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ABSTRACT 12 

Lipids are the major nutritional component of almonds and almond lipids comprise a range 13 

of fatty acids from C14 up to C20, including saturated, monounsaturated and 14 

polyunsaturated fatty acids, and oil soluble compounds such as plant sterols and 15 

tocopherols. This study investigated the change in fatty acid and tocopherol levels during 16 

almond kernel maturation, in the variety Nonpareil, grown in the Adelaide Plains of South 17 

Australia. The investigation was carried out between November 2012 and February 2013. 18 

The accumulation of lipids was determined over six timepoints, commencing at 74 days 19 

post-anthesis, and then at 20 day intervals. Almond lipid accumulation occurred rapidly 20 
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between 95 and 115 days post-anthesis, i.e. at a rate of up to 1.83 g/day per 100 g fresh 21 

weight but then slowed. Tocopherols accumulated steadily and were positively correlated 22 

with lipid development; with α-tocopherol forming at the highest rate, being 0.58 mg/day 23 

in 100 g lipid, between the first two timepoints. The key timing for accumulation of the 24 

major fatty acid, oleic acid, was between 95 and 115 days post-anthesis, after which 25 

accumulation remained constant, at 0.57% of total lipids per day. In contrast, linoleic acid 26 

accumulated during the first two timepoints then declined to 23% of final lipid content. 27 

This study aimed to determine the timing of almond lipophilic antioxidant production, to 28 

inform almond orchard management practices, such as irrigation and fertilisation, which 29 

may impact kernel composition, and therefore, quality.  30 

 31 

Keywords: Almond, Fatty acids, Fruit development, Lipids, Prunus, Tocopherols 32 

 33 

INTRODUCTION 34 

Lipids represent the major nutritional component of almond kernels and account for more 35 

than 50% of total kernel dry weight (Kodad et al. 2011a, Zhu et al. 2015). Isotope labelling 36 

experiments have previously been employed to study changes in the composition of lipids 37 

and fatty acids in almonds during development (Cherif et al. 2004, Munshi and Sukhija 38 

1984, Soler et al. 1988). These studies, using [1-14C] acetate incorporation, or organic 39 

solvents to extract fatty acid and triacylglycerol, monitored almond fatty acid biosynthesis. 40 
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However, these studies were based on cultivars and development stages for almonds grown 41 

under northern hemisphere climatic conditions. So far, studies concerning the accumulation 42 

of fatty acids during almond kernel maturation have not been undertaken in the southern 43 

hemisphere where almond fruits are exposed to more solar radiation during maturation 44 

(Zhu 2014 PhD thesis), in particular, solar UV radiation in the southern hemisphere is 45 

stronger than the northern hemisphere (Gies et al. 2004). Australia has a long history of 46 

almond production, and Australian production has increased dramatically over the last 47 

decade from 16,000 t in 2006 to over 81,000 t in 2016 (ABA 2016). Australian almond 48 

producing regions experience unique environmental conditions, for example, limited 49 

rainfall (and frequent droughts), intense ultraviolet radiation (UVR), and predominantly 50 

red loamy and sandy soils, i.e. conditions which influence almond kernel development 51 

(Mousavi and Alimohamadi 2006). Kodad et al (2010) also pointed out the climatic 52 

conditions prevalent during the growing season, along with genotype and environment 53 

together influence almond oil content and fatty acid composition. It is therefore worth 54 

studying the changes in fatty acid profiles of Australian grown almonds during kernel 55 

development. 56 

 57 

To date, the accumulation of tocopherols during almond lipid maturation has not been 58 

reported in the literature. Among the various tree nuts, almonds have the highest vitamin E 59 

(tocopherol) content (Kodad et al. 2011b, Zhu et al. 2015). Tocopherol concentration is 60 

therefore a key nutritional measure of almond kernel quality. Almond lipids predominantly 61 
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comprise the monounsaturated fatty acid, oleic acid, and the polyunsaturated fatty acid, 62 

linoleic acid (Kodad et al. 2011a, Zhu et al. 2015) together with tocopherols collectively, 63 

these constituents have been shown to play an important lipophilic antioxidant role in 64 

human metabolism (Damasceno et al. 2011, Hollis and Mattes 2007, Rajaram et al. 2010, 65 

Wien et al. 2010). The concentrations of tocopherols in fully ripened almond kernels has 66 

been well documented (Kodad et al. 2011b, Kornsteiner et al. 2006, Lopez-Ortiz et al. 2008, 67 

Madawala 2012, Matthäus and Ozcan 2009), but the accumulation of tocopherols during 68 

kernel development has not been extensively studied. In this study, changes in four 69 

tocopherol homologues over six stages of almond kernel development were followed, to 70 

determine the key timing of tocopherol formation. 71 

 72 

Given the nutritional importance of lipids, unsaturated fatty acids and tocopherols, insight 73 

into their accumulation during almond kernel maturation might be used to inform the 74 

timing of almond orchard management practices, such as irrigation and fertilisation, in 75 

order to enhance kernel quality. Nanos and colleagues (Nanos et al. 2002) found irrigation 76 

enhanced oleic acid content in almond lipids compared with no irrigation. However, our 77 

previous study (Zhu et al. 2015) observed that moderate deficient irrigation increased oleic 78 

acid in comparison to the control. Therefore, the present study aimed to investigate the key 79 

time points for almond lipids during drupe maturation, providing useful data for future 80 

studies. This study was performed on Nonpareil almonds, a cultivar grown extensively 81 

throughout Australia, as the basis for decision-making in the orchard. 82 
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 83 

Material and Methods 84 

Plant materials. Almonds were harvested from 26-year-old trees (Prunus dulcis, cv. 85 

Nonpareil) grown in an orchard in the North Adelaide Plains (34°92’S, 138°60’E, elevation 86 

48 m above sea level), during the 2012-2013 growing season; with the orchard managed 87 

according to typical commercial practices. The soil comprised red-brown earth, with a high 88 

clay content. Climate data (Table 1) was sourced from the Australian Bureau of 89 

Meteorology (www.bom.gov.au). Almonds were sampled at six different timepoints 90 

starting at 74 days post-anthesis (t=1) and then at approximately 20 day intervals thereafter 91 

(i.e. t=2, 3, 4 and 5), until commercial maturity (t=6). Two almonds were randomly selected 92 

from each of 40 trees at each timepoint. Kernels were opened and photographed with a 93 

Canon EOS500 digital camera. Kernels collected at t=1, 2, 3, 4 and 5 were ground to a 94 

slurry and analysed in fresh form only; while fully ripened kernels (sampled at t=6, i.e. 167 95 

days post-anthesis, at commercial maturity when the mesocarp of almond drupes were dry 96 

and split, which denotes the almond fruit is fully mature), were analysed in both fresh and 97 

dried forms. Kernels were dried by heating at 50°C for 48 hours, to achieve a final moisture 98 

content of approximately 2%, measured according to the gravimetric technique (Zhu et al. 99 

2015). Dried kernels were ground to a fine powder with a coffee grinder, then sieved 100 

through a 1000 µm mesh, prior to compositional analysis. 101 

 102 

Chemical reagents. Analytical grade hexane, ethanol, methanol, chloroform, n-heptane, 103 
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sodium chloride, butylated hydroxyanisole (BHA), sulphuric acid, ascorbic acid and 104 

potassium hydroxide were purchased from Merck (French Forest, Australia), Scharlau 105 

(Gillman, Australia) and Sigma Aldrich (Castle Hill, Australia). A C17 free fatty acid (>99% 106 

purity) was sourced from Nucheck Prep Inc. (Elysian, MN, USA) and used as an internal 107 

standard for determining the fatty acid profile of almond lipids. For identification and 108 

quantification of tocopherols, external standard curves were developed using an α, β, γ, δ-109 

tocopherol standards set and an α-tocotrienol standard, sourced from Calbiochem (San 110 

Diego, CA, USA) and Cayman Chemicals (Ann Arbor, MI, USA), respectively.  111 

 112 

Fatty acid determination. Lipid extraction and fatty acid determinations were performed 113 

(in triplicate) using chloroform-methanol extraction and methanol-sulphuric acid FAME 114 

formation (fatty acid methylation), based on methodology previously described by 115 

Makrides et al. (1996) with some modification (Zhu et al. 2015). Briefly, almond powder 116 

(0.05 g) was mixed with 0.9% aqueous sodium chloride (2 mL), methanol (3 mL, 117 

containing 0.005% BHA), C17 free fatty acid (400 µL, 0.16% in methanol) as an internal 118 

standard and chloroform (6 mL), and allowed to stand for 1 hour. After extraction, samples 119 

were centrifuged (3000 x g for 10 min) and the organic phase separated and concentrated 120 

using a nitrogen evaporator (N-EVAP 112, Organomation Associates Inc., Berlin, MA. 121 

USA) at 45°C. After evaporation, the vial containing the extract was weighed, and the 122 

difference between the vial with extract and the initial empty vial is the amount of the 123 

sample lipid. After drying, methylation was achieved by adding chloroform:methanol (9:1 124 
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v/v, 1 mL, containing 0.005% BHA) and methanol (5 mL, containing 1% sulphuric acid), 125 

and heating to 70°C for 3 hours. After samples had cooled, n-heptane (2 mL) and water 126 

(0.75 mL) were added and samples were mixed thoroughly. The organic layer was 127 

transferred to a GC vial for analysis. Fatty acid composition was determined using an HP 128 

6890 gas chromatograph (Hewlett Packard, Palo Alto, CA. USA) equipped with a flame 129 

ionisation detector (FID) and HP 7683 autosampler. Separation was performed on an SGE 130 

BPX 70 capillary column (50 m, 0.32 mm ID, 0.25 µm; SGE Analytical Science Pty. Ltd., 131 

Ringwood, Vic., Australia). Helium was used as the carrier gas and the split-ratio was 20:1. 132 

The injector temperature was 250°C and the detector temperature was 300°C. The initial 133 

oven temperature was 140°C, increasing to 220°C at 5°C/min, and then held at this 134 

temperature for 3 min. FAMEs were identified and quantified based on the retention time 135 

and peak area of the C17 free fatty acid internal standard.  136 

 137 

Tocol determination. Tocol extraction was based on the alkaline saponification and hexane 138 

extraction method used previously for analysis of cereals and nuts (Xu 2002) and described 139 

previously (Lampi 2011, Lampi et al. 2008). Briefly, almond powder (0.25 g) was mixed 140 

with ascorbic acid (0.025 g), ethanol (2.5 mL) and 80% aqueous potassium hydroxide 141 

solution (0.25 mL). After being vortexed for 30 s, the samples were incubated in a water 142 

bath at 70°C for 30 min, with (vortex) mixing at 10 min intervals. Samples were then placed 143 

in ice water for 5 min, before water (1.5 mL) and hexane (2.5 mL) were added, the resulting 144 

mixture vortexed for 30 s. Samples were then centrifuged (1000 x g for 10 min). The 145 



8 

 

hexane layer was transferred to vials and the residue extracted again, before the combined 146 

hexane extracts were concentrated using a nitrogen evaporator (N-EVAP 112) at 45°C). 147 

The resulting residue was re-dissolved in hexane (1 mL) prior to HPLC analysis, using 148 

previously published protocols (Lampi 2011, Lampi et al. 2008); i.e. the isocratic mobile 149 

phase was hexane (with 2% 1,4-dioxane), with a flow rate of 1.0 mL/min, an injection 150 

volume of 20 µL and column temperature of 25°C. HPLC analysis was performed using 151 

an Agilent 1200 HPLC (Agilent Technologies, Waldbronn, Germany) coupled with diode 152 

array and fluorescence detectors (DAD and FLD, respectively). Separation was achieved 153 

using a Grace Alltime HP silica column (150 mm, 3 mm ID, 3 µm; Grace Discovery 154 

Sciences, Deerfield, IL, USA). α, β, γ, δ-Tocopherol and α-tocotrienol standards were used 155 

to prepare external calibration curves. α-Tocopherol was detected by DAD at a wavelength 156 

of 292 nm, while β, γ, δ-tocopherol and α-tocotrienol were detected by FLD at wavelengths 157 

of 292 nm (excitation) and 325 nm (emission). 158 

 159 

Data analysis. Chemical data were analysed by one-way ANOVA using GenStat (15th 160 

Edition, VSN International Limited, Herts, UK) and GraphPad Prism 5 (Version 5.01 161 

GraphPad Software Inc., La Jolla, CA, USA) for graph presentation. Mean comparisons 162 

were performed by Tukey’s multiple-comparison test at P<0.05. Pearson’s co-efficient was 163 

used for correlation analysis. 164 

 165 

Results and Discussion 166 
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The study of fruit morphology is important for orchard management, because via plant 167 

morphology, both the vegetative and reproductive structures of the plant are observed. 168 

Plant morphology also examines the process in which structures originate and mature as a 169 

plant grows. This information is the key to predict crop yield. Compositional changes that 170 

occur during fruit morphological development could have a significant role in determining 171 

orchard practice, in a manner similar to that employed by the wine industry to determine 172 

the timing of vineyard management practices. In this study, we measured changes in 173 

almond morphological and compositional characteristics during development, to determine 174 

to what extent this information could be used by industry to inform orchard management 175 

decisions.   176 

 177 

Fruit appearance during almond kernel development 178 

Changes in the appearance of almonds during their development and ripening are shown 179 

in Figure 1. At the first and second timepoints (i.e. at t=1 and t=2, being 74 and 95 days 180 

post-anthesis respectively), almond kernels contained clear endosperm, while the outer hull 181 

(mesocarp) was bright green in color. As kernels developed, the endosperm decreased in 182 

size as the embryo developed which was cream in color, but by the third and fourth 183 

timepoints (i.e. t=3 and t=4, being 136 and 156 days post-anthesis respectively), the kernel 184 

skin remained pale and fruit color was unchanged. By the fifth timepoint (i.e. t=5, being 185 

156 days post-anthesis), the kernel had become firm and the skin had browned. The fruit 186 

mesocarp had become dry and exhibited a leathery texture. At commercial maturity, (i.e. 187 
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t=6, being 167 days post-anthesis or commercial maturity) kernels were fully ripe and 188 

comparatively dry; i.e. moisture levels had decreased to approximately 5% (data not 189 

shown). These anatomical observations were similar to those described by Munshi and 190 

Sukhja (1984), and Hawker and Buttrose (1980), despite different varieties being studied; 191 

i.e. Nonpareil in this study, the regional selection H5 in the Munshi and Sukhja study, and 192 

the local varieties Chellaston and Johnston were comprehensively illustrated of almond 193 

kernel anatomical features during maturation in the Hawker and Buttrose study. In addition 194 

to those early studies, Martínez-Gómez et al. (2008) also finely observed the dissected parts 195 

of five almond cultivars during drupe development, and had similar but with subtle 196 

differences and specific descriptions for individual cultivars.  197 

 198 

Lipid accumulation during almond kernel development 199 

Lipid accumulation is shown in Figure 2. Based on the rate differences, accumulation 200 

patterns could be seen. From 74 to 95 days post-anthesis the rate was 0.38 g/100 g/day; 201 

from 95 to 115 days post-anthesis the rate was 1.83 g/100 g/day; from 115 to 156 days post-202 

anthesis the rate was 0.05 g/100 g/day; from 156 to 167 days post-anthesis the rate was 203 

0.62 g/100 g/day. The ANOVA analysis showed there was no significant difference between 204 

t=3, t=4, and t=5, and there was a significant difference between t=5 and t=6, likewise, a 205 

significant difference between t=2 and t=3 (Table 2). During t=1 to t=2, lipid accumulation 206 

was slow; from t=2 to t=3 had the highest development of almond lipid synthesis, within 207 

20 days, lipid synthesis increased to 46.46 g/100g fresh kernels at stage 3, which is regarded 208 



11 

 

as the critical time for lipid accumulation. Thereafter, the rate of almond lipid synthesis 209 

declined to 0.05 g/100 g/day, where t=3 to t=5 lasted 41 days. During this time, other 210 

compounds are being actively metabolized, for example, significant quantities of protein 211 

form, and sugar and moisture content decrease (Cherif et al. 2004). The results show that 212 

lipids accumulate in the first period of development. This could have implications for early 213 

harvesting of almonds to produce high quality almond oil. This has been done in other 214 

crops such as grapes resulting in high quality grape seed oil (Rubio et al. 2009). 215 

Approaching the ripening period (t=6), lipid accumulation increased again to 0.62 g/100 216 

g/day and reached the final amount of 53.70 g/100 g dry kernels. This could in part be 217 

attributed to moisture loss which resulted in the kernel dry mass being concentrated. 218 

Harvest occurs in the summer season; in the current study, the weather prior to harvest 219 

comprised low rainfall and high daily maximum temperatures (Table 1). The long-term 220 

average maximum temperature for the Adelaide Plains is 28.1°C, compared to 28.5–28.7°C 221 

for January and February in the 2013 growing season. Conditions were also much drier in 222 

2013, with just 9.0 and 12.4 mm of rainfall in January and February respectively, compared 223 

with long-term averages of 21.2 and 20.7 mm for these months respectively. Warmer and 224 

drier climatic conditions can give increased seed dry mass (Monga et al. 1983, Munshi and 225 

Sukhija 1984, Onemli 2012). Warmer and drier climatic conditions also affect almond lipid 226 

fraction composition. It was observed that almonds grown in the Riverland region (a hot 227 

and dry almond growing region in Australia) had a higher portion of linoleic acid than 228 

almonds grown in Willunga (a relatively mild and humid region) (Zhu et al. 2015). Further 229 
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studies should be designed to test the effect of water and fertiliser on almond kernel 230 

development. For example, applying varying fertiliser and water amounts at time point 2 231 

which is the start time for almond lipid accumulation at the highest rate, and measure the 232 

difference between treatments and control. 233 

 234 

Fatty acid composition during almond kernel development 235 

Changes in the fatty acid composition of almonds included comparisons of myristic, 236 

palmitic, palmitoleic, vaccenic, stearic, oleic, linoleic, linolenic and arachidic acids 237 

during kernel development (Table 2). Accumulation of some fatty acids, oleic and linoleic 238 

acids in particular, changed considerably between the initial (t=1) and final (t=6) 239 

timepoints. ANOVA showed significant differences between t=2 and t=3 in all fatty acids, 240 

with the exception of myristic and arachidic acids (Table 2). This suggests that between 241 

95 and 115 days post-anthesis is a key time for fatty acid formation and it may be an 242 

optimal time to manipulate fatty acid composition by possibly increasing fertilisation or 243 

increasing light penetration into the canopy, to achieve, for example a higher oleic acid to 244 

linoleic acid ratio, in order to extend kernel shelf-life, (Kodad et al. 2011a). 245 

 246 

Indeed, oleic and linoleic acids showed opposing accumulation patterns after t=2; levels of 247 

both fatty acids increased to 39% of total lipids between t=1 and t=2, (being 10.8 and 24.4% 248 

of total lipids, respectively). Thereafter, oleic acid continued to accumulate until the 249 

maximum value of 63% of total lipids was achieved, which explains the high correlation 250 



13 

 

(R=0.8651) with lipid development that was observed. In contrast, linoleic acid 251 

concentrations reached a peak at t=2 then decreased until t=5 after which it remained fairly 252 

constant to commercial maturity (t=6). In a study of fatty acid synthesis in sunflower seeds, 253 

Onemli (2012) reported a different situation: i.e. at the second stage, the cross-point was 254 

the maximum value for oleic acid, rather than linoleic acid, thereafter, oleic acid 255 

concentration decreased. Yet, there is a similarity: no linear response of linoleic acid to 256 

sunflower oil accumulation was found but a negative correlation between oleic acid and 257 

sunflower oil content was observed. Moreover, in an early study of almond lipid 258 

development (Soler et al. 1988), oleic acid and linoleic acid exhibited the same trend as the 259 

present study during lipid accumulation. Noticeably, the concentration of linoleic acid was 260 

high at 59.2% of total lipids and then declined to 29% at maturity (Soler et al. 1988). 261 

Concentrations of linoleic acid did not reach such high levels during this study. These 262 

differences could reflect the differences in sampling times. There are no other studies 263 

reporting such high concentrations of linoleic acid in almond lipids or during lipid 264 

maturation. Future studies could consider sampling kernels over the ripening period to 265 

explore oleic and linoleic acid synthesis in almond lipids. 266 

The pattern of linoleic acid accumulation during almond lipid maturation was quite similar 267 

to those observed for accumulation of some saturated fatty acids, such as myristic, and 268 

palmitic, i.e. maximum concentrations were achieved in the early stages of kernel 269 

development and then decreased to relatively constant levels prior to commercial maturity. 270 

This agreed with findings reported by Munshi and Sukhija (1984), who performed 14C 271 
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labelling experiments to study almond lipid biosynthesis. Linolenic acid, a poly-272 

unsaturated fatty acid, followed a similar type of accumulation pattern.  273 

Correlation coefficients between fatty acids and total lipids are shown in Table 4. A strong 274 

positive correlation was found between vaccenic and palmitic acids (R=0.9592), and 275 

between oleic and palmitic acids (R=0.8828). This might reflect similarities between 276 

metabolic pathways for C18:1 and C16:0 production, but this has not been reported in the 277 

literature. 278 

 279 

Tocopherols accumulation during almond kernel development 280 

Figure 2 shows the accumulation of almond lipids and tocopherols between t=1 and t=6, 281 

and Table 3 demonstrates the key timing of tocopherol formation. α-Tocopherol 282 

concentration showed a very strong positive correlation with almond lipid accumulation 283 

content (R=0.864, p<0.0001). β-Tocopherol and α-tocotrienol also showed a strong 284 

positive correlation with lipid accumulation (R=0.824, 0.761 respectively, p<0.0001), 285 

while γ-tocopherol showed a moderate correlation with almond lipid accumulation (R= 286 

0.502 p=0.02). This result reflects the natural pathway of tocol accumulation as α-287 

tocopherol, β-tocopherol and α-tocotrienol are end products whereas γ-tocopherol is an 288 

intermediate product towards α-tocopherol. 289 

In the present study, the rates of α-tocopherol synthesis varied considerably. From t=1 to 290 

t=2 (74 to 95 days post-anthesis) it was 0.58 mg/day in 100 g lipids; from t=2 to t=4 (from 291 
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95 to 136 days post-anthesis) it was 0.09 mg/day in 100 g lipids; and from t=4 to the final 292 

stage (from 136 to 167 days post-anthesis) the rate was 0.28 mg/day in 100 g lipids. The 293 

highest accumulation rate took place in the first period. 294 

 295 

Through the whole kernel development, the transformation between the homologues was 296 

not observed. For example, from the early stage to the final stage, α-tocopherol was always 297 

the predominant constituent, no other homologues like γ-tocopherol and α-tocotrienol were 298 

higher than α-tocopherol. α-Tocopherol is synthesized, via γ-tocopherol methyltransferase, 299 

and the levels of γ-tocopherol were at least ten times less than the final product which 300 

shows an efficient turnover of substrate. Future research could involve harvesting at earlier 301 

stages of almond kernel development and refine the time line of sampling. 302 

We recognize that there is a limitation in the present study, i.e. single year, single variety 303 

and single locality. Year variation needs to be carried out in future studies, to determine if 304 

this has any bearing on kernel development. Any variation seen between years will most 305 

likely be due to the climate. Regarding variety and locality, these two factors could be in 306 

another study, taking into account agronomic and genotypic differences. Some cultivars 307 

have shorter ripening times and therefore kernel development should be faster in those. 308 

CONCLUSION 309 

This study determined the changes in fatty acid and tocopherol composition during kernel 310 

development for almonds grown in the Adelaide Plains in Australia. Results suggest the 311 
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key timing of almond lipid accumulation was between 95 and 115 days post-anthesis, while 312 

tocopherols predominantly accumulated between 74 and 95 days after anthesis. Especially, 313 

the time between 95 days and 115 days post-anthesis is a crucial period to apply orchard 314 

management techniques such as increased water and fertilisation, to enhance the lipids and 315 

tocopherol in almond, as well as to influence oleic acid and linoleic acid maturation to 316 

control the O/L ratio for long shelf life of kernels.  317 
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Table 1. Climatic conditions in the Adelaide Plains during the 2012/13 growing season.  

  

Year Month 
Tmax

*  

(oC) 

Tmin
*  

(oC) 

 Rainfall* 

(mm) 

Solar Radiation* 

(MJ/m2) 

2012 

September 19.1 (18.3) 9.0 (8.9) 21.6 (54.4) 16.7 (15.5) 

October 21.9 (21.0) 9.6 (10.6) 15.6 (44.9) 23.4 (20.6) 

November 26.6 (24.0) 14.5 (12.8) 16.4 (30.5) 28.9 (24.7) 

December 27.0 (25.7) 15.5 (14.5) 13.6 (27.4) 30.3 (26.7) 

2013 
January 28.5 (28.1) 15.7 (16.0) 9.0 (21.2) 27.6 (27.7) 

February 28.7 (28.1) 17.3 (16.2) 12.4 (20.7) 23.7 (24.4) 

Data from the Bureau of Meteorology website (www.bom.org.au) 

* Seasonal data (and long term average data)   
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Table 2. Fatty acid composition of almonds at different stages of kernel development. 

 

Sampling time: 

(days post-anthesis) 

 

74 days 95 days 115 days 136 days 156 days 167 days 167 days* 

t=1 t=2 t=3 t=4 t=5 t=6 t=6* 

Lipid (g/100 g)  3.9 ± 0.1 c 7.9 ± 0.05 c  44.5 ± 2.32 b  45.7 ± 0.69 b  46.5 ± 0.30 b  53.3 ± 2.17 a  53.3 ± 0.70 a  

myristic(C14:0) nd 0.06 ± 0.00 a 0.07 ± 0.00 a 0.05 ± 0.00 b 0.05 ± 0.00 b 0.04 ± 0.00 b 0.05 ± 0.00 b 

palmitic(C16:0) 7.7 ± 0.1 c 9.0 ± 0.05 a 8.1 ± 0.09 b 7.3 ± 0.02 d 7.2 ± 0.03 d 7.3 ± 0.05 d 7.3 ± 0.04 d 

palmitoleic(C16:1) nd 0.40 ± 0.00 d 0.53 ± 0.01 a 0.48 ± 0.00 c 0.51 ± 0.01 ab 0.50 ± 0.00 bc 0.48 ± 0.01 c 

stearic(C18:0) nd 0.98 ± 0.02 d 1.4 ± 0.02 c 1.80 ± 0.02 a 1.7 ± 0.01 a 1.6 ± 0.03 b 1.6 ± 0.01 b 

vaccenic(C18:1n=7) 0.75 ± 0.07 c 1.4 ± 0.00 b 1.5 ± 0.01 a 1.4 ± 0.01 ab 1.4 ± 0.00 ab 1.4 ± 0.01 ab 1.4 ± 0.01 ab 

oleic(C18:1n=9) 10.8 ± 0.7 e 39.1 ± 0.17 d 52.4 ± 0.30 c 60.1 ± 0.24 b 63.3 ± 0.09 a 63.7 ± 0.18 a 62.6 ± 0.16 a 
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linoleic(C18:2) 24.4 ± 1.6 cd 38.5 ± 0.23 a 33.7 ± 0.15 b 26.8 ± 0.28 c 23.9 ± 0.06 cd 23.4 ± 0.16 d 24.7 ± 0.15 cd 

linolenic(C18:3) nd 0.32 ± 0.02 a 0.11 ± 0.00 b 0.07 ± 0.00 c 0.05 ± 0.00 c 0.07 ± 0.00 bc 0.08 ± 0.01 bc 

arachidic(C20:0) nd 0.11 ± 0.00 a 0.10 ± 0.01 a 0.09 ± 0.01 a 0.09 ± 0.01 a 0.11 ± 0.01 a 0.09 ± 0.00 a 

Values are means of three replicates ± standard error. Fatty acid content expressed as a percentage of total lipids. 

Means within a row followed by different letters indicate significantly different (P = 0.05, one-way ANOVA).  

nd = not detected. 

* results from analysis of dried kernels. 
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Table 3. Tocol composition (mg/100 g) of almonds at different stages of kernel development. 

 

Sampling time: 

(days post-anthesis) 

 

74 days 95 days 115 days 136 days 156 days 167 days 167 days* 

t=1 t=2 t=3 t=4 t=5 t=6 t=6* 
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-tocopherol 1.2 ± 0.02 c 12.1 ± 0.33 b  14.3 ± 0.82 b  15.7 ± 0.72 b  21.1 ± 0.98 a  20.5 ± 1.84 a  21.3 ± 1.14 a  

-tocopherol 0.01 ± 0.00 c 0.68 ± 0.05 a 0.50 ± 0.02 b 0.42 ± 0.01 b 0.51 ± 0.03 b 0.71 ± 0.03 a 0.52 ± 0.01 b 

-tocopherol nd 0.08 ± 0.01 b 0.10 ± 0.00 a 0.10 ± 0.00 a 0.10 ± 0.00 a 0.10 ± 0.00 a 0.10 ± 0.00 a 

-tocotrienol 0.09 ± 0.02 de 0.04 ± 0.01 e 0.20 ± 0.00 c 0.42 ± 0.03 a 0.18 ± 0.02 cd 0.27 ± 0.03 bc 0.35 ± 0.02 ab 

Values are means of three replicates ± standard error. 

Means within a row followed by different letters indicate significantly different (P < 0.001, one-way ANOVA).  

nd = not detected. 

* results from analysis of dried kernels. 
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Table 4. Correlation coefficients for individual fatty acids against total lipid content. 

 

  lipids 
myristic 

(C14:0) 

palmitic 

(C16:0) 

palmitoleic 

(C16:1n-7) 

vaccenic     

(C18:1n-7) 

oleic        

(C18:1n-9) 

linoleic           

(C18:2n-6) 

arachidic 

(C20:0) 

linolenic 

(C18:3n-3) 

lipids 1         

myristic 0.20* 1               

palmitic 0.36** 0.15 1       

palmitoleic 0.67*** 0.73*** 0.01 1           

vaccenic 0.55*** 0.80*** 0.00 0.96*** 1     

oleic 0.87*** 0.41** 0.17 0.88*** 0.78*** 1       

linoleic 0.15 0.37** 0.87*** 0.02 0.08 0.03 1   

arachidic 0.32** 0.78*** 0.04 0.80*** 0.85*** 0.60*** 0.14 1   

linolenic 0.09 0.38** 0.73*** 0.07 0.13 0.00 0.73*** 0.33** 1 

Pearson r values which indicate significant correlations (CI 95%, *P ≤ 0.05, **P ≤0.005, *** P ≤0.001). 
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Figure 1. Kernel appearance at different developmental stages. 
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* results from analysis of dried kernels 

Figure 2. Lipid and tocopherol isomer accumulation during almond kernel development. Bars show ± S.E. 
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