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Abstract 

Personalized medicine offers the most effective treatment protocols to the individual 

Chronic Myeloid Leukemia (CML) patients. Understanding the molecular biology that 

causes CML assists in providing efficient treatment. After the identification of an activated 

tyrosine kinase BCR-ABL1 as the causative lesion in CML, the first-generation Tyrosine 

Kinase inhibitors (TKI) imatinib (Glivec®), were developed to inhibit BCR-ABL1 activity 

and approved as a treatment for CML. Despite the remarkable increase in the survival rate 

of CML patients treated with imatinib, some patients discontinued imatinib therapy due to 

intolerance, resistance or progression. These patients may benefit from the use of second-

generation TKIs, such as nilotinib (Tasigna®) and dasatinib (Sprycel®). All three of these 

TKIs are currently approved for use as frontline treatments. Prognostic scores and molecular-

based predictive assays are used to personalize the care of CML patients by allocating risk 

groups and predicting responses to therapy. 

Although prognostic scores remain in use today, they are often inadequate for three 

main reasons. Firstly, since each prognostic score may generate conflicting prognoses for 

the risk index and it can be difficult to know how to treat patients with conflicting prognoses. 

Secondly, since prognostic score systems are developed over time, patients can benefit from 

newly developed systems and information. Finally, the earlier scores use mostly clinically 

oriented factors instead of those directly related to genetic or molecular indicators. As the 

current CML treatment guidelines recommend the use of TKI therapy, a new tool that 

combines the well-known, molecular-based predictive assays to predict molecular response 

to TKI has not been considered in previous research. Therefore, the main goal of this 

research is to improve the ability to manage CML disease in individual CML patients and 

support CML physicians in TKI therapy treatment selection by correctly allocating patients 

to risk groups and predicting their molecular response to the selected treatment. 
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To achieve this objective, the research detailed here focuses on developing a 

prognostic model and a predictive model for use as a personalized medicine support system. 

The system will be considered a knowledge-based clinical decision support system that 

includes two models embedded in a decision tree. The main idea is to classify patients into 

risk groups using the prognostic model, while the patients identified as part of the high-risk 

group should be considered for more aggressive imatinib therapy or switched to second-

generation TKI with close monitoring. For  patients assigned to the low-risk group to 

imatinib should be predicted using the predictive model. The outcomes should be evaluated 

by comparing the results of these models with the actual responses to imatinib in patients 

from a previous medical trial and from patients admitted to hospitals. Validating such a 

predictive system could greatly assist clinicians in clinical decision-making geared toward 

individualized medicine. 

Our findings suggest that the system provides treatment recommendations that could 

help improve overall healthcare for CML patients. Study limitations included the impact of 

diversity on human expertise, changing predictive factors, population and prediction 

endpoints, the impact of time and patient personal issues. Further intensive research 

activities based on the development of a new predictive model and the method for selecting 

predictive factors and validation can be expanded to other health organizations and the 

development of models to predict responses to other TKIs.  
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Chapter 1: Introduction  
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Introductory Background  

 Cancer patients have a strong belief in treatment that will be able to relieve their pain 

and suffering. However, in many cases, clinicians have uncertain expectations about patient 

responses. Consequently, treatment failure situations are likely to be recorded, which could be 

extremely disappointing to patients. In addition, clinicians have rational explanations and 

scientific justifications, but treatment failure is an undesirable outcome for both sides. 

Consuming the incorrect drug over a long period of time multiple times per day is harmful. For 

instance, in childhood Acute Lymphoblastic Leukemia (ALL), an incorrect choice regarding 

individual treatment could produce serious problems, such as the progression of the disease, 

relapse and, in some cases, death [1]. The long histories of toxicology and pharmacology have 

strongly shown the significant research efforts undertaken in studies of drug resistance and 

toxicity [2]. Many theories and facts have been investigated in order to avoid failed treatments 

and to study the causes of undesirable side effects [3, 4]. However, many exceptional cases 

have been recorded for several medical profiles from different populations who would benefit 

from individualized medicine [2]. This is not new in medical science [2, 5], where drugs are 

studied in terms of the population, based on some criteria, such as age or sex. Individualized 

medicine is more precise [6]; the principle is basically to transform the population sample of 

the medical trials to be involved with their individual parameters in other specific medical 

trials. This is done to classify them into a very small subpopulation that shares a response to a 

specific treatment. In these medical trials, studies of biological parameters are considered due 

to their role in causing differences in responses to drugs. Indeed, some biomedicine researchers 

[7-10] have discussed the importance of including a combination of biological and clinical 

data. In some diseases caused by genetic abnormalities, the biological parameters could 

probably cause diversity in in the patients’ responses to drugs with resistance or intolerance. 
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Medical Background: Chronic Myeloid Leukemia 

In 2017, the Australian Institute of Health and Welfare classified leukemia as the sixth-

most commonly diagnosed cancer [11]. One cancer that falls under this subcategory of diseases 

is chronic myeloid leukemia (CML). Patients with CML experience unregulated growth of the 

predominant myeloid cells occurring in their bone marrow. Those CML patients [12] have a 

genetic abnormality known as the Philadelphia (Ph) chromosome that  has been discovered in 

their blood cells. The fusion between the tyrosine kinase gene in chromosome 9, known as 

Abelson (Abl), and the gene at chromosome 22, known as the breakpoint cluster (Bcr), 

produces the BCR-ABL gene, which encodes for the constitutively active tyrosine kinase Bcr-

Abl. Inhibiting Bcr-Abl activity is essential in treating CML patients. As one of the molecular-

targeted therapies, tyrosine kinase inhibitors (TKIs) are the most successful therapeutics that 

have been used over the last decade [13-15].  

Three common TKIs approved by the U.S. Food and Drug Administration (FDA) in 

the treatment of CML include imatinib (Gleevec,® Novartis), nilotinib (Tasigna,® Novartis), 

and dasatinib (Sprycel,® Bristol-Myers Squibb). These TKIs are used as first-generation 

imatinib and second-generation nilotinib and dasatinib therapies. The use of imatinib treatment 

as a firstline therapy is an effective treatment strategy that has shown variable results [16]. 

Whenever the CML patients are not likely to achieve the targeted response in a specific time 

frame, it could beneficial to switch them to a second-generation TKI [17]. Many failed cases 

have been recorded with poor outcomes based on the use of imatinib in frontline therapy [14, 

18]. Since then, researchers have investigated a new treatment strategy. This strategy suggested 

using the second-generation of TKIs in frontline treatment to achieve the optimal treatment for 

CML [19-21]. Indeed, studies [22, 23] have examined the use of nilotinib and dasatinib as 

frontline therapies. For example, in the DASISION trial, Kantarjian et al. [23] demonstrated 
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that the safety profiles of dasatinib in frontline treatment resembled those of imatinib. 

Therefore, the choice among these TKIs should be based on evidence and reasoning. According 

to Erba [24], it is necessary to wait and collect valid data to gain a deep understanding of each 

therapy and provide evidence for choosing the best TKI. Shami and Deininger [18] stated in 

their conclusion based on current trials that using dasatinib or nilotinib in newly diagnosed 

CML patients could be reasonable, but due to the limitations of existing data comparing both 

drugs, it is not preferable to recommend one therapy over the other. In 2010, Wei et al. [20] 

reviewed a comparison of the three agents as frontline therapies. They advised obtaining better 

knowledge of the three therapy toxicities and following up with the use of second-generation 

therapy as frontline treatment over the longer term, as the IRIS trial [16] did with imatinib.  

The American Society of Hematology (ASH) has established annual meetings to 

discuss medical trial outcomes. In 2006, the 48th ASH annual meeting [25] displayed a poster 

about the International Randomized Study of Interferon Versus imatinib STI571 (IRIS) trial. 

In this study, it was shown that imatinib is appropriate for CML patients in the chronic phase, 

as the results indicated that patients who receive imatinib therapy over the long term (5-6 years) 

achieve MMR in 90% of cases [16]. These results show the efficacy of continuing or receiving 

imatinib over time for CML patients. In 2010, two significant medical trials, DASISION 

(Dasatinib Versus Imatinib Study In Treatment–Naïve CML) and ENESTnd (Evaluating 

Nilotinib Efficacy and Safety in Clinical Trials–Newly Diagnosed Patients), were discussed at 

the 52nd annual meeting [26]. In DASISION [23], 259 patients were studied regarding 

responses to 100 mg. DAS once daily versus 260 patients who consumed 400 mg. of IM once 

daily. The Major Molecular Response (MMR) was lower in the imatinib arm compared to the 

dasatinib arm. The most important result was the safety profiles of using these drugs, which 

were similar. The ENESTnd trial focused on the comparison of nilotinib versus imatinib [22]. 

The samples were derived from newly diagnosed CML patients, with 282 patients given 300 
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mg. of nilotinib twice daily, 281 patients given 400 mg. of nilotinib once daily or 283 patients 

administered 400 mg. of imatinib once daily. The median follow-up for these patients was 18 

months. The Cytogenetic Response and MMR were lower in the patients treated with imatinib 

than the patients treated with NIL.  

 From these trial results, the debate on selecting the optimal TKI to achieve optimal 

patient response has been established with the recognition of the need for a predictive approach 

that could accurately predict the response of the patient’s upfront treatment. The researchers 

also recognize the need for a medical trial that could compare each TKI against the others as 

first-generation treatments. It is clear that collecting the data for CML patients and comparing 

each TKI against the others is very important. However, the nature of the response to TKI 

treatment requires a long term to observe the results. Consequently, it is important to find a 

direction to improve the ability to manage CML disease in individual CML patients by 

selecting the appropriate TKI. 

Response to TKI Therapy  

Three types of patent responses can be identified using the criteria employed by the 

European Leukemia Net (ELN) [27]: the hematologic, cytogenetic and molecular response to 

treatment (see Appendix 2: ELN Response Definition). Firstly, hematologic response is 

identified by counts of non-elevated white blood cells, platelets and basophils in the normal 

range. The second response is cytogenetic response, which is identified by reducing or 

eliminating the number of cells expressing the Philadelphia chromosome. Finally, for the 

molecular response, which is the highest degree of remission for CML patients, PCR tests the 

absence of Bcr-Abl transcripts in the peripheral blood or bone marrow. Measuring the level of 

BCR-ABL mRNA transcript and the Ph-positive cell frequency can accurately monitor the 

response to treatment [28].  



 

6	

	

The National Institutes of Health Consensus Group proposed the use of an international 

scale (IS) to monitor CML patients. The IS standard baseline is taken to represent 100% of 

definitions from 30 CML patients who enrolled in the (International Randomized Study of 

Interferon Versus STI571) IRIS study as the median value of BCR-ABL1 mRNA at the time of 

diagnosis [29]. Two groups of molecular responses were identified based on this standardized 

baseline: MMR which refers to a BCR-ABL1 transcript level of ≤ 0.1%, and complete 

molecular response (CMR), which refers to an undetectable BCR-ABL1 transcript level. The 

optimal response at any time after 12 months is a BCR-ABL1 transcript level ≤ 0.1[30]. 

According to the IRIS study [31], achieving MMR is associated with a low risk of disease 

progression based on the finding that 100% of patients remained free of progression to 

advanced CML phases at 60 months. In addition, monitoring the level of BCR-ABL mRNA 

transcript can be a predictor for subsequent loss of response or the development of mutation 

[32, 33]. These data suggest the relative benefits of predicting MMR in terms of long-term 

survival. 

Recent Personalized Treatment Approaches in CML 

Clinicians use patients’ characteristics upon diagnosis in a prognostic scoring system 

to classify CML patients into risk groups. Four scoring systems are historically developed, 

including Sokal [34], Hasford [35], the European Treatment and Outcome Study (EUTOS) 

[36], and the EUTOS long-term survival score (ELTS) [37]. However, the Sokal and Hasford 

scores’ ability to identify the newer TKIs’ prognosis risk groups is still unclear [38], and the 

ELTS introduced in 2015 and validated with 2,205 patients is not widely applied in CML 

treatment decisions.  

Many studies [15, 39] have shown that predictive factors could probably assist in 

predicting patient response. Milojkovic et al. [39] conducted their study to predict the success 
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or failure of treatment with second-generation tyrosine kinase inhibitors in CML patients by 

using univariate analyses. They analyzed a cohort of 80 CML patients in the first chronic phase 

who were treated with dasatinib or nilotinib. Their score system predicted the probability of 

CML patients achieving a complete cytogenetic response. Their system was based on three 

factors: cytogenetic response to imatinib, Sokal score and recurrent neutropenia during 

imatinib treatment. Although this study used simple statistical methods, the system succeeded 

in classifying three risk categories: good, intermediate and poor risk. In addition, Jabbour et al. 

[15] also studied the predictive factors for predicting 123 CML patients’ responses after 

imatinib failure. The variables used in this study included age, sex, CML duration, months of 

performance status, splenomegaly, prior interferon therapy, peripheral blood, bone marrow, 

best cytogenetic response to imatinib, second-generation therapy, active disease at the start of 

the second-generation TKIs, clonal evaluation, higher than 90% Philadelphia positivity, and 

IC50  [42]  for nilotinib and dasatinib for in-vitro inhibition of kinase activity of the mutated 

point in BCR-ABL. Even though they used univariate and multivariate analyses, such as the 

logistic regression model and the Cox proportional hazard model, to identify prognostic factors 

associated with cytogenetic response and survival, they succeeded in identifying three risk 

groups: low, intermediate and high risk. A recent study funded by the Anderson Cancer Centre 

and National Cancer Institute proposed a model to predict the sustained molecular response for 

at least two years [40]. However, these current scores and model use mostly clinically oriented 

factors that are not directly related to the patients’ genetic or molecular indicators. 

Two of the previously identified predictive factors are highly involved in predicting the 

molecular response in CML. The first such factor is IC50. In 2005, White et al. [41] studied 

the inhibitory concentration 50% (IC50imatinib) as a predictor of molecular response for CML 

patients. The results demonstrate that the IC50imatinib is a powerful predictor pre-treatment [42]. 

The second factor is the activity of Organic Cation Transporter-1 (OA) [43]. There are two 



 

8	

	

functions for OCT proteins, which are the cellular uptake and excretion of a number of 

exogenous and endogenous cationic and uncharged substances. OCT-1 protein activity (OA) 

can be measured by uptake in the presence and absence of a specific OCT-1 inhibitor.  It has 

been found that patients with high OA have better molecular responses than patients with low 

OA and OA is considered a predictive factor for responses to imatinib, but not for nilotinib or 

dasatinib [42, 44]. White et al. proposed [43] that in CML patients treated with imatinib, the 

use of OA pre-therapy was a predictor for the long-term risk of resistance and could be used to 

individualize dosage strategies. Thus, using OA to estimate the response could lead to better 

results only for imatinib therapy. 

Personalized Medicine Support System 

Personalized medicine support systems combine two concepts: personalized medicine 

and clinical decision support systems. As Muller defined it, “personalized medicine refers to 

tailoring of medical treatment to the individual characteristics of each patient” [2]. A clinical 

decision support system refers to any computer program that supports healthcare professionals 

in their clinical decisions, including any computer system that uses clinical data or knowledge 

to make a medical treatment decision [45]. A clinical decision support system is a tool used to 

facilitate personalized healthcare, and is especially useful when dealing with the complexities 

of genomic information, which could be considered difficult for clinicians to manage manually 

without the support of computer programs [46]. Similar to pharmacogenomic science, which 

personalizes treatment selection based on unique patient genetic information [47], personalized 

medicine support systems personalize treatment selection based on individual patients’ clinical, 

biological and molecular data or knowledge. The personalized medicine support system is a 

knowledge-based clinical decision support system. Knowledge-based systems typically use 

expert knowledge in the application domain and definition of the problem  [48].  
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Since the patient data stored in electronic record, it leads to be considered a big data in 

health. According to Huanng et al. [49], the future of health could be changed with the big data 

in health. They state that the patient data, such as   medical histories and genetic test data is 

foundation for personalized medicine. The selection of molecular-targeted therapy for cancer 

patients is a recent issue in personalized medicine.   The prediction of response to treatment 

and risk group identification cannot be addressed manually. Therefore, intelligent techniques 

could provide insights to these problems.   The electronic health records as a source for 

population can be analyzed by machine learning techniques to solve the selection of molecular-

targeted therapy problem.  

In the era of personalized medicine, it is vital to have an accurate and personalized 

medical support system for the selection of molecular-targeted therapy for cancer patients, 

which is based on patients’ molecular, biological, clinical and pathological profiles and their 

molecular responses [50]. This is crucial to assist clinicians in making accurate decisions about 

the most effective and least toxic molecular-targeted therapeutic options available.  

 Currently, clinical decision-making is combined with increasingly sophisticated 

medical technology, such as equipment and instruments to diagnose many prognostic systems 

and predictive assays, which makes the decision-making process more complex. For example, 

medical technology known as Quantitative RT-PCR (Q-PCR) is used to measure the actual 

percentage of BCR-ABL mRNA transcripts and to show whether a correlation between 

peripheral blood and the bone marrow results [51]. A significant variability in the results 

obtained from different laboratories could be due to technical differences in the application of 

measuring Q-PCR for BCR-ABL. Thus, An et al. suggested minimizing the differences in the 

Q-PCR to maximize the accuracy of the clinical decision. The complexity of decision-making 

might result from factors such as increasing treatment options, the multitude of strategies 

utilized for therapy, heterogeneity in responses, or patients with multiple co-morbidities who 
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are using multiple medications [52].  

Technology may also increase decision complexity due to the development of multiple 

prognostic score systems for allocation of the risk index to treatments that are equally 

considered to have efficient scores with different populations [34, 35, 37 , 53 ]. In addition, the 

situation may be compounded by medical technology developments, particularly the growth of 

molecular technology and the introduction of many predictive assays and molecular tests [54]. 

All these factors may impact decisions in clinical practice. Hunink et al. agreed that medical 

decisions become complex based on their example of the first edition of The Merck Manual 

(1899), which includes 192 pages compared with the centennial edition (1999), which includes 

2,833 pages [55]. 

Personalized medicine support systems could offer an effective tool to CML patients 

who suffer from a history of unsuccessful or failed medication regimens. An opportunity is 

now available for medical researchers and computing researchers to transform the paradigm 

toward patient-centered disease management. Human molecular tests and the development of 

molecular-targeted therapy have provided additional levels of information that need to be 

processed with the assistance of information technology. The proposed system therefore offers 

a promising opportunity in the treatment of CML. The biggest advantage of this method is that 

the selection of medicine is personalized so that an individual can have their own means of 

treatment, tailored to their needs. This provides hope to CML patients that they can recover 

from their currently terminal illness and revert back to normal health.  

Problem Statement  

Why Do Clinicians Need a Personalized Medicine Support System for CML? 

There are five central problems that have been observed from a medical perspective:  
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1. Comparative studies [56- 68] were conducted to establish which prognostic score is most 

accurate for identifying risk. Since each prognostic score may generate conflicting 

predictions of the risk index, it is difficult to know how to treat patients with conflicting 

predictions. As each study recommends using different scores, a tool is needed to resolve 

conflicts among prognostic score predictions to promote consistent results and increase 

clinicians’ trust in and reliance on these results to make appropriate treatment decisions. 

The European Leukemia Net (ELN) currently recommends management of CML by 

achieving at least MMR [30] but previous studies have failed to consider the potential for 

combined prognostic scores to identify risk categories in CML based on patients’ long-

term molecular responses.  

2. Since prognostic score systems are developed over time, as with the development of the 

latest ELTS score, patients could benefit from newly developed systems. A valuable score 

carries information for allocating risk groups that could assist clinicians in CML treatment. 

The previous research has not considered evolving based on new incoming information.  

3. Response information comparing each TKI against the other is not available from the 

previous medical trials. This challenge could probably be addressed using the available 

information about frontline therapy from patients’ existing profiles to predict the response 

to TKI.  

4. According to a recent economic analysis [69], the cost of treatment with imatinib is 

approximately £57/400 mg., £86/600 mg. and £114/800 mg., and this dosage is taken every 

day. Although imatinib is a well-tolerated therapy and leads to a 90% survival rate after 

five years [2], nilotinib and dasatinib are also clinically proven molecular therapies for 

CML patients [70]. Approximately 24% of patients develop resistance to imatinib, and 

approximately 26% of patients discontinue their therapy due to their intolerance for 

imatinib [21]. Thus, patients should benefit from a tool that recommends using imatinib or 
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other TKIs before consuming the expensive imatinib and then switching to another 

treatment after long-term monitoring. 

5. Previous studies have not investigated the relationship of molecular response and the 

predictive assays IC50imatinib and OCT-1 activity (OA) as predictors. There is no study using 

machine learning in predicting individual responses to TKIs in CML patients or using 

clinical, biological, molecular-based data and predictive assays in a predictive model. 

There are also a number of possible challenges from a computational perspective; we 

concentrate on four main challenges.  

1. This research is a challenge from both a data and a knowledge perspective because in 

developing medical applications, computer scientists should study the relevant medical 

background to integrate medical knowledge in the development of the personalized 

medicine support system. Moreover, the data collection and population identification 

processes should comprise a particular investigation, and experts in the domain should 

confirm the exclusion and inclusion criteria. A survey should also be conducted by the 

computational researchers to generate information relating to medical knowledge about 

existing prognostic and predictive methods. Defining the predictive factors and 

reformatting them using domain knowledge is also an important process as the 

interpretability of the model in clinical prediction rules form will be based on the expert 

categories and definition.  

2. The next challenge originates from selecting the induced models, which should result in 

several requirements: high performance, interpretable, fewer predictive factors, and the 

ability to outperform existing methods. The model induction and selection of relevant 

predictive factors should be implemented with interpretable methods (white-box testing) 

that are interpretable in the context of expert knowledge and easy to use in practice [71]. 

Model evaluation, particularly after using predictive factor selection approaches, creates a 
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challenge around selecting the best models. The models should be selected according to 

their validation performance. Thus, the computational cost can be very high based on the 

number of constructed models and the compression of the model’s performance. Finally, 

under this challenge, the generation of clinical prediction rules needs to be represented in 

such a way that the computer easily understands them in order to prepare rule sets in 

adapting to new knowledge. 

3. This research also generated challenges by studying the level of consistency between 

existing scoring systems and combining validated prognostic scores to resolve conflicts on 

predicting risk groups in cancer patients. Before commencing treatment, it is vital to ensure 

that there is no conflict with decisions based on prognostic scores that have been developed 

and validated, and that are already in use. In clinical practice, the clinicians rely on their 

preference to decide which therapy to prescribe based on one prognostic score, or 

sometimes patients’ preferences for cheaper brands [72]. However, consistency is the 

agreement between the prognostic scores that is a useful output, which clinicians need to 

receive, but unfortunately, these prognostic scores may generate conflict in their outputs or 

decisions. The research challenge is to handle this difficulty by studying the level of 

consistency, and the proposal involves combining methods [73] to reach one output and 

examine the performance of risk group allocation against patients’ actual molecular 

responses. Several methods should be examined and evaluated to select the best method to 

combine prognostic scores compared with a single source of prognosis. This problem has 

been introduced for the first time in the selected medical domain. Therefore, the challenge 

for this study is to review the current body of work in the medical literature in light of the 

conflict issues outlined earlier and to propose a solution to resolve conflicts at different 

combined levels. 
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4. The fourth challenge is posed by changes in care delivery and the need to keep up with 

rapid medical and scientific discoveries. More care is required to develop rapid-learning 

health systems based on a framework to spur delivery in light of recent developments in 

health information technology, and to access health data and apply evidence in making the 

right decisions. An important feature in the proposed framework is its ability to capture 

knowledge from single and multiple sources and to reach agreement on decisions from two 

sources regarding the same patient. 

Contribution to the Discipline  

This research addresses the problem of TKI therapy treatment selection by accurately 

grouping patients into different risk groups and predicting their molecular responses to the 

selected treatment. The overall thesis aims to research issues that are significant while selecting 

the most effective treatment from the TKI therapies that are available for CML patients. Most 

of the empirical research on personalized medicine in leukemia discovered that there is a need 

to combine different methods to cope with conflicts arising from prior knowledge. The research 

aims to address this need by framing the problem as a classification problem and come up with 

a knowledge-based decision support system.  

From the discussion of various provided studies on individual models, the research 

proposed the development of both a predictive model and a prognostic combined model.   

1.1. Based on prior medical information, my research has also contributed to knowledge 

on the TKI treatment method through experimental and automatic comparisons of the 

study’s model behavior and the design of a new structure for a personalized medicine 

support system.  

1.2. My research has contributed to knowledge on TKI treatment by discovering clinical 

prediction rules from the relationship between the predictive factors and the molecular 

responses to the selected treatment. 
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The focus of the research was precise classification, therefore the introduction of a 

personalized medicine support system structure based on a medical application problem was 

significant in solving problems related to clinicians’ diagnosis decisions. The significant 

contribution to CML treatment management is that the data included in the research has not 

been analyzed in any previous studies on personalized medicine because there is no prior 

research that describes a process used in this study to solve the problem of treating CML. 

Finally, this study has contributed by helping clinicians with treatment selection problems, 

therefore expanding the potential applications of TKIs in personalized medicine.  

Thesis Objectives 

The main objective of this thesis was to improve the ability to manage CML disease in 

individual CML patients and support CML physicians in TKI therapy treatment selection by 

correctly allocating patients to risk groups and predicting their molecular responses to the 

selected treatment. We developed and implemented a knowledge-based system to provide 

clinicians, patients, and researchers with a platform to allocate risk groups to resolve conflicts 

on prognostic scores, to predict molecular responses to the standard TKI imatinib, and to 

extract knowledge to discover the relationship between the predictive factors and achieving a 

molecular response. The framework has not been considered in previous personalized medicine 

research; in the existing literature, this process has not been specifically applied to the problem 

in the medical field being considered in this study. As a result, the current study will add 

substantial value to the existing literature. Figure 1 shows the hierarchy and linkage of the main 

aim, the six major objectives, and the 11 sub-objectives of this research. The six journal papers 

developed to address the main aim of each major objective and sub-objective are also included. 

A generic framework is presented that includes the following main, major and sub-objectives. 

Objective 1 To conduct a systematized literature review on personalized medicine in 

leukemia and synthesize findings across studies related to intelligent techniques in leukemia. 
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Sub-objective 1.1  To identify opportunities for further research into 

personalized medicine support systems in one 

category of leukemia, namely, CML. 

Objective 2 To propose a framework for the selection of treatment in cancer patients based 

on patient risk profile and molecular response to molecular targeted therapy.  

Sub-objective 2.1 To design an algorithm for a predictive model to 

predict molecular response to molecularly targeted 

therapy for treatment management by integrating 

domain knowledge in the learning process. 

Sub-objective 2.2  To combine prior prognostic scores and resolve 

conflict between scoring systems. 

Sub-objective 2.3  To automate selection of the predictive factors for 

predicting the molecular response to molecular 

targeted therapy and to generate clinical prediction 

rules. 

Objective 3 To study consistency between prognostic score categories used to allocate CML 

patients to risk groups. 

Sub-objective 3.1  

Sub-objective 3.2 

To identify risk groups. 

To identify conflict groups. 

Objective 4 To develop a combined prognostic model to resolve conflict between prognostic 

scores in patients with conflicting predictions. 
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Sub-objective 4.1  To automatically filter the models and select the 

highest performance model that learn the best conflict 

resolution strategy between prognostic scores in 

patients with conflicting prediction 

Sub-objective 4.2  To update entire architecture when adapt a new 

prognostic model. 

Objective 5 To model predictors of molecular response to frontline imatinib for patients 

with CML. 

Sub-objective 5.1  To understand whether rules exist to predict 

molecular response for CML patients treated with 

molecular targeted therapy (imatinib) from the 

clinical, molecular, and cell-count observations 

collected at diagnosis and categorized based on the 

available knowledge. 

Sub-objective 5.2 To build a predictive model to predict molecular 

response for molecular targeted therapy (imatinib) in 

CML patients with better prediction results than those 

obtained with predictive assays and previous scores. 

Objective 6 To discuss the personalized medicine support system’s design, implementation, 

and testing. 

Sub-objective 6.1  To implement system aids in identifying the risk 

group, identifies any conflict in treatment decisions 
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based on multiple prognostic scores, predicts MMR at 

24 months as a long-term endpoint, and supports 

clinicians as they select patient treatments. 
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Figure 1 Hierarchy and linkage of the main aim, six major objectives, and eleven sub-objectives of this research. The six journal papers developed to address the 
main aim and each of the major objectives and sub-objectives, are also depicted 
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Discussion That Will Be Presented in This Thesis 

A personalized medicine support system will be discussed in this thesis. This system 

is a type of knowledge-based clinical decision support system (see Chapter 3 for details) that 

can be considerably valuable in the process of creating a personalized medical treatment plan 

for patients as they reduce costs, improve outcomes and create safer healthcare [46]. This 

system will increase the effectiveness of the decision by using predictive and prognosis 

models at diagnosis. Medical decision makers may optimize the patient’s journey to avoid 

possible treatment failures, with assistance from the personalized decision support system.  

Using two or more characteristics of patient data and expressing various types of 

human knowledge can assist healthcare professionals in making appropriate and automated 

decisions [45 , 74 , 75]. Different prognostic (Chapter 4) and predictive (Chapter 5) factors 

will be evaluated, as well as their relevance in identifying risk profiles and predicting the 

response to imatinib in patients who have been diagnosed with CML, and the overall 

necessity of personalized medical treatments when treating patients with CML. In this thesis, 

risk stratification methods and the clinical, biological, and molecular-based indicators will 

be studied to see how these particular factors can be used to help clinicians and other health 

professionals treat CML patients. 

When studying the prognostic scores to identify the risk level and predict the 

molecular response to TKIs and how they can assist health professionals in making pre-

treatment decisions for patients with CML, one must also consider a major work published 

by the New South Wales Blood and Marrow Transplant Network [76] on acute myeloid 

leukemia (AML), where the efforts are clear to build six models of care for AML patients: 

i) presentation and referral, ii) diagnosis and work-up for treatment, iii) treatment, vi) 

transplant, v) follow-up care, relapse and long-term survivorship, and vi) end-of-life care. 

To extend the diagnosis and the work-up required for a specific treatment model, our 
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proposed system (Figure 1, Chapter 3) could be used as it may assist in establishing accurate 

decisions to select the best treatment for the AML patient. 

The National Comprehensive Cancer Network Guideline (NCCN) [29] lists various 

TKI options and methods that can be utilized to treat cases of CML. These guidelines are 

backed by various interdisciplinary researchers who have analyzed cancer and blood 

disorders from a perspective that “treat[s] the entire individual, not just the disease” [77]. In 

keeping with this information, a change in methodology from automatically using standard 

TKI treatments (imatinib) for CML to studying patients’ unique genetics and prognostics 

before selecting an appropriate treatment will constitute the contribution of this thesis. The 

models presented in this thesis (Figure 2, Chapter 6) will primarily either recommend the 

standard TKI treatment (imatinib) or not recommend it because of its reliability and long 

track record of precedence [78]. In addition to imatinib’s favorable prior results, patients’ 

responses to imatinib are fairly easy to study, as the measurement of BCR-ABL1 mRNA 

transcript levels in the peripheral blood of CML patients are monitored by RQ-PCR [79].  

Personalized medicine support systems will include different models where each 

model performs a specific function. The purpose of designing the personalized medicine 

support system is to provide one system, which integrates different decision support 

functions that serve within individualized therapy. Furthermore, the personalized medicine 

support system has a functional integration for any technology, for example, machine 

learning algorithms (Chapter 4 and 5), feature selections (Chapter 5), combining several 

classifiers (Chapter 4, Part 2), and conflict analysis (Chapter 4, Part 1) to support treatment-

management tasks in general and decision-making in particular. In this system, each function 

(allocation of risk groups and prediction of molecular response to imatinib) enhances the 

other functions by increasing the capabilities of the whole personalized medicine support 

system as each model performs those sub-tasks that it performs best. The expertise from the 
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medical domain is integrated into the system, which helps to closely define medical concepts 

in the framework, and it relates to clinicians’ preferences. The high quality of a knowledge-

based system that integrates knowledge and extracts knowledge is also important to tailor 

decision outputs for multiple resources. The knowledge-based clinical decision support 

system (personalized medicine support system) is more difficult to model because 

integrating the expert domain usually requires computer scientists to have a broad 

background and knowledge about medical applications, as well as about clinical guidelines 

and protocols.   

The studied information that will be referenced in support of our thesis statement 

will be of a knowledge-driven and data-driven nature and will include expert background 

and data sets, such as clinical trials and patient records from hospitals. The future goals and 

potential methods of validating the information presented in this thesis will be detailed as 

well. 

This research will review intelligent techniques for personalized medicine in 

leukemia research using molecular data. It then will synthesize findings across studies 

related to intelligent techniques in leukemia treatment. Specific attention will be paid to 

particular categories of these studies to help identify opportunities for further research into 

personalized medicine support systems in one category of leukemia, namely CML. It will 

address the challenges mentioned earlier by proposing a framework for the selection of 

treatment in cancer patients based on patient risk profiles and molecular responses to 

molecular-targeted therapy. This research will not aim to cover all design aspects of 

intelligent techniques, or all areas of cancer. Rather, it will propose a personalized medicine 

support system for CML patients. It will apply the theoretical aspects to CML disease and 

measure its performance in a meaningful way with respect to the field of application. Finally, 
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this research will compare the selected models with previous methods to provide insight into 

personalized medicine research questions in CML. 

Thesis Outline 

This thesis is divided into seven chapters that constitute six journal papers. These 

publications are classified under the bioinformatics science domain and include two scopes 

for reading interests to achieve the main objectives of this research: i) the theoretical domain 

(computational scientists), and ii) the medical applied domain (medical scientists, such as 

hematologists and clinicians). The theoretical work comprises the framework proposal and 

the suggested solution to solve the problem from the computational point of view, while the 

medical application comprises details about CML background from the medical point of 

view and the experimental work and the results to support the proposed solution.  

Chapter 2 comprises journal paper 1 and explores objective 1, which will provide the 

systemized literature review of intelligent techniques using molecular data analysis in 

leukemia, as well as identifying the opportunity for a personalized medicine support system. 

Chapter 3 covers the proposed framework. Chapter 3 comprises journal paper 2 and explores 

objective 2, which also includes three sub-objectives; it will demonstrate a framework 

structure for the selection of treatment in cancer patients, based on the patient risk profile 

and prediction of molecular response to molecular-targeted therapy. Chapter 4 comprises 

journal papers 3 and 4, explores objectives 3 and 4, and also addresses sub-objectives 3.1, 

3.2, 4.1 and 4.2. In addition, this chapter addresses the methods used for allocating CML 

patients into risk groups and resolves the conflicts resulting from scoring systems. Chapter 

5 comprises journal paper 5 and explores objective 5 and sub-objectives 5.1 and 5.2. This 

chapter emphasizes the modeling predictors and construction of clinical prediction rules that 

represent the relationship between predictive factors and achieving a major molecular 

response at 24 months. Finally, Chapter 6 comprises journal paper 6 and discusses objective 
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6.1. These five chapters are copies of the published journal papers, or unsubmitted work 

written in manuscript style. Chapter 7 summarizes the principle findings of the thesis, the 

limitations of the approach and suggestions for further research. Figure 2 outlines the topics 

of the journal papers included in the thesis. 

Appendices are supplied to support the journal papers. Appendix A provides supplementary 

material for journal paper 4. Appendix B provides supplementary material for journal paper 

5. 

 

Figure 2 The scopes of the journal papers in the thesis. 
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The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized
treatment uses patient’s genetic profile to select a mode of treatment.This process makes use of molecular technology and machine
learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from
a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients
using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and
synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories
of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid
leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize
these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data
analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced
machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to
the patient in clinical practice.

1. Introduction

Molecular cytogenetics of hematological malignancies and
therapies is under development. Leukaemia is a hematolog-
ical disorder where two leukaemia patients who may appear
identical morphologically may have different molecular pro-
files and thus the variation in response to the prescribed
therapies would be unpredictable [1]. Leukaemia usually
begins in the bone marrow, which is the site where all blood
cells are formed andproduced.When a personhas leukaemia,
the white blood cells produced are usually numerous, and
they are abnormal, which means that they cannot effec-
tively defend the body from diseases, pathogens, or foreign
substances. The type of white blood cells affected, either
lymphoid or myeloid, can identify the type of leukaemia.

Four common types of leukaemia are chronic lymphocytic
leukaemia (CLL), chronic myeloid leukaemia (CML), acute
lymphocytic leukaemia (ALL), and acute myeloid leukaemia
(AML) [2].

The most common modes of treatment for leukaemia
involve chemotherapy, radiation therapy, stem cell trans-
plantation, and immunotherapy with interferon [2]. Many
patients become disease-free after years of treatment, pro-
ceeding to live normal lives. However, these modes of
therapy can have disastrous consequences for the victims of
leukaemia. For instance, chemotherapy often makes patients
lose their hair, it can darken their skin, and it can cause
infertility in young patients. Bone marrow transplantation is
also very expensive, and it is not often easy to find amatching
bone marrow donor, especially if close family members
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are not a match. The pharmacogenomics (PGx) aims to
replace general modes of treatment, such as chemotherapy
and bone marrow transplantation, adopting instead a tailor-
made course of medication designed according to a patient’s
particular genetic makeup [3]. Although multiple targeted
therapies are available to use for leukaemia patients [4], it is
difficult to select among the available targeted therapies.

Therefore, the use of intelligent techniques in medicine
has brought a ray of hope in terms of treating leukaemia
patients. Intelligent techniques are able to conduct automatic
searches to discover knowledge and learn from data to
facilitate the task and achieve the objective. The broad
areas frequently defined under intelligence techniques are
as follows: knowledge discovery, machine learning, and
data mining. These areas use statistics and probability to
detect patterns that are difficult to study manually. Intelligent
techniques will integrate various molecular technologies and
sources of data, information, or knowledge to facilitate the
development of personalized medicine and decision-making
by physicians.

The personalized decision support system requires per-
sonal information or genetic information, such as genetic
tests and medical tests, for each patient to integrate, as far
as possible, the knowledge gained from genomics research
relating to the disease in question [5]. From this definition,
it is clear that the need for personalized decision support
systems in leukaemia treatment has increased because of
the massive amount of available genetic and genomic infor-
mation. With the use of the personalized medicine support
system, leukaemia treatment will no longer be a trial and
error game and it will be possible to select which drugs will
work at which stage. The outcomes are expected to provide
a preventive, next-generation therapy, with better specific
interventions for individual patients.

Personalized medicine support systems can use avail-
able knowledge resources to deliver just-in-time informa-
tion to individualize therapy. The existing pharmacoge-
nomics knowledge base (PharmGKB) (available at http://
www.pharmgkb.org) is a massive resource that provides
researchers with information relevant to genetic variations
on drug responses. The second source is to translate PGx
knowledge into a rule-based representation where the rules
are extracted from the characteristics of PGx knowledge in
the US Food and Drug Administration (FDA) drug label
database [6]. Another knowledge resource is the Clinical
Practice Guidelines (CPG) document, which lists a set of
guidelines for cases with specific diagnoses, along with
recommended therapeutic action plans [7].

Developing personalized medicine support systems in
some medical applications has already made significant
progress. First, in cardiovascular diseases, many factors could
influence cardiovascular disease, such as genes, environment,
and lifestyle (exercise and nutrition). It was important to
develop models for prevention, treatment management, or
detecting disease to assist clinicians in treating cardiovas-
cular patients. Indeed, the personalized decision support
system for cardiovascular patients was constructed using two
models. One model was for risk assessment using patients’
personal information, and the other was for generating

advice to clinicians based on the first model’s results [8].
The second application was in type 1 diabetes mellitus. The
frequentmeasurements of glucose levels,monitoring physical
activity, and personal information about the genome, such
as the genes that could cause obesity and predisposition for
diabetes, were used to create a personalized decision support
system for treating, preventing, and monitoring patients [9].
Another system for optimizing insulin infusion rates based
on nonlinear model predictive control was designed using
in silico data from a virtual type 1 diabetes patient, where
the system was evaluated using data from a mathematical
model of a patient with type 1 diabetes. The results showed
the effectiveness of using suchmethodswith diabetes patients
[10]. The third application is colon cancer, where selection
of the treatment plan was the objective of the personalized
medicine support system. The clinical and genomic features
were used for early diagnosis in colon cancer using cluster
techniques.The platform known as MATCH supported clin-
icians in making decisions about patients with colon cancer
[11]. Adding genetic features improves diagnosis compared
to previous research methods. Further methods proposed
for colon cancer prediction based on genetic information
were studied by Kulkarni et al. [12]. The last example, but
not limited to those mentioned in our review, breast cancer
classification is an active research application in which the
personalized medicine support medicine was the objective in
multiple studies [13–31].

One angle of personalized medicine is to identify the
correct disease subtype and patient classification. Machine-
learning techniques were proven to achieve a high perfor-
mance classification in identifying patient subtypes by using
a support vector machine (SVM) and uncertainty SVM [32],
in predicting drug sensitivity in cancer by using Bayesian
networks [33, 34], in predicting patient response to therapy
by using ensemble methods [13], in predicting risk category
using soft computing methods [35], or in recommendations
to enhance lifestyle and educate patients about healthy solu-
tions [36]. Thus, intelligent methods should be proposed to
create a personalized medicine support system in leukaemia.
These methods required information about preknowledge in
allocating optimal treatment, responding to each patient’s
risk category, which should be provided to evaluate the
models.

Medical researchers continue to emphasise that their
studies are updated with the most effective treatment pro-
tocols, which could be used to treat leukaemia patients.
The current system for achieving personalized medicine in
leukaemia has been established by using the predictive factors
to determine upfront treatment. Many groups of researchers
have conducted studies by using different techniques to inves-
tigate several factors that could affect the drug responses.
Studying a single biomarker as a predictive substance could
indicate the response pretreatment and predict the risk to
the individual [37]. The other approach involves predicting
the drug reaction in terms of toxicity or resistance, using
an individual’s genotype data and clinical data to improve
the individual’s care [38]. A pharmacogenetics is a field
that studies the individual’s response to a specific therapy
based on the person’s genotype information.With the human
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molecular tests and the development of molecularly targeted
therapy, the system for achieving personalized medicine for
leukaemia has additional levels of information that needs to
be processed with assistance from information technology.

According to current knowledge, many leukaemia re-
searchers have applied intelligent techniques, but no review-
ers have yet undertaken a systematized literature review from
a computational perspective concerning the development of
personalized medicine intelligent techniques for leukaemia
patients using molecular data analysis. This review studies
the published empirical research on personalizedmedicine in
leukaemia and synthesizes findings across studies related to
intelligence techniques in leukaemia, with specific attention
to particular categories of these studies to help identify oppor-
tunities for further research into personalized medicine sup-
port systems in one category of leukaemia, namely, chronic
myeloid leukaemia. A systematic search was carried out to
identify studies using intelligence techniques in leukaemia
and to categorize these studies based on leukaemia type
and also the task, data source, and purpose of the studies.
Our review is conducted to support health informatics and
biomedical and bioinformatics in order to answer specific
technical questions to help develop future research into
leukaemia from a technical perspective.

2. Methods

2.1. Search Strategy. Ten databases were searched, including
Scopus, PubMed, Web of Science, BIOSIS, Inspec, MED-
LINE, Embase, Springer, ACM Digital Library, and IEEE
Xplore.The review was restricted to English-language studies
published from 2001 to October 2016 because, prior to 2001,
molecular targeted therapies and molecular responses for
personalized medicine were not approved by the FDA for
medical treatments in leukaemia but became more popular
around this time [39]. The search was limited to primary
research articles. The eligibility of each study was evaluated
based on the title and abstract. Only full-text articles were
retrieved.The terms searchedwere leukaemia and leuk∗, with
different combinations of key words for intelligent systems
and techniques (machine learning, data mining, knowledge
extraction, and CDS system) and with combined keywords
and/or subject headings to identify technical leukaemia
articles. Since studies were screened by a single researcher
and then reviewed by the coauthors, this work cannot be
considered a systematic review, but it could be considered
a “systematized review” [40] to demonstrate comprehensive
search guidelines and an elaborative quality assessment and
synthesis of research evidence.

2.2. Selection of Studies and Data Extraction. The resulting
abstracts were evaluated for inclusion. Then, the full text of
those identified asmeeting the criteria were obtained. Studies
were included in the review, if the study

(i) used molecular data from adult leukaemia patients;
(ii) used intelligence techniques to achieve the purpose of

the study;

(iii) was implemented as a model for adult leukaemia
patients;

(iv) was published in a peer-reviewed journal between
2001 and 2016;

(v) was published in English.

Because the intention was to review the literature to
identifywhether opportunities currently under clinical devel-
opment are related to model analysis molecular data for
personalized medicine in leukaemia, articles were excluded,
if they

(1) published decision-analytic models for economic
purposes;

(2) used pediatric leukaemia data;
(3) studied a nonpatient population;
(4) were not written in English;
(5) were doctoral dissertations or pilot studies;
(6) did not include the full text of the study report.

3. Results

3.1. Study Selection. In total, ! = 1,929 citations were
retrieved. Excluding duplicates, the search yielded ! = 1,747
articles, and the initial screen of abstracts yielded ! = 745
articles to undergo a full-text review. Ultimately, 55 studies
met the eligibility criteria and underwent data extraction and
analysis (Figure 1).

55 studies described 55 unique intelligent techniques
(Table 2).The studies were analyzed based on the leukaemia
type involved in the study, the task, the data source, and the
purpose of the study.

3.2. Based on Leukaemia Type. Of the commonest leukaemia
types (Figure 2) involved in previous studies, AML and ALL
occupied most of the classification studies because the DNA
microarray data can be downloaded online from the Cancer
Program Legacy Publication Resources [41].

Some studies [42–44] distinguished ALL origin cell lines
from non-ALL leukaemia origin cell lines. A study [45]
demonstrated a decision support system that classifies all four
types of leukaemia using principal components for feature
selection and clustering. A few studies involved chronic
leukaemia types to identify themolecular biomarker in CML.
For example, Oehler et al. [46] used Bayesian model aver-
aging, while Yeung et al. [47] integrated expert knowledge
to predict the functional relationships in gene expression.
The capture of disease pathophysiology across patient types
was studied by Savvopoulos et al. [48], and temporally and
spatially distributed models were built to extract knowledge
from CLL patients’ blood samples. In CML and CLL studies,
some studies were not included in the final selection because
most of these studies were prospective studies ending with
a description of patient population outcomes, rather than
building models or using intelligent techniques. A study of
combined prognostic markers using a multivariate model for
knowledge extraction is included in this study because it
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(n = 182)
Records after duplicates are removed

(n = 1,747)
Records screened

review (n = 55)
Studies included in the

(n = 745)

Full-text articles assessed
for eligibility

(n = 1,929)

Records identified through
database searching

(n = 1,002)

Records excluded with the following reasons

and algorithms terms

(i) Pediatric (children) leukaemia
(ii) Animal research

(iii) The title and abstract not including

(iv) Nonpatient population

leukaemia or leuk∗ , model, system,

Figure 1: Flow chart showing the article-selection process.
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Figure 2: Summary of the frequency of studies based on leukaemia
type.

proved that integration of gene expression in a model can
predict outcomes in CLL [49].

Emphasis has been placed on CML as a research oppor-
tunity because of developments in monitoring CML patients’
molecular response to molecular targeted therapy. The Aus-
tralian Institute of Health and Welfare (AIHW) classified
myeloid cancers as the 9th most commonly diagnosed cancer
in 2016, with around 3,624 cases in Australia [50]. Chronic
myeloid leukaemia is also known as chronic myelogenous
leukaemia or chronic granulocytic leukaemia. White blood
cells are affected when the bone marrow produces an
unusual number of white blood cells. These cells enter the
bloodstream and accumulate in organs such as the spleen

or liver. If the disease progresses, the bone marrow could
produce an excessive number of immature white blood cells.
Consequently, the bone marrow cannot make enough red
cells, normal white cells, and platelets [51].

In CML, according to White and Hughes [52], the
previous studies did not establish criteria for selecting the
best molecular targeted therapy for each patient, particularly
following the availability of multiple therapies that can rep-
resent a perfect application of personalized therapy based on
predicting patients’ molecular response to molecular target
therapy.

3.3. Based on Data Source. Microarray technology is an area
of considerable focus for the purpose of cancer diagnosis
(Figure 3). One study [45] used exon arrays to classify
patients who suffer from different forms of leukaemia at
various stages. Another study used human leukaemia tissue
to determine different cluster differentiation (CD) markers
[53]. Although seven existing studies used bone marrow cell
images to classify leukaemia subtype, microarrays are still
used to facilitate different types of experiments and clarify the
results, making it easy for researchers to propose molecular
medicines in contrast to the rate of tumor progression.
The other example used gene-expression profiling among
adult patients, which proved crucial in treating leukaemia.
The researchers stated that, with the help of expression
profiling, doctors are able to determine how a patient adapts
to treatment methods. In addition, based on these facts, a
physician is able to determine the survival probability of the
patients in question.
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Figure 3: Summary of the frequency of studies based on data
sources.

A huge opportunity arises from integrating data sources
such as image data, clinical data, lifestyle or family his-
tory, SNP, gene-expression profiles, proteomics profiles, and
metabolomics profiles. For example, SNPs have been inves-
tigated in an attempt to determine the susceptibility rate of
patients suffering from leukaemia, which can support cases
where patients have been diagnosed with leukaemia.The use
of SNPs made it possible for physicians to predict the likely
survivability of their patients after treatment, which is useful
in determining the most suitable medical interventions.

In terms of patient care and administration, electronic
health records (EHR) are often reused in research to answer
specific research questions [5, 54–56]. Cases are matched
with enquiries based on obtained research criteria for patient
inclusion, and a dataset of many matches can then be
generated for analysis. The EHR may include sparse data
or missing values, as some patients may not seek frequent
care. The quality of EHR would likely impact the bias of
research findings or modeling performance. Derivation of
key variables is also an important aspect when dealing
with EHR, as the values may be recorded in different ways
in different systems. This arises due to varying definitions
between sources. The quality of data and correct values
of derived key variables are of concern to researchers, but
many algorithms can be investigated during preprocessing
procedures to improve the quality of data, which would
possibly lead to more reliable results [57].

Yu et al. [58] also divided the source of data and
knowledge into three sources: clinical trial, systems biology,
and healthcare systems. The meta-analysis and systematic
reviews from published clinical trials are themain sources for
gathering data and knowledge, although these methods have
limitations over time. The difficulty of refining knowledge
as new knowledge arises is an issue, as is the length of time
required to build a knowledge base using systematic review

and meta-analysis. The second source is system biology. The
huge amount of data and knowledge collected as panomics
for oncology patients come from genomics, transcriptomics,
proteomics, and metabolomics data. For example, the Global
Alliance for Genomics and Health [59] provides terabytes of
genomic and clinical data for researchers.The third source is
healthcare systems that provide knowledge in digital formats.

The other important source that has not attracted much
interest in leukaemia studies is the data resulting from clin-
ical trials studying healthy populations or epidemiological
studies. Future development of clinical decisions can be
guided by lessons learned from previous trials. Late-phase
clinical trials (phases II, III, and IV) are considered to be
massive sources of information that can be used to build
personalized models. There is also a rapid increase in the
number of electronicmedical research databases that provide
an opportunity for researchers to reuse medial data to create
mathematical models.

The NCI [60] is a US agency that lists ongoing clinical
trials that are testing molecular target therapies, including
most of the studies conducted by investigators at hospitals
and medical centers. The NCI offers full trial descriptions
and names of principal investigators, so researchers can
contact investigators and collaborate to conduct the proposed
research.

The issue with the clinical trial data that it may be biased
in several aspects: sampling, referral, selection, method, and
clinical spectrum biases. Clinical trials may use sampling
methods, sample size, and inclusion and exclusion criteria.
Another aspect is referral bias where patients are referred
by specialists and the data will represent preselected patients
who have high prevalence of disease. Selection bias is clear
when the clinical trial data includes groups based on a variety
of demographics. In the method aspect, the data may be col-
lected using different measurements, which leads to varying
precision and specifications. Finally, the clinical spectrum
bias represented in patient records may show other medical
problems apart from the disease [61]. For instance, Saussele
and Pfirrmann [62] have reported clinical trials in CML.They
demonstrated several aspects that may cause challenges to
reusing clinical trials. According to Saussele and Pfirrmann,
the definition of “remission” varies in clinical trials by
major molecular response (MMR) or complete cytogenetic
response (CCR). In addition, the clinical trials used different
primary endpoints such as 12 months’ MMR or 12 months’
CCR to judge treatment success. The American Society of
Hematology (ASH) has established annual meetings to dis-
cuss medical trial outcomes. In 2006, the 48th ASH Annual
Meeting [63] displayed a poster about the International
Randomized Study of Interferon versus Imatinib STI571
(IRIS) trial. This study showed that Imatinib is appropriate
for CML patients in the chronic phase as results indicate
that patients receiving long-term (5-6 years) Imatinib therapy
achieve MMR in 90% of cases [64]. For CML patients, these
results show the efficacy of continuing to receive Imatinib
over time. In 2010, two significant medical trials, DASISION
(Dasatinib versus Imatinib Study in Treatment-Näıve CML)
and ENESTnd (Evaluating Nilotinib Efficacy and Safety in
Clinical Trials-Newly Diagnosed Patients), were discussed
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at the 52nd Annual Meeting [65]. In DASISION [66], 259
patients were studied for their response to 100mg Dasatinib
once daily versus 260 patients who consumed 400mg of
Imatinib once daily. The MMR was lower for the Imatinib
set compared to the Dasatinib set.The most important result
was the safety profiles of these drugs, which were similar.
The ENESTnd trial focused on the comparison of Nilotinib
versus Imatinib [67]. The samples were newly diagnosed
CML-CP patients. In the trial, 282 patients were given 300mg
Nilotinib twice daily, 281 patients received 400mg Nilotinib
once daily, and 283 patients received 400mg Imatinib once
daily; the median follow-up for these patients was 18months.
The cytogenetic response (CCyR) and MMR were lower
in patients treated with Imatinib than in patients treated
with Nilotinib. From these trial results, the debate about
selecting the optimal TKI to achieve optimal patient response
has been established with recognition of the need for a
predictive assay that could predict the patient’s response to
initial treatment.The researchers also recognize the need for
a medical trial to compare each TKI against the others as
a first-generation treatment. The introduction of molecular
targeted drugs (TKIs) has led to a dramatic improvement
in the lifespan of patients affected by this condition. With
the three common TKIs, Imatinib, Nilotinib, and Dasatinib
currently approved to use as frontline therapy, an important
question arises regarding which TKI should be prescribed.
White and Hughes [52] stated that, with the lack of clear
recommendations about which TKI to select, clinicians may
prescribe a particular TKI based on their own preference. It
is possible to extract knowledge and modeling systems using
medical data and knowledge in leukaemia, but it requires
advanced computational methods, such as intelligent sys-
tems. Using the available data and knowledge to construct
a personalized medicine support system for leukaemia may
providemassive amounts of information to use for evaluating
therapies and also for potential diagnostic and prognostic
markers.

3.4. Based on the Purpose of the Studies. Medical research
studies have several purposes, including classification of
cancer types or distinguishing healthy cells from unhealthy
cells for the purpose of diagnosis, identifying markers to
help in the management of treatment, and determining the
prognosis of risk. Managing leukaemia patients has gained
attention since a successful study by Alvey et al. [68], who
developed an expert system by using a tree-structured logical
program and produced over 700 clinical diagnostic rules.
Even though this study focused on a specific diagnostic
aspect of the system, another study [69] provided information
for managing patients from registration to diagnosis and
through follow-up after treatment. The study integrated his-
tory, physical examinations, and laboratory data to develop
a decision support system for leukaemia diagnostics. Chae
et al. [69] used profiles from patients admitted to Severance
Hospital in Seodaemun District, Republic of Korea, and
used data from over 490 patients to discover knowledge that
helped physicians in decision-making. There is some evi-
dence that interdisciplinary cooperation between biologists,
medical scientists, computer scientists, and engineers can be

Based on the purpose

2

11

37

Classifying cancer
 type

Identifying marker Predicting risk
0

5

10

15

20

25

30

35

40

N
um

be
r o

f s
tu

di
es

Figure 4: Summary of the frequency of studies based on the purpose
of the studies.

productive. However, this research team did not incorporate
molecular data in their system.

Among the 55 studies (Figure 4), the common purpose
for conducting the studies was classifying the cancer type
or subtype, with the aim of diagnosing leukaemia patients.
An identifying marker in support of treatment management
was observed in 11 studies.The other purpose for conducting
the studies was using intelligent techniques and statistical
methods for prognosis [70–73]. For example, predicting a
relapse prior to transplantation in CML by integrating iter-
ative Bayesian model averaging includes expert knowledge
and expected functional connections in expression analyses
in order to recognize genes causative of CML evolution [47].
This kind of model provides high-quality results, especially
in complex diseases, but has varying levels of classification
precision.

A new development is to extract relationships between
biomarkers and the outcome in leukaemia patients. Focusing
on CML, a predictive factor is a patient characteristic used
to predict response to treatment [74]. The predictive factors
related to the MMR response include common molecular
assays. Other factors depend on peripheral blood counts as
well as on the molecular-based and clinical observations of
individual patients. In order to select the most effective TKI
therapy at the time of diagnosis, various predictive factors
in CML have been investigated to distinguish patients at an
increased risk of failure with Imatinib, the first-generation
TKI [52, 75–77]. Table 1 shows the current predictive assays
and score systems, the factors included in the score systems
and the methods used, the target prediction, and the pub-
lished results.

Many studies [77, 129] have shown that predictive factors
could probably assist in predicting patient response. Milo-
jkovic et al. [129] conducted their study in order to predict
success or failure of treatment with second-generation TKIs
in CML patients using univariate analyses. They analyzed
a cohort of 80 CML patients in the first chronic phase
who were treated with Dasatinib or Nilotinib. Their score
system predicted the probability of CML patients achieving
a CCR. The system was based on three factors: cytogenetic
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Table 1:The current methods used to identify risk in CML.

Previous methods
Study Factors Method Target prediction Data and results

Sokal score, Sokal et al. [78]
Age, spleen size
(cm), blast (%),
and platelets

(109/L)
Multivariate

analysis of survival
Risk groups for
chemotherapy

Six European and
American sources
(! = 813), low 39%,

intermediate 38%, and high
23%

Hasford score, Hasford et
al. [79]

Age, spleen size
(cm), blasts (%),
eosinophils (%),
basophils (%), and
platelets (109/L)

Multivariate
analysis of survival

Risk groups for
interferon alpha

alone

14 studies (! = 981), low
40.6%, intermediate 44.7%,

and high 14.6%

EUropean Treatment
Outcome Study (EUTOS)
Score, Hasford et al. [80]

Basophils (%) and
spleen size (cm)

Multivariate
analysis of
response

CCgR at 18months
to Imatinib

Five national study groups
(! = 2,060), low 79% and

high 21%

EUTOS Long-Term
survival (ELTS) score,
Hoffmann et al. [81]

Age, spleen size
(cm), blast (%),
and platelets

(109/L)
Multivariate
analysis of
response

Long-term survival
(! = 2,205) low 61%,

intermediate 27%, and high
12%

response to Imatinib, Sokal score, and recurrent neutropenia
during Imatinib treatment. Although this study used simple
statistical methods, the system succeeded in classifying three
risk categories: good, intermediate, and poor risk. In addition,
Jabbour et al. [77] also studied the factors for predicting 123
CML patients’ response after Imatinib failure. The variables
used in this study included sex, CML duration, months’
performance status, splenomegaly, prior interferon therapy,
peripheral blood, bone marrow, best cytogenetic response to
Imatinib, second-generation Nilotinib or Dasatinib therapy,
active disease at the start of the second course of TKIs,
clonal evaluation, higher than 90% Ph positivity, and IC50
for Nilotinib and Dasatinib for in vitro inhibition of kinase
activity of the mutated point in BCR-ABL. They also used
univariate and multivariate analyses, such as the logistic
regression model and the Cox proportional hazard model,
in order to identify prognostic factors associated with MCyR
and survival, and they succeeded in identifying three risk
groups: low, intermediate, and high risk.

Previously, two of the predictive factors closely involved
in predicting the molecular response in CMLwere identified.
The first such factor is IC50. In 2005,White et al. [130] studied
inhibitory concentration 50% (IC50imatinib) as a predictor of
molecular response for CML patients. The results demon-
strate that IC50imatinib is a powerful pretreatment predictor
[131]. The second factor is the activity of organic cation
transporter 1 (OCT-1). There are two functions for OCT
proteins, which are cellular uptake and excretion of a number
of exogenous and endogenous cationic and uncharged sub-
stances. The OCT-1 protein activity (OA) can be measured
by uptake in the presence and absence of a specific OCT-
1 inhibitor. It has been found that patients with high OA
have a better molecular response than patients with low OA;
therefore, OA is considered a predictive factor for response
to Imatinib, but not for Nilotinib or Dasatinib [131, 132].
White et al. propose [133] that, in CML patients treated with

Imatinib, the use of OA pretherapy was a predictor for long-
term resistance risk and could be used to individualize dosage
strategies.Thus, involving OA to estimate the response could
lead to better results, but only for Imatinib therapy. A
recent study has investigated the possible association between
molecular response and a number of factors such as Sokal
score, age, sex, and Imatinib dose [134]. It was also found that
being female is a strong predictor [134]. A recent review of
biomarkers that determine prognosis in CML also presented
a list of prognostic indicators at diagnosis, such as the three
scoring systems, BCR-ABL1 transcript type, and OA [135].
Another factor is the BCR-ABL transcript type; CML patients
with the b3a2 BCR-ABL1 transcript type, compared to those
with the b2a2 transcript type, demonstrate greater survival
rates, while CML patients with the p190 transcript type are
classified as high risk [136, 137].

In practice, clinicians aim to treat individual CML
patients with the most beneficial therapy. This can be
made possible by using accurate risk assessment methods
at diagnosis. When there is any doubt about either the
diagnosis or the recommended treatment, a second opinion
is often sought before considering any treatment. The need
for multiple prognostic scores can occur frequently in a
complex problem that has multiple independent experts with
varying expertise. When developing prognostic scores have
different patient populations, each score can capture different
knowledge. There are two general major objectives for com-
bining prognostic scores: first, one prognostic score enhances
the decision of another one; and second, it increases the
reliability of the final decision. However, integrating multiple
prognostic scores could generate conflict in decisions and
may not be sufficient to make a final decision.

It is important that clinicians are comfortable with a
wide range of prognostic scores that will help to identify risk
category because a conflict between scores may be observed
in some patients. Consistency is defined as a score that does
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not contradict other prognostic scores. Consistency among
prognostic scores can increase clinicians’ trust, as they rely
on such results to make appropriate treatment decisions. It is
important to study and understand the consistency of scores
to help clinicians categorize patients into suitable risk groups
and subsequently make better therapeutic decisions.

In light of the aforementioned aspects, it is necessary
to conduct a study that can contribute to the CML medical
field by solving the previous issues. Using machine-learning
techniques and fusion techniques to address these problems
could produce promising results.The first proposed solution
is to build a personalized medicine support system as a
predictive model to combine strong molecular, clinical data,
and predictive assays for CML patients that could probably
predict an individual molecular response. Moreover, predict-
ing an individual response leads to predictingwarning groups
for eachTKI. Froma computer-science perspective, the above
issues could be resolved by using a machine-learning algo-
rithm that combines the most effective predictive indicators
to predict the outcomes for each TKI, based on existing
clinical profiles for individual CML patient characteristics.
The main goal of this review is to improve the ability to
manage CML disease in individual CML patients.Therefore,
CML is an example of a research opportunity to predict
the molecular response to TKI treatment. Using intelligent
computing techniques could bring about promising results
for CML patients.

3.5. Based on the Task. Most of the studies that usedmachine
learning and data mining incorporated two major tasks:
feature selection and classification (Figure 5). Although
dissimilar feature-selection algorithms may possibly choose
dissimilar pertinent genes or diverse numbers of relevant
genes or bring about different levels of classification precision
[138], feature selection can utilize observations and functions
to obtain dimensions for exploring optimal solutions [139].
In addition, selection of a subset in a classifier reduces the
computational time and costs of study, thereby increasing
classification accuracy.

Many studies [53, 89, 91, 103, 105, 112, 118] used classifi-
cation algorithms without feature-selection techniques. Since
cancer tumors are highly diverse in their genetic patterns and
progressions, DNA arrays provide a platform to obtain the
best measurements and observations, helping assign objec-
tives to one relevant feature set and hence contributing to
precise convergence toward optimal results [140]. However,
some researchers [42–44, 82, 86, 87, 94, 96–99, 104, 108, 113,
115, 122, 141, 142] applied two common methods in feature
selection: filter and wrapper approaches with classification
algorithms. Considering feature-selection techniques is an
essential preprocessing method mandated for classification
processes [103].

Knowledge extraction or acquisition has been a great
challenge for researchers, as they exhibit unusual character-
istics in many different genes relative to the number of tumor
samples. AML acquires a similar appearance to ALL, which
makes it nearly impossible for researchers to distinguish
between synonymous patterns. However, Cho et al. [143]
proposed an approach to form the optimal linear classifier
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Figure 5: Summary of the frequency of studies based on the task.

by means of gene-expression data. They used discriminant
partial least squares and linear discriminant analysis to
differentiate between acute leukaemia subtypes. They found
that these methods offered a satisfactory level of precision.
They concluded that the suggestedmethod builds the optimal
classifier made up of a highly accurate, small-size predictor.

Using multiple algorithms for knowledge extraction and
classification has not attracted much interest from leukaemia
researchers in previous studies [45, 140, 144]. Cho and Won
[86] were of the view that conventional machine learning
is incapable of delivering accurate information. For this
reason, they developed a novel ensemble machine-learning
approach for microarray classification. Results indicated
that the ensemble machine-learning approaches accuracy of
almost 97% in leukaemia classification, which makes it a
better alternative to basic machine-learning methods.

Among the 55 studies, three groups of researchers [45,
121, 140] built decision support systems, whose subfunctions
included multiple tasks. The first decision support system
[45] was built to support leukaemia diagnosis using exon
array analysis. The system combined intelligent techniques,
such as preprocessing and data-filtering techniques, clus-
tering for classifying patients, and extraction of knowledge
techniques. The authors suggested that further study of
bone marrow or blood samples may assist in diagnosis of
leukaemia stages. The second study [140] was conducted
to extract decision rules using a developed SVM. This
study comprised carrying out multiple tasks, including data
fusion, feature selection, making a prediction model based
on gene-expression data, and knowledge extraction.The third
study [121] involved developing decision support to identify
unhealthy ALL cells using feature-selection techniques with
SVM.

From the review of studies based on the task, the need
for personalized medicine in CML results in multiple active
TKI therapies as molecular targeted therapy available for
CML, multiple strategies utilized for frontline CML therapy,
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heterogeneity in responses, and multiple prognostic scores
and predictive assays.

Therapy takes the form of two major strategies: (i)
frontline Imatinib or (ii) frontline second-generation TKIs
such as Nilotinib or Dasatinib [4]. Despite the remarkable
increase in the survival of CML patients treated with Ima-
tinib, some patients discontinue Imatinib therapy due to
intolerance, resistance, or progression. In the IRIS [64] trial,
it is demonstrated that variations in molecular response at
12 and 18 months of Imatinib was due to, in about 40%
of cases, discontinuing Imatinib because of intolerance or
resistance and due to further progression observed in 7% of
CML patients.

Hematologic, cytogenetic, and molecular strategies for
monitoring patient responses to therapies are used by Euro-
pean LeukaemiaNet [145]. To monitor molecular response,
RQ-PCR, which is a sensitive technique, is used to quantify
the level of BCR-ABL1 mRNA transcripts in the peripheral
blood of patients. Molecular monitoring is considered to be
a standard guide to clinical management in CML [146, 147].
The prediction of long-term molecular response to frontline
Imatinib in CML can help clinicians to select the best
treatment protocols for CML patients. Patients predicted not
to achieveMMR in the long termmight be better treated with
alternative frontline therapies, such as Nilotinib or Dasatinib.
Opportunities to improve individual care for CML patients
exist in the appropriate prediction of variation in treatment
response to support physicians in treatment decisions.

Prognostic scores are used to personalize CML patient
care by predicting responses to therapy. Although the prog-
nostic scores (Sokal, Hasford, EUTOS, and the ELTS scores)
remain in use today, they were developed either for iden-
tifying risk groups or for predicting cytogenetic response
to therapy, but not for molecular response. Although two
predictive assays, IC50imatinib and OCT-1 activity (OA), were
developed to predict molecular response, according to cur-
rent knowledge, a model using assays to predict molecular
response has not previously been considered. The combina-
tion of predictive assays results in greater predictive power
than that which each predictor provides alone [148, 149].

4. Conclusion

Modern oncology is experiencing a paradigm shift toward
personalized medicine, which aims to direct medical agents
toward the tumor site. The field of molecular medicine is
also undergoing transformational changes that are bringing
a much needed revolution in healthcare. This breakthrough
was made possible by technologies in genetic studies that
led to the sequencing of the human genome. An analysis of
biological samples fromwhole organisms has now beenmade
possible. In addition, this invention has given a new lease
of life to the treatment of cancer. However, the majority of
cancer patients have been shown to develop adverse drug
reactions due to overreliance on certain medications.

Intelligent techniques may be useful for clinicians in
decision-making, warning of specific problems or providing
treatment recommendations [150]. In that regard, it would

be worthwhile building personalized medicine support sys-
tem to work as predictive models that integrate molecular-
based data to predict cancer susceptibility, including risk
assessment, prediction of the probability of developing a type
of cancer prior to occurrence of the disease, prediction of
recurring cancer, and the prediction of cancer outcomes, such
as survivability, life expectancy, and response to therapy or
progression.This is highly advantageous since only a quarter
of cancer patients respond positively to the drugs prescribed
to them. Therefore, it is important to investigate the current
development of using molecular information in intelligent
models for personalized medicine.

The use of personalized medicine support systems
in medicine will bring a ray of hope to the treatment
of leukaemia. Other frontiers of personalized medicine
research, such as the role of genetics in infectious diseases,
proteomics, epigenetics, andmetabolomics, were not covered
by this review and are out of scope of this research. This
review was conducted based on current developments of
personalized medicine support systems, and a systematized
literature review was carried out on intelligent techniques
using molecular data analysis in leukaemia. Both sets of
literature led to identifying opportunities for further research
for personalizedmedicine support systems in one category of
leukaemia, namely, chronic myeloid leukaemia.We speculate
that this paper will assist health informatics and biomedical
and bioinformatics in order to answer specific technical
questions to help develop future research into leukaemia from
a technical perspective.
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Linking Chapter 2 and 3: 

We will be linking our papers, “Intelligent Techniques Using Molecular Data Analysis 

in Leukemia: An Opportunity for Personalized Medicine Support System” and “Personalized 

Medicine Support System: Resolving Conflict in Allocation to Risk Groups and Predicting 

Patient Molecular Response to Targeted Therapy.” In the former article, our aim was to study 

previously published research on personalized medicine intelligent techniques in leukemia. We 

also aimed to synthesize findings in the research related to leukemia and pay special attention 

to categories of these studies based on leukemia type and also the task, data source, and purpose 

of the studies to help identify further opportunities for medical research as it pertains to support 

systems for leukemia. After conducting the search strategy and applying the selection criteria, 

the findings were summarized in the Results Section. The emphasis was on CML because a few 

studies involved chronic leukemia subtypes that use intelligent techniques in the analysis of 

CML data as well as the recent development in monitoring CML patients’ molecular responses 

to molecular targeted therapy. Moreover, CML medical research is an active area that has many 

clinical trial results; one heated debate has concerned selecting the optimal treatment to achieve 

an optimal patient response. Based upon these results, minor attention was given to risk 

prediction, while the majority of the study aimed to identify cancer types or markers. 

Categorizing the selected studies based on the intelligent technique task emphasized the 

opportunity to develop a system that integrates multiple tasks to solve the medical issue. An 

intelligent system should be able to support clinicians while making a decision and discovering 

knowledge from data as well as handling prior knowledge by ensemble techniques. We 

concluded that the field of molecular medicine is experiencing “transformational changes” that 

are bringing forth a change in healthcare. We also determined that it would be beneficial to build 

personal medicine support systems that will bring a ray of hope to the treatment of leukemia.  
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 The second article, “Personalized Medicine Support System: Resolving Conflict in 

Allocation to Risk Groups and Predicting Patient Molecular Response to Targeted Therapy,” 

we considered the research opportunities raised from our literature review. Based on 

categorizing the selected studies based on the leukemia type, data sources, purpose of the studies 

and intelligent technique task, our paper emphasized on how to propose a system that integrates 

multiple tasks to solve the medical issue. The intelligent system architecture should be able to 

support clinicians while making a decision and discovering knowledge from data and combining 

prior knowledge. In addition, the importance of integrating domain knowledge into predictive 

and prognostic models for personalized treatment was discussed. We also state  within the article 

that our intelligent system provides support in making complex decisions and can be 

incorporated into a treatment guide for selecting molecular targeted therapies. 

 In the Introduction of the second paper, we begin to make our argument that personalized 

medicine can be used to establish molecular characteristics that are unique to an individual due 

to his or her specific genetic makeup. We propose that clinicians will eventually be able to offer 

more tailored diagnoses and treatment protocols for various patients’ individual diseases. After 

introducing and defining this argument, we then discuss clinical decision support systems 

(CDSS), which are decision support systems that analyze medical data and help healthcare 

professionals make effective and timely clinical decisions. After discussing CDSS, we then 

describe knowledge-based systems. We loosely define these as the wide range of knowledge 

resources that help clinicians with decision-making. Later in the paper, after defining and 

describing a few more key working terms and concepts, we discuss the overall framework of 

the implementation of a personalized medicine support system. This type of system includes an 

overview of a personalized medicine support system: a prognostic model and a predictive 

model, a discussion of the prognostic and predictive factors, the use of domain knowledge, 
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modeling, how prior knowledge was dealt with during research, and how new sources of clinical 

data were handled. After these sections, the proposed applications of the personalized medicine 

support systems and conclusions that were made after all of the research and extended study 

were completed.   
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Chapter 3:Personalized Medicine Support System: Resolving 

Conflict in Allocation to Risk Groups and Predicting Patient 

Molecular Response to Targeted Therapy 
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ABSTRACT 
 
Treatment management in cancer patients is largely based on the use of a standardized set of predictive 
and prognostic factors. The former are used to evaluate specific clinical interventions, and they can be 
useful for selecting treatments because they directly predict the response to a treatment. The latter are used 
to evaluate a patient’s overall outcomes, and can be used to identify the risks or recurrence of a disease. 
Current intelligent systems can be a solution for transferring advancements in molecular biology into 
practice, especially for predicting the molecular response to molecular targeted therapy and the prognosis 
of risk groups in cancer medicine. This framework primarily focuses on the importance of integrating 
domain knowledge in predictive and prognostic models for personalized treatment. Our personalized 
medicine support system provides the needed support in complex decisions and can be incorporated into a 
treatment guide for selecting molecular targeted therapies. 

 

KEYWORDS 
 
Personalized Medicine Support System, Molecular Targeted Therapy, Predict Molecular Response, Risk 
Assessment & Cancer Treatment. 
 

1. INTRODUCTION 
 

1.1 Personalized medicine 

 

Personalized medicine could be used to establish molecular characteristics that are unique to an 
individual, usually because of varying genetic makeup. With this, doctors can offer a more 
specific diagnosis andeffective treatment protocol for an individual’s disease. In clinical decision-
making, personalized medicine is used to make decisions that maximize the outcomes and 
minimize the side-effects of treatment by using available knowledge about an individual [1]. 
Many studies have focused on personalized care, and its scope of application has increased 
because it leads to more successful outcomes and minimizes the chances of adverse reactions 
associated with certain treatment plans. Personalized medicine involves classifying individual 



	

61	
	

Clinical Decision Support System  

Health Informatics - An International Journal (HIIJ) Vol.6, No.2, May 2017 

2 

patients into sub-populations that pose unique reactions, susceptibilities or general responses to 
particular treatments to determine the best treatment approaches for every patient [2]. 
 
Personalized medicine offers high precision, and it has attracted much interest because it affords 
advantages such as improved healthcare and reduced need for the development of new medicines 
[3]. Personalized medicine also helps to minimize unnecessary costs by reducing both the time 
spent on treatment and the failure rates during clinical trials [4].Economic value increases when 
caregivers implement personalized medicine in healthcare, because it helps to reduce the 
unnecessary use of resources.  
 
Traditional personalized medicine contrasts with modern personalized medicine in how suitable 
therapies are identified for patients. In the former, a diagnosis is predicted based on a patient’s 
family history, social circumstances, environment and lifestyle.  In the latter,this prediction is 
based on a patient’s genetic makeup [2]. Medical researchers continue to emphasize that their 
studies are updated with the most effective treatment protocols used to treat cancer patients. 
However, different patients show different responses to the same therapy. For example, when 
subjected to the same therapeutic protocol, the clinical outcomes of two patients may be different 
in terms of response and survival[5]. This undesirable situation could potentially be avoided by 
improving predictive assays to predict an individual’s response to therapy at diagnosis. Indeed, 
during recent years, studies have tried to individualize medicine by using predictive factors to 
determine initial treatments. Many studies have used different techniques to investigate factors 
that could affect drug responses. Sioud et al. [6]noted that individualized treatment algorithms 
could depend on integrating the factors that influence drug responses. For example, studying a 
single biomarker as a predictor could indicate the response before treatment and predict the risk to 
the individual [7]. Another approach involves predicting a drug reaction in terms of toxicity or 
resistance by using an individual’s genotype data and clinical data to improve the individual’s 
care [8].Inpharmacogenetics, an individual’s response to a specific therapy is studied based on 
his/her genotype information. The European Science Foundation established a roadmap for 
developing personalized medicine [9] and stated that to build a predictive model, data for 
individualized treatment options were needed, and response variations in different sub-
populations of patients and diseases needed to be stored. Fagan and Shortliffe[10] noted the 
power of using a computer to (1) analyze the combination of biological and clinical data, which 
are disparate data sources, and (2) discover the relationships amongst complex database schema 
that store medical records. 
 
As treatment optimization is an important medical advancement, many computer science 
researchers have focused on predicting the response to treatment [11]. Indeed, many studies have 
reported on the development of a prognostic or predictive model that could predict the side-
effects of drugs [12-15]; such models use intelligent techniques to address medical issues. This 
gives researchers a new way of applying the strength of machine-learning techniques to real 
medical problems. Current intelligent systems could potentially aid in transferring advancements 
in molecular biology into practice, especially for predicting molecular response to targeted 
therapy and the prognosis of patients (in different risk groups) in cancer medicine.  
 

1.2 Clinical Decision Support System 

 

A clinical decision support system (CDSS) is a type of decision support system that analyses 
medical data to assist healthcare providers in making appropriate and automated clinical decisions 
[16]. Constructing a CDSS requires substantial modeling activity by selecting relevant medical 
data and a problem-solving strategy to reach appropriate conclusions. For the analysis, 
collaboration with clinical experts is needed to model relevant application areas. Based on the 
nature of this collaboration, there are two types of CDSSs: knowledge-based CDSS and non-
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knowledge-based CDSS [17]. A key research area in CDSS is the advancement and application of 
knowledge-based systems because of the usability of expressing various types of human 
knowledge in an intelligent system. Combining expert knowledge and discovered knowledge in 
the medical domain maximizes the qualities that they have separately [18]. There are also three 
classificationsfor CDSS: information management, situational awareness and patient-specific[19]. 
Information management uses buttonsfor obtaining up to date information; situational awareness 
uses alerts or dashboard for obtaining information; and patient-specific may be implemented for 
different purposes such as diagnosis, treatment management or recommendation [20]. Identifying 
the key needs and functional requirements and determining how to evaluate the system are 
interrelated issues in designing and implementinga CDSS [21]. Understanding a medical problem 
and its domain are also primary requirements for implementinga knowledge-based CDSS. 
Additional requirementsinclude knowing who will deliver the information from the CDSS and 
how the CDSS can provide support starting from diagnosis and selecting treatment to monitor and 
follow-up the outcomes. 
 
In the last decade, information technology has been introduced to improve clinical practice [22]. 
Information systems make data storage and data retrieval easier. This enhances the use of CDSS 
in clinical practice, and it helps to prevent errors and deliver needed information at the time of 
request. The development of CDSS has been influenced by the purpose of use and advancements 
in medical technology. Researches are motivated by the concept of personalized medicine, and 
they have introduced personalized modeling for developing CDSSs based on the information of 
individual patients, such as clinical and molecular information [23]. 
 
Automatic knowledge acquisition techniques have also attracted much research interest. 
Knowledge acquisition is the first step in building a knowledge base, and it requires techniques to 
drive knowledge. Data mining is widely used for knowledge acquisition,and the knowledge 
discovery process is used as a schema to automatically discover knowledge, which can include 
the shape of patterns or associations among data features and rules. This process generally 
includes four steps: problem understanding and data understanding, data pre-processing, model 
induction, and post-processing [24]. A recent review [25]discussed knowledge discovery in 
medicine. In this review, the authors identified the primary studies in medical research 
applications through data mining techniques. They found that the focus has moved to the medical 
domain more than in the past and that the use of hybrid systems is the future for solving complex 
problems in medicine. Complex problems in the medical domain began with the success of 
sequencing the human genome.  The morenew biological information was made available, the 
greater the demand to build intelligent systems that can utilizethis information. Intelligent systems 
such as CDSSs should be adaptive to any new information made available on an ongoing basis. 
From adaptive behavior, evolving systems have been introduced to use particularly intelligent 
systems and online learning algorithms for knowledge acquisition from data and for realizing 
advanced model structures in data mining tasks and parameters [26]. 
 

1.3 Knowledge-based Systems  

 

Researchers have also focused on the integration of knowledge from multiple sources, which is a 
key issue in many areas such as collaborative knowledge systems, group decisions and distributed 
expert systems, where knowledge from multiple sources is often contradictory. We need to be 
comfortable with a wide range of knowledge resources that will help clinicians in decision-
making, as a conflict between two sources, rules, or decision-makers is often observed in real 
cases. 
 
Conflicts in knowledge-based systems can be divided into three types: schema conflicts, data 
conflicts, and knowledge conflicts [27]. Schema conflicts can arise from the use of different 
schema definitions such as tables or objects. Data conflicts may ariseowing to incorrect data. A 
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study compared the ability of several techniques to reduce inconsistency in data [28]. Knowledge 
conflict may arise when multiple sources of knowledge are integrated. Knowledge conflict is a 
major issue in distributed artificial intelligence systems [29]. Adrian et al.[30] defined 
contradiction as an ‘inability for all conceived statements or beliefs to be simultaneously true’. A 
contradiction may also be referred to as an inconsistency. For instance, there may be a 
contradiction between sentences such that one sentence must be true and the other must be false. 
 
This common situation requires some advanced methodologies to resolve the conflict. One active 
research direction is the use of the multiple criteria decision analysis (MCDA) approach [31, 32]. 
This technique is developed to capture the relative preference information of decision-makers 
who are involved in a conflict. There is a prescriptive approach based on progressive preferential 
knowledge [33]. This approach resolves the conflicts of rules in a knowledge-based system by 
using decision analysis techniques, where incorporating a user’s preference in judgment about the 
rules is important. These methods for conflict resolution in a rule-based system always need 
toincorporate a user’s preferences in some specific problem domain that is very difficult to obtain 
in the medical domain. Experts’ opinions, including preferences, are often vague and difficult to 
estimate using exact numerical values. Noor-E-Alam et al. [34] developed a framework that used 
qualitative form as a linguistic term to represent experts’ opinions. Their approach aimed to use 
multi-expert multicriteria decision making (ME-MCDM) to reach a single decision by integrating 
multiple experts’ opinions. The linguistic truth value (LTV) can be used to judge alternatives for 
ME-MCDM. Two suitable algorithms are used to handle conflict aggregation: possibility measure 
and averaging conflict aggregation. Junming et al. [35] designed a framework using fuzzy case 
base reasoning for conflict resolution. This approach aimed to find similar cases in the resources 
and to retrieve the information that resolved the problem. They defined linguistic variables for 
comparing the retrieved information. Sometimes, it is important to measure the inconsistency; 
based on the results, the researcher can decide what to do with it. For example, one can measure 
the conflict and agreement between two knowledge bases [36] or the inconsistency of knowledge 
bases [37-41].Some studies used machine learning techniques to resolve conflicts. Recent studies 
on multi-agent systems aimed to resolve conflicts by combining machine learning techniques 
such as Bayesian network, case-based reasoning and expert systems [42]. This study 
demonstrated that ‘the choice of the specific technique for a given domain depends on the 
specification of the domain’. 
 

1.4 Medical Data and Knowledge 

 

Clinical trials are usually conducted in a series of phases. Each clinical trial phase aims to answer 
a specific research question. Phase I is designed to test a new treatment in a small population and 
to identify side-effects and treatment safety. In Phase II, researchers test the drug on a larger 
population (several hundred individuals) and evaluate its efficacy and safety. In phase III, the trial 
is designed to study the efficacy in a population of several hundred to a thousand individuals. 
Phase IV is designed to monitor the drug in the general population after it is marketed[43]. Late 
phases of the clinical trials,such as phases II, III and IV, are considered important sources of 
information that can be used to build mathematical models. There is a rapid increase in the 
number of electronic medical research databases that provide an opportunity for researchers to 
reuse medical data to create mathematical models. To access the clinical trial data, the NCI[44]is 
a US agency that lists ongoing clinical trials of molecular targeted therapies. Investigators within 
hospitals and medical centers conduct most of the NCI-supported trials. The NCI provides the full 
trial description and the name of the principal investigator for these studies. Researchers can 
contact the investigators and collaborate with them. 
 
Clinical trial data may be biasedin several aspects: sampling, referral, selection, method and 
clinical spectrum. The clinical trial may use sampling methods, sample size and inclusion and 
exclusion criteria. Another aspect is the referral bias, where a specialist refers patientsand thus the 
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data represents pre-selected patients who have high prevalence of a disease. The selection bias is 
clear when the clinical trial data includes a group based on various demographics. Data may be 
collected using different measurements, leading to different precisions and specifications. Finally, 
the clinical spectrum bias is represented in the patient’s record, which may show other medical 
problems with the disease [24]. For instance, Saussele and Pfirrmann[45] reported clinical trials 
of chronic myeloid leukemia (CML). They noted several issues that may challenge the reuse of a 
clinical trial data. According to Saussele and Pfirrmann, the definition of ‘remission’varies in 
clinical trials depending on the major molecular response (MMR) or complete cytogenetic 
response (CCR). In addition, clinical trials use different primary endpoints such as 12-month 
MMR or 12-month CCR to determine the treatment success. 
 
From patient care to patient administration, electronic health records (EHR) are reused in many 
studies to answer specific research questions [46-49]. Cases were matched with enquires based on 
obtained research criteria for patient inclusion, and a dataset of many matches can be generated 
for analysis. The EHR may include sparse data or missing values, as some patients may not seek 
frequent care. The EHR quality would likely impact the bias in the research finding or the 
modeling performance. Thederivation of key variables is also an important aspect when dealing 
with EHR, as the values may be recorded in different ways in different systems. This arises 
because of varying definitions between sources. The data quality and correct values of derived 
key variables will concern researchers,and many algorithms can be investigated during pre-
processing to improve the data quality,thereby providing reliable results [50]. 
 
The reuse of medical data and knowledge for cancer treatment requires advanced computational 
methods such as intelligent systems. Using multiple sources of data and knowledge for 
personalized medicine support systemswillcreatelarge amounts of information to deal with for 
evaluating therapies and potential diagnostic and prognostic markers.  
 

1.5 Predictive vs. Prognostic 

 

In oncology, predictive markers differ from prognostic markers [51, 52]. Predictive markers or 
factors used to evaluate specific clinical interventions, and they can be useful for selecting a 
treatment because they can directly predict the response to a treatment.Prognostic markers are 
used to evaluate a patient’s overall outcomes, and can be used to identify the risk or recurrence of 
a disease. By using advanced molecular technologies, many predictive and prognostic factors 
have been introduced in cancer medicine. Studying predictive molecular biology in detail is 
beyond the scope of this study;however, the list of possible predictive factors that have been 
published previously in separate studies such as clinical, pathological and molecular tests are the 
primary focus of our study. Based on the available data from medical research and clinical trials, 
one can create a list of possible predictive factors and prepare it for further investigation and also 
explore any relationship among the predictive factors.  
 
Several predictive and prognostic tests based on molecular biology have revolutionized cancer 
medicine. In our study, we propose collecting information about possible predictive factors and 
prognostic scores that are published in top-ranked medical journals such as Science, Medline and 
PubMed journals and in other publications indexed under keywords such as ‘prediction of 
molecular response’, ‘predict outcomes’, ‘prognostic model or score’, ‘prognostic indicators’ and 
‘predictive factors’. We propose communicating with several clinical trial investigators who are 
studying the efficiency of molecular targeted therapies and patient responses by using several 
predictive and prognostic factors for decision-making. Predictive factors that are regulated for use 
should be used. According to Mehta[51], predictive markers that are commercialized for 
decision-making should be reviewed by the FDA and be certified with adequate evidence. 
Official and ethical approvals on the reuse of medical research data should be obtained before 
establishing a list of predictive and prognostic factors from clinical trials. 
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1.6 Molecular Targeted Therapy 

 

Targeted cancer treatments are also called ‘molecularly targeted drugs’, ‘molecularly targeted 
therapy’ and so on [53]. Molecular targeted therapy is a sort of customized therapeutic treatment 
that aims to treat cancer by acting on unique mutations, overactive kinases, or protein anomalies 
that drive cancer development. Specifically, the medications used for targeted treatment are 
intended to act on a specific biochemical pathway vital to the survival of that specific cancer [54]. 
The FDA has approved numerous targeted cancer treatments to treat specific types of cancer [55]. 
Others are being examined in clinical trials (human testing), and numerous more are in preclinical 
testing (animal testing) [56].The National Cancer Institute (NCI) website lists multiple targeted 
therapies that have been approved for particular types of cancer[57]. For example, two targeted 
therapies named Bevacizumab (Avastin®)and Everolimus (Afinitor®)have been approved for 
treating brain cancer. Multiple targeted therapies are also available for leukaemia patients. To 
personalize targeted therapies, we need to determine the best therapeutic agent for an individual 
patient at the time of diagnosis. This can be done by studying the efficacy of each targeted 
therapy and developing a clinical trial. The NCI website provides a list of clinical trials of 
targeted therapies[57]. These trials are an important resource for shifting information from the 
laboratory to the implementation of personalized medicine. Developments in molecular 
technology will play a major role in realizing predictive, preventative and personalized medicine. 
Here, we also focus on the issue of how to reuse patients’ existing profiles, including personal 
molecular information gathered in clinical trials for resolving conflict in allocation to risk groups 
and predicting patient molecular response to targeted therapy. 
 

1.7 Research Motivations  

 

To benefit from molecular technology data for treatment and monitoring progress in cancer 
patients, implementing an intelligent system that integrates medical knowledge, identifies 
relevant features and suggests drugs or treatments for patientsas well as adapting a new source of 
data and knowledge to change, remains a future challenge. In this research, we focus on the 
following main question: ‘How can one develop a personalized medicine support system that 
allocates risk groups and predicts the molecular response tomolecular targeted therapy, where 
consistency in decisions is paramount?’ 
 
Therefore, previous studies have not considered improving knowledge-based CDSS that has a 
high-quality knowledge base to provide consistency in decisionsmade based on a patient’s 
molecular information for predicting his/her molecular response.The main objective of this 
framework is to build a personalized medicine support system as a knowledge-based system 
changes and evolves over time. This intelligent system will provide clinicians, patients and 
researchers with a platform to extract knowledge and to improve the personalized treatments of 
patients. Framework functions have not been considered in previous studies on personalized 
medicine,and they have also not been specifically applied in medical literature to the problem we 
are considering.Doing so will add substantial value to the work. Ageneric framework is presented 
that includes the following main sub-functions: (1) consistency test between scoring systems for 
predicting outcomes in cancer patients treated with molecular targeted therapy, (2) resolving 
conflicts in validated prognostic scores, (3) developing a predictive model to predict molecular 
response to molecular targeted therapy, (4) select relevant predictive factors for predicting 
molecular response to molecular targeted therapy, (5) derive a clinical prediction rule that uses 
clinical, molecular and cell count observations (these predictive factors were collected atdiagnosis 
and categorized based on domain knowledge) and (6) adaptive methods that can evolve 
knowledge-based systems over time. 
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2. PROPOSED FRAMEWORK 
 

In this section, the system overview ispresented, stages of implementing a personalized medicine 
support system are discussed and the system structure is described in detail. 
 
2.1 Overview of Personalized Medicine Support System 
 

Patient treatment has become increasingly difficult in recent years as various molecular targeted 
treatment options have become available. Clinicians aim to treat individual cancer patients with 
the most appropriate therapy. The ultimate challenge is to decide the most appropriate treatment 
strategy for an individual patient. To facilitate this, the disease assessment of an individual patient 
in terms of risk profile and molecular response to initial molecular targeted treatment should be 
determined. In prognostic models, low-risk patientsare preferentially treated with the least toxic 
and safest therapeutic options. These patients’ molecular responsesare predicted using the 
predictive model built for the initial molecular targeted treatment. In higher-risk patients, higher-
toxicity or combination treatment options may be favoured. High-risk patients or those who fail to 
respond to initial therapy will benefit from this approach as their response should bepredicted, 
thereby preventing resistance and/or intolerance to therapy, that may have otherwise ensued. 
Thus, this system aims to enhance individual disease and treatment management. 
A personalized support system is designed for selecting patient therapy. Reused medical research 
data (clinical trial data) and prior knowledge collected from literature are used with advanced 
computational techniques to allocate risk groups and predict patients’ molecular response to 
molecular targeted therapy at diagnosis. The personalized medicine support system uses two 
models as a guide for treatment selection (Figure 1):(1) prognostic model and (2) predictive 
model. 

 
Figure1. Process flow of personalized medicine support system 

 
 
2.1.1 Prognostic Model 
 
The prognostic model uses four data mining processes: problem understanding and data 
understanding, data pre-processing, model development and post-processing. In medicine, it is 
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important to investigate current validated prognostic factors and score systems that are used to 
stratify cancer patients according to risk profile to ensure appropriate treatment. Historically, 
prognostication has seen rapid developments, and various scoring systems have been developed 
to optimize the use of clinical experience in cancer treatment. Our system tests the consistency 
between these scores while identifying risk categories, and the main procedure in this step is 
identifying whether conflict groups exist. During data pre-processing, prior knowledge is 
prepared for the analysis, and necessary prognostic factors are determined to implement previous 
prognostic scores. The data store contradiction in prior knowledge (validated prognostic scores) is 
prepared in this process. Feature ranking, conflict analysis and data normalization on a unified 
scale are performed to help in describing the relation between prognostic scores. 
 
Model development combines validated scoring systems to determine whether the combined 
model may further improve the prediction compared with a single source of knowledge. In this 
process, one needs to know what patients’ outcomes are as conveyed by previous prognostic 
scores. Using combined methods to resolve conflict in conflict groups adds another dimension of 
knowledge. Three levels are used for combining the validated prognostic scores and factors: 
combination, classification and feature. Prognostic factors are combined in the feature level,and 
prognostic scores are combined as score values and risk categories. Evaluating the combined 
methods and selecting the best approach can eliminate contradictions. Highest-accuracy methods 
will be selected for external evaluation. The final process is to use the selected prognostic models 
and validation on unseen data. Extending the prognostic model to adopt a new prognostic score or 
prognostic factor requires an additional process. Figure 2 shows the process flow. 

 
Figure2.Process flow of data mining processes used in prognostic model 

 
2.1.2 Predictive Model 
 
The predictive model also uses four data mining processes: problem understanding and data 
understanding, data pre-processing, model induction and post-processing. Figure 3 shows the 
process flow. The first process in knowledge discovery is divided into two stages. In the first 
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stage, each predictive factor used as an input parameter, studied to understand whether it is 
relevant to the prediction. When medical research data is reused, it is important to understand the 
data, such as the comprehensive treatment protocol or specifications for responses.Inclusion and 
exclusion criteria should also be decided before conducting any analysis to ensure that the 
material meets clinical requirements for the induction of a model with an accurate population.The 
second phase is data pre-processing. A statistical method is used to input missing values in 
predictive factors and prognostic scores from prior knowledge. Removing these patients is not an 
option in medical research data because most medical research data comprises small populations. 
For instance, patients who are enrolled in clinical trials mustprovide signed consent to undergo 
molecular targeted therapy in phase II clinical trials, as the safety profile of the drug is still not 
confirmed. Furthermore, we use domain knowledge to reformat the predictive factors. This 
process is performed before model induction by using medical knowledge to split continuous 
predictive factors into two or more linguistic terms and intervals. Thus, the clinical prediction 
rules can be interpretedmore easily based on domain concepts. 

 
Figure3.Process flow of data mining processes used in predictive model 

 
The third phase is model induction. First, there are three general steps for predictive model 
induction: training set, learning algorithm and performance evaluation on testing set. The training 
set represents the patient profiles that store the collected molecular, clinical and blood count 
information for individuals. We use available factors irrespective of whether we have prior 
knowledge that a factor’s ability to predict patient response has been identified or whether a 
factor is new in the field. This is because these factors will be used in feature selection techniques 
[58] to reduce the dimension of the data. Feature selection (predictive factor selection) is 
important to minimize the cost of the requested tests for a patient. In addition, technically, it can 
increase the model accuracy because removing unnecessary data may increase the quality of the 
training set [59]. The second step is the learning algorithm.This is an important step in which the 
selected machine learning techniques are used for learning [60]. The selected algorithm should 
outperform previous methods and should be interpretable. Interpretability is an important aspect 
for medical experts. The selected machine learning algorithm is popular in the medical domain as 
a primary analytical model for discovering the relation among variables, dividing a dataset into 
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groups based on shared characteristics (classification) and providing a set of clinical prediction 
rules that can be applied to new patients. The model performance is evaluated by comparing 
patients’ actual outcomes (molecular response) with those predicted by the model. A confusion 
matrix can help in measuring the performance based on accuracy, sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), G-mean(geometric mean) and F-
score(weighted harmonic mean of sensitivity and PPV). Two sets are used in the model induction 
processfor validating a small dataset: training and testing setand cross-validation set[61]. When a 
dataset is divided into a number of equal folds, one fold is used for validation and the others, for 
training. The process is repeated to ensure that all folds are used one time for validation. The 
standard deviation is measured after completing this cross-validation approach. 
 
In post-processing, we compare the performance of the predictive models using validation sets 
and select the model that achieves the highest validation performance. The predictive model 
generates clinical prediction rules and discovers unknown knowledge by selecting relevant 
predictive factors (molecular tests, clinicalbase and cell count observations collected at diagnosis 
and categorized based on available knowledge) and extracting the relationship between the 
predictive factors and the molecular outcomes.This would prove that the approach could be 
applied in practice for treatment management by integrating domain knowledge in the learning 
process.A machine learning algorithm is used to discover unknown knowledge and perform 
classification. The predictive models present interesting properties of the data and use historical 
data to predict the behavior of unseen data. 
 

2.2 Prognostic and Predictive Factors 

 
The factors can be selected based on experts’ choices and publications. All predictive factors and 
prognostic factors have an equal chance of being studied by the selected feature selection 
techniques to compare the performance of each or group of predictive factors to predict the 
molecular response, and prognostic factors to allocate risk group. Many factors may influence the 
correlation between baseline data and end-point molecular response.There are manycategories of 
factors that maybe clinically based, biologically (molecularly) based, environmentally based, 
assay results and family history data etc. In a personalized medicine support system, we collect 
information from literature and create possible predictive and prognostic factors based on 
available data. We select the predictive and prognostic factors that include the patient’s individual 
information. For each patient 𝑖ℎ𝑎  𝑧 = { , , … , 𝑧}, where 𝑧 is the predictive and 
prognostic factors, z is the total number of factors, 𝑖 =  { , , , … , }is the number of patients 
and n is the total number of patients in dataset . Finally,  contains rows of patient 𝑃𝑖and the 
columns are 𝑧. Ideally, the predictive and prognostic values should have been previously studied 
and validated by using a group of patients with known responses to molecular targeted 
therapy.The following are possible factors that can be used as inputs for the system: 
 

x Clinical Factors: clinical factors are any specifications or measurements related to the 
patient, such as spleen size or agethat can be observed or obtained by clinicians. Clinical 
factors are collected on the day of diagnosis. 
 

x Biological Factors: patients are not biologically identical. Biological factors include 
blood cell counts or the activity levels of molecular parts. Multiple biological factors may 
influence the treatment response, and these may not be directly related to treatment 
outcomes. In practice, pathological tests are considered a primary pre-treatment step for 
individual patients. Including an individual’s information helps in realizing more specific 
treatment. In addition, currently, most interesting developments are related to real-time 
quantitative polymerase chain reaction (RQ-PCR) analysis for DNA sequences. To 
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monitor the molecular response, RQ-PCR, a sensitive technique, is used to quantify the 
level of mRNA transcripts in the peripheral blood of patients. 
 

x Predictive Assays: assays are used to predict possible outcomes following treatment [62]. 
Predictive assays can guide a clinician in making a rational choice of therapy at 
diagnosis. Identifying predictive assays, especially genetics-based ones, in a diverse 
group of individuals may provide substantial knowledge about the mechanisms of 
individual differences in responses to molecular targeted therapy.Groups whose assays 
show similar results can be treated similarly. Studying significant differences by the 
statistics of different thresholds for identifying groups of response and using a threshold 
less than a cut-off point (e.g. p< 0.5) are commonly used approaches in medical study. 
Here, we used a predefined threshold from publications and applied it to our dataset. 

 

2.3 Inclusion and Exclusion Criteria 

 

Inclusion criteria identify the base standard for including patient data in the study,and exclusion 
criteria exclude patient data based on predefined requirements. The reuse of medical research data 
requires refinement of patients in the secondary analysis. Inclusion and exclusion criteria help 
researchers in optimizing existing medical data to make it suitable for new research. In clinical 
trial data, patients adhere to research protocols and some standards. This clinical trial data usually 
uses information available for reuse in a second analysis if it first satisfies a new study’s inclusion 
and exclusion criteria. Understanding data is important to obtain accurate results and establish 
effective research. Building personalized medicine, as a predictive model to predict molecular 
responses to molecular targeted therapy should follow these criteria in the reuse of medical 
research data: 
 

x In clinical trials of molecular targeted therapy, patients from different trials must follow 
the same treatment protocol. 

x Molecular responses must be monitored according tointernational standards based on a 
pre-identified treatment guide. 

x Input data should be filtered at the diagnosis or pre-treatment stage. 

x Output prediction end-point should be identified. 

x If there is a disease phase, patients should be in the same phase or stage. 
 

Some clinical trials provide useful information by changing the values of some stored data under 
the guidance of human experts. For example, a patient group is switched to a second-line 
treatment during the trial. This group may have responded unsuccessfully to the frontline 
treatment and will therefore be defined as a negative responder to the selected treatment. 
 
The previous list of inclusion and exclusion criteria vary from study to study based on the specific 
research question under investigation and how much information can be analyzed from the 
existing resources by collaborating with the domain expert. 

 

2.4 Reformat using Domain Knowledge 

 

Defining the prognostic and predictive factors and reformatting them using domain knowledge is 
an important process as the final rules’ interpretability will be based on the earlier categories. We 
reformatted the factor values of text, numeral or mixed-type stored data by using existing 
knowledge such as standard boundaries of blood counts, domain knowledge of clinical expertise, 
risk categories and previous medical publications. Although some machine learning techniques 
can handle continuous predictor values, reformatting the data by categorizing each factor in the 
dataset into subgroups can help improve the comprehensibility of the final model. For each 
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predictive factor,we reformat the values of factors into category ,where  is the number of 
subcategories that represent values in the range using existing knowledge and confirmation by 
experts in the field.For example, we categorized the value of =  𝐼  intofour categories,  =
 : ≤  . μMasGroup 1, > .  𝑎 ≤ .7μMas Group 2, > .7 𝑎  ≤ .9 μMasGroup 
3 and >  .9 μMas Group 4. Then, we reformatted the index number of the category. If the 
final model selects a relevant predictive factor, we can use these categories to distinguish the 
predictive group on test patients. 
 
2.5 Modeling  
 
The framework is designed to deal with prior knowledge and extracting knowledge from a new 
source of data. Here, prognostic model used the prior knowledge that is collected from existing 
prognostic score systems while predictive model used medical data to extract knowledge in the 
form of clinical prediction rules.  
 
2.5.1 Dealing with Prior Knowledge (Prognostic Model) 
 
The development of the prognostic model was divided into two stages: (1) primary analysis and 
(2) combined model development.Figure 4. shows the schema for the prognostic model. In 
primary analysis, available prognostic factors, scores and models are surveyed.  

 
Figure 4.The schema for the prognostic model. 

 
An information matrix is created by adding the validated prognostic method in rows and columns 
representing the available information from each method. Primary analysis involves investigating 
the consistency between the prognostic methods by identifying the obtained risk outcomes using 
this prognostic method. Inconsistency occurs when two different risk categories are applied to the 
same patient,and it is observed that one prognostic score classifies the patient in one group and 
the other one contradicts the first classification. The consistency test can be briefly described as 
follows: 
 

1. Calculate the risk outcomes using prognostic factors included in the prognostic score 
equation (if available) for all patients in dataset D. 
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2. Create dataset DPcontaining rows of patient 𝑃𝑖and the columns are𝑃 𝑚, where 𝑃  is 
the prognostic score methodsand  the number of validated prognostic methods. 

3. Repeat step (1) for all .  
4. Create an information matrix𝐼𝑀 for risk outcomes from DP to identify the number of 

risk groups resulting from step (1) calculation. 
5. Analyze the risk categories obtained from𝐼𝑀 , where  is the minimum and  is the 

maximum number of categories obtained from all prognostic methods. 
6. If  is equal to , go to step (11). 
7. Combined  risk groups to be equal to  groups, where the groups can include all 

possible combinations of risk groups from . 
8. Evaluate the accuracy performance after combining risk groups. 
9. Select the combined risk group with the highest accuracy. 
10. Combine the risk categories to be equal to in the 𝑃 𝑚that have more than risk 

groups. 
11. Test consistency in risk outcomes obtained from prognostic methods for each 𝑃𝑖 in DP. 
12. List in the information matrix 𝐼𝑀 the possible combination of risk outcomes, which 

the number of rows is  raised to𝑃 𝑚. 
13. If 𝑃 = 𝑃 = … … 𝑃 𝑚results have similar risk categories, 𝑃𝑖  is considered in a 

consistent risk group. However, if at least one 𝑃 𝑚 has a different risk outcome for the 
same patient, 𝑃𝑖  is considered in a conflict group. 

 
Moving to the second stage of combining models, the steps briefly described as follows: 
 

1. In step (1), three possible data types could be generated: 
 
x DP1: risk categories set as categorical data type resulting from validated risk groups 

in prognostic model outcomes. 
x DP2: score values set as a continuous data type resulting from applying the equation 

used to calculate the score for the prognostic method. 

x DP3: prognostic factors (feature set) as both data types (categorical or continuous). 
 
Normalize DP2 and DP3: Normalization involves mapping the data values into the interval [0-1], 
where the minimum value is 0 and the maximum value, 1[63]. Normalization is an important 
process in this study for several reasons. First, the data from prognostic scores is usually not of 
the same scale. Grouping and comparing patients into logical descriptions using different 
intervalsin the problem space could make it difficult for the learning algorithm(especially the 
clustering base algorithm) to learn. Therefore, arranging the data into logical groups based on a 
unified scale among scores can help in describing the relation between risk groups. Second, for 
visualization, normalized prognostic score data is easy to represent in the space dimension. 
Finally, pre-processing real values into scaled values could help in finding a learning function 
from a space, such as finding the solution using the Euclidean distance between samples. 
 

2. Select the strategies to combinemodels (prognostic methods): model selection or model 
fusion[64]. 
 

x Model selection:Each model is supposed to be an expert in a specific domain of the 
feature space, and the selected model decides the output of the ensemble. 

x Model fusion: Each model is supposed to have complete information on the whole 
feature space, and we apply combiners to all outputs from the systems. 
 

3. The performance of single 𝑃 𝑚 would be the same in model selection. Therefore, Select 
the classifier fusion method[64], and two possible combiner approach can be used: 
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x Non-trainable combiner (data-independent) such as majority voting. 

x Trainable combiner (data-dependent) methods can be used for building combinations. 
Here, we used common levels to combine models (prognostic scores) [64]: 

o Combination level:Mainly focuses on possible ways of combining the risk 
outputs of prognostic methods in an ensemble based on the information 
obtained from a single method. 

o Classifier level:Different machine learning techniques can be employed. 
o Feature level: Use patients’ prognostic factors for machine learning. 

 
4. Create a subset of conflict group of patients from DP as rows represent patient𝑃𝑖 and 

columns represent𝑃 𝑚data. The last column is the actual molecular response𝑌𝑖: 

 𝑌𝑖= {    𝑎 ℎ𝑖 𝑖 𝑎
        𝑎 ℎ𝑖 𝑖 𝑎  

 
5. Divide into training and testing datasets, and apply internal validation on training data. 

 
6. Create the combined prognostic model 𝑀 specifically for to classify𝑌𝑖 using different 

combined functions that maximize the accuracy of the classification. 
 

7. Evaluate the combined method by the combined function (classifier) by comparing the 
actual outcome 𝑌𝑖 withthe method outcome𝑌𝑖𝑀 , and measure the model performance. 

 

8. Generate the evaluation dataset , where the rows are all possible models𝑀 that are built 
from different combined methods and the columns contain the performance 
measurements accuracy, sensitivity, specificity, PPV, NPV, G-mean and F-score. 

 

9. Rank the model 𝑀 based on selected criteria. 
 

10. Select the best models𝑀 that resolve the conflict. 
 

11. Evaluate the selected model 𝑀 onall 𝑃𝑖in DP. 
 

12. Compare the performance of𝑀 with the previous methods using testing data. 
 

13. Perform external validation on an unseen dataset. 
 

2.5.2 Dealing with a New Source of Clinical Data (Predictive Model) 

 

The schema for the predictive model is illustrated in Figure 5. Algorithms are often used to select 
a relevant subset of input features (in our problem, a subset of predictive factors that will deliver a 
highly predictive model)[59, 65].  
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Figure  5. The schema of the predictive model 

 
This is also very important in the context of healthcare costs, where fewer input factors imply 
fewer diagnostic tests to obtain the relevant predictive factors [66]. We also need to extract the 
relations between the most related predictive factors and try to understand whether there exist 
clinical rules for prediction. We divided the feature selection process into two main types: 
 

x A knowledge-driven method for feature selection, such as existing medical literature that 
has published predictive factors as an informative feature or clinical expert judgment on 
molecular factors associated with predicting molecular response, known as manual 
feature selection [67]. 

x Data-driven methods for feature selection, known as automatic feature selection. We used 
the wrapper approach [58], where all subsets of the features are evaluated using a given 
machine learning approach. 

 
Model induction can be briefly described as follows: 
 

1. Apply predictive factor𝑃 𝑧 selection on dataset  to identify which predictive factors are 
important to be used as an input vector. 

2. Create sample 𝑥from where rows represent patient 𝑃𝑖, and the columns are predictive 
factor𝑃 𝑧 . The last column is the actual molecular response𝑌𝑖: 

3. 𝑌𝑖= {    𝑎 ℎ𝑖 𝑖 𝑎
        𝑎 ℎ𝑖 𝑖 𝑎  

4. Divide 𝑥 into training and testing datasets, and apply internal validation to the training 
data. 

5. Create the predictive model𝑀𝑥specifically for𝑥to predict 𝑌𝑖 using the learning function 
that maximizes the predictionaccuracy. 

6. Evaluate the predictive factor subset by the learning function (classifier) by comparing 
the actual outcome 𝑌𝑖 withthe predicted outcomes𝑌𝑖𝑀𝑥 and measure the 
modelperformance. 

7. Generate the evaluation dataset , where the rows are all possible models𝑀 that are built 
from different combined methods and the columns contain the performance 
measurements accuracy, sensitivity, specificity, PPV, NPV, G-mean and F-score. 
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8. Rank the model based on selected criteria. 
9. Select the best models. 
10. Compare the performance of𝑀𝑥with the previous methods using testing data. 
11. Perform external validation on an unseen dataset. 
12. Visualize the structure of the model. 
13. Generate the clinical prediction rules. 

 
Clinicalprediction rules from data: in the clinical decision process, clinical prediction rules play 
an important role after increasing the acceptance of evidence-based medicine. This is because of 
the advantages that can be gained by using clinical prediction rules. First, these rules can support 
and guide clinicians in patient casesinvolving complex decisions. Second, these rules,which 
represent expert knowledge, can be shared with clinicians in primary care. Finally, these rules can 
be used to train and guide new experts.The decision tree structure represents extracted production 
rules [68]. We used the training set of patients from which a decision tree was generated to create 
a structure. The path from the root of the tree to the leaf node was used to establish the conditions 
(IF parts), whereas every leaf of a decision tree corresponded to a response (THEN parts). The 
decision rules R were in the form, IF 𝑃 is  AND 𝑃 is  , THEN Response is 𝑌, where 
𝑃 and𝑃   are the predictive factors,   and   are the subcategories that belong 
to 𝑃 and𝑃 ,respectively, and 𝑌, is the class (molecular response achieved or not achieved). 
 

2.6 Evolving Approaches 

 

In a personalized medicine support system, there are three possible schemas for the evaluation of 
new knowledge: confirmation, contradiction and contribution [24]. In confirmation, no changes 
need to be made to the existing knowledge base. In contribution, the new knowledge is used for 
constructing predictive models and updating clinical prediction rules (predictive modeling steps 
in this study). In contradiction, the new knowledge conflicts with the old knowledge, and 
combined methods are used to resolve the conflict in knowledge (prognostic model steps in this 
study). 
 
The intelligent techniques used in the proposed framework are selected to generalize the 
predictive and prognosis performance. The predictive factor wrapper approach evaluates all 
possible combinations of predictive factors. Therefore, new predictive factors will be equally 
tested in the construction of predictive models. Prognostic modeling evaluates different 
combination levels. Therefore, a new level of knowledge, either prognostic factors, prognostic 
scores or prognostic model, can be combined and evaluated. Nested cross validation is a suitable 
validation method for evaluation, as internal validation can be used to evaluate the new 
knowledge and inform the decision of whether to enhance the performance, refine the modeling 
or ignore the new knowledge in case of no further improvement.The following suggestions are 
given as solutions and will be applied in a personalized medicine support system automatically if 
the internal validation of the selected model does not outperform a previous method in the unseen 
dataset (testing data).An evolving system can change in the following ways: 
 

x Data pre-processing phase in predictive model: the expert range of the predictive factors 
of conflict cases can be changed, and this should be confirmed by domain experts. 

x Predictive factor selection approaches: predictive factors or prognostic factors can be 
updated or added. 

x Combined method: different combination levels can be selected. 
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3. PROPOSED APPLICATIONS 
 

Personalized medicine support systems will provide great benefits in the future as molecular data 
analysis improves. This type of framework based on individual data will become a basic tool used 
by healthcare professionalsfor selecting personalized treatments. Clinicians will be able to 
allocate risk profiles and predict molecular responses to selected molecular targeted therapy, 
thereby improving treatment selection and avoiding disease progression. The treatment of many 
types of cancer can be explored using this framework. Table 1 shows some of the cancers that can 
be treated with multiple molecular targeted therapies as well as the available studies for 
prognostic and predictive factors. 
 
Table 1 of the cancers that can be treated with multiple molecular targeted therapies as well as the available 

prognostic and predictive factors to use for the same 

 

Type of 

Cancer 

FDA-approved molecular targeted therapy [69] Prediction 

and 

Prognosis  

Breast 
cancer 

Ado-trastuzumabemtansine (Kadcyla), Everolimus (Afinitor), 
Lapatinib (Tykerb), Palbociclib (Ibrance), Pertuzumab 
(Perjeta), Trastuzumab (Herceptin) 

[70] 

Lung cancer Afatinib (Gilotrif), Alectinib (Alecensa), Atezolizumab 
(Tecentriq), Ceritinib (Zykadia),Erlotinib (Tarceva), Gefitinib 
(Iressa), Necitumumab (Portrazza), Nivolumab (Opdivo), 
Osimertinib (Tagrisso), Pembrolizumab (Keytruda), 
Ramucirumab (Cyramza) 

[71] 

Melanoma Aldesleukin (Proleukin),Dabrafenib (Tafinlar),Ipilimumab 
(Yervoy), Nivolumab (Opdivo), Pembrolizumab (Keytruda), 
Trametinib (Mekinist), Vemurafenib (Zelboraf) 

[72] 

Chronic 
myeloid 
leukemia 

Imatinib (Gleevec), Nilotinib (Tasigna), Dasatinib (Sprycel), 
Ponatinib (Iclusig), Bosutinib (Bosulif) 

[73 , 74] 

Chronic 
lymphocytic 
leukemia 

Alemtuzumab (Campath), Idelalisib (Zydelig), Obinutuzumab 
(Gazyva), Ofatumumab (Arzerra, HuMax-CD20), Rituximab 
(Rituxan, Mabthera), Venetoclax (Venclexta) 

[75] 

 

4. CONCLUSIONS 
 

 

The framework of current learning methodologies basically includesthe essential concept of 
dynamic changes in the input structure of models based on domain knowledge and discoveringthe 
relation of importance predictive factors with patient responses. In our framework, we conduct 
precise modeling based on prior knowledge with interpretable and consistent meanings,and we 
focus on developing models with high predictive and prognostic performance. 
 
Owing to space and time limitations, the implementation and some computational approaches 
have not been included in this paper. The initial future work is to implement a framework for real 
cancer patient data that stores molecular responses to molecular targeted therapy. Important areas 
for extending our proposed approach are as follows:(1) optimization techniques should be tested 
for model selection;(2) we trained models to maximize accuracy, but algorithms could also be 
developed to maximize the G-mean or F-score performance, especially in the imbalance 
dataset;(3) the use of a wider range of combined methods such as decision templates and the 
Dempster-Shafer method[76] should be enabled; and(4) online adaptive models that dynamically 
react to a new piece of knowledge should be developed. 
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In this paper, we have described a novel framework for a personalized medicine support system. 
A personalized medicine support system is a hybrid knowledge-based system that integrates 
multiple models to provide automated selection tools for individual treatment in one integrated 
dynamic environment. This system has been proposed to meet the requirements of clinicians and 
to provide a treatment guide. This system can work on oncology-based data using a data mining 
process for modeling; this approach can be implemented for treating other types of cancer aswell. 
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Linking Chapter 3, 4 and 5: 

In the previous paper, “Personalized Medicine Support System: Resolving Conflict 

in Allocation to Risk Groups and Predicting Patient Molecular Response to Targeted 

Therapy,” we found that the use of prognostic and predictive factors are important prior to 

treatment. The personalized medicine support system framework was proposed as a 

knowledge-based clinical decision support system where knowledge is the main component 

in constructing the system. Our main question was how could one develop a personalized 

medicine support system that allocates risk groups and predicts the molecular response to 

molecular targeted therapy, where consistency in decisions is paramount. We also outlined 

the main processes of our personalized medicine support system. Later, the steps were 

demonstrated in detail to help computing researchers follow them when constructing such a 

system. We also concluded that there was not enough time and space to include the 

implementation and the full amount of computational approaches using real medical data. 

As a result, we decided that future work on this subject should include the implementation 

of the framework for actual cancer patient data that will store molecular responses to 

molecular targeted therapy. 

In chapter 3, figure 1 demonstrates the process flow of a personalized medicine 

support system and connects two models: prognostic model details in chapter 4 and 

predictive model details in chapter 5. Figure 2 depicts the data mining process for developing 

a prognostic model of the study in chapter 4, and figure 3 shows the data mining process for 

developing a predictive model of the study in chapter 5. Finally, figure 4 contains the schema 

for a prognostic model that will be covered in chapter 4, while figure 5 presents the schema 

for a predictive model included in chapter 5. 
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 In the upcoming chapters, we evaluate the proposed framework for a personalized 

medicine support system. Chapter 4 has two parts, which represent the two stages for 

building a prognostic model using prior knowledge in our proposed framework (Section 

2.5.1 in Chapter 3), while Chapter 5 explains how to deal with a new source of data and 

build a predictive model (Section 2.5.2 in Chapter 3).  

In Chapter 4, our first paper entitled “Consistency Test between Scoring Systems for 

Predicting Outcomes of Chronic Myeloid Leukemia in a Saudi Population” is detailed. We 

evaluate the common scoring systems that are used to identify risk groups based on patients’ 

molecular responses. In this study, we analyzed 104 CML patients and monitored them for 

any major molecular responses using RQ-PCR. This cohort was used as an example to 

present the issue of inconsistency between existing score systems. In this paper’s 

introduction, we provided background information related to CML and how it affects the 

bone marrow. We also discussed how the prognostic scores being evaluated are used in 

developing and identifying the best CML treatments for individual patients. In the Materials 

and Methods Section of the paper, we presented the study population that was evaluated and 

the scoring systems that were used on CML patients. This section includes a two-step 

analysis process that consisted of studying the prognostic index using combined groups and 

a consistency analysis between the risk categories obtained from the scoring systems. Model 

selection and model fusion were both acceptable for resolving any conflict generated by the 

score systems’ outcome. In the Results and Discussion Sections, we evaluated CML scoring 

systems based on patients’ molecular responses to determine which prognostic scores best 

apply when a conflict prognosis was generated from prognostic scores. This section also 

contained multiple data tables and visuals that display factors, equations, risk categories, and 

other variables used during this particular study. Another table within this section displays 

data pertaining to patients that were placed in various risk groups depending on their scores. 

We claim in this section that the study was the first to investigate the conflicts within the 
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data and also to compare the four validated scoring systems. At the end of the paper, the 

Hasford score outperformed all other scores in cases where the clinician depended on a 

model selection approach prior to treatment. However, the conflict remained an issue when 

the clinician used common score system outcomes. Therefore, in the second paper, we 

implemented methods to investigate any further enhancement of using the prognostic scores 

to resolve the conflict in decision. 

In our second paper, entitled ”Combined Value of Validated Prognostic Scores and 

Resolving Conflict in Allocation to Risk Groups in Chronic Myeloid Leukemia Patients,” 

we aimed to improve the current level of knowledge by adding an additional level of analysis 

and discovering a conflict group. This group has not yet been studied clinically in other 

current medical research. The combined method improved clinical knowledge as it increased 

our confidence that we were making the right decision because various scores are included 

and combined to reach a final conclusion. We began the paper with medical background 

information about CML and available prognostic scoring systems that have been used in 

newly diagnosed CML patients to assess their risk profile. The CML medical literature 

validates the use of the Sokal, Hasford, EUTOS and ELTS. Therefore, we combined only 

the common scores. Our study attempts to develop a framework that automatically filter the 

models and select the highest performance model that learn the best conflict resolution 

strategy between prognostic scores in patients with conflicting prediction and update entire 

architecture when adapt a new prognostic model. The study presents several methods in 

detail to address the conflict at different levels. The method section contains two different 

datasets used to perform the analysis, while the results section uses tables and visuals to 

present the results from our experiments. Any disagreement between common score systems 

was displayed in the figures. The performance for individual scores and also the comparisons 

between the single score performance and the proposed combined methods in the conflicted 

group were discussed in detail. The automatic selection for the final models was applied to 
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external data to examine their performance. The strength of our study is that it was the first 

time a conflicted group was introduced and also the first time in the CML literature that 

research attempted to resolve this conflict. Our proposed combined method for prognostic 

scores is expected to improve the quality of treatment decisions. Our findings suggested that 

combined methods have a great impact in identifying risk groups before treatment in 

conflicted CML patients.  
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Inconsistency in prognostic scores occurs where two different risk categories are applied to the same chronic myeloid leukemia
(CML) patient. This study evaluated common scoring systems for identifying risk groups based on patients’ molecular responses
to select the best prognostic score when conflict prognoses are obtained from patient profiles. We analyzed 104 patients diagnosed
with CML and treated at King AbdulazizMedical City, Saudi Arabia, who were monitored for major molecular response (achieving
a BCR-ABL1 transcript level equal to or less than 0.1%) by Real-Time Quantitative Polymerase Chain Reaction (RQ-PCR), and
their risk profiles were identified using Sokal, Hasford, EUTOS, and ELTS scores based on the patients’ clinical and hematological
parameters at diagnosis. Our results found that the Hasford score outperformed other scores in identifying risk categories for
conflict groups, with an accuracy of 63%.

1. Introduction

The Australian Institute of Health and Welfare (AIHW)
classified myeloid cancers as the ninth most commonly
diagnosed cancer in 2016, with more than 3,600 cases in
Australia [1]. Chronicmyeloid leukemia (CML) is also known
as chronic myelogenous leukemia or chronic granulocytic
leukemia. The bone marrow produces an unusual number
of white blood cells. The bone marrow could produce an
excessive number of immature white blood cells and lead to
progressive disease. Consequently, the bone marrow cannot
make enough red cells, normal white cells, and platelets
[2].

Prognostic scores in patients with CML are used to
stratify CML patients according to risk profile to ensure
appropriate treatment. Historically, the science of prognosti-
cation has evolved rapidly, and various scoring systems have
been developed to optimize the use of clinical experience in

CML treatment. These scores were developed using logistic
regression with the selection of the patients’ clinical and
hematological parameters at diagnosis. The common prog-
nostic scores have shown variable correlation with complete
cytogenetic response (CCyR) [3–8] and major molecular
response (MMR) [9–12]. Although the investigation com-
pared the prognostic value of the validated scoring systems
in overall survival (OS), event free survival (EFS) or optimal
response in CML patients who receive frontline imatinib,
applying the established prognostic scores in a comparative
fashion and questioning the value of scoring systems, espe-
cially with regard to inconsistency in risk category, has not
been considered in previous studies.

The European LeukemiaNet (ELN) current recommen-
dations for the management of CML are basically addressed
to the goal of achieving an at least MMR [13]. As newly
diagnosed CML patients should be stratified based on the
available prognostic scoring systems, we considered the risk
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Table 1: Characteristics of 95 patients with CML at diagnosis.

Factor Median Range SD
Age (yrs) 40.21 18–74 15.13
Spleen size (cm, BCM) 8.33 0–25 7.53
Platelet count (×109/L) 510.97 4.42–2876 439.88
Basophils (%) 1.32 0–7 1.10
Eosinophils (%) 0.83 0–0.07 1.24
Peripheral blast (%) 1.50 0–10 1.39
SD = standard deviation; BCM = below costal margin.

groupsmight be studied based on theMMRoutcomes.This is
needed to evaluate the clinical impact of the existing prognos-
tic scores by comparison of prognostic risk groups with pri-
mary concern on consistency in prognostic scores outcomes.
Inconsistency occurs when two different risk categories are
applied to the same CML patient; that is, one prognostic
score classifies the patient in one group and the other score
contradicts the first classification. Consistency in prognostic
scores used to estimate the risk group of CML patients
before therapy commencement can increase clinician trust in
the treatment decision and play important role in modern
medicine for CML changing treatment modalities [14, 15].
However, conflict between prognostic scores is observed in
someCMLpatients.Thus, it is important to study consistency
between prognostic score categories used to allocate CML
patients to risk groups in order to support clinician decision-
making.

Our analysis evaluated the different scores outcomes with
the long-term molecular response in patients treated with
imatinib to determine which was the best prognostic score to
apply where a conflict prognosis was generated by prognostic
scores.

2. Materials and Methods

2.1. Study Population. Participants in this study were mem-
bers of the Saudi population diagnosedwith CML and treated
at King Abdulaziz Medical City, Jeddah [16]. A total of 104
CML patients received 400mg imatinib as the initial therapy.
Patient characteristics are described in Table 1. All of the
patients monitored their MMR in time points defined by
ELN [13] where MMR is defined as achieving a BCR-ABL1
transcript level equal to or less than 0.1% at 12months by RQ-
PCR.

2.2. Scoring Systems in CML. Four common prognostic
scoring systems are available for CML patients prior to
commencing therapy: (1) the Sokal score [17], (2) the Hasford
score [14], (3) the European Treatment and Outcome Study
(EUTOS) score [15], and (4) the EUTOS long-term survival
(ELTS) score [18]. These four scores ascertain the level of
risk for CML patients by running multivariable regression
analysis. Prognostic scores were calculated using formulas
in Table 2, based on the patients’ clinical and hematological
parameters at diagnosis.

The analysis is conducted in two steps: (1) studying the
prognostic index using combined groups and (2) consistency
analysis between the risk categories obtained from the scor-
ing systems. First, from Table 2, the EUTOS score is the only
score that classifies CML patients into low risk and high risk.
The number of categories in comparative prognostic scores in
Sokal, Hasford, EUTOS, and ELTS was three, three, two, and
three, respectively. Accuracy was measured on prognostic
score data by assuming two different combined groups: (1)
low and intermediate risk in Sokal, Hasford, and ELTS scores
as low risk and (2) intermediate and high risk in Sokal,
Hasford, and ELTS scores as high risk.

Secondly, in consistency analysis, the combined category
is selected based on the higher-accuracy results from com-
bined groups to study the inconsistency between scoring
systems. We are dealing with two models advising on the
same patient. Each score may provide an index that conflicts
with the other.The patients were classified into a consistency
group or an inconsistency group. The consistency group
included patientswho observed consistent risk categorization
from scoring systems, while the inconsistency group included
patients who observed inconsistent risk categorization from
scoring systems. The possible combination of risk categories
for " scoring systems is # (number of the risk categories)
raised to " power. The number of patients belongs to each
molecular response groups is included to calculate the accu-
racy and determinewhich is themost accurate scoring system
that can be used in a conflict group.

3. Results and Discussion

This study presents the analysis of each scoring system for
distinguishing patients. We evaluated scoring systems in
CML for identifying risk categories based on patients’ molec-
ular responses to determine which was the best prognostic
score to apply where a conflict prognosis was generated by
prognostic scores.

Of the 104 CML patients included in this study, the data
of 9 patients were removed due to incomplete MMR data, to
improve overall data quality. Of the 95 patients with complete
data, 33 (34%) did not achieve MMR, while 62 (65%) did
achieve MMR. The number of CML patients per prognostic
score included in the two different combined methods is
shown in Table 3.

It is clearly observed that the combined method of low
and intermediate risk in Sokal, Hasford, and ELTS score as
low risk achieved higher accuracy than the second combined
method of intermediate and high risk in Sokal, Hasford,
and ELTS score as high risk. Comparison of the accuracies
in Sokal was 62.10% versus 48.42%, Hasford was 67.37%
versus 58.94%, and ELTS was 62.10% versus 61.05%. Indeed,
the ELN [13] recommended dividing patients into low-risk
(including intermediate) and high-risk populations in the
management of CML. Basically, there is insufficient evi-
dence to prove intermediate risk patients behave differently
from low-risk patients. A study used the combinedmethod of
low and intermediate in one risk group to evaluate Sokal and
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Table 3 the number of patients in different risk groups as per calculated scores 
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Table 3:The number of patients in different risk groups as per calculated scores.! Not achieving MMR Achieving MMR Accuracy
Combined groups (1)

Sokal score risk group
High 25 11 14 62.10
Low and intermediate 70 22 48
Hasford score risk group
High 6 4 2 67.37
Low and intermediate 89 29 60
EUTOS score risk group
High 10 4 6 63.15
Low 85 29 56
ELTS score risk group
High 17 7 10 62.10
Low and intermediate 78 26 52

Combined groups (2)
Sokal score risk group
Intermediate and high 62 23 39 48.42
Low 33 10 23
Hasford score risk group
Intermediate and high 46 20 26 58.94
Low 49 13 36
EUTOS score risk group
High 10 4 6 63.15
Low 85 29 56
ELTS score risk group
Intermediate and high 42 19 23 61.05
Low 53 14 39

EUOS to predict optimal response [12]. Therefore, we used
the first combined method in the consistency analysis.

In Table 4, there will be sixteen rows in our analysis
(24 = 16). The consensus group involved 65 (68.42%) pa-
tients, and there were 30 (31.58%) patients in the conflict
group. To identify the most appropriate prognostic score to
use when there is conflict between prognostic scores, we
compared the number of patients belonging to each group.
Table 4 shows that, in the consensus group, both prognostic
scores incorrectly predict CML risk group in 21% (19 patients
did not achieve MMR, while all scores classified them in
the low-risk group, and 1 achieved MMR, while all scores
classified this patient in the high-risk group) of cases. In the
conflict group, the Sokal and ELTS scores predicted MMR
accurately in 46.67% (14 of 30) of patients, while the EUTOS
score predictedMMR accurately in 50% (15 of 30) of patients.
The highest accuracy of 63.33% (19 of 30) of patients was
obtained by theHasford score for predicting the risk category.
However, the accuracy achieved by the Hasford score in
both groups (consensus and conflict groups) was the lowest
(58.95%) among the other scores (Sokal’s accuracy: 62.11%,
EUTOS’s accuracy: 63.16%, and ELTS’s accuracy: 62.11%).

Although the results show that the Hasford performance
in the consensus and conflict groups was not recommended,
the Hasford score accuracy percentage (63%) shows that
Hasford may be useful in identifying risk group in conflict
CML patients. In the conflict group, the Hasford prognostic
score identified more low-risk categories for CML patients
and few high-risk patients, while the Sokal score identified
more high-risk patients and few low-risk patients. Only one
study [3] reported conflict in 22 CML patients. This study
also supports our finding as they found that a majority of
patients corroborated better with the Hasford score [14] than
the Sokal and EUTOS scores. Previous studies compared
and assessed the Sokal, Hasford, and EUTOS but not ELTS
scores in investigating consistency between the scoring sys-
tems. Our study is the first to investigate the conflict and
compare the four validated scoring systems. Comparison
of prognostic scores shows the diversity in scoring, but in
futurework, we intend to implement advancedmethods from
computer science to resolve conflict. Thus, a new scoring
system combining the power of currently available prognostic
scores may further help increase accuracy of identifying risk
groups.
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Table 4: the consistency/inconsistency of prognostic scores for predicting major molecular response 
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Abstract 
Background: Obtaining accurate risk stratification for chronic myeloid leukemia (CML) at 

the time of diagnosis is essential for identifying patients who will most likely benefit from 

aggressive therapy. However, inconsistent results have been reported when two different risk 

categories have been applied to the same CML patient, i.e., when one prognostic score 

classifies the patient in one risk group and another score contradicts the first classification. 

Aim: To overcome this, we have proposed to develop a framework that automatically i) 

combines the common prognostic scores in CML and filters the models to select the highest 

performing model for developing the best conflict resolution strategy between prognostic 

scores in patients with conflicting prognoses and ii) updates the entire architecture when 

adapting for a new prognostic model.  

Method: Australian and Saudi populations were included in this study, who received imatinib 

600 mg/800 mg as the initial therapy. A consistency test extracted 60 CML patients whose 

profiles generated conflicting risk categories. Several combined score models were used and 

the auto filtered to select the highest performing model in term of the accuracy, G-mean and 

F-score. 

Results: Most combined models outperformed the single prognostic scores with an accuracy 

performance above 78%-80%. The highest accuracy performance achieved by a single score 

was the Hasford score at 74%. 

Conclusion: We explored a new group of patients, known as “conflict patients,” whose profiles 

generated an outcome from one prognostic score that contradicted the outcomes using other 

prognostic scores. Current CML treatment guidelines should be updated to include our 

combined model when prognostic scores generate a conflicting prognosis for the same patient.  
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Introduction 

According to the Australian Institute of Health and Welfare (AIHW), myeloid cancer 

was the ninth-most commonly diagnosed cancer in 2016 with more than 3,600 cases in 

Australia [1]. Chronic myeloid leukemia (CML) is a malignant blood cancer that produced an 

excessive number of immature white blood cells circulating in an affected person’s blood. The 

causative chromosomal translocation in CML gives rise to the BCR-ABL1 gene, which encodes 

for the constitutively active tyrosine kinase Bcr-Abl [2]. An accurate risk stratification for CML 

at the time of diagnosis is essential for identifying high-risk patients and those less likely to 

experience unfavorable outcomes in achieving a major molecular response (MMR: BCR-ABL1 

transcript≤0.10%) after imatinib (Glivec®) frontline therapy. These patients are more likely to 

benefit from frontline second-generation tyrosine kinase inhibitors (TKI), such as nilotinib 

(Tasigna®) or dasatinib (DAS) (Sprycel®).  

Newly diagnosed CML patients should be assessed based on the available prognostic 

scoring systems. In practice, scoring systems are used to stratify CML patients according to 

their risk profile to ensure appropriate treatment. Historically, four common prognostic scores, 

namely the Sokal score [3], the Hasford score [4], the European Treatment and Outcome Study 

(EUTOS) score [5], and the EUTOS long-term survival (ELTS) score [6], have been used to 

clinically identify high-risk groups. These four scores ascertain the level of risk for CML 

patients by running a multivariable regression analysis. Clinicians aim to treat individual CML 

patients with the most appropriate therapy. In low-risk patients, imatinib is often preferred 

because it has proved to be the least toxic and safest option. In higher risk patients, second-

generation TKI or combination approaches are preferred because the higher toxicity and higher 

risk of organ damage is counterbalanced by greater potency and lower propensity to drug 

resistance. Thus, using an accurate risk assessment method at diagnosis can assist in effective 

treatment assignment. 
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Three central problems that have been observed in previous studies are i) establishing 

which prognostic score is the most accurate for identifying risk, ii) since each prognostic score 

may generate conflicting prognoses for the risk index, it is difficult to know how to treat 

patients with conflicting prognoses, and iii) since prognostic score systems are developed over 

time, how patients can benefit from newly developed systems and information. 

 First, scoring systems have shown a variable correlation with complete cytogenetic 

response [7-12], major molecular response (MMR) [13-16], overall survival [17 , 18], and 

event free survival (EFS) [19] in CML patients who receive frontline imatinib. Several studies 

have compared three scores to predict molecular response but have recommended different 

scores each time (Table 1).  
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Table 1. Summary of comparative studies in predicting major molecular response (MMR) endpoints. 

Study Year Country Source No. of 
patients 

Median age 
(range) 

Median follow-up 
months (range) 

Study Type Scores involved in 
study 

Recommended score for 
predicting molecular response 

Months 

Dybko et al. (Jaroslaw 
Dybko et al., 2015) 

2015  Single 
centre 

88 51(21–83) 47 months Comparative 
study 

Sokal, Hasford and 
EUTOS scores 

Hasford at 18 months 

Yamamoto et al. 
(Yamamoto et al., 2014) 

 

2014 Yokohama Multicentre 145 54 (15–83) 57 (9–130) Validation 
study 

Sokal, Hasford and 
EUTOS scores 

None. at 18 months 

Bonifacio et al. (Bonifacio 
et al., 2014) 

2014 Italy Single 
centre 

314 57 (19–85) N/A Validation 
study  

Sokal and EUTOS 
scores 

EUTOS score at 3 and 6 
months 

Suttorp et al. (Suttorp et al., 
2013) 

2013 Germany Single 
centre 

90 11.6 (1–18) N/A Comparative 
study 

Sokal, Hasford and 
EUTOS scores 

Refined risk categorization in 
EUTOS from 87 to 64 

at 3 months 

Jabbour et al. (Jabbour et 
al., 2011) 

2012 USA(Texas) Single 
centre 

465 47 (15–85) 117 (16–130) 
imatinib 400mg 

88 (4–118) 
imatinib 800mg 

Validation 
study 

EUTOS scores The EUTOS score was not 
predictive of the outcome. 

N/A 

Than et al.(Than et al., 
2012) 

2012 Singapore Single 
centre 

139 45 (16–88) N/A Validation 
study 

EUTOS scores EUTOS score  at 12 and 18 
months 

Yahng et al. (Yahng et al., 
2012) 

2012 Korea Single 
centre 

255 42 (19–77) 57 (13–102) Comparative 
study 

Sokal, Hasford and 
EUTOS scores 

Sokal and EUTOS scores at 18 months 

Saussele et al.(Saussele et 
al., 2011) 

2011 German Single 
centre 

1252 N/A N/A Validation 
study 

Sokal, Hasford and 
EUTOS scores 

EUTOS score at 12 months 

Marin D et al. (Marin, 
Ibrahim, & Goldman, 2011) 

2011 UK Single 
centre 

282 43 (13–80) 68 (16–130) Comparative 
study 

Sokal and EUTOS 
scores 

Sokal score   N/A 
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Second, prognostic scores for CML have been developed that optimize the use 

of clinical experience in CML treatment. However, the science of prognostication has 

evolved rapidly, with various scoring systems established with independent aims and 

different patient populations. Unfortunately, given the variety of prognostic scores, 

conflicting conclusions can be generated, thus making it difficult to reach a final 

prognosis. Consistency is defined as one prognostic score that does not contradict other 

prognostic scores. It is important to study and understand consistency between scores 

and resolve prognostic conflict in order to help clinicians categorize patients into 

suitable risk groups and subsequently make better therapeutic decisions. Consistency 

among prognostic scores can increase clinician confidence because healthcare 

providers depend upon these results for making appropriate treatment decisions. 

Finally, when a new prognostic score is developed, a prognostic model structure should 

be flexible enough to be updated to integrate this new information. This way the 

prognostic model structure can be continuously updated and have its data contents 

modified.  

There have been no previous methods for detecting conflicts between the current 

validated scoring systems for CML, and clinicians need to specify which prognostic 

score to use based upon their preferences for each patient. Such an approach does not 

guarantee an optimal result and does not integrate the information from all existing 

prognostic scoring systems. To overcome this, we have proposed to develop a 

framework that automatically i) combines the common prognostic scores in CML and 

filters the models to select the highest performing model for developing the best conflict 

resolution strategy between prognostic scores in patients with conflicting prognoses 

and ii) updates the entire architecture when adapting for a new prognostic model.  
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Materials and Methods 
 In this section, we discuss the materials and methods used in the datasets, 

inclusion and exclusion criteria, data pre-processing, and examine the performance of 

the individual prognostic scores. Then, we describe the proposed framework, which 

contains two processes: one that resolves prognostic conflict using combined score 

models and an adaptive process for new prognostic models. The first process 

automatically filters the models and selects the highest performance models that 

develop the best conflict resolution strategy between prognostic scores in patients with 

conflicting prognoses. The second process updates the entire architecture when 

adapting to a new prognostic model.  

Datasets 

The data used in our experiments came from Australian and Saudi populations. 

The Australian population was sourced from the Therapeutic Intensification in De 

Novo Leukemia (TIDEL) II [20] clinical trial, and the Saudi population was sourced 

from a tertiary care hospital, the King Faisal Specialist Hospital and Research Centre 

(KFSHRC), Riyadh, Saudi Arabia [21] and from King Abdulaziz Medical City 

(KAMC), Jeddah, Saudi Arabia [22]. 

Ethics Statement 
The data were analysed anonymously. All study participants provided written 

informed consent prior to participation. The TIDEL II trial is registered at 

www.ANZCTR.org.au as ACTRN12607000325404 and funded by Novartis Australia. 

TIDEL II was carried out with the approval of human research ethics committees (RAH 

Protocol No. 070718c), and ethically approved by the National Statement on Ethical 

Conduct in Human Research (NHMRC) 2007 and in accordance with the Declaration 

of Helsinki. The KFSHRC data were ethically approved by the Clinical Research 
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Committee (CRC) and Research Ethics Committee (REC) 2005, Research Advisory 

Council (RAC) reference: ORA/1811/26, Proposal No. 2051056. The KAMC data is 

an ethically approved prospective study, Protocol No.: RCJ0210-134, 2010. 

Inclusion and exclusion criteria 

Patient outcomes were divided into two broad outcome groups: i) positive group 

(CML patients able to remain on imatinib and achieve target MMR at 24 months) and 

ii) negative group (CML patients who did not achieve MMR at 24 months on imatinib 

or switched therapies and patients found to be intolerant to imatinib, who switched to 

nilotinib/dasatinib and then achieved MMR at 24 months since MMR was not achieved 

by administering standard treatment). 

Eligible patients from TIDEL II [20], KFSHRC [21], and KAMC [22] who were 

included in the study were: 

• Patients who received imatinib 600 mg/800 mg as the initial therapy.  

• Patients considered in the chronic phase with a blast percentage of less than 

10%, based upon the standards of the American Cancer Society medical and 

editorial content team [23]. 

• Patients monitored for achieving a BCR-ABL1 transcript level ≤ 0.1% at 24 

months using RQ-PCR. 

• Patients who were switched to a second line treatment because of intolerance or 

toxicity to imatinib were considered as a negative group in our analysis. 

Patients who were excluded were: 

• Pregnant patients.  

• Patients who used a second line treatment (nilotinib or dasatinib) as a frontline 

treatment. 

• Patients who were in advanced disease phases. 
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Data pre-processing  

A dataset with missing data could affect the performance of a combined model 

if using that dataset as training sample. Three methods were proposed to treat the 

missing data issue: deletion, classification, or imputation [24]. Some patient data had 

been missed while collected from white blood cell counts that were obtained from blood 

samples at diagnosis. If the option were to delete the missing data, this information 

would be lost, and the learning procedure could be affected by providing fewer samples 

[24]. Therefore, we imputed the missing data by using multiple imputations. This 

method replaced the missing values using linear regression for a given prognostic factor 

[25]. 

For individual CML patients, we collected prognostic factors, calculated 

prognostic score values, obtained the prognostic risk category, collected the actual 

MMR at 24 months, and defined the conflictIndex. First, the prognostic factors were 

the parameters that were collected at diagnosis before commencing treatment. For the 

Sokal and ELTS scores, the prognostic factors are age, spleen size, platelet count, and 

peripheral blood blasts. The Hasford score adds peripheral blood eosinophil and 

basophil percentages to these, and the EUTOS score is based on the percentage of 

basophils and spleen size.  

 Second, prognostic score values were calculated using each patient’s clinical 

and hematological prognostic factors as shown in the prognostic scores’ formulas [26]. 

It has been argued that the EUTOS score predicts the probability of no complete 

cytogenetic response at 18 months and not overall survival [5]. However, the EUTOS 

score can be used to identify CML patients with a significantly lower probability of 

responding to therapy [8] and survival [18, 27] and predict molecular response [13]. 

After calculating the score values, we used the Min-Max normalization technique [28], 
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and the resulting values came from the minimum and maximum values that the 

prognostic score models could generate for this patient population. Each prognostic 

score kept its cut off values for categorizing CML patients into risk groups and was 

mapped into its normalized value between 0 and 1. We used the normalized score 

values for discovering the relationships between the data and minimizing 

misclassification errors when training machine learning algorithms [28]. Thus, all data 

was assumed to have the same distribution. We plotted the distribution of pairs of scores 

to examine the data to see whether a linear or non-linear relationship exists between the 

scores.  

Third, the Sokal, Hasford, and ELTS scores classify patients into three risk 

categories of low, intermediate, and high. In contrast, the EUTOS score classifies 

patients into two risk groups of low and high. Here, the risk groups were analyzed using 

consistency test as suggested in [26]. We compared two risk groups:  

• Group 1 (low and intermediate risk) vs. high risk. 

• Group 2 low risk vs. (intermediate and high risk).   

Then, we selected the group that achieved the highest accuracy for stratifying patients 

into risk groups.  

Fourth, the international scale (IS) [29] divides molecular responses into major 

molecular response (MMR; BCR-ABL1 transcript ≤ 0.10%) and complete molecular 

response (CMR; BCR-ABL1 transcripts not detectable). The optimal response at any 

time after 12 months is a BCR-ABL1 transcript level ≤ 0.1[30]. Therefore, we selected 

the comparison endpoint for long-term molecular response at 24 months.  

Finally, conflictIndex represented the consistency test [26] among prognostic 

scores: 1 indicates conflicting observations between prognostic score categories and 0 

indicates consistent observations.  
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Examination of the performance of the individual prognostic scores  

Four common prognostic scores (classifiers) for CML patients were examined 

using risk categories for predicting molecular response. The performance of the 

classifiers was measured using a coincidence matrix [31]. The problem was presented 

as a binary classification where the test results were placed in either a positive group 

(achieved MMR using imatinib) or a negative group (did not achieve MMR). The 

results were divided into four conditions: (a) high-risk patients correctly identified for 

not achieving MMR (“true negative”), (b) low-risk patients achieving MMR but 

wrongly identified as high-risk patients that would not achieve MMR (“false 

negative”), (c) low-risk patients correctly identified for achieving MMR (“true 

positive”), and (d) high-risk patients not achieving MMR but wrongly identified as low-

risk patients that would achieve MMR (“false positive”). Accuracy reflects the number 

of correctly classified patients belonging to a group. 

Resolving conflict using a combined model 

Two strategies can be used to combine classifiers (prognostic scores): classifier 

selection and classifier fusion [32]. In classifier selection, each classifier is intended to 

be an expert for a specific domain of the feature space, and the selected classifier 

decides the output of the ensemble. This method has been used previously in many 

comparative studies as is shown in Table 1. Classifier selection is only guaranteed to 

give the same training accuracy as the best individual classifier, whereas in classifier 

fusion, each classifier is intended to have complete information on the entire feature 

space, and we apply combined methods to all outputs from the systems. Therefore, we 

focused on using the fusion method to build a model that would increase our 

understanding of the process that should be taken in the conflicting prognoses cases. 

Methods for classifier fusion can be a non-trainable combiner (data-independent) or a 
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trainable combiner (data-dependent) [32]. The use of data-independent methods, such 

as majority voting, is simple compared to the complex methods required for a training 

process. In the data-dependent methods, we built a combination based on the 

information obtained from the individual classifier (prognostic score), and we could 

select a possible approach for combining the outputs of the classifiers. The approaches 

to building a combined classifier include combining classifiers at the combination, 

classifier, feature, or data levels [32]. The combination level mainly focuses on the 

possible ways of combining outputs (risk categories) of classifiers (prognostic scores) 

in an ensemble based on information obtained from a single classifier. For the classifier 

level, different machine learning techniques can be employed. For the feature level, 

different feature subsets result in different performances by training the same classifier. 

Finally, the data level ensemble created by using different training sets should be 

generated randomly from the distribution and then sampled with a replacement.  

In this study, we aimed to develop a combined model that could resolve 

conflicts and outperform a single prognostic score. We decided to train multiple 

methods until this objective was achieved.  First, we trained a meta decision tree [33] 

as an example of the combination level method. The difference between meta decision 

trees and the ordinary decision trees is that their leaves specify which classifier (in our 

case, prognostic scores) should be used rather than class label. Second, we implemented 

three base classifiers, a support vector machine [34], K-nearest neighbor algorithm [32], 

and naive Bayes classifier [32], as examples for classification levels (more details about 

each base classifier are discussed in the appendix A). Third, on the feature level, two 

features could be carried out by an automatic procedure: forward selection or backward 

elimination [35]. Forward selection started with no features in the model and added 

each feature using model comparison criterion. We stopped the addition if no feature 
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improved the model. Conversely, backward elimination started with all candidate 

features, and each feature was deleted using model comparison criterion. This process 

was repeated until either no further deletion could improve the model or there were 

only two candidate features. In our experiments, using a subset of prognostic scores to 

train the classifiers affected the conflict group and moved the patients to a consistent 

group. Finally, we did not implement any model for the data level as the performance 

would be based on mean predictions from the subset training data [36]. Thus, we 

focused on the combination level and classification level. Table 2 shows the techniques 

used for combining prognostic scores and dataset descriptions. 

 

Table 2. Combining levels and techniques used for combining prognostic scores using patients in the 
conflict group. 

Machine 
learning 

Dataset description 

Meta 
decision 
trees.  [33]  

Risk categories from each prognostic score and the patient outcome based on achieving/not achieving MMR at 
24 months. For example, Sokal,=1 Hasford=1, EUTOS=0, ELTS=0, where 1 indicates low risk and 0 indicates 
high risk and the outcome of 1 indicates a positive group and 0 indicates a negative group. 

Support 
vector 
machine 
[34]  

Using three score values calculated by the formula assigned to each prognostic score [26] and the patient 
outcome based on achieving/not achieving MMR at 24 months.  For example, Sokal= 0.2 Hasford=1200, 
EUTOS=0.8, ELTS=0.7, and the outcome of 1 indicates a positive group and 0 indicates a negative group. Sokal 
score values were categorized as low-risk and intermediate-risk (Sokal score<1.2) and high-risk (Sokal 
score>1.2), the Hasford scores were categorized as low-risk and intermediate-risk (score≤1480) and high-risk 
(score≥1481), and the EUTOS scores were categorized as low-risk (score<87) and high-risk (score≥87). K-nearest 

neighbor 
[32]  

Naive Bayes 
[32] 

 Nested cross-validation 

Nested cross-validation [37] was used to automate finding the best conflict 

resolution strategy and to select the final model. This validation method suggested 

dividing the data into two parts: a training/validation part (~75%) and testing part 

(~25%). Since the testing part would be saved for evaluating the selected model, the 

training data itself was used for conducting an extra layer of 10-fold cross-validation to 

automatically select the highest performing combined model. This method is preferred 
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when the data are scarce [38]. The combined models were trained on a training set, the 

validation set was used for selecting the best model, and this model’s performance was 

evaluated with the testing set. Each model was trained to minimize the misclassification 

rate between the prognostic scores categories for risk groups and actual patient outcome 

(positive or negative). The overall performance of a model was calculated using the 

average performance over 10 folds. We compared the training performance with the 

mean of a 10-fold cross-validation to avoid an over-fitting issue in the models [39]. We 

used the confidence interval obtained from the mean and standard deviation at a 95% 

confidence level.  

The training data was imbalanced, meaning that the patients in one group were 

greatly outnumbered by those in the other group [40]. Therefore, for additional 

accuracy, we used another two measures, a G-mean (geometric mean) and F-score 

(weighted harmonic mean of sensitivity and positive predictive value), to assess the 

performance of a model trained on imbalanced data [31]. We reported the accuracy, G-

mean, and F-score for the training and cross-validation performance. Finally, the 

recommended combined model was evaluated on test data and external unseen data.  

Adaptation of a new prognostic model 

For the first process of developing a combined model to resolve prognostic 

conflicts, a model architecture was chosen that outperformed individual prognostic 

score performance. For the second process, the model learned from new data and 

automatically created and updated the first process (resolve conflict using a combined 

model). The evaluation methods were applied after the incoming information updated 

the selected combined model architecture.  The full procedure is shown in Figure 2, 

which is the schema for developing the prognostic combined model, evaluation, final 

model selection, and addition of incoming information. 
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Figure 1. The schema for developing the prognostic combined model, evaluation, final model selection, and addition of incoming information. To build the prognostic 
model, we collected data from the Australian and Saudi populations and applied inclusion and exclusion criteria to include eligible patients for the analysis. In data pre-
processing, we imputed missing data and conducted a consistency analysis. We included a conflict group in the analysis and used a nested cross-validation method to build, 
evaluate, and select the model. In the nested cross-validation, the dataset was divided into two parts: a training/validation part and testing part. The performance of individual 
prognostic scores was evaluated in both parts. The different combined models were implemented with training data. Selection of the best accuracy, G-mean, and F-score 
performance using mean values was a result of a 10-fold cross validation. The highest performance model was automatically selected and compared with the individual 
performances of separate testing data. The choice of the final model architecture would depend on the highest performance. Further, the entire model architecture was updated 
by repeating the processes from consistency analysis to the final choice of the architecture with the adaption of newly incoming prognostic score information.  Finally, the final 
model was validated externally on unseen data. 
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Results  
In this section, first we report basic information about the number of patients in 

both prognostic groups. Then we describe the dataset and present figures that show 

agreement between prognostic scores. Pre-processing is discussed in regards to 

imputing missing data and conducting consistency analysis. We reveal single 

prognostic score performance and the combined value of validated prognostic scores 

for conflict patients using Sokal, Hasford, and EUTOS scores. Then we describe how 

the recommended model was evaluated on unseen data. Finally, we describe the method 

for adding new information with the ELTS score and validation on independent 

datasets. 

Insight into the data 

This study included data on 486 patients from the Australian and Saudi 

populations. The patients were compromised of 210 CML patients from TIDEL II [20], 

172 KFSHRC [21], and 104 from KAMC [22]. Applying the inclusion and exclusion 

criteria as shown in Appendix Table A, this report is based on data from 403 CML 

patients in the chronic phase. Table 3 describes patient characteristics regarding the 

mean and range for each clinical and hematological parameter category.  
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Table 3. Patient characteristics for the training, testing, and validation data. The mean and range for each 
parameter. 

Patient Characteristics in Training and Testing Data n Mean Range No. missing  Imputed values mean 

Age, yr. 314 49 17–81 0 0 

Spleen size, cm 312 5.30 0-30 2 11.81 

Platelet count (x 109/L) 309 494.26 4.41–2876 5 424.94 

Peripheral blood blasts (% of leukocytes) 306 1.35 0–10 8 3.04 

Peripheral blood eosinophils (% of leukocytes) 311 1.11 0–17.81 3 1.93 

Peripheral blood basophils (% of leukocytes) 311 1.89 0–38.89 3 3.94 

Patient Characteristics in Validation Data n Mean Range No. missing  Imputed values mean 

Age, yr. 172 37 13–80 0 0 

Spleen size, cm 123 7.34 0–99 49 11.16 

Platelet count (x 109/L) 160 414.319 0–1902 12 415.4 

Peripheral blood blasts (% of leukocytes) 159 1.91 0–10 13 4.13 

Peripheral blood eosinophils (% of leukocytes) 159 3.01 0–75 13 6.81 

Peripheral blood basophils (% of leukocytes) 159 3.09 0–21 13 5.68 

To prepare the data, we used multiple imputations to impute prognostic factors 

(continuous data). We used the impute command in SPSS v21 to replace missing values 

with linear regression estimation values. The parameter to be imputed was to be used 

as a dependent variable in the regression model. In multiple imputations, the missing 

value is imputed multiple times using the linear regression method. A continuous 

parameter may have an imputed value outside the range of the observed values. We 

restricted the value to fall within a minimum and maximum range. Then, we divided 

the data into two datasets:   

1. The score values set, which was compromised of the actual values calculated 

from the individual prognostic score formula using age, spleen size, platelets 

count, peripheral blood blasts, and eosinophil and basophil percentages of 

leukocytes parameters. 

2. The risk categories were set at this stage, and we conducted an analysis to 

compare two risk groups. Table 4 shows the accuracy for each prognostic score 
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belonging to group 1and group 2. It was clear that the accuracy achieved by the 

prognostic score of group 1, with Sokal 60%, Hasford 72%, and ELTS 66%, 

outperformed the accuracy achieved by group 2, with Sokal 45%, Hasford 59%, 

and ELTS 60%. We got data that was compromised of data came from mapping 

the actual scores into risk categories. Therefore, we categorized the Sokal score 

values into low-risk and intermediate-risk (Sokal score<1.2) and high-risk 

(Sokal score>1.2), the Hasford scores into low-risk and intermediate-risk 

(score≤1480) and high-risk (score≥1481), and the EUTOS scores into low-risk 

(score<87) and high-risk (score≥87).   
Table 4. The number of patients in the different risk groups per calculated scores. 

1 Combined groups (1) Combined groups (2) 

 n Positive 
outcome 

Negative outcome Accurac
y 

 n Positive 
outcom
e 

Negativ
e 
outcom
e 

Accurac
y 

Sokal Score 
Risk Group 

  

 

  Sokal Score 
Risk Group 

    

High  12
6 

85 41 60.54% Intermediat
e and  high  

25
4 

179 75 45.65% 

Low and 
Intermediat
e 

27
7 

203 74 Low 14
9 

109 40 

Hasford 
Score Risk 
Group  

      Hasford 
Score Risk 
Group  

    

High  26 12 14 71.96% Intermediat
e and  high  

14
5 

98 47 58.80% 

Low and 
Intermediat
e 

37
7 

276 101 Low 25
8 

190 68 

EUTOS 
Score Risk 
Group  

      EUTOS 
Score Risk 
Group  

    

High 43 24 19 70.22% High  43 24 19 70.22% 

Low 36
0 

264 96 Low  36
0 

264 96 

ELTS 
Score Risk 
Group  

    ELTS 
Score Risk 
Group  

    

High  54 38 16 66% 

 

Intermediat
e and  high  

15
4 

100 54 60.04% 

Low and 
Intermediat
e 

34
9 

250 99 Low 24
9 

188 61 
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Moving to the consistency test, we defined a new column for both datasets (the 

score values set and the risk categories set), namely ConflictIndex. Each patient was 

tested for an outcome prognosis with each prognostic score. Then we separated the 

conflicting data from the consistent data.  In Figure 2, we represented the distribution 

of all 403 patients in three prognostic scores of Sokal, Hasford, and EUTOS 

respectively, and Figure 3 showed the distribution in four prognostic scores of Sokal, 

Hasford, EUTOS, and ELTS, respectively. Disagreement in prognostic scores risk 

categories for patient outcome occurred more frequently in the negative group. We also 

noticed that about 62% of patients were misclassified by the three prognostic scores 

and stratified into the low and intermediate risk group when their observed outcomes 

were in the negative group. Similarly, the four prognostic scores classified 60% of the 

patients in low and intermediate risk group when their outcomes were in the negative 

group. In the training set, we observed that, when considering agreement among the 

three scores, 50 patients belonged to the conflict group, while, when considering 

agreement among the four scores, 60 patients belonged to the conflict group. In the 

testing set, nine patients had conflicting prognoses using three or four scores. 
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Figure 2. Patient distribution for the three prognostic scores of Sokal, Hasford, and EUTOS, respectively. 0 indicates high risk and 1 indicates low or intermediate risk. 
The three indexes refer to the three scores. For example, 110 represent Sokal and Hasford patient score categories of low or intermediate risk, respectively, while the last index 
refers to the EUTOS outcome that categorizes the same patient in a high-risk group. 
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Figure 3. Patient distribution for the four prognostic scores of Sokal, Hasford, EUTOS, and ELTS, respectively. 0 indicates high risk and 1 indicates low or intermediate 
risk. The four indexes refer to the four scores. For example, 1110 represents Sokal, Hasford, and EUTOS patient score categories of low or intermediate risk, respectively, 
while the last index refers to the ELTS outcome that categorizes the same patient in a high-risk group.  

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Negative Group 5.22% 0.87% 1.74% 1.74% 0.00% 6.09% 2.61% 16.52% 1.74% 0.00% 0.00% 0.00% 0.87% 0.87% 1.74% 60.00%

Positive Group 1.74% 0.00% 0.00% 2.08% 4.51% 1.74% 2.78% 16.67% 0.00% 0.00% 0.35% 0.00% 0.00% 0.35% 3.82% 65.97%
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Performance of individual prognostic scores  

We examined the performance of the individual prognostic scores because later 

we compared the single prognostic scores with several combined models to select the 

highest accuracy, G-mean, and F-score performance. 

Table 5 shows the performance of each prognostic score in identifying risk 

categories based on the training data from the CML patients whose profiles 

demonstrated a conflict between prognostic risk scores. 
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Table 5. The performance of each prognostic score for conflict patents using three and four prognostic scores. 

 Risk Categories Single Score Performance 

Three Score Performance on Training Set, n=50 

 Risk Categories Positive 
outcome, n=36 

Negative 
outcome, n=14 

Accuracy G-mean F-score 

Sokal Score Low and Intermediate    0 3 0.22 0  0.35 

High   36 11    

Hasford Score  Low and Intermediate   33 10 0.74 0.51 0.83 

 High  3 4       

EUTOS Score   Low 26 8 0.64 0.56 0.74 

  High 10 6       

Four Score Performance Training Set, n=60 

 Risk Categories Positive 
outcome, n=43 

Negative 
outcome, n=17 

Accuracy G-mean F-score 

Sokal Score Low and  

Intermediate 

   7 5 0.32 0.34 0.25 

§ High    36 12       

Hasford Score  Low and Intermediate   40 12 0.75 0.52 0.84 

 High   3 5       
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Table 5. Continued. 

 Risk Categories Single Score Performance 

 Risk Categories Positive 
outcome, n=43 

Negative 
outcome, n=17 

Accuracy G-mean F-score 

EUTOS Score   Low  33 10 0.67 0.56 0.76 

  High  10 7       

ELTS Score    Low and Intermediate 23 10 0.50 0.47 0.60 

   High 20 7       

Score Performance on Testing Set, n=9 

 Risk Categories Positive 
outcome, n=6 

Negative 
outcome, n=3 

Accuracy G-mean F-score 

Sokal Score Low and Intermediate    2 0 0.56 0.58 0.50 

High    4 3    

Hasford Score  Low and Intermediate   5 2 0.67 0.53 0.77 

 High   1 1    

EUTOS Score   Low  5 3 0.56 0.00 0.71 

  High  1 0    

ELTS Score    Low and Intermediate 4 1 0.67 0.67 0.73 

   High 2 2    
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Table 5. Continued. 

Score Performance on External Validation Set, n=65 

 Risk Categories Positive 
outcome, n=44 

Negative 
outcome, n=21 

Accuracy G-mean F-score 

Sokal Score Low and Intermediate    4 1 0.37 0.29 0.16 

High    44 20    

Hasford Score  Low and Intermediate   41 19 0.66 0.30 0.79 

 High   3 2    

EUTOS Score   Low  36 15 0.65 0.48 0.76 

  High  8 6    

ELTS Score    Low and Intermediate 33 20 0.52 0.19 0.68 

   High 11 1    
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For conflict patients (n=50), the Hasford scores correctly identified risk groups 

with an accuracy of 74% and F-score of 83%. Similarly, for conflict patients (n=60), 

the highest accuracy and F-score were observed in the Hasford score as 75% and 84%, 

respectively. The EUTOS score achieved the highest G-mean with 56% in both conflict 

groups (n=50 and n=60) of patients. The EUTOS score G-mean performance indicated 

its ability to identify both risk groups from imbalanced data (three score dataset: 

positive group=36 patients vs. negative group=14 patients and four score dataset: 

positive group=43 patients vs. negative group=17 patients). The results showed that the 

Hasford score outperformed the other scores among conflict patients.  

Resolve conflict using combined methods in conflict patients 

We divided our experiments into two stages: the development of the combined 

model using three prognostic scores and the development of the adaptive combined 

model with four prognostic scores. We used Matlab 2016b statistics and the Machine 

Learning Toolbox for classifications [41]. The following four machine learning 

techniques were used: meta decision tree, support vector machine, K-nearest neighbor 

and naive Baye. We used C# code to calculate the performance and automate the 

process for selecting the highest accuracy, G-mean, and F-score models. 

Table 6 summarizes the results achieved by combining the methods of the three 

prognostic scores during the first stage, and Figure 4 depicts the improvement in 

performance in the training and validation set of the three combination methods 

compared to a single prognostic score.  
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Figure 4. The performance in the training and validation set of the three combination models compared 
to single prognostic scores. 

Most of the combination models improved performance significantly over the 

single scores. However, only the naive Bayes could resolve the conflict significantly. 

Overall, G-mean and F-score performances for the meta decision tree and support 

vector machine were lower than the single scores. However, the G-mean was higher in 

K-nearest neighbor and naive Bayes (100% and 58%, respectively) models. While for 

the F-score, only the K-nearest neighbor outperformed the single scores. From the 10-

fold cross-validation results, it was clear that the K-nearest neighbor model had an over-

fitting issue, but the reminder of the combined methods fit the data well. A comparison 

between the cross-validation results suggested selecting the meta decision tree and 

support vector machine based on their accuracy (75% and 76%, respectively) as good 

combined models to resolve conflicts. Details on how to reuse the structure of the model 

appear in the appendix A. 

The new prognostic score ELTS was used during the second stage of our 

experiment for adapting newly incoming information. Table 7 summarizes the results 
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achieved by combining the methods of four prognostic scores, and Figure 5 depicts the 

improvement in the performance in the training and validation set of the three 

combination methods compared to single prognostic scores. Similarly, most 

combination methods improved performance significantly over a single score. 

However, only the naive Bayes could resolve the conflict significantly. The G-mean in 

all combined methods (57%, 64%, 100%, and 63% respectively) outperformed the 

highest G-mean for the single scores, which was achieved by the EUTOS score (56%).  

From the 10-fold cross-validation results, it was clear that the K-nearest neighbor model 

also had an over fitting issue, but in the remainder of the combined methods, the data 

fit will. A comparison between the cross-validation results suggested selecting the 

support vector machine over the other combined methods to resolve conflicts. 

Testing the combination models on a test set (n=9) revealed unexpected results 

from the combined scores where the testing data results were not improved. Therefore, 

the generalization capability was quite similar to a single score because the highest 

accuracy performances (67%) were achieved by the Hasford and ELTS scores while 

the accuracy performances were (66%) in the three combination models for four scores. 
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Figure 5. The performance in the training and validation set of the combination methods compared to 
the single prognostic scores. 
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Table 6. Results for the combination models in the training and validation set. 

   Training Performance 10 Fold Cross-Validation Testing Performance 

Model ID Machine learning Inputs Accuracy G-mean F-score Accuracy G-mean F-score Accuracy G-mean F-score 

1 Meta decision trees.  [33]  Sokal, Hasford, EUTOS  0.78 0.46 0.35 0.75 ±0.11 0.16±0.35 0.51±0.33 0.55 0.4 0.34 

2 Support vector machine [34]  Sokal, Hasford, EUTOS 0.80 0.53 0.44 0.76±0.08 0.21±0.34 0.20±0.32 0.55 0.4 0.34 

3 K-nearest neighbor [32]  Sokal, Hasford, EUTOS  1 1 1  0.69±0.18 0.46±0.42 0.40±0.37 0.55 0.47 0.33 

4 Naive Bayes [32] Sokal, Hasford, EUTOS 0.52 0.58 0.47 0.50±0.23 0.38±0.34 0.53±0.25 0.55 0.4 0.34 

 
Table 7. Results for the combination models in the training and validation set after adapting the newly incoming information. 

   Training Performance 10 Fold Cross-Validation Testing Performance 

Model ID Machine learning Inputs Accuracy G-mean F-score Accuracy G-mean F-score Accuracy G-mean F-score 

5 Meta decision trees.  [33]  Sokal, Hasford, EUTOS 

ELTS  

0.77 0.57 0.46 0.70 ±0.23 0.33 ±0.43 0.31 ±0.41 0.66 0.52 0.4 

6 Support vector machine [34]  Sokal, Hasford, EUTOS ELTS 0.83 0.64 0.58 0.75 ±0.07 0.07 ±0.30 0.41 ±0.28 0.66 0.52 0.4 

7 K-nearest neighbour [32]  Sokal, Hasford, EUTOS 

ELTS 

1 1 1 0.57 ±0.20 0.21 ±0.31 0.20 ±0.27 0.66 0.66 0.57 

8 Naive Bayes [32] Sokal, Hasford, EUTOS 

ELTS 

0.58 0.63 0.52 0.50 ±0.19 0.44±0.32 0.43±0.26 0.55 0.57 0.5 
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 External validation of the final models 1 

The generalization behavior in the testing set led to a further investigation of the 2 

combined methods in an external set. We compared our recommended model support vector 3 

machine from the four score combination set to resolve the conflict prognoses generated by 4 

the prognostic scores on unseen data from the KFSHRC. The 103 patients included 65 5 

patients from the conflict group. 6 

 7 

 8 

Figure 6. Comparison between combined model performances and single score systems in an external dataset. 9 

Figure 6 shows that the support vector machine model correctly identified the risk 10 

group with an accuracy of 69% for the conflict group, while the meta decision tree achieved 11 

a performance similar to the Hasford score. Overall, most combined methods outperformed 12 

the accuracy performance of a single score, except for the K-nearest neighbor model. 13 

Discussion 14 

When dealing with CML, there is a range of validated prognostic scores established 15 

to help clinicians identify risk categories. However, current prognostic risk scores can 16 

provide conflicting prognoses in some cases, depending on the patient’s profile. Thus, it is 17 
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desirable to achieve consistency among prognostic scores. This paper provides evidence that 18 

using combined score models could resolve inconsistencies between prognostic scores in 19 

conflict patients and outperform individual prognostic scores.  20 

Learning how to deal with patients who have conflicting prognoses was the focus of 21 

this study. Previous studies have compared the prognostic value of validated scoring systems 22 

for overall survival, event free survival, or optimal response for CML patients who receive 23 

frontline imatinib, and then have recommended the best score. However, the problem of 24 

identifying risk in the group of patients with conflicting risk scores (conflict patients) has 25 

remained unsolved. This study used combination models to resolve conflicts in decision 26 

making. 27 

These combined methods performed quite well in the conflict group. The suggested 28 

models were the combination scores using meta decision tree and support vector machine. 29 

The resulting structure can be used by other health organizations. Comparisons of the test 30 

data showed that the combined models had not achieved a high performance but were similar 31 

to a single score performance. The external validation data showed that the recommended 32 

model outperformed the single scores in the conflict group. Thus, the combined method can 33 

identify a risk group among conflict patients.  34 

In clinical practice, there are treatment guidelines that have been published by the 35 

National Comprehensive Cancer Network [42],   European Society of Medical Oncology 36 

[43], and European LeukemiaNet (ELN) [30]. Clinicians must specify their prognostic score 37 

based on their preferences for each patient. Clinicians must determine risk groups by using 38 

either Sokal [3], Hasford [4], or EUTOS [5] scores to distinguish high-risk patients who may 39 

need more aggressive initial imatinib or other TKIs (nilotinib and dasatinib) therapies that 40 

are available for frontline treatments. However, these approaches do not guarantee an 41 

optimal result and do not involve the information from all existing prognostic score systems. 42 
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Among patients who generated inconsistent risk indexes, our recommended 43 

combination methods correctly predicted the risk for 60 CML patients based on their 44 

molecular risk profiles. Although a comparative study [7] showed a conflict in the risk 45 

indexes of 22 patients, the study recommended one score as better than the others based on 46 

single prognostic score accuracy. Another study of 255 CML patients demonstrated conflict 47 

in 27 patients identified by the EUTOS score as high risk, but not by the Hasford score. 48 

Additionally, 17 CML patients were identified as low or intermediate risk by the Sokal score 49 

but as high risk by the EUTOS score. Thus, our study analyzed more CML patients and 50 

proved that conflict is a common problem.   51 

 Therefore, to detect a conflict between current validated scoring systems for CML, 52 

our study contributed to updating the current guidelines when the prognostic scores generate 53 

conflicting prognoses for the same patient. Our study analyzed the patients by fusing 54 

consistency tests and developing combined models to resolve conflicts between prognostic 55 

scores in patients with conflicting prognoses. We reached the same findings regarding 56 

combining risk groups as the ELN [30], who recommended dividing patients into low-risk 57 

(including intermediate) and high-risk populations in the management of CML. 58 

  Most of combined models outperformed single score performance in conflict 59 

patients. Cross-validation performance in the training sets showed that combining individual 60 

prognostic scores by the mean achieves better accuracy with fewer training sets (nine-fold 61 

rather than a full training set) than single scores. This leads to the conclusion that combined 62 

methods are more robust than single score performances. However, performance accuracy 63 

was not always significantly improved.  64 

Strengths and limitations 65 

  As no single prognostic score is accurate, prognostic scores are judged by their 66 

utility. To our knowledge, no study has applied methods for resolving conflict or combined 67 

methods for prognostic scores to improve the quality of treatment decisions. The strength of 68 
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our study comes from combined models used in a conflict group of 60 CML patients. The 69 

models can be validated on another single or multicenter cohort once data for the prognostic 70 

scores become available. 71 

   This study contains common algorithm limitations because we focus on four 72 

common machine-learning techniques to combine prognostic scores at the classifier level. 73 

However, these methods do not always give an optimized solution. For example, we selected 74 

k in the K-nearest neighbor method based on the lowest misclassification rate as suggested 75 

by trial and error. In addition, computation procedures for performance are usually 76 

performed on training data and can initially recommend a weaker or stronger technique. 77 

However, using different datasets may lead to different conclusions, as these methods are 78 

data-driven. The majority vote analysis is the first attempt clinicians make to overcome 79 

conflicting observations in prognosis risk indexes when the number of the prognostic score 80 

(L/2)+1 can give a majority vote. Otherwise, the use of a weighed majority vote [32] might 81 

assist in resolving conflict. However, they are not always accurate in predicting and correctly 82 

identifying actual outcomes.  83 

 Future work has been grouped under two views: the use evolving intelligent systems 84 

and further application of combined models. First, the more that new prognostic scores are 85 

made available, the more demand to validate and test their consistency with existing 86 

prognostic scores. Evolving intelligent systems have been introduced that use online learning 87 

algorithms that acquire knowledge from data, perform advanced model structuring for data 88 

mining tasks and parameters, change system features or components over time, and develop 89 

knowledge in a system over time [44]. The evolving intelligent system must respond to 90 

changes in knowledge and deal with the scope of the problem through automated behavior.  91 

 Future studies should ideally conduct randomized controlled clinical trials to 92 

determine whether our combined models clinically improve patients risk identification in 93 

conflict patients. It is also important to study other medical outcomes for conflict patients, 94 
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specifically whether those patients need specific treatment based on their overall survival, 95 

event free survival, or type of mutation. 96 

  97 
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Linking Chapter 4 and 5: 223 

Treatment of patients with CML has become increasingly difficult in recent years 224 

due to the variety of treatment options available and the challenge of deciding on the most 225 

appropriate treatment strategy for an individual patient. The previous papers, “Consistency 226 

Test between Scoring Systems for Predicting Outcomes of Chronic Myeloid Leukemia in a 227 

Saudi Population,” and “Combined Value of Validated Prognostic Scores and Resolving 228 

Conflict in Allocation to Risk Groups in Chronic Myeloid Leukemia Patients,” were used to 229 

determine the risk groups for CML patients; however, considering the available treatment 230 

options, there are no published criteria for selecting the appropriate treatment. Therefore, 231 

predicting the molecular response and identifying the relationship between predictive 232 

factors, such as peripheral blood counts and molecular based and clinical based data, is a 233 

step forward in managing CML treatment.  234 

In the following paper, entitled “Modelling Predictors of Molecular Response to 235 

Frontline Imatinib for Patients with Chronic Myeloid Leukaemia” we described our CML 236 

study in great detail. Within this study, we explain the nature of CML, how it usually 237 

develops, and the genes and chromosomes that are typically associated with the disease. 238 

Along with a thorough description of CML, the paper examines predictive factors and 239 

treatment methods that could be used in addressing the ever-growing problem of how to treat 240 

CML due to the large number of treatment options available for clinicians to use. In the 241 

Introduction, molecular monitoring is identified as the standard guide to the clinical 242 

management of CML. In the related works section of this paper, we define and discuss 243 

predictive factors and how they are used to predict treatment responses, including how 244 

predictive factors are related to MMR responses, how other factors depend on peripheral 245 

blood counts, how to select the most effective TKI therapies at the time of a diagnosis, and 246 

more. The Related Works Section of the paper also contains tables, definitions, and 247 
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discussions about the two common descriptive assays and the three common prognostic 248 

scoring systems used to identify CML patient risk groups. In the materials and methods 249 

section, the datasets, predictive factors, missing data, machine learning methods, and other 250 

methods used during the investigation are discussed in great detail. Near the end of the paper, 251 

in the Results Section, we explain how the number of patients and their various outcomes 252 

were reported in the TIDEL II dataset. We also describe our methods of data preparation for 253 

analysis and demonstrate the predictive factors associated with MMR while extracting the 254 

rules for prediction. The Results Section gives insight into the data collected and 255 

manipulated during the study, how any missing values were handled, and the method used 256 

to select predictive factors. In the paper, we determined that common prognostic scores yield 257 

similar results in sensitivity performance and therefore are good predictors for our 258 

designated positive group that was used during the study. We also found that the study’s 259 

limitations included the fact that prior knowledge may change due to varying expert 260 

opinions.  Finally, we elaborate on the research and planning methods that were used during 261 

the study. The Discussion Section will also shed light on the results of the study and how 262 

they can be applied in future clinical trials and professional clinical use. 263 

This paper has investigated deeper into the study of CML, how it can be treated, and 264 

how the molecular responses of individuals can affect how their treatment plans are created. 265 

  266 
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Chapter 5: Modelling Predictors of Molecular Response to 267 

Frontline Imatinib for Patients with Chronic Myeloid Leukaemia 268 
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Abstract

Background

Treatment of patients with chronic myeloid leukaemia (CML) has become increasingly diffi-

cult in recent years due to the variety of treatment options available and challenge deciding

on the most appropriate treatment strategy for an individual patient. To facilitate the treatment

strategy decision, disease assessment should involve molecular response to initial treatment

for an individual patient. Patients predicted not to achieve major molecular response (MMR)

at 24 months to frontline imatinib may be better treated with alternative frontline therapies,

such as nilotinib or dasatinib. The aims of this study were to i) understand the clinical predic-

tion ‘rules’ for predicting MMR at 24 months for CML patients treated with imatinib using clini-

cal, molecular, and cell count observations (predictive factors collected at diagnosis and

categorised based on available knowledge) and ii) develop a predictive model for CML treat-

ment management. This predictive model was developed, based on CML patients undergo-

ing imatinib therapy enrolled in the TIDEL II clinical trial with an experimentally identified

achieving MMR group and non-achieving MMR group, by addressing the challenge as a

machine learning problem. The recommended model was validated externally using an inde-

pendent data set from King Faisal Specialist Hospital and Research Centre, Saudi Arabia.

Principle Findings

The common prognostic scores yielded similar sensitivity performance in testing and valida-

tion datasets and are therefore good predictors of the positive group. The G-mean and F-
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Introduction  

score values in our models outperformed the common prognostic scores in testing and vali-

dation datasets and are therefore good predictors for both the positive and negative groups.

Furthermore, a high PPV above 65% indicated that our models are appropriate for making

decisions at diagnosis and pre-therapy. Study limitations include that prior knowledge may

change based on varying expert opinions; hence, representing the category boundaries of

each predictive factor could dramatically change performance of the models.

Introduction

Chronic myeloid leukaemia (CML) is a malignant blood cancer that results in overproduction
of myeloid cells in bone marrow, leading to significant increase in the number of immature
white cells circulating in an affected person’s blood. The causative chromosomal translocation,
known as the Philadelphia chromosome (Ph), in CML gives rise to the BCR-ABL1 gene,
which encodes for the constitutively active tyrosine kinase Bcr-Abl [1]. The need for personal-
ised medicine in CML refers to multiple active tyrosine kinase inhibitor (TKI) therapies avail-
able for CML, multiple strategies utilised for frontline CML therapy, and heterogeneity in
responses. The first generation TKI, imatinib (IM) (Glivec1), is a standard strategy used over
the past decade [2], but some patients exhibit a poor response to this therapy. These patients
may benefit from a second generation TKI, such as nilotinib (NIL) (Tasigna1) or dasatinib
(DAS) (Sprycel1). Each of these TKIs are currently approved for use as frontline treatment in
CML. Therefore, frontline CML therapy occurs via one of two major strategies: i) frontline IM
or ii) frontline second generation TKIs, such as NIL or DAS[3]. Hematologic, cytogenetic, and
molecular strategies for monitoring patient responses to therapies are used by European Leu-
kaemiaNet [4]. To monitor molecular response, real-time quantitative polymerase chain reac-
tion (RQ-PCR) is used to quantify the level of BCR-ABL1mRNA transcripts in peripheral
blood of patients. According to the international scale, the two main molecular responses are
major molecular response (MMR; BCR-ABL1 transcript! 0.10%) and complete molecular
response (CMR; BCR-ABL1 transcripts not detectable). Molecular monitoring is considered a
standard guide to clinical management in CML [5, 6]. Prediction of the long-term molecular
response to frontline IM in CML can support clinicians to select optimum treatment protocols
for CML patients. Patients predicted not to achieve MMR at 24 months may be better treated
with alternative frontline therapies, such as NIL or DAS.

The application of machine learning in medicine reduces the gap between clinical research
and clinical practice. This type of model may be useful for clinicians in decision-making by
warning of specific problems or providing treatment recommendations [7]. There is a need to
adapt machine learning technology to deal with the high complexity of the medical domain.
Coping with the complexity of cancer patient management, we used machine learning to drive
hidden information and transfer evidence into practice. Incorporating prior domain knowl-
edge and raw data into machine learning algorithms makes the best use of information from
various data sources. Using machine learning algorithms as a ‘white box’ model results in eas-
ier and more interpretable mathematical models that lead to simple and clear decisions. The
decision is generated on the basis of expert experience. Thus, it is important to incorporate
prior knowledge to classify medical data and identify the relation between different predictive
factors.

CML treatment predictive models emulate the decision-making ability of a human expert
and provide recommendations for clinicians based on early prediction of patient molecular
responses to specific treatment. Thus, predictive models predicting MMR to TKI therapy from

Predicting Molecular Response in CML
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Related Work 
Table 1 The current predictive assays and score systems, the factors included in score systems and the 

methods used; the target prediction and final results.  

  a CML patient’s clinical, molecular, and blood count factors at diagnosis have the potential to
support clinicians manage CML treatment more effectively. This study aimed to i) understand
whether there exist rules for predicting MMR at 24 months for CML patients treated with IM
from the clinical, molecular, and cell count observations collected at diagnosis and categorised
based on the available knowledge and ii) build a predictive model to predict MMR for IM in
CML patients with better prediction results than those obtained with predictive assays and pre-
vious scores. CML patients predicted not to achieve MMR at 24 months may be better treated
with alternative frontline therapies, including second generation TKIs, such as NIL and DAS.

Related work

A predictive factor is a patient characteristic used to predict treatment response [8]. Predictive
factors related to MMR response include common molecular assays. Other factors depend on
peripheral blood counts as well as molecular-based and clinical observations of the individual
patient. In order to select the most effective TKI therapy at the time of diagnosis, various pre-
dictive factors in CML have been investigated to distinguish patients at increased risk of failure
with IM, the first generation TKI [9–12]. Table 1 shows the current predictive assays and score
systems, factors included in the score systems and methods used, target prediction, and pub-
lished results.

Two common predictive assays, namely OCT-1 activity (OA)[13, 18, 19] and IC50IM[14],
have been studied to distinguish CML patients likely to achieve a good molecular response to
IM. CML patients with the b3a2 BCR-ABL1 transcript type, compared to those with the b2a2
transcript, demonstrate greater survival rates, while CML patients with the p190 transcript
type are classified as high risk [20, 21].

Three common prognostic scoring systems have been developed to identify CML patient
risk groups: the Sokal [15], Hasford [16], and European Treatment and Outcome Study
(EUTOS)[17] scores. The Sokal score is derived using age, spleen size, platelet count, and
peripheral blood blasts; the Hasford score also uses peripheral blood eosinophil and basophil
percentage; and the EUTOS score is based on percentage of basophils and spleen size. These
three scores ascertain the level of risk for CML patients by running multivariable regression
analysis. However, these scoring systems were developed in the era when chemotherapy was
the only therapy available. The EUTOS score was developed to predict cytogenetic response to
IM therapy and failed to predict MMR[22]. Although prognostic scores are currently used to

Table 1. The current predictive assays and score systems, the factors included in score systems and themethods used; the target prediction and
final results.

Previous methods

Study Factors Method Target prediction Data and Results

White et al. [13] OA (ng/200,000 cells) Kaplan Meier
Analysis

MMR by 60 months to
IM

TIDEL I clinical trial (n = 56), High OA: 89%,
and low OA: 55%

White et al. [14] IC50IM (μM) Kaplan Meier
Analysis

MMR by 12 months to
IM

TIDEL I clinical trial (n = 116), Low IC50IM:
65%, and High IC50IM: 39%

Sokal Score,
Sokal et al. [15]

Age, spleen Size (cm), blast (%), and
platelets (109/L)

Multivariate
analysis of survival

Risk groups to
chemotherapy

Six European and American sources
(n = 813), Low 39%, intermediate 38%, and
high 23%

Hasford Score,
Hasford et al. [16]

Age, spleen size (cm), blasts (%),
eosinophils (%), basophils (%)and
platelets (109/L)

Multivariate
analysis of survival

Risk groups to
interferon alpha alone

14 studies (n = 981), Low 40.6%,
intermediate 44.7%, and high 14.6%

EUTOS Score,
Hasford et al. [17]

Basophils (%) and spleen Size (cm) Multivariate
analysis of
response

CCgR at 18 months to
IM

Five national study group (n = 2060), Low
79%, and high 21%

doi:10.1371/journal.pone.0168947.t001
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Materials and Methods 
Dataset 

Predictive Factors 

Impute Missing Data  
personalise the care of CML patients by predicting response to therapy, they were developed
either for identifying risk groups or for predicting cytogenetic response to therapy, but not for
molecular response.

A recent study investigated the possible association between molecular response and a
number of factors, such as Sokal score, age, sex, and IM dose [23], and found that female sex is
a strong predictor. A recent review of biomarkers that determine prognosis in CML also pre-
sented a list of prognostic indicators at diagnosis, such as the three scoring systems, BCR-ABL1
transcript type, and OA[24]. However, to our knowledge, relations between predictive factors
to predict molecular response have not previously been considered.

Materials and Methods

Dataset

Patients from the Therapeutic Intensification in De Novo Leukaemia (TIDEL II) [25] clinical
trial were eligible for the study. Two sequential cohorts of 105 CML patients (total of 210)
received IM 600 mg as the initial therapy. All patients were in chronic phase and monitored for
time-dependent molecular response targets. For the long-term prediction, we considered achiev-
ing a BCR-ABL1 transcript level! 0.1% at 24 months using RQ-PCR.When CML patients failed
to achieve molecular response targets, they were either dose-escalated to 800 mg IM or switched
to NIL. Where intolerance or toxicity to IM was observed, patients were switched to NIL.

Patients enrolled in the TIDEL II trial were divided into two broad outcome groups: i) posi-
tive outcome (CML patients able to remain on IM and achieve target MMR at 24 months),
and ii) negative outcome (CML patients who did not achieve MMR at 24 months on IM
therapy). This study used inclusion and exclusion criteria; pregnant patients were excluded.
Patients found to be intolerant to IM, who switched to NIL and then achieved MMR at 24
months, were removed from analysis as they could not be assessed as MMR failures to IM
because they may have switched for non-biological reasons. Patients who achieved MMR on
IM constituted the positive group and patients who did not achieve MMR on IM were consid-
ered the negative group, which included i) patients who did not achieve MMR at 24 months
on IM; ii) patients, who had a suboptimal response to IM, switched to NIL and went on to
achieve MMR at 24 months since MMR was not achieved by administering IM; and iii)
patients who received IM followed by NIL and did not achieve MMR at 24 months.

Predictive Factors

We investigated the relation between MMR at 24 months and common predictive factors in
the medical literature as mentioned in the Related Work section. Table 2 shows the list of pre-
dictive factors including description, factor type, and median with range values. All clinical,
molecular, and predictive assays and peripheral blood factors were collected at the time of
diagnosis, as follows: i) clinical factors: age, gender, and spleen size measured in centimetres
below the costal margin; ii) molecular factors: BCR-ABL1 transcript level pre-therapy and
BCR-ABL1 transcript type; iii) predictive assays: OA and IC50IM; and iv) peripheral blood fac-
tors: white cell count (WCC), absolute neutrophil count (ANC), and eosinophil, basophil,
monocyte, lymphocyte, platelet, and blast counts.

Impute Missing Data

Missing values are a common problem in clinical trials. Medical data is usually collected for
specific purposes (diagnosis, monitoring or treatment) and medical research aims to achieve
desired outcomes by designing clinical studies to test and validate specific medical hypotheses.

Predicting Molecular Response in CML
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Table 2 Predictive factor descriptions, factor type and median with range values 

  

Medical data may involve incomplete data or missing values which may be caused by a lack of
information or discontinuation of study. There are three types of missing data: missing com-
pletely at random (MCAR), missing at random (MAR) and missing not at random (MNAR).
In the first type, MCAR, the absence of predictive factors value is unrelated to the outcome or
other predictive factors, while the second type, MAR, the missing predictive factor is not
related to missing values but may be related to observed data. The third type, MNAR, is con-
sidered non-ignorable missingness where the predictive factor missing value depends on the
factor itself [26]. We aimed to have high quality predictive performance on average for all
future cases using the population-based model, in contrast to the construction of patient-spe-
cific models, which are influenced by the particular predictive factor of the patient case at
hand. Our population-based model is commonly used to perform well on average in all future
cases. Therefore, we considered 10% as the cut-off for including a predictive factor in the anal-
ysis, since removing patient data has the undesired effect of reducing patient datasets, thus
affecting the performance of the learned predictive model [27]. Missing data were treated
using imputation [28] and not by removing patients who might carry information for predic-
tion from other molecular data available. In imputation techniques, missing values are re-
placed with values estimated from suitable statistical methods based on information available
in the dataset. For example, the imputation of missing values for blood counts were derived

Table 2. Predictive factor descriptions, factor type andmedian with range values.

Factors Description Type Median
(Range)

Age (years) Clinical factor recorded at the time of diagnosis Continuous 49 (17–81)

Gender Clinical factor recorded at the time of diagnosis Categorical

Spleen (cm) Clinical factor measured by observation at diagnosis Continuous 3.8 (0–30)

BCR-ABL1 Transcript Type Genetic factor identified by quantitative PCR analysis to BCR-ABL1. Transcript b2a2 or
b3a2 is distinguished only by the absence of 75 nucleotides. Both b2a2 and b3a2 occur in
patients with linked polymorphisms within exon 13 (b2) and intron 13 of the BCR gene.

Categorical

OA (ng/200,000 cells) The OCT-1 protein activity as a protein function can be measured by uptake in the presence
and absence of a specific OCT-1 inhibitor in mRNA.

Continuous 4.7 (0–16.32)

IC50IM (μM) Biological factor measured as the concentration of IM producing a 50% decrease in the
level of p-Crkl.

Continuous 1 (0.2–4.5)

BCR-ABL1 level pretherapy
(at diagnosis)

Real-time quantitative polymerase chain reaction (RQ-PCR) can measure the level of
BCR-ABL1 transcripts in the peripheral blood of the patient.

Continuous 107.14 (1.96–
969)

ANC (109 /L) Biological factor (neutrophil, granulocytes) that can be measured from peripheral blood Continuous 32.59 (0.5–
219.2)

Monocytes (109 /L) Biological factor in white blood cells that can be measured from peripheral blood Continuous 1.7 (0–13.02)

Lymphocytes (109 /L) Biological factor in white blood cells that can be measured from peripheral blood Continuous 3.37 (0–13.9)

Basophils (109 /L) Biological factor in white blood cells that can be measured from peripheral blood Continuous 2.16 (0–
38.89)

Eosinophils (109 /L) Biological factor in white blood cells that can be measured from peripheral blood Continuous 1.11 (0–
17.81)

WCC (109 /L) Biological factor and important cells in CML that can be measured from peripheral blood. Continuous 49.6 (1.1–
353.50)

Blasts (109 /L) Biological factor that can be measured from peripheral blood Continuous 1.27 (0–13.9)

Platelets (109 /L) Biological factor that can be measured from peripheral blood Continuous 485 (91–
1219)

Sokal Score[15] Risk score developed in 1984 Continuous 1 (0.45–8.08)

Hasford Score[16] Risk score developed in 1998 Continuous 801 (0–
2137.6)

EUTOS Score[17] Risk score developed in 2011 Continuous 46.94 (0–
228.5)

doi:10.1371/journal.pone.0168947.t002
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Reformatting Predictive Factors Using Domain Knowledge 

Machine Learning Methods   

from known values of blood count range, and the effect of missing data on estimate of variance
was beyond the scope of this study. We used linear interpolation [29] values to impute contin-
uous and categorical data. We used the impute command in SPSS to replace missing values
with linear interpolation estimation values from the last valid value before the missing value
and the first valid value after the missing value. The corresponding correlation values for the
original dataset (with missing values) and completed dataset (without missing values) were cal-
culated to indicate whether imputation affected the dataset.

Reformatting Predictive Factors Using Domain Knowledge

We reformatted factor values of data stored as text, numerals, or mixed type using existing knowl-
edge, such as standard boundaries of blood counts, domain knowledge of clinical expertise, and
previous medical publications [13, 14, 30]. Although the selected machine learning techniques
have the capacity to handle continuous predictor values, reformatting the data by categorising
each factor in the TIDEL II dataset into subgroups assisted comprehensibility of the final predic-
tive model [31]. For example, we categorised the value of IC50IM equal to 0.5 μM as low IC50IM

and reformatted the index number of the category. If the final model selected IC50IM as a relevant
predictive factor, we used these categories to distinguish the predictive group on test patients.

Machine Learning Methods

The main goal was to produce a useful predictive model that is understandable for all users.
Machine learning, such as SVM and neural networks, are difficult to interpret, while logistic
regression and naive Bayes allow easy interpretation of results. However, the main issue with
these algorithms are the strong assumptions of conditional independence between predictive
factors. They also assess the contribution of each predictive factor to classification, but not the
relations. The k-nearest neighbours[32] technique is another well-known machine leaning algo-
rithm, but it is sensitive to local structure of data. Classification and regression trees (CART)
[33] tend to be easily interpreted by clinicians. This method has the ability to learn relationships
between predictive factors and molecular response. The importance of a clear predictive model
stems from the need to trust the computation to predict response. In addition, clinicians need
to understand model recommendations to explain the reasons for their decision [31].

CART is a binary recursive partitioning process capable of processing continuous and cate-
gorical data as predictors or outcomes. The CARTmechanism produces the optimal tree after
pruning based on a cost function to avoid overfitting in the maximal tree. The steps are pro-
vided below for the basic algorithm of a decision tree, previously having been described in [33]:

1. The top-down recursive and divide-and-conquer style is used to construct the tree.

2. The root node is located in the top-most node of the tree.

3. Each node denotes a test on a factor and each branch indicates an outcome of the test,
where the leaf nodes represent classes. For selected factors, the data are recursively parti-
tioned. Here, a splitting criterion called the Gini Impurity Measure is used to determine
the best split in each node.

4. For given node t, the Gini index calculates the relative frequency of class c at node t as in
(1):

GiniðtÞ ¼ 1$
X

c

½pðcjtÞ&2 ð1Þ

The following scenarios demonstrate the possible indication of using the Gini index

Predicting Molecular Response in CML

PLOSONE | DOI:10.1371/journal.pone.0168947 January 3, 2017 6 / 23



	

	 	 145	

Predictive Factor Selection  

measure. In the worst scenario, patient outcomes in training data using the examined split value
of predictive factor are equally distributed between both classes at the node that maximises Gini
value to indicate the least interesting information. However, in the best scenario, the minimum
Gini value is the most interesting information for ascertaining when all patient outcomes in
training data belong to one class using the examined split value of predictive factor [34].

5. The following three conditions are used to stop splitting:

• For the given node, all the tested data belong to the same class.

• No factors remain for splitting.

• No tested data are left for splitting

The starting point for this paper was a predictive model developed from a training set of
patient cases. We used CART for re-expressing the decision tree as a clearly expressed set of
clinical prediction rules that in the (IF..Then form) to identify relation between predictive fac-
tors and patient outcomes. CART has the ability to learn complex and non-linear relationships
between factors and the response. The decision tree structure represented the extracted pro-
duction rules [35]. Classifying a patient using a decision tree is effected by following a path of
predictive factors through the tree to one of the leaves (patient response). This path from the
root of the tree to a leaf establishes conditions which must be satisfied by any patient classified
by that leaf. Thus, each leaf of a decision tree corresponds to a prediction rule. These rules are
easier and lead to simple and clearer decisions which are more interpretable by clinicians than
‘black box’ mathematical models, such as SVM. The decision is generated on the basis of expert
experience. The prediction rules were in the form, IF A is S1AND B is S2. . . THEN Response
is X, where A and B are the predictive factors, S1 and S2 are the subcategories that belong to A
and B, and X is the class (achieving MMR or not achieving MMR).

Predictive Factor Selection

Prior to using the machine learning algorithm feature selection, algorithms were often used to
select a relevant subset of input features (in our problem, a subset of predictive factors to deliver
a highly predictive model) [36, 37]. This is also very important in the context of healthcare costs
where fewer input factors imply fewer diagnostic tests to obtain relevant predictive factors [38].
We also need to extract relations between the most related predictive factors and to understand
whether prediction rules exist. We divided the feature selection process into two main types:

i) Knowledge-driven method for feature selection, such as existing medical knowledge
regarding the predictive factor as an informative feature or clinical expert judgment on molec-
ular factors associated with predicting MMR, known as manual feature selection [39],
including

• Predictive assays: OA, IC50IM.

• Molecular predictive factors: OA, IC50IM, BCR-ABL1 transcript level pre-therapy,
BCR-ABL1 transcript type.

ii) Data-driven methods for feature selection, known as automatic feature selection. We
used the wrapper approach[40] where all subsets of features are evaluated using a given
machine learning approach. The models resulting from the wrapper with each machine learn-
ing algorithm i were i = 1,2,. . .2n, where n is the number of predictive factors. CART was run
on the training data repeatedly using those subsets where predictive factor selection was only
in the root node.

Predicting Molecular Response in CML
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Evaluation Measurements 

Nested Cross-Validation  

Evaluation Measurements

Performance of predictive models was measured by using a coincidence matrix. The problem
was presented as a binary classification where the test outcome was positive (achieved MMR)
or negative (did not achieve MMR). Results were divided into four conditions: (a) CML
patients correctly identified as not achieving MMR (‘True negative’ (TN)); (b) patients achiev-
ing MMR wrongly identified as not achieving MMR (‘False negative’ (FN)); (c) patients cor-
rectly identified as achieving MMR (‘True positive’ (TP)); and (d) patients not achieving MMR
wrongly identified as achieving MMR (‘False positive’ (FP)). We reported ‘accuracy, sensitiv-
ity, specificity, positive predictive value (PPV), and negative predictive value (NPV) using the
following Eqs (2–6):

Accuracy ¼ TPþ TN
TPþ TN þ FP þ FN

ð2Þ

Sensitivity ¼ TP
TPþ FN ð3Þ

Specificityy ¼ TN
TN þ FP

ð4Þ

PPV ¼ TP
TPþ FP

ð5Þ

NPV ¼ TN
TN þ FN

ð6Þ

All predictive models were trained to minimise misclassification rate between predicted
MMR and actual MMR. In our predictive model, data were imbalanced in the positive and
negative patient groups. Two measures, G-mean (geometric mean) and F-score (weighted har-
monic mean of sensitivity and PPV), have often been used to assess performance of a predic-
tive model trained on imbalanced data as in (7 and 8):

G%mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity & Specificity

p
ð7Þ

F % score ¼ 2 & Sensitivity & PPV
Sensitivityþ PPV

ð8Þ

It is important to measure the balance between sensitivity and specificity, which means the
model correctly predicted both response groups (achieving MMR or not achieving MMR). We
also reported PPV (probability that a patient achieving MMR was correctly predicted to
achieve MMR) because high PPV means that few patients will be unpredicted, which is crucial
when making decisions in diagnosis pre-therapy. The PPV was calculated from the study test
data population, in which the prevalence was 48%.

Nested Cross-Validation

In traditional cross-validation, 10% of data (1 fold) is used for testing and the remainder
for training (9 folds), with training and testing performance repeated 10 times. Standard devia-
tion of performance of the 10 predictive models was estimated, considering they were inde-
pendent. The confidence interval was obtained from the mean and standard deviation at 95%

Predicting Molecular Response in CML
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Model Selection 

External Validation Dataset 

Ethics Statement 

Results  
confidence level. The summary of test performances calculated on unseen folds was considered
as the final performance.

However, when data are scarce, an extra layer of cross-validation should be performed.
Since the test set cannot be touched (it is saved to evaluate the final models), new cross-valida-
tion was conducted on the training set. This technique is known as nested cross-validation
[41]. In this case, we separated the training set into training and validation (~75%). The
remaining 25% was used as the testing set. The model was trained on the training set; features
were selected on the validation set; and performance was evaluated on the test set. We treated
inner cross-validation as part of the model fitting procedure. To avoid overfitting, we com-
pared the difference between training performance and inner cross-validation of the selected
model. This procedure may be a good estimator of error for finding the best predictive model
and predictive factor selection [42]. Finally, we reported accuracy, sensitivity, specificity, PPV,
NPV, G-mean, and F-score of the testing set.

Model Selection

To compare resulting models we used the G-mean and F-score as criteria for model selection.
The wrapper approach often needs evolutionary calculations, leading to extensive processing
expense. Here, we ranked the resulting models based on G-mean and F-score measurements
and selected the highest values.

The last step in our method was to compare the models generated using different feature
selection techniques with current predictive assays and score systems (Table 1) based on G-
mean and F-score performance to make a final recommendation. The full procedures are
shown in (Fig 1), which is the schema of the CML predictive model.

External Validation Dataset

The external dataset was obtained from a tertiary care hospital, King Faisal Specialist Hospital
and Research Centre (KFSHRC), Riyadh, Saudi Arabia. There were 172 adult CML patients
who used frontline TKI[43]. Only patients using frontline IM with observed MMR at 24
months were selected. We performed pre-process steps to prepare the dataset for validation.
We applied inclusion and exclusion criteria, imputed missing values and reformatted predic-
tive factors using domain knowledge. We used evaluation measurements on predicted
response by the recommended model versus observed response: accuracy, sensitivity, specific-
ity, PPV, NPV, G-mean, and F score.

Ethics Statement

The data were analysed anonymously. All study participants provided written informed
consent prior to participation. The TIDEL II trial is registered at www.ANZCTR.org.au as
ACTRN12607000325404 and funded by Novartis Australia. The TIDEL II was carried out
with the approval of human research ethics committees (RAH Protocol No 070718c, and ethi-
cally approved by the National Statement on Ethical Conduct in Human Research (NHMRC),
2007 and in accordance with the Declaration of Helsinki. The KFSHRC data ethically ap-
proved by Clinical Research Committee (CRC) and Research Ethics Committee (REC), 2005,
Research Advisory Council (RAC) reference: ORA/1811/26, Proposal No 2051056.

Results

In this section, we first report the number of patients for various outcomes in the full TIDEL II
dataset. Then, we describe data preparation for analysis, including imputing missing values

Predicting Molecular Response in CML
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Fig 1. The schema for the CML predictive model, building, evaluation, and final model selection.   

and reformatting predictive factors using domain knowledge. We reveal predictive perfor-
mance of the machine learning technique and the effect of feature selection methods on select-
ing the final model. We also present evaluation results on unseen data based on a comparison

Fig 1. The schema for the CML predictivemodel, building, evaluation, and final model selection. To build
the predictive model, we studied a clinical trial, preparing data for analysis by imputing missing values and
reformatting factors using comprehensive standard boundaries to create subcategories for each predictive factor
based on domain knowledge. For evaluation and final model selection, the nested design was used to split the
dataset into training, validation and testing sets. Themodel was trained on the training set, features were selected
on the validation set, and performance was evaluated on the test set. The final models were compared with
previous methods.

doi:10.1371/journal.pone.0168947.g001
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Insight into the Data 

Imputation for Missing Values 

Reformat Predictive Factors Using Domain Knowledge 

Predictive Factor Selection and Prediction Results  
with previous methods. Finally, we demonstrate the strong predictive factors associated with
MMR at 24 months and extract the rules for prediction.

Insight into the Data

In the TIDEL II clinical trial, among the 210 patients and under the inclusion/exclusion criteria,
analysis included 173 (82.3%) CML patients. A positive outcome was observed in 102 (48.5%)
patients able to remain on IM and achieve the target of MMR at 24 months (positive outcome),
compared with 71 (33.8%) patients showing a negative outcome. The remaining 37 (34.7%)
patients were excluded from analysis due to pregnancy or intolerance to IM, who were switched
to NIL and then achieved MMR at 24 months. We split the TIDEL II cohort into training and
testing sets. The training set included 123 (58.5%) patients and was used for inner cross-valida-
tion; the remaining 50 (23.8%) patients (testing set) were utilised for comparison between
published predictive methods and our final models. The positive group was comprised of 76
training (74%) and 26 testing (26%) patients, while the negative group was compromised of 47
training (66%) and 24 testing (34%) patients. The 71 patients in negative group included i) 15
training and 4 testing of 19 (11%) patients who did not achieve MMR at 24 months on IM;
ii) 13 training and 6 testing of 19 (11%) patients who had suboptimal response to IM, were
switched to NIL and went on to achieve MMR at 24 months as MMR was not achieved by
administering IM; and iii) 19 training and 14 testing of 33 (19%) patients who received IM fol-
lowed by NIL and did not achieve MMR at 24 months. Additional details about the number of
patients in the study and inclusion and exclusion criteria are shown in Fig 2.

Imputation for Missing Values

Correlation coefficient results obtained with original data (with missing values) and complete
data (missing values imputed by linear interpolation) are presented in (Tables A-C in S1 Text).
We used the complete dataset for analysis. In TIDEL II, missing values were<10% as well as
the external validation dataset.

Reformat Predictive Factors Using Domain Knowledge

Knowledge was derived from standard boundaries of blood counts, clinical expertise, and pre-
vious medical publications [13, 14, 30]. The categories for each predictive factor used to trans-
form data into categorical data and number of patients are shown in Table 3.

Predictive Factor Selection and Prediction Results

The machine learning algorithm was trained for each feature selection method, once with all
features, once with molecular features, and once with all subsets using the wrapper approach.
In the wrapper approach, all subsets were trained to include different predictive factors. Here,
model selection criteria were accuracy, G-mean, and F-score, which resulted from inner cross-
validation performance on the training set. Predictive performance of feature selection meth-
ods with the machine learning technique on the training set is provided in Table 4. In the
table, training performance and inner cross-validation performance are also presented to show
fit of the models. Models A, B, and C have overfitting problems where training accuracy (A:
81%, B: 64%, C: 70%) is much larger than the cross validation mean of accuracy (A: 51%, B:
57%, C: 50%). However, the three models selected based on achieving high cross-validation
mean performances (accuracy, G-mean, F-score) achieved training accuracy (D: 78%, E: 77%,
F: 73%), compared with the cross-validation mean of accuracy (D: 76%, E: 75%, F: 76%); there-
fore, these were better models.

Predicting Molecular Response in CML
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Fig 2. TIDEL II patients in this study  

Comparison of Final Models and Previous Methods  

Comparison of Final Models and Previous Methods

Wemeasured performance on the testing set of single predictive assays commonly used to pre-
dict MMR (OA and IC50IM) and common prognostic risk scores (Sokal, Hasford, EUTOS)
(Table 5). OA achieved the highest accuracy (68%) compared with other previous methods
(IC50IM: 54%, Sokal: 58%, Hasford: 56%, EUTOS: 52%). However, Model D (accuracy: 72%)
outperformed OA (accuracy: 68%). Although, the Hasford score accurately predicted the posi-
tive group (those that achieved MMR at 24 months) with a sensitivity of 92%, and IC50IM

accurately predicted the negative group (those that did not achieve MMR at 24 months) with a
specificity of 75%, G-mean (IC50IM: 50%, Hasford: 39%) did not exceed that of OA (67%). The
three scores achieving high sensitivity (Sokal: 84%, Hasford: 92%, EUTOS: 84%) are therefore
good predictors of the positive group. The highest G-mean and F-score values among previous
methods were achieved by OA (G-mean: 67%, F-score: 69%). On the other hand, Models D, E,
and F had G-mean and F-score values that outperformed OA performance. In addition, our
models achieved PPV values better than previous methods. The PPV performances in our

Fig 2. TIDEL II patients in this study. Inclusion and exclusion criteria.

doi:10.1371/journal.pone.0168947.g002
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Table 3 The categories for each predictive factor used to transform data into categorical data and 

number of patients 

  
Table 3. The categories for each predictive factor used to transform data into categorical data and number of patients.

Factors Categories Patient in TIDEL II Patient in Saudi Population

No. of patient Patient % No. of patient Patient %

Age (years) Young!30 21 12.21% 36 33.03%

Middle Age>30,!60 104 60.47% 67 61.47%

Older>60 47 27.33% 6 05.50%

Gender Male 92 40.70% 45 41.28%

Female 118 59.30% 64 58.72%

Spleen (cm) Not palpable!1 99 57.56% 52 47.71%

Small >1,!10 44 25.58% 34 31.19%

Large >10 28 16.28% 23 21.10%

BCR-ABL1 Transcript Type b2a2 68 39.53% None None

b3a2 68 39.53% None None

Both 34 19.77% None None

e1a2 2 1.16% None None

OA (ng/200,000 cells) Low!4 80 46.51% None None

Standard >4 87 50.58% None None

IC50IM (μM) Group 1!0.5 19 11.05% None None

Group 2 >0.5!0.7 31 18.02% None None

Group 3 >0.7!0.95 31 18.02% None None

Group 4 >0.95 79 45.93% None None

BCR-ABL1 level pretherapy (at diagnosis) Low!20 8 4.65% None None

Moderate>20,!100 96 55.81% None None

High>100 66 38.37% None None

ANC (109 /L) Low <1.8 3 1.74% None None

Normal"1.8,!7.5 35 20.35% None None

High >7.5,! 50 97 56.40% None None

Very High >50 36 20.93% None None

Monocytes (109 /L) Low <0.2 16 9.30% 12 11.01%

Normal"0.2,!0.8 46 26.74% 23 21.10%

High >0.8 109 63.37% 74 67.89%

Lymphocytes (109 /L) Low <1 12 6.98% None None

Normal"1,!3.5 98 56.98% None None

High >3.5 61 35.47% None None

Basophils (109 /L) Normal!0.1 28 16.28% 30 27.52%

High >0.1,!1 76 44.19% 10 9.17%

Very High >1 67 38.95% 69 63.30%

Eosinophils (109 /L) Normal!0.5 91 52.91% 28 25.69%

High >0.5 79 45.93% 81 74.31%

WCC (109 /L) Low <10 29 16.86% None None

Normal >10, <100 122 70.93% None None

High >100 20 11.63% None None

Blasts (109 /L) Normal >0,!5 154 89.53% 99 90.83

High >5 13 7.56% 10 9.17%

Platelets (109 /L) Low"20, <150 3 1.74% 8 7.34%

Normal >150,!400 91 52.91% 53 48.62%

High >400 75 43.60% 48 44.04%

Sokal Score Low, intermediate!1.2 132 79.51% 92 84.40%

High>1.2 34 20.48% 17 15.60%

(Continued )

Predicting Molecular Response in CML
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Clinical Prediction Rules and Extraction of Relations Between the Predictive Factors 
and MMR Predictions  

models (A: 73%, B: 84%, C: 80%, D: 88%, E: 84%, F: 96%) were higher than PPV in OA (67%).
These high PPV values indicated that our models could be trusted in making decisions at diag-
nosis pre-therapy.

Clinical Prediction Rules and Extraction of Relations between the
Predictive Factors and MMR Predictions

In this section, we demonstrate two findings: i) the selected predictive factors by CART algo-
rithm and ii) clinical prediction rules that clearly expressed the (IF..Then) conditional relation-
ship between the predictive factors and the MMR predictions.

Firstly, the CART uses only those factors that help separate response groups, while other
factors are not considered. All predictive factors were examined at each node to assess splitter
effectiveness. The decision tree generated by all features (Figure A in S1 File) had eight related
factors of 15 predictive factors after pruning the maximal tree: age, spleen size, platelets, eosin-
ophil, WCC, monocytes, IC50IM, and BCR-ABL1 transcript type.

Secondly, we extracted clinical prediction rules from selected models. The rule set is
attached in (S1 Table) and (Figures B and C in S1 File) represented the tree structure for
model E and model F respectively. To express the conditional relationship between predictive
factors and MMR predictions we presented examples from the molecular decision trees and
recommended model (model D). The first example is model B and model C that used molecu-
lar predictive factors, IC50IM divided patients into two groups. The groups with IC50IM >0.5
μM and IC50IM <0.95 μM were classified as the positive group, while for patients with IC50IM

<0.5 μM and IC50IM>0.95 μM, OA values can help identify MMR group. In model C, adding
BCR-ABL1 transcript level and transcript type identified further relations. In the group with
IC50IM>0.5 μM and IC50IM <0.95 μM, patients who had the b2a2 type may achieve MMR,
while the other type need more information about OA and BCR-ABL1 transcript level to iden-
tify MMR group. We also noticed that different MMR groups were identified based on the
same BCR-ABL1 transcript level. Thus, IC50IM, OA, and BCR-ABL1 transcript type affected
the role of BCR-ABL1 transcript level. We also demonstrate these relations in Fig 3.

The second example is model D. Although the CART with wrapper approach recom-
mended three models, model D showed best performance. In Fig 4, the conditional relation
between age, spleen size and MMR prediction is simply structured in the tree’s right branches.
For example, the first clinical prediction rule was IF spleen size belongs to the large size group
>10 cm AND age belongs to the young group!30 or older group>60 THEN the patient may
achieve MMR. On the other hand, IF spleen size belongs to the large size group>10 cm AND
age belongs to the middle age group>30 and!60 THEN the patient may not achieve MMR.
The accuracy of models measures how likely extracted rules are to correctly identify the MMR
group (Table 4, training performance).

Table 3. (Continued)

Factors Categories Patient in TIDEL II Patient in Saudi Population

No. of patient Patient % No. of patient Patient %

Hasford Score Low, Intermediate<1480 154 93.9% 101 92.66%

High"1481 10 6% 8 7.34%

EUTOS Score Low<87 140 83.33% 92 84.40%

High"87 28 16.67% 17 15.60%

Each predictive factor and the number of CML patients included in the study. Haematologist experts and previous publications identified the categories.

doi:10.1371/journal.pone.0168947.t003
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Table 4 Predictive performance of feature selection methods with the machine-learning technique from 

nested cross-validation methods, wrapper method used the highest cross validation performances for 

selecting the final models.  

  

T
a
b
le

4
.
P
re
d
ic
ti
v
e
p
e
rf
o
rm

a
n
c
e
o
f
fe
a
tu
re

s
e
le
c
ti
o
n
m
e
th
o
d
s
w
it
h
th
e
m
a
c
h
in
e
-l
e
a
rn
in
g
te
c
h
n
iq
u
e
fr
o
m

n
e
s
te
d
c
ro
s
s
-v
a
li
d
a
ti
o
n
m
e
th
o
d
s
,
w
ra
p
p
e
r
m
e
th
o
d
u
s
e
d
th
e
h
ig
h
-

e
s
t
c
ro
s
s
v
a
li
d
a
ti
o
n
p
e
rf
o
rm

a
n
c
e
s
fo
r
s
e
le
c
ti
n
g
th
e
fi
n
a
l
m
o
d
e
ls
.

F
e
a
tu
re

s
e
le
c
ti
o
n

a
p
p
ro
a
c
h
e
s

M
o
d
e
l

n
a
m
e

F
e
a
tu
re
s

T
ra
in
in
g
P
e
rf
o
rm

a
n
c
e

C
ro
s
s
-v
a
li
d
a
ti
o
n
P
e
rf
o
rm

a
n
c
e

A
c
c
u
ra
c
y

S
e
n
s
it
iv
it
y

S
p
e
c
ifi
c
it
y

P
P
V

N
P
V

G
-

m
e
a
n

F
-

s
c
o
re

A
c
c
u
ra
c
y

S
e
n
s
it
iv
it
y

S
p
e
c
ifi
c
it
y

P
P
V

N
P
V

G
-m

e
a
n

F
-s
c
o
re

A
ll
fe
a
tu
re
s

A
1

0
.8
1

0
.8
3

0
.7
7

0
.8
6

0
.7
2

0
.8
0

0
.8
4

0
.5
1

(0
.4
3
,0
.5
9
)

0
.6
0

(0
.5
3
,0
.6
7
)

0
.3
1

(0
.1
7
,0
.4
5
)

0
.6
3

(0
.4
9
,0
.7
7
)

0
.3
3

(0
.1
5
,0
.5
1
)

0
.3
7

(0
.2
0
,0
.5
4
)

0
.6
1

(0
.4
6
,0
.7
6
)

M
o
le
c
u
la
r

fe
a
tu
re
s

B
8
,9

0
.6
4

0
.6
7

0
.5
4

0
.8
0

0
.3
8

0
.6
0

0
.7
2

0
.5
7

(0
.5
,0
.6
4
)

0
.6
2

(0
.5
5
,0
.6
9
)

0
.4
2

(0
.2
3
,0
.6
1
)

0
.7
5

(0
.6
3
,0
.8
7
)

0
.2
8

(0
.1
5
,0
.4
1
)

0
.4
6

(0
.2
9
,0
.6
3
)

0
.6
7

(0
.5
5
,0
.7
9
)

C
8
,9
,1
0
,1
6

0
.7
0

0
.7
3

0
.6
4

0
.8
1

0
.5
3

0
.6
8

0
.7
6

0
.5
0
(0
.3
8
,

0
.6
2
)

0
.6
0

(0
.4
8
,0
.7
2
)

0
.3
1

(0
.1
7
,0
.4
5
)

0
.5
9

(0
.4
3
,0
.7
5
)

0
.3
6

(0
.1
6
,0
.5
6
)

0
.3
8

(0
.2
1
,0
.5
5
)

0
.5
9

(0
.4
3
,0
.7
5
)

T
h
e
h
ig
h
e
s
t

C
ro
s
s
-

v
a
li
d
a
ti
o
n

A
c
c
u
ra
c
y

D
2
,3
,7
,1
3
,1
5

0
.7
8

0
.7
7

0
.8
1

0
.9
2

0
.5
7

0
.7
9

0
.8
3

0
.7
6

(0
.6
2
,0
.7
8
)

0
.7
8

(0
.7
1
,0
.8
5
)

0
.7
1

(0
.5
1
,0
.9
1
)

0
.8
8

(0
.7
8
,0
.9
8
)

0
.5
7

(0
.3
9
,0
.7
5
)

0
.7
1

(0
.5
4
,0
.8
8
)

0
.8
2

(0
.6
5
,0
.9
9
)

G
-m

e
a
n

E
2
,3
,6
,7
,8
,1
0
,1
5
,1
6

0
.7
7

0
.7
7

0
.7
5

0
.8
8

0
.5
9

0
.7
6

0
.8
2

0
.7
5

(0
.6
9
,0
.8
1
)

0
.7
9

(0
.7
2
,0
.8
6
)

0
.7
5

(0
.6
1
,0
.8
9
)

0
.8
5

(0
.7
6
,0
.9
4
)

0
.5
9

(0
.4
2
,0
.7
6
)

0
.7
6

(0
.6
7
,0
.8
5
)

0
.8
1

(0
.6
9
,0
.9
3
)

F
-s
c
o
re

F
3
,7
,8
,1
5

0
.7
3

0
.7
2

0
.8
2

0
.9
4

0
.4
0

0
.7
7

0
.8
1

0
.7
6

(0
.6
8
,0
.8
4
)

0
.7
8

(0
.7
1
,0
.8
5
)

0
.7
1

(0
.5
1
,0
.9
1
)

0
.8
8

(0
.7
8
,0
.9
8
)

0
.5
7

(0
.3
9
,0
.7
5
)

0
.7
1

(0
.5
4
,0
.8
8
)

0
.8
3

(0
.7
5
,0
.9
1
)

T
h
e
fe
a
tu
re
s
in
d
e
x
e
s
a
re
:
1
=
a
ll
fe
a
tu
re
,
2
=
A
g
e
,
3
=
S
p
le
e
n
S
iz
e
,
4
=
P
la
te
le
ts
,
5
=
B
a
s
o
p
h
ils
,
6
=
E
o
s
in
o
p
h
il
s
,
7
=
B
la
s
t,
8
=
O
A
,
9
=
IC
5
0
IM

,
1
0
=
B
C
R
-A
B
L
1
tr
a
n
s
c
ri
p
t
le
v
e
l
p
re

th
e
ra
p
y
,
1
1
=
W
C
C
,
1
2
=
A
N
C
,
1
3
=
M
o
n
o
c
y
te
s
,
1
4
=
L
y
m
p
h
o
c
y
te
s
,
1
5
=
G
e
n
d
e
r,
a
n
d
1
6
=
B
C
R
-A
B
L
1
T
ra
n
s
c
ri
p
t
ty
p
e
.
F
o
r
e
a
c
h
m
o
d
e
l
th
e
ta
b
le
g
iv
e
s
th
e
tr
a
in
in
g
a
n
d
C
ro
s
s
-

v
a
li
d
a
ti
o
n
P
e
rf
o
rm

a
n
c
e
s
.
In

c
ro
s
s
v
a
li
d
a
ti
o
n
p
e
rf
o
rm

a
n
c
e
,
th
e
m
e
a
n
s
o
b
ta
in
e
d
fr
o
m

1
0
-f
o
ld
c
ro
s
s
v
a
li
d
a
ti
o
n
a
n
d
9
5
%

c
o
n
fi
d
e
n
c
e
in
te
rv
a
ls
.

d
o
i:
1
0
.1
3
7
1
/j
o
u
rn
al
.p
o
n
e.
0
1
6
8
9
4
7
.t
0
0
4

Predicting Molecular Response in CML

PLOSONE | DOI:10.1371/journal.pone.0168947 January 3, 2017 15 / 23



	

	 	 154	

Table 5 The comparison between previous methods and, our predictive models. 

External Validation of the Final Model  

External Validation of the Final Model

The Model D was validated in the Saudi cohort. Inclusion and exclusion criteria were applied
to the dataset and the (Figure D in S1 File) shows the number of patients in the validation.
Table 3 shows the number of patients included in the validation for each predictive factor. We
included 109 patients who used frontline 400mg IM, while 63 (36%) patients were excluded
due to missing MMR values at 24 months (27 patients) or using frontline NIL or DAS (36
patients). There were 78 (72%) patients in the positive group who achieved MMR at 24 months
and 31 (28%) patients in the negative group as follows: i) 24 (77%) patients who did not
achieve MMR at 24 months on 400mg IM; ii) 2 (6%) patients who had a suboptimal response
to IM, switched to NIL and went on to achieve MMR at 24 months as MMR was not achieved
by administering IM; and iii) 5 (17%) patients who received IM followed by NIL or DAS and
did not achieve MMR at 24 months.

We compared performance of the recommended model (Model D) and common prognos-
tic risk scores (Sokal, Hasford and EUTOS) (see Table 6). Hasford score achieved the highest
accuracy (68%) compared with Sokal and our model (Sokal: 63%, Hasford: 67% and Model D:
50%). In addition, the EUTOS score achieved a slightly lesser G-mean and F-score perfor-
mance than our model D (the Saudi population’s G-mean: 44% vs. the EUTOS’s G-mean:
41%; and the Saudi population’s F-score: 29% vs. the EUTOS’s F-score: 25%); furthermore,
compared to the prognostic scores, our model D achieved the highest G-mean (44%) and F-
score (29%) overall. Although the common prognostic risk scores achieved better accuracies,
highest specificity (35%) was found in our model compared with common prognostic scores
(Sokal: 13%, Hasford: 6% and EUTOS: 19%) which confirmed that model D accurately pre-
dicted the negative group (those that will not achieve MMR at 24 months) with a specificity of
35%. Validation data from the Saudi population were performed similar to testing data from
TIDEL II as the three scores achieving high sensitivity (Sokal: 83%, Hasford: 92%, EUTOS:

Table 5. The comparison between previousmethods and, our predictivemodels.

Testing Performance

Accuracy Sensitivity Specificity PPV NPV G-
mean

F-Score

Previous
Methods

OA[13] 0.68 0.73 0.62 0.67 0.68 0.67 0.69

IC50IM[14] 0.54 0.34 0.75 0.60 0.51 0.50 0.43

Sokal score[15] 0.58 0.84 0.29 0.56 0.63 0.49 0.67

Hasford Score
[16]

0.56 0.92 0.16 0.54 0.66 0.39 0.68

EUTOS Score
[17]

0.52 0.84 0.16 0.52 0.50 0.37 0.64

Our Model s Model A 0.60 0.59 0.61 0.73 0.45 0.60 0.65

Model B 0.62 0.59 0.69 0.84 0.37 0.64 0.69

Model C 0.58 0.56 0.61 0.80 0.33 0.59 0.65

Model D 0.72 0.67 0.81 0.88 0.54 0.74 0.76

Model E 0.66 0.62 0.73 0.84 0.45 0.67 0.71

Model F 0.64 0.59 0.87 0.96 0.29 0.72 0.73

The bolded value indicated the comparative values between our methods and the previous methods, Model

A = all predictive factors, Model B = OA and IC50IM, Model C = OA, IC50IM, BCR-ABL1 Transcript level

Pretherapy and BCR-ABL1 Transcript Type, Model D = CART algorithm with the highest accuracy value,

Model E = CART algorithm with the highest G-mean value, and Model F = CART algorithm with the highest

F-score value.

doi:10.1371/journal.pone.0168947.t005
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Fig 3. Tree structures for a) Model B and b) Model C.   

Fig 3. Tree structures for a) Model B and b) Model C. Relations betweenmolecular predictive factors and MMR. The tree represents each predictive
factor in nodes. The node has two possible splits: it is connected to either the second predictive factor or the MMR group of patients in the positive or
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Fig 4. Model D structure.  

Discussion 

  

86%) are therefore good predictors of the positive group. Although PPV value in the EUTOS
score (73%) outperformed model D (68%), PPV above 60% indicated that our model could be
trusted in making decisions at diagnosis pre-therapy.

Discussion

We employed a widely used and practical machine learning technique to develop a predictive
model to support decisions related to treatment strategies for CML. Results indicate that the pre-
dictive model presented in this paper should be evaluated for potential clinical use. The early
prediction of MMR at 24 months could be effective at reducing failure rate of TKI. Although the
study analysed TIDEL II trial data, the methodology can be applied for different clinical trials.

Results of our study suggest that CML patients predicted not to achieve MMR at 24 months
owing to IM could then be treated with alternative therapies, including the second generation
TKIs NIL and DAS, or with more aggressive IM therapy, such as switching to NIL therapy and
close monitoring. By contrast, CML patients predicted to achieve MMR could safely be treated
with standard IM therapy with good clinical outcomes expected. The consequence of mistaken
classification and subsequent treatment with IM is most likely to be treatment failure and
higher risk of mortality.

OA with high G-mean accurately predicts both the positive group (a predictor for patients
who will achieve MMR at 24 months) and the negative group (a predictor for patients who will
not achieve MMR at 24 months). In addition, the high F-score for OA indicates it is a good
predictor for the positive group (sensitivity) and can be trusted in clinical practice. However,

negative group. This graphical structure illustrates the predictive rules. Predictive rules can be used on unseen data to predict the target. A predictive rule
of the form: IF (conditions) THEN (class) is equivalent to a path from the root node to leaf in the decision tree, (Yes: achieve MMR at 24 months) and (No:
did not achieve MMR at 24 months).

doi:10.1371/journal.pone.0168947.g003

Fig 4. Model D structure. The final model in the tree graph that achieved high accuracy performance.

doi:10.1371/journal.pone.0168947.g004
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Table 6 The comparison between previous methods and our recommended model on Saudi population. 

Strength and Limitations  

the machine learning models often fitted the data better than previous methods (CARTmodels
fit the data better than OA). An important aspect of the decision tree is being informed by his-
torical data and predicted unseen data so that data fits the model. However, in developing pre-
vious methods, researchers started with a model and checked whether data fit the proposed
model and predictions were obtained by assuming that data are normally distributed or line-
arly associated. In conventional statistical methods, as data is collected by researchers to exam-
ine specific medical hypotheses or answer specific clinical questions, the approach is about a
model fitting the data[44]. Thus, This predictive model was developed by addressing the chal-
lenge as a machine learning problem.

The results displayed in Tables 5 and 6 show that the small number of patients’ predictive
factors included in our study may lead to overfitting and may consequently affect their gener-
alization ability on unseen examples. We observed that the G-mean and F-score performances
were reduced from 74% and 76% in the internal validation of the testing data to 44% and 29%
in the external validation of the Saudi data. In the present study, it is particularly interesting to
notice the difference in performance between the prognostic scores and our model D that can
be beneficial for the molecular response prediction, owing to the reduced risk of misclassified
patients, who will not achieve MMR at 24 months. In addition, the difference in the prediction
accuracy obtained from the nested cross validation of the CART was small (Table 4), which
indicates that our models were not overfit. We pruned our trees based on a cost function in
order to avoid overfitting in the maximal tree. Also, we have constructed predictive models to
predict MMR positive and negative groups based on the pre-therapy predictive factors (i.e. the
clinical, molecular, and blood count factors) in order to learn patterns as clinical prediction
rules that are associated with a response to IM.

Indeed, the recommended decision tree model D was validated internally on TIDEL II clin-
ical trial data, and externally on the Saudi dataset. The highest G-mean, and F-score values in
the testing data (TIDEL II’s G-mean: 74% and F-score: 76%) and the external validation data
(Saudi population’s G-mean: 44% and F-score: 29%) compared with the prognostic scores’ G-
mean and F-score confirmed that our models are good predictors for positive and negative
groups, while the highest sensitivities in the testing data and the external validation data were
observed in prognostic scores in comparison with our model D, confirming that prognostic
scores were good predictors for a positive group. As the Hasford score achieved the highest
sensitivity in TIDEL II and the Saudi population (sensitivity: 92%), and the Sokal and EUTOS
scores achieved higher sensitivity than our model (TIDEL II: Sokal and EUTOS scores: 84%;
model D: 67%), similarly, the sensitivity of Sokal and EUTOS were higher than our model D
in the external validation data (Sokal score: 83%; EUTOS score: 86%; model D score: 55%).

Strengths and Limitations

The main strength of our study is the development of predictive models using domain knowl-
edge in construction of clinical prediction rules which can be applied for validation on

Table 6. The comparison between previousmethods and our recommendedmodel on Saudi
population.

Validation Performance

Accuracy Sensitivity Specificity PPV NPV Gmean F-score

Sokal score[15] 0.63 0.83 0.13 0.71 0.24 0.33 0.17

Hasford Score[16] 0.68 0.92 0.06 0.71 0.25 0.24 0.1

EUTOS Score[17] 0.67 0.86 0.19 0.73 0.35 0.41 0.25

Model D 0.50 0.55 0.35 0.68 0.24 0.44 0.29

doi:10.1371/journal.pone.0168947.t006
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Supporting Information  

different cohorts. We extracted hidden knowledge in the form of prediction rules. Another
strength is interpretability and high prediction performance of the decision tree model
developed using age, gender, spleen size, blasts, and monocytes. Also, the number of predic-
tive factors used in the model is another advantage in the context of healthcare costs as
fewer input factors imply fewer diagnostic tests to obtain relevant predictive factors [38].
From the wrapper approach, predictive factors determined to be relevant predictors of
MMR at 24 months were age, gender, spleen size, eosinophils, blasts, monocytes, OA,
BCR-ABL1 transcript level, and BCR-ABL1 transcript type. Indeed, considerable evidence
supports the significant impact of age[15, 16], gender[23], OA[13], spleen size[15–17],
blasts, and eosinophils [15, 16].

This study is the first to investigate relations between molecular predictive factors and
MMR. The levels of BCR-ABL1 transcript pre-therapy and BCR-ABL1 transcript type as
molecular tests play a role in investigating prediction of MMR achievement at 24 months.
We found that molecular factors could significantly increase model performances (Models
E and F), whereas Model D could be sufficient for prediction of MMR at 24 months. This
study does not ignore the significance of all predictive factors involved in the analysis
because different criteria (not maximising accuracy, G-mean, and F-score) may result in
different predictive factors.

We reported the performance of the three common prognostic scores in the Saudi popula-
tion (KFSHRC) and TIDEL II as part of the evaluation of model performance, but this appears
to be the first study to report these results, helping overcome the lack of research in the area of
comparing the performance of existing prognostic scores in both Saudi and Australian popula-
tions. Although the Australia group reported their Sokal score result from TIDELL II [25], it is
best to obtain the most reliable of the three prognostic performance scores and compare it
with the new development model. As our results demonstrate, the previous prognostic scores
are good predictors of the positive group, but our models are good predictors for both the pos-
itive and negative groups.

The tree structures were significantly influenced as the majority of patients had the same
outcome. A larger dataset may increase prediction accuracy. Additionally, varying expert opin-
ions in representing category boundaries of each predictive factor could dramatically change
performance of the models.

With the available options for CML treatment, development of a method to predict CML
patient response to treatment at diagnosis is critically important. We can conclude that this
predictive model assists managing CML treatment by predicting the likelihood that denovo
CML patients will achieve MMR at 24 months when treated with IM. The decision tree predic-
tion model presented here offers medical practitioners an additional tool to provide patients
with improved, individualised treatment plans. For future work, this method may also be
extended to other TKIs available for use as frontline CML therapy.

Supporting Information

S1 Text. Supplementary Results.
(DOCX)

S1 File. Decision Tree Structures.
(ZIP)

S1 Table. Clinical Prediction Rules, dataset includes list of clinical prediction rules that
constructed from recommended models.
(XLSX)
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Linking Chapter 5 and 6: 

In the previous article, “Modelling Predictors of Molecular Response to Frontline 

Imatinib for Patients with Chronic Myeloid Leukaemia,” we employed a widely used and 

practical machine learning technique to develop a predictive model to support decisions 

related to treatment strategies for CML. The results indicated that the treatments suggested 

in the paper could be provided for clinical use in the future. It was suggested that patients 

who were not expected to reach a stable MMR at 24 months could be considered prospects 

for alternative treatments. This study contributed a new knowledge-based predictive model 

to the area of individualized TKI treatments in CML patients. This work could assist 

clinicians in deciding to use frontline imatinib or frontline second-generation TKIs at 

diagnosis. The study analyzed the outcomes of CML patients enrolled in the TIDEL II 

clinical trial. The predictive factors selection approach, based on prior knowledge and a 

decision tree, was used to predict MMR and to select the relevant factors. The models were 

evaluated by nested cross-validation in terms of accuracy, G-mean, and F-score. Finally, the 

decision tree marked a significant advance because its predictive power is more accurate 

than the existing methods. 

The next article, “The Implementation and Testing of a Personalized Medicine 

Support System for Chronic Myeloid Leukaemia,” discusses the personalized medicine 

support system’s design, implementation, and testing. The paper begins with the background 

of CML and treatment management and progresses to the current treatment selection issues 

at diagnosis. Then, the solution is implemented in the personalized medicine support system. 

The design demonstrates that the inputs of prognostic and predictive factors are fed into the 

inference engine. This inference performs a consistency test, presented in Chapter 4, Part 1; 

it also develops a combined prognostic model, as presented in Chapter 4, Part 2, and 

develops a predictive model as presented in Chapter 5. In addition, the knowledge-based 
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relationship is displayed both ways: receiving prior knowledge to develop a combined 

prognostic model and adding discovered knowledge from the predictive model structure and 

clinical predication rules. Finally, the inference generates treatment-specific advice and 

recommends if imatinib is a suitable TKI treatment. The study applies a multistage process 

in developing personalized medicine support system software. This software is available 

online, and the guide is presented in figures attached in the paper to display the graphic user 

interfaces for the tool. The personalized medicine support system is tested, and it has proved 

its ability in selecting the best TKI treatment, which may improve CML patient health care. 
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Chapter 6: The Implementation of a Testing Personalized 

Medicine Support System for Chronic Myeloid Leukaemia 
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Abstract 
After the second generation of Tyrosine Kinase Inhibitor therapy (TKI) was 

approved for use in frontline treatments, three TKIs became available for treating chronic 

myeloid leukaemia (CML) patients. A personalized medicine support system has been 

developed that can help healthcare organizations determine the right treatments for their 

CML patients. This study discusses the personalized medicine support system’s design, 

implementation, and testing. This system is able to identify the risk group, resolve any 

conflicts in common prognostic scores outcomes, and predict CML patients’ molecular 

responses to imatinib at 24 months at the time of their diagnoses. The personalized medicine 

support system is more effective in selecting the best TKI treatment than the single scoring 

system, which may improve CML patient healthcare. In the future, these findings in research 

will be validated on large CML patient cohorts. 

Background 
Due to the very intricate nature of CML, one standardized treatment cannot be 

recommended for most patients, as the disease often requires molecular interventions to 

produce positive results in a patient. This leads to the utilization of personalized medicine 

by health care professionals to treat cancers and diseases similar to CML. To better support 

medical professionals who agree with personalized medicine’s concept and capabilities, the 

stratification of risk groups and also the prediction of molecular responses to TKIs can be 

used to provide information on how new treatments can be selected that will minimize the 

amount of treatment failures.  

For many CML cases, the use of one treatment is not the best route to pursue. For 

example, three TKIs (imatinib, nilotinib, and dasatinib) have been approved for use in many 

countries to treat CML patients; imatinib is a highly effective TKI, but a prior study proved 
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that the number of mutations detected with imatinib was twice as high as the number of 

mutations identified in patients being treated with other TKIs [1]. It is better if CML patients 

receive more potent treatments because they appear to be more effective in reducing the 

number of mutations [2]. Indeed, the development of CML treatment management, rational 

decisions are required based on molecular predictive tests [3, 4]. Thus, the undesirable option 

is to use the same treatment in every case.  

How Can Personalised Medicine Be Utilized in CML? 

Personalized medicine can be defined as the tailoring of medical treatment to the 

individual characteristics of each patient [5]. With personalized medicine and treatments, 

doctors and other professionals use the patient’s genetic profile to select a mode of treatment. 

This process uses molecular technology and machine learning to determine the best 

approaches to treating Leukemia patients, who may appear identical but actually possess 

differing molecular properties that can cause unpredictability in the response to prescriptions 

[6]. 

With personalised medicine, clinicians can offer more specific treatment plans for 

individuals who are combating CML. Personalised medicine can also be used to make 

treatment decisions that maximize outcomes and minimize side effects [7]. This is done with 

use of collected data that can then be studied and sorted to allow statisticians and health 

professionals to make various inferences about the best possible CML therapy. Personalised 

medicine involves classifying patients into subpopulations that pose unique reactions or 

responses to particular treatments to determine the best treatment approaches available for 

those individuals [8]. As stated by Mitchell [9], one result of this very detailed and 

meticulous process is that “unnecessary costs” can be minimized by reducing the time spent 

on treatment and also the failure rate during clinical trials, which will increase the economic 

value. 
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To help clinicians and other healthcare professionals discover the best individualized 

treatments for CML patients, the current mode of personalized treatment approaches can 

assist to design a more complete picture of what patients need from their care providers such 

as predictive assays, clinical, pathological, molecular based markers and prognostic scores. 

For example, prognostic scores: Sokal [10], Hasford [11], the European Treatment and 

Outcome Study (EUTOS) [12], and the EUTOS long-term survival score (ELTS) [13] help 

clinicians to stratify patients into population groups according to their risk profiles and 

therefore ensure that they receive the best treatment [14]. This is just an example of the 

methods and studies that are conducted in order to find the correct personalised medical 

treatments for CML patients as an alternative to a standard treatment for leukaemia-like 

cancers that may not benefit all patients who receive it.  

The Problems with the Treatment in CML 

 The growing number of treatment options makes it difficult to narrow down the 

correct treatments that should be used for individual patients [2]. The first-generation TKI 

treatment, imatinib, is effective in that approximately 85% of CML patients respond 

positively [15]. However, some patients develop resistance to imatinib, which has led to the 

development of the second-generation TKI treatment that has already been approved for 

frontline use [16]. When further investigating imatinib, accurate risk stratification can 

potentially identify patients that can benefit from very aggressive therapies. These patients 

are important to identify because they must be distinguished from the overall majority who 

respond favourably to imatinib [17]. 

 According to Hughes [17], bone marrow morphology and cytogenetics as well as a 

baseline real-time quantitative PCR (RQ-PCR) for BCR-ABL should be included in baseline 

assessment pre-therapy. This will help identify patients who may benefit from an increase 

in the imatinib dose, a switch to another TKI, and/or exploring if anallogeneic stem cell 

transplantation is an option. This is a prime example of how collecting data from an 
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individual’s genetic makeup can help determine if a new intervention should be used for a 

patient’s CML treatment.  

A personalized medicine support system has been developed that can help healthcare 

organizations determine the right treatments for their CML patients [18]. This study 

discusses the personalized medicine support system’s design, implementation, and testing. 

This system is aimed to identify the risk group, resolve any conflicts in common prognostic 

scores outcomes, and predict CML patients’ molecular responses to imatinib at 24 months 

at the time of their diagnoses. 

Personalized Medicine Support System for CML 
The software development life cycle, includes seven multistage processes: i) 

requirement specification, ii) analysis, iii) design, iv) implementation, v) testing, vi) 

deployment, and vii) maintenance [19]. In the personalized medicine support system, the 

software multistage are demonstrated as follow: 

Stage 1 Requirement Specification  

CML patients need clear TKI treatment recommendations. Prognostic scores were 

used to stratify the risk groups. However, over time, a new prognostic score was validated 

in multicentre, single centre, and clinically diverse cohorts, which confirmed the ability to 

predict risk groups. If there are multiple scores, each prognostic score may generate a 

conflicting outcome for the same patient profile. In addition, no predictive model uses 

genetic or molecular indicators to predict CML patients’ molecular response to imatinib.  

Based on the above issues, our program must satisfy the following requirements: 

• It must let the clinician enter the prognostic and predictive factors from which the 

treatment selection will be made; 

• It must use the proposed analysis and final models published in [20-22] to stratify the 

risk group and predict the patients’ molecular response to imatinib. 
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Stage 2 System Analyses 

The output is a treatment-specific recommendation for imatinib or another TKI based 

on the patients’ profile. 

A new group of patients (conflict patients) whose profiles generated an outcome from 

a prognostic score that contradicted the outcomes from other prognostic scores [21] should 

be distinguished. Our findings [22] suggest that the integration of validated prognostic scores 

may enable better identification of high-risk patients who should be considered for more 

aggressive therapies. 

Modelling predictors for CML patients’ molecular responses to frontline imatinib 

were discovered in [21]. The published paper developed three predictive models using 15 

clinical, biological, and molecular factors: i) the suggested predictive factors that showed 

the highest accuracy performance ii) the suggested predictive factors that showed the highest 

G-mean performance, and iii)  the suggested predictive factors that showed the highest F-

score performance. We let the clinician select the model that fit their patients’ available data.  

Stage 3 System Design 

The system design details were published in [18]. After following the modelling 

steps to produce the framework, and the methods were published in [21, 22]. The 

personalized medicine support system includes six main components. Figure 1 illustrates 

these components and the published model’s connections.  
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Figure 1 Conceptual framework of the personalized medicine support system 

Objective and Scope 

This system aims to support clinicians in their decisions when they select their CML 

patients’ frontline TKI treatments. The system predicts the patients’ risk class and molecular 

responses based on evidence of from clinical trials and patients admitted to hospitals. This 

system can overcome limitation to the current treatment guidelines for CML because it 

provides specific advice about whether to use frontline imatinib or another available TKI.  

This model targets newly diagnosed adult patients with CML. The patients’ profiles 

show their eligibility for any of the three TKI treatments. The patients should have completed 

molecular, clinical, and peripheral blood count tests at the time of their diagnoses. Other 

types of leukaemia are not the focus of this work. However, they may be considered in the 

boarder context of haematology services. 

A successful system must: 

• Outperform current prediction methods; 
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• Resolve treatment decision conflicts and stratify a risk group; 

• Consider existing and newly discovered knowledge to aid in clinicians’ final 

decisions.  

The need for our system 

We believe our work is novel and is a step forward in personalized medicine 

solutions and best practices in the prediction of CML patients’ MMR to imatinib. Our study 

contributes a new knowledge-based predictive model for individualised TKI treatment in 

CML patients. This work will assist physicians in determining whether imatinib or a second-

generation TKI should be used as a frontline treatment for CML patients at the time of their 

diagnoses. This system will do the following: 

• Enable better identification of high-risk patients who should be considered for more 

aggressive therapies or allografting;  

• Increase the effectiveness of CML treatment management. CML patients who will fail 

to respond to frontline imatinib therapy will benefit from this system because it predicts 

their response before they experience any resistance or intolerance to their therapies;  

• Suggest accurate treatment, preventing the patient from paying unnecessary treatment 

costs; 

• Prevent the prescription of the incorrect medication;  

• Make accurate decision at diagnosis to help save patients’ lives and time;   

What is needed for this system 

The system needs predictive and prognostic factors. Then, two options will be 

generated as treatment-specific recommendation. The system’s input and the output are 

displayed in figure 2. 
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Figure 2 displays the flow chart of the final recommendation procedures from the personalised medicine 
support system. The clinicians insert the predictive and prognostic factors for the new CML patients, which 
are all collected prior to treatment. The system automatically categorised the predictive factors using prior 
knowledge and calculates the risk index using the existing formula published with the prognostic score systems. 
Then, the system checks the conflict between the generated risk indexes. If the conflict obtained from the 
common scores on the prognostic combined model outcome is created, the recommendation will be either 
‘Warning: frontline imatinib is not recommended; other TKIs are recommended. The patient should need a 
more aggressive imatinib therapy,’ or ‘Switch to nilotinib or dasatinib therapy with close monitoring.’ 
Otherwise, the clinicians may test the low- and intermediate-risk groups in the second model (the predictive 
model). The categorised predictive factors will return the index of the selected value into the predictive factors, 
and the patients’ molecular response to imatinib will be predicted. If the patient’s outcome does not achieve 
the MMR at 24 months to imatinib, a warning recommendation will be displayed. However, if the patient’s 
outcome from the predictive model shows a molecular response at 24 months to imatinib, the system will state, 
‘Frontline imatinib is recommended. The patient may achieve MMR at 24 months. The patient should not need 
more aggressive IM therapy.’ 
• i) TKI= Tyrosine Kinase Inhibitor Therapy, MMR=Major Molecular Response and IM=imatinib. 

 
Predictive and prognostic factors  

All the patients’ clinical, molecular, and predictive assays and peripheral blood 

factors are collected at the time of their diagnoses. The prognostic model inputs include age 

(years), spleen size (cm), blast (%), platelets (109/L), eosinophils (%), and basophils (%). 
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While The prediction model inputs include the following: as follows: i) clinical factors: age, 

gender, and spleen size measured in centimetres below the costal margin; ii) molecular 

factors: BCR-ABL1 transcript level pre-therapy and BCR-ABL1 transcript type; iii) predictive 

assays: OA and IC50IM; and iv) peripheral blood factors: white cell count (WCC), absolute 

neutrophil count (ANC), and eosinophil, basophil, monocyte, lymphocyte, platelet, and blast 

counts. 

Options from the system 

The output is either: i) ‘frontline imatinib is recommended. The patient may achieve 

MMR at 24 months, and the patient should not need more aggressive imatinib therapy’ or 

ii) ‘warning: frontline imatinib is not recommended. Other TKIs are recommended, and the 

patient should need more aggressive imatinib therapy, or switch to nilotinib or dasatinib with 

close monitoring.’  

Stage 4 Implementation 

This section discusses two forms (the prognostic and predictive forms) [21, 22] that 

were written in C# with the Toolboxes from MATLAB R2016a (The MathWorks, Inc.). The 

software was implemented after studying the users’ behaviour. Suitable error and warning 

messages with red star pointers where data is missing are provided if the form is used 

incorrectly. 

Stage 5 Testing 

From our publications [21, 22], we select 5 of 282 patients (173 Australian patients 

and 109 Saudi patients) to display the output from the models. Figures 3–6 show the print 

screens and the users’ application guide. 
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Figure 3 Make a selection of the models form. This form allow user to select either allocation of risk and 
resolve conflict using the prognostic model, or predict a molecular response using the predictive model. 

The available forms will be listed in the menu bar, so the user can navigate between 

forms from there. If the user would like more information about the system, the ‘about the 

system’ link opens a form that displays the information and publications on the system. 

From the menu, the user can click on ‘Home’ to return to the starter form, ‘prognostic 

combined model,’ ‘predictive model,’ and ‘about the system.’ The prognostic combined 

model form requests the pre-treatment prognostic values at the time of the patient’s 

diagnosis, and the form calculates the common prognostic scores (figure 4). In the case of a 

conflict in the decision based on the scores, Sokal [10], Hasford [11], EUTOS [12], and 

ELTS [13],  the combined model displays a warning message and allocates the patient to a 

risk group using the model published in [22] (see figure 5). The predictive model form 

requests the pre-treatment predictive factor values at diagnosis based on the model selection 

(figure 6). The models’ predictive factors were published in [21]. The model will predict 

MMR and provide a suitable recommendation plan.  
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Figure 4 The prognostic combined model shows that the results of the three common scores are in 
agreement as well as a suitable treatment plans recommendation. 
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Figure 5 The prognostic combined model shows that the results of the four common scores generate 
conflicting decisions and provides a suitable treatment plan recommendation.  
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Figure 6 The selection of the predictive model will activate the related predictive factors, and the submit 
button displays the recommended plan based on the CML patients’ predicted major molecular response 
at 24 months. 

 

Stage 7 Deployment 

The deployed application consists of a collection of MATLAB functions and data 

packaged as C# shared libraries. Any programming environment that supports C functions 

can compile these functions. The application can be installed on a machine without 

MATLAB, but the application requires a runtime library called MATLAB Compiler 

Runtimes (MCR) [23]. The package is available on (https://github.com/Hrbanjar/CML.git) 

or upon request from the author. 
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Stage 8 Maintenance 

In [18], evolving approaches were suggested. Our software should continue to add 

and include new models and knowledge in accordance with the evolving environment. The 

author can fix newly discovered bugs and incorporate changes. 

Discussion 
This study provides evidence about the success of the design, implementation, and 

testing of the personalized medicine support system for CML patients. It guides decision 

makers as they select the best TKI therapy for CML patients. From [21], using the predictive 

model is sufficient to prescribe imatinib. However, it is important that conflicts generated 

by the existing score systems be handled, and if clinicians would like to identify TKI risk 

groups, they should use the combine prognostic model outcome [22]; the high-risk group 

should also be closely monitored and may need a combination of TKIs.  

We recommend validating the use of the personalized medicine support system. The 

results of an ongoing clinical trial will provide additional information about the impact of 

our system on clinical decision making.  
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Chapter 7: Conclusion  
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Summary 
The development of TKI (imatinib, nilotinib, and dasatinib) therapy has improved 

molecular responses in CML patients. This is significant because achieving major molecular 

response (MMR) is the highest level of remission in CML patients. This work aimed to 

support clinicians in choosing the most appropriate treatment from among the following 

current targeted strategies: i) frontline imatinib or ii) frontline second-generation tyrosine 

kinase inhibitors (TKIs), that is, nilotinib or dasatinib, which are both used to reach 

molecular targets in the treatment of CML. This innovative work constitutes a step forward 

from recently implemented personalized medicine solutions and provides best practices for 

allocating risk groups and for predicting MMR to TKI in CML patients. 

This study addresses issues that are crucial in selecting the most effective treatment 

from the TKI therapies available for individual CML patients. It also presents a framework 

for a personalized medicine support system that can be used to correctly allocate risk groups 

and predict patients’ molecular responses to imatinib as a standard TKI treatment. High-risk 

patients who fail to respond to frontline imatinib will benefit from this system, which 

predicts molecular response before the patient faces any resistance or intolerance to therapy. 

First, a review of the published empirical research on personalized medicine in 

leukemia was conducted; this was followed by synthesizing the findings of a number of 

previous studies related to intelligence techniques to detect and treat leukemia. A systematic 

search was carried out to identify leukemia studies using intelligence techniques and to 

categorize these studies based on leukemia type as well as on the task, data source, and 

purpose of the studies; leading to particular attention on chronic myeloid leukemia (CML).  

A modeling approach based on data-mining phases was then developed for both 

prognostic and predictive model designs. A framework was designed for a personalized 
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medicine support system that included information resulting from prognostic factors, 

prognostic scores, and predictive factors, such as molecular and clinical data, predictive 

assays, and blood cell counts. 

We found that the domain knowledge as well as the data was essential to 

understanding the problem. In particular, the processes for collecting medical background 

details and data were investigated, and domain experts were involved to confirm the 

exclusion and inclusion criteria. Conducting a systemized review was fundamental to 

understanding the medical issues associated with leukemia; the review assisted with 

selecting the leukemia subtype and with defining the predictive factors that were used in this 

system. During all processes, verification by experts was required for the combined 

prognostic model and predictive model to construct the final models. Thus, knowledge-

based systems were an applicable choice for designing a personalized medicine support 

system. 

This study demonstrates the validity of combined methods for coping with conflicts 

in prior knowledge. An early determination of risk categories could provide a warning at the 

diagnosis stage, where certain medications and preventive action could increase the span of 

a patient’s healthy life. A study was carried out on the combined values of previously 

validated and published prognostic scores, which were then used to identify risk groups. The 

combined prognostic models could assist in determining the most appropriate therapy for 

individual patients. For low-risk patients, clinicians prefer therapy that has proved to be the 

least toxic and safest option. In higher risk patients, they prefer combination approaches or 

second-generation molecular targeted therapy, because the higher toxicity and higher risk of 

organ damage are counterbalanced by greater potency and a lower propensity for drug 

resistance [1]. Chapter 4 introduced new models for facilitating and resolving conflicts, 

which were obtained by providing scoring systems with accurate risk-assessment methods 

for use in diagnosis. 
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In addition, a framework was designed to adapt the system to accommodate newly 

emerging knowledge. The framework addresses changes in care delivery and the need to 

keep up with rapid medical scientific discoveries. Considerable care was required to design 

a rapid-learning health system based on the framework and thereby enable it to take account 

of recent developments in health information technology, to access health data, and, finally, 

to apply the evidence effectively and thus make the right decision. Our design was able to 

automatically refine the entire structure of the final model while adding new information. 

Later, we found that the predictive model was required to the model predictors of 

molecular response to TKI. Chapter 5 contributed new predictive models to the area of 

individualized TKI treatment for CML patients. The outcomes of CML patients who were 

enrolled in the TIDEL II clinical trial were analyzed. The predictive-factors selection 

approach based on prior knowledge and using a decision tree, was employed to predict 

MMR, to select relevant factors, and to generate interpretable clinical prediction rules. 

Nested cross-validation was used to evaluate the models in terms of accuracy, sensitivity, 

specificity, positive predictive value (PPV), negative predictive value (NPV), G-mean, and 

F-score. Finally, the recommended decision tree marks a significant advance, because its 

predictive power was stronger than existing methods for both positive and negative groups. 

However, the prognostic methods achieved a good performance in predicting the positive 

group. 

The models have been reported to achieve high performance with fewer predictive 

factors and to outperform existing methods. The interpretability of these models and the 

selection of relevant predictive factors are based on user comprehension in the context of 

expert knowledge and on their ease of use in practice. An important part of predictive 

modeling is to obtain accurate relative predictive factors and predictive assays. How these 

factors act jointly in the prediction of MMR is also important. The relationships between the 
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predictive factors and MMR were presented in the form of clinical prediction rules that offer 

promising opportunities in personalized treatment research. 

The development of new models must ensure that the model is appropriately applied, 

correctly developed, and rigorously evaluated. To increase the reliability of the results, the 

models trained, validated, and tested on real CML data were representative examples for 

evaluating the personalized medicine support system. Model performance was internally 

validated via the use of nested cross-validation methods. Those models showing the most 

promising performance were selected for independent validation to evaluate them 

meaningfully with respect to the field of application. 

Finally, the implementation of the personalized medicine support system served as a 

tool for use in assisting clinicians to test the model on their patients’ data. 

Research Strengths 
The benefits of using a personalized medicine support system include reductions in 

treatment costs, higher treatment success rates, and safe health care [2]. Indeed, Australia’s 

national agency for health and welfare statistics and information estimated that leukemia 

treatment has a high cost of approximately over $50,000 per patient [3]. However, predicting 

the most appropriate treatment for patients offers less waste in terms of using ineffective and 

costly therapies. As well as ensuring financial savings, this approach will reduce undesirable 

adverse effects for leukemia patients. This is because the treatment plan would be designed 

according to the molecular profile of each patient and to how that patient would respond to 

certain medications. 

An interesting finding from this study is that predictive and prognostic methods 

typically outperform the single prognostic factor, prognostic score system, predictive factor, 

or predictive assays. This suggests that a personalized medicine support system can enhance 

treatment decisions. This study could be involved in the CML treatment guidelines of the 
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following organizations: i) National Comprehensive Cancer Network (NCCN) [4], ii) 

European Society of Medical Oncology (ESMO) [5], and iii) European LeukemiaNet (ELN) 

[6]. The three guidelines recommended for determining the risk groups using either Sokal 

[7], Hasford [8], or EUTOS [9] scores and three TKIs (imatinib, nilotinib, and dasatinib) are 

available for use. However, the framework used in this study would improve the guidelines 

when the combined prognostic model determines the risk level and handles the conflict in 

prognostic score outcomes that may be obtained from the same patient profile. The 

predictive model for primary treatment then predicts the molecular response and suggests 

the best recommendations for supporting clinicians in diagnosis. It is expected that 

improvements in CML management and the ability to select the most suitable frontline TKI 

will make treatment decisions more accurate in the near future. 

Research Limitations 
• Impact of diversity in human expertise: The models are derived from human 

knowledge held by domain experts, from literature, and from other 

knowledge that was computationally discovered. Thus, the final models are 

limited to human knowledge, which could be incomplete or biased. 

• Impact of changing factors, population, and prediction endpoints: Modeling 

predictors used only those predictive factors available in TIDEL II clinical 

trials; depending on the absence or presence of predictive factors, clinical 

prediction rules may change. The models also resulted from the use of a 

potential population. In addition, clinical prediction rules would be affected 

if different prediction end-points from clinical trials were used. 

• Impact of time: In developing these models, analysis is a time-consuming 

process if using various predictive factors. The personalized medicine 

support system framework requires high-performance computation to 
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provide the results within a short period of time. This is particularly important 

during the analysis phase, as possible clinical misinterpretation of results 

during analysis development phases may result in the need to repeat the 

analysis process. 

• Impact of patient personal issues: Molecular testing should be performed for 

CML patients planning to undergo imatinib treatment and to benefit from the 

personalized medicine support system. Regardless of the nature of the health 

insurance system, if the patients are unable to participate in the assays or 

molecular test pre-therapy for financial reasons, they are also unable to enjoy 

the benefits of this technology. 

Future Work 
Molecular techniques now play a pivotal role in monitoring several types of disease 

and in determining suitable therapeutic strategies. Many researchers and scholars have 

dedicated time and effort to investigate biomarkers and predictive factors in recommending 

the best treatment plan for patients. The availability of data sets containing prognostic or 

predictive factors and the molecular response data for pretreatment with molecular targeted 

therapy has facilitated the development of a personalized medicine support system for 

predicting the molecular response to molecular targeted therapy. There are currently over 

4,900 diseases and 66,880 tests available in the GENETests medical genetics information 

resource [10]. A personalized medicine support system for identification of risk groups and 

for the prediction of molecular response to molecular targeted therapy is a solution for the 

frequent updates in molecular sources, such as new molecular tests and drugs, as well as the 

predictive or prognostic factors that are continually being discovered, which continue to 

expand the available medical knowledge. Research on how to predict the molecular response 

of individual patients treated with molecular targeted therapy has revealed several 

techniques that can be used by researchers in various ways across the methodology. 
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The framework presented needs to be developed further as follows: 

• Development of a new predictive model: Model induction and the generation of 

clinical prediction rules can be developed by using a wide variety of techniques to 

construct rules derived from the machine-learning research area. One of the most 

interesting applications of the technological aspects of development in medicine is 

the use of soft computing techniques, such as the Adaptive Neuro Fuzzy Inference 

System (ANFIS) in predicting molecular response. ANFIS is powerful when 

integrating fuzzy logic; the rule base could be generated by a genetic algorithm, or 

by adapting the neural network to reason according to optimal clinical prediction 

rules. Clustering techniques could also be used to discover the best form for the 

membership function of linguistic categories instead of using domain knowledge to 

reformat the data. Therefore, the use of soft computing techniques offers a range of 

efficient knowledge-adaption methods. 

• The potential relevance of the selected predictive factors depending on the domain 

knowledge and wrapper approach: The potential relevance of the selected predictive 

factors may be conducted using different statistical methods to optimize selection. 

• Supporting validation: Validation can be expanded by collecting high-quality data 

from other health organizations. 

• Strengthening our model development by encouraging coordination from other 

leukemia research units. 

• Obtaining data to develop models to predict response to other TKIs: Data are 

available from clinical trials that have compared frontline imatinib with nilotinib [11, 

12] or dasatinib with imatinib [13, 14], or from clinical trials that have reported the 

efficacy and safety of imatinib [15]. The personalized medicine support system can 
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be enhanced by adding more data from the clinical trials to predict the molecular 

response to each of the TKIs. 

Finally, further intensive research activities based on the medical domain issues can be 

conducted to determine the effectiveness of using a wide variety of intelligent techniques in 

the treatment of individual cancer patients. 

Conclusion 
In this thesis, we addressed the problem of TKI therapy treatment selection by 

correctly allocating patients to risk groups and predicting their molecular response to the 

selected treatment. The main contributions of our work include expressing this task as a 

classification problem and proposing a framework for use in solving it based on a 

knowledge-based decision support system. A discussion of different studies on individual 

models is provided; in particular, we propose developments of both the combined prognostic 

model and the predicative model. 

Two additional contributions are notable: an experimental comparison of our 

models’ behavior has been performed automatically, and the design of a new structure for a 

personalized medicine support system based on the available medical knowledge. 

The main focus of our thesis was on the accurate classification itself. A new approach 

based on a medical application problem was introduced for solving issues related to a 

clinicians’ diagnosis decisions. The foundations of this approach rely on the implementation 

of a knowledge-based system to provide clinicians, patients, and researchers with a platform 

to allocate risk groups and resolve conflicts in prognostic scores, to predict molecular 

response to the standard TKI imatinib, and to extract the relationship between the predictive 

factors and achieving a molecular response. The system would increase the possibility of 

personalized CML treatment in CML. During the experiments, our combined prognostic 

model automatically suggested the best combined method performance of validated 
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prognostic scores and enabled better identification of high-risk patients who should be 

considered for more aggressive therapies or allografting. The auto-comparison between the 

models assisted in adapting the incoming information and in updating the final model 

selection based on performance. Additionally, the selected predictive models outperformed 

the current methods in term of G-mean and F-score and are therefore good predictors for 

patients who respond to treatment and for those who do not respond to treatment. The G-

mean balances the sensitivity and the specificity, which is necessary, both clinically and 

economically, to avoid prescribing imatinib to CML patients who are less likely to achieve 

MMR at 24 months of imatinib therapy. Using the personalized medicine support system for 

selecting a TKI rather than current methods would result in more effective CML treatment 

and improved health care for CML patients. 

In the second part of the study, we used a framework that has not been considered in 

previous personalized medicine research; moreover, the existing literature contains no 

research describing a process that was specifically applied to the problem in the chronic 

myeloid leukemia treatment field and that, to our knowledge, had never been addressed 

before. This contribution can certainly assist clinicians in treatment selection problems, 

thereby enlarging the potential application field of personalized medicine. Another 

contribution involves conflict resolution in patient outcomes. Up-to-date consistency testing 

and intelligent techniques have not been applied to CML treatment guidelines. This 

contribution enables the correct allocation of risk groups without conflict prognosis 

outcomes. Finally, the present study findings reveal that because patients’ various genetic 

and molecular make-ups react differently to imatinib, its use is not a catch-all solution for 

CML patients. Molecular factors are important in this subject area, primarily because 

polymerase chain reactions can measure genetic transcripts in the blood of CML patients. 

When monitoring these reactions, clinicians use this data to predict the best long-term plans 
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for their patients. By utilizing these methods, a CML patient is more likely to receive the 

treatment that is genetically recommended for his or her illness and thus is most effective. 

New opportunities will arise for further applications of a personalized medicine 

support system in different cancer domains, especially in the diagnosis of cancer patients 

treated with multiple molecular targeted therapy options. This trend will be accompanied by 

a higher demand for researchers who can design, adapt, and evaluate this framework and for 

clinicians to interpret results. Medical decision making in selecting the best treatment option 

for cancer patients is a complex process in which many predictive and prognostic factors 

should be taken into account for the prior selection of molecular targeted therapy; predictive 

and prognosis models for use in diagnosis may increase the effectiveness of the decision. 

Medical decision makers should optimize the patient’s potential for a successful treatment 

plan and outcome, with assistance from the personalized decision support system. 
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Supplementary Material A: Combining Validated Prognostic 

Scores and Resolving Conflict in Allocation to Risk Groups in 

Chronic Myeloid Leukaemia Patients  

Haneen Banjar, Timothy Hughes, Fred Brown, David Adelson, Deborah White, Enaam Alsobhi, Naeem 
Chaudhri  

S1. Patient Data Exploratory 
To display the distribution of pairs of scores, we represented examples in Figures A-

C of the inconsistencies between portions of patients. The scores were normalized [0-1] to 

display risk boundaries. We found a correlation between the Sokal and Hasford scores of 

0.74, while the correlation between the Sokal and EUTOS scores was 0.32 and the 

correlation between the Sokal and ELTS scores was 0.47.  These results show linear 

correlation between Sokal and Hasford but nonlinear relationship between Sokal and the 

other scores. Regarding the Hasford scores, the correlation was 0.64 and 0.77 with EUTOS 

and ELTS respectively. These results showed the linear relationship between Hasford, 

EUTOS and ELTS scores. The correlation between EUTOS and ELTS was 0.65 that showed 

the linear relationship. 

 
Figure A. Agreement between Sokal and Hasford scores. (a) Distribution of the Sokal and Hasford scores for 
achieving and not achieving MMR at 24 months. (b) The vertical lines show the boundaries for low, 
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intermediate and high risk groups for the Hasford score. (c) The horizontal lines demonstrate the boundaries 
for low, intermediate and high risk groups for the Sokal scores. 

 
Figure B. Agreement between Sokal and EUTOS scores. (a) Distribution of the Sokal and EUTOS scores for 
achieving and not achieving MMR at 24 months. (b) The vertical lines show the boundaries for low and high 
risk groups for the EUTOS scores. (c) The horizontal lines demonstrate the boundaries for low, intermediate 
and high risk groups for the Sokal scores. 

 
Figure C. Agreement between Hasford and EUTOS scores. (a) Distribution of Hasford and EUTOS scores for 
achieving and not achieving MMR at 24 months. (b) The vertical lines show the boundaries for low and high 
risk groups for the EUTOS scores. (c) The horizontal lines demonstrate the boundaries for low, intermediate 
and high risk groups for the Hasford scores.  

S2. Inclusion and exclusion criteria 
The study includes CML patients from Australia and Saudi population: 210 patients 
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from the TIDEL II [1], 172 patients from the KFSHRC [2] and 104 patients from the KAMC 

[3]. We apply the following criteria as shown in table A. The final dataset compromised 403 

patients. 

Table A. The criteria and the number of patients for selecting the study population. 

Inclusion Criteria No. of Patients 

Patients received imatinib 600 mg/ 800 mg as the initial therapy.  403 

Patients were in chronic phase 403 

Patients monitored for achieving a BCR-ABL1 transcript level ≤ 0.1% at 24 months 
using RQ-PCR. 

403 

Patients who were switched to second line treatment because of intolerance or 
toxicity to imatinib were considered as a negative group in our analysis. 

38 

Exclusion Criteria  

Pregnant patients  3 

Patient used the second line treatment (nilotinib or dasatinib) as a frontline treatment. 73 

Patients were in advance phases. 10 

 

S3. Base Classifiers 
S3.1 Support Vector Machine 

Support vector machine finds the best hyper plane that separates the patients of one outcome 

from those of the other outcome. The problem is to find a hyper plane that maximizes the 

margin between data points in the binary classification. The margin is the maximal width of 

the paralleled hyper plane that has no interior data points [4]. We tried linear, quadratic, 

cubic, fine, medium and coarse Gaussian kernel function. 

S3.2 k-Nearest Neighbour 

 k-NN [5] is an approach that requires pre-defined core elements, such as a set of patients 

with a known MMR group, distance, or similarity metric to compute the distance between 

patients and the value of the nearest neighbour k. We tried multiple k values starting with 
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odd numbers and selected k with the minimum misclassification rate. To predict a test 

patient, the set of k closest training data to this patient will be k-NN. Majority voting in 

training data chooses the output prediction. 

S3.3 Naïve Bayes 

 Naïve Bayes is a family of probabilistic classifiers that use Bayes’ theorem [5]. We defined 

conditional probability  to be the score of the probability that a patient with 

prognostic scores value  belongs to group   ( : achieving MMR; and 

: not achieving MMR), where n is the number of prognostic scores and k is the possible 

outcome. We used Equation (1) to compute the probability: 

   

S3.4 Machine Learning Techniques 

We used C# to implement the algorithm and obtain results using three datasets. The 

main file Start.m included the starter function to load the datasets and create the objects. 

Each object has properties (Model, IndexInputNum, Training Data, Testing Data, Validation 

Data, Training Results, Cross-Validation Results, Testing Results and Validation Results) 

and functions (Performance and Evaluation).  

The main Starter calls the algorithms DTcode, SVMCode, KNNCode and NBCode. The 

following are the C# codes for each algorithm: 

• DTCode.m 

We implemented the CART algorithm to plot our tree structure. We attached part of the 

code for 10-fold cross-validation: 

  P( X |Y )

   X = ( X1, X2 ,..........Xn )  Yk   Y1

  Y2

   
P(Yk | X ) =

f ( X |Yk )* P(Yk )
P( X )

(1)
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The final structure is presented using 

 

• SVMCode.m 

In SVM, we used several kernel functions to find the best hyperplan. 

 

• KNNCode.m  

for k=1:10 

    test = (indices == k); train = ~test; 

    obj.Tree = fitctree(... 

    xdata(train,obj.IndexInputNum), ... 

    group(train,1), ... 

    'SplitCriterion', 'gdi', ... 

    'MaxNumSplits', 20, ... 

    'Surrogate', 'off', ... 

    'ClassNames', [0; 1]); 

    TestData=obj.Trainingdata(test,:); 

    z=size(TestData); 

        for i=1:z(1,1) 

TestOutput(i,1) =predict(obj.Tree,TestData 
(i,obj.IndexInputNum));  

            TestOutput(i,2)=TestData(i,end)% Actual MMR 

        end%for i 

       [Conf,order] = confusionmat(TestData(:,end),TestOutput(:,1)); 

       Total=Performance(obj,Conf); 

end % for k 

 view(obj.Tree) 

Obj.SVM = fitcsvm(... 

    obj.Trainingdata (train,obj.IndexInputNum), ... 

    group(train,1), ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 2, ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]); 
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• NBCode.m 

 

S4. Automate the Selection of the highest performance 

All the results fro the 10 fold cross validation were saved in crossvalidation.csv file. 

We read the table that contained the mean of the accuracy from 10 fold cross-validation. 

Then, repeat the same code for returning the highest G-mean and F-score results from 

training all combined methods. 

  

obj.KNN =fitcknn(... 

    obj.Trainingdata (train,obj.IndexInputNum), ... 

    group(train,1), ... 

    'Distance', 'Euclidean', ... 

    'Exponent', [], ... 

    'NumNeighbors', 1, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', [0; 1]);  

obj.KNN= fitcnb(obj. Trainingdata (train,obj.IndexInputNum),obj. Trainingdata 
(train,end)); 
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S5. How to Use Combined Methods to Predict Risk Groups 

The process can be briefly described as follows: 

1. Gather the required features to calculate the prognostic scores in the features set. 

2. Calculate the score values using the equations of each prognostic score and store the 

results in the score values set. 

3. Categorize the score values based on risk indexes belonging to each prognostic score. 

4. If you used three prognostic score systems (Sokal, Hasford and EUTOS) apply one of the 

combined models as follows: 

4.1. Figure A shows the meta decision tree model using the tree structure. After 

identifying the risk index from each prognostic score, the path from the first node to 

the leaf represents which score should be used. For example, a patient was low risk 

according to the Sokal and Hasford scores but high risk according to the EUTOS 

score. The right path from the tree classifies that this patient is in the high risk group.  

•  

Figure D. The meta decision tree structure constructs relations between the prognostic scores and risk 
categories. The node represents each score and has two possible splits: It is connected to either the 
second prognostic score or the risk group in the low or high risk groups.  

4.2. The SVM structure: 

Kernel Function: polynomial 
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Kernel Polynomial Order: 2 

Scale: 0.3623 

Bias: 1.2304 

Mu: [0.0723    0.4885    0.1833] 

Sigma: [0.1310     0.1619      0.1730] 

The property Score Transform= '@(S)sigmoid(S,-3.041237e+00,1.912769e+00)' of the 

classifier obj.SVM contains the optimal transformation function.  

 After adapting the new prognostic score ELTS, the SVM model structure was 

updated to: 

4.3. The SVM structure: 

Kernel Function: polynomial 

Kernel Polynomial Order: 2 

Scale: 0.6276 

Bias: 1.1235 

Mu: [0.0723 0.4885 0.1833 0.2708] 

Sigma: [0.1310 0.1619 0.1730 0.1756] 

The property Score Transform= '@(S)sigmoid(S,-2.222958e+00,1.004196e+00)' of the 

classifier obj.SVM contains the optimal transformation function.  
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Supplementary Material B: Modelling Predictors of Molecular 

Response to Frontline Imatinib for Patients with Chronic 

Myeloid Leukaemia 

S1 Text. Supplementary Results. doi:10.1371/journal.pone.0168947.s001 

Supplement Results  
Imputation for Missing Values 

The identifiers IDs of the patients those imputed values of the factors of patients with missing 

values is listed in Table A. 

Table A The identifiers of the patients those imputed values of the factors of patients with missing values.  

Patient ID Factors with Missing value  Missing value imputed 

4 Spleen, Sokal score, Hasford Score 0, 0.63, 690.713 

10 IC50IM 0.6 

12 OA, IC50IM 4.02, 0.8 

25 IC50IM 0.86 

26 Eosinophils and Hasford score 0.65, 449,91 

43 EUTOS score 90.525 

48 Blast, Sokal Score, and Hasord Score 0.5, 0.61, 1006.42 

53 IC50IM 0.61 

64 EUTOS score 30 

69 IC50IM 0.85 

71 BCR-ABL1 Level pretherapy 48.5 

77 IC50IM 0.82 

79 IC50IM 0.87 

88 IC50IM 0.73 

93 BCR-ABL1 Level pretherapy 125 

95 Age, Sokal score, Hasford score 52, 1.27, 1436.31 

97 Blast, Sokal score, Hasford score 0, 0.76, 603.52 
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102 IC50IM 2.788 

124 Platelets, Blast, Sokal score, Hasford score 399, 0, 0.77, 661.594 

126 OA 6.44 

151 OA, IC50IM 4.97, 0.57 

153 OA 4.72 

174 Platelets, Blast, Sokal score, Hasford score 311.33, 3.3, 1.22, 1250.59 

175 Platelets, Blast, Sokal score, Hasford score 355, 1.66, 0.87, 682.16 

187 OA 3.55 

206 IC50IM, EUTOS score 1.47, 57 

207 Basophils, Eosinophils, Hasford score 7.65, 8.905, 1024.75 

208 IC50IM 1.5 

210 EUTOS score 57 

The   imputation is done by using the linear interpolation for the continuous and categorical data.
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Correlation Coefficients for MMR at 24 months with Original Data and Completed 
Data 

The original data included missing values and completed data after imputation of missing 

values of factors. The correlation coefficient was calculated between each predictive factor 

and the MMR at 24 months.  Table B shows that there were not large differences in 

correlation coefficients.  

Table B The correlation Coefficient in Original data and completed data 

Original Data Completed Data 

Predictor Correlation p Predictor Correlation  p 

Spleen 0.31521833 Spleen 0.31732076 

Age 0.19547668 Basophils 0.19958623 

Basophils 0.19309652 Age 0.19328342 

Monocytes 0.18853493 WCC 0.18869802 

WCC 0.17740892 Monocytes 0.18803225 

Eosinophils 0.16655321 Eosinophils 0.18417037 

ANC 0.14582059 ANC 0.15514001 

Blast 0.110962816 Blast 0.12231851 

IC50imatinib 0.10926288 Hasford Score 0.11979281 

Hasford Score 0.108925685 Platelets 0.09735691 

OA 0.10400609 IC50imatinib 0.096847385 

Platelets 0.0939224 OA 0.09405362 

Gender 0.08926122 Gender 0.08926122 

EUTOS Score 0.0820541 EUTOS Score 0.079521775 

BCR-ABL1 level at diagnosis 0.03623853 Sokal Score 0.038800742 
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Sokal Score 0.03104846 BCR-ABL1 level at diagnosis 0.030398324 

BCR-ABL1 Transcript Type 0.02592691 BCR-ABL1 Transcript Type 0.02592691 

Lymphocytes 0.008399159 Lymphocytes 0.022077713 

Overall Summary of Missing Values in TIDEL II and Saudi Population 

Table C Missing values percentage included in TIDEL II and Saudi datasets 

Factors TIDEL II (n= 210) Saudi Population (n=172) 

Age (years) 0 0 

Gender 0 4(2.32%) 

Spleen (cm) 1(0.48%) 0 

BCR-ABL1 Transcript Type 0 Not palpable 

OA (ng/200,000 cells) 6(2.86%) Not palpable 

IC50IM (μM) 14(6.67%) Not palpable 

BCR-ABL1 level pretherapy (at diagnosis) 4(1.90%) Not palpable 

ANC (109 /L) 1(0.48%) Not palpable 

Monocytes (109 /L) 1(0.48%) 0 

Lymphocytes (109 /L) 1(0.48%) Not palpable 

Basophils (109 /L) 1(0.48%) Not palpable 

Eosinophils (109 /L) 3(1.43%) Not palpable 

WCC (109 /L) 1(0.48%) Not palpable 

Blasts (109 /L) 7(3.33%) Not palpable 

Platelets (109 /L) 4(1.90%) 9(5.23%) 

Blasts (% of leukocytes) 0 0 

Basophils (% of leukocytes) 3(1.43%) 10(5.81%) 
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Eosinophils (% of leukocytes) 3(1.43%) 10(5.81%) 

 

Machine Learning Implementation 
The actual response is (ResMMR: Actual MMR, 1 refers to achieving MMR and 0 refers to 

not achieving MMR). 

First, the wrapper approach selects the prognostic subset (InputFactorsIndex: refers to 

the input index in the data set). For example, if the OA is located in the second column and 

IC50IM is located in the fifth column of the data set, then the InputFactorsIndex=[ 2 5]. Next, 

the classregtree is a keyword in Matlab to implement (DTStruct) CART structure; fitcknn is 

a keyword to build KNN. In addition NaiveBayes.fit is reserved for building Naive Bayes. 

Finally, the P refers to the prediction results; 1: Yes, and 0: No. For construction and 

evaluation of the CART model: 

DTStruct = classregtree( TrianData(InputFactorsIndex), ResMMR, 'method', 

'classification', 'splitcriterion', 'gdi', 'categorical',1: length(InputFactorsIndex)); 

P= eval(DTStruct,TestData(InputFactorsIndex)); 

S1 File. Decision Tree Structures. doi:10.1371/journal.pone.0168947.s002 
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Fig A. Model A Structure. All the predictive factors model in the tree graph. 
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Fig B. Model E structure, the final model in the tree graph that achieved high G-mean 

performance.  

 

Fig C. 7 Model F structure, the final model in the tree graph that achieved high F-score performance. 
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Fig D. Saudi patients used in this study, inclusion and exclusion criteria. 
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S1 Table. Clinical Prediction Rules, dataset includes list of clinical prediction rules that 

constructed from recommended models. doi:10.1371/journal.pone.0168947.s003. Fore, 

example, the following table displays a part of the S1 Table. 

 Rule ID If Age AND 
Gender 

AND Spleen Size … … Then MMR 

Model 
A 

1 Young Female Not Palpable   Yes 

. 

. 

. 

2 Young Female Small   No 

Model n Number of clinical prediction 
rules 

Age 
Categories 

Gender 

Categories 

Spleen Size 
Categories 

  MMR 
Outcome  

Yes or No 

 

……The End….. 


