP) and Mask R-CNN [2] (36.1% mAP)

on the right side. Our masks are overall of higher quality.
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Figure 4.5. Selected results of Mask R-CNN (top) and Blend-
Mask (bottom). Both models are based on Detectron2. The
Mask R-CNN model is the official 3× R101 model with 38.6 AP.
BlendMask model obtains 39.5 AP. Best viewed in digital format

with zoom.
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Chapter 5

DR1Mask: Segmenting
Background for Free with Rank-1
Dynamic Convolution

5.1 Introduction

As discussed in 4, fully-convolutional one-stage networks have shown superior
performance comparing to two-stage frameworks for instance segmentation as
typically they can generate higher-quality predictions with less computation.
In addition, their simple design opens up new opportunities for joint multi-task
learning. In this chapter, we demonstrate that adding a single classification
layer for semantic segmentation, fully-convolutional instance segmentation net-
works can achieve state-of-the-art panoptic segmentation quality. This is made
possible by our novel dynamic rank-1 convolution (DR1Conv), a novel dynamic
module that can efficiently merge high-level context information with low-level
detailed features which is beneficial for both semantic and instance segmenta-
tion. Our model is 10% faster and 1 mAP more accurate than previous SOTA
instance segmentation network BlendMask for instance segmentation.

Surprisingly, DR1Mask can perform panoptic segmentation by adding a sin-
gle layer. It is the first panoptic segmentation framework that relying on a
shared feature map for both instance and semantic segmentation according to
our knowledge. Not only our framework is much more efficient, two times faster
than two-branch approaches, the unified framework opens up opportunity for
using the same context module to improve the performance for both tasks.
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5.2 Background

The two-stage instance segmentation methods, most notably Mask R-CNN [2]
have difficulties generating high quality features efficiently. They utilize a sub-
network to segment the foreground instance from each proposals generated by
the region proposal network. Thus, the predicted mask resolution is restricted
by the second stage input size, typically 14× 14. Simply increasing this resolu-
tion will increase the computation overhead quadratically and make the network
hard to train.

Fully-convolutional instance segmentation models can predict high-resolution
masks efficiently because the features are shared across all predictions. The key
breakthrough of these methods is the discovery of a dynamic module to merge
of high level instance-wise features and the low level detail features. Recent
successful methods such as YOLACT [38], BlendMask [10] and CondInst [82]
choose to merge these two streams at the final prediction stage. The merging
mechanism in these models is similar to a self-attention, computing an inner-
product between the high-level and low-level features.

Similarly in semantic segmentation, researchers have found that incorpo-
rating higher level context information is crucial for the performance. Earlier
attempts such as global average pooling [7] and ASPP [83] target on increasing
the receptive field of single operations. More recent methods exploit second-
order structures closely related to self-attention [84], [85].

These closely related structures indicate there is possibility to unify the
context module for semantic and instance segmentation. The task of panoptic
segmentation [1] introduces a new metric for joint evaluation of these two tasks.
However, the dominate approaches still rely on two separate networks for stuff
and thing segmentation. This approach has limited prospect both in research
and in practice.

First, a model topping the instance segmentation leaderboard does not nec-
essarily indicate it is most suitable for panoptic segmentation. The current met-
ric for instance segmentation, mean average precision (mAP), is heavily biased
towards whole object detection and not sensitive to subtle instance boundary
misclassifications. To better discriminate the mask quality for instance seg-
mentation, we need to include metrics from related segmentation tasks. A
framework inherently compatible for both semantic and instance segmentation
can provide better feature sharing, which is more promising to also yield better
performance.
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Second, adopting a unified model for these two tasks can substantially re-
duce the representation redundancy. A fully-convolutional structures are easier
to be compressed and optimized for target hardware. This could open up op-
portunities for embedding panoptic segmentation algorithms in platforms with
low computational resources or real-time requirement and be applied in fields
such as autonomous driving, augmented reality and drone controls.

However, the features of segmentation branch in previous fully-convolutional
models such as BlendMask [10] and CondInst [82] cannot be easily used for
semantic segmentation because they typically contains very few channels, pro-
hibiting them to encode rich class sensitive information. Furthermore, the pa-
rameters of their dynamic modules do not scale up to wider basis features,
leading to very inefficient training and inference on a wider basis output such
as 64. Thus, the dynamic modules are often limited to the final prediction
module on very compact basis features.

In this work, we propose a novel unified, high-performing fully-convolutional
panoptic segmentation framework called DR1Mask. This is made possible by
our new way of merging higher level and local features for segmentation, dy-
namic rank-1 convolution (DR1Conv), which is efficient even on high dimen-
sional feature maps and can be applied to the intermediate layers and increase
the performance of both semantic and instance segmentation, leading to much
more efficient computation. More specifically, our contributions are:

• DR1Conv, a novel computation efficient contextual feature merging op-
eration that can improve the performance of instance and semantic seg-
mentation at the same time.

• An efficient embedding for instance segmentation based on tensor decom-
position, which adds almost no computation but can improve the instance
segmentation prediction by 1 mAP.

• Unified semantic and instance segmentation framework Dr1Mask that
achieves SOTA on both instance and panoptic segmentation benchmarks.

• Our model can produce complete panoptic segmentation results using only
the running time for previous best networks to finish instance segmenta-
tion. Generating the extra stuff segmentation costs only one layer that
is almost for free. It only takes half the running time for previous best
fully-convolutional framework Panoptic-DeepLab [86] while scoring 8 PQ
higher.
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5.3 Preliminaries

Panoptic segmentation tackles the problem of classifying every pixel in the
scene that assign different labels for different instances. Mainstream methods of-
ten take a two stream approach, using two separate networks to handle the stuff
(semantic) and thing (instance) segmentation and focus on devising methods
to fuse these two predictions [87], [88]. This is partly because previous state-
of-the-art instance segmentation networks follow a two-stage paradigm which
is not compatible with semantic segmentation pipeline. Panoptic-DeepLab [86]
uses bottom-up structure for both tasks but still has two separate decoders.
In addition, since it tackles instance segmentation with a bottom-up approach,
the model cannot scale to complex dataset such as COCO and its performance
falls behind two-stage methods. According to our knowledge, we are the first
to use a single branch for both semantic and instance segmentation, with the
only difference being the last prediction layers.

Dynamic networksNeural networks can dynamically modify its own weights
or topology based on inputs on the fly. Dynamic networks are used in natu-
ral language processing to implement dynamic control flow for adaptive input
structures [89]. The mechanism to mask out a subset of network connections
is called dynamic routing, which has been used in various models for computa-
tion reduction [90], [91] and continual learning [92]. Dynamically changing the
weights of network operations can be regarded as a special case of feature-wise
transformation [93]. The most common form is channel-wise weight modula-
tion in batch norm [94] and linear layers [95]. This is widely used to incorporate
contextual information in vision language [95], image generation [94] and many
other domains. Many of these dynamic mechanisms take a second-order form
on the input and have very similar effect as self-attention.

Recently, many networks have adopted some variant of attention mechanism
in both semantic and instance segmentation. For semantic segmentation, it
is used to learn a context encoding [96] or pairwise relationship [97]. Fully-
convolutional instance segmentation networks use a dynamic module to
merge instance information with high-resolution features. The design usually
involves applying a dynamically generated operator, which essentially is a gen-
eralized self-attention module. The module of YOLACT [38] takes a vector em-
bedding as the instance-level information and applies a channel-wise weighted
sum on the cropped features. BlendMask [10] extends the embedding into a 3D
tensor, adding two spatial dimensions for the position-sensitive features of the
instance. Most recently, CondInst [82] represents instance context with a set
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of dynamically generated convolution weights. Different from these approaches
which are only applied once during prediction, we aggregate multi-scale context
information at different stages with an efficient dynamic module.

To keep the number of dynamic parameters in the instance embedding in a
manageable scale, previous methods [10], [82] reduce the bottom feature channel
width to a very small number, e.g. 4. Even though it is enough for class agnostic
instance segmentation, this prohibits sharing the bottom output for semantic
segmentation. Instead, we design efficient instance prediction module for much
wider features, which in return also benefits the stuff segmentation quality.

BatchEnsemble [98] uses a low-rank factorization of convolution param-
eters for efficient model ensemble. In this paper, we adopt this technique to
generate efficient dynamic modules. We factorize a weight matrix W′ as a
static matrix W and a dynamic low-rank mask M,

W′ = W ◦M,where M = abT , (5.1)

where W′,W, M ∈ Rm×d, a ∈ Rm, b ∈ Rd and ◦ is element-wise product.
This factorization is efficient for matrix-vector product computation. A forward
pass with this dynamic layer can be formulated as

y = W′x = (W ◦ abT )x

= (W(x ◦ a)) ◦ b,

where x ∈ Rd, y ∈ Rm are the input and output vector respectively. Thus, this
matrix-vector product can be computed as element-wise multiplying a and b

before and after multiplying W respectively. This formulation also extends to
other linear operations such as tensor product and convolution. Dusenberry et
al. [99] use this factorization for efficient Bayesian posterior sampling in Rank-1
BNN.

5.4 DR1Mask: Unified Panoptic Segmentation

Network

5.4.1 Dynamic Rank-1 Convolution

We extend the factorization in Equation 5.3 to convolutions. Different from
BatchEnsemble [98] and Rank-1 BNN [99], we want the low-rank factors a

and b to preserve position information of 2D images. Thus, we follow the
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tensor representation in BlendMask [10] and densely predict two feature maps
A,B ∈ RC×H×W as the dynamic low-rank factors. For different locations, we
generate different dynamic parameters W′

hw from the corresponding locations
of A, B. We apply dynamic matrix-vector multiplication at position (h,w) as

yhw = W′
hwxhw = (W(xhw ◦ ahw)) ◦ bhw, (5.2)

where ahw and bhw are elements in the dynamic tensors A and B. This can
be interpreted as element-wise multiplying the context tensors before and after
the static linear operator.

Extending this to convolution, the dynamic rank-1 convolution (DR1Conv)
ConvW′ with static parameters W at location (h,w) takes an input patch xhw

and dynamic features ahw and bhw and outputs patch yhw:

yhw = (ConvW(xhw ◦ ahw)) ◦ bhw. (5.3)

DR1Conv has very efficient tensorized computation. Given X and two dynamic
tensors A, B with the same shape, DR1Conv outputs Y with the following
equation:

Y = DR1ConvA,B(X) = Conv(X ◦A) ◦B, (5.4)

where all tensors have the same size. This is implemented as element-wise
multiplying the dynamic factors A, B before and after the static convolution
respectively. The structure of DR1Conv is shown in Figure 5.1.

We argue that DR1Conv is essentially different from naive channel-wise mod-
ulation. The two related factors A, B combine to gain much stronger expressive
power while being as efficient in computation. As shown in later ablation exper-
iment results in Table 5.1, the combination of these two dynamic factors yields
higher improvement than the increments of the two factors individually added
together.

5.4.2 DR1Mask for Instance Segmentation

DR1Conv can be integrated into fully-convolutional instance segmentation net-
works. We base our model on the two-stream framework of YOLACT [38] and
BlendMask [10] and use DR1Conv as the contextual block to merge instance-
level and segmentation features. Besides the usual output of previous methods,
bounding box pi and instance embedding ei for instance i, our top-down branch
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Figure 5.1. Diagram of dynamic rank-1 convolution
(DR1Conv). ⊗ denotes element-wise multiplication. Tensors A,
B are the dynamic factors encoding the contextual information.
Each modulated the channels of the feature before and after the
convolution operation. X is the input and Y is the output. All

tensors have the same size.

also generates a multi-scale conditional feature pyramid {Cl = [Al,Bl]}. The
bottom-up branch aggregates the information from the backbone pyramid and
{Cl} to generate the final prediction. The framework of our model, DR1Mask
is shown in Figure 7.1.
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Figure 5.2. DR1Mask pipeline Our model follows the typi-
cal two-stream framework with one branch extracting instance-
level features (heads) and the other for pixel-level prediction
(DR1Basis). These two branches are connected by DR1Basis
which is an inverted pyramid network consists of DR1Convs. A
unified prediction layer can be appended to directly generate the

panoptic segmentation output.

The three key components of our model are the top layer, DR1Basis and
the unified prediction layer. We will introduce them one by one.
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Top Layer

The top layer produces the instance-wise contextual information {Cl} and the
instance embeddings {El}. It is a single convolution layer added to the object
detection tower of FCOS [9]. The conditional feature pyramid {Cl} has the
same resolution as corresponding backbone FPN outputs. Given FPN output
Pl, the top-down branch computes these features with the following equation:

{Cl,El} = Top(Tower(Pl)), l = 3, 4, . . . , 7 (5.5)

where Cl, El and Pl are tensors with the same spatial resolution. Cl can be
further split into the two dynamic tensors Al and Bl in Equation 5.4.1. The are
the dynamic factors in DR1Basis which we will later introduce in Section 5.4.2.

The densely predicted El along with other instance features such as class la-
bels and bounding boxes are later filtered into a set containing only the positive
proposals, {ei}. The instance embedding can take various forms, a vector [38],
a tensor [10] or a set of convolution weights [82]. We will introduce our novel
prediction module in Section 5.4.2.

DR1Basis

We name our bottom-up branch DR1Basis because it is built with DR1Conv
as the basic block. It aggregates the FPN features {Pl} and contextual fea-
tures {Cl} and produces the basis features for segmentation prediction like an
inverted pyramid. Starting from the highest level features with the smallest
resolution, at each step l for l = 7, 6 . . . , 3, it uses a DR1Conv to merge Pl and
Cl and upsample the result by a factor of 2:

Fl = DR1ConvAl,Bl
(Conv3×3(Pl) + ↑2(Fl+1)), (5.6)

where F8 = 0 and ↑2 is upsampled by a factor of 2 and Al,Bl are from Cl split
evenly along the channel dimension. We first reduce the channel width of Pl

with a 3 × 3 convolution. Then the channel width is kept the same through-
out the computation. In practice, we found that for instance segmentation,
32 channels are enough 1. The computation graph for DR1Basis is shown in
Figure 5.3.

1For semantic segmentation, performance get even better with 64 channels
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Figure 5.3. DR1Basis is an inverted pyramid network which
consists a sequence of DR1Convs.

This makes our DR1Basis very compact, using only 1/4 of the channels of
the corresponding block in BlendMask. In experiments, we found this makes
our model 6% faster while achieving even higher accuracy.

Instance Prediction Module

Similar to other crop-then-segment models, we first crop a region Fi from the
DR1Basis output F according to the detected bounding box bi using RoIAlign [2].
Then the crops from different bases are combined into the final instance fore-
ground mask guided by the instance embedding ei. YOLACT [38] simply per-
forms a channel-wise weighted sum with a vector embedding. BlendMask [10]
improved the mask quality by extending the embedding spatially but the num-
ber of bases is limited.

In practice, we provide two different choices targeting different scenarios.
For instance segmentation, we learn a low-rank decomposition for the attention
tensor in [10]. Full attention in BlendMask has 4 × 14 × 14 parameters. The
first dimension is the number of bases and the last two are spatial resolution.
There are two issues with this approach. First, 196 parameters per channel
prohibits applying this to a wider basis output. Second, using a linear layer to
generate so many parameters is not very efficient. In addition, noticing that the
attention maps generated by BlendMask are usually very coarse (see Figure 5.4),
we assume the representation is largely redundant.

We propose a new instance prediction module, called factored attention,
which has less parameter but can take in much wider basis features. We split
the embedding into two parts ei = [ti : si]. The first step is projection. We use
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Basis ROIs: 4× 56 × 56

Attentions: 4× 56 × 56

Figure 5.4. An example of the position sensitive atten-
tion tensor Illustrated are the mask bases and their correspond-
ing attention maps generated by BlendMask [10]. Even though
have a relatively large resolution, the attention usually does not
contain fine-grained patterns indicating there is redundancy in

its representation.

ti as the (flattened) weights of a 1× 1 convolution which projects the cropped
bases Fi with D channels and spatial resolution 56× 56 into a lower dimension,
K:

Ri = Ti ∗ Fi (5.7)

where Ti is the reshaped convolution weights, ∗ is the convolution operator
and Ri is a tensor with shape K × 56 × 56. This makes ti a vector of length
D ×K. We choose K = 4 to match the design choice of BlendMask. Similar
to BlendMask, Ri and the full-attention Qi are element-wise multiplied and
summed along the first dimension to get the instance mask result.

To get an efficient attention representation, we decompose the 4×14×14 full
attention Qi in the following way. First, we split it along the first dimension into
{Qki|k = 1, . . . , 4}. Then each Qki ∈ R14×14 is decomposed into two matrices
Uk,Vk ∈ R4×14 and a diagonal matrix Σki ∈ R4×4:

Qki = UT
k ΣkiVk. (5.8)

Thus, only the diagonal values in σi
k are generated from the top module, Uk
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and Vk are shared by all instances and learned as network parameters. This
reduces the instance embedding parameters from 784 to 16 while still enabling
us to form position-sensitive attention shapes. For each k and row d in Uk and
Vk, the outer product uT

kdvkd can be considered as one of the components of
Qki. We visualize all components learned by our network in Figure 5.5. The
factored attention has similar flexibility as the full attention in Figure 5.4 but
much more parameter efficient.

Figure 5.5. Factored attention components The kth row
corresponds to kth basis Rik and the dth column corresponds to
the dth row ofUk andVk. Each attention map can be considered
as the kth slice ofQki generated by a one-hot instance embedding

with the dth element valued 1.

For panoptic segmentation, we compute the mean of all embedding vectors
for the same instance. For details, please refer to Section 5.4.3.
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5.4.3 Unified Panoptic Segmentation Training

We add minimal modifications to DR1Mask for panoptic segmentation: a uni-
fied panoptic segmentation layer which is simply a 1×1 convolution fpano trans-
forming the output F of DR1Basis into panoptic logits with C channels. The
first Cstuff channels are for semantic segmentation and the rest Cthing channels
are for instance segmentation.

We split the weights for fpano along the columns into two matrix Wpano =

[Wstuff ,Wthing]. The first D×Cstuff parameters Wstuff are static parameters.
Cstuff is a constant equals to the number of stuff classes in the dataset, i.e., 53
for COCO dataset.

The rest D × Cthing parameters Wthing are dynamically generated. During
training, we choose Cthing to be the number of ground truth instances in the
sample. For each target instance i, there can be Ni ≥ 0 instance embeddings
{e(n)

i } in the network assigned to it. For instance segmentation, these embed-
dings are supervised separately. However, for panoptic segmentation, we have
to map them into a single embedding ēi ∈ RD. Then the Cthing embeddings are
concatenated into the dynamic weights Wthing:

Wthing = [ē1, ē2, . . . , ēCthing
]. (5.9)

The panoptic prediction can be computed with a matrix multiplication Ypano =

WT
panoF.
The position sensitive attention introduced in Section 5.4.2 can also be in-

tegrated into an end-to-end framework. However, we find that using position
sensitive attention causes the bases to encode too much instance-wise position
information which leads to sub-par semantic segmentation results.

We have to be careful about directly applying the backbone features from
instance segmentation networks for semantic segmentation. To align the fea-
tures for FPN computation, it is common for instance segmentation networks
to pad along the borders to make the feature resolution divisible by the stride so
that feature sizes will be consistent after downsampling/upsampling. In prac-
tice, we observe that border padding can cause inaccurate segmentation near
the padded edges. We fix this by changing the input size divisibility from 32 to
4. To keep the features aligned after upsampling, we crop the right and bottom
edges of the upsampled features if the sizes does not match.
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5.5 Experiments

5.5.1 Dataset and Implementation Details

We evaluate our algorithm on the MSCOCO 2017 dataset [70]. It contains
123K images with 80 thing categories and 53 stuff categories for instance and
semantic segmentation respectively. We train our models on the train split with
115K images and carry out ablation studies on on the validation split with 5K
images. The final results are reported on the test-dev split, whose annotations
are not publicly available.

Following the common practice, ImageNet pre-trained ResNet-50 [71] is used
as our backbone network. Channel width of the DR1Basis is 32. For ablation
studies unless specified, all the networks are trained with the 1× schedule of
BlendMask [10], i.e., 90K iterations, batch size 16 on 4 GPUs, and base learning
rate 0.01 with linear warm-up of 1k iterations. The learning rate is reduced by a
factor of 10 at iteration 60K and 80K. Input images are resized to have shorter
side randomly selected between [640, 800] and longer side at maximum 1333.
The auxiliary semantic segmentation loss weight is 0.3. All hyperparameters
are set to be the same with BlendMask [10]. We implement our models based
on the open-source project AdelaiDet 2.

To measure the running time, we run the models with batch size 1 on the
whole COCO val2017 split using one GTX 1080Ti GPU. We calculate the time
from the start of model inference to the time final predictions are generated,
including the post-processing stage.

5.5.2 Ablation Experiments

Effectiveness of dynamic factors DR1Conv has two dynamic components
A and B. As shown in Equation 5.4.1, they each has the effect of channel-wise
modulation pre-/post- convolution respectively. By removing both of them, our
basis module becomes a vanilla FPN. We train networks with each of these two
components masked out. The instance prediction module used for both tasks
is the vector embedding in YOLACT [38]. Results are shown in Table 5.1 and
Table 5.2. A and B each has slight improves on AP50 and AP75 but combining
them improves all metrics significantly. Table 5.2 shows that DR1Conv can
improve both the thing and stuff segmentation qualities.

Context feature position The contextual information C is computed with
the features from the box tower of FCOS [9], same as the features for instance

2https://github.com/aim-uofa/AdelaiDet

https://github.com/aim-uofa/AdelaiDet
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Method AP AP50 AP75

Baseline 34.7 55.5 36.8
w/ A 34.9 55.9 36.8
w/ B 34.9 55.6 37.0

w/ A, B 35.2 56.1 37.5

Table 5.1. Instance segmentation results with the dynamic
factors removed.

Method PQ PQTh PQSt

w/o A, B 38.7 45.9 28.0
w/ A, B 40.0 46.8 29.9

Table 5.2. Panoptic segmentation results with the dynamic
factors removed.

embedding. We assume this is important to keep the instance representation
consistent. To examine this effect, we move the top layer for contextual infor-
mation computation to the FPN outputs and class towers. Results are shown
in Table 5.3. With the features from FPN outputs, A and B are bot com-
puted directly from X (see Figure 5.4.1). This badly hurts the segmentation
performance, AP75 especially, even worse than the vanilla baseline without dy-
namism. This proves that the correspondence between instance embedding and
the contextual information is important.

Efficiency of the factored attention We compare the performance and
efficiency of different instance prediction modules in Table 5.4. Our factored
attention module is almost as efficient as the channel-wise modulation and can
achieve the best performance.

We also notice that border padding can affect the performance of seman-
tic segmentation performance. The structure difference between our basis mod-
ule and common semantic segmentation branch is that we have incorporated
high-level feature maps with strides 64 and 128 for contextual information em-
bedding. We assume this leads to a dilemma over the padding size. Smaller
padding size will make the features spatially misaligned across levels. However,
too large padding size will make it very inefficient. Making a 800 × 800 image
divisible by 128 will increase 25% unnecessary computation cost on the bor-
ders. We tackle this problem by introducing a new upsampling strategy with
is spatially aligned with the downsampling mechanism of strided convolution
and reduce the padding size to the output stride, i.e. 4 in our implementation.
Results are shown in Table 5.5. Our aligned upsampling strategy requires the
minimal padding size while being significantly better in semantic segmentation
quality PQSt.
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Position AP AP50 AP75

None 34.7 55.5 36.8
FPN 34.2 55.5 36.0

class tower 34.5 55.6 36.5
box tower 35.2 56.1 37.5

Table 5.3. Instance segmentation results with the contextual
information from different positions.

Attention Time (ms) AP AP50 AP75

Vector 68.7 35.2 56.1 37.5
Full 72.0 36.2 56.7 38.7

Factored 69.2 36.3 56.9 38.8

Table 5.4. Comparison of different instance prediction mod-
ules. Vector is channel-wise vector attention in YOLACT [38];
full is the 3D full attention tensor in BlendMask [10] and factored

is the factored attention introduced in Section 5.4.2.

Choosing a proper channel width of the basis module also important
for the panoptic segmentation accuracy. A more compact basis output of size
32 does not affect the class agnostic instance segmentation result but will leads
to much worse semantic segmentation quality, which has to discriminate 53
different classes. To accurately measure the influence of different channel widths
and making sure all models are fully trained, we train different models with the
3x schedule. Results are shown in Table 5.6. Doubling the channel width from
32 to 64 can improve the semantic segmentation quality by 2.1. However, a
wider channel of 128 does not have comparable increment in performance.

Position sensitive attention for panoptic segmentationUnfortunately,
even though beneficial for instance segmentation, we discover that position sen-
sitive attention has negative effect for panoptic segmentation. It enforces the
bases to perform position sensitive encoding on all classes, even for stuff regions,
which is unnecessary and misleading. The panoptic performance for different
instance prediction modules are shown in Table 5.7. Using factored attention
makes the semantic segmentation quality drop 2.6.

5.5.3 Main Results

Quantitative results We compare DR1Mask with recent instance and panop-
tic segmentation networks on the COCO test-dev split. We increase the train-
ing iterations to 270K (3× schedule), tuning learning rate down at 180K and
240K. All instance segmentation models are implemented with the same code
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Divisibility PQ PQTh PQSt

32 39.5 46.5 28.8
128 39.9 46.5 30.0

4 w/ aligned 40.0 46.8 29.9

Table 5.5. Comparison of different padding strategies for
panoptic segmentation. The baseline method is padding to 32x,
divisibility of C5 from ResNet. Padding to 128x is for the divis-
ibility of DR1Basis. 4 w/ aligned is padding the input size to 4x

and applying our aligned upsampling strategy.

Width PQ PQTh PQSt

32 41.8 49.1 30.7
64 42.9 49.5 32.9
128 42.8 49.5 32.8

Table 5.6. Comparison of different channel widths in DR1Basis
for panoptic segmentation. All models are with a ResNet-50

backbone and are trained with the 3x schedule.

base, Detectron2 3 and the running time is measured on the same machine
with the same setting. We use multi-scale training with shorter side randomly
sampled from [640, 800]. Results on instance segmentation and panoptic seg-
mentation are shown in Table 5.8 and Table 5.9 respectively. Our model achieves
the best performance and is also the most efficient among them all. For panop-
tic segmentation, DR1Mask is two times faster than the main stream separate
frameworks. Particularly, the running time bottleneck for UPSNet [87] is not
in the backbone but in the stuff/thing prediction branches and the final fusion
stage, which makes the R-50 model almost as costly as the R-101 DCN model.

5.5.4 Conclusions

In this chapter, we use DR1Conv as an efficient way to compute second-order re-
lations between features. This is remotely related to self-attention, where a score
to control feature aggregation is computed with an inner product. Recently, low
rank approximations have also been proposed for efficient self-attention com-
putation [100], [101]. Our method is different from the self-attention based
context modules such as non-local block [84] and axial-attention [102] in that
we are aggregating different semantic rather than spatial information. In an-
other word, not using the same feature for query and key computation is crucial
to our approach.

3https://github.com/facebookresearch/detectron2

https://github.com/facebookresearch/detectron2
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Method PQ PQTh PQSt

Vector 40.0 46.8 29.9
Factored 39.0 46.8 27.3

Table 5.7. Position sensitive attention for panoptic segmenta-
tion. Vector is the baseline model with vector instance embed-
dings. Factored is the position sensitive factored attention in

Section 5.4.2.

Method Backbone Time (ms) AP AP50 AP75 APS APM APL

Mask R-CNN [2]

R-50

74 37.5 59.3 40.2 21.1 39.6 48.3
BlendMask [10] 73 38.1 59.5 41.0 21.3 40.5 49.3
CondInst [82] 72 38.7 60.3 41.5 20.7 41.0 51.3

DR1Mask 69 38.3 59.6 41.2 21.1 40.4 50.0
Mask R-CNN[2]

R-101

38.8 60.9 41.9 21.8 41.4 50.5
BlendMask 94 39.6 61.6 42.6 22.4 42.2 51.4
CondInst 93 40.1 61.9 43.0 21.7 42.8 53.1
DR1Mask 89 39.8 61.6 42.9 21.9 42.4 51.9
DR1Mask* 98 41.2 63.2 44.5 22.6 43.8 54.7

Table 5.8. Instance segmentation results on COCO test-
dev. Models with * have deformable convolutions in the back-

bone.

Method Backbone Time (ms) PQ SQ RQ PQTh PQSt

Panoptic-FPN [1]

R-50

89 41.5 79.1 50.5 48.3 31.2
UPSNet [87] 233 42.5 78.2 52.4 48.6 33.4
SOGNet [88] 248 43.7 78.7 53.5 50.6 33.1

Panoptic-DeepLab 149 35 - - - -
BlendMask 96 42.5 80.1 51.6 49.5 32.0
DR1Mask 79 42.9 79.8 52.0 49.5 32.9

Panoptic-DeepLab Xception-71 - 41.4 - - 45.1 35.9
Panoptic-FPN [1]

R-101
111 43.6 79.7 52.9 51.0 32.6

BlendMask 117 44.5 80.7 53.8 52.1 33.0
UPSNet* 237 46.3 79.8 56.5 52.7 36.8
DR1Mask 99 44.5 80.7 53.8 51.7 33.5
DR1Mask* 109 46.1 81.5 55.3 53.1 35.5

Table 5.9. Panoptic results on COCO. R-50 models are eval-
uated on val2017 split and R-101 models are evaluated on test-
dev. All models are evaluated with the official code and the
best models publicly available on the same machine. Panoptic-
DeepLab does not provide trained models on COCO. We mea-
sure its speed by running the Cityscapes pretrained model on
COCO val2017. Models with * have deformable convolutions in

the backbone.

In recent years, computer vision technologies have been improved both on
the research and engineering sides. Researchers are breaking the traditional
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boundaries of different vision tasks with deep learning, as simpler models have
better ability to tackle multiple tasks. We wish this work to serve as an example
to unify the semantic/instance/panoptic segmentation tasks.
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Chapter 6

Dynamic Cell Search for Semantic
Video Segmentation

6.1 Introduction

In semantic video segmentation the goal is to acquire consistent dense semantic
labelling across image frames. To this end, recent approaches have been reliant
on manually arranged operations applied on top of static semantic segmentation
networks - with the most prominent building block being the optical flow able
to provide information about scene dynamics. Related to that is the line of re-
search concerned with speeding up static networks by approximating expensive
parts of them with cheaper alternatives, while propagating information from
previous frames. In this chapter, we attempt to come up with generalisation
of those methods, and instead of manually designing contextual blocks that
connect per-frame outputs, we propose a neural architecture search solution,
where the choice of operations together with their sequential arrangement are
being predicted by a separate neural network. We showcase that such gener-
alisation leads to stable and accurate results across common benchmarks, such
as CityScapes and CamVid datasets. Importantly, the proposed methodology
takes only 2 GPU-days, finds high-performing cells and does not rely on the
expensive optical flow computation.

6.2 Background

Human beings are well-equipped by evolution to quickly observe changes in
dynamic environments. From merely few seconds of studying an unknown scene,
we are able to coherently map out its main constituents. In contrast, static
semantic segmentation networks would perform poorly in such conditions, and
may as well produce contradictory predictions across the frames. Therefore,
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the question arises of how to make the static models suitable for segmenting
continuously evolving scenes?

One well-known approach would be to use the optical flow that describes
the motion in the scene between adjacent frames [20], [21]. The optical flow
calculation tends to be expensive and also comes with several notable disad-
vantages, among which its inability to deal with occlusions and newly appeared
objects. Nevertheless, as shown by Gadde et al. [21], a relatively poor estimate
of the optical flow may still carry significant benefits, not the least of which lies
in computational savings.

Alternatively, one may choose to model which information must be propa-
gated across the frames, e.g. with the help of a recurrent neural network with
memory units [24]. Even more biologically plausible are the models that com-
pute different features at various time-scales [103], in a vein similar to neural
spikes. Naturally, this comes with its own set of disadvantages, most notably the
difficulty of choosing an appropriate scheduling regime for updating individual
parts of the network.

Yet another complementary line of work focuses on approximating an ex-
pensive per-frame forward pass with cheaper alternatives: e.g. Li et al. [25]
predicted local filters to be applied on the segmentation prediction from the
previous frame, while Jain et al. [22] used a larger network for key frames and
directly employed a smaller one for consecutive frames. Such savings may allow
to re-use more expensive optical flow methods without a significant slowdown,
but the choice of key frames can be crucial and not readily justifiable.

Looking closely at the aforementioned approaches for video semantic seg-
mentation, one may notice an easily discernible pattern: a typical video seg-
mentation network predicts a labelling of the current frame based on the in-
formation propagated from the previous one and hidden representations of the
current one (Fig. 6.1). While seemingly obvious, it possesses certain variations
depending on the goal - e.g. whether efficiency, or real-time performance is
desired. Importantly, what we would like to emphasise here is that, while tech-
nically sound, all the current approaches have been manually designed and have
not considered any interplay between different building blocks.

On the other hand, Neural Architecture Search (NAS) approaches [4], [42],
[55] have been showing impressive results on automatically discovering top-
performing neural network architectures in large-scale search spaces. Compared
to manual designs, NAS methods are data-driven instead of experience-driven,
and hence need much less human intervention. As defined in [104], the workflow
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Figure 6.1. Semantic video segmentation approaches tend to
comprise a dynamic cell that takes as inputs the information from
the previous and current frames, and outputs the segmentation
mask. For example, the dynamic cell can calculate the optical
flow [21], or predict convolutional filters [25]. In this chapter we
use NAS to discover novel and high-performing dynamic cells.

of NAS can be divided into the following three processes: 1) sampling archi-
tecture from a search space following some search strategies; 2) evaluating the
performance of the sampled architecture; and 3) updating the parameters based
on the performance.

Starting from that general pattern we instead propose to leverage the neu-
ral architecture search (NAS) [51] methodology to find contextual blocks that
enhance a per-frame segmentation network with dynamic components. This
motivation is justified by recent results achieved using NAS on such tasks as
image classification [105], [106], language modelling [107] and static semantic
segmentation [52], [53], that oftentimes outperform manually designed networks.
We build upon those results and adapt current approaches in a way suitable for
handling the dynamic nature of dense per-pixel classification. To the best of
our knowledge, we are the first to consider the application of NAS to the task
of video semantic segmentation.

Our automated approach comes with certain benefits, concretely:

i.) it considers a larger span of initial building blocks than any previous work,

ii.) it empirically evaluates different design structures and finds most promis-
ing ones, and

iii.) it requires only few GPU-days to find a set of high-performing structures.
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Figure 6.2. arch2 [53]. ‘gap’ stands for global average pooling.

Furthermore, although we do not consider it in this chapter, the proposed
methodology can further be extended to take into account different specific
objectives (even non-differentiable), such as runtime [108].

6.3 Methodology

As noted in introduction and depicted in Fig. 6.1, we attempt to generalise
previous solutions for video semantic segmentation in such a way that NAS
methods become readily applicable. To this end, we look for a single cell that
connects representations from the previous frame and enhances current pre-
dictions without a significant overhead. What follows is the description of the
input space (Sect. 6.3.1), the search space (Sect. 6.3.2), and the search approach
(Sect. 6.3.3).

6.3.1 Input space

We consider the arch2 network from the work of Nekrasov et al. [53]. It is an
encoder-decoder type of the segmentation network with the encoder being a
light-weight classifier (MobileNet-v2 [109]), and the decoder being an automat-
ically discovered structure presented in Fig. 6.2. This architecture strikes a fine
balance between accuracy and runtime, both being important characteristics
for semantic video segmentation. Here it should be noted that the application
of our methodology is not directly tied to a concrete architecture and can be
easily adapted to work with other networks.

In the proposed setup, the static network is applied end-to-end on the first
frame and three outputs are being recorded: an intermediate representation -
in this case, the encoder’s output with the resolution of 1

32
of the input image
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(layer 4), the decoder’s output before (dec) and after the final classifier (pred)
- both with resolutions of 1

8
of the input image and with 64 and C numbers of

channels, correspondingly, where C is the number of output classes. For the
second frame, we record three outputs from the encoder only - two intermediate
ones with the resolutions of 1

8
(layer 2) and 1

16
(layer 3), respectively, and the

final one with the resolution of 1
32

(layer 4).
We rely on the dynamic cell, the layout of which will be described below,

to predict the semantic labelling of the current frame given 5 inputs: layer 4

and dec from the previous frame, and layers 2−3−4 from the current one. This
way, we do not have to execute the decoder part of the static segmentation
network on the current frame (thus decreasing latency), at the same time re-
using information from the previous frame. The output of the dynamic cell
serves as the input dec for the next frame.

6.3.2 Search space

We rely on an LSTM-based controller to predict a sequence of operations to-
gether with locations where they should be applied in order to form a dynamic
cell [53]. Concretely, we first choose two layers out of the provided five (with
replacement), two corresponding operations that need to be applied on each
of them, and an aggregation operation that combines two inputs into a single
output. On the next step, we repeat this process, but now we are sampling two
layers out of six possible, with the aggregated result being added into the sam-
pling pool. This process can be repeated multiple times, with the final output
being formed by the concatenation of all non-sampled aggregated results.

We rely on a similar set of operations as for static segmentation (Table 6.1),
and in order to enable the dynamic cell to apply convolutional filters on irregular
grids, we also include deformable 3× 3 convolution [66].

ID Description
0 separable conv 3× 3
1 global average pooling followed by upsampling and conv 1×1
2 separable conv 3× 3 with dilation rate 3
3 separable conv 5× 5 with dilation rate 6
4 skip-connection
5 deformable 3× 3 convolution

Table 6.1. Description of operations used in the search process.
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While Nekrasov et al. [53] simply summed up two different inputs at each
step, here to compensate for the dynamic nature of our problem we consider a
set of aggregation operations given in Table 6.2.

ID Description
0 summation with per-channel learnable weights per each input
1 channel-wise concatenation of two inputs followed by conv 1×1 to reduce

the number of channels to the original size
2 (weight) predictive operation, where the first input becomes a set of

spatial convolutional filters (weights) applied on the second one
3 bilinear sampling of the first input, where an affine grid is predicted

based on the values of the second input [110]
4 3D-convolution where two inputs are stacked together forming a new

dimension with 2× 3× 3 convolution applied on top
5 dense attention: i.e. element-wise multiplication between the first input

and the sigmoid-activated second one

Table 6.2. Description of aggregation operations used in the
search process.

Based on the previous works, we conjecture that this set of operations will be
sufficient for the task of video segmentation, and we provide experimental results
to support this claim. Please see the full code definitions of each operation in
the supplementary material.

6.3.3 Finding optimal architectures

We assume that there exists a video dataset that comes with segmentation
annotations for at least a subset of consecutive frames. From it, we build pairs
(or triplets) of frames such that in each sequence all the frames following the first
one are always annotated. As commonly done, we further divide this set into
two disjoint parts - meta-train and meta-val. We further assume an existence
of the static segmentation network pre-trained on this dataset1 - in particular,
arch2 from [53]. As mentioned above, we chose this particular architecture due
to its compactness and low latency.

The controller samples a structure of the dynamic cell which we train on
the meta-train set and evaluate on meta-val. As done in [53], we consider the
geometric mean of three metrics as the validation score: mean intersection-
over-union (mIoU), frequency-weighted IoU (fwIoU) and mean-pixel accuracy
(mAcc). This score is used by the controller to update its weights, and the

1Please refer to the appendix for the details on pre-training of static segmentation net-
works.



6.4. Experiments 77

process is repeated multiple times. After that, one can either sample several
cells from the trained controller, or simply choose best found cells that achieved
highest results during the search process.

6.4 Experiments

We conduct all our experiments on two popular video segmentation benchmark
datasets - CamVid [111] and CityScapes [112].

The first one, CamVid, comprises 701 RGB images of resolution 480×360

densely annotated into 11 categories. Following previous work by [113], we
use the dataset splits of 367 images for training, 101 - for validation and 233

- for testing. We train generated architectures with batches of examples each
comprising 3 consecutive frames.

The CityScapes dataset contains 5000 high-resolution 2048×1024 images
densely labelled with 19 semantic classes - 2975 for training, 500 for valida-
tion and 1525 for testing, respectively. In addition to that, raw unannotated
frames extracted from videos are also provided. For each annotated example,
we add an image frame that precedes it and train architectures with batches of
sequences of length 2, in which the second frame is always annotated.

In each case, we initialise the decoder’s output dec on the first frame using
the pre-trained static segmentation network, and rely on the dynamic cell at
all following frames in the sequence as described in Sect. 6.3.1. To update the
dynamic cell weights, we sum up cross-entropy loss terms at each frame after
the first one and back-propagate the gradients.

For both, search and training, we exploit a single V100 GPU with 32GB of
memory.

6.4.1 Search

For searching we only employ the training splits of each dataset. We further
divide each randomly in 2 non-overlapping sets - meta-train (90%) and meta-val
(10%). We pre-compute all required outputs from the pre-trained static network
and store them in memory. The static network is kept unchanged during the
whole search process. Each generated architecture is trained on the meta-train
split and evaluated on meta-val. We keep track of average performance and
apply early stopping halfway through the training if the generated architecture
is un-promising as done in [53].
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Our controller is a two-layer LSTM with 100 hidden units randomly ini-
tialised from uniform distribution [53]. The controller is trained with PPO [114]
with the learning rate of 1e−4. To reduce the size of generated cells, we set the
number of emitted layers (each layer is a string of five tokens as described in
Sect. 6.3.2) to 5 on CamVid and to 4 on CityScapes.

For CamVid, we train predicted cells on mini-batches of 48 sequences for
20 epochs with the learning rate of 8e−3 and the Adam learning rule [115].
Each image–segmentation mask pair in the sequence is cropped to 600 with the
shorter side being mean-padded to 400. No transformations are applied to the
validation sequences.

For CityScapes, we train for 10 epochs with 48 sequences each cropped to
512×512 with the longer side being resized to 1024.

Results

We visualise the progress of each metric together with the reward signal on each
dataset in Fig. 6.3. Although the rewards are not directly comparable between
the datasets, the growth dynamics on both datasets signal that the controller
is able to discover better architectures throughout the search process across all
the metrics.

CamVid CityScapes
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Figure 6.3. Average search metrics on CamVid and CityScapes
datasets.
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We further look at the distributions of sampled operations, aggregation op-
erations and input layers plotted on Fig. 6.4. On both datasets, global aver-
age pooling and separable 5×5 convolution with dilation rate 6 are sampled
less frequently than other operations, potentially indicating that these layers
could be omitted from the search process. On average, the controller trained
on CityScapes prefers sampling deformable convolution (Fig. 6.4a), while the
CamVid one - separable 3×3 convolution (Fig. 6.4d).

In terms of aggregation operations, the dynamics between two controllers
vary significantly: the CamVid-based controller tend to rely on dense attention,
while omitting the predictive operation (Fig. 6.4e). In contrast, the CityScapes
controller is more likely to apply bilinear sampling on an affine grid, and to
ignore predictive operation together with dense attention (Fig. 6.4b).

When sampling the input layers, the controllers behave similarly: in par-
ticular, both tend to skip layer 4 from the previous and current frames. The
CityScapes controller extensively uses information from the previous dec layer (Fig. 6.4c),
while the CamVid one - from layer 2 of the current frame (Fig. 6.4f). This may
well imply that on CityScapes the final predictions on the current frame change
only slightly with respect to the previous frame.

Importantly, these observations indicate that two controllers trained on two
different datasets exhibit various patterns, potentially capturing dataset-specific
attributes in order to discover better performing architectures.

6.4.2 End-to-end Training

We further select top-2 performing dynamic cells on each dataset to train end-
to-end on full training sets for longer.

In particular, for CamVid, we pre-train the dynamic cell only with Adam and
the learning rate of 8e−3 for 10 epochs with the batch size of 16 sequences. Then
we decrease the cell’s learning rate in half, and fine-tune the whole architecture
(i.e., with the per-frame segmentation network) end-to-end for 100 epochs - the
static network weights are updated using SGD with momentum of 0.9 and the
learning rate of 5e−4. Each sample in the batch is cropped to 600×600 with
the shorter side being padded to 400.

On CityScapes we pre-train for 200 epochs with the batch size of 16 sequences
and fine-tune end-to-end for 200 epochs. Each example in the batch is cropped
to 769×769.
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Figure 6.4. Average sampling proportion of operations, ag-
gregation operations and input layers on CityScapes (a-c) and
CamVid (d-f). Please refer to Tables 6.1 and 6.2 for the descrip-

tion of operations.

CamVid Results

We provide quantitative results on CamVid in Table 6.3. The inclusion of
dynamic cells in both cases leads to an improvement over baseline by more
than 1%. Importantly, with the exclusion of first frame in the sequence, we do
not rely on expensive computations involving the static decoder.

Both our models perform comparably to other state-of-the-art video segmen-
tation networks even though the backbone that we rely on - MobileNet-v2 [109]
- is much smaller in comparison to ResNet-101 [116] exploited by Chandra et
al. [26], or DilatedNet [117] - by Gadde et al. [21] and GRFP [24]. Furthermore,
we did not make any use of higher-resolution images of 960×720 to further im-
prove our scores.

We further visualise a few qualitative examples in Fig. 6.5. The dynamic
cell enables the network to effectively propagate information about thin struc-
tures, such as poles, which makes the resultant segmentation masks consistent
in contrast to the per-frame baseline (rows 1−5). Furthermore, the multi-frame
segmentation network is able to track objects across neighbouring frames (rows
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Method mIoU,% mAcc,% gAcc,% tIoU,%
per-frame baseline 65.3 76.1 90.8 41.4
w/ cell0 66.6 77.6 91.1 42.6
w/ cell1 66.9 78.5 90.1 42.4
GRFP [24] 66.1 - - -
Chandra et al. [26] 67.0 - - -
Gadde et al. [21] 67.1 - - 36.6

Table 6.3. Quantitative results on the test set of CamVid. We
report mean IoU (mIoU). Note that our method uses MobileNet-

v2 as the encoder network.

Image GT Per-Frame w/ cell0 w/ cell1

Figure 6.5. Inference results on the test set of CamVid.

1−2).

CityScapes Results

We include the validation results of two discovered cells on CityScapes in Ta-
ble 6.4. Once again, both dynamic cells are able to outperform the per-frame
baseline by 1.2%. Furthermore, our models achieve favourable results in com-
parison to other video segmentation methods, all of which employ significantly
larger backbones and, with the exclusion of Li et al. [25], all rely on the optical
flow computation. Note also that Gadde et al. [21] improved over their respec-
tive static baseline by 1.2%, too, while introducing a non-negligible overhead
of 40ms; and Li et al. [25] compromised more than 3% of the baseline score in
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Image GT Per-Frame w/ cell2 w/ cell3
Figure 6.6. Inference results on the validation set of

CityScapes.

order to reduce the latency. In contrast, we overcame our static baseline and
decreased the runtime (Table 6.5).

Method mIoU,% Acc, % tIoU, %
per-frame baseline 74.4 82.6 40.1
w/ cell22 75.6 84.4 41.5
w/ cell33 75.6 83.7 41.5
GRFP(5) [24] 69.5 - -
Xu et al. [23] 70.4 - -
Li et al. [25] 76.8 - -
Gadde et al. [21] 80.6 - 42.1

Table 6.4. Comparison with other video segmentation ap-
proaches on the val set of CityScapes. Note that our method
uses MobileNet-v2 as the encoder network. For tIoU, the trimap

width is 3.

A few inference examples are visualised in Fig. 6.6. As can be seen, the
dynamic cells enhance the per-frame baseline results and identify partially oc-
cluded vehicles more accurately (rows 1−2, 5), while also avoiding misclassifi-
cation of traffic signs at pixels with similar texture patterns (rows 2−4).

6.4.3 Details of Discovered Architectures

We include characteristics of our networks together with numbers reported by
others in Table 6.5. As evident, our dynamic segmentation approach is superior
to others in terms of its latency and compactness. Concretely, all our archi-
tectures contain at most 3.4M parameters while having an average per-frame

2Anonymous test results: https://bit.ly/2FrZ8jM
3Anonymous test results: https://bit.ly/2HyoVcb

https://bit.ly/2FrZ8jM
https://bit.ly/2HyoVcb
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Figure 6.7. Visualisation of the discovered cells. Orange blocks
represent operations and green blocks represent aggregation op-
erations. Numbers inside blocks are operation identifiers as in

Tables 6.1 and 6.2.

runtime of 50ms on high-resolution 2048×1024 images. This is possible due to
both the network design and the exclusion of the optical flow computation.

Method GPU Input Size Param.,M Avg. RT,ms
Baseline 1080Ti 2048×1024 2.85 92.4±0.3
w/ cell0 1080Ti 2048×1024 3.35 51.5±1.8
w/ cell1 1080Ti 2048×1024 3.19 52.6±1.8
w/ cell2 1080Ti 2048×1024 3.24 51.5±1.9
w/ cell3 1080Ti 2048×1024 3.30 50.5±1.9
GRFP [24] TitanX 512×512 > 40 685
Li et al. [25] − 2048×1024 > 40 171
Gadde et al. [21] TitanX 2048×1024 > 60 3040

Table 6.5. Number of parameters and average runtime (RT)
comparison between different models. To compute average run-
time with dynamic cells, we use the baseline on the first frame
and the dynamic cell on the rest. Where possible, we report

same characteristics for other methods.

All the trained cells are visualised in Fig. 6.7. Notably, layers with de-
formable convolution are present in all architectures. To propagate information
from the previous frame, each cell exploits the dec output instead of layer 4.
All the cells prefer aggregating outputs via channel-wise concatenation with
cell0 also relying on dense attention, and cell3 – on affine transformation with
bilinear sampling. In addition, cell1 and cell2 employ 3D convolution in order
to capture information between various inputs.
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6.5 Discussion & Conclusions

It is still an open question of what is the optimal way of propagating and
extracting information across video frames. While a straightforward solution
involving the optical flow allows to achieve solid results, it possesses several
disadvantages that stem from the limitations of the optical flow itself and ulti-
mately limit the ability of the network to adapt to novel frames. Furthermore,
computations involving the optical flow cause a significant overhead, prohibiting
the final system from being deployed in real-time.

In this chapter, instead of manually enhancing static segmentation networks
with dynamic components, we proposed an automatic approach based on neu-
ral architecture search methods. Such automation have multiple benefits as it
explores a large pool of networks and finds best-performing ones on the given
dataset. In a broader sense, starting from a static per-frame segmentation net-
work, we showcased a way of generalising existing solutions without any reliance
on the optical flow. In particular, we extended the static baseline with a dy-
namic cell, the design of which is automatically discovered with the help of
reinforcement learning. The best discovered cells improve the baseline by more
than 1% at the same time leading to significant memory and latency savings.
Concretely, two discovered cells on CityScapes reach 75.6% mean IoU and re-
quire only 50ms on average to process a 2048×1024 frame. While the proposed
methodology relies on the static baseline, we expect that omitting that require-
ment and searching for a video segmentation network end-to-end would be an
interesting problem to consider in the future work.
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Chapter 7

NAS-FCOS: Searching Decoder for
Object Detection

7.1 Introduction

In this chapter, we further extend neural architecture search To date, on chal-
lenging vision tasks such as object detection, NAS, especially fast versions of
NAS, is less studied. Here we propose to search for the decoder structure of ob-
ject detectors with search efficiency being taken into consideration. To be more
specific, we aim to efficiently search for the feature pyramid network (FPN)
as well as the prediction head of a simple anchor-free object detector, namely
FCOS [9], using a tailored reinforcement learning paradigm. With carefully
designed search space, search algorithms and strategies for evaluating network
quality, we are able to efficiently search a top-performing detection architec-
ture within 4 days using 8 V100 GPUs. The discovered architecture surpasses
state-of-the-art object detection models (such as Faster R-CNN, RetinaNet and
FCOS) by 1.5 to 3.5 points in AP on the COCO dataset,with comparable com-
putation complexity and memory footprint, demonstrating the efficacy of the
proposed NAS for object detection.

7.2 Background

Object detection is one of the fundamental tasks in computer vision, and has
been researched extensively. In the past few years, state-of-the-art methods
for this task are based on deep convolutional neural networks (such as Faster
R-CNN [8], RetinaNet [54]), due to their impressive performance. Typically,
the designs of object detection networks are much more complex than those for
image classification, because the former need to localize and classify multiple
objects in an image simultaneously while the latter only need to output image-
level labels. Due to its complex structure and numerous hyper-parameters,
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designing effective object detection networks is more challenging and usually
needs much manual effort.

To our knowledge, studies on efficient and accurate NAS approaches to ob-
ject detection networks are rarely touched, despite its significant importance.
One of the main problems prohibiting NAS from being used in more realistic
applications is its search efficiency. The evaluation process is the most time
consuming part because it involves a full training procedure of a neural net-
work. To reduce the evaluation time, in practice a proxy task is often used as
a lower cost substitution. In the proxy task, the input, network parameters
and training iterations are often scaled down to speedup the evaluation. How-
ever, there is often a performance gap for samples between the proxy tasks and
target tasks, which makes the evaluation process biased. How to design proxy
tasks that are both accurate and efficient for specific problems is a challenging
problem. Another solution to improve search efficiency is constructing a super-
net that covers the complete search space and training candidate architectures
with shared parameters [45], [118]. However, this solution leads to significantly
increased memory consumption and restricts itself to small-to-moderate sized
search spaces.

To this end, we present a fast and memory saving NAS method for object
detection networks, which is capable of discovering top-performing architectures
within significantly reduced search time. Our overall detection architecture is
based on FCOS [9], a simple anchor-free one-stage object detection framework,
in which the feature pyramid network and prediction head are searched using
our proposed NAS method.

Our main contributions are summarized as follows.

• In this work, we propose a fast and memory-efficient NAS method for
searching both FPN and head architectures, with carefully designed proxy
tasks, search space and evaluation strategies, which is able to find top-
performing architectures over 3, 000 architectures using 28 GPU-days only.

Specifically, this high efficiency is enabled with the following designs.

− Developing a fast proxy task training scheme by skipping the backbone
finetuning stage;

− Adapting progressive search strategy to reduce time cost taken by the
extended search space;

− Using a more discriminative criterion for evaluation of searched archi-
tectures.
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− Employing an efficient anchor-free one-stage detection framework with
simple post processing;

• Using NAS, we explore the workload relationship between FPN and head,
proving the importance of weight sharing in head.

• We show that the overall structure of NAS-FCOS is general and flexible in
that it can be equipped with various backbones including MobileNetV2,
ResNet-50, ResNet-101 and ResNeXt-101, and surpasses state-of-the-art
object detection algorithms using comparable computation complexity
and memory footprint. More specifically, our model can improve the
AP by 1.5 ∼ 3.5 points on all above models comparing to their FCOS
counterparts.

To reduce the post processing overhead, we resort to a recently introduced
anchor-free one-stage framework, namely, FCOS [9], which significantly improve
the search efficiency by cancelling the processing time of anchor-box matching
in RetinaNet.

Compared to its anchor-based counterpart, FCOS significantly reduces the
training memory footprint while being able to improve the performance.

7.3 Methodology

In our work, we search for anchor-free fully convolutional detection models with
fast decoder adaptation. Thus, NAS methods can be easily applied.

7.3.1 Problem Formulation

We base our search algorithm upon a one-stage framework FCOS due to its
simplicity. Our training tuples {(x, Y )} consist of input image tensors x of size
(3 ×H ×W ) and FCOS output targets Y in a pyramid representation, which
is a list of tensors yl each of size ((K + 4 + 1) × Hl ×Wl) where Hl ×Wl is
feature map size on level p of the pyramid. (K + 4 + 1) is the output channels
of FCOS, the three terms are length-K one-hot classification labels, 4 bounding
box regression targets and 1 centerness factor respectively.

The network g : x→ Ŷ in original FCOS consists of three parts, a backbone
b, FPN f and multi-level subnets we call prediction heads h in this chapter.
First backbone b : x→ C maps the input tensor to a set of intermediate-leveled
features C = {c3, c4, c5}, with resolution (Hi ×Wi) = (H/2i ×W/2i). Then
FPN f : C → P maps the features to a feature pyramid P = {p3,p4,p5,p6,p7}.



88 Chapter 7. NAS-FCOS: Searching Decoder for Object Detection

Then the prediction head h : p→ y is applied to each level of P and the result
is collected to create the final prediction. To avoid overfitting, same h is often
applied to all instances in P .

Since objects of different scales require different effective receptive fields, the
mechanism to select and merge intermediate-leveled features C is particularly
important in object detection network design. Thus, most researches [8], [29]
are carried out on designing f and h while using widely-adopted backbone
structures such as ResNet [77]. Following this principle, our search goal is to
decide when to choose which features from C and how to merge them.

To improve the efficiency, we reuse the parameters in b pretrained on target
dataset and search for the optimal structures after that. For the convenience of
the following statement, we call the network components to search for, namely
f and h, together the decoder structure for the objection detection network.

f and h take care of different parts of the detection job. f extracts features
targeting different object scales in the pyramid representations P , while h is a
unified mapping applied to each feature in P to avoid overfitting. In practice,
people seldom discuss the possibility of using a more diversified f to extract
features at different levels or how many layers in h need to be shared across
the levels. In this work, we use NAS as an automatic method to test these
possibilities.

7.3.2 Search Space

Considering the different functions of f and h, we apply two search space re-
spectively. Given the particularity of FPN structure, a basic block with new
overall connection and f ’s output design is built for it. For simplicity, sequential
space is applied for h part.

We replace the cell structure with atomic operations to provide even more
flexibility. To construct one basic block, we first choose two layers x1, x2 from
the sampling pool X at id1, id2, then two operations op1, op2 are applied to
each of them and an aggregation operation agg merges the two output into one
feature. To build a deep decoder structure, we apply multiple basic blocks with
their outputs added to the sampling pool. Our basic block bbt : Xt−1 → Xt at
time step t transforms the sampling pool Xt−1 to Xt = Xt−1 ∪ {xt}, where xt

is the output of bbt.
The candidate operations are listed in Table 7.1. We include only separable/depth-

wise convolutions so that the decoder can be efficient. In order to enable the
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decoder to apply convolutional filters on irregular grids, here we have also in-
cluded deformable 3 × 3 convolutions [66]. For the aggregation operations, we
include element-wise sum and concatenation followed by a 1× 1 convolution.

The decoder configuration can be represented by a sequence with three com-
ponents, FPN configuration, head configuration and weight sharing stages. We
provide detailed descriptions to each of them in the following sections. The
complete diagram of our decoder structure is shown in Fig. 7.1.
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Figure 7.1. A conceptual example of our NAS-FCOS decoder.
It consists of two sub networks, an FPN f and a set of predic-
tion heads h which have shared structures. One notable differ-
ence with other FPN-based one-stage detectors is that our heads
have partially shared weights. Only the last several layers of the
predictions heads (marked as yellow) are tied by their weights.
The number of layers to share is decided automatically by the
search algorithm. Note that both FPN and head are in our ac-
tual search space; and have more layers than shown in this figure.

Here the figure is for illustration only.

FPN Search Space

As mentioned above, the FPN f maps the convolutional features C to P . First,
we initialize the sampling pool as X0 = C. Our FPN is defined by applying
the basic block 7 times to the sampling pool, f := bbf1 ◦ bb

f
2 ◦ · · · ◦ bb

f
7 . To yield

ID Description
0 separable conv 3× 3
1 separable conv 3× 3 with dilation rate 3
2 separable conv 5× 5 with dilation rate 6
3 skip-connection
4 deformable 3× 3 convolution

Table 7.1. Unary operations used in the search process.
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pyramid features P , we collect the last three basic block outputs {x5,x6,x7} as
{p3,p4,p5}.

To allow shared information across all layers, we use a simple rule to create
global features. If there is some dangling layer xt which is not sampled by later
blocks {bbfi |i > t} nor belongs to the last three layers t < 5, we use element-wise
add to merge it to all output features

p∗i = pi + xt, i ∈ {3, 4, 5}. (7.1)

Same as the aggregation operations, if the features have different resolution, the
smaller one is upsampled with bilinear interpolation.

To be consistent with FCOS, p6 and p7 are obtained via a 3 × 3 stride-2
convolution on p5 and p6 respectively.

Prediction Head Search Space

Prediction head h maps each feature in the pyramid P to the output of corre-
sponding y, which in FCOS and RetinaNet, consists of four 3× 3 convolutions.
To explore the potential of the head, we therefore extend a sequential search
space for its generation. Specifically, our head is defined as a sequence of six
basic operations. Compared with candidate operations in the FPN structures,
the head search space has two slight differences. First, we add standard con-
volution modules (including conv1x1 and conv3x3) to the head sampling pool
for better comparison. Second, we follow the design of FCOS by replacing all
the Batch Normalization (BN) layers to Group Normalization (GN) [119] in the
operations sampling pool of head, considering that head needs to share weights
between different levels, which causes BN invalid. The final output of head is
the output of the last (sixth) layer.

Searching for Head Weight Sharing

To add even more flexibility and understand the effect of weight sharing in
prediction heads, we further add an index i as the location where the prediction
head starts to share weights. For every layer before stage i, the head h will
create independent set of weights for each FPN output level, otherwise, it will
use the global weights for sharing purpose.

Considering the independent part of the heads being extended FPN branch
and the shared part as head with adaptive-length, we can further balance the
workload for each individual FPN branch to extract level-specific features and
the prediction head shared across all levels.
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7.3.3 Search Strategy

RL based strategy is applied to the search process. We rely on an LSTM-based
controller to predict the full configuration. We consider using a progressive
search strategy rather than the joint search for both FPN structure and pre-
diction head part, since the former requires less computing resources and time
cost than the latter. The training dataset is randomly split into a meta-train
Dt and meta-val Dv subset. To speed up the training, we fix the backbone
network and cache the pre-computed backbone output C. This makes our sin-
gle architecture training cost independent from the depth of backbone network.
Taking this advantage, we can apply much more complex backbone structures
and utilize high quality multilevel features as our decoder’s input. We find that
the process of backbone finetuning can be skipped if the cached features are
powerful enough. Speedup techniques such as Polyak weight averaging are also
applied during the training.

The most widely used detection metric is average precision (AP). However,
due to the difficulty of object detection task, at the early stages, AP is too low
to tell the good architectures from the bad ones, which makes the controller
take much more time to converge. To make the architecture evaluation process
easier even at the early stages of the training, we therefore use negative loss
sum as the reward instead of average precision:

R(a) =−
∑

(x,Y )∈Dv

(Lcls(x, Y |a)

+ Lreg(x, Y |a) + Lctr(x, Y |a))

(7.2)

where Lcls, Lreg, Lctr are the three loss terms in FCOS. Gradient of the controller
is estimated via proximal policy optimization (PPO) [120].

7.4 Experiments

7.4.1 Implementation Details

Searching Phase

We design a fast proxy task for evaluating the decoder architectures sampled in
the searching phase. PASCAL VOC is selected as the proxy dataset, which con-
tains 5715 training images with object bounding box annotations of 20 classes.
Transfer capacity of the structures can be illustrated since the search and full
training phase use different datasets. The VOC training set is randomly split
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into a meta-train set with 4, 000 images and a meta-val set with 1715 images.
For each sampled architecture, we train it on meta-train and compute the re-
ward (7.2) on meta-val. Input images are resized to short size 384 and then
randomly cropped to 384 × 384. Target object sizes of interest are scaled cor-
respondingly. We use Adam optimizer with learning rate 8e−4 and batch size
200. Polyak averaging is applied with the decay rates of 0.9. The decoder is
evaluated after 300 iterations. As we use fast decoder adaptation, the backbone
features are fixed and cached during the search phase. To enhance the cached
backbone features, we first initialize them with pre-trained weights provided
by open-source implementation of FCOS and then finetune on VOC using the
training strategies of FCOS. Note that the above finetuning process is only
performed once at the begining of the search phase.

A progressive strategy is used for the search of f and h. We first search for
the FPN part and retain the original head. All operations in the FPN structure
have 64 output channels. The decoder inputs C are resized to fit output channel
width of FPN via 1× 1 convolutions. After this step, a searched FPN structure
is fixed and the second stage searching for the head will be started based on it.
Most parameters for searching head are identical to those for searching FPN
structure, with the exception that the output channel width is adjusted from
64 to 128 to deliver more information.

For the FPN search part, the controller model nearly converged after search-
ing over 2.8K architectures on the proxy task as shown in Fig. 7.2. Then, the
top-20 best performing architectures on the proxy task are selected for the next
full training phase. For the head search part, we choose the best searched FPN
among the top-20 architectures and pre-fetch its features. It takes about 600

rounds for the controller to nearly converge, which is much faster than that for
searching FPN architectures. After that, we select for full training the top-10

heads that achieve best performance on the proxy task. In total, the whole
search phase can be finished within 4 days using 8 V100 GPUs.

Full Training Phase

In this phase, we fully train the searched models on the MS COCO training
dataset, and select the best one by evaluating them on MS COCO validation
images. Note that our training configurations are exactly the same as those in
FCOS for fair comparison. Input images are resized to short size 800 and the
maximum long side is set to be 1333. The models are trained using 4 V100
GPUs with batch size 16 for 90K iterations. The initial learning rate is 0.01
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Decoder Backbone FLOPs (G) Params (M) AP

FPN-RetinaNet @256 MobileNetV2 133.4 11.3 30.8
FPN-FCOS @256 MobileNetV2 105.4 9.8 31.2
NAS-FCOS (ours) @128 MobileNetV2 39.3 5.9 32.0
NAS-FCOS (ours) @128-256 MobileNetV2 95.6 9.9 33.8
NAS-FCOS (ours) @256 MobileNetV2 121.8 16.1 34.7

FPN-RetinaNet @256 R-50 198.0 33.6 36.1
FPN-FCOS @256 R-50 169.9 32.0 37.4
NAS-FCOS (ours) @128 R-50 104.0 27.8 37.9
NAS-FCOS (ours) @128-256 R-50 160.4 31.8 39.1
NAS-FCOS (ours) @256 R-50 189.6 38.4 39.8

FPN-RetinaNet @256 R-101 262.4 52.5 37.8
FPN-FCOS @256 R-101 234.3 50.9 41.5
NAS-FCOS (ours) @256 R-101 254.0 57.3 43.0

FPN-FCOS @256 X-64x4d-101 371.2 89.6 43.2
NAS-FCOS (ours) @128-256 X-64x4d-101 361.6 89.4 44.5

FPN-FCOS @256 w/improvements X-64x4d-101 371.2 89.6 44.7
NAS-FCOS (ours) @128-256 w/improvements X-64x4d-101 361.6 89.4 46.1

Table 7.2. Results on test-dev set of MS COCO after full
training. R-50 and R-101 represents ResNet backbones and X-
64x4d-101 represents ResNeXt-101 (64×4d). All networks share
the same input image resolution. FLOPs and parameters are be-
ing measured on 1088 × 800, which is the median of the input
size on COCO. For RetinaNet and FCOS, we use official mod-
els provided by the authors. For our NAS-FCOS, @128 and
@256 means that the decoder channel width is 128 and 256 re-
spectively. @128-256 is the decoder with 128 FPN width and
256 head width. The same improving tricks used on the newest

FCOS version are used in our model for fair comparison.
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Figure 7.2. Performance of reward during the proxy task,
which has been growing throughout the process, indicating that

the model of reinforcement learning works.
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and reduces to one tenth at the 60K-th and 80K-th iterations. The improving
tricks are applied only on the final model (w/improv).
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Figure 7.3. Our discovered FPN structure. C2 is omitted
from this figure since it is not chosen by this particular structure

during the search process.

7.4.2 Search Results

The best FPN structure is illustrated in Fig. 7.3. The controller identifies that
deformable convolution and concatenation are the best performing operations
for unary and aggregation respectively. From Fig. 7.4, we can see that the con-
troller chooses to use 4 operations (with two skip connections), rather than the
maximum allowed 6 operations. Note that the discovered “dconv + 1x1 conv”
structure achieves a good trade-off between accuracy and FLOPs. Compared
with the original head, our searched head has fewer FLOPs/Params (FLOPs
79.24G vs. 89.16G, Params 3.41M vs. 4.92M) and significantly better perfor-
mance (AP 38.7 vs. 37.4).

We use the searched decoder together with either light-weight backbones
such as MobileNet-V2 [121] or more powerful backbones such as ResNet-101 [77]
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Figure 7.4. Our discovered Head structure.
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Figure 7.5. Trend of head weight sharing during search. The
coordinates in the horizontal axis represent the number of the
statistical period. A period consists of 50 head structures. The
vertical axis represents the proportion of heads that fully share

weights in 50 structures.

and ResNeXt-101 [122]. To balance the performance and efficiency, we imple-
ment three decoders with different computation budgets: one with feature di-
mension of 128 (@128), one with 256 (@256) and another with FPN channel
width 128 and prediction head 256 (@128-256). The results on the COCO test-
dev with short side being 800 is shown in Table 7.2. The searched decoder with
feature dimension of 256 (@256) surpasses its FCOS counterpart by 1.5 to 3.5

points in AP under different backbones. The one with 128 channels (@128)
has significantly reduced parameters and calculation, making it more suitable
for resource-constrained environments. In particular, our searched model with
128 channels and MobileNetV2 backbone suparsses the original FCOS with the
same backbone by 0.8 AP points with only 1/3 FLOPS. The third type of de-
coder (@128-256) achieves a good balance between accuracy and parameters.
Note that our searched model outperforms the strongest FCOS variant by 1.4

AP points (46.1 vs. 44.7) with slightly smaller FLOPs and Params. The com-
parison of FLOPs and number of parameters with other models are illustrated
in Fig. 7.7 and Fig. 7.8 respectively.

In order to understand the importance of weight sharing in head, we add
the number of layers shared by weights as an object of the search. Fig. 7.5
shows a trend graph of head weight sharing during search. We set 50 structures
as a statistical cycle. As the search deepens, the proportion of fully shared
structures increases, indicating that on the multi-scale detection model, head
weight sharing is a necessity.

We also demonstrate the comparison with other NAS methods for object
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Figure 7.6. Correlation between the search reward obtained on
the VOC meta-val dataset and the AP evaluated on COCO-val.

detection in Table 7.3. Our method is able to search for twice more architectures
than DetNAS [49] per GPU-day. Note that the AP of NAS-FPN [55] is achieved
by stacking the searched FPN 7 times, while we do not stack our searched FPN.
Our model with ResNeXt-101 (64x4d) as backbone outperforms NAS-FPN by
1.3 AP points while using only 1/3 FLOPs and less calculation cost.

We further measure the correlation between rewards obtained during the
search process with the proxy dataset and APs attained by same architectures
trained on COCO. Specifically, we randomly sample 15 architectures from all
the searched structures trained on COCO with batch size 16. Since full training
on COCO is time-consuming, we reduce the iterations to 60K. The model is then
evaluated on the COCO 2017 validation set. As visible in Fig. 7.6, there is a
strong correlation between search rewards and APs obtained from COCO. Poor-
and well-performing architectures can be distinguished by the rewards on the
proxy task very well.

7.4.3 Ablation Study

Design of Reinforcement Learning Reward

As we discussed above, it is common to use widely accepted indicators as re-
wards for specific tasks in the search, such as mIOU for segmentation and AP
for object detection. However, we found that using AP as reward did not show
a clear upward trend in short-term search rounds (blue curve in Fig. 7.9). We
further analyze the possible reason to be that the controller tries to learn a
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Figure 7.9. Comparison of two different RL reward designs.
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the validation dataset.

Decoder Search Space AP

FPN-FCOS @256 - 37.4

NAS-FCOS @256 h only 38.7
NAS-FCOS @256 f only 38.9
NAS-FCOS @256 f + h 39.8

Table 7.4. Comparisons between APs obtained under different
search space with ResNet-50 backbone.

mapping from the decoder to the reward while the calculation of AP itself is
complicated, which makes it difficult to learn this mapping within a limited
number of iterations. In comparison, we clearly see the increase of AP with the
validation loss as RL rewards (red curve in Fig. 7.9).

Effectiveness of Search Space

To further discuss the impact of the search spaces f and h, we design three ex-
periments for verification. One is to search f with the original head being fixed,
one is to search h with the original FPN being fixed and another is to search
the entire decoder (f+h). As shown in Table 7.4, it turns out that searching f
brings slightly more benefits than searching h only. And our progressive search
which combines both f and h achieves a better result.
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Impact of Deformable Convolution

As aforementioned, deformable convolutions are included in the set of candidate
operations for both f and h, which are able to adapt to the geometric variations
of objects. For fair comparison, we also replace the whole standard 3 × 3

convolutions with deformable 3×3 convolutions in FPN structure of the original
FCOS and repeat them twice, making the FLOPs and parameters nearly equal
to our searched model. The new model is therefore called DeformFPN-FCOS.
It turns out that our NAS-FCOS model still achieves better performance (AP =

38.9 with FPN search only, and AP = 39.8 with both FPN and Head searched)
than the DeformFPN-FCOS model (AP = 38.4) under this circumstance.

7.5 Conclusion

In this chapter, we have proposed to use Neural Architecture Search to fur-
ther optimize the process of designing object detection networks. It is shown
in this work that top-performing detectors can be efficiently searched using
carefully designed proxy tasks, search strategies and model evaluation metrics.
The experiments on COCO demonstrates the efficiency of our discovered model
NAS-FCOS and its flexibility to be used with various backbone architectures.
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Chapter 8

Conclusion

We have come to an age of AI applications getting involved into many aspects
of everyday life. The efficiency and compactness of deep neural networks has
becomes a major bottleneck for wider spread applications. One key question
in designing these networks for perception tasks is how to efficiently reuse the
features for multiple tasks. To achieve these goal, it is important for us to find
a unified representation for different tasks.

This dissertation focuses on unifying two main categories of perception tasks,
dense prediction tasks such as semantic segmentation and instance-wise predic-
tion tasks such as object detection and instance segmentation. Previous meth-
ods use different paradigms for these tasks, densely prediction models follow a
fully convolutional structure and instance-wise models follow a two-stage detect-
then-segmentation structure. We reduce the gap between these two tasks and
propose efficient network architecture optimization methods.

Fully convolutional instance segmentation. To reduce the gap between
two-stage and fully-convolutional approached, we design SmalMask [3], a fully-
convolutional instance segmentation network that has equivalent expressiveness
as two-stage frameworks. Overcome the disadvantages of two-stage methods, i.e.
low prediction resolution and inefficient second-stage computation, we design
BlendMask [10], which is the first fully-convolutional framework that is faster
and more accurate than two-stage approaches.

Fully convolutional multi-task networks. Because of the simple struc-
ture of BlendMask, we can easily share the intermediate features with other
tasks to create very efficient multitask networks. We exploit this benefit to
unify instance segmentation and semantic segmentation networks. Specifically,
we design a more efficient instance segmentation network, DR1Mask and extend
it for panoptic segmentation by adding merely one convolution layer [11]. The
resulting network is two times faster than previous SOTA.

NAS for fully convolutional perception models. We then introduce
our approach for efficient perception task oriented neural architecture search
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algorithms. By caching backbone features and incorporating several speedup
strategies, we are able to find efficient and high-performing task-specific sub-
networks for video segmentation [5] and object detection [6] under the fully-
convolutional regime.

Future work. BlendMask and DR1Mask offer useful insights into designing
simple and efficient fully convolutional networks for complex perception tasks.
The key idea is to merge contextual information and low-level details for more
efficient instance representation. Blending module and DR1Module in Chap-
ter 4 and 5 are in initial exploration for dynamic feature fusion for perception
tasks. It remains future work to search for more efficient structures for panoptic
segmentation under this framework, especially designing better dynamic mod-
ules. We hope the searching experiments in Chapter 6 and 7 could serve as
examples for using NAS techniques for dynamic module analysis and complex
perception proxy task design.

Next generation vision algorithms should target broader scenarios. With
more challenging tasks such as 3D vision and more computation constrained
platforms in the future, efficient and powerful perception models are urgently
needed. There will be exponentially many multimodal input combinations for
perception algorithms to deal with. Thus, finding a unified structure for multiple
input and output tasks are crucial for the model scalability. It remains an
unanswered question whether there is a general and powerful representation for
different tasks, or if it can be manually designed. However, we are certain that
automatic model design algorithms is very important and can shorten the time
for us to find such models.
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Appendix A

Details for Semantic Video
Segmentation

A.1 Training Details of Static Baseline

The static baseline that we consider in the main text is arch2 from [53], which
we pre-train on CamVid [111] and CityScapes [112].

We utilise the ‘poly’ learning schedule [16] with the initial learning rates of
5e−2 and 1e−2 for the encoder and the decoder, respectively. As in [53], we
set the weight for auxiliary losses to 0.3.

On CityScapes, we train for 1000 epochs with mini-batches of 28 examples
each randomly scaled with the scale factor in range of [0.5, 2.0] and randomly
cropped to 800×800 with each side zero-padded accordingly. On CamVid, we
train for 2000 epochs with mini-batches of 32 examples each randomly scaled
with the scale factor in range of [0.5, 2.0] and randomly cropped to 600×600

with each side zero-padded accordingly.

A.2 Search Space Aggregation Operations

In addition to the definitions of all operations in the main text, we provide the
code for each aggregation operation written in PyTorch [123] in Listings 1, 2
and 3.
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import torch
import torch.nn as nn
import torch.nn.functional as F

def resize(x1, x2):
"""Spatially resize two tensors to the largest size among them"""
if x1.size()[2:] > x2.size()[2:]:

x2 = nn.Upsample(size=x1.size()[2:], mode='bilinear')(x2)
elif x1.size()[2:] < x2.size()[2:]:

x1 = nn.Upsample(size=x2.size()[2:], mode='bilinear')(x1)
return x1, x2

def conv(C_in, C_out, k, groups=1, stride=1, bias=False):
return nn.Conv2d(C_in, C_out, k, stride, padding=k // 2, bias=bias, groups=groups)

class ParamSum(nn.Module):
"""ID 0: Summation with per-channel learnable weights per each input.

Args:
C (int) : number of input channels.

"""
def __init__(self, C):

super(ParamSum, self).__init__()
self.a = nn.Parameter(torch.ones(C))
self.b = nn.Parameter(torch.ones(C))

def forward(self, x, y):
x, y = resize(x, y)
return (self.a.expand(x.size(0), -1)[:, :, None, None] * x +

self.b.expand(y.size(0), -1)[:, :, None, None] * y)

class ConcatReduce(nn.Module):
"""ID 1: Channel-wise concatenation followed by grouped 1x1 convolution.

Args:
C (int) : number of input channels (also the number of groups).

"""
def __init__(self, C):

super(ConcatReduce, self).__init__()
self.conv1x1 = nn.Sequential(

nn.BatchNorm2d(2 * C),
nn.ReLU(),
conv(2 * C, C, 1, groups=C))

def forward(self, x, y):
x, y = resize(x, y)
z = torch.cat([x, y], 1)
return self.conv1x1(z)

Listing 1. Aggregation Operations 0-1.
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class PredOP(nn.Module):
"""ID 2: (weight) predictive operation, where
the first input becomes a set of spatial convolutional
filters (weights) applied on the second one.

Args:
C (int) : number of input channels.
ksize (int, default=3) : kernel size of the resultant convolution.

"""
def __init__(self, C, ksize=3):

super(PredOP, self).__init__()
self.ksize = ksize
self.conv = nn.Sequential(

nn.ReLU(), conv(C, C, 3, groups=C),
nn.ReLU(), conv(C, C, 3, groups=C),
nn.ReLU(), conv(C, ksize * ksize, 1), nn.Softmax(dim=1))

def forward(self, x, y):
x, y = resize(x, y)
b, c, h, w = y.size()
x = (self.conv(x)

.permute(0, 2, 3, 1)

.contiguous().view(b, h*w, self.ksize**2, 1))
p = self.ksize // 2
cols = F.unfold(

y, kernel_size=self.ksize, dilation=p, padding=p, stride=1) # im2col
out = torch.matmul(

cols.permute(0, 2, 1).contiguous().view(b, -1, c, self.ksize**2), x)
out = out.permute(0, 2, 1, 3).contiguous().view(b, c, h, w)
return out

class BilSampling(nn.Module):
"""ID 3: Bilinear sampling of the first input with the affine grid
predicted based on the values of the second input.

Args:
C (int) : number of input channels.

"""
def __init__(self, C):

super(BilSampling, self).__init__()
self.conv_loc = nn.Sequential(conv(C, 3 * 2, 1), nn.ReLU())
self.fc_loc = nn.Linear(3 * 2, 3 * 2)

def forward(self, x, y):
x, y = resize(x, y)
yconv = self.conv_loc(y).mean(2).mean(2)
theta = self.fc_loc(yconv).view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x + y

Listing 2. Aggregation Operations 2-3.
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class Conv3d(nn.Module):
"""ID 4: 3D-convolution, where
two inputs are stacked together forming a new dimension
with 2x3x3 grouped convolution applied on top.

Args:
C (int) : number of input channels (also the number of groups).
ksize (int, default=3) : kernel size in (2, ksize, ksize) convolution.

"""
def __init__(self, C, ksize=3):

super(Conv3d, self).__init__()
p = int(ksize // 2)
self.conv = torch.nn.Conv3d(

C, C, kernel_size=(2, ksize, ksize), padding=(0, p, p),
groups=C, bias=False)

def forward(self, x, y):
x, y = resize(x, y)
return self.conv(torch.stack([x,y], 2)).squeeze(2)

class DenseAttention(nn.Module):
"""ID 5: Element-wise multiplication between the first input and
the sigmoid-activated second one.

"""
def __init__(self):

super(DenseAttention, self).__init__()

def forward(self, x, y):
x, y = resize(x, y)
return x * F.sigmoid(y)

Listing 3. Aggregation Operations 4-5.
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