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THESIS SUMMARY

The protein products of the myc farrily of proto-oncogenes regulate a wide variety of

cellular processes, such as proliferation, apoptosis and cell growth. The importance of this

family of genes is highlighted by the observation that their absence in mouse development

results in significant defects and death during early embryogenesis.

Investigation into the events of early embryogenesis can be modelled in the laboratory via

the use of mouse embryonic stem (mES) cells, which are derived from the inner cell mass

(ICM) of the mouse embryo and are equivalent to 4.5 days post coitum (dpc). An

important characteristic of ES cells is that they are pluripotent, meaning that they have the

potential to form every embryonic cell type. Maintenance of a pluripotent state, in culture

is achieved by the exposure to the cytokine, Leukemia Inhibitory Factor (LIF).

Differentiation of ES cells can achieved in cell culture in various rways, one of which leads

to the formation of structures called embryoid bodies. These can be used as an in vitro

model for embryonic differentiation of cells of the pluripotent ICM to the three primary

germ layers, Ectoderm, Endoderm and Mesoderm. In the embryo and embryoid bodies it

has be demonstrated that the differentiation of pluripotent cells into the germ layers there is

a deceleration in the cell cycle times and adoption of a more tightly regulated cell cycle.

It was the focus of this research to investigate the role of c-Myc protein in the

differentiation of pluripotent embryonic stem cells into the three primary germ layers. To

analyse the association of c-Myc protein with changes in cell cycle kinetics Western Blot

Analysis was utilised. In this experiment, two distinct protein species were detected in

early time points but were down-regulated as differentiation proceeded. Based on the
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estimated size of the proteins detected it was proposed that one of the bands was fuIl-

length c-Myc and the other was the shorter, differentially translated c-Myc subtype, c-

MycS. Specific antibodies generated in the course of this research demonstrated that the

shorter band detected in the Westem Analysis was c-MycS, which illustrated that

translation of the c-Myc protein is differentially regulated during differentiation of ES

cells.

This thesis also describes the impact of c-Myc over-expression on differentiation and the

maintenance of pluripotency. This effect was analysed during embryoid body

differentiation experiments utilising Northem blot detection of RNA markers, which

showed delayed differentiation kinetics. LIF titration assays demonstrated that c-Myc over-

expression decreased dependence on LIF for ES cells to maintain pluripotency.
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CHAPTER 1

INTRODUCTION

1. 1 Mammølian Embryonic D evelopm ent

Embryogenesis begins with fertilisation of the egg. This single cell is the progenitor of

most extra-embryonic membranes and all the cell lineages that comprise the embryo and

the adult. The initial stages of mammalian development entail an increase in cell number

without alteration in cellular differentiation potential (reviewed in Hogan et a1.,1994). The

first differentiation event occurs at approximately 2.5 days post coitum (dpc), at the 16 cell

morula stage, where the outer cells give rise to the extra-embryonic trophectoderm lineage

while the inner cells form the first pluripotent cell population of the embryo, the inner cell

mass (ICM) (Gardner, 1983). Pluripotence is defined as retaining the potential to

contribute progeny to all embryonic lineages. Between 2.5 and 3.5 dpc, fluid accumulates

within the embryo that extrudes the ICM to one side of the embryo, forming the blastocelic

cavity ('Watson and Kidder, 1988). By 4.5 dpc the outer ICM cells, adjacent to the cavity,

have differentiated into an additional extra-embryonic lineage, termed primitive endoderm,

while the remainder of the ICM forms the pluripotent epiblast. At 4.5 dpc the embryo

implants into the uterus (reviewed in Hogan et al., 1994). Following implantation, the

pluripotent cells of the epiblast undergo a period of rapid proliferation between 5.5 and 6.5

dpc, where cell cycle times drop as low as 5-7 hours (Snow, l9l7; Poelmann, 1980;

Lawson et al., 199I). Furthermore, during this stage of development, the pluripotent

epiblast cells differentiate into aî additional pluripotent lineage, termed primitive

ectoderm. Primitive ectoderm is a pseudo-stratified epithelial monolayer of cells

surrounding a central pro-amniotic cavity. The pro-amniotic cavity forms around 5.0 dpc

by thc induction of programmed cell death in the central pluripotent cells through the
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action of a diffusible 'death' signal, eminating from a lineage of the primitive endoderm,

the visceral endoderm, that lies adjacent to the pluripotent cell mass. The outer pluripotent

cells survive this apoptotic signal through interaction with arì extra-cellular matrix

associated survival signal in the basement membrane separating visceral endoderm and

primitive ectoderm (Coucouvanis and Martin, 1995).

The primitive ectoderm is the pluripotent cell substrate for the process of gastrulation at

approximately 6.5 dpc. It is at this stage of development when cells first lose pluripotency

and form the three primary germ layers, ectoderm, endoderm and mesoderm (Ginsberg et

aL.,1990). The onset of gastrulation is defined by the appearance of the primitive streak on

the posterior most end of the embryo, where pluripotent cells differentiate into definitive

mesoderm. The emerging embryonic mesoderm migrates between the primitive ectoderm

and the visceral endoderm from the most posterior embryonic region to the distal tip of the

embryo. In the period of 4.5-6 dpc cell cycle times are thought to be as low as 10 hours.

Following mesoderm formation the cell cycle transition times have slowed to predicted

rates of 22.2 hours at day 7 (Snow, 1977). This indicates that as the pluripotent cells of the

embryo differentiate into non-pluripotent cells, there is major remodelling of the cell cycle.

1.2 The Myc Fømily

Mammalian cells respond to extracellular stimuli via the activation of immediate early (IE)

genes, which produce proteins that elicit the appropriate cellular responses. One of such

group of IE genes are the myc famlly (Winkles, 1998). The protein products of Lhe myc

family of proto-oncogenes are nuclear localised and involved in a wide variety of cellular

functions such as cell proliferation, growth and apoptosis (Ryan and Birnie, 1996). They

have been extensively investigated as a targel for chromosomal translocations,
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reaffangements, mutations and amplifications, which enhance its activity in wide variety of

cancers (Lutz et al., 2002). In fact, myc was discovered through its homology to the

transforming gene, v-myc, of the avian myelocytomatosis virus, MC29 (Yennsffom et al,

1 e82).

There are several members of the myc famlly, the most characterised of which are c-, L-

andN-myc. The transactivation domain, located at the N-terminus (amino acids 1-143),

contains two 'myc boxes', MBI and MBII, which are areas of strong homology between

the family members (Kato et al., 1990; Atchley and Fitch, 1995). The C-terminus of the

protein contains a basic helix-loop-helix, leucine zipper (b-HLH-LZ) domain, which

enables dimerisation to partner proteins and binding to promoters of genes containing a

consensus CACGTG sequence, termed the E-box (reviewed in Ryan and Birnie, 1996;

Grandori et aL.,2000). Myc proteins also contain a centrally positioned nuclear localisation

signal (NLS) (Ryan and Birnie, 1996). A schematic diagram of the structure of Myc is

shown in Figure 1.1. Myc has been shown to have a very short half-life, approximately 30

minutes, and is ubiquitinated and degraded by the 26s proteosome (Herschko and

Ciechanover, 1998; Gross-Mesllaty et al.,1998). This short half-life enables rapid down-

regulation of the protein and tight regulation of its activity (Gregory and Hann, 2000). Myc

function is dependent on binding to the b-}ìL}J-LZ domain of the Max protein (Amati er

al.,1993 and 1992) which allows binding to the promoters of target genes and modulation

of transcription. Another family of b-HLH-LZ proteins, the Mads, can also associate with

Max to elicit transcriptional repression of Myc target genes via binding to the E-box. The

onset of differentiation, and associated cell cycle withdrawal, is typically characterised by

the up-regulation of Mad family members, including Mad1, Mxil (Mad2), Mad3 and

Mad4, and the down regulation of Myc family members (reviewed in Zhou and Hurlin,

2001).
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Figure 1.1

A diagramatic representation c-Myc protein which shows:

o the domains of the protein, including the Myc box I (MBD and Myc Box 2

(MBII), the nuclear localisation sequence (NLS) and the basic helix loop helix

leucine (bHLHLZ) domain.

o that the bHLHLZ damair' is where Myc associates with Max

o the translational start sites of the c-Mycl, c-Myc2 and c-MycS subty'pes,

o the Threonine 58 and Serine 62 residues, which are phosphorylated as a

method of Myc protein stability control.

Figure adapted from Xiao et a1.,1998, Claassen and Hann, 1999 and Grandon et

aL.,2000
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7. 2. 1 Mvc/Max/Mad Assocíate d Trønscríptìonal C ontrol

Various studies have shown Myc activates and represses various genes involved with cell

cycle, cell growth, adhesion and apoptosis (Coller et al., 2000; Grandori and Eisenman,

1991; Jansen-Durr et al., 1993; O'Connell et al., 2003). Activation of Myc-mediated

transcription is dependent on Max association and also the N-terminal transactivation

domain. Full length c-Myc has been shown to activate in vivo reporter constructs linked to

fuIl-length promoters from putative target genes and synthetic, E-box containing promoters

(reviewed in Grandori et al., 2000). It has previously been demonstrated that the

transactivation domain (amino acid l-143) contains two 'Myc boxes', of which only MBI

(aa 44-63) is absolutely required for transcriptional activation, whilst MBII (aa 129-143)

has no transcriptional activity (Kato et a1.,1990; Atchley and Fitch, 1995). The function of

MBII in gene transcription has been shown to be involved with its association with TRAPP

(Transformatiorltganscription domain associated protein) (Brough et al., 1995; McMahon

et a\.,1998), which has roles in recruiting the histone acetyl transferase enzpq hGCN5

and Tip60. Acetylation of histones at target promoters results in an open chromatin

conformation and promotes transcription by allowing progression of transcriptional

machinery along the DNA (McMahon et aL,2000; Frank et aL.,2003). High levels of Myc-

associated deacetylation has been directly shown at the TERT (Xu et aL.,2001) and Cyclin

D2 promoters (Bouchard et a1.,2001). Conversely, only a modest up-regulation of histone

acetylation is observed at Myc-associated cad and odc promoters when there is a strong

up-regulation of transcription associated with re-entry to the cell cycle (Eberhardy et al.,

2000). At these promoters the Myc/Max complex recruits a P-TEFb, a kinase that

phosphorylates RNA polymerase II as a method of promoting transcription (Eberhardy and

Farnham,2001).
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The role of Myc as a transcriptional activator is opposed by the action of the Mad proteins

(Ayer et al.,1993). The N-terminus of the Mad proteins contains a region essential for the

repressive role of Mad, termed the Sin3 Interaction Region (SIR) which binds Sin3 (Ayer

et al. 7995, Kasten et aL.,1996; reviewed inZhou and Hurlin, 2001). Sin3 associates with

histone deacetylases (HDAC), which enhance gene silencing via deacetylation of histone

tails and closed chromatin conformation (reviewed in Ahringer, 2000).

Recent characterisation of Myc transcriptional regulation has revealed that whilst Myc has

roles as a transcriptional activator it also has many roles as a transcriptional repressor. Miz-

1 is a transcription factor that activates transcription of the cyclin dependent kinase

inhibitors, p15^*0" and p2l"iot. The association of Myc/Max dimers to Miz-l at the

initiator (Inr) regions of the pl5t**'u and p21"iP1 genes prevents transcription byblocking

interaction of Miz-l to its co-activator, p300 (Staller et al., 2001; Wu et al., 2003). This

method of transcriptional repression is dependant on MBII and is shared by other Inr

binding transcription factors (Li et al., 7994), such as TFII-I (Roy e/ al., 7993). This

evidence, coupled with the results from Kato et al., 1990, suggests that MBI is involved

with transcriptional activation while MBII is involved with gene repression. Consequently,

it has been shown that Myc is involved in the repression of a wide variety of genes,

predominantly involved with activation of differentiation and cell cycle arrest (Amundson

et aL.,1998; Coller et a1.,20001'Lee et a1.,1997; Claassen and Hann,2000; Philipp et al.,

1994).

1.2.2 Activøtìon of Mvc

Myc is widely considered a general downstream effector of proliferation signals as

mitogen stimulation causes increases in its transcription, translation and protein stability
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(Spencer and Groudine, 1991). Platelet Derived Growth Factor (PDGF), Colony

Simulating Factor (CSF), Epidermal Growth Factor, Interleukin (IL) -7, IL-2 and other

mitogens, have all been shown to up-regulate myc transcnption and translation (See

Spencer and Groudine, 1991 for a review). Myc protein stability is also increased in

response to mitogenic stimulation. This is mediated via the activation of Ras, which is a

small GTP-binding protein critical to cell growth control and response to mitogenic

stimuli. Downstream of Ras activation is a signalling cascade involving MAPK (ERK) and

Raf, which conveys mitogen-activated cell cycle progression signals from the cell

membrane to the nucleus (Sears et a1.,1999).It has been shown in primary mouse embryo

fibroblasts that over-expression of both Ras and Myc is sufficient to cause transformation

(Land et al., 1983). Ras is also involved in the inhibition of ubiquitin-mediated Myc

degradation via the regulation of N-terminal phosphorylations in the MBI region of Myc at

Threonine (Thr) 58 and Serine (Ser) 62. Phosphorylation of Ser 62 stabilises the protein,

enhancing its half-life, while phosphorylation of Thr 58, which is dependent on Ser 62

phosphorylation, targets the protein for degradation via the ubiquitin/proteosome pathway.

Ras up-regulates Raf/MEK that results in ERK-mediated Ser 62 phosphorylation. Thr 58

phosphorylation is thought to be mediated via the constitutively expressed kinase, GSK-3,

which is inactivated by the Ras up-regulated PI-3K/AKT pathway (Sears et a1.,2000). This

process is summarised in figure I.2.lt has been shown that the half-life of Myc can be

increased from 30 minutes to over t hour via the mutation of Thr 58 (Sears et a1.,2000),

which has also been shown to be the most common point mutation in Myc found in

tumours (Huang et al., 1995). Mutation of Ser 62, however, results in a decrease in the

proteins half life to approximately 10 minutes (Sears et al.,2000).

6



Figure 1.2

The role of Ras in the stabilisation of the c-Myc protein in response to growth

stimulatory signals. Adapted from Sears et a1.,2000.
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1.2.3 The Role of Mvc ìn Cell Cvcle Reeulation

1.2.3.1The Mammalian Cell Cycle

The mammalian cell cycle is a tightly regulated process, which allows the ordered

duplication of chromosomes and cell division. The cell cycle is divided into 4 discreet

phases, termed Gl, S, G2 and M-phase. Chromosomereplication occurs in S-phase and

cell division occurs in M-phase. These phases are separated by Gl and G2-phase, in which

the cell will sense its environment to assess whether it should enter the next phase

(reviewed in Donjerkovic and Scott, 2000). The ordered progression and rate of the cell

cycle is controlled via the ordered activation of a family of kinases, termed the cyclin

dependent kinases (cdk). Activation of the catalytic cdk subunit is dependant on

association with the regulatory Cyclin subunit, allowing phosphorylation of targets

involved in cell cycle progression. While the level of the cdk typically stays constant

throughout the cell cycle, Cyclin levels are restricted to discreet phases (reviewed in

Morgan, I99l). The cell cycle is summarised in figure 1.3.

Following mitosis, when the two daughter cells are separated, all cdk activity is destroyed.

It is not until mid-Gl that Cyclin D proteins are up-regulated, resulting in the association

with cdk4 and cdk6 and the phosphorylation of Gl-targets. One of the targets of the Gl-

phase cyclirVcdk complexes is the Retinoblastoma protein (Rb), which is a repressor of the

transcription factor, E2F (Helin et al., 1993). This cdk-dependent phosphorylation releases

the Rb protein from its complex with E2F allowing transcription of genes that control Gl-S

phase progression. One such gene transcribed by E2F is CyclinE. Active CyclinBlcdk2

complexes are able to phosphorylate targets involved with entry into S-phase, including Rb

(reviewed in Ekholm and Reed, 2000).
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Figure 1.3

Control of progression through the phases of the Mammalian Cell Cycle. These

events are reviewed in Morgan, 1997 .
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Cdk activation is also regulated by two other methods, other than Cyclin association.

Activation is opposed by the action of cdk inhibitors such as p2l"ipt and p27kpl that

associate with cyclirVcdk complexes (reviewed in Sherr and Roberts, 1999).

Phosphorylation on specific Cdks can result in either activation or repression of

Cyclin/Cdkcomplexes(Poon eta1.,1994; Solomon etal.,l993;MitraandSchultz,1996).

1.2.3.2 Myc-mediated Cell Cycle Progression

One way Myc is thought to promote cell cycle progression is through induction of cyclin

gene transcription. In mouse fibroblasts under serum starved conditions, over-expression of

Myc has been shown to induce the transcription of the Cyclin E and I genes and

progression into S-phase (Jansen-Durr et al., 1993). Myc is also a direct transcriptional

activator of the Cyclin D2 (Bouchard et al., 1999) and Cull gene (O'Hagaî et aL.2000).

Up-regulation of Cyclin D2lcdk4 complexes results in the sequesteration of the cdk

inhibitor, p27, from Cyclin Elcdk2 complexes (Bouchard et aL., 1999) and Cull induces

p27 ubiquitination and degradation (O'Hagaî et al. 2000) resulting in increase in net

CyclinE/cdk2 activity. Myc also directly activates the Cdc25A gene, the protein product of

which, is involved in removing inhibitory phosphates from cdk2, inducing activation of the

Cyclin Elcdk2 complex (Sexl e/ al., 1999). Myc-mediated Cdc25A and Cyclin E up-

regulation is also thought to drive G1- to S-phase progression of the cell cycle in the

absence of E2F function (Santoni-Rugiu et a1.,2000) though a mechanism for this process

is yet to be defined. These events are summarised in figure 1.4.

Myc has also been shown to repress genes involved with inhibition of cell cycle

progression, As discussed previously, Myc represses the Mizl-mediated transcription of

cdk inhibitors pl5rNKa" lstaller et a1.,2001) and p2l"ipt (wu et al., 2003). Myc also

8



Figure 1.4

c-Myc has various roles in promoting cell proliferation via Gl-S phase

progression. These are involved with direct and indirect transcriptional activation

and possibly other non-transciptional roles. Figure constructed using information

from Jansen-Durr et ø1., 1993, Bouchard et al., 1999, O'Hagan et al., 2000,

Santoni-Ragoni et a1.,2000 and Sexl et a1.,1999.
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represses the transcription of Growth Arrest and DNA Damage genes, gadd34, gadd45 and

gaddL53 (Amundson et aL.,1998; Marhin et al.,l99l), Growth Arrest gene, gasl (Lee et

aL.,1997) and cdk inhibitor, p21 (Claassen and Hann, 2000). MBII has also been shown to

directly associate and sequester p2l protein as a method of reciprocal regulation which

results in lower available levels of, both, p2I and Myc (Kituara et a1.,2000).

1.2.4 The Role of Mvc ín Diffuteuliølìon

It has long been known that cell cycle modification is a consequence/prerequisite for

differentiation (reveiwed in Gao and Zelenka, 1997). As Myc is involved with activating

the proliferation (see 1.2.3.2) Myc down-regulation is also a feature of differentiation,

especially in terminally differentiating cells, which exit the cell cycle completely (reviewed

in Zhou and Hurlin, 2001 and Henriksson and Luscher, 1996). It has been shown that in

various cell types that the onset of differentiation results in a switch from Myc/Max dimers

to Mad/Max dimers (Xu et al., 2001;' Lin et al., 20001' Queva et al., 1998). This switch

results in the down-regulation of cell cycle activators and loss of inactivation of cell cycle

repressors (Xu et al., 200I; Lin et al., 20001' Queva et al., 1998; Wt et al., 2003), and in

many cases is essential to differentiation (Lin et aL.,20001, Maclean-Hwter et al., 1994).

The down-regulation of Myc in differentiation is also thought to be involved with the

silencing of various genes, via the loss of Myc-associated histone deacetylation at specific

sites (Lee et al,, 2003), and the up-regulation of Mad-associated HDAC activation (Queva

et a1.,1998; Xt et a1.,2001).Interestingly, it has been shown that reintroduction of Myc

into quiecent differentiated cells can cause re-entry into the cell cycle (Jansen-Durr et al.,

1 ee3).
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Another role Myc has in differentiation is its effects on cell adhesion and cell growth.

Recent studies have demonstrated that Myc regulates genes and proteins involved with

translation, such as ribosomal subunits, adhesion molecules and metabolic enzymes (Shiio

et aL.,2003;Frye et aL.,2003; Coller et aL.,2000; O'Connell et aL.,2003; Amundson et al.,

1998; Iritani and Eisenman, 1999). These results indicate that action of Myc is involved

with structural changes to the shape of the cell, its attachment to it's immediate

microenvironment and metabolic functional changes within the cell during differentiation.

1.2.5 Mvc Alternative Trønslqtion Variants

Understanding the regulation of Myc has recently become more complicated as several

translational variants of the protein have been characterised. These variants arise through

initiation of translation from alternative start sites. Variants include c-Mycl, which arises

from an upstream CUG, c-Myc2, which is the most common form of the protein, arising

from translation from the ATG, and the downstream ATG-initiated, c-MycS subtypes

(Spotts et al., 1997;Xrao et al., 1998 and see Figure 1.2). The c-MycS protein, which lacks

the N-terminal 100 amino acids, lacks the highly conserved MBI and has been detected in

human, murine and avian cells. Like its full-length counterparts, c-MycS proteins, are

nuclear-localised short-lived phosphoproteins, which have the ability to dimerise with

Max. These proteins, as expected, are incapable of inactivating Myc target genes, and have

been associated with inhibition of full-length Myc-mediated transcription (Spotts et al.,

teeT).

While c-MycS proteins appear unable to activate transcription, it has become increasingly

clear that the cellular outcome of their expression is not unlike that of full-length Myc.

These proteins retain the ability to repress gasl and gadd45 (Xiao et al., 1998) and
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increase cdk2 kinase activity (Hirst and Grandori, 2000). c-MycS is still able to initiate

both proliferation and apoptosis in immortalised rodent cells (Xiao et al., 1998) and has

been shown to be up-regulated, to levels comparable to full-length, in rapidly dividing cells

(Spotts et a1.,1997). c-MycS is also more rapidly degraded than fuIl length c-Myc (Spotts

et al.,1997) possibly because it does not contain the site of stabilising phosphorylation at

Ser 62 (Sears et a1.,2000).

1.2.6 Mvc ønd Embrvoníc Development

During embryonic development myc RNA is widely expressed. c-myc RNA expression in

the gastrulating embryo is readily detected throughout the entire conceptus (embryonic and

extra-embryonic regions). At 7.5 dpc c-myc expression was detected at high levels in the

extra-embryonic lineages whilst in the primitive ectoderm proliferative zorre, showed only

modest expression. N-myc was detected at moderate levels in the 6.5 dpc embryo and

becomes highly expressed in the primitive streak and the primitive ectoderm of the 7.5 dpc

embryo. N-myc expression decreased during mesoderm formation and differentiation into

the epithelioid cells of the head process, somites and the nascent heart (Downs et aL.,1989;

Queva et a1.,1998).

Mice carrying functional mutation of the a-myc allele have impaired development and die

by 10.5 dpc. Generally, the embryos are small and form most cell types but display heart

defects, fluid-filled pericardia and neural abnormalities caused by improper closure of the

neural tube. The death of the embryos is thought to occur due to malnutrition caused by

poor vascularisation of the yolk sac (Davis et al., 1993). N-Myc knockout mice develop

normally until approximately 10.5 dpc but die at approximately 11.5 dpc, possibly caused

by failure of the major organs to develop (Sawai et al., 1993). L-Myc is expressed in
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embryogenesis in areas of proliferation and differentiation however L-Myc knockout mice

are viable, with few developmental defects (Hatton et al., 1996). This suggests that other

Myc family members may play redundant roles in development. This compensation

hypothesis is supported by the work of Malynn et al.,2000, when they replaced the c-myc

gene with anN-myc gene and demonstrated that knock-in mice developed normally. This

suggests that all Myc proteins may play similar roles in development but are expressed in

different spatial patterns. In contrast to the myc knockout embryos, Max knockout mice

cannot develop past the blastocyst stage of development. These mice die in early post-

implantation and at this stage are 50 - l}Yo smaller than wild-t1pe and Max Í/-

heterozygous embryos. It was suggested that the embryos in early development utilised a

matemal store of Max protein as was demonstrated by the high levels of Max protein in the

unfertilised egg and the 0.5 dpc embryo (Shen-Li et ø1.,2000).

1.3 Embryonic Stem Cells

Embryonic Stem (ES) cells are derived from the ICM of the mouse pre-implantation

blastocyst. ES cells can be maintained indehnitely in culture in the presence of the

cytokine, leukemia inhibitory factor (LIF) (Nichols et al., 1990). ES cells retain

pluripotency, as demonstrated by their ability to contribute to all the embryonic cell

lineages, including the germ line, when re-injected into blastocysts (Robertson et al.,

1986). ES cells also express the pluripotent cell marker, Oct4 (Rosner et aL.,1990), and the

ICM cell marker, Àex1 (Rogefs et al., l99l). Cell division times in ES cells are very rapid

(-12 hours) in comparison to somatic cells, which demonstrate cell cycle times in excess

of 24 hours (Stead et al., 2002). Observations in our laboratory demonstrate that these

rapid cell cycle times are associated with constitutively active cyclin Elcdk2 and cyclin

Alcdk2, which are thought to drive the rapid cell cycles associated with this period of

development (Stead, personal communication). The cell cycle kinetics in ES cells is
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compared to a somatic cell cycle in figure 1.5. There are also no detectable levels of cyclin

dependent kinase inhibitors, p27 andp27 (Stead et a1.,2002)

Culture of ES cells in the conditioned medium, MedII, leads to the formation of Early

Primitive Ectoderm-like (EPL) cells (Rathjen et al., 1999). This differentiation event in

vitro mimics the formation of primitive ectoderm in vivo. Like primitive ectoderm, EPL

cells retain pluripotency, as measured by Oct4 expression and express the primitive

ectoderm marker, Fglfs. EPL cells also retain the potential to form the primary germ layers

of the embryo, in vitro (Rathjen et al., 1999, Lake et al., 2000). Culture of ES or EPL cells

as aggregates in suspension, termed embryoid bodies (EB), induces ordered differentiation

mimicking the in yiyo events. ES cell EBs form lineages of all three primary germ layers

(Doetschman et al., 1985; Rathjen et al., 1999; Lake et a1.,2000). EPL cell EBs form

>95yo mesoderm as determined by their expression of the nascent mesoderm marker

brachyury (Lake et al., 2000). It has been shown previously in our laboratory that as ES

cells undergo differentiation into mesoderm, both cyclin F,lcdk2 and cyclin Ncdk2 activity

decreases (Stead, personal communication).

1.3.1 ES Cell Differentíatíon ønd Mvc

The role of Myc in ES cell differentiation has been previously studied using a fusion

protein termed RLF/L-Myc, found in human small cell lung carcinoma (SCLC). This

protein is produced by a chromosomal translocation and fusion of the cellular gene rlf to

the L-myc gene creating a protein, which contains the fulI length L-Myc with a 79 amino

acid extension from the RLF protein. Interestingly, expression of the RLF/L-Myc in ES

cells delays the formation of beating muscle and nerves in ES cells grown to form EBs. In
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Figure 1.5

c-Myc has various roles in promoting cell proliferation via Gl-S phase

progression. These are involved with direct and indirect transcriptional activation

and possibly other non-transciptional roles. Figure constructed using information

from Jansen-Durr et al., 1993, Bouchard et al., 1999, O'Hagan et a1.,2000,

Santoni-Ragmiet a1.,2000 and Sexl et a1.,1999.
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cells expressing high levels of the fusion protein cell death occurs at approximately 6 days

(Maclean-Hunter et al., 1994).

1.4 Aims

c-Myc is a potent cell cycle activator with various roles in proliferation and differentiation.

Given that c-Myc is also essential to embryonic development it may be deduced that c-

Myc may have a role in the activation of the rapid cell cycle times seen in the pluripotent

cell layers in the embryo and ES cells. Thus it was of primary interest to analyse the

endogenous expression of Myc protein in ES cells and during their differentiation into

embryoid bodies. Investigation of c-Myc expression levels during embryoid body

differentiation would enable elucidation of what functions of c-Myc may be required in the

differentiation of the pluripotent cell types of the embryo. Generation of antibodies that

would allow discrimination between different translational variants of c-Myc would

increase the understanding of how c-Myc may control the dynamic processes seen during

embryogenesis.

The switch from Myc/Max to Mad/Myc dimers during terminal differentiation has been

shown in various cell lines, such as HL60s (Xu et a1.,2001) and B Lymphocytes (Lin e/

al., 2000). As over-expression of Myc has also been shown to be sufficient for promoting

quiescent cells to re-enter the cell cycle (Jansen-Durr et al., 1993) it was of interest to see

when c-Myc was required to be down-regulated in order for the cells to differentiate.
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CHAPTER 2

MATERIALS AND METHODS

2.1 Abreviutions

Ab

bp

ATP

APS

BSA

P-ME

cDNA

dATP

dCTP

dGTP

dTTP

DMEM

DMSO

DNA

DTT

EDTA

EPL

ES

Antibody

Adenosine tri-phosphate

Ammonium persulphate

Base pairs

Bovine serum albumin

B-mercaptoethanol

complementary DNA

Cyclin dependent kinase

deoxyadenosine triphosphate

deoxycytosine triphosphate

deoxyguano sine tripho sphate

deoxythymidine triphosphate

Dulbecco's Modified Eagle Medium

Dimethylsulphoxide

Deoxyribonucleic Acid

Dithiothreitol

Ethylene Diamine Tetra Acetic Acid

Early Primitive Ectoderm-like

Embryonic Stem

Ethidium Bromide

cdk

EtBr
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EtOH

FBS

Fgf

dGTP

GST

HRP

ICM

ITSS

kDa

LIF

IP

kb

M

Ethanol

Foetal Bovine Serum

Fibroblast Growth Factor

dexyguanosine triphosphate

Glutathione S -Transferas e

Horse radish peroxidase

Inner Cell Mass

Immunoprecipitation

Insulin-transferrin- sodium- s elenite

Kilobase pair

Kilo Dalton

Leukemia Inhibitory Factor

Moles per litre

Millimoles per litre

Micromoles per litre

Microgram

Microlitre

Milliamperes

Myc Box I

Myc Box II

N-Acetyl-Muramyl-L-Ala-D-Iso-Gln-OH

Mouse Leukaemia Inhibitory Factor

Morpho linopropanesulfonic acid

Milli-Q

Molecular weight

mM

pM

f.lg

pl

mA

MBI

MBII

MDP

mLIF

MOPS

MQ

Mr

t6



OD

fnRNA

4-OHT

PAS

PAGE

PBS

PBST

PCR

PEG

RNA

rpm

RT

SDS

TBE

TEMED

TPCK

TTP

Tween-20

Messenger RNA

Optical Density

4-Hydroxytamoxifen

Protein A Sepharose

Polyacrylamide Gel Electrophoresis

Phosphate Buffered Saline

Phosphate Buffered Saline Triton X-100

Polyrnerase Chain Reaction

Polyethylene glycol

Retinoblastoma

Ribonucleic Acid

revolutions per minute

Room Temperature

Sodium Dodecyl Sulphate

Tris Borate EDTA

N,N,N',N' -Tetramethyl-Ethenediamine

Tosyl-L-phenylalanine chlormethyl ketone

Tyrosine Triphosphate

Ployoxyethyl ene- sorbitan-Monol aurate

Ultra violet

Volts

Rb

UV

V
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2.2. Tissue Culture

2.2.7 Møteriøls

4-Hydroxytamoxifen

B-ME

ES DMEM

DMEM

DMSO

ESGRO/LIF

FBS

Gelatin

Puromycin

Trypsin

Sigma Chemical Co.

Sigma Chemical Co.

Gibco BRL

Gibco BRL

Sigma Chemical Co.

Chemicon

Commonwealth Serum Laboratories

Sigma Chemical Co.

Sigma Chemical Co

Gibco BRL

Falcon

Falcon

Falcon

Falcon

Falcon

Falcon

pH 7.5, NaCl (8 e), KCI (0.2g), KH2POa (0.2g),

NazHPO+ (1.15 g) in 100m1H20

2.2.2 Tissue nlastíc ware

l00mm plates

150cm2 flasks

75crr] flasks

Pipettes (25m1l10m1)

6 well trays

24 welltray

2.2.3 Buffers

PBS
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2.2.4 Solutions

Alkaline Phosphase Fixative

L-glutamine

Trypsin-EDTA

PBS/B-ME

PBS/Gelatin

Trypan blue

2.2.5 Cell Culture medium

ES DMEM

ES Complete Medium

ES Incomplete medium

4.5mM citric acid; 2.25mM sodium citrate; 3mM sodium

chl oride ; 6 5 Vo methanol; 4%o p ara- form al dehyde

100mM L-glutamine in MQ HzO, filter sterilised and stored

as 1Oml aliquots at-20oC

Trypsin l:250 (Difco) (1g), lOml versene solution (10x

concentrate) to l00ml with MQ H2O

100mM P-ME in sterile PBS. Fresh solution prepared

fortnightly

0.2% (wlv) gelatin in PBS. Sterilised by autoclaving (20 psi

for 25 minutes at 140'C)

0.4 e Trypan blue, 0.81 g NaCl, 0.06 g KzHPO+ in 100m1

MQ H2O, pH7.4 hlter sterilised

DMEM (Gibco, BRL), pH 7.4, containing high glucose,

supplemented with 10% FBS

ES DMEM (Gibco, BRL), containing high glucose,

supplemented with 10% FBS, 0.1mM B-mercaptoethanol (B-

ME), 10% KNOCKOUTTMSR (Gibco, BRL), lmM

glutamine and 1000 U/ml of mLIF

ES DMEM (Gibco, BRL), containing high glucose,

supplemented with 10% FBS, 0.lmM B-ME.

ES DMEM (Gibco, BRL), containing high glucose,

supplemented with 10% FBS, 0.lmM B-mercaptoethanol (B-

LIF Titration Medium
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MedII Medium

ME), lmM glutamine, l0% KNOCKOUTTMSR (Gibco,

BRL) and the desired U/ml of mLIF

Conditioned medium produced by growing HepG2 cells to

subconfluency. Medium was harvested and filter sterilised

(0.22 ltrrù and stored at 4"C for up to 14 days (Rathjen et al.,

teee).

2.2.6 Cell Lines

All cells were maintained in tissue culture incubators aI37oC in I0o/o COz.

D3 ES: Derived from the ICM of the pre-implantation 129 strain mouse embryo blastocyst

(Doetschman et al, 1985). Kindly donated by Dr Lindsay Williams, Ludwig

Institute, Melbourne.

CMES: D3 ES cells as described above over-expressing a fuIl-length human c-Myc oDNA

under the control of the EF-lcx promoter. Construct transfected hc-Myc::pEF-IRES-

puro6. A complete map of pEF-IRES-puro 6 is contained in Appendix 1.

c-MycER ES: D3 ES cells as described above over-expressing a fuIl-length human c-

MycER cDNA (as described by Littlewood et al., 1995) under the control of the

synthetic CAG promoter as described in. Construct transfected

pCAGIpuro::MycER. A complete map of pCAGIpuro is contained in appendix 2.

MvcT58ER ES: D3 ES cells as described above over-expressing a full-length human c-

MycT58ER oDNA under the control of the synthetic CAG promoter. MycER ES

cell line with Threonine 58 of c-Myc, Quikchange mutated to Alanine. Construct

transfected pCAGIpuro::MycT58ER. As described inCartwnghl et al.

HL60: Promyelocytic leukemia from the periferal blood of a 36 year old Caucasian female

Received from AngelLopez,Institute for Medical and Vetinary Science, Adelaide.
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2,2.7. Míscellaneous

Freezing vials Nunclon

Sterile bottles Schott

0.2 W sterile bottle top filters Corning

Bactriolo gical petri dishes Techno-plas

Microscopy

Laminar Flow Hood

Nikon ELV/ D0.3 phase contrast

Gelman Sciences

2.3. Tissue Culture Methods

2.3.1 Geløtinised Tissue Culture pløtes

All tissue culture plates used for ES and EPL cells were gelatinised with 0.2o/o (wlv)

gelatin in PBS. Plates were covered with gelatin solution and left for at least 30 minutes at

room temperature. The gelatin solution was removed and the plate washed in PBS

immediately before use.

2.3.2 of cell number

Cells were harvested to a single cell suspension as described in 2.3.5 and 2.3.6. A 20pl

aliquot of the single cell suspension was diluted in 20pl of trypan blue. Cell numbers were

counted under 200x phase contrast magnification using a haemocytometer. Trypan blue

stained dead cells were omitted from the cell count.
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2.3.3 Stable ES Cell Líne Vìa Electronoratìon

2.3,3.1 Electroporation and Selection

Cells were harvested to a single cell suspension as described in 2.3.5 and 2.3.6 and a viable

cell count was performed as described in 2.3.2. The cells were then resuspended to 3-5x107

cells in 900p1 of cold (4'C) lx PBS. 10pg of linearised DNA was then added to the

solution and the solution was transferred to a electroporation cuvette (Biorad). The cells

were subjected to 500pF/0.2kV in a Biorad Gene Pulser with a Biorad Capacitance

Extender. Then they were transferred to 10ml of complete ES medium, plated into 4

gelatinised 100mm dishes grown overnight as described in 2.3.5. The following day

lpg/ml puromycin was added to the medium to allow selection of stably expressing

colonies. The medium was aspirated and fresh medium was added everyday for

approximately one week when resistant colonies started to form.

2.3.3.2 Picking Colonies

When the resistant ES colonies were large enough to pick the medium was aspirated and

the plate was washed with PBS. Under an inverted microscope the colonies were dislodged

from the plate and pulled up with aP200 pipette set to 30p1. The colony was then placed in

50¡rl of trypsin, left for 2 minutes and the cells were dispersed by the P200 pipette. The

cells were then transferred to a gelatinised 24 well tray and grown overnight in ES

complete medium. The following day the cells were returned to selection medium

containing lpglml puromycin. The cells were then passaged as describedin2.3.5.

22



2.3.4 Thawíns stored cell lines

2.3.4.1ES cells

A vial of cells was removed from liquid nitrogen and placed in a37oC water bath. As soon

as the cells were thawed they were diluted in 10ml of fresh culture medium and spun at

1200 rpm for 4 minutes. Approximately 5 x 10s-1x 106 cells were then resuspended in the

appropriate medium and placed in a gelatinised 100mm dish, at 37"C, lÙYo COz in a

humidified incubator. The followingday, medium was replaced with fresh medium.

2.3.4.2 Additional cells lines

A vial of cells was removed from liquid nitrogen and placed in a 3l"C water bath. As soon

as the cells were thawed they were diluted in 10m1of fresh culture medium and plated in a

75cm2 flask. Thawed cells were cultured at 31"C, 5o/o COz in a humidified incubator.

Medium was replaced with fresh medium the following day.

2.3.5 Møintenance of ES and EPL cell lines

Embryonic stem (ES) cells were cultured on tissue culture grade plastic (Falcon) pre

treated with 0.2Yo gelatin/PBS. Semi confluent ES cell plates were washed with PBS

before the addition of trypsin (lml) prewarmed to 37"C for 2 minutes. A single cell

suspension was obtained by manual pipetting and transferred into 4ml of ES complete

medium. Cells were spun at 1200 rpm for2 minutes, gentlyresuspended in 10ml of fresh

ES complete medium and reseeded at a density ranging from 5 x 10s to 1 x 106 cells per

100mm dish and maintained in a humidified incubator at 37oC, ljY" COz as described in

Smith, (1991). ES cells were passaged every 2-3 days and maintained for a maximum of

30 passages.

23



EPL cells were induced and maintained by culturing 1 x 106 ES cells in a 100mm dish pre-

treated with0.2%o gelatin/PBS (w/v) containing 50% ES Incomplete medium,50o/o MEDII

medium. EPL cells were usually derived after 2 days of culture. EPL cells were passaged

every 2 days for a maximum of 3 passages at 1 x 106 cells/lO0mm dish using the same

method described for ES cells. All experiments performed with EPL cells in this thesis

used EPL cells formed after 2 days. This was judged morphologically (flattened cells,

single cell layer) and confirmed by northern analysis as described in2.9.

2.3.6 Growth of Cells for LIF Títrøtion Analvsis

2.3.6.1Cell Culture

ES cells to be analysed by were plated into gelatinised 24 well trays. 500 cells were plated

per well and were allowed to grow for 24 hours in complete medium in a humidified

incubator at 37"C, IÙYo COz. The following day the medium was aspirated and the wells

were washed twice with lx PBS to remove all traces of complete medium. LIF Titration

Medium was then added to each well at the desired concentration of mLIF and the cells

were allowed to grow for 6 days. In the case of the experiments with the MycER ES cell

lines, 4-hydroxytamoxifen was added to the LIF Titration Medium at 100nM and the

medium was changed every second day. The medium was also changed every second day

in the minus 4-hydroxytramoxifen control.

2.3.6.2 Alkaline Phosphatase Detection

Alkaline Phosphatase was detected utilising an 86-R Alkaline Phosphatase Detection kit

(Sigma). This was done by aspirating the medium and fixing the cells in Alkaline

Phosphatase Fixative for 5 minutes. The cells were then washed several times in HzO

preceding the addition of the developing solution. The developing solution is prepared via
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mixing 200¡11 of FRV-Alkaline with 200p1 of Sodium Nitrate. After 2 minutes 9ml of H2O

and Napthol were added. When desired level of staining occurred the cells were washed

several times in HzO and allowed to air dry.

2.3.7 Møinten of HL-60 cells

HL-60 cells were grown as described by Steinman et a1.,1998. HL-60 cells were cultured

in75cm2 flasks in RPMI media supplemented with 10% FBS. Cells were not grown past

8x106 cells/ml and split every 4-5 days. When splitting, 5ml of cells was transferred to a

new 75cm2 flask and 45ml of RPMI+IO% FBS was added. The cells were grown in a

humidified incubator at3loC with a l\Yo C}z concentration.

2.3.8 Preparatíon of Embrvoid Bodies (EB's\

ES cells cultured under standard conditions were removed from tissue culture plastic as

described previously (2.3.4). After forming a single cell suspension, ES cells were plated

into bacteriological dishes at a density of 1 x 106 cells per 10cm2 dish and cultured in ES

incomplete medium. ES cells do not contact the bacteriological dish and form suspended,

free floating aggregates known as embryoid bodies. EB's were cultured for 7 days during

which, fresh and media was replaced every 2 days.

2.3.9 Hørvestìns Cells und Emhrvoìd Bodies

All cells were removed from tissue culture plastic by treating cells with l-2ml trypsin/PBS

for 4 minutes. Following dissociation from the plastic, trypsin was inactivated with 5-8ml

of incomplete medium. Cells were centrifuged at 1200 rpm for 2 minutes and washed 3

times in PBS. After removal of the PBS cell pellets were stored at -80oC.
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Suspended embryoid bodies were transferred to 30ml tubes and allowed to settle. The

embryoid bodies were washed three times in PBS and allowed to settle before removing

the PBS and storing the pellets at -80oC.

2.4 Moleculür Biology

2.4.1 Radiochemícals

cr-P32dATP of a specific activity 3000 Cilmmol and concentration of 10 mCi/ml

(Geneworks)

2.4.2 Chemícals

Acetic Acid: BDH

Ammonium Acetate: BDH

APS: Sigma Chemical Co.

Bis-Acrylamide: Geneworks

B-ME: Sigma Chemical Co.

Bradford Reagant: Biorad Laboratories

Bromophenol Blue: Biorad Laboratories

BSA: Sigma Chemical Co.

dATP : Boehringer Mannheim

dCTP: Boehringer Mannheim

dGTP: Boehringer Mannheim

dTTP : Boehringer Mannheim

DTT: Sigma Chemical Co.

EtBr: Sigma Chemical Co.
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EDTA: Sigma Chemical Co.

Ethanol: BDH

Formaldeh yde (37 %) : B DH

Formamide: BDH (deionised and stored at-20oC)

Glycerol:BDH

Glycine: BDH

Glutathione Agarose : S cientifix, Zymatnx

HCl: BDH

Isopropanol: BDH

Leupeptin: Sigma Chemical Co

Magnesium Chloride: Sigma Chemical Co.

Methanol: BDH

MOPS: Sigma Chemical Co.

NP-40: Sigma Chemical Co.

Potassium Chloride: Sigma Chemical Co.

Potassium Acetate: BDH

PMSF: Sigma Chemical Co.

Tween 20: Sigma Chemical Co.

Ponceau S: Sigma Chemical Co.

Potassium Acetate: BDH

Sodium Acetate: BDH

Sodium Azide: Sigma Chemical Co.

Sodium Hydroxido: BDH

Sodium Orthovanadate: Sigma Chemical Co.

SDS: Sigma Chemical Co.
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TEMED: Sigma Chemical Co

Tris: Sigma Chemical Co.

Tris-HCl: BDH

Triton-X-l00: Sigma Chemical Co

2.4.3 Enzvmes

Restriction endonucleases supplied by New England Biolabs, Pharmacia and Geneworks

Klenow: Amersham

2.4.4 Buffers

Lysis buffer

Westem Transfer Buffer

lx SDS PAGE running buffer

10x MOPS

2 X SDS load buffer

l0 x DNA/RNA loading dye

6 x SDS Loading Buffer

50mM Hepes, pH 7.9,250mM KCl, 0.1mM EDTA,

0.1mM EGTA, 0.4mM NaF, 0.4mM NaVO+, l0o/o

glycerol, 0J% NP40, 0.5 nM PMSF, l¡tg/ml

leupeptin, lmM DTT

12.5mM Tris-HCl, 100mM Glycine, 0.05% SDS,

20o/oMethanol

250mM Glycine,25mM Tris, 0.1% SDS

200mM MOPS pH 7 .0, 50mM NHaAc, 10mM EDTA

100mM Tris pH 6.8,20o/o glycerol, 4% SDS, 200mM

DTT

1 5 % Ficoll 400, 0.25o/o BPB, 0.25o/o Xylene cyanol

360mM Tris pH 6.8, 600mM DTT, 12% SDS,

0.006% bromophenol blue (BPB), 60o/o glycerol

130mM NaCl, 10mM Na2HPO4, 30mM NaH2POa,

pH 7.0

PBS
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PBST

Ponceau stain

Blocking Solution

Coomassie Stain

Coomassie Destain

STE

2.4.5 Solutions

Ultrahyb

Complete freunds adjuvant

Incomplete freunds adjuvant

MDP

130mM NaCl, 10mM Na2HPOa, 30mM NaHzPO+,

0. 1% Triton-X-100, pH 7 .2

0.5% Ponceau S, lYo acetic acid in MQ HzO

5o/onon-fat skim milk powder in PBST

50% MeOH (vol/vol); 0.05 brilliant (coomassie) blue

R250; 70%o acetic acid;40o/oHz}

30% MeOH;10% Acetic acid:,60YoHz0

50mM Tris, pH 8; 150mM NaCl; lmM EDTA

Amersham

Sigma

Sigma

Auspep

2.4.6 Moleculør Biolosy Kits

Megaprime Kit: Amersham

Ultraclean: MoBio

Miniprep kit: Qiagen

Midiprep kit: Qiagen

Maxiprep kit: Qiagen

ECL Chemiluminescence kit: Pierce

Western stripping kit: Alpha Diagnostics

Alkaline Phosphatase - 86-R: Sigma Diagnostics

Quickspin columns for Radiolabelled DNA Purifications: Roche Diagnostics
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2,4.7 DNA Molecular weisht markers

1Kb plus ladder: Life Technologies

2.4.8 Protein Molecular Weísht Markers

Rainbow Markers : Amersham

Low Molecular V/eight (LMW) Standard Markers: Amersham

2.4.9 IDNA Frasments Used For Probe Svnthesís

Fef5 was kindly provided by Dr. G Martin. This plasmid consisted of a fragment encoding

the full length mouse Fgf5 oDNA, cloned into the SmaI site of pBluescript KS+

(Hebert et al., 1991).

Rexl was kindly donated by Dr Neil Clarke. This plasmid contained 848bp of Rexl oDNA

in the Ecok[ site.

Oct 4 oDNA in pBluescript was provided by Dr Hans Scholer. This clone contained a

462bp StuI cDNA fragment spanning positions 491 to 953 of the Oct4 oDNA

sequence.

Brachlrury was kindly provided by Dr Bernhard G. Herrmann. The plasmid contained a

1764 bp of Brachyury oDNA cloned into the EcoRl site of pBluescript KS+

(Herrmann,199I)

GAPDH þmGap) contains 300 bp of the GAPDH cDNA sequence in pBluescript KS+

(Rathjen et a1.,1990).

Cyclin E was kindly provided by Nick Dyson. The plasmid contains 1.8 kb EcoRl

fragment of cyclin E cDNA.
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2.4. 1 0 Primørv Antíbodies

c-Myc (rabbit polyclonal N262) - sc-764

human Cdk2 (rabbit polyclonal }l42) - sc-163

Santa Cruz Antibodies

Santa Cruz Antibodies

2. 4. 1 1 S econdørv Antíbodies

Donkeyanti-rabbitimmunoglobulin-HRP(NA934V) Amersham

2. 4. 1 2 Olieoneucleotides

AbMycF 5' -dGGAATTCTGCCCCTCAACGTTAG-3'

CAGl 5' -dTCGGCTTCTGGCGTGTGACC-3'

cMyc 1 OONAbR 5 ' -dCACACACTCGAGCTCCGACTGGTCGGCCGT-3 '

ERseq 5' -dTGTCAAGACAAGGCAGG-3'

MycSER-f 5' -dCTGGGATCCGAATTCGCCATGGTGACC

GAGCTGCTGGGAGAC-3'

MycSER-r 5' -dCACACAGGATCCCGTAGCTGTTCAAG- 3'

pGEXseq3' 5' -dAAGCCACGTTTGGTGGTG-3'

pGEXseq5' 5' -dCTGCATGTGTCAGAGGTT-3'

2.4.13 Pløsmíds

pEF-IRES-puro 6 Kindly donated by Dr Dan Peet. For details see

Appendix 1

Kindly donated by Dr Stephen Wood. For details see

Appendix 2

pCAGPuro
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pSRûÀ{SVTKNEO::c-Myc Kindly donated by Grant McArthur, Peter Macallum

Cancer Institute, Melbourne. Full-length human c-Myc

oDNA inserted in an EcoRI site.

2.5 Moleculur Methods

2.5.1 Prepøration of Whole Cell Extrøcts

Cells were harvested from the dish by routine methods (2.3.4) and following 2 washes in

PBS were pelleted by centrifugation at 1200 rpm for 4 minutes. Residual PBS was

removed and pellets stored at -80oC (2.3.S). Approximately 100¡rl of lysis buffer per 106

cells was added to cell pellets. Cell pellets were disrupted by manual pipetting, then

incubated on ice for I hour during which they were vortexed for 5 seconds every 10

minutes. Soluble whole cell extracts were separated from insoluble cell debris by

centrifugation at 14,000 rpm for 10 minutes and the supernatant collected. Protein

concentration was determined colorimetrically using Bradford reagant (2.7).

2.6 Protein Detection Methods

2.6.1 SDS PAGE Anølvsis

SDS Page was performed as described by Laemelli, 1970. The separating gel (8-I2%) was

prepared using:

40% stock Bis-acrylamide solution (29 :1)

375mM Tris pH8.8

0.1% SDS

0.2% APS stock solution

O.I% TEMED
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Acrylamide gel percentage was altered by modifying the volume of 40%o Bis-acrylamide in

the gel solution. Either 0.75 or 1.5mm minigels (10 x 7cm) or 1.5mm large gels (16 x

llcm),were poured using Biorad or Oxford apparatus respectively and allowed to

polymerise for approximately 30 minutes beneath an overlay of butanol. After

pol¡zmerisation, butanol was removed and the stacking gel applied.

A 4% stacking gel was prepared using the same constituents described for the running gel

with the appropriate balance of 40o/o acrylamide stock solution and 20% APS stock

solution. Tris pH 6.8 was also used in replacement of Tris pH 8.8. 10, 15 or 20 well combs

were inserted and the gel was left to polymerise for another 30 minutes. Gels were run in

lX SDS PAGE running buffer. Minigels were typically run at a constant voltage of 150 V

while large gels were typically run at a constant voltage of 60V until the bromophenol blue

dye reached the bottom of the gel.

2. 6.2 Coomassie Støínins

Protein gels were placed in Coomassie Stain on a rocker for at Ieast 2 hours at room

temperature. The Stain solution was poured off and Coomassie destain solution was added

to the container and it was left on the rocker. Screwed up facial tissues were placed in the

container also to absorb the brilliant blue. The facial tissues were replaced intermittently.

When the gel was satisfactorily destained, the gel was scanned into a digital file on a HP

Scanner.

2. 6, 3 Il/estern Blottine

Proteins were transferred from 1.5mm unstained acrylamide gels to a 0.45pm

nitrocellulose membranes in a Biorad semidry transfer machine at a constant amperage of
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200m4 and voltage limited at25Y in western transfer buffer. Membranes were blocked in

PBS with 0.1% Tween (PBST) + 5yo dry milk from2 hours (at RT) to overnight (at 4"C).

Membranes were incubated with the primary antibody (diltuted according to manufacturers

instructions in PBST + 5%o dry milk) overnight at 4oC. Membranes were then washed 4

times for 15 minutes in PBST by rocking, and incubated for t hour at RT with HRP-

conjugated secondary antibody diluted according to manufacturers instructions in 5% skim

milk in PBST. HRP activity was detected with an ECL detection kit (Pierce) and exposed

to x-ray film (AGFA). Film was developed using an X-ray developer machine (AGFA,

Curix 60). All incubations with antibodies were performed while rotating using the nutator

(Clay Adams). Westerns were stripped for reprobing using the 'Western Stripping Kit

(Alpha Diagno stics) according to manufacturers instructions.

2. 7 Pr otein Con centrøtion D eterm inøtio n (B rødfor d Ass ay)

Protein concentration was determined by a method adapted from Bradford (1976). Known

standards of BSA protein (0.1, 0.5, 1,2.5,5, 10, 25,50,100pg) were pipetted into cuvettes

and adjusted to 20pl with lysis buffer. The protein samples to be tested were also pipetted

into cuvettes and made up to 20p1. lml of Bradford reagant (diluted l:4 in MQ water) was

added and mixed. A zero reference was prepared with 20pl of sample buffer mixed with

lml of Bradford reagant. The absorbance was measured using a UV spectrophotometer at

595nm (Pharmacia LKB Ultrospec III). The absorbance was standardised by measuring the

absorbance of the no protein reference and setting this at zero, then the absorbance was

measured for the known BSA standards and a standard curve of absorbance at 595nm

versus the protein concentration was plotted. Finally, the absorbance of the protein samples

was measured and the total protein determined by finding the absorbance on the standard
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curve and determining the correlating protein amount. The protein concentration was

calculated by dividing the total protein by the number of microlitres assayed.

2. 8 Antibody Prep&rution

2. 8. 1 C r e øtio n o f G S T-tøg s e d P r o t e iu.Exp r e.r S i U g B a.ctuttsl Lttt s $

pGEX-6P-1::N100 and pGEX-6P-1::N262 DNAs were transformed into BL21 E. coli

cells. Ampicillin resistant colonies were grown up in Luria

Broth/Ampicillin(100pglml)ll% glucose and glycerol stocks were prepared via adding

150p1 of glycerol to 750¡rl of bacterial culture and stored at -80oC.

2.8,2 Test Peptide Inductìons

2ml of Luria Broth/Ampicillin(lOOpglml)ll% glucose was inoculated from the glycerol

stocks of the pGEX-6P-1::N100 and pGEX-6P-1::N262BL2l strains and grown overnight

at 37oC. lml of the ovemight culture was pipetted into 10ml of Luria

Broth/Ampicillin(100pg/-l) and grown to OD6se:1 at37oC.200pl of the culture was then

added to 200p1 of 2x SDS load buffer. Peptide expression was induced by the addition of

0.1mM IPTG to the bacterial culture. 200¡.rl samples were taken evory I hour for up to 3

hours and added to 200¡rl of 2x SDS load buffer to analyse the induction. The samples

were then boiled at 100oC for 5 minutes and then approximately 60pl of each sample was

added to a 1.5mm thick SDS Polyacrylamide minigel. This was run as of 2.6.1 and

Coomassie Stained as in 2.6.2.
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2.8.3 Purifìcatìon of GST-Tøesed Peptìdes

50ml of Luria Broth/Ampicillin(l00pglml)ll% glucose was inoculated from the glycerol

stocks of the pGEX-6P-1::N100 and pGEX-6P-1::N262BLzl strains and grown overnight

at 37"C. This was then poured into a 500m1 of Luria Broth/Ampicillin(100pg/ml) and

groìwn to OD66e:1 at 37oC.IPTG was added to 0.lmM and the culture was left shaking at

room temperature overnight. The cells were then centrifuged at 3000rpm for 15 minutes in

a Beckman Benchtop Centrifuge. The Medium was then poured off and the centrifuge

bottle was weighed. lOml of STE buffer, with 25mM glucose; 5mM dTT; 50mM

benzamadine, was added per gram of cells and they were resuspended by vortexing. The

cells were lysed via passing them through the French Press twice. A 1/10 volume of STE;

10% Triton X-100 was added to the solution to the fìnal volume of IYo and the solution

was left rocking at 4C for 30 minutes. The solution was then spun in a Sorvall RC-5B

Refrigerated Superspeed Centrifuge in an SS34 rotor at 10,000rpm for 15 minutes at 4oC.

1ml of Glutathione Agarose beads was added to every 30ml of the supernatant with lTo

Sodium Azide and the mix was left rocking ovemight at 4"C. The tubes were then spun at

500rpm to bring down the beads, the supematant was aspirated and the beads were

transferred to a BioRad econo-column. The beads were then washed with 10 times bed

volume STE with 5mM dTT; 50mM benzamadine and the peptide was eluted in five lml

aliquots of STE with 10mM reduced glutathione. The amount of peptide eluted, in each

sample, was assessed by running on a SDS Polyacrylamide minigel and comparing protein

levels to BSA standards via coomassie staining as in2.6.2.

2.8.4 Antibodv Generøtion

Antibodies were raised in lop-eared and New Zealand White Rabbits. The first

immunisation contained lml complete freunds adjuvant, 200¡tg of antigen and PBS to a
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final volume of 2m1. The mix was emulsified and 200p1was injected subcutaneously into 5

sites each in 2 rabbits. The second immunisation occurred 3 weeks later with lml

incomplete freunds adjuvant, 200¡tg of antigen and PBS to a final volume of 2mL The mix

was emulsified and injected as above and the rabbits were left for 2.5 weeks until the third

immunisation. The third and all subsequent immunisations were performed with a

emulsion of 200pg of antigen, 100pg of MDP and PBS to 2ml. Following the course of

injections and test bleeds the rabbits were bled out and the antibodies were purified.

2.8.5 Affi.nitv Purífi.catíon of Antíbodìes

A2cm2 piece of nitrocellulose membrane was soaked in2ml of STE containing 100-200pg

of the desired peptide and sealed in a plastic bag. This was left rocking at room

temperature for 2 hours for the peptide to attach to the membrane. The membrane was then

taken from the solution and washed gently for 5 minutes, 4 times, in PBST. The membrane

was then placed in a plastic bag and 3-4ml of serum was added to the bag and sealed. The

association of the antibodies was allowed to proceed overnight, rocking at 4"C. The

membrane was then washed as above. Elution of the bound antibodies was achieved via

placing the rolled-up membrane in a screw-cap microcentrifuge tube and adding 900p1 of

0.1M Glycine, pH 2.5 and rotating it slowly at room temperature for 30 minutes. Following

removal of the membrane from the tube 100p1 of lM Tris, pH 8 was added to neutralise

the solution. Sodium Azide was also added to 0.02o/o and 900p1 of the total solution was

stored at -80oC and the rest at 4oC.
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2.9 Northern Anølysis

2.9.1 RNA Extrøctíon

Cells were harvested from the dish by trypsinisation. Cells were washed twice and the

pellet frozen at -80oC until required. Total RNA was extracted using the RNAzol kit (Tel-

test). Cells were resuspended in RNAzol for 5 minutes and then disrupted by manual

pipetting. The RNA is extracted by the addition of 100p1 of chloroform and centrifugation

at 12,000 rpm for 10 minutes. The top layer was removed and placed into a new tube and

subjected to precipitation with 2 volumes of isopropanol. Precipitated RNA was then

washed with 10o/o ethanol and then air dried at room temperature. RNA was dissolved in

autoclaved distilled water.

2.9.2 Northern Transfer

15pg of RNA was dissolved in 20mM MOPS buffer, 5mM sodium acetate, 30%

formamide, 70o/o formaldehyde and 7pl of gel loading buffer and resolved on a lo/o agarose

gel at a constant voltage of 70V. The agarose gel was prepared by dissolving 1.5g of

agarose into 108m1 of water, followed by the addition of 15ml of 10 x MOPS buffer and

2lml of formaldehyde before the gel was poured into the gel cast. Gels were

electrophoresed in lx MOPS buffer at a limiting voltage of 70V. Following gel

electrophoresis, the gel was washed twice in RNAse free water. RNA was transferred to

nitrocellulose (Amersham) overnight by capillary action. The nitrocellulose was then air

dried before RNA was crosslinked by UV light at 120,000 microjoules.

2.9.3 Rqdioøctivelv Løbelline DNA Probe

The P32-ATP labelled probe was made using megaprime kit (Amersham). Primer was

annealed to the DNA template by adding approximately 150ng of DNA template to 5pl of
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primer solution in a final volume of 26¡i with MQ water, followed by heating of the

reaction at 95oC for 5 minutes. The reaction was allowed to cool at room temperature

before the DNA was radioactively labelled by the addition of the following constituents in

the following order:

4 pl dCTP

4 pl dTTP

4 pl dGTP

5 ¡rl Reaction buffer

5 pl ø-P32dAtr

The reaction was started following the addition of 2¡rl of Klenow and incubated at 37'C for

15 minutes. Radiolabelled DNA probe was purified from excess radioactive nucleotide by

centrifugation through Q-spin columns. The resultant probe was the denatured by heating

at 95oC for 2 minutes and then cooled on ice for 5 minutes.

2.9.4 Hvbrídisøtíon ønd washine

Membranes were prehybridised in Ultrahyb (Amersham) from 2 hours to overnight.

Radioactively labelled DNA probe was added to the hybridisation mixture at a

concentration of 10ng probe/ml of hybridisation buffer and incubated overnight.

Membranes were washed twice for 5 minutes in 2 x SSC, 0.1% SDS aI42oC, and twice for

15 minutes in 0.lx SSC at 42oC. Membranes \¡/ere exposed to Kodak Imaging Screen and

developed and quantitated using a Biorad Molecular Imager@ FX.
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2. 1 0 Bøcteriøl Munipulation Methods

2. 10.1 Calcìum Chloríde Plasmíd Transformøtion

45pl of E coli cells were thawed on ice. lng of DNA was added to the cells and the mix

was incubated on ice for 30 minutes, then placed in a 42oC water bath for 2 minutes and

then on ice for 2 minutes. lml of BHIB was then added to the cells and placed at 37"C for

30 minutes. The cells where then plated on L+AMP plates and incubated at 37"C

overnight.

2.70.2 Pløsmid Prepørøtíon from Bøcterìal Cells

Plasmids were prepared utilising Qiagen Miniprep, Midiprep and Maxiprep kits following

manufacturers instructions.
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CHAPTER 3

THE ROLE OF
DIFFERENTIATION

C.MYC IN ES CELL

3.1 Endogenous c-Myc Expression in ES Cells ønd ESEBs

3.1.1 Introduction

The Myc family are essential regulators of early mouse embryogenesis as has been

demonstrated by expression and knockout studies. Both c-myc andN-myc RNA are widely

expressed during embryogenesis (Downs et a|.,1989) and the knockouts of c-myc (Davis

et al., 1993) andN-myc (Sawai et al., 1993) leads to early embryonic lethality, at l0.5dpc

and 11.5dpc, respectively. Max knockout mice die in early post-implantation, prior to

gastrulation, demonstrating that the disruption of the entire Max network, which includes

Myc function, is essential for the differentiation of the pluripotent cell lineages into the

three primary germ layers. These mice were also 50 -70% smaller than wild-type and Max

-l/- heterozygous embryos. It was also suggested that the embryos, in early development,

utilised a maternal store of Max protein as was demonstrated by the high levels of Max

protein in the unfertilised egg and the 0.5dpc embryo (Shen-Li et aL.,2000). Malynn et al.,

2000 demonstrated that functional compensation between the c- and N-Myc proteins can

occur during embryogenesis and this compensation may be attributed to the fact that c- and

N-myc knockouts survive as long as they do.

As Myc proteins appear to be essential for differentiation in the embryo they would be

expected to be involved with the differentiation of the ICIli4 in vitro equlalent, embryonic

stem cells. Both ES and EPL cells can be differentiated into embryoid bodies. While this

system lacks spatial organization, it is a trusted in vitro model for the differentiation of
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ICM cells into nascent mesoderm (Rathjen et aL.,1999;Lake et a|.,2000). Thus, Northern

and Western analysis was employed to elucidate the expression of c-Myc RNA and protein

as ES cells differentiate into ES Embryoid bodies (ESEBs). ESEBs were used instead of

EPLEBs as they differentiate into all three primary germ layers and

3.1.2 Analvsis of ESEB Differentìøtíon

To analyse the kinetics of ES cell differentiation, ES Embryoid Bodies (ESEBs) were

prepared as described in Section 2.3.7. The cells were harvested daily, the RNA was

prepared for Northern Analysis as described in section 2.9. The nylon membrane was

probed for various differentiation markers such as Rexl, Fgjfs, Oct4 and Brachyury to

verify differentiation kinetics as seen in Lake et a1.,1999. This result is shown in figure

3.1(a). GAPDH was utilised as a loading control as its expression is known to be constant

across the differentiation of ESEBs (Rathjen et al., 1999). Rexl, a marker of the ICM

(Rogers et al., l99l; Rathjen et al., 1999; Lake et al., 2000) is down-regulated as the

primitive ectoderm marker Fgf5 is up-regulated (Hebert, et al.,l99I; Rathjen et aL.,1999;

Lake et al., 2000). Down-regulation of Oct4 demonstrates that there is a loss of

pluripotency (Schöler et al., 1990; Schöler, l99l; Rathjen et al., 1999) and is associated

with up-regulation of Brachyur!, à marker for nascent mesoderm (Herrmann, 1991).

Ornithine decarboxylase (odc) is a known target gene of c-Myc (Bello-Femandez et al.,

1993) and its RNA expression is confined to day 1 of ESEB differentiation.

3.1.3 Expression of c-Mvc Protein Durins ESEB Dìfferentiation

To investigate the expression pattem of c-Myc protein during differentiation of ES cells

Westem Analysis was employed to detect c-Myc expression across the differentiation of

ES embryoid bodies. Embryoid bodies were formed by growing the ES cells in suspension
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in the absence of LIF (2.3.1). Every day cell samples were taken and protein was prepared

as described in 2.5.1. The anti-c-Myc (N262) antibody (2.4.10), that recognises the first

262 Nterminal amino acids of c-Myc (raised against human but detects both human and

mouse), was used to detect c-Myc. Cdkz protein levels were utilised as a loading control as

it has been demonstrated in our laboratory that its expression is constant during ESEB

differentiation (E. Stead, PhD Thesis).

Western analysis utilising this antibody to detect c-Myc was a relatively insensitive process

as the antibody detected c-Myc protein very weakly. Thus the results seen in this Chapter

are of very long exposures (greater than t hour) of the membrane to film. Across the

differentiation of ES cells into EBs, seen in figure 3.1(a), there were two prominent bands,

of different sizes, detected. One of these protein species migrated with a predicted

molecular weight of approximately 65kDa and another with a predicted molecular weight

of approximately 50kDa. The 65kDa band is detected in ES cells, its level decreases in day

1 and day 2 ESEBs and remains at this lower level until day 4. This suggests that fuIl-

length c-Myc was expressed at its highest level in ES cells and down-regulated following

differentiation. The 50kDa band appeared one day after withdrawal of LIF and expression

peaked on day 2 and continued to be detected at low levels for the rest of the time course.

This expression profile closely resembles the appearance of FgJfs, suggesting that as ES

cells differentiate into the in vitro equivalent of primitive ectoderm the 50kDa protein

species was up-regulated. This band is down-regulated before brachyury appears at day 4,

demonstrating that its expression is not associated with mesoderm.

The Westem result demonstrated that during the differentiation of ES cells into embryoid

bodies there may be a change in the translational control of the c-Myc protein. The upper
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Figure 3.1

(a) Northern analysis was utilised to assess the differentiation of ES embryoid

bodies and the expression of the c-Myc target gene, odc. Specific probes were

used to detect Rexl, Oct4, Fgfs and Brachyury Io assess the timing of

differentiation events. mGøp expression was used as a loading control as its levels

are constant across differentiation.

(b) 'Western 
analysis was utilised to analyse the expression of c-Myc protein

across the differentiation of ES embryoid bodies. The anti-c-Myc (N262) antibody

(2.4.10) was used to detect c-Myc and the anti-Cdk2 (M2) was used to detect

Cdk2. Cdk2 expression levels were used as a loading control.
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band at approximately 65kDa is predicted to be the full-length c-Myc2, which is the ATG-

initiated, fulI length, c-Myc. There are a number of possible explanations for the

appearance of the lower band. This band may be a non-specific interaction. Alternatively,

it may be an intermediate breakdown product caused by increased degradation of Myc

during differentiation. This assumption is supported by the presence of the bands that are

detected in between the prominent bands. The 50kDa band could also be the 100aa N-

terminal truncated c-MycS protein, the translation of which is initiated at an ATG

downstream of the suboptimal c-Myc ATG and has been shown to run on Polyacrylamide

gels at approximately 50kDa (Spotts et a1.,1997).If this is true, the levels of c-MycS may

be higher than they are represented in this western as the N262 antibody is raised against

the first 262 N-terminal amino acids there may be only a sub-population of polyclonal

antibodies that detect epitopes in the 100-262aa region. This means that the real levels of

MycS protein may be understated in comparison to c-Myc2.

If the lower band is in fact c-MycS this suggests that there is possibly some type of Myc

translational regulation during differentiation, where changes in the Myc protein are made.

It appears from this analysis that full-length c-Myc expression is at its highest levels in

Rexl positive ES cells and is down-regulated rapidly as the cells differentiate into Fgf5

positive cells. Associated with this differentiation there is also an up-regulation of the

smaller protein species, closely related to when fg,f5 RNA is expressed at its highest

levels.

3.1.4 Conclusion

From this analysis it is evident that c-Myc protein levels are modulated during ES cell

differentiation. There clearly is a down-regulation of c-Myc2 protein as pluripotent, Oct4
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positive, cells differentiate into non-pluripotent lineages. Preceding this differentiation

there is an up-regulation of the 50kDa c-Myc band, possibly associated with a concurrent

up-regulation of Fgf5 expression. This indicates that high c-Myc expression appears to be

associated with rapidly dividing cells pluripotent cells and must be down-regulated in order

for the cells to differentiate into non-pluripotent cell lineages. As it is known that MycS

up-regulation is commonly associated with periods of rapid growth (Spotts et aL.,1997) it

may be deduced that c-MycS is associated with the rapid cell divisions of primitive

ectoderm cells, demonstrated by Snow (1971).

3.2 c-Myc Over-Expression During ES CeU Differentiøtion

3.2.1 Introduction

Down-regulation of c-Myc is widely considered to be a prerequisite for the transition of a

dividing cell to a non-dividing differentiated cell (Lin et a1.,2000;Xu et a/., 2001). This

may be attributed to the fact that as cells differentiate they remodel their cell cycle and

adopt the appropriate characteristics of the new cell type. It has been demonstrated in our

laboratory that as ES cells differentiate into EPL cells their cell cycles accelerate from

approximately 12.3 hours to approximately 8.1 hours. The differentiation of ES and EPL

cells as EBs is also associated with the remodelling of the cell cycle and a slowing of cell

cycle times (Stead, personal communication). This remodelling of the cell cycle is

characterised by the establishment of periodic expression of cell cycle regulators not

present in ES cells. Cdk2 and Cyclin E and A kinase activity becomes restricted to their

discreet cell cycle phases and Cdk inhibitors, p27 andp27, are up-regulated (E. Stead and

R. Faast, personal communication).
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From this information it may be infered that Myc down-regulation may be essential to

enable the transition from ES and EPL cells into the differentiated cell types in embryoid

bodies. This hypothesis has been tested in ES cells by Maclean-Hunter et aL.,1994 where

they demonstrated that the tumour-derived RLF/L-Myo is able to delay the differentiation

of ES cells as embryoid bodies.

3.2.2 Expression of Human c-Mvc in ES cells

To analyse the effect of over-expression of c-Myc on ES cells an expression vector was

constructed to enforce human c-Myc expression in ES cells. The 1395bp full-length human

c-Myc was excised from pSRcTMSVTKNEO::c-Myc (2.4.13) using EcoRI and cloned into

pEF-IRES-puro6 (2.4.13 and Appendix 1) containing an EF-1cr promoter, which allows

constitutive transcription in ES cells. This construct was linearised via a PvuI site in the

Ampicillin resistance portion of pEF-IRES-puro6, and transfected into ES cells, as

described in Section 2.3.3. pEF-IRES-puro6 alone was also transfected to create a negative

control cell line for experiments. Following the selection in lpg/ml puromycin individual

colonies were picked and expanded. These were subsequently separated with SDS-PAGE

and transferred to nitrocellulose. An anti-c-Myc (N2ó2) antibody (2.4.10) was used to

specifically detect the c-Myc protein by Western Analysis.

3.2.2.1 CMES c-Myc Protein Expression

Figure 3.2 demonstrates that of the puromycin resistant clones, clones l, 4, 5,6 and 8

express Myc at much higher levels than in the vector control and HL60 cells. Interestingly,

the Myc-expressing ES cell lines also appear to express the smaller protein sub-type

detected in the differentiation experiment described in 3.1. This may be the c-MycS
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Figure 3.2

Embryonic stern cells were transfected with the pEF-IRES-puro6::hc-Myc

construct and western analysis was performed on the several puromycin resistant

clones. c-Myc expression was detected by the anti-c-Myc (N262) antibody

(2.4.10) in clone number 1,4,5,6, 8 and 9. A cell line that was transfected with

the pEF-IRES-puro6 vector alone was included in the analysis as a negative

control. The anti-Cdk2 (M2) was used to detect Cdkz, the expression of which is

used as a loading control.
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protein, as the downstream translation initiation sites are still present in the over-expressed

Myc.

3.2.2.2 CMES Morphology

The c-Myc over-expressing ES cells, termed CMES for g-lV[yc ES, appear morphologically

different to the untransfected ES cells and those expressing the vector alone. Severalx

colonies appear rounder and more dome-like (Figure 3.3). There are two potential reasons

why Myc may cause these morphological differences. The first is that Myc, to some extent,

prevents spontaneous differentiation, and this prevents the appearance of the flattened out,

differentiated colonies in the culture. The second possibility is that Myc is causing a down-

regulation genes and proteins involved with cell adhesion such as collagen, fibronectin,

intcgrins and actin (Coller et aL.,2000 Frye et a1.,2003; Shiio ¿/ a1.,2003). Consequently

the cells may have decreased attachment to the collagen matrix on the culture dish. This

would appear to mimic the effect that Myc reintroduction has on myc-null Ratl cells,

where attachment to the culture dish is greatly reduced (Shiio et al., 2003). This effect is

most apparent in hgure 3.3(a), where the two right most colonies are attached but appear to

be embryoid body-like.

3.2.3 The Effect of c-Mvc Over-Expression on ES Cell Dífferentíation

3.2.3.1ESEB Differentiation in the Presence of Puromycin

Initial investigation into the differentiation of ES cells over-expressing c-Myc was

performed by differentiating ES cells into ESEBs as described in 2.3.7. Two different

CMES lines, CMES-6 and -8 were selected and maintained in the presence of I¡tglml

puromycin for the period of the time course to ensure c-Myc expression. In this experiment

high levels of cell death were observed and thus, low amounts of cells were harvested.
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Figure 3.3

Morphology of ES cells which over-express human c-Myc. CMES lines 6 and 8

are shown in (a) and (b), respectively. The morphology of the vector alone cell

line is shown in (c).
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Figure 3.4

CMES lines 6 (c) and 8 (d) were differentiated into ES embryoid bodies in the

presence of puromycin and northern analysis was used to analyse any differences

in differentiation kinetics in comparision to vector alone ES cells (a) and

untransfected cells (d). Differentiation markers Brachyury, RexI and Oct4 wete

used to assess differentiation kinetics and the Ethidium Bromide stained agarose

gel demonstrates the relative RNA loading in each lane'
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Northern Analysis (2.9) was performed on the cells to allow detection of differentiation

markers and assess the effect of Myc over-expression on kinetics of differentiation (Figure

3.4). In this experiment ES and vector alone cells were differentiated as controls.

In this experiment, RexI expression decreased with the same kinetics in the CMES cell

lines 6 and 8 and the ES and vector alone controls. It was high in ES cells and down-

regulated in dayl ESEBs indicating the ES cells had differentiated at the normal rate. Oct4

expression in the CMES cell lines also decreased with similar kinetics to the parental ES

cells and vector alone cells. Interestingly Brachyury expression was not detected in either

of the Myc over-expressing cell lines indicating that nascent mesoderm was not being

formed in the Myc over-expressing cells even by day 5 in ESEB differentiation. Down-

regulation of Oct4 indicates a loss of pluripotency in the CMES cells nearing the end of the

time course indicating that there is possibly a transition into another non-pluripotent cell

type.

3.2.3.2 ESEB Differentiation in the Absence of Puromycin

As the addition of puromycin to the medium caused high levels of cell death in the CMES

cell lines during ESEB differentiation, these experiments were repeated in the absence of

puromycin. In these experiments there was negligible cell death in comparison to the

untransfected ES and vector alone cells. Western analysis (2.6.4) utilising the anti-c-Myc

(N262) antibody (2.4.I0) was employed to investigate the expression of Myc protein in the

CMES-6 and vector alone cell lines (Figure 3.5(a)). This indicated that Myc protein is

expressed at high levels in the CMES-6 cell line when compared to D3ES cells, but was

down-regulated at days 4,5 and 6 of differentiation. Down-regulation is, most likely, the

result of increased c-Myc ubiquitin-mediated degradation during ESEB differentiation as
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Figare 3.5

CMES-6 and vector alone ES cells were differentiated into ES embryoid bodies in

the absence of puromycin. Western analysis (a), utilising the anti-c-Myc (N262)

antibody (2.4.10), was used to analyse the expression of the c-Myc protein during

differentiation. Northern analysis (b), detected the expression of the

differentiation markers Brachyur!, F8f5, RexI and Oct4, the loading control

mGap and the c-Myc target Cyclin E.
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has been demonstrated by Cartwright et a1.,2003. It may also be due to the fact the EF-l cx

promoter is not maintained at a high level during ESEB differentiation (Cartwright,

unpublished data)

Interestingly, the 50kDa band, previously described in 3.1, appears to be differentially

expressed in Myc over-expressing cells, shown in figure 3.5, in a similar fashion to what

was seen for ES cells as shown in figure 3.1(b). A peak in expression of the 50kDa band

can be seen in day 2 CMESEB differentiation, reminiscent of when it is at its highest in ES

cells. Cdk2 protein levels are utilised as a loading control in this experiment.

Northern Analysis was utilised to analyse the behaviour of CMES-6 during differentiation

into ESEBs (figure 3.5(b). These cells differentiated in much the same way as the vector

alone cells, with the exception of Brachyury expression, which is up-regulated one day

later in CMES-6 EBs than ES cells expressing the vector alone. This indicates that nascent

mesoderm forms at day 4 in CMES cells and in day 3 in non-expressing cells in each case

correlating to the reduction of Myc protein levels (Figure 3.5(a)). As the ES cells

maintained in puromycin (3.2.3.1) were expected to retain c-Myc protein expression and

Brachyury was not detected when these cells differentiated, this suggests that the down-

regulation of Myc is important for the formation of mesoderm. Cyclin ¿ RNA was also

detected in this northern analysis and its levels were found to only be modestly up-

regulated in the c-Myc over-expressing ES cells. GAPDH was detected at relatively

constant levels in figure 3.5(b) demonstrating that the expression pattems seen in

differentiation markers is a true representation of their kinetics.
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3.2.3.3 EPLEB Differentiation

As over-expression of c-Myc appeared to delay ESEB differentiation it was of interest to

analyse the effect during EPLEB differentiation, where predominantly mesoderm is

formed (Lake et a1.,2000). To investigate this, CMES cell line 8 and untransfected ES

cells were differentiated in the absence of puromycin into EPL cells as describedin2.3.5

and both were grown as embryoid bodies as described in 2.3.8. Embryoid bodies were

harvested daily, as describedin2.3.9 and Northern Analysis was performed as described in

2.9.The levels of gene expression of Rexl, Oct4, Fgf5 and Brachyury were assessed to

analyse differentiation (figure 3.6). This figure demonstrates that whilst the CMES cells

lose ES cell-like characteristics, as assessed by RexI expression, albeit later than

untransfected cells, they appear not to lose pluripotency, as assessed by Oct4 expression,

for the 5 days EPLEB formation was analysed. This result is supported by the observation

that Brachyury, the nascent mesoderm marker, is barely detected in differentiating CMES

cells, indicating that these cells lose the ability to form mesodem, at high levels. This

result also indicates that there is a delay in the differentiation of CMES cells to lose ES cell

characteristics and become cells equivalent to primitive ectoderm, as Fgf5 expression

appears later in CMES cells when compared to untransfected cells. Interestingly, Fgf5 is

down-regulated when there is still a high level of Oct4 meaning that these cells retain

pluripotency but express, neither Rexl or Fglfs. This means the precise nature of the cell

type differentiated is difhcult to define.

Maintenance of ES cells in culture is dependent on the presence of the cytokine, LIF, in the

culture medium (Nichols et a|.,1990). The LIF titration assay is a tool to assess the level of

LIF required to maintain an undifferentiated, pluripotent, ES cells. This technique utilises a

50



Figure 3.6

CMES-8 and vector alone ES cells were differentiated in to EPL embryoid bodies.

Northern analysis detected the expression of the differentiation markers Fgfs,

Rexl and Oct4. Loading was assessed via visualisation of the Ethidium Bromide

stained RNA in an agarose gel.
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staining procedure to detect activity of the Alkaline Phosphatase enzyme as a measure of

pluripotency (Hanel et al.,1990; Pease et a1.,1990).

3.2.4.1CMES Cells LIF Titrations

Typically ES cells in culture are maintained in 1000 units/ml of LIF to help prevent the

loss of pluripotency. However, Dr Gavin Chapman has shown, that this can be reduced to

40 units/ml without significant loss of ES cell characteristics (G. Chapman, PhD Thesis).

Thus, to assess the differences in the level of LIF requirement of c-Myc over-expressing

cells and non-over-expressing cells, CMES and vector alone, were gro'\Mn for 6 days in 40,

30,20,15, 10, 7.5, 5,2, 1,0.5 and 0 units/ml of ESGRO LIF, as described in 2.3.6.1. The

cells were plated out at 500 cells per well and grown for 6 days so the culture would not

reach confluency and the colonies would be big and easy to identify. Following this the

cells were stained for alkaline phosphatase activity as a marker of pluripotency (Hanel e/

al., 1990; Pease et al., 1990). This experiment was performed in quadruplicate and the

colonies in each well were counted and scored blind as:

* Colonies scored as round had no cells with a flattened diamond-shaped morphology.

x* Alkaline Phosphatase positive was scored as when more than 50Yo of the cells in the

colony were purple.

The number of each of the colony type was then averaged across the quadruplicates and

the standard error of the mean was calculated.
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Figure 3.7 shows the staining of the cells in decreasing LIF concentration and the results of

the counting and scoring of colonies. It can be seen from the graph in figure 3.7(b) that the

loss of ESlike colony formation in decreasing LIF concentration is reduced slightly by c-

Myc over-expression. The effect is moderate but repeatable and significant. The graph

demonstrates that ES cell-like colonies are rarely seen in the vector alone wells after 6 days

in 7.5 units/ml of LIF. Conversely, ES cell-like colonies are seen approximately at 20Yo

and 40Yo in CMES-6 and CMES-8, respectively, at 7.5 units/ml and ES cell-like colonies

approach 0o/o at 2 units/ml. Figure 3.7(c) demonstrates that the percentage of pluripotent

cells in low LIF concentrations (below 7.5 units/ml) is higher in c-Myc over-expressing

populations. This result, however, does not give strong evidence as to whether the

difference in maintenance of pluripotency between the vector alone and the c-Myc lines is

a result of overexpression of c-Myc or some by-product of clonal selection of colonies. As

only 2 cell lines were used it is unclear if the slightly significant result is a result of the

chance that vector alone is more dependent on LIF.

3.2.4.2 c-MycER LIF Titrations

As LIF titrations on the CMES cell lines showed only a slight decrease in the level of LIF

required to maintain ES colony characteristics it was expected that other c-Myc over-

expressing ES cell lines may show a similar effect. To test this a D3ES cell line over-

expressing c-MycER (2.2.6) was analysed by LIF titration. The c-MycER fusion acts as an

inducible c-Myc system. The ER-fusion, in the absence of ligand, binds heat shock

proteins, which result in the cytoplasmic localisation, and thus inactivation, of the protein.

The addition of the synthetic ligand, 4-hydroxytamoxifen (4-OHT), results in the

disassociation of the heat shock proteins, the exposure of the nuclear localisation sequence

of c-Myc and nuclear translocation, and thus c-Myc activation (Littlewood et al., 1995).
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Figure 3.7

LIF titration analysis was performed on CMES-6, CMES-8 and vector alone

cells. The cells were grown for 6 days in 40, 30,20, 15, 10, 7 .5, 5,2, l, 0.5 and 0

units/ml of LIF and then were stained for alkaline phosphatase activity. A photo

of the stained colonies is shown in (a). The colonies were then counted and scored

AS

o rourìd, ES-like morphology and alkaline phosphatase positive,

o flattened out, non-ES-like morphology and alkaline phosphatase positive,

o or flattened out non-ES-like morphology and alkaline phosphatase

negative.

The results were represented graphically in (b) and (c). The graph in (b) represents

the colonies scored as ES-like, as described in the first dot-point above. The graph

in (c) represents the colonies scored as alkaline phosphatase positive and results

from the addition of number of colonies scored as the first two dot-points above.
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The c-MycER in these cells is under the control of the pCAG promoter, which has been

shown to not be shut down during ESEB differentiation (Niwa et a1.,1998).

LIF titration analysis was undertaken on MycER ES cells in quadruplicates of cells in the

presence and absence of 100nM 4-OHT, as describedin2.3.6. The colonies were scored as

described above (3.2.4.1), the standard error of the mean was calculated and all the results

were collated into the graph shown in Figure 3.8. The graph demonstrates that whilst cells

in both the presence and absence of 4-OHT lose ES morphological colony characteristics,

alkaline phosphatase expression is maintained for the 6 days of the experiment in the

absence of LIF and the presence of 4-OHT. This suggests that c-Myc must be down-

regulated in order for the cells to lose pluripotency and differentiate. Interestingly, less

than 40%o of colonies demonstrate ES cell-like morphology in both the absence and

presence of 4-OHT in 40 units/ml of LIF. It is unclear why these cells have an increased

dependence on LIF in the cells not maintained in 4-OHT.

3.2.4.3 c-MycT58ER Cells LIF Titrations

To confirm that c-Myc over-expression prevents loss of pluripotency, LIF titrations were

performed on another c-MycER cell line (2.2.6). The c-MycT58ER cell line over-expresses

a human c-MycER fusion with Threonine 58 mutated to Alanine. This c-Myc mutant does

not get targeted for ubiquitin-mediated degradation and thus is not down-regulated during

differentiation of ESEBs (Cartwright et al., 2003). LIF titrations \À/ere performed as

described above (3.2.4.1) and the results are shown in the graph in figure 3.9. This

demonstrated that in the absence of LIF and the presence of 4-OHT approximately 60%o of

colonies retain ES-like characteristics, as evaluated via a rounded colony formation and
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Figure 3.8

LIF titration analysis was performed on MycER cells in the presence and absence

of 4-OHT. The cells were grown for 6 days in 1000, 40, 30, 20, 75, 10,7 .5, 5, 2,

1, 0.5 and 0 units/ml of LIF and then were stained for alkaline phosphatase

activity. The colonies were then counted and scored as:

o rourd, ES-like morphology and alkaline phosphatase positive,

o flattened out, non-ESlike morphology and alkaline phosphatase positive,

o or flattened out non-ES-like morphology and alkaline phosphatase

negative.

The results were represented graphically. The bar graph represents the colonies

scored as ES-like, as described in the first dot-point above. The line graph

represents the colonies scored as alkaline phosphatase positive and results from

the addition of number of colonies scored as the first two dot-points above.
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Figure 3.9

LIF titration analysis was performed on MycT58ER cells in the presence and

absence of 4-OHT. The cells were grown for 6 days in 40,30,20,15,10,7.5,5,2,

l, 0.5 and 0 units/ml of LIF and then were stained for alkaline phosphatase

activity. The colonies were then counted and scored round, ESlike morphology

and alkaline phosphatase positive and the results were represented graphically.
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alkaline phosphatase staining. Interestingly, in the absence of 4-OHT, alarge percentage of

the cells in 40 units/ml LIF did not form ES cell-like colonies

3.2.5 Conclusion

The c-Myc over-expression experiments discussed in this Chapter collectively suggest that

c-Myc may prevent the differentiation of pluripotent ES cells into other cell types. This is

because during both ESEB and EPLEB differentiation, constitutive c-Myc expression

maintains pluripotency and reduces levels of non-pluripotent cell formation. This indicates

that in order for pluripotent cells to differentiate, there must be a down-regulation of c-

Myc. This may be intrinsically linked to the role of Myc as a cell cycle regulator which

drives the rapid cell cycles in pluripotent cells but must be reduced in order for slower

cycling cells to form.
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CHAPTER 4

PRODUCTION OF ANTI-c-MYC ANTIBODIES

4.1 Introduction

The modulation of c-Myc translation and the appearance of the smaller c-Myc protein

subtl.pes is a characteristic of various cell t1.pes (Spotts et al., 1997). The smaller MycS

protein has been characterised in various studies and has been shown to be able to promote

cell cycle progression and apoptosis in immortalised rodent cells (Xiao et al., 1998) and

up-regulated in rapidly dividing cells, such as NIH3T3, BHK and MEL cells (Spotts et al.,

teeT).

'l'he westem analysis of c-Myc shown in Chapter 3 demonstrated that during the

differentiation of ES cells into embryoid bodies, a 50kDa band was detected by the anti-c-

Myc (N262) antibody (2.4.10). The size of the band was an indicator that there may be an

up-regulation the c-MycS subtype during embryoid body differentiation. To elucidate if

this band seen in ES cell differentiation is in fact c-MycS an antibody was raised to

recognise the 100 most N-terminal amino acids of full-length human c-Myc. This antibody,

theoretically, would not detect MycS, which is identical to fulI length c-Myc except that it

lacks the 100 most N-terminal amino acids. Thus, if the 50kDa band is not detected by the

antibody, it would indicate that the band seen by the anti-c-Myc (N262) antibody (2.4.10)

is c-MycS.

Generation of this antibody would also provide a useful tool for other future experiments,

especially when used in combination with the N262 antibody. Its use in dual western
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analysis would demonstrate where full length c-Myc and c-MycS are expressed, enabling

elucidation of the differential regulation of the translation of c-Myc protein.

4.2 Production of Human c-Myc Peptidefor Antibody Production

Expression of the N-terminal 100 amino acids (henceforth termed MycNl00) of human c-

Myc was performed via cloning the first 300bp of the human c-Myc oDNA sequence into

the pGEX-6P-1 (Amersham Pharmacia Biotech). The 300bp region was amplified via a

PCR reaction utilising the primers, cMyclOONAbR and AbMycF (2.4.12) and cloned via

an EcoRI site into the vector. c-MycNl00::pGEX-6P-1 was then transformed into BL2I E.

colibacteia and selected using ampicillin as described in 2.8.1. Test inductions of the GST

tagged MycN100 were performed as 2.8.2 and are shown in Figure 4.1. The predicted size

of peptide is 37-46kDa reflecting the molecular weight of GST which is 26.5kDa and the

predicted molecular weight of the N100 amino acids is between 11 and 20kDa. The reason

for the variation in size of this peptide is because full length c-Myc runs approximately

20kDa higher than c-MycS (Spotts et al., 1997) but the actual weight of the peptide is

11306.3Da fcalculated by the ExPASy Molecular Biology Server ProtParam Tool

(http://kr.expasy.org/cgi-bin/protparam)1. There is a strong band seen in figure al@)

migrating at approximately 40kDa however the induction in IPTG was not greatly

enhanced. To confirm that this band did indeed represent the MycN100 peptide, western

analysis was performed using an anti-c-Myc (N262) antibody (2.4.10). Figure 4.1(b)

demonstrates that the band seen in the inductions in figure a.I@) is in fact a Myc peptide.

The equal loading of the western is confirmed by the non-specific 'doublet' band seen

migrating above 50kDa.
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Figure 4.1

Test induction of the o-MyoN1OO-GST peptide were performed on BL21 cells

transformed with the c-MycN100::pGEX-6P-1 plasmid. IPTG was added to the

LB and samples of the bacteria were taken every hour for three hours. The

samples were added to load buffer, boiled and were subjected to SDS-PAGE. The

gel was coomassie stained (a) to enable detection of the induced peptide. To

confirm that the band seen on the coomassie stained gel was c-MycN100-GST the

same samples were subjected to western analysis (b), utilising the anti-c-Myc

(N262) antibody (2.4.10), was performed.
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The induction and purification of the GST tagged protein was performed as described in

2.8.3. lOpl of purified protein was run on a SDS PAGE and the purified peptide can be

seen migrating at about 40kDa. When compared to BSA standards, c-MycNl00GST is

estimated to be present in excess of 10pg in 10pl (>lpg/pl) as can be seen in figarc 4.2.

There are also 2lower bands seen on the gel. The upper species or band may be a truncated

form of the peptide and the lower band, based on its size, may be GST alone. 150p1 of

antigen was utilised for the injection into rabbits for polyclonal antibody production as

described in 2.8.4. Two rabbits, rabbit 54 and 55, were used to generate antibodies of

which, only serum from rabbit 54 appeared to detect c-Myc in ES cells. Data from rabbit

55 is not shown.

The positive control used when testing the antibodies was protein from a D3ES cell line

over-expressing full-length human c-MycER (constructed and provided by Dr Peter

Cartwright). Figure a3@) demonstrates that the whole crude serum used at a 112000

dilution in 5o/o skim milk detected a band just below the 105kDa marker via Western

Analysis (2.6.4).It has shown that the MycER is detected at approximately 100kDa by the

anti-c-Myc (N262) antibody (2.4.10) (Cartwright et aL.,2003).Interestingly, in both the ES

and MycER ES cells a band could be seen at approximately 70kDa, which is where mouse

c-Myc migrates on SDS PAGE. Afhnity purification of the serum against the c-

MycNlOOGST peptide was then performed as described in 2.8.5 and the purified

antibodies were used to detect c-Myc in the same protein samples used in a3@). The blot

shown in a.3@) demonstrates that at a 1/1000 dilution the Nl00 antibody detects a band in

the c-MycER D3ES cells just below the 105kDa marker, which is predicted to be the over-

expressed c-MycER protein. In both samples a band at approximately 70kDa is detected,

which is probably the fulI length mouse c-Myc. Comparison of 4.3(a) and (b) demonstrates
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Figure 4.2

Affrnity purification of c-MycNlOO-GST was performed and the five lml samples

eluted by reduced glutathione were subjected to SDS-PAGE and coomassie

stained (a). BSA standards (4 and S pg) were also run on a gel and coomassie

stained (b) to allow approximate estimation of the amount of c-MycNl0O-GST

eluted in each sample.
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Figure 4.3

Following inoculation of Rabbit 54 with the c-MycNlOO-GST peptide serum was

harvested and this was used to perform western analysis at a dilution of 1/2000 on

ES and MycER whole cell extracts (a). Affinity purification of the serum to c-

MycN1OO-GST was then performed and this was used to perform western

analysis at a dilution of 1/1000 on ES and MycER whole cell extracts (b). Affinity

purified antibodies were then used to detect c-Myc expression during ESEB

differentiation (c). MycER extracts were utilised as a positive control and

detection of Cdk2, by the anti-Cdk2 (M2) antibody, was used as a loading control.
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a significant reduction in the background and the strong band seen at approximately

105kDa is greatly reduced following affinity purification. As expected, in both of the

experiments no bands are detected at approximately 50kDa, where c-MycS would be

expected to migrate.

4.3 Analysis of Full-Length c-Myc Protein Expression During ESEB
Differentiation

As the affinity-purihed antibody generated from rabbit 54 (henceforth termed Ab54) was

able to detect mouse and human c-Myc in ES cells it was of interest to analyse the kinetics

of full-length c-Myc during ESEB differentiation. As was demonstrated in Chapter 3, the

50kDa band was absent in ES cells but was detected in day I and 2 ESEBs, thus it was of

interest to see if this band would be detected using the Ab54 in these days. Confirmation

that this band was not detected in these cells would give validity to the argument that this

band is c-MycS.

ES Embryoid bodies were prepared as described in 2.3.7 and cells were harvested daily for

whole cell protein extracts as described in 2.5). Western blot, utilising 4b54, was

performed to detect c-Myc across ESEB differentiation. MycER D3ES cells were used as a

positive control for this experiment and the result is shown in figure 4.3(c). This

experiment demonstrated that whilst a clear band is seen at approximately 70kDa, which I

have previously designated as full-length c-Myc2, there is no 50kDa band detected at any

stage of ESEB differentiation. The expression of the 70kDa band is consistent with the

western analysis, utilising anti-c-Myc (N262) antibody (2.4.10), shown in Figure 3.1.3.

This experiment was repeated with the same samples used in figure a3@) but

unfortunately the batch of the anti-c-Myc (N262) antibody (2.4.10) from Santa Cruz did
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not detect c-Myc at endogenous expression levels in ES cells. This meant that the

expression of c-MycS (or full length c-Myc) in these samples was not detected by this

antibody. The expression of full length c-Myc was confirmed by the Ab54 antibody and it

was shown that the levels of the protein were gradually down-regulated as differentiation

proceeded and failed to be detected by day 7 ESEB. The most significant down-regulation

of the protein, however, appears to occur at day 3 ESEB. This is the day when brachyury is

typically up-regulated suggesting that c-Myc2 needs to be down-regulated at this stage of

differentiation. This expression profile is similar to that shown in section 3.3.I, but there

are some differences that would need to be addressed via comparison of the Ab54 with a

N262 western result, on the same samples.

4.4 Conclasion

Coupled with the results of the western analysis from Chapter 3, crealion of the 4b54, anti-

c-Myc antibody provided evidence that there is an up-regulation of c-MycS during the

differentiation of ESEBs. The results in this Chapter support the evidence in Chapter 3 for

the appearance of c-MycS during periods of rapid cell division. The up-regulation of c-

MycS demonstrated in Chapter 3 appears to be associated with the up-regulation of Fgf5.

Interestingly, it has been shown in our laboratory that EPL cells, which are Fgf5 positive,

have more rapid cell cycle times than ES cells (Stead et a1.,2002). This evidence indicates

that up-regulation of c-MycS is associated with the rapid proliferation of cells equivalent

of primitive ectoderm, which is also known to rapidly proliferate within the embryo

(Snow, 1917; Poelmann, 1980; Lawson et aL.,1991).
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CHAPTER 5
FINAL DISCUSSION

5.1 Introduction

The Myc family of proteins are activators of proliferation, apoptosis and cell growth (Ryan

and Birnie, 1996). Members of this family are widely expressed during development of the

mouse embryo (Downs et al., 1989; Queva et al., 1998) and knockouts of Myc genes,

typically, undergo abnormal development and early embryonic leathality (Davis et al.,

1993; Sawai et al., 1993; Hatton et al., 1996). The in vitro model of the pluripotent cells of

the ICM, ES cells, are a useful tool for the investigation of molecular regulators of the

dynamic process of embryogenesis. Utilising this tool, it was the purpose of this

investigation to elucidate possible roles of c-Myc in regulating the changes in pluripotent

cells that underlie their differentiation.

5.2 Chønges in c-Myc Expression During ES Cell Differentiøtion

Embryonic stem cells undergo very rapid cell division (12.3 hours) in comparison to

somatic cells which have cell cycle times in excess of 24 hours. ES cell cycles are

characterised by high levels of, non-cell cycle regulated, Cyclin E-associated kinase

activity (Stead et aL.,2002). Upon signals to differentiate into non-pluripotent cell lineages,

ES cells down-regulate their Cyclin E-associated kinase activity and restore more somatic

cell-like cell cycle structure (Stead, personal communication). A possible up-stream

regulator of these rapid cell cycles in pluripotent cells is c-Myc, which has roles in the

activation of Cyclin E and normal embryogenesis. Thus it was of great interest to analyse

the kinetics of c-Myc protein expression during the differentiation of ES cells.
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Two different sized bands are detected by western analysis utilising the anti-c-Myc (N262)

antibody (2.4.10). The bands that migrated slower had a predicted molecular weight of

65kDa on denaturing SDS-PAGE. This band would be expected to be, full-lengfh, c-Myc2,

which is down-regulated as ESEB differentiation proceeds. Its expression closely follows

the expression of Rexl, indicating that c-Myc2 expression be associated with pluripotent

ICM cells. The second band detected migrated at the predicted molecular weight of 50kDa.

There are several different possible identities of this band. It may be the result of a non-

specific interaction with a protein that is differentially regulated across this stage of ES cell

differentiation. It may also be an intermediate breakdown product of fuIl-length c-Myc

resulting from proteolysis of the protein. The other possibility is that this band is the c-

MycS protein, which arises from a down-stream translational start site in c-Myc. The

shorter c-MycS proteins have been demonstrated to be up-regulated in various cell types at

periods when there is rapid cell division (Spotts et al, 1997). This band is detected at its

highest levels in days 2 and 3 of ESEB differentiation, which correlates with when Fg1f5 is

detected and before Brachyury is detected at day 4. This would be expected to be a period

of rapid cell division, as it has been shown in our laboratory that, Fgf5 positive, EPL cells

have cell cycle times of 8.1 hours, in comparison to the 72.3 hour cell cycle times of Rexl

positive ES cells (Stead et al., 2002). This suggests that c-Myc2 is high in ES cells and c-

MycS may be up-regulated in the more rapidly dividing cells. Previously, it has been

shown in embryoid bodies and the embryo that following gastrulation there is a

deceleration in the cell cycle. In the embryo, the cells of the primitive ectoderm cycle in 5-

7 hours and the mesoderm cells cycle in22.2 hours (Snow, 1917).In Embryoid bodies this

stage of differentiation is associated with a more tightly regulated, more somatic cell-like
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cell cycle (Stead, personal communication). Potentially regulation of c-Myc is an up-

stream effector ofthis process.

5.3 The Effect oÍ Humø,n c-Myc Over-Expression on ES Cell
Differentiution

5.3.1 Introduction

As it was proposed that the down-regulation of c-Myc is essential for the differentiation of

pluripotent cells into more differentiated cells it was of interest to analyse what effect over-

expression of c-Myc would have on the differentiation of these cells. Experiments by

Maclean-Hunter et al (1994) have previously demonstrated that over-expression of the

tumour produced RLF/L-Myo fusion protein in ES cells, results in the delay of

differentiation into embryoid bodies, suggesting that Myc family members must be down-

regulated to allow normal differentiation.

5. 3. 2 Embrvoid B odv Differentìøtion

Generation of EF-lcr promoter driven human c-Myc over-expressing ES cells, provided

some early evidence that Myc down-regulation is essential for the differentiation of

pluripotent cells. The one day delay in the appearance of brachyurl expression in the

absence of puromycin and inability of the cells under puromycin selection to form

mesoderm, indicated that the differentiation of ES cells requires a down-regulation in c-

Myc. It can be seen in figure 3.5 that the appearance of brachyury is associated with down-

regulation of the protein levels of c-Myc on day 4 of ESEB differentiation. Interestingly, in

the CMES EPLEB differentiation experiment there was a delay in the Rexl to Fgf5

transition. This indicates that not only does c-Myc over-expression delay loss of

pluripotency, as seen by Oct4 expression, but it also may delay the differentiation of ES
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cells to other pluripotent cell t1pes. The low level of brachyury expression seen in this

experiment may be attributed to a small subpopulation of cells, which are able to

differentiate normally.

Interestingly, the 50kDa band also appeared in the c-Myc over-expressing cells during

differentiation as ESEBs, as is seen in figure 3.5(a). This indicates that the band is a

truncated form of c-Myc. It does not, however, clarify whether or not it is c-MycS or a

breakdown product of c-Myc resulting from changes in the level of c-Myc degradation

during di fferentiation.

5.3.3 The Effect of Human c-Mvc Over-Exnression on ES Cell LIF Dependence

Maintenance of ES cell pluripotency is dependent on the cytokine, LIF (Nichols et al.,

1990). Thus if over-expression of c-Myc is expected to maintain pluripotency, it may be

expected that c-Myc over-expressing ES cells may lose the requirement for LIF and thus

LIF titration analysis was utilised to test this hypothesis. Initial experiments utilising

CMES cells showed only a moderate retention of ES-like characteristics in decreasing LIF

concentration, in comparison to vector alone cells. Also , greater bhan 90Yo of colonies after

6 days in the absence of LIF were no longer pluripotent. Whilst these experiments showed

unremarkable results both of the c-MycER ES cell lines showed a more striking result,

suggesting that the CMES lines may down-regulate their c-Myc expression during the

period of the experiment. This may be reminiscent of the down-regulation seen in the

ESEB experiment in the absence of puromycin. Whilst the c-MycER cells lose ES celllike

colony characteristics in the absence of LIF, the cells in the presence of 4-OHT retain

pluripotency, as assessed by Alkaline Phosphatase activity. This tends to indicate that these

cells are able to differentiate from ES cells but cannot become non-pluripotent, and thus
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are possibly trapped in an early primitive ectoderm-like state. Interestingly, experiments

utilising the MycT5SER over-expressing cells demonstrate that in the absence of LIF and

thepresence of 4-OHT for 6 days, approximately 60Yo of colonies were scored as ES cell

colony-like. This reduction in LIF dependence for the maintenance of ES cells may be

attributable to the increased stability of c-Myc containing the T58A mutation, which makes

it resistant to ubiquitin-mediated degradation.

5.4 Generøtion of Anti-c-Myc Antibodies

'Western 
analysis utilising the anti-c-Myc (N262) antibody Q.a.l}) saw the differential

expression of two bands distinct in size. I have previously suggested that the 65kDa band

was c-Myc2 and there was a possibility that the 50kDa band was c-MycS. The smaller c-

MycS protein is generated from translational initiation at down-stream translational start

site and lacks the highly conserved MBI in the transactivation domain of the protein

(Spotts et aL.,1997). This protein, however, has been demonstrated to be involved with the

repression of genes, such as gasl and gadd45 (Xiao et a1.,1998) and rapid proliferation of

various cell types (Spotts et a1.,1991).

To provide evidence that the smaller band detected by the anti-c-Myc (N262) antibody

(2.4.10) is c-MycS, polyclonal antibodies were generated that would detect c-Myc2 but not

c-MycS. The converse experiment is not possible, as c-Myc2 and c-MycS are identical

except that c-MycS lacks the N-terminal 100 amino acids. Following generation of the

Ab54 antibody it was shown that it could detect both over-expressed human c-Myc from

MycER cells and endogenous mouse c-Myc2 in ES cells. This antibody was then used in

westem analysis on ESEBs to see if the 50kDa band was detected at any stage of

differentiation. As the species was not detected it provides evidence that this species is the
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c-MycS protein. This strengthens the argument proposed in 5.2, that c-MycS, is involved

with the rapid proliferation of Fgf5 positive cells and that MBI is not required or

detrimental to this proliferation profile.

5.5 Final Summøry

The Myc family of proteins have various roles in the control of cell proliferation, cell

growth, adhesion and apoptosis (Ryan and Birnie, 1996). They are important regulators of

embryonic development (Downs et al., 1989; Queva et al., 1998; Davis et al., 1993; Sawai

et aL.,1993; Hatton et al., 1996) and potent activators of the cell cycle (Jansen-Durr et al.,

1993; Bouchard et a1.,1999; O'Hagan et al. 2000). As it is known that pluripotent cells of

the embryo, and their in vitro equivalents, undergo dynamic changes in their cell cycle, it

became the focus of this investigation to analyse possible roles of c-Myc in the regulation

of this process.

Investigation indicated that c-Myc protein was expressed in the rapidly dividing,

pluripotent ES cells and this expression was down-regulated as the cells differentiated into

non-pluripotent cells. These cells exhibited slower, more tightly regulated cell cycles. It

was also demonstrated that during differentiation c-Myc appeared to undergo differential

translational control, where the shorter c-MycS protein appeared when Fgf5 was high. This

indicated that c-MycS expression may be associated with periods of rapid cell division in

ES cell differentiation.

Over-expression studies demonstrated that for ES cells to differentiate there must be a

down-regulation of c-Myc protein. This was predominantly shown to be associated with

the loss of pluripotency, when cell cycle time changes were most significant. It was also
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demonstrated via the reduction of LIF dependence in c-Myc over-expressing cells and the

delay in the differentiation of embryoid bodies.

In conclusion, c-Myc appears to be an essential regulator in the differentiation of

pluripotent cells and is a possible candidate for the regulator of the rapid cell cycle times in

the pluripotent cells of the embryo, and their in vitro equivalents.
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