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Abstract

Populations at the edges of their geographical range tend to have lower genetic diversity, smaller effective population sizes 
and limited connectivity relative to centre of range populations. Range edge populations are also likely to be better adapted to 
more extreme conditions for future survival and resilience in warming environments. However, they may also be most at risk 
of extinction from changing climate. We compare reproductive and genetic data of the temperate seagrass, Posidonia australis 
on the west coast of Australia. Measures of reproductive effort (flowering and fruit production and seed to ovule ratios) and 
estimates of genetic diversity and mating patterns (nuclear microsatellite DNA loci) were used to assess sexual reproduction 
in northern range edge (low latitude, elevated salinities, Shark Bay World Heritage Site) and centre of range (mid-latitude, 
oceanic salinity, Perth metropolitan waters) meadows in Western Australia. Flower and fruit production were highly variable 
among meadows and there was no significant relationship between seed to ovule ratio and clonal diversity. However, Shark 
Bay meadows were two orders of magnitude less fecund than those in Perth metropolitan waters. Shark Bay meadows were 
characterized by significantly lower levels of genetic diversity and a mixed mating system relative to meadows in Perth 
metropolitan waters, which had high genetic diversity and a completely outcrossed mating system. The combination of 
reproductive and genetic data showed overall lower sexual productivity in Shark Bay meadows relative to Perth metropolitan 
waters. The mixed mating system is likely driven by a combination of local environmental conditions and pollen limitation. 
These results indicate that seagrass restoration in Shark Bay may benefit from sourcing plant material from multiple 
reproductive meadows to increase outcrossed pollen availability and seed production for natural recruitment.

Keywords:  Environmental gradient; mating system; microsatellite DNA loci; monoecy; outcrossing rate; Posidonia australis; 
restoration; seed abortion.

  

Introduction
Populations at their geographic range edges tend to have 
smaller effective population sizes, reduced sexual reproduction 
and limited connectivity relative to centre of range populations 

(Eckert et  al. 2008; Sexton et  al. 2011). These patterns have 
been established through decades of theoretical and empirical 
studies in population genetics and integration with mating 

D
ow

nloaded from
 https://academ

ic.oup.com
/aobpla/article/12/4/plaa038/5882038 by Adelaide U

niversity user on 18 O
ctober 2020

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:esinclair@iinet.net.au?subject=


Copyedited by: AS

2 | AoB PLANTS, 2020, Vol. 12, No. 4

systems (reviewed in Charlesworth and Charlesworth 2017), 
although the pattern is less clear in marine species (e.g. 
Diekmann and Serrão 2012; Assis et al. 2013; Liggins et al. 2014). 
Renewed interest in understanding the drivers of biogeographic 
ranges has been reignited by the profound influence of climate 
change on distributional patterns of taxa and the ecosystems 
they inhabit (Chen et  al. 2011; Nicastro et  al. 2013; Wernberg 
et  al. 2016). Distributional changes by species in the marine 
environment, particularly those inhabiting inshore coastal 
shelves, occur through sea level changes (Miller et al. 2011), as 
well as in response to changing climate (e.g. Pecl et  al. 2017). 
The persistence of a species during these periods of change 
is ultimately influenced by available habitat and a species’ 
ability to respond to change. Some species’ ranges have not 
(yet) shifted, and their declines in demographic processes 
(e.g. survival or reproduction) are offset by increases in others 
(e.g. self-fertilization), potentially buffering populations from 
extinction (Sheth and Angert 2018). This may especially be the 
case for plant species with the ability to reproduce through 
sexual and asexual means (e.g. seagrasses), as adult plants may 
persist through extreme climate events over extended periods 
even when sexual reproduction fails.

Natural variation in traits, such as those associated with 
sexual reproduction, occur among populations across a 
species range; however, range edge populations may evolve 
physiological, morphological and life-history attributes that 
better attune them to warming environments (Levin 2012). 
These populations are also regarded as most threatened under 
climate change (Hampe and Petit 2005; Zardi et  al. 2015). The 
extent to which individuals and populations have an outcrossed 
mating system can influence genetic structure, extent of gene 
flow, effective population size and expression of inbreeding 
depression (Barrett and Harder 2017). A  recent meta-analysis 
by Whitehead et  al. (2018) highlights the substantial variation 
in outcrossing rates across 105 species in which mating system 
analyses were obtained in more than three populations. 
Examination of mating systems in multiple populations 
provides an opportunity to assess links between specific 
influences—with a suggestion that abiotic pollination factors 
(e.g. wind, water) provide a greater opportunity for consistency in 
outcrossing rates (Whitehead et al. 2018). Goodwillie et al. (2005) 
reported elevated levels of environmental or genetic-based self-
pollination also afford populations a measure of reproductive 
assurance, despite the genetic costs associated with inbreeding. 
We explore these hypotheses further in the marine environment 
where hydrophilous pollination is common.

Seagrasses are ancient marine flowering plants, of which 
most species complete their life cycle entirely underwater 
(Ackerman 1995). Globally, 24  % of species are classified as 
‘threatened’ or ‘near-threatened’ on the IUCN’s Red List (Short 
et al. 2011), with the rate of decline continuing to increase due 
to anthropogenic activities including climate change (Orth 
et al. 2006; Waycott et al. 2009). Seagrasses play a central role in 
ecosystem services (Costanza et al. 1997; Lamb et al. 2017) and 
in mitigating climate change (Fourqurean et  al. 2012; Duarte 
et  al. 2013). Genetic data showing high outcrossing rates are 
common among monoecious species (summarized in Sinclair 
et  al. 2014a), providing support for Ackerman’s hydrophilous 
pollination syndrome (Ackerman 2000). Here, we assessed 
reproductive (flower and seed production) and genetic data 
(diversity, population structure and mating system) for range 
edge and centre of range meadows of the Australian temperate 
seagrass, Posidona australis, a species with high seed dispersal 
capabilities (Kendrick et al. 2012, McMahon et al. 2014). We test 

the following hypotheses: (i) sexual reproduction is higher in 
Perth metropolitan waters than Shark Bay meadows; (ii) there 
is a shift from complete outcrossing in Perth metropolitan 
waters meadows to a mixed mating system in Shark Bay 
meadows; and (iii) the variance in outcrossing rates among 
P.  australis ‘families’ within meadows is higher in mixed 
mating meadows than completely outcrossed meadows. The 
combination of reproductive and genetic data enables a more 
comprehensive understanding of seed production and the long-
term implications for resilience and restoration of range edge 
seagrass meadows.

Materials and Methods

Study species

Posidonia australis is a perennial, marine angiosperm endemic 
to temperate Australian waters from Shark Bay at the northern 
range edge on the west coast to Wallis Lake on the east coast 
(Edgar 2000). It occurs in protected coastal waters and estuaries, 
just below the low water mark to 15 m water depth (Carruthers 
et  al. 2007) and reproduces both vegetatively (clonal rhizome 
extension) and sexually (pollen and seed production). Thus, 
this long-lived species can persist through prolonged times 
of sexual reproductive failure. Posidonia australis is diploid 
(somatic chromosome number 2n  =  20; Kuo et  al. 1990). It 
has perfect or hermaphroditic flowers (den Hartog 1970), in 
which anthers mature and release pollen ahead of stigma 
receptivity (protandrous; McConchie and Knox 1989). Initiation 
of inflorescence development occurs in May (Austral autumn), 
with pollination occurring in July/August (Austral winter) and 
fruit release in November–January (Austral spring–summer). 
Timing of fruit release varies with latitude; fruits ripen 1 month 
earlier in Shark Bay (25–26°S) than Perth metropolitan waters 
(32°S). Inflorescences are positioned above the leaf canopy, with 
up to 20 fruits being produced per inflorescence. Flower and 
seed production are temporally and spatially variable across 
the species range, but typically annual and prolific in Perth 
metropolitan waters (Cambridge and Hocking 1997). Flowering 
meadows in Shark Bay cover a few km2 compared with 10s to 
100s km2 in Perth metropolitan waters.

Field sites

Flowering meadows were sampled from northern range edge 
meadows in Shark Bay and mid-latitude meadows in Perth 
metropolitan waters (Fig. 1; Table 1). All sampled meadows were 
situated in shallow waters (<3 m) on the broad continental shelf 
off the Western Australian coastline. Palaeo sea level records 
from Western Australia, including tubeworm data from Rottnest 
Island (Playford 1988; Baker et al. 2005), indicate that sea level 
was within 2 m of its modern level by mid-Holocene (~7100 ± 70 
cal. years BP); thus, seagrass meadows are likely to have been 
broadly stable since that time.

Shark Bay, to the north, was formed by a marine 
transgression ~7000–8000  years ago (Bufarale and Collins 
2015). Radiocarbon dating of sediment cores indicates 
seagrass has been present in the Bay throughout the Holocene 
(not earlier than 8.5–8.0 ka BP, Bufarale and Collins 2015; 
3000 years, Serrano et al. 2016). Shark Bay is an inverse estuary 
with a permanent salinity gradient—from oceanic in the 
north to hypersaline conditions in the southern reaches (35–
70 practical salinity unit (PSU)). The salinity gradient has been 
maintained since the last sea level adjustments (~4500 years 
ago) by the formation of seagrass-dominated sills and banks 
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that have restricted water movement and nutrients (Fraser 
et al. 2012; Bufarale and Collins 2015). Shark Bay is recognized 
as a UNESCO World Heritage Site (WHS) for its unique, highly 
biodiverse ecosystem at the interface of warm tropical and 
southern temperate zone ecosystems and home to the largest 
reported seagrass meadows in the world (Walker et al. 1988; 
Kendrick et  al. 2012). The mostly pristine nature and legal 
protection afforded to the marine environments around 
Rottnest and Carnac Islands and Shark Bay WHS, within 
which P.  australis meadows inhabit, provide an opportunity 
to understand contemporary processes relatively free from 
localized anthropogenic threats.

Sexual reproduction

Flower and fruit production were measured in situ for two 
meadows in Shark Bay (Guischenault, Red Hill Bay) and two 
meadows in Perth metropolitan waters (Stark Bay and Parker 
Point, Rottnest Island) during Spring 2016. Inflorescence density 
was estimated by using five replicate 10 m × 1 m (10 m2) belt 
transects. Flower and fruit production per inflorescence were 
estimated from the random collection of 12 inflorescences from 
transects at each site. Inflorescences consisted of a stem (petiole) 
bearing several spikes (3–12) with 3–5 hermaphrodite flowers. 
Following successful pollination, fruit development takes ~12 

weeks. The number of fully developed fruit, undeveloped fruit 
and remains of flowers that had not been pollinated were counted 
on each inflorescence spike. The total number of flowers per 
inflorescence was derived from the sum of all fruit, undeveloped 
fruit and remains of flowers. Floral (number of flowers per m2) 
and fruit density (number of fruits per m2) were determined 
before fruit release. Production at Fowlers Camp was estimated 
based on fruit scars, as fruit had released prior to sampling. Seed 
to ovule ratio was determined from the total number of mature 
fruit (1 fruit = 1 seed) divided by the total numbers of flowers (1 
flower = 1 ovule). The floral and fruit density data and seed to 
ovule ratios were assessed for heteroscedasticity and normality. 
A  Tukey Ladder of Powers approach (Tukey 1977) was used to 
power transform the data to maximize normality of residuals. 
The normality of residuals was visualized and assessed with a 
Shapiro–Wilk tests for normality. A one-way ANOVA (meadow as 
fixed factor) and Tukey’s HSD test were performed for multiple 
comparisons of means between sites and regions, with a 95 % 
confidence level.

Genetic sampling, DNA extraction and genotyping

Opportunistic collections of adult shoots and associated 
inflorescences were made on SCUBA between 2014 and 2018 at 
three meadows in Shark Bay (Guischenault, Red Hill Bay, Fowlers 

Figure 1. Map of Western Australia showing the location of sampled meadows in Shark Bay, inset A: Guischenault, Red Hill Bay, Denham, Useless Loop, Fowlers Camp, 

and meadows in Perth metropolitan waters, inset B: Stark Bay and Parker Point, Rottnest Island, Carnac Island, Walking Beach, Garden Island, Point Peron.
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Camp) and three meadows in Perth metropolitan waters (Stark 
Bay and Parker Point, Rottnest Island, and Carnac Island, 
Cockburn Sound; Fig. 1). Approximately 30 individual maternal 
shoots were collected from each meadow just prior to fruit 
dehiscence (with the exception of Fowlers Camp) using methods 
described in Sinclair et al. (2014a). A visual assessment of seed 
viability (viable, mutant or aborted; Fig. 2) was performed prior 
to DNA extraction. Aborted embryos were discarded as there 
was not sufficient tissue to genotype.

DNA was extracted from shoot meristem and embryos using 
methods previously described (Sinclair et al. 2009, 2014a). Seven 
polymorphic microsatellite loci were used to generate multilocus 
genotypes (MLGs) using two multiplex mixes containing 5.2 µL 
of 2× Multimix and 1.98 µL of 5× Q sol (Type-It Microsatellite PCR 
kit; Qiagen, Hinden, Germany), 1.0  µL of primer mix (PM) and 
2.0 µL of 5–10 ng DNA in a 10 µL reaction. Primer mix 1 contained 
the primers PaA1, PaA105, PaA120; primer mix 2 contained 
PaB6, PaB8, PaB112, PaD113. Forward primers were fluorescently 
labelled (FAM, VIC or PET; see Supporting Information—Table 
S1) and microsatellite regions were amplified for all individuals 
by PCR using a Veriti thermocycler (Thermo Fisher Scientific, 
Waltham, MA, USA) using the following PCR conditions: an initial 
1-min denaturation at 95 °C, 35 cycles of 94 °C for 10 s, 60 °C for 
30 s and 72 °C for 45 s followed by a final extension of 15 min 
at 60  °C. Electrophoresis was run on an ABI 3500 sequencer 
(Life Technologies) with size standard LIZ. Allele sizes were 
scored using Geneious version 7.1 (Biomatters Ltd, Auckland, 
New Zealand). Replicate PCRs were performed to ensure the 
accuracy of the final data set. There was no evidence of linkage 
disequilibrium or null alleles at these loci based on previously 
obtained diploid genotypes (Sinclair et al. 2009, 2014a, b, 2016a); 
however, we ran all new diploid data (see below) through Micro-
Checker v2.2.3 to assess for the presence of scoring error due to 
stuttering, large allele dropout or null alleles (van Oosterhout 
et  al. 2004; http://www.nrp.ac.uk/nrp-strategic-alliances/elsa/
software/microchecker/).

Genetic diversity, clonal diversity and genetic 
structure

Tri-allelic genotypes were observed in six out of the seven loci 
that typically give di-allelic genotypes. Allele frequencies were 
therefore calculated using GENODIVE version 2.0b27 (Meirmans 
and Van Tienderen 2004), which handles genotypes with more 
than two alleles per locus and permits mixed (diploid and triple 
allelic) genotypes to be included within the same analyses. The 
summary statistics calculated on the complete data set were: 
total number of alleles (Na), private alleles (p[i]), mean number of 
alleles (Num), effective number of alleles (Eff Num), observed (Ho) 
and expected (Hs) heterozygosity within sampled meadows and 
seed ‘populations’. The ‘Assign clones’ option was used to identify 
unique clones or MLGs and their frequency due to the high chance 

Figure 2. Transverse section of mature Posidonia fruit showing (left to right) 

viable, ‘mutant’ and aborted embryos. Scale: one square = 1 cm. Photo by E. A. 

Sinclair.

Table 1. Location and characteristics for Posidonia australis meadows.

Location 
(north–south) Abbrev.

Latitude 
(S)

Longitude  
(E)

Salinity  
(PSU)

Depth  
(m)

Meadow 
characteristics Hydrodynamics

Shark Bay (northern range edge):
 Guischenault GU −25.61895 113.58918 36–38 <2 Expansive meadow Large tides at time of pollen 

release, water tends to 
spill off the banks

 Red Hill Bay HP −26.03051 113.37399 36–38 <2 Fringing seagrass, 
highly 
fragmented

Strong tidal movement

 Fowlers Camp FC −26.10549 113.61285 >40 <2 Fringing seagrass 
near expansive 
meadow

Large tides at time of pollen 
release, sheltered from 
waves 

Perth metropolitan waters (centre of range):
 Stark Bay, Rottnest 

Island 
RST −32.00604 115.48488 Oceanic <3 Expansive meadow 

mixed with rocky 
reef

Exposed to waves from the 
north

 Parker Point, 
Rottnest Island

RPP −32.02242 115.53092 Oceanic <2 Fringing seagrass, 
highly 
fragmented

Sheltered with weak 
current

 Carnac Island, 
Cockburn Sound

CI −32.12040 115.66547 Oceanic <3 Fringing seagrass, 
fragmented

Sheltered meadow with 
strong water movement 
from swell and wind 
refracting around the 
island 
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of sampling multiple flowering ramets from the same plant 
within a meadow. We implemented a stepwise mutation model 
(SMM), with a threshold of 1. This was used due the unusually 
large number of MLGs differing by a single allele at Carnac Island 
(see Sinclair et al. 2014b). Clonal richness (R = (G − 1)/(N − 1)), where 
G = number of MLGs, and N = number of samples, was estimated 
for each meadow (Dorken and Eckert 2001) and clonal evenness 
(ED), a measure of abundance of MLGs. Deviations from Hardy–
Weinberg equilibrium, described as an inbreeding coefficient (Gis), 
were calculated based on MLGs with 10 000 permutations, with 
positive values indicating a heterozygote deficit and negative 
values indicating a heterozygote excess. We conducted a t-test 
to determine whether there was a significant difference between 
clonal diversity in embryo ‘populations’ in Shark Bay and Perth 
metropolitan waters. Genetic differentiation (FST) was generated 
for all pairs of ‘populations’ using the complete data set, with 
significance between populations assessed using with 10  000 
permutations.

Mating system

Many of the standard population genetic tools have been 
developed for diploid data sets and therefore not feasible 
for polyploid or mixed data sets (Dufresne et  al. 2014). In the 
absence of any evidence of polyploidy in P.  australis (Sinclair 
et  al. 2016b), individuals containing tri-allelic genotypes were 
reduced to diploid genotypes to enable estimation of mating 
system parameters using the software program MLTR v.3.4 
(Ritland 2002; http://kermitzii.com/softwares/). Alleles that 
were not detected in a homozygous form, or were rare (where 
f  <  0.05), were removed. Identical, commonly occurring tri-
allelic genotypes were reduced to the same diploid genotype so 
as not to alter the total number of MLGs. All genotypes were 
manually checked to ensure each embryo contained at least one 
maternal allele. We acknowledge that this may introduce bias 
through an artificial increase in estimated selfing rates. Mating 
system parameters were estimated for each meadow, as well as 
by families within each meadow, using a maximum likelihood 
approach. These estimates were based on the multilocus mixed-
mating model that assumes plants are randomly mating and 
the level of outcrossing is inversely proportional to the level 
of selfing (Shaw et  al. 1981; Ritland 2002). The program was 
used to derive both single (ts) and multilocus (tm) outcrossing 
rates, biparental inbreeding (tm–ts, proportion of embryos due 
to mating between closely related parents) and multilocus 
correlation of P (proportion of full siblings) (Ritland 2002). 
Outcrossed embryos were unambiguously identified by the 
presence of a non-maternal allele. The level of inbreeding among 
maternal plants was characterized by the inbreeding coefficient 
(f), where a positive value indicates an excess of homozygotes 
and a negative value indicates an excess of heterozygotes as 
a result of outcrossing, as compared to expectations under 
Hardy–Weinberg equilibrium. Standard errors for all estimates 
were derived using a bootstrap method with 1000 bootstraps. 
The effective number of pollen donors (Nep(w)) per inflorescence 
(= family) was estimated by taking the inverse of the rp (Smouse 
et al. 2001). We conducted a t-test to determine whether there 
was a significant difference between outcrossing rates in 
meadows from Shark Bay and Perth metropolitan waters.

Results

Sexual reproduction

There was a significant difference in sexual reproduction among 
meadows, as measured by flower production, fruit production 

and seed to ovule ratio (Fig.  3A–C). Flower production was 
very high (>1000 m−2) at Guischenault and Stark Bay, with 
no statistically significant differences in densities recorded 
(Fig. 3A). They were both significantly higher than Parker Point 
(<50 m2) and Red Hill Bay (<10 m−2) (Tukey’s HSD test, P < 0.0001). 
A  similar pattern was observed in fruit production (Fig.  3B). 
The only difference being that Parker Point and Red Hill Bay 
had an extremely low number of fruit (<10 m−2) and they were 
not significantly different from each other. Parker Point had a 
significantly lower seed to ovule ratio than the other three sites 
(Tukey’s HSD test, P < 0.0001). Thirty-two to 45 % of all ovules 
produced seed in the other three sites and differences in seed to 
ovule ratio were not significant (Fig. 3C).

Genetic diversity, clonal diversity and genetic 
structure

There was no systematic evidence of scoring error due to 
stuttering, large allele dropout or null alleles across loci and 
populations. However, the presence of null alleles due to high 
homozygosity was suggested in embryo populations from 
Guischenault (three loci) and Red Hill Bay (one locus). Overall 
genetic diversity estimates were higher in Perth metropolitan 
waters relative to Shark Bay meadows (Table 2; see Supporting 
Information—Table S2). Clonal diversity among maternal 
shoots was similar (R = 0.17–0.41; Table 2), with the exception of 
Carnac Island which was high (R = 0.94). Centre of range embryo 
populations had significantly higher clonal diversity (R = 0.66–
0.96) relative to embryos from range edge meadows (R  =  0.30, 
0.26) (t-test: −4.66, P-value = 0.009). Clonal evenness was lower 
in embryo populations than meadows for range edge meadows, 
with 47.8  % (45/94) of embryos from Guischenault sharing 

Figure 3. Sexual reproductive output between four sampled P.  australis 

meadows, as measured by (A) flower production, (B) fruit production and (C) seed 

to ovule ratio. The letters above the graphs (a–c) represent significant statistical 

outcomes from a one-way ANOVA and Tukey’s HSD test, P < 0.0001. Shark Bay 

meadows are Guischenault and Red Hill Bay, Perth metropolitan waters are Stark 

Bay and Parker Point, Rottnest Island.
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the same MLG. The pattern was reversed in centre of range 
meadows, with the exception of Carnac Island (Table 2). One to 
three private alleles were detected in all embryo populations. 
Significant deviations from Hardy–Weinberg equilibrium were 
detected in most maternal and embryo populations, likely 
as a result of high clonality due to selective sampling for 
reproductive shoots.

Shoot samples with identical MLGs within a meadow were 
assumed to belong to the same flowering genet (or clone), while 
shared embryo MLGs were likely a result of low genetic diversity, 
self-pollination and/or apomixis. Twenty-six MLGs were shared 
among shoot and embryo ‘populations’ within Guischenault and 
Red Hill Bay. A single MLG was shared among two embryos from 
Guischenault and shoots from Red Hill Bay (n = 1), Useless Loop 
(n = 2) and Fowlers Camp (n = 17). Overall, there was significant 
genetic differentiation among meadows (adult shoots FST = 0.149, 
P < 0.001), with no significant differentiation between maternal 
shoot and embryo ‘populations’ from Red Hill Bay, Stark Bay and 
Carnac Island [see Supporting Information—Table S3]. Maternal 
shoot and embryo ‘populations’ were weakly differentiated at 
Guischenault and Parker Point.

Additional alleles (tri-allelic genotypes) were present in 
at least one locus for every shoot genotype at Fowlers Camp, 
contributing to elevated observed heterozygosity (Ho) relative to 
Guischenault. Tri-allelic genotypes were also observed in some 
embryos (Table  2). The proportion of samples with additional 
alleles is much higher in Shark Bay meadows with elevated 
salinities, regardless of clonal diversity (Fig. 4A).

No significant relationship was observed between seed to 
ovule ratios and shoot clonal diversity using maternal genotypes 
and previously collected population genetics data (summarized 
in Table 4) from meadows on the west coast of Australia (Pearson 
r (maternal)  =  0.763, P  =  0.133; Pearson r (population): 0.597, 
P = 0.287).

Mating system

Mating system analyses were conducted on samples from 
five meadows which produced viable embryos. Complete 
outcrossing was seen in the three meadows from Perth 
metropolitan waters (Stark Bay, Parker Point, Carnac Island; 
Table 3). Mixed mating (i.e. self- and cross-fertilized embryos) 
was observed in the two Shark Bay meadows that produced 
viable embryos, with multilocus outcrossing rates of 0.50 at 
Guischenault and 0.57 at Red Hill Bay (Table  3). There was a 
significant difference in outcrossing rates between meadows in 
Shark Bay and Perth metropolitan waters (t-test: −7.75, P-value 
< 0.01). Correlated paternity (or proportion of full siblings) was 
much higher in Shark Bay meadows (rp): range edge = 0.90, 0.93 
than Perth metropolitan waters = 0.11–0.21, indicating a much 
higher effective number of pollen donors per inflorescence 
for Perth metropolitan waters (4.8–8.8) compared with Shark 
Bay (~1.0) meadows. Carnac Island was the exception, with 
the highest proportion of full sibs from all sampled meadows 
in Perth metropolitan waters (0.68). Outcrossing rates within 
individual families were much more variable in Shark Bay 
meadows than Perth metropolitan waters meadows (Table 3), 
with a significant correlation between clonal diversity in 
embryos and percentage of outcrossed families by meadow, 
regardless of location (Fig.  4B, Pearson r  =  0.956, P-value < 
0.001). A  visual inspection of Fig.  4C shows a much larger 
variance in family outcrossing rates in meadows with mixed 
mating systems in Shark Bay relative to completely outcrossed 
meadows across Perth metropolitan waters.
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Discussion
Posidonia australis meadows were completely outcrossed in 
Perth metropolitan waters while range edge meadows in Shark 
Bay had a mixed mating system. We also observed lower levels 
of genetic diversity and higher clonality in meadows within 
Shark Bay relative to Perth metropolitan waters, which together 
support our population genetic hypotheses, despite limited 
replication to distinguish between an edge effect and the 
potentially confounding effect of elevated salinity. Low levels 
of genetic diversity within individual meadows with low to 
no sexual reproduction were also reported in several northern 

range edge P. australis meadows on the east coast of Australia 
(Evans et al. 2014). However, the considerable diversity retained 
across P. australis meadows in Shark Bay may be the result of 
genetic connectivity over larger spatial areas and longer time 
periods, as well as additional alleles. A regional assessment 
of eelgrass, Zostera marina, showed that genetic diversity was 
retained across multiple (southern) range edge meadows 
relative to within individual meadows which had small effective 
population size, reduced habitat area, low sexual reproduction 
and gene flow (Diekmann and Serrão 2012). Marine seascape 
patterns are often complex, with temperature, oceanography 
and geography showing equal prevalence of influence on spatial 
genetic patterns (reviewed in Selkoe et al. 2016).

Our hypotheses appear less well supported by productivity 
data on flowering and seed production and ratio of seed set to 
flowering (seed to ovule ratio). Sampling was however focussed 
on seed-producing meadows to obtain data on outcrossing 
rates. The spatial extent of the Shark Bay meadows was two 
orders of magnitude lower than Perth metropolitan waters 
where there are 10s to 100s km of reproductively fecund 
meadows. There are many more meadows in Shark Bay that 
have low densities of flowers, with no viable seeds being 
produced (see Kendrick et al. 2019).

Our combined P.  australis data for seven meadows (Sinclair 
et  al. 2014a; this study) are consistent with patterns observed 
in terrestrial plant species, regardless of pollination method 
whereby range edge populations tend to have mixed mating. 
The potentially false increases to selfing rates introduced by 
reducing tri- to bi-allelic genotypes to estimate outcrossing rates 
are unlikely to account for such significant differences observed. 
The high frequency of additional alleles (tri-allelic genotypes) 
present in three non-reproductive Shark Bay meadows 
genotyped (Table 4, Denham (DE), Fowlers Camp (FC) and Useless 
Loop (UL)) contributed to elevated heterozygosity (Ho) relative 
to Guischenault (GU), which was the most fecund meadow. 
Alternative hypotheses proposed to explain the presence of 
additional alleles across multiple meadows include ancient 
hybridization, putative aneuploidy and somatic mutations 
leading to genetic mosaicism, all of which have been reported 
in seagrasses (Reusch and Boström 2011; Sinclair et  al. 2019; 
Digiantonio et al. 2020). The accumulation of somatic mutations 
(leading to genetic mosaicism) could explain the additional 
alleles; however, it is unlikely to account for the high frequency 
and widespread observations across Shark Bay and beyond. The 
more widespread occurrence of additional alleles suggests they 
made be a legacy of hybridization event(s), whereby a diploid F1 
hybrid plant is fertile and able to backcross to a parental species 
(Sinclair et al. 2016b). Additional alleles in the backcross hybrid 
may be caused by unreduced (diploid) pollen combining with 
the haploid pollen from either parental species. These backcross 
hybrids persist through vegetative growth, but are probably sterile, 
and consistent with reduced or complete failure to produce 
viable seed in these meadows. Such an explanation is unlikely 
in the absence of polyploidy and/or whole-genome duplication 
(see ploidy cycling in Wendel 2015). Additional research with 
appropriately designed sampling using genomic approaches may 
determine the true origin of additional alleles in the future, as 
demonstrated in another seagrass genus, Zostera (Yu et al. 2020).

Role of the local environment on sexual 
reproduction

Understanding the relative influence of geographic location and 
environmental conditions on sexual reproduction is challenging. 

Figure 4. Genetic diversity: relationship between (A) clonal diversity and 

proportion of samples with 3× alleles within a meadow relative to salinity, (B) 

clonal diversity in embryos and percentage of outcrossed families by meadow 

and (C) variance in outcrossing rates (tm) among P. australis ‘families’ by seagrass 

meadow. The box corresponds to the lower and upper quartiles (25 and 75th 

percentiles), internal horizontal bars indicate the median and vertical whiskers 

extend to the lowest and highest values no further than 1.5 interquartile range. 

Points outlying this are represented as dots. Abbreviations for range edge 

meadows in Shark Bay are Guischenault (GU), Red Hill Bay (HP), Denham (DE), 

Useless Loop (UL), Fowlers Camp (FC) and Perth metropolitan waters are Stark 

Bay (RST) and Parker Point (RPP) on Rottnest Island, Carnac Island (CI), Walking 

Beach, Garden Island (WB), Point Peron (PP).
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The relationship between reproductive output and genetic 
diversity measures may also be affected by local environmental 
conditions (e.g. hydrology and salinity). The Shark Bay meadows 
had fewer reproductive clones and a mixed mating system, 
although flower and fruit production and seed to ovule ratios 
can be comparable to meadows in Perth metropolitan waters. 
The Guischenault meadow has some of the highest recorded 
flowering and fruit densities in P. australis with a high seed to 
ovule ratio, yet overall levels of genetic diversity were low in 
maternal plants and embryos, with only 50  % outcrossing. In 
contrast, Red Hill Bay has some of the lowest recorded flowering 
and fruit densities in P.  australis with very low genetic and 
clonal diversity (similar to Parker Point) yet has a similarly high 
seed to ovule ratio and mixed mating. Both these reproductive 
range edge meadows have high water movement (i.e. strongly 
tidal, linear movement) at close to oceanic salinity, thus likely 
to promote pollination success for the available pollen, leading 
to higher seed production than anticipated. This is in contrast 
to an exceptionally low seed to ovule ratio at Fowlers Camp, a 
sheltered meadow with weak tidal current, and exceptionally 
high flowering in elevated salinities. No reproductive data were 
collected for Carnac Island; however, large numbers of viable 
fruit are observed annually. Carnac Island appears to be a special 
case where high clonal diversity, parental inbreeding, complete 
outcrossing and high proportion of full sibs are consistent 
with pollination and recruitment occurring within this highly 
sheltered meadow (as proposed in Sinclair et al. 2014a).

The magnitude of pollen limitation observed in natural 
populations depends on both historical constraints and 
contemporary ecological factors (Knight et  al. 2005). Pollen 
limitation has been reported in several seagrass genera 
Phyllospadix spp. (Shelton 2008; Buckel et  al. 2012), Thalassia 
testudinum (Van Tussenbroek et al. 2016b) and Zostera spp. (Reusch 
2003; Van Tussenbroek et al. 2016a), where there is dominance of a 
few large clones and/or high spatial and temporal heterogeneity 
in flowering. Stigmas on flowers in Guischenault and Red Hill 

Bay may be exposed to a large amount of local pollen through 
strong tidal water movement, but outcrossing rates were lower 
because pollen was produced by a few clones, leading to selfing 
and/or apomixis.

Levin (2012) and Breed et  al. (2015) highlight declining 
outcrossing rates in range edge and disturbed environments 
as a result of environmental changes. Increased selfing may 
be advantageous in range edge populations due to the possible 
advantages of reproductive assurance and through maintaining 
locally adapted genotypes (Arnaud-Haond et  al. 2006; Levin 
2012), despite the risks of increased mutational load that reduces 
fitness (Willi et al. 2018). Substantial increases in self-fertilization 
rates may also occur via plastic responses to stress (Levin 2012). 
An experimental study of an annual succulent halophyte 
Cakile maritima reported significant decline in plant biomass, 
as well as the number and size of fruit, with elevated salinity 
(Debez et  al. 2004). The accumulation of Na+ and Cl− in pollen 
and stigmas is known to be strongly implied in salt-induced 
sterility in rice (Oryza sativa, Khatun et al. 1995). Sparse flowering 
records in P. australis with low seed to ovule ratio and no viable 
fruit recovered from meadows growing at elevated salinities 
(>38 PSU) are consistent with this finding. Pseudoviviparous 
plantlets in unfertilized inflorescences have also been observed 
following lower-than-usual water temperature and complete 
seed abortion when plants were under thermal stress from an 
extreme marine heat wave (Sinclair et al. 2016b). This suggests a 
trade-off between sexual and asexual reproduction which may 
also be driven by both salinity and temperature (e.g. Salter et al. 
2010). However, additional information on the spatial extent of 
fecund meadows is required to interpret ecological comparisons 
of sexual reproduction.

Implications for long-term resilience and restoration

Strongly clonal species are known to survive for very long 
periods of time (de Witte and Stocklin 2010). Individual clones 
can persist thousands of years, surviving through significant 

Table 3. Mating system parameters for Posidonia australis meadows and by ‘families’ within meadows. Values are based on genotypes for seven 
microsatellite loci. *See Fig. 2.

Parameter  

Shark Bay meadows Perth metropolitan waters

GU (±SD) HP (±SD) RST (±SD) RPP (±SD) CI (±SD)

No. mature embryos genotyped/
infructescence

2–8 2–10 2–8 3–8 3–14

Mean family size 4.4 (±1.6) 6.3 (±2.4) 3.8 (±1.3) 4.8 (±1.4) 8.6 (±2.5)
Total number of aborted embryos 9 15 (+21 mutant*) 1 2 5
Percentage of aborted embryos 0.40 % 13.60 % 0.08 % 1.30 % 1.70 %
Number of families genotyped 28 15 28 30 32
Number of embryos genotyped 123 94 106 144 274
Mating system parameters by meadow:
 Parental inbreeding f 0.19 (±0.15) −0.20 (±0.01) −0.09 (±0.02) −0.11 (±0.06) −0.20 (±0.05)
 Multilocus outcrossing rate tm 0.50 (± 0.09) 0.57 (± 0.26) 1.03 (±0.02) 1.20 (±0.03) 1.06 (±0.04)
 Single-locus outcrossing rate ts 0.54 (±0.10) 0.59 (±0.27) 1.13 (±0.03) 1.20 (±0.00) 1.04 (±0.04)
 Biparental inbreeding tm–ts −0.04 (±0.03) −0.02 (±0.04) −0.10 (±0.04) 0.00 (±0.04) 0.02 (±0.04)
 Multilocus correlation of P within genets 

rp(w)

0.90 (±0.19) −0.93 (±0.33) 0.11 (±0.13) 0.21 (±0.06) 0.68 (±0.02)

 Effective number of pollen donors Nep(w) 1.1 1.0 8.8 4.8 1.5
Mating system parameters within family:
 Percentage (%) outcrossed families 43.3 33.3 96.4 100.0 90.6
 Single-locus outcrossing rate—range ts 

(±SE)
−0.41–1.99 
(±0.25)

−0.72–2.40  
(±0.40)

0.10–1.73 
(±0.16)

1.04–1.93 
(±0.16)

0.38–1.32 
(±0.11)

 Multilocus outcrossing rate—range tm (±SE) −0.41–1.49 
(±0.16)

−0.75–2.16  
(±0.48)

0.27–1.06 
(±0.00)

1.00–1.10 
(±0.00)

0.46–1.38 
(±0.04)
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climatic events, and essentially buffering species or populations 
against short-term or localized stress (e.g. Reusch et  al. 1999; 
May et al. 2009; Arnaud-Haond et al. 2012). Surviving such events 
requires the genetic capacity to adapt and/or the propensity to 
shift geographical ranges (i.e. associated with sea level change). 
Honnay and Bossuyt (2005) argue that prolonged and nearly 
exclusive clonal growth through environmental suppression 
of sexual reproduction can ultimately lead to local sexual 
extinction and to monoclonal populations, with significant 
consequences for population viability.

Shark Bay was impacted by an extreme marine heatwave in 
2010/11 which caused significant loss of seagrass (Fraser et al. 
2014; Thomson et  al. 2015) and sexual reproductive failure in 
P. australis (Sinclair et al. 2016b). A recent review of the impacts 
of this heatwave showed it has taken 6 years to observe natural 
recovery of shoot density (Kendrick et  al. 2019). However, this 
recovery is likely driven through rhizome expansion rather than 
sexual recruitment (Kendrick et al. 2019), as seed production is 
poor and patchy.

Conservation and mitigation of disturbance have typically been 
the first line of defence for seagrass loss, but ecological restoration 
is becoming increasingly necessary in a rapidly changing 
environment (Statton et al. 2018). It is potentially a more effective 
management strategy where seagrass habitat has been recently 
lost or heavily impacted and sexual reproduction is sporadic, 
as natural recruitment events are rare. Tackling restoration in 
warming range edge populations across environmental gradients 
may present additional challenges. Sexton et al. (2011) manipulated 
patterns of gene flow in an annual plant to experimentally show 
that offspring fitness improved with outcrossing, but that lifetime 
reproductive success only increased significantly when pollen 
originated from other warm edge populations. They emphasized 
the overlooked importance of gene flow among populations 
occurring near the same range edge, highlighting the potential 
for prescriptive gene flow as a conservation/restoration option. 
Restoration of marine ecosystems will benefit from vigorous 
debates around the use of local (maintain local adaptation) versus 
non-local (mitigate against climate change) plant material (Breed 
et  al. 2018). Other alternatives include the use of population 
genomics to understand the genetic basis of adaptation to inform 
seed sourcing (Breed et al. 2019).

Seagrasses have persisted for thousands of years through 
multiple climate cycles, with no recent evidence of latitudinal 
range contraction in P.  australis. The range edge meadows of 
Shark Bay have retained (neutral) genetic diversity and the 
ability to reproduce sexually (albeit lower). The use of vegetative 
(clonal) and seed material from multiple P.  australis meadows 
across Shark Bay to assist recovery may artificially enhance 
meadow diversity and outcrossing rates for better quality seed 
production in the future. Ongoing research into the role of 
adaptation, acclimation and plasticity in range edge meadows 
may shed light on how these meadows with reduced sexual 
reproduction and outcrossing rates may overcome additional 
challenges across a salinity gradient under changing climates.

Supporting Information
The following additional information is available in the online 
version of this article—

Table S1. Seven labelled polymorphic microsatellite loci 
isolated from Posidonia australis.

Table S2. Allele frequencies for all genotyped samples by 
meadow and tissue type (maternal shoots and embryos). Based 
on tri-allelic genotypes and calculated in Genodive.

Table S3. Genetic differentiation as estimated using FST 
(above diagonal) and P-values (below diagonal) between all 
pairs of maternal shoots and embryo ‘populations’.
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