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Abstract

This thesis addresses the problem of end-to-end text detection and recognition in
natural scene images based on deep neural networks. Scene text detection and recog-
nition aim to find regions in an image that are considered as text by human beings,
generate a bounding box for each word and output a corresponding sequence of
characters. As a useful task in image analysis, scene text detection and recognition
attract much attention in computer vision field. In this thesis, we tackle this problem
by taking advantage of the success in deep learning techniques.

Car license plates can be viewed as a spacial case of scene text, as they both consist
of characters and appear in natural scenes. Nevertheless, they have their respective
specificities. During the research progress, we start from car license plate detection
and recognition. Then we extend the methods to general scene text, with additional
ideas proposed.

For both tasks, we develop two approaches respectively: a stepwise one and
an integrated one. Stepwise methods tackle text detection and recognition step by
step by respective models; while integrated methods handle both text detection and
recognition simultaneously via one model. All approaches are based on the power-
ful deep Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), considering the tremendous breakthroughs they brought into the computer
vision community.

To begin with, a stepwise framework is proposed to tackle text detection and
recognition, with its application to car license plates and general scene text respec-
tively. A character CNN classifier is well trained to detect characters from an image
in a sliding window manner. The detected characters are then grouped together as
license plates or text lines according to some heuristic rules. A sequence labeling
based method is proposed to recognize the whole license plate or text line without
character level segmentation.

On the basis of the sequence labeling based recognition method, to accelerate the
processing speed, an integrated deep neural network is then proposed to address
car license plate detection and recognition concurrently. It integrates both CNNs
and RNNs in one network, and can be trained end-to-end. Both car license plate
bounding boxes and their labels are generated in a single forward evaluation of the
network. The whole process involves no heuristic rule, and avoids intermediate
procedures like image cropping or feature recalculation, which not only prevents
error accumulation, but also reduces computation burden.

Lastly, the unified network is extended to simultaneous general text detection and
recognition in natural scene. In contrast to the one for car license plates, some inno-
vations are proposed to accommodate the special characteristics of general text. A
varying-size RoI encoding method is proposed to handle the various aspect ratios of
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general text. An attention-based sequence-to-sequence learning structure is adopted
for word recognition. It is expected that a character-level language model can be
learnt in this manner. The whole framework can be trained end-to-end, requiring
only images, the ground-truth bounding boxes and text labels. Through end-to-end
training, the learned features can be more discriminative, which improves the overall
performance. The convolutional features are calculated only once and shared by both
detection and recognition, which saves the processing time. The proposed method
has achieved state-of-the-art performance on several standard benchmark datasets.
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Chapter 1

Introduction

Text, as a kind of physical representation of language, is considered as one of the

most influential inventions of humanity. It plays an important role in human life,

such as communicating ideas, delivering information, etc.. In fact, ancient civilization

is interpreted and inherited via the use of text or textual cues. As a rich and precise

information carrier, text contained in images can be of great semantic value for the

whole image understanding. With the popularization of high-performance mobile

devices, such as mobile phones, digital cameras, it becomes much faster and easier

to acquire scene images or videos. The collection of massive amount of images drives

data analysis and processing. Text detection and recognition in natural scene images,

as important analyzing procedures, have attracted increasing attentions in computer

vision community.

The objective of text detection and recognition, also referred to as text spotting

for simplicity [Jaderberg et al., 2014b], is to mark all areas in an image that are

considered as text by humans, in term of bounding boxes, and output corresponding

text transcriptions, as presented in Figure 1.1 . Although human beings can read

text from images instantaneously if they are familiar with that language, it is not

an easy work for machine. Fortunately, there is a rapid development in computer

vision and pattern recognition technologies in recent years, which makes it more

possible to address these challenging problems. In this thesis, we try to tackle both

text detection and recognition by leveraging the advanced deep learning techniques.

Deep learning techniques have been applied to a wide range of vision problems

1
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Figure 1.1: Illustration of text detection and recognition in natural scene images, with
both text bounding boxes and the corresponding text labels expected.

such as image classification, object detection, image segmentation, and made a lot

of breakthrough progresses [Krizhevsky et al., 2012; Simonyan et al., 2013; Girshick

et al., 2014; Ren et al., 2015; He et al., 2016a, 2017a]. For instance, the object detection

average precision on the PASCAL VOC 2007 dataset has been increased from 29.1%

to 78.8% during the last 5 years, thanks to the use of deep Convolutional Neural

Network (CNN), and the related technical innovations. However, standard object

detection and image recognition methods cannot be adopted directly for text, not

only because text has distinct patterns, but also because text by itself is quite variable.

Even if under a single language in which text is composed of alphabet of size A with

a maximal length L, there would be up to A L different text classes. Thereby, it is

necessary to propose distinctive methods for text with its special characteristic into

consideration.

To better understand the overall value of text spotting systems, firstly we would

like to introduce some background information in detail, including potential appli-
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cations, technical challenges and so on.

1.1 Background

1.1.1 Applications

Automatic text detection and recognition offer a mean to read text within images

or videos directly. They allow a better understanding of the scene, and result in a

number of vision applications.

• Scene Understanding. Street and shop signs in natural scenes carry crucial

information for localization. Automatic sign recognizer gives robots scene con-

text, and enables them to understand the environment they are involved. It

can also be used to help visually impaired person. For example, integrating

the scene text spotting algorithm into a speech synthesizer would help blind

people understand street signs or make out road instructions.

• Image Retrieval. Automatically reading text within images would allow

image search and retrieval from a large scale database of digital images or

videos. Given a text query, the images that contain the text can be returned

instantly. With this technique, humongous images can be indexed by the text

within them. Users can find their favorite movie posters from a large database

easily by typing the name of the movie.

• Text Translation. Traditionally, users have to type the word to be trans-

lated into machine translation applications. However, this can be quite slow or

sometimes even impossible, e.g., a European tourist travels to Asia and wants

to translate Chinese or Korean text. It would be convenient if a scene text spot-

ter is integrated into the translator. Users only need to take a photo including

the words or phrases they wants to know. The words will then be localized and

recognized automatically by the text spotter and translated to users.
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• Intelligent Transportation System. As a spacial case of scene text, car li-

cense plates contain critical information and are often used as identifications

for cars. Automatic car license plate detection and recognition are essential

parts of intelligent transportation systems. Applications include electronic pay-

ment systems, traffic surveillance for vehicles violating traffic laws. They can

also be used to help policemen to find stolen cars or cars with criminals.

1.1.2 Challenges

As a similar task, text recognition from scanned document (usually be named as

Optical Character Recognition (OCR)) is usually regarded as a well solved problem.

The recognition rate has achieved higher than 99%, and many systems are already

used in real applications [Weinman et al., 2009; Chen and Yuille, 2004]. However, text

detection and recognition in natural scene images are still challenging problems and

far less developed. For example, the best-reported end-to-end detection and recogni-

tion performance evaluated by F-measure is only 40.07% on COCO Text Dataset [Veit

et al., 2016]. The difficulties lie in the following aspects:

• Diversity of text patterns. In contrast to text in scanned document images,

which is usually with a single color, font and uniform arrangement, text ap-

peared in natural scene images can be of diverse fonts and colors, as compared

in Figure 1.2. Some text can be in a very small size compared with others in the

same image, with low quality or even multiple orientations (vertical, curved,

etc.).

• Highly complicated background. In natural environment, image background

can be really complicated, with a variety of scene, textual, color, etc.. Some

background may have similar structures and appearances as text, such as win-

dows, leaves, bricks, and often cause false alarms in detection.

• Capturing conditions. When capturing images in the wild, the resulting
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Figure 1.2: The comparison between text in document images (left) and in natural
scene images (right).

images may be affected by a lot of factors, such as uneven lighting, reflection,

blur, distortion, low resolution, or partial occlusion, which make scene text

detection and recognition even challenging.

• Multilingual environment. In modern society, multiple cultures live to-

gether and it is quite common that an image contains multi-lingual text. The

basic characters in different language are really distinct from each other, e.g.,

Latin, Chinese, Japanese, Arabic, which makes text recognition even more dif-

ficult. A robust text detection and recognition method should be able to handle

various scripts without fundamental changes in algorithm.

Some challenging examples of images captured in natural scenes, with text should

be read out by a text spotting system, are presented in Figure 1.3.

1.1.3 Tasks and Methodologies

As we stated, text spotting in natural images basically includes two tasks: text de-

tection and word recognition. Text detection aims to generate candidate bounding

boxes from natural scene images that correspond to words, while word recognition

attempts to recognize the character string in each candidate bounding box.
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Figure 1.3: Some challenging examples for text spotting, where text is found in a
variety of scenarios, with different fonts, sizes, colors, illumination conditions, etc..
However, it is a useful problem to be solved, e.g., for scene understanding, localiza-

tion, etc..

There are heaps of methods proposed for text detection and recognition tasks.

According to the overall architecture, these methods can be roughly categorized as:

stepwise and integrated [Ye and Doermann, 2015], as presented in Figure 1.4. The

stepwise methodology implements text detection and word recognition by totally

separated modules, with a feed-forward pipeline, while the integrated methodology,

by contrast, settles both text detection and recognition concurrently. In the following,

we would like to present some examples so as to better understand those method-

ologies.

The stepwise methodology divides text spotting into two separated tasks, i.e.,

detection and recognition, and tackles them step by step. Text detection is carried

out firstly. The detected bounding boxes are cropped out from the original image

and then recognized by another model. Sometimes the result of word recognition
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Figure 1.4: Two commonly used architectures for text spotting. (a) Stepwise method-
ology. (b) Integrated methodology.

can be used to further improve the detection performance, e.g., to remove false pos-

itives. Some methods start from characters, which seem to have exclusive outlines.

Character grouping and word splitting are needed to obtain the word regions. Some

others coarsely generate bounding boxes corresponding to word regions. A verifi-

cation step is needed then to check those regions as text or non-text. For instance,

in [Alsharif and Pineau, 2014], a stepwise pipeline including character detection,

character grouping, text line separation and word recognition was proposed. Maxi-

mally Stable Extremal Regions (MSERs) were adopted firstly to get character regions,

which were then clustered into text lines base on DB-SCAN. Line-to-word hybrid

Hidden Markov Model (HMM)/Maxout was trained to segment lines into words

and do word inference. Word Detection Maxout was followed for word verifica-

tion. PhotoOCR [Bissacco et al., 2013] is also a stepwise method. It combined the

outputs of three different text detection approaches firstly to get a high detection

recall. Recognition began with over-segmentation of text line to identify candidate

character regions, and was achieved by combining character classifiers and language

model likelihoods. Jaderberg et al. [2016] used a combination of complementary

proposal generation techniques for word region proposal, a random forest classifier

for word/no-word classification. Word recognition was achieved by training a deep

CNN over a huge dictionary of 90k words. The whole pipeline is presented in Fig-
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ure 1.5 for reference. Liao et al. [2017] combined “TextBoxes” and “CRNN” for word

detection and recognition respectively, where “TextBoxes” is a 28-layer fully convolu-

tional network which can be trained to produce word level bounding boxes directly

from input images, while “CRNN” [Shi et al., 2015] is a combination of CNN, RNN

(Recurrent Neural Network) and CTC (Connectionist Temporal Classification) loss

for image-based sequence recognition task. There are also some methods that solely

focus on text detection [Tian et al., 2015; Busta et al., 2015; Zhu and Zanibbi, 2016]

or word recognition [Su and Lu, 2014; Jaderberg et al., 2014a; Shi et al., 2015], which

may be combined together for text spotting in a stepwise manner. We will review

them in detail in Chapter 2.

Figure 1.5: A stepwise methods for end-to-end text spotting used in [Jaderberg et al.,
2016].

With the integrated methodology, both text detection and recognition are jointly

addressed. Some methods share the character level classification responses, as each

character has discriminative features from the background as well as from each other.

For instance, as shown in Figure 1.6, Wang et al. [2011] proposed a word spotting

method based on a given lexicon. A multi-scale sliding window based method

was employed firstly to localize character candidates, using random ferns classi-

fiers. Then Pictorial Structures (PS) formulation was adopted that takes the locations

and scores of detected characters as inputs to find an optimal configuration of a
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Figure 1.6: An integrated methods for end-to-end word spotting used in [Wang
et al., 2011], with character level classification responses shared for both detection

and recognition.

particular word from a given lexicon, and outputs both word bounding boxes as

well as word labels simultaneously. Wang et al. [2012] integrated the character re-

sponses with character spacings and a defined lexicon using a beam search algorithm

to localize and recognize words, where the character responses were obtained by a

CNN classifier with unsupervised feature learning. Neumann and Matas [2013a]

proposed an efficient algorithm to select the optimal sequence of characters from a

directed graph, which was constructed with character classification scores, character

intervals and language priors. The sequence of regions and their labels induced by

the optimal path were the outputs. Most recently, Busta et al. [2017] proposed an

end-to-end trainable network to address both word level detection and recognition

concurrently, with a jointly optimized multi-task loss. Bartz et al. [2018] proposed

a semi-supervised neural networks for scene text detection and recognition, where

only ground-truth labels are needed to train the network. It is argued that the detec-

tion of text can be learned by the network itself.

Different methodologies have their own merits and demerits. The stepwise meth-

ods are easy to design and implement as each module only needs to deal with a

single task, but they may include repeat calculation and introduce error accumula-

tion. The integrated methods can avoid the challenging segmentation step or handle

it in company with word recognition. The joint multi-task optimization may lead to

better performance. However, the model is difficult to design. How to coordinate

each part in the model is a main issue.
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In this thesis, we would like to address the problem of end-to-end text detection

and recognition by leveraging the advanced deep learning techniques, considering

their powerful feature learning ability. We also base on those methodologies, but

propose new frameworks and methods to get better performance. In particular, we

focus on two tasks in this thesis, namely car license plate detection and recognition

and general text detection and recognition. Car license plate can be viewed as a spa-

tial case of general text, but has its own specificity. For example, car license plate

mostly has obvious borders and appears in the front or rear of a vehicle. Charac-

ters in the license plate are usually randomly selected from a given set. In addition,

the algorithm should be able to distinguish car license plates from other text in the

background. In this work, A stepwise method and an integrated method are pro-

posed respectively for car license plate detection and recognition. Then we extend

these methods to general scene text spotting. General scene text also has its own

particularities. For instance, there are usually several words flocking together in an

image, in comparison with independent car license plates. The characters in a word

may appear according to some rules. Considering these characteristics, additional

innovations are proposed in both frameworks so as to better deal with general text.

1.2 Main Contributions

The main contributions of this thesis include a set of new frameworks proposed for

car license plate and general text detection and recognition. The frameworks are

built upon the state-of-the-art deep learning techniques, including deep CNNs and

RNNs. More specifically, the contributions are as follows:

• Based on the stepwise methodology, we propose a cascade framework for car

license plate detection and recognition. Firstly, a 37-class convolutional neural

network (CNN) is trained to detect characters in an image via a sliding window

manner. It can lead to a higher recall compared with a binary text/non-text

classifier. The detected characters are then grouped into license plates based on
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heuristic rules. Another plate/non-plate CNN classifier is designed to elimi-

nate false positives. As to the license plate recognition, we regard the character

string reading as a sequence labeling problem. Recurrent Neural Networks

(RNNs) with Long Short-Term Memory (LSTM) is trained to recognize the se-

quential features extracted from the whole license plate via CNNs. The main

advantage of this approach is that it is segmentation free. By exploring context

information and avoiding errors caused by segmentation, this method performs

better than conventional methods and achieves state-of-the-art recognition ac-

curacy. To the best of our knowledge, this is the first work that recognizes

license plates without character segmentation. Then we extend the method to

general scene text detection and recognition. Considering the words clustering

property of general text, we group the detected characters as text lines. An

end-to-end trainable text line recognition network is proposed, based on the

sequence labeling idea, which can tackle word recognition, word splitting and

false positive removal in the same time. With this method, we achieved No. 1

on ICDAR2015 Challenge 2 “Focused Scene Text” for the task of “End-to-End

Scene Text Recognition” at the time of submission.

• Inspired by the recent advances on object detection, we propose a unified deep

neural network which can localize car license plates and recognize the letters

simultaneously in a single forward pass. This is an integrated method. In con-

trast to previous stepwise approaches, this method jointly settles both detection

and recognition by a single network. It not only avoids intermediate error ac-

cumulation, but also accelerates the processing speed. Compared to previous

integrated methods, our network can be trained end-to-end, without a sepa-

rate character detection needed. With convolutional features shared by both

detection and recognition, the resulting system has fewer parameters and is

more efficient. Moreover, with the end-to-end training and the joint optimiza-

tion of both detection and recognition losses, the extracted features are more
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discriminate, and lead to better performance.

• Considering the characteristics of general scene text, an end-to-end trainable

text spotting network is proposed for text detection and recognition in natural

scene images. Different from the above framework for car license plates, we

adopt a sequence to sequence learning structure with an attention based RNN

decoder for word recognition. In this way a character level language model

can be learned implicitly. In addition, compared with general objects or car

license plates, text bounding boxes usually have a significant diversity of aspect

ratios. A novel feature encoding method is proposed which can keep the aspect

ratio of the original word image and avoid distortion. A curriculum learning

strategy is designed to train the model with gradually more complex training

data. To our best knowledge, this is the first successful attempt to integrate text

detection and recognition into a single end-to-end trainable network.

1.3 Thesis Outline

The structure of the thesis is organized as follows.

In Chapter 2, we firstly introduce some background information on deep learning

techniques, including CNNs for local feature learning and RNNs for sequence feature

learning, which are two powerful tools employed in our work. We also investigate the

latest development of deep learning in related computer vision tasks, such as object

detection, image caption, etc.. Some of these methods give us great inspirations on

our text detection and recognition work. Then we give a brief introduction about

existing methods on our target tasks, i.e., car license plate detection and recognition,

and general scene text detection and recognition, respectively.

In Chapter 3, we present the stepwise method for text detection and recognition,

with its application on both car license plates and general scene text. For each task,

two independent modules are designed respectively for detection and recognition,



§1.3 Thesis Outline 13

including a sliding window based method for character detection and a sequence

labeling based method for sequence recognition. Some novel ideas are introduced to

improve the detection and recognition performance.

In Chapter 4, an integrated method is described for car license plate detection

and recognition. We integrate CNNs and RNNs in an end-to-end trainable deep

neural network, and show that the convolutional features can be shared for both

detection and recognition. Via the joint optimization of multi-loss, both detection

and recognition performance can be improved. The computational speed can be

accelerated as well.

Then in Chapter 5, we extend the unified network to process general text detec-

tion and recognition in natural scene images. Some new ideas are proposed to tackle

the characteristics of general text, including a novel feature extraction and encoding

approach, the sequence to sequence learning based word recognition method, as well

as a curriculum learning strategy.

In Chapter 6, we conclude the thesis and discuss some potential research direc-

tions.



Chapter 2

Literature review

In this thesis, we are interested in leveraging deep learning techniques to solve the

tasks, given the tremendous breakthroughs they brought to the computer vision com-

munity. In this chapter, we start with a review about basic concepts on deep learning

and their related applications on object detection, image recognition, etc., which are

closely related to our tasks. Then we provide related works of this thesis’ target

problems, i.e., car license plate detection and recognition, and general scene text de-

tection and recognition, respectively. We will introduce a range of different methods

for each task.

2.1 Basic Concepts on Deep Learning and Related Applica-

tions

Feature representation is one of the key issues in many computer vision problems,

such as image classification, object detection. A good feature representation should

be able to capture all relevant and discriminative information needed for that task,

for example, the key points of human faces. It should be invariant to appearance

changes (e.g., front or side faces, various lighting conditions), and be discriminative

against other objects.

Previous work usually depends on designing handcrafted features, such as Scale

Invariant Feature Transform (SIFT) [Lowe, 2004], Histogram of Oriented Gradients

(HOG) [Dalal and Triggs, 2005], Local Binary Patterns (LBP) [Ojala et al., 1996]. These

14
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features are often incomplete and not robust. Moreover, repetitive work has to be

done several times manually for each task. It is expected that machine learning al-

gorithms could learn features automatically so that the entire learning process could

be simplified and more tasks could be solved. Initially, most machine learning tech-

niques exploited shallow-structured architectures, such as Support Vector Machines

(SVMs) [Cortes and Vapnik, 1995], Gaussian Mixture Models (GMM) [Permuter et al.,

2003], Conditional Random Fields (CRFs) [Lafferty et al., 2001]. These shallow archi-

tectures have shown effectiveness on a number of problems. However, they contain

at most two layers of nonlinear transformations, which limits their power of repre-

sentation and causes difficulties when dealing with complicated applications. With

the emergence of large scale datasets, faster and parallel computers, deep learning

techniques are developed. They provide ways of automated and hierarchical feature

learning, and bring tremendous breakthroughs on several applications.

Deep learning uses multiple layers of nonlinear processing units for feature ex-

traction and transformation. It learns in supervised and/or unsupervised manners,

where algorithms make use of multiple levels of representations to gradually trans-

form data into different levels of abstraction. Through layers of transformations,

higher level features are derived from the lower level ones, which leads to a hierar-

chical representation of the object [Deng and Yu, 2014].

Such kind of design is largely motivated from animal brains. They are highly

interconnected networks with billions of neurons and trillions of interconnections

among them, and present a strong ability of learning and information processing. A

number of algorithm architectures are proposed to emulate this structure, and the

most successful one is Neural Networks (NNs) [Rosenblatt, 1958].

2.1.1 Neural Networks

In this section, we give a basic description about some well-known neural network

architectures, which will be used later in our work.
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Figure 2.1: The architecture of a multi-layer perceptron. Each neuron in hidden layers
are fully connected to all neurons in the previous layer, and neurons in one layer are

completely independent with each other and do not share any connections.

Multi-Layer Perceptrons As presented in Figure 2.1, a Multi-Layer Perceptron

(MLP) is a feed forward neural network that employs a series of hidden layers to

map input vectors to output with a non-linear function. Each hidden layer consists

of a set of neurons. Each neuron receives input signals from the previous layer and

generates output by a weighted sum of inputs followed by a non-linear activation

function. Mathematically, the output of a neuron can be presented as:

g(x) = σ(
K

∑
k=0

wkxk + b) = σ(wTx + b) (2.1)

where x is the input vector, σ is the non-linear function (i.e., sigmoid or tanh), w and b

are the weights and bias to be learned. In this way the information is propagated for-

ward until the last layer, which is known as the output layer. The values of the output

layer can be class probabilities for classification problems or relative coordinates for

regression problems. A loss function is usually defined to calculate the error between

output values and the ground-truths. By minimizing the loss function, the weights

and biases are optimized iteratively until the loss reaches a local optimal point.

As we can see from Figure 2.1, in MLP, each neuron in hidden layers is fully con-

nected to all neurons in the previous layer, and neurons in one layer are completely

independent of each other and do not share any connections. This fully connected

structure cannot scale well to large images [Karpathy, 2017]. For example, given an
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image of size 300× 300× 3, a single fully connected neuron in the first hidden layer

of MLP would have 300× 300× 3 = 270, 000 weights. This huge number of param-

eters are difficult to be trained and would easily lead to overfitting. Moreover, there

are usually some correlations between neighboring inputs that are not taken used of

in MLP.

Convolutional Neural Networks Convolutional Neural Networks (CNNs) [LeCun

et al., 1998] are an extension of MLP which mitigate the aforementioned drawbacks

by exploiting the strong spatial correlation, and are designed specifically for process-

ing images. The neurons of a CNN in one layer are connected to only a small region

of the previous layer, called a receptive field. Thus CNNs can exploit the spatial local-

ity by enforcing a local connectivity pattern between neurons of adjacent layers. By

stacking a number of such layers, the receptive fields are gradually increased. This

allows the network to first extract representations of small parts of the input, then as-

semble representations of larger areas [Karpathy, 2017; Karpathy]. In addition, each

filter is replicated across the entire visual field. The replicated neurons share the

same parameters, which dramatically reduces the total number of parameters to be

learned, lowers the memory requirement and allows CNNs to have a better general-

ization ability. Moreover, weights sharing allows features to be extracted regardless

of their positions in the visual field, which constitutes the property of translation

invariance.

Input Conv1 Pool1 Conv2 Pool2
Fully
Connected Output

Convolutions
Subsampling

Convolutions
Subsampling Fully

connection

Fully
connection

Figure 2.2: An example architecture of CNN, which consists of convolutional layers,
pooling layers, fully connected layers and a loss layer.



§2.1 Basic Concepts on Deep Learning and Related Applications 18

A typical CNN is composed of convolutional layers, pooling layers, fully con-

nected layers and a loss layer, as shown in Figure 2.2.

• Convolutional layer. The convolutional layer is the core building block of a

CNN. The weights of convolutional layers are a set of learnable filters, which

correspond to the receptive field. Each filter takes as an input the original

image or previous feature maps zi ∈ RH×W×C, where H and W are the height

and width, C is the depth of the input volume, and outputs new feature maps

zi+1 ∈ RH
′×W

′×C
′

according to the following calculation:

zc
i+1 = hi(wic ∗ zi + bic), ∀c ∈ [1, . . . , C

′
] (2.2)

where wic and bic denote the c-th filter kernel and bias respectively, zc
i+1 is

the c-th output channel of zi+1, ∗ means the convolution operator. hi is an

element-wise non-linear activation function, which is most often a Sigmoid

hi(z) = (1 + e−z)−1 or a Rectified Linear Unit (ReLU) hi(z) = max{0, z}. We

slide the filter across the width and height of the input volume and produce

a 2-dimensional activation map that gives the responses of that filter at every

spatial position. This convolutional operation shows two characteristics, i.e.,

local connectivity and parameter sharing. In other words, each neuron is only

connected to a small part of neurons in the previous layer (filter kernel size),

and neurons on the same channel of feature map are actually from the same

filter. With these specificities, CNNs have far less parameters than MLP, which

enables easier training and faster convergence. It shows that the filters learnt in

convolutional layers capture feature information such as edge, texture on lower

layers, and entire patterns on higher layers [Zeiler and Fergus, 2014], which are

essential for object recognition.

• Pooling layer. Pooling layers are periodically inserted between successive

convolutional layers in CNNs. They are kinds of non-linear down-samplings.
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The most commonly used ones are average pooling, which takes the average

value of the pooling region as output, and max pooling, which takes the maxi-

mum value of the pooling region as output. The pooling operation is used to

reduce the size of feature maps so as to cut down the size of network parame-

ters and computations. Besides, it can pick up the most salient information in

the pooling region, which provides another form of translation invariance.

• Fully-connected layer. Fully-connected layers in a CNN are the same as MLP.

Neurons in a fully-connected layer have full connections to all activations in the

previous layer. The output of a fully-connected layer is a matrix multiplication

followed by a bias offset.

• Loss layer. Loss layer specifies the way of penalizing the error between the

predicted output and the ground-truth. It is defined according to different

tasks to be solved. For instance, Softmax loss and Sigmoid cross-entropy loss

are used for classification, while Euclidean loss and Smooth L1 loss are used

for regressing .

Some work tried to analyze and visualize CNNs, so as to better understand their

internal mechanism, exploit the limitations and improve their performance. For ex-

ample, in [Zeiler and Fergus, 2014], Zeiler and Fergus introduced a novel visualiza-

tion technique called Deconvolutional Network that gave insights into the function of

intermediate feature layers. It revealed many intuitively desirable properties such as

compositionality, the increase of invariance and class discrimination with the adding

of layers. Mahendran and Vedaldi [2015], by contrast, proposed to reconstruct an

image from its CNN representation with an image prior. Their method can invert

representations such as HOG more accurately than recent alternatives while being

applicable to CNNs. It also showed that several layers in CNNs retained photograph-

ically accurate information about the image, with different degrees of geometric and

photometric invariance. Similarly, Dosovitskiy and Brox [2016] studied image repre-

sentations by inverting them with an up-convolutional neural network. The results
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showed that the colors and the rough contours of an image can be reconstructed from

activations in higher network layers and even from the predicted class probabilities.

In addition, work in [Donahue et al., 2014; Azizpour et al., 2016] demonstrated that

the earlier layers in a CNN contain more generic features (e.g., edge, contour) that

could be useful to many other tasks, while the later layers become progressively

more specific to the details of the classes contained in the original dataset. These

work provides us ways to better understand CNNs, so as to build suitable model

architectures for our task.

Recurrent Neural Networks Unlike aforementioned feed-forward NNs, Recurrent

Neural Network (RNN) is another type of NN which involves connections between

units and forms a directed cycle. This architecture provides a powerful mechanism

to exhibit dynamic temporal behavior and exploit past contextual information, and

makes RNNs applicable to tasks such as speech recognition, handwriting recognition

or other sequential related problems.

Figure 2.3: A typical architecture of RNN. The loop inside allows to exploit dynamic
temporal information.

Figure 2.3 shows a typical architecture of RNN. It has a loop inside which allows

information persisting. By unfolding the network, we simply see that the network

captures temporal information. Given a sequence of input x = {x1, x2, . . . , xt}, we
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have the output as:

ht = g(Wxhxt + Whhht−1 + bh)

yt = Wyhht + by

(2.3)

where ht is known as the hidden state of current time step. It not only relates to

current input xt, but also retains information from past inputs that are passed by

ht−1. g is an elementwise non-linear function such as Sigmoid. yt is the output

vector at current time step.

Unfortunately, the range of contextual information that RNNs can maintain is

quite limited, since the influence of a given input on network hidden states and then

on the outputs would be vanished or exploded during cycling around the network

recurrent connections [Hochreiter and Schmidhuber, 1997; Pascanu et al., 2013]. To

solve this problem, a lot of variants have been proposed, where the more popular

ones are Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU).

• Long Short-Term Memory (LSTM)
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Figure 2.4: A memory block of LSTM, with a memory cell and three gates.

LSTM was introduced by Hochreiter and Schmidhuber [1997]. It contains some
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memory blocks which can store information for a long period of time. Fig-

ure 2.4 depicts the structure of a typical LSTM memory block. It includes a

memory cell with recurrent connection to itself, and three multiplicative gates

(input gate, forget gate and output gate) to control the information flow. The

gates allow the cell to store and access information over a long period of time.

For example, as long as the input gate remains closed (i.e., the activation is

close to zero), the activation of the cell will not be overwritten by the new in-

puts arriving in the network. Similarly, the cell’s activation is only available

to the rest of the network when the output gate is open. The cell’s recurrent

connection is switched on and off by the forget gate. The computation at time

t can be mathematically written as follows:

gt = φ(Wgxxt + Wghht−1 + bg)

it = σ(Wixxt + Wihht−1 + bi)

ft = σ(W f xxt + W f hht−1 + b f )

ot = σ(Woxxt + Wohht−1 + bo)

ct = ft � ct−1 + it � gt

ht = ot � φ(ct)

(2.4)

where xt is the input and ht is the hidden state; it, ft,ot are the activations of the

input gate, forget gate and output gate respectively; σ is the Sigmoid function;

gt is the input modulation node which takes activations from the rest of the

hidden layer at previous time step ht−1 and current input xt with a tanh function

φ; ct is the memory cell state, which is controlled by the forget gate ft and

input gate it, to trade off the influences between previous memory cell and

current input; The current hidden state ht is controlled by the output gate ot,

which decides how much of the cell state is transfered to hidden state; W is the

weighting parameters of LSTM; � represents an element-wise multiplication.
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Compared to a vanilla RNN which overwrites its content at each time step,

LSTM is able to decide whether to keep the current cell memory via the in-

troduced gates. Intuitively, if LSTM detects an import information at an early

stage, it can be retained in the cell memory for a long time, which enables

LSTM to learn long-term dependencies.

• Gated Recurrent Unit (GRU)

Figure 2.5: The structure of GRU [Chung et al., 2014]. r and z are the reset and
update gates, h and h̃ are the hidden state and the new candidate state.

GRU was introduced recently by Cho et al. [2014] and became increasingly

popular. It is relatively simpler than LSTM. The forget gate and input gate

are merged into a single update gate, and the output gate is replaced by a reset

gate. Its structure is shown in Figure 2.5, and the mathematically representation

is:

ht = (1− zt)� ht−1 + zt � h̃t

zt = σ(Wzxxt + Wzhht−1 + bz)

rt = σ(Wrxxt + Wrhht−1 + br)

h̃t = tanh(Whxxt + Whh(rt � ht−1) + bh)

(2.5)

where the hidden state ht is a linear interpolation between the previous hidden

state ht−1 and the new candidate state h̃t, zt is the update gate which decides

how much the unit updates its activation, rt denotes the reset gate. When the
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reset gate is off (i.e., rt is close to 0), it effectively makes the unit act as if it is

only reading the input signal and forgets the previous state.

GRU has fewer parameters than LSTM and thus may train a bit faster or needs

less data to generalize. In many tasks, both architectures can yield comparable

performance [Chung et al., 2014; Józefowicz et al., 2015].

In [Hermans and Schrauwen, 2013], Michiel and Benjamin studied a character

level language modeling and showed that RNNs are well-suitable for capturing tem-

poral hierarchies. RNNs embed different timescales directly in the structure, and

are able to model long-term dependencies. Karpathy et al. [2016] studied the perfor-

mance improvements of RNNs in language modeling task compared to other finite-

horizon models both qualitatively and quantitatively. Their experiments revealed the

existence of interpretable cells that kept track of the long-range dependencies such

as line lengths, quotes and brackets.

Another method of persisting long term memory is the use of attention mecha-

nisms [Bahdanau et al., 2015; Chorowski et al., 2015]. Attention mechanisms select

or weight the signals produced by a trained feature extraction at potentially all time

steps in the input sequence. The basic idea is to let RNNs pick information to look at

at every time step from a larger collection of information. For example, in the image

caption task, the attention model will pick a part of the image to look at at each time

step for every word outputting. Recent work usually integrates LSTM or GRU with

attention models to boost the performance furthermore [Xu et al., 2015; Shi et al.,

2016].

For many tasks, it is useful to have access to both past and future context. For

instance, in text recognition, it would be helpful to recognize the current letter by

knowing the context on both the left and the right. Bidirectional RNNs (BRNNs)

were proposed [Schuster and Paliwal, 1997] , which are able to access context in both

directions along the input sequence. BRNNs have two separated hidden layers, one

of which processes the input sequence forward, while the other one processes it back-
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ward. Both hidden layers are connected to the same output layer, providing it with

access to both the past and the future context at every point in the sequence. BRNNs

show better performance than standard RNNs in several sequence learning tasks,

such as speech processing [Graves et al., 2013], handwriting recognition [Graves et al.,

2009b], etc.. Combining BRNNs and LSTM gives BLSTMs, which will be used in our

work.

2.1.2 Training Neural Networks

Backpropation is the most commonly used method to train NNs. For each example,

we compute the prediction and its associated loss. The losses are summed up or

averaged as the final error. Then we use the backpropagation algorithm to propagate

the error from output layer to input layer and calculate the gradients to all learnable

parameters in the network using the chain rule [Nielsen, 2015]. Once all the gradients

are computed, the parameters are updated by a chosen optimization algorithm, such

as Stochastic Gradient Descent (SGD), with a parameter known as learning rate. We

then iterate the predication (i.e., forward pass), the backpropagation of errors (i.e.,

backward pass) and the optimization until the loss hopping to a local minimum low

enough to ensure good predictions.

Though powerful, deep neural networks are difficult to train because of the huge

number of parameters to be learnt. To overcome the overfitting problem and improve

the generalization ability, many techniques are proposed. Here we briefly introduce

some popular ones.

• Dropout [Srivastava et al., 2014]. Fully connected layers occupy most of

the parameters and are prone to overfit. One method to reduce overfitting

is Dropout. In the training stage, each neuron is either dropped out of the net

with a probability 1− p or kept with a probability p, so that a reduced network

is left. In this sense, neurons are randomly dropped and the weights associ-

ated with them are also removed. At test time, no dropout is adopted and all
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neurons are used for prediction.

• Maxout [Goodfellow et al., 2013]. The Maxout neuron picks the maximum

value within a group of linear pieces as its activation. This nonlinearity is a

generalization to the rectified nonlinearity and has the ability to approximate

any form of activation functions. It is particular well suitable for training with

Dropout. Dropout can be thought of as a form of model averaging. Maxout,

nevertheless, can exploit this model averaging behavior much better, as the

approximation is more accurate with Maxout units than with tanh units.

• Batch Normalization [Ioffe and Szegedy, 2015]. As proposed in [Ioffe and

Szegedy, 2015], this method makes normalization as a part of the model archi-

tecture and performs normalization for each mini-batch. Batch normalization

allows us to use much larger learning rates and be less careful about initializa-

tion. It will result in a faster learning and a higher overall accuracy.

2.1.3 NN based Applications

Deep neural network based methods have demonstrated impressive progress in many

tasks in computer vision community, such as image classification, object detection,

semantic segmentation, etc.. Here we review some fundamental and thrilling ones

that relate to our tasks.

Image Classification Image classification is the task of assigning an input image

one label selected from a set of categories. Despite its simplicity, this is one of the

core problems in computer vision, as it is embedded in many other seemingly dis-

tinct tasks (e.g., object detection, segmentation). Although image classification is rel-

atively trivial for human, it is not an easy work for a computer vision algorithm. The

challenges include viewpoint variation, scale variation, deformation, occlusion, etc..

A good image classification model is expected to be invariant to all these variations,

while retain sensitivity to inter-class variations.

As a breakthrough in computer vision, Krizhevsky et al. [2012] proposed AlexNet
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to classify 1.2 million images in ILSVRC 2010 dataset into 1000 different classes. They

made use of techniques like non-saturating neurons and Dropout, and achieved Top-

1 and Top-5 test error rates of 37.5% and 17.0%, which are about 8% higher than

the previous best results. Having more than a million images provides opportuni-

ties for novel algorithms and model innovations. Some popular CNN models, such

as VGGNet [Simonyan and Zisserman, 2015], GoogleNet [Szegedy et al., 2015], and

ResNet [He et al., 2016a] were then proposed one by one and demonstrated superior

performance in image classification. The rich features learnt through ImageNet data

can also be used as supervised pre-training for other tasks. For instance, Zeiler and

Fergus [2014] showed that the ImageNet trained model can generalize well to other

datasets, such as Caltech-101 [Fei-Fei et al., 2006] and Caltech-256 [Griffin et al., 2006].

In addition, Huang et al. [Huang et al., 2016] proposed densely connected convolu-

tional networks which connected each layer to every other layer in a feed-forward

fashion. With this design, they alleviated the vanishing-gradient problem, strength-

ened feature propagation, encouraged feature reuse, and substantially reduced the

number of parameters. The model achieved state-of-the-art results on several bench-

marks.

Image classification techniques are quite essential to our text recognition task,

since a good text recognition model is based on a strong character classifier. The

improvement on CNN architecture design and CNN feature understanding give us

a great inspiration on our model design and training.

Object Detection Object detection is another fundamental task in computer vision

community. Before the era of CNNs, the best performance model is obtained by

building ensemble systems based on multiple low-level features, e.g., [Everingham

et al., 2010; Felzenszwalb et al., 2010].

A breakthrough work is introduced by R-CNN [Girshick et al., 2014], which im-

proves mean Average Precision (mAP) by more than 30% relative to the previous best

result on PASCAL VOC 2012 dataset, thanks to the applying of high capacity CNNs.
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Selective search is employed firstly to generate category-independent region propos-

als. Then CNN features are extracted from each region for object classification. The

work also shows that when labeled training data is scarce, supervised pre-training

on an auxiliary task, followed by domain-specific fine-tuning, will yield a significant

performance boost. However, in R-CNN, the proposed regions need to be resized to

a fixed size so as to be processed by CNNs and obtain fixed length feature vectors

for classification. SPP-net [He et al., 2014] is then proposed which eliminates this

requirement. It is a spatial pyramid pooling method that can generate a fixed-length

representation for each region regardless of its size/scale. Using SPP-net, people

only need to calculate the feature maps from the entire image once, and then pool

features in arbitrary regions to generate fixed-length representations. This method

avoids repeatedly computing the convolutional features, while achieves comparable

detection results as R-CNN. The following improvement work are Fast R-CNN [Gir-

shick, 2015] and Faster R-CNN [Ren et al., 2015], which not only improve training

and test speed, but also increase detection accuracy. Fast R-CNN takes as input an

entire image and a set of object proposals. Region of Interest (RoI) pooling layer is

proposed to extract a fixed-length feature vector for each object proposal. The train-

ing is a single stage process, using a multi-task loss, and the parameters are updated

through all network layers. Fast R-CNN can train a very deep detection network

9 faster than R-CNN and 3 faster than SPP-net, and achieves an mAP on PASCAL

VOC 2012 of 66% (vs. 62% for R-CNN). Furthermore, to overcome the bottleneck of

separate region proposal computation in R-CNN, SPP-net and Fast R-CNN, Faster

R-CNN introduces a Region Proposal Network (RPN) which shares the full-image

convolutional features with the detection network, and thus enables nearly cost-free

region proposals. It is 10 times faster than Fast R-CNN. RPN can be trained end-

to-end and results in high-quality region proposals. With only 300 proposals, Faster

R-CNN achieves an mAP of 67% on PASCAL VOC 2012, compared with 2000 pro-

posals used in Fast R-CNN. Our end-to-end text detection and recognition method



§2.1 Basic Concepts on Deep Learning and Related Applications 29

is inspired by Faster R-CNN.

Instead of adopting object proposals, another research methodology is to regress

object bounding boxes directly from images, with a single shot detection model, like

YOLO [Redmon et al., 2016], SSD [Liu et al., 2016]. YOLO re-frames object detec-

tion as a single regression problem. A single neural network is employed to predict

bounding boxes and class probabilities directly from full images in one evaluation.

The base YOLO model can process images in real-time at 45 frames per second (fps),

while Faster R-CNN has a frame rate of 7fps. However, YOLO makes more local-

ization errors. SSD makes improvement on YOLO. It combines predictions from

multiple level feature maps with different resolutions to naturally handle objects of

various sizes. The network can also be trained end-to-end and leads to a higher ac-

curacy. It achieves 59fps with mAP 74.3% on VOC 2007, vs. Faster R-CNN 7fps with

mAP 73.2% or YOLO 45fps with mAP 63.4%.

Object detection is more related to our text detection task, since words can be

regarded as a special kind of objects, with discriminative textual information from the

background. Hence, the development on object detection provides us with reference

on text detection framework.

Vision-to-language Vision-to-language problems, such as image captioning [Vinyals

et al., 2015; Xu et al., 2015], Visual Question Answering (VQA) [Antol et al., 2015;

Lu et al., 2016] attract much attention in computer vision community in recent years.

They take a further step to understand the input image by generating a sequence of

words in the form of sentences. RNNs are usually adopted here to address these

tasks, since they are a kind of sequence prediction problems and RNNs are good at

processing sequential problems. For example, Vinyals et al. [2015] proposed a gen-

erative model to generate natural sentences describing an image. It is an end-to-end

deep neural network consisting of a vision CNN followed by a language generating

RNN. CNN feature of an image is fed to RNN at the initial time step as a holistic fea-

ture. RNN generates a word at each time step based on previously generated words
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and the holistic image feature. The model is trained to maximize the likelihood of

the target description sentence given the training image. Xu et al. [2015] introduced

attention mechanisms in RNN decoders, so that the model can automatically learn to

fix its gaze on salient objects while generating the corresponding words in the output

sequence. Johnson et al. [2016] introduced a dense captioning task, which required a

computer vision system to both localize and describe salient regions in images by nat-

ural language. A fully Convolutional Localization Network (FCLN) was proposed

that processes an image with a single forward pass, requiring no external regions

proposals, and can be trained end-to-end with a single round of optimization.

Proposed by [Antol et al., 2015], VQA aims to provide an accurate natural lan-

guage answer, when given an image and a natural language question about the im-

age. In [Antol et al., 2015], the authors developed a 2-channel vision (image) +

language (question) model to address this problem, where a two-layer LSTM was

used to encode the questions and the last FC layer of VGGNet was used to encode

the images. Both the question and image features were fused via element-wise mul-

tiplication. The results were then passed through a fully connected layer followed

by a Softmax layer to obtain a distribution over answers. Shih et al. [2016] presented

an image-region selection mechanism that learned to select image regions relevant

to questions. It is focus on learning “where to look”. In addition, in [Lu et al., 2016],

a co-attention model was proposed that jointly reasons about image and question

attentions. Besides “where to look” or visual attention, it also models “what words

to listen to” or question attention.

Word is also a kind of language, with a series of characters and a language model

embedded. The techniques used to deal with vision-to-language tasks are worth

referring to when tackling scene text recognition, such as the attention mechanism,

RNN decoding process, etc.. The attention mechanism can help us focus on “the

character to be recognized”, while RNN decoding process can be adopted to generate

the character sequence. The framework of dense captioning also gives us a great
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inspiration on our end-to-end scene text detection and recognition task. We can

regard the text region as a special object. A similar framework can be employed to

localize text regions and describe the regions simultaneously.

Other Related Applications In addition to the aforementioned applications, deep

neural networks are also used in other tasks such as multi-label classification [Wang

et al., 2016], speech recognition [Graves et al., 2006], handwriting recognition [Graves

et al., 2009a], instance level segmentation [He et al., 2017a], human pose estima-

tion [Poirson et al.], etc., with a lot of interesting designs and promising results.

For instance, Wang et al. [2016] showed that the label co-occurrence information can

be modeled by LSTM in multi-label classification. Graves et al. [2006] referred to

the task of speech recognition as a temporal classification problem, and used RNNs

for Connectionist Temporal Classification (CTC). The basic idea is to interpret the

network outputs as a probability distribution over all possible labels, and the ob-

jective function is defined as to maximize the probabilities of the correct labellings.

Since the objective function is differentiable, the network can then be trained with

standard backpropagation through time. RNN and CTC were then adopted in hand-

writing recognition and produced much better results than previous HMM-based

method [Graves et al., 2009a]. The advantage of this design is that it avoids the

hard task of sequence segmentation and contains long-range interdependencies that

would benefit the recognition. This idea can also be applied to scene text recognition.

He et al. [He et al., 2017a] proposed a Mask R-CNN framework that efficiently de-

tects objects in an image while simultaneously generates a high-quality segmentation

mask for each instance. They demonstrated that the multi-task loss can benefit both

detection and segmentation results. Poirson et al. [Poirson et al.] extended SSD and

proposed a unified deep neural network for simultaneously object detection and pose

estimation. These frameworks and experimental designs are also worth referring to

when addressing the end-to-end text detection and recognition task.
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2.2 Related Work on Car License Plate Detection and Recog-

nition

As a special case of text in natural scene, car license plates have their own charac-

teristics, such as the borderlines, the unique color, etc.. A lot of methods have been

proposed exclusively for car license plate detection and recognition. In this section,

we give a brief overview about previous work on license plate detection and recog-

nition respectively.

2.2.1 Related Work on License Plate Detection

License plate detection aims to localize the license plates in an image in the form

of bounding boxes. Existing algorithms can be roughly classified into four cate-

gories [Du et al., 2013; Zhou et al., 2012; Anagnostopoulos et al., 2006a]: edge-based,

color-based, texture-based, and character-based.

Edge-based approaches try to find regions with higher edge density than else-

where in the image as license plates. Considering the property that the brightness

change in license plate region is more remarkable and more frequent than elsewhere,

Tan et al. [2013] used an edge detector and some morphological operations to find

candidate license plates. In [Hsu et al., 2013], a Sobel detector was employed firstly

to extract vertical edges in the input image. Expectation Maximization (EM) was

applied for edge clustering which extracts the regions with dense sets of edges and

with shapes similar to plates as the candidate license plates. In [Chen and Luo, 2012],

a license plate localization method based on an improved Prewitt arithmetic opera-

tor was proposed. The exact location was then determined by horizontal and vertical

projections. Edge-based methods are fast in computation, but they cannot be applied

to complex images as they are too sensitive to unwanted edges. Furthermore, it is

difficult to find license plates with edge information if they are blurry.

Color-based approaches are based on the observation that color of the license
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plate is usually distinct from that of the background. In [Ashtari et al., 2014], a

plate detection method was developed by analyzing the target color pixels. A color-

geometric template was utilized to localize Iranian license plates via strip search.

HSI color model was adopted in [Deb and Jo, 2008] to detect candidate license plate

regions, which were later verified by position histogram. Jia et al. [2007] firstly seg-

mented the image into different regions according to their colors via mean-shift al-

gorithm. License plates were then distinguished based on features including rectan-

gularity, aspect ratio and edge density. Color-based methods can be used to detect

inclined or deformed license plates. However, they cannot distinguish other objects

in the image with similar color and size as the license plates. Moreover, they are very

sensitive to various illumination changes in natural scene images.

Texture-based approaches attempt to detect license plates according to the un-

even pixel intensity distribution in plate regions. For example, Zhang et al. [2006]

proposed a license plate detection method using both global statistical features and

local Haar-like features. Classifiers based on global features can exclude more than

70% of the background area, while classifiers based on local features are robust to

brightness, color, size and position of license plates. In [Anagnostopoulos et al.,

2006b; Giannoukos et al., 2010], Sliding Concentric Window (SCW) algorithm was

developed to identify license plates based on the local irregularity property of license

plate images. Operator Context Scanning (OCS) algorithm was proposed in [Gian-

noukos et al., 2010] to accelerate the detection speed. In [Yu et al., 2015], wavelet

transform was applied to get the horizontal and vertical details of an image. Em-

pirical Mode Decomposition (EMD) analysis was then employed to deal with the

projection data and locate the desired wave crest which indicates the position of a

license plate. Texture-based methods use more discriminative characteristics than

edge or color, but result in a higher computational complexity.

Character-based approaches are based on the fact that license plates are com-

posed of a string of characters, which have more specific information compared to
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the background. In [Ho et al., 2009], a two-stage method was presented for license

plate detection. An Adaboost classifier was used across the gray-scale images via

window scanning for character detection in the first stage. An SVM based filter was

utilized in the second stage to remove false positives. Lin et al. [2010] detected license

plates based on image saliency. This method firstly segmented out characters in the

image with a high recall using an intensity saliency map, then applied a sliding win-

dow on these characters to compute some saliency related features and detect license

plates. Zhou et al. [2012] formulated license plate detection as a visual matching

problem. Principal Visual Word (PVW) was generated for each character which con-

tained geometric clues such as orientation, characteristic scale and relative position,

and used for plate extraction. Li et al. [2013] applied MSER at beginning to extract

candidate characters in images. A CRF model was then constructed to represent

the relationship among license plate characters. License plates were finally localized

through the belief propagation inference on CRF. Llorca et al. [2016] made use of a

combination of the MSER and Stroke Width Transform (SWT) to detect isolate char-

acter regions. The license plates were finally bordered using the probabilistic Hough

transform. Character-based methods are more reliable and can lead to a high recall.

However, the performance is easy to be affected by the general text in the image

background.

Our stepwise method on license plate detection is a character-based approach.

We use CNNs to distinguish characters from cluttered background. The strong clas-

sification capability of CNNs guarantees the character detection performance. To

distinguish license plates from general text in the image, another plate/non-plate

CNN classifier is designed, which eliminates those hard false positives effectively.

2.2.2 Related Work on License Plate Recognition

Previous work on license plate recognition typically needs to segment characters in

the license plate firstly, and then recognizes each segmented character using OCR
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techniques.

Existing approaches on license plate segmentation can mainly be divided into

two categories: projection-based and Connected Component (CC)-based. Since char-

acters and background have obviously different colors in a license plate, in theory,

they should have opposite binary values in the binarized image. Projection-based

approaches exploit the histograms of vertical and horizontal binary pixel projections

for character segmentation [Guo and Liu, 2008; Qiao et al., 2010]. The license plate

image is binarized firstly, projected horizontally to determine the top and bottom

boundaries of the characters, and then vertically to separate each character. This

method can be easily influenced by the rotation of license plate. CC-based meth-

ods label connected pixels in the binary license plate into components based on 4

or 8 neighborhood connectivity [Anagnostopoulos et al., 2006b; Giannoukos et al.,

2010; Jiao et al., 2009]. In [Gou et al., 2016], Extremal Regions (ER) was employed

to segment characters from coarsely detected license plates and to refine plate loca-

tion. In [Hsu et al., 2013], MSER was adopted for character segmentation. Hou et al.

[2015] proposed to segment license plate character based on SWT, which can process

rotated license plates. CC-based methods can extract characters from rotated license

plate, but cannot segment characters correctly if they are joined together or broken

apart. Zheng et al. [2013] combined both methods to enhance the segmentation accu-

racy. It is worth noting that both methods are implemented on binary images. Hence

the binarization result has a significant influence on the segmentation performance.

Neither of them can result in good segmentation if background pixels are wrongly

classified as foreground pixels.

License plate recognition can be sorted as a kind of image classification problem,

where the segmented characters need to be categorized according to the characters

used in that country. Existing algorithms on character classification include template

matching based and learning based methods.

Template matching based methods recognize each character by measuring the
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similarity between characters and templates. The most similar template is regarded

as the target [Rasheed et al., 2012]. Several similarity measuring methods are pro-

posed, like Mahalanobis distance, Hausdorff distance, Hamming distance, etc. [Du

et al., 2013]. Template matching methods are simple and straightforward, but they

can only be used to recognize characters of single font, fixed size, no rotation and

broken.

Learning based methods are more robust. They learn information from more

discriminative features, such as image density [Jiao et al., 2009; Giannoukos et al.,

2010], LBP [Hsu et al., 2013], etc.. They can deal with characters of various fonts,

illuminations, or rotations. The common used learning methods include SVMs [Wen

et al., 2011], NNs [Jiao et al., 2009; Giannoukos et al., 2010], HMM [Llorens et al.,

2005], and so on. Some researchers even integrate multiple features [Wen et al.,

2011], or combine multiple classifiers [Sharma et al., 2014] to improve the recognition

accuracy.

Our method on license plate recognition is a learning based method, where CNNs

and RNNs are trained for character string recognition. It is worth noting that our

plate recognition method is segmentation free. We treat the characters in license

plate as an unsegmented sequence, and solve the problem from the viewpoint of

sequence labeling. By avoiding the challenging task of character segmentation, our

method can achieve promising results.

2.3 Related Work on Text Spotting in Natural Scene Images

This section focuses on a review of related work specially designed for text spotting

in natural scene images. Text spotting essentially includes two tasks: text detection

and word recognition. In this section, we present a range of different methods that

solely focus on text detection or word recognition. The existing work on end-to-end

text spotting has already been introduced before in Chapter 1.1.3. Comprehensive

surveys for text detection and recognition can also refer to [Ye and Doermann, 2015;
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Zhu et al., 2016].

2.3.1 Related work on Text Detection

Text detection aims to localize text in images and generate bounding boxes for words.

Existing approaches can be roughly classified into three categories: character based,

text-line based and word based methods.

Character based methods firstly find characters in images, and then group them

into words. They can be further divided into sliding window based [Wang et al.,

2011; Jaderberg et al., 2014c; Tian et al., 2015; Zhu and Zanibbi, 2016] and Con-

nected Components (CC) based [Huang et al., 2013; Neumann and Matas, 2013b;

Busta et al., 2015] methods. Sliding window based approaches use a trained char-

acter classifier to detect characters across the image in a multi-scale sliding window

fashion. The positive ones are then grouped together into text regions with mor-

phological operations, CRF or other graph methods. For instance, Kim et al. [2003]

adopted SVMs in a sliding window manner to classify the pixel located at the cen-

ter of the window into text or non-text, via analyzing its textural properties, and

then applied a continuously adaptive mean shift algorithm to the texture classifi-

cation results to obtain text chips. In [Tian et al., 2015], a sliding window based

cascade boosting approach was proposed for character candidate detection, with six

simple hand-craft features adopted to accelerate the feature extraction process. A

novel minimum cost (min-cost) flow network model was designed that integrated

text line extraction and word bounding box generation into a single process, so as to

eliminate error accumulation. Sliding window based methods are simple and easy

to implement. Nevertheless, they are computationally expensive as a large num-

ber of windows need to be classified. CC based methods first segment pixels with

consistent region properties (i.e., color, stroke width, density, etc.) into candidate

components, and then filter out non-text components using heuristically designed

rules or well trained classifiers. For example, Huang et al. [2013] proposed a low-
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level filter called the Stroke Feature Transform (SFT). It extended the widely-used

Stroke Width Transform (SWT) by incorporating color cues of text pixels, leading

to enhanced performance on inter-component separation and intra-component con-

nection. A component-level and a text-line-level Text Covariance Descriptors (TCD)

were proposed and used to build classifiers, instead of the commonly-used heuristic

filtering methods for robust component and text-line classification. Busta et al. [2015]

proposed an easy-to-implement stroke detector based on an efficient pixel intensity

comparison to surrounding pixels. Stroke-specific keypoints were efficiently detected

and text fragments were subsequently extracted by local thresholding guided by key-

point properties. The stroke-specific keypoints can detect 25% more characters than

the commonly used MSER. The method is scale- and rotation- invariant and supports

a wide variety of scripts (Latin, Hebrew, Chinese, etc.) and fonts. He et al. [2016c] de-

veloped a Contrast Enhancement Maximally Stable Extremal Regions (CE-MSERs) to

generate text components in the input image. A novel Text-Attentional Convolutional

Neural Network (Text-CNN) was proposed to filter out the non-text components.

Text-CNN particularly focused on extracting text-related regions and features from

the image components, which led to a strong capability for discriminating ambigu-

ous texts and robustness against complicated background components. CC based

methods are more efficient, but can be affected easily by noise in the image, such as

blur, low resolution and non-uniform illumination. Some researchers combine both

two methods in a pipeline to enhance the detection performance [Huang et al., 2014;

Zhu and Zanibbi, 2016].

Text-line based methods detect text lines firstly and then separate each line into

multiple words. The motivation is that people usually distinguish text regions in-

tuitively even if characters are not recognized. Based on the observation that a text

region usually exhibits high self-similarity to itself and strong contrast to its local

background, Zhang et al. [2015] proposed to extract text lines by exploiting the sym-

metry property. Symmetry feature and appearance feature were designed to capture
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the intrinsic properties of text. Zhang et al. [2016] trained a Fully Convolutional Net-

work (FCN) model to predict the salient map of text regions in an image. The salient

map provided a powerful guidance for estimating orientations and generating can-

didate bounding boxes of text lines. The text line candidates were then classified by

two criteria based on character centroids of the text line calculated by another FCN

model. Tian et al. [2016] proposed a Connectionist Text Proposal Network (CTPN)

that detected text lines in a sequence of fine-scale text proposals directly in convo-

lutional feature maps. A vertical anchor mechanism was developed that jointly pre-

dicted location and text/non-text score of each fixed-width proposal. The sequential

proposals were finally connected as text lines by RNNs. The whole model can be

trained end-to-end and achieved a high detection performance.

More recently, a number of approaches are proposed to detect words directly in

the images, inspired by recent development on object detection such as Faster R-

CNN [Ren et al., 2015], YOLO [Redmon et al., 2016] and SSD [Liu et al., 2016]. By

extending Faster R-CNN, Zhong et al. [2016] designed an inception region proposal

network (Inception-RPN) which applied multi-scale sliding windows over convolu-

tional feature maps to retain local information as well as contextual information, and

achieved a high recall. A powerful text detection network that embedded Ambiguous

Text Category (ATC) information and Multi-Level Region-of-interest Pooling (MLRP)

was designed for text and non-text classification and accurate localization. Ma et al.

[2017] presented Rotation Region Proposal Networks (RRPN), which can generate in-

clined proposals with text orientation angle information. Rotation Region-of-Interest

(RRoI) pooling layer was proposed to project arbitrary-oriented proposals to the fea-

ture map for text region classification. The network can detect arbitrary-oriented text

with both high effectiveness and efficiency. Lyu et al. [2018] proposed to detect scene

text by localizing corner points of word bounding boxes and segmenting text regions

in relative positions. The method can handle long oriented text and does not need

complex post processing. In addition, Yuliang et al. [2017] proposed a polygon based
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curve text detector which can directly detect curve text without empirical combina-

tion. An ingenious method, namely transverse and longitudinal offset connection,

was presented which uses RNN to learn the inherent connection between locating

points, and results in more accurate and smooth detection. Motivated by YOLO,

Gupta et al. [2016] adopted a Fully-Convolutional Regression Network (FCRN) for

efficient text detection and bounding box regression at all locations and multiple

scales in an image. Besides, a fast and scalable engine was designed to generate

synthetic images with text in clutter. It can alleviate the requirement of large anno-

tated dataset, and make the design and training of different deep neural networks

possible. Similar to SSD, Liao et al. [2017] proposed “TextBoxes” by combining pre-

dictions from multiple feature maps with different resolutions. It can detect scene

text with both high accuracy and efficiency in a single network forward pass, in-

volving no post-process except for a standard NMS. This method can only detect

horizontal texts. He et al. [2017b] also presented a single-shot text detector based

on SSD framework. A text attention module was introduced which was built upon

the aggregated inception convolutional features, and can significantly suppress back-

ground interference. The orientation angle can also be regressed via this framework.

Our first method on text detection is a character based method using a sliding

window manner. The detected characters are then grouped together into text lines

for further separation and recognition. Our second method is inspired by Faster R-

CNN, which is a word based approach. In fact, it integrates both text detection and

recognition into one network, so that words are localized and recognized all at once,

without word separation or image cropping.

2.3.2 Related Work on Text Recognition

Text recognition aims to recognize the character sequence from the cropped word im-

age. Existing methods on text recognition can be roughly divided into segmentation-

needed and segmentation-free ones.
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Traditional approaches on text recognition usually need to separate a word into

characters firstly, recognize individual characters, and then integrate them together

into word by means of beam search [Bissacco et al., 2013], dynamic programming

[Jaderberg et al., 2014c], etc.. For instance, Mishra et al. [2012] proposed a frame-

work that exploited both bottom-up and top-down cues for word recognition. A

sliding window based classifier was adopted to get the local maximum character de-

tections. CRF model was built on these detections to jointly model the strength of

the detections and the interactions between them. Top-down language model cues

were imposed during the optimization. Novikova et al. [2012] adopted MSER as the

primitives in the probabilistic model. Word recognition was performed by estimating

the Maximum A Posteriori (MAP) solution under the joint posterior distribution of

character appearance and language model, where MAP inference was performed by

Weighted Finite-State Transducers (WFSTs).

However, character segmentation by itself is a really challenging task, which is

easy to be influenced by the uneven illumination, blur, etc. in the image. A bad

segmentation or separation result will directly affect the following recognition, even

if the imposed top-level language model may make some correction. With the de-

velopment of CNNs and RNNs, recent methods on word recognition are mostly

segmentation free. For example, Jaderberg et al. [2014a] considered word recogni-

tion as a multi-class classification problem, and categorized each word over a large

dictionary (about 90K words, i.e., class labels) using a deep CNN. With the success

of RNNs on handwriting recognition [Graves et al., 2006], He et al. [2016b] and Shi

et al. [2015] regarded word recognition as a sequence labeling problem. RNNs were

employed to generate sequential probabilities of arbitrary length without character

segmentation, and CTC was adopted to decode the sequence. The difference is that

the model in [Shi et al., 2015] (called "CRNN") can be trained end-to-end for both

CNNs and RNNs, while He et al. [2016b] extracted convolutional features using a

pre-trained CNN model in a sliding window manner. Inspired by the sequence to
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sequence learning framework on machine translation [Sutskever et al., 2014; Kim

et al., 2016], Lee and Osindero [2016] and Shi et al. [2016] proposed to recognize

text using an attention-based sequence-to-sequence learning structure. In this man-

ner, RNNs can automatically learn the character-level language model hidden in the

word strings from the training data. The soft-attention mechanism allows the model

to selectively exploit local image features during recognition. These networks can

be trained end-to-end with cropped word image patches as input. Moreover, Shi

et al. [2016] introduced a Spatial Transformer Network (STN) to handle words with

irregular shapes.

Our first method on text recognition adopts the sequence labeling framework,

where CTC is extended for both text line separation and word recognition. In or-

der to exploit the top-level language model clue, our second method integrates the

attention-based sequence-to-sequence learning structure, which, to some extend, is

expected to recognize words even with inaccurate bounding boxes.



Chapter 3

A Stepwise Method for Text

Detection and Recognition

3.1 Introduction

Text in natural scene images contains rich semantic information and is of great value

for image understanding. As an important task in image analysis, scene text spot-

ting, including both text detection and word recognition, attracts much attention in

computer vision field. Car license plates can be regarded as a special kind of scene

text, as they are both composed of characters and appear in natural scenes. Auto-

matic car license plate detection and recognition is an important part of the intelligent

transportation system and can be applied widely in traffic management.

Due to the large variability of text patterns and the highly complicated back-

ground, text spotting in natural scene images is much more challenging than from

scanned documents. In this chapter we present a stepwise method for text detection

and recognition in natural scene images, leveraging the high capability of Convo-

lutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). CNNs

consist of multiple layers of neurons with some essential merits as we described in

Chapter 2, which can learn discriminate features efficiently from a large amount of

labeled training data, while RNNs have a powerful mechanism to exploit past con-

textual information, which would benefit sequence recognition.

We start from car license plate detection and recognition, then we extend the

43
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method to general scene text spotting. For both tasks, we treat characters as the

atomic building block. A sliding window based character detection is performed

firstly, based on a strong CNN classifier. The detected characters are then grouped

into license plates or text lines for further recognition. Some specific ideas are de-

signed for each task, considering their own characteristics. Experiments are con-

ducted to verify the effectiveness of the proposed method.

3.2 A Stepwise Method for License Plate Detection and Recog-

nition

A number of work has been done on the topic of car License Plate Detection and

Recognition (LPDR) over the past two decades, and some of them have demonstrated

success in certain specific tasks. However, most of the existing algorithms work well

either under controlled conditions or with sophisticated image capture systems. It is

still a challenging task to read license plates accurately in an open environment. The

difficulty lies in the extreme diversity of character patterns, such as different fonts,

distortion, occlusion or blurring, and the highly complicated backgrounds, like the

general text in shop boards, windows, guardrails or bricks.

Previous work on LPDR usually relies on some handcrafted image features that

capture certain morphological, color or textural attributes of the license plate, as we

introduced before in Chapter 2.2. These features can be sensitive to image noises, and

result in many false alarms under complex backgrounds. In this section, we tackle

LPDR based on the powerful deep neural networks via a stepwise methodology.

We regard a license plate as a string of characters. A character CNN is applied

firstly to examine the presence of characters, and a plate/non-plate CNN is followed

then to eliminate false alarms. This cascade framework shows high discriminative

ability and strong robustness against the complicated background. As to license

plate recognition, we formulate it as a sequence labeling problem. The license plate
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image is viewed as an unsegmented sequence. CNNs are used to extract image

features. RNNs with connectionist temporal classification (CTC) output layer [Graves

et al., 2009a] are adopted to label the sequential data. With this method, we do

not need to deal with the challenging character segmentation task. The recurrent

property of RNNs also helps to exploit the contextual information and improve the

recognition performance. The overall framework of the stepwise LPDR system is

shown in Figure 3.1.

CNN based text string
detection

False positives elimination
by heuristic rules

Bounding box refine

False positives elimination
by CNN

Feature extraction

Sequence labelling

Sequence decoding

License Place Detection License Place Recognition

Input
grayscale

image

Detected
license 

plate

Recognized
license 

plate

Figure 3.1: Our stepwise framework for car license plate detection and recognition.

The main contributions of this work are as follows.

• We propose a cascade framework that uses different CNN classifiers for differ-

ent purposes. To begin with, a 4-layer 37-class (10 digits, 26 uppercase letters

plus a negative non-character category) CNN classifier (we denote it as CNN-I)

is employed in a sliding-window fashion across the entire image to detect the

presence of character and generate a text saliency map. Text-like regions are

extracted based on the clustering nature of characters. Then another plate/non-

plate CNN classifier (denoted as CNN-II) is adopted to reject false positives and

distinguish license plates from general text. With this framework, our system

can detect license plates in complicated backgrounds with both high recall and

precision. Moreover, it can be used to detect license plates of various styles (eg

from different countries), regardless of diverse plate colors, fonts or sizes.
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• we develop a deep recurrent model which can read all characters in the license

plate one-off. To the best of our knowledge, this is the first work that recog-

nizes license plates without character segmentation. We extract features from

the whole license plate without pre-segmentation by CNN. Several layers of

CNN features are concatenated together, which combine both local and global

information. Bidirectional Long Short-Term Memories (BLSTMs) are employed

to recognize the feature sequence. CTC is applied to the output of BLSTMs

to decode the character string in the plate. This approach takes advantage of

both deep CNNs for feature learning and BLSTMs for contextual information

exploiting, and results in appealing performance.

In the following we will describe the details on license plate detection and recog-

nition separately. Experimental verifications are followed to demonstrate the effec-

tiveness of our method.

3.2.1 Car License Plate Detection

License plate detection is the first stage of LPDR pipeline. Ideally it is required to

generate plate bounding boxes with both high recall and high precision. In this

work, we take advantage of the highly discriminative ability of CNNs and perform

a character-based plate detection using a multiple scales sliding window manner.

Firstly, we train a character CNN classifier based on samples from general text. One

benefit that comes along with this is that the trained classifier can be used to detect

plates from various countries, as long as the plates are composed of digitals and

upper-case letters. In order to distinguish license plate from other text or text-like

outliers appeared in the image, another plate/non-plate CNN classifier is employ to

remove false positives. We also refine the bounding boxes based on projection based

method to improve the overlap ratio. The overall detection process is illustrated in

Figure 3.2.
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Figure 3.2: License plate detection procedure in a single scale. (a) Input image. (b)
Text salience map generated after sliding window based detection. (c) Text salience
map after NMS and RLSA. (d) Candidate bounding boxes (green rectangles) gen-
erated by CCA. (e) Candidate bounding boxes (green rectangles) after false posi-
tive elimination. (f) Final bounding boxes (green rectangles) after box refining and

plate/non-plate classification.

3.2.1.1 Candidate Detection Generation

In order to accelerate the detection process, we train a 4-layer CNN to classify text

from background. Due to the convolutional structure of CNN, we compute the char-

acter saliency map by running CNN classifier across the entire image in one go,

instead of calculating on each cropped sliding window, which saves processing time

largely.

The configuration of 4-layer character CNN model (CNN-I) is shown in Table 3.1.

ReLUs are followed after each convolutional layer. Here we train a 37-class CNN

classifier for 26 upper-case letters, 10 digitals and a non-character class, instead of a

binary text/non-text classifier. Patches classified as either letters or digitals are all

regarded as characters later. In this way the features learned for each class are more

specific and discriminative, which will lead to a better detection result with a higher

recall.



§3.2 A Stepwise Method for License Plate Detection and Recognition 48

Table 3.1: Configuration of the 4-layer Character CNN model (CNN-I). “k”, “s” and
“p” represent kernel size, stride and padding size respectively.

Layer Type Parameters
Soft-max 37 classes

Fully connected #neurons: 37
Dropout Prop: 0.5

Fully connected #neurons: 512
Maxpooling k:2× 2, s:2
Convolution #filters:384, k:2× 2, s:1, p:0
Maxpooling k:4× 4, s:4
Convolution #filters:120, k:5× 5, s:1, p:0

Input 24× 24 pixels gray-scale image

For license plate detection, the first phase is to generate candidate license plate

bounding boxes with a high recall. Given an input image, we resize it into 12 different

scales, and calculate the character saliency map at each scale by evaluating the well-

trained CNN classifier in a sliding window fashion across the image. After getting

these saliency maps, the candidate bounding boxes are generated independently at

each scale by using the Run Length Smoothing Algorithm (RLSA) [Jaderberg et al.,

2014c] and Connected Component Analysis (CCA). In detail, for each row in the

saliency map, we do Non-Maximal Suppression (NMS) at first to remove detection

noise. NMS response for the pixel located at row r column c with classification

probability P(c, r) is defined as follows:

P̂(c, r) =


P(c, r) i f P(c, r) ≥ P(c′, r), ∀c′, ‖c′ − c‖ < δ

0 Otherwise
(3.1)

where δ defines a width threshold. Then we calculate the mean and standard devi-

ation of the spacings between probability peaks. Neighboring pixels are connected

together if the spacing between them is less than a threshold. CCA is applied sub-

sequently to produce the initial candidate boxes. The process is shown in Figure 3.2

(a)-(d).
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(a) (b) 

Figure 3.3: Generated bounding boxes before and after bounding box refining. The
top line shows the initial bounding boxes, which include extra background or incom-

plete letter, while the bottom line shows the results after refining.

3.2.1.2 False Positives Elimination and Bounding Box Refining

The produced bounding boxes are firstly filtered based on some geometric con-

straints (boxes length, height, aspect ratio, etc.). Then we score each box by aver-

aging the character confidence scores within it. Boxes whose scores are less than the

average value are eliminated. NMS is employed again on the bounding box level to

remove the ones that overlapped by more than 50% with another candidate box of a

higher score.

We find that some bounding boxes are too big or too small, as shown in the first

line of Figure 3.3, which will affect the following plate verification and recognition.

For example, the textual-like background contained in the bounding box in Figure 3.3

(a) will impact the following plate verification. The bounding box in Figure 3.3

(b) that does not contain the whole license plate will definitely lead to an incorrect

recognition result. Therefore, a process for refining bounding boxes is performed

according to the edge feature of license plate [Zheng et al., 2013]. In detail, for each

detected bounding box, we enlarge the box with 15% on each side. Considering the

strong connectivity of characters in vertical direction than in horizontal direction,

we perform vertical edge detection on the cropped license plate images using Sobel

operator. When we get the vertical edge map, a horizontal projection is performed

to find the top and bottom boundaries of the license plate. Then a vertical projection

is carried out to get the left and right bounds of the license plate. The process is
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presented in Figure 3.4.
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Figure 3.4: The process of bounding box refining.

Finally we use another plate/non-plate CNN classifier (CNN-II) to verify the

remaining bounding boxes. The structure of CNN-II is presented in Table 3.2. It is

trained with positive samples of gray-scale license plates from different countries,

either cropped from real images or synthesized by ourselves, and negative samples

constituted by non-text image patches as well as some general text strings. The size

of the input image is 100 × 30 pixels. Data augmentation and bootstrapping are

applied here to improve the classification performance. For each candidate license

plate, we evaluate it by averaging the probabilities of five predictions over random

image translation, so as to remove noises. The ones that are classified as license plates

are fed to the next step.

3.2.2 Car License Plate Recognition

The second stage of LPDR system is to recognize the characters in the license plate.

In the traditional framework of LPDR, character segmentation has a great influence

on the success of plate recognition. The license plate will be recognized incorrectly if

the segmentation is improper, even if we have a strong recognizer that can deal with

characters of various sizes, fonts and rotations. However, the character segmentation

process by itself is a really challenging task that is prone to be influenced by uneven
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Table 3.2: Configuration of the 4-layer plate/non-plate CNN model (CNN-II). “k”,
“s” and “p” represent kernel size, stride and padding size respectively.

Layer Type Parameters
Soft-max 2 classes

Fully connected #neurons: 2
Dropout Prop: 0.5

Fully connected #neurons: 500
Maxpooling k:3× 3, s:3
Convolution #filters:256, k:5× 5, s:1, p:0
Maxpooling k:2× 2, s:2
Convolution #filters:96, k:5× 5, s:1, p:0

Input 30× 100 pixels gray-scale image

lighting, shadow and noise in the image. Different rules are employed in previous

work [Yoon et al., 2011; Zheng et al., 2013; Hsu et al., 2013] to modify the improperly

segmented blocks, which are still not robust. In this subsection, we use a novel

recognition technique that treats the characters in license plate as an unsegmented

sequence, and solves the problem from the viewpoint of sequence labeling.

The overall procedure of our sequence labeling based plate recognition method

is presented in Figure 3.5. It mainly consists of three parts.

3.2.2.1 Sequence Feature Generation

In order to improve the recognition performance, we train another deeper 36-class

CNN classifier (CNN-III, as presented in Table 3.3) for sequential feature extraction

from the cropped license plate image. Inspired by the work of [Su and Lu, 2014;

He et al., 2016b], the features are extracted in a sliding window manner across the

image.

For each cropped license plate image, we convert it to gray-scale, and pad with

12 pixels on both left and right sides. Then we resize the plate to 24× 94 pixels, with

the height the same as the input height for CNN-III.

After that we use a sub-window of size 24× 24 pixels to partition the padded

image convolutionally, with a step size of 1. For each partitioned image patch, we
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Table 3.3: Configuration of the 9-layer CNN model (CNN-III). “k”, “s” and “p” rep-
resent kernel size, stride and padding size respectively.

Layer Type Parameters
Softmax 36 classes

Fully connected #neurons: 36
Dropout Prop: 0.5

Fully connected #neurons: 1000
Dropout Prop: 0.5

Fully connected #neurons: 1000
Maxpooling k:3× 3, s:1
Convolution #filters:512, k:3× 3, s:1, p:1
Convolution #filters:512, k:3× 3, s:1, p:1
Maxpooling k:3× 3, s:2
Convolution #filters:256, k:3× 3, s:1, p:1
Convolution #filters:256, k:3× 3, s:1, p:1
Maxpooling k:3× 3, s:2
Convolution #filters:128, k:3× 3, s:1, p:1
Maxpooling k:3× 3, s:1
Convolution #filters:64, k:3× 3, s:1, p:1

Input 24× 24 pixels gray-scale image

feed it into the well-trained CNN-III, and extract the 4× 4× 256 features from the

output of the 4th convolutional layer, as well as the 1000 features from the output of

the first fully connected layer. The two feature vectors are then concatenated together

into one feature vector with length 5096. These features contain both local and global

information of the image patch, which will bring better recognition performance

compared with the ones extracted only from the fully connected layer. Principle

Component Analysis (PCA) is applied to reduce the feature dimension to 256-d,

followed by a feature normalization.

With this operation, features are extracted from left to right on each sub-window

in the candidate license plate image, and form a feature sequence array x = {x1, x2,

. . . , xL}, where xt ∈ R256, L is the number of sub-windows. It not only keeps the

order information, but also captures sufficient contextual information for RNNs to

exploit. The inter-relation between feature vectors contributes a lot to character recog-

nition.
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Figure 3.5: Overall structure of the sequence labeling based plate recognition. Se-
quential features are extracted in a sliding window manner by CNNs, which are
then fed to BLSTMs for sequence labeling, without character separation. CTC is

followed for sequence decoding.

3.2.2.2 Sequence Labeling

RNNs are special neural networks which provide a powerful mechanism to exploit

past contextual information. These contextual cues will make the sequence recogni-

tion more stable than treating each feature independently. To overcome the shortcom-

ing of gradient vanishing or exploding during RNN training, LSTMs are employed.

They contain memory blocks which can store the contexts for a long period of time.

For our task of character string recognition, it would be helpful to have access

to the contexts both in the past and in the future. Hence BLSTMs [Graves et al.,

2009a] are applied here. As illustrated in Figure 3.5, there are two separated hidden

layers in BLSTMs, one of which processes the feature sequence forward, while the

other one processes it backward. For each hidden layer, all LSTMs share the same
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parameters. Both hidden layers are connected to the same output layer, providing it

with information in both directions along the input sequence.

Sequence labeling is processed by recurrently implementing BLSTMs for each

feature in the feature sequence. Each time the state ht is updated according to com-

putation (3.2) which takes both current feature xt and neighboring state ht−1 or ht+1

as inputs, i.e., 
h( f )

t = LSTM1(xt, h( f )
t−1),

h(b)t = LSTM2(xt, h(b)t+1).
(3.2)

where ( f ) means recurrent forward and (b) means backward. A Softmax layer fol-

lows which transforms the BLSTMs’ states into a probability distribution over 37

classes, i.e.,

pt(c = ck|xt) = Softmax([h( f )
t , h(b)t ]), k = 1, . . . , 37 (3.3)

where the additional 37th class is used to describe the space between characters.

The whole feature sequence is finally transformed into a sequence of probability

estimation p = {p1, p2, . . . , pL} with the same length as the input sequence.

3.2.2.3 Sequence Decoding

Lastly, we need to transform the sequence of probability estimation p into a charac-

ter string. We follow the handwriting recognition system [Graves et al., 2009a] by

applying CTC on top of the output layer of BLSTMs. CTC is specifically designed

for sequence classification without data pre-segmentation. It decodes the predicted

probability sequence into output labels directly.

The objective function for CTC is defined as the negative log probability of the

network correctly labeling the entire training set, i.e.,

O = − ∑
(c,z)∈S

ln P(z|c), (3.4)

where S is the training dataset, which consists of pairs of input and target sequences
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(c, z). P(z|c) denotes the conditional probability of obtaining target sequence z

through the input c. The target is to minimize O, which is equivalent to maximize

P(z|c).

This object function is differentiable to input. We connect it directly to the outputs

of BLSTMs, i.e., the input of CTC c is exactly the output activation of BLSTMs p, and

P(z|c) = ∑
π:B(π)=z

P(π|p). (3.5)

This part of network can then be trained with gradient descent and back propagation.

The operator B is defined as to remove the repeated labels and the space labels from

the path. For example, B(a− a− b−) = B(−aa−−ab− b) = (aab).

Once the network is well trained, the aim of sequence decoding is to find an ap-

proximately optimal path π with maximum probability through the BLSTMs output

sequence, i.e.,

l∗ ≈ B(arg max
π

P(π|p)). (3.6)

Details of CTC can refer to [Graves et al., 2006, 2009a].

3.2.3 Experiments

In this section, experiments are performed to verify the effectiveness of the proposed

methods. Our experiments are implemented on NVIDIA Tesla K40c GPU with 6GB

memory. The CNN models are trained using MatConvNet [Vedaldi and Lenc, 2015].

3.2.3.1 Datasets

A sufficiently large training dataset is essential for the success of a CNN model.

CNN-I is trained on roughly 1.38× 105 character images and 9× 105 non-character

images. CNN-III is trained only with the character images. The character images

comprise 26 upper-case letters and 10 digitals sampled from the datasets created by

Jaderberg et al. [2014c] and Wang et al. [2011]. The non-character image patches
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are cropped by ourselves from the ICDAR datasets [Lucas et al., 2003; Lucas, 2005;

Shahab et al., 2011] and Microsoft Research Cambridge Object Recognition Image

database [Criminisi, 2004]. All images are gray-scale and resized to 24× 24 pixels

for training. Data augmentation is carried out by image translations and rotations

to reduce overfitting. Bootstrapping, which collects hard negative examples and re-

trains the classifier, is also used to improve the classification accuracy.

As to CNN-II, we crop around 3000 license plate images from public available

datasets [Zhou et al., 2012; Anagnostopoulos et al., 2008]. We also synthesize nearly

5 × 104 license plates using ImageMagic. Around 4 × 105 background images are

used here including patches without any characters and patches with some general

text. All the images are gray-scale and resized to 30× 100 pixels for training.

We test the effectiveness of the proposed detection and recognition algorithms on

two datasets. The first one is the Caltech Cars (Rear) 1999 dataset [car, 2003] which

consists of 126 images with resolution of 896× 592 pixels. The second dataset is the

Application-Oriented License Plate (AOLP) benchmark [Hsu et al., 2013], which has

2049 images of Taiwan license plates. This database is categorized into three sub-

sets with different level of difficulty for detection and recognition: Access Control

(AC), Traffic Law enforcement (LE), and Road Patrol (RP). AC refers to the case that

a vehicle passes a fixed passage with a lower speed or full stop. This is the easiest

situation. The images are captured under various illuminations and weather con-

ditions. LE refers to the case that a vehicle violates traffic laws and is captured by

roadside camera. The backgrounds are really cluttered, with road signs and multiple

plates in one image. RP refers to the case that the camera is held on a patrolling vehi-

cle, and the images are taken with arbitrary viewpoints and distances. The detailed

introduction of this AOLP dataset can be found in [Hsu et al., 2013].
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3.2.3.2 Evaluation Criteria

For license plate detection, we follow the evaluation criterion in [Zhou et al., 2012] for

fair comparison. The detection results are quantified by precision and recall rates.

Precision is defined as the number of correctly detected license plates divided by

the total number of detected regions. It gives us information on the amount of false

alarms. Systems that over-estimate the number of bounding boxes are punished with

a low precision score. Recall is defined as the number of correctly detected license

plates divided by the total number of ground-truths. It measures how many ground-

truth objects have been detected. Systems that under-estimate the number of ground-

truths are punished with a low recall score. In addition, we also presented a F-

measure is a single measure of the test performance for reference, which is calculated

as

F-measure =
2× (precision× recall)
(precision + recall)

(3.7)

A detection is considered to be correct if the license plate is totally encom-

passed by the bounding box, and the overlap between the detection and ground-

truth bounding box is greater than 0.5. The overlap means the area of intersection

divided by the area of union containing both rectangles (IoU), i.e.,

IoU =
area(Rdet ∩ Rgt)

area(Rdet ∪ Rgt)
(3.8)

where Rdet and Rgt are regions of the detected bounding box and ground-truth

respectively.

As to license plate recognition, we evaluate it by recognition accuracy, which is

defined as the number of correctly recognized license plates divided by the total

number of ground-truths. A correctly recognized license plate means all the charac-

ters on the plate are recognized properly. The license plates for recognition are from

the detection result, rather than cropped directly from the ground-truths. Therefore,
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the detection performance affects the final recognition result greatly, not only on

quantity, but also on quality. In order to compare with previous work, we also give

out the character recognition accuracy as that defined in Hsu et al. [2013], i.e., the

number of correctly recognized characters divided by the total number of characters

from the ground-truths.

3.2.3.3 Experimental Results on License Plate Detection

The detection performance of our cascade CNN based method is shown in Table 3.4

for Caltech cars dataset, and in Table 3.5 for AOLP dataset. Results with previous

approaches are also provided for comparison. The works of Le and Li [2006], Bai and

Liu [2004] and Hsu et al. [2013] are edge-based methods, where color information is

integrated in Le and Li [2006]’s to remove false positives. Lim and Tay [2010] and

Zhou et al. [2012]’s works are character-based methods, where MSER and principal

visual word are employed respectively.

Table 3.4: Comparison of plate detection results by different methods on Caltech cars
dataset. Our cascade CNN based method produced the best detection result, with
both the highest precision and recall. (’P’ for Precision, ’R’ for Recall, and ’F’ for

F-measure)

Method P (%) R (%) F (%)
Le and Li [2006] 71.40 61.60 66.14
Bai and Liu [2004] 74.10 68.70 71.30
Lim and Tay [2010] 83.73 90.47 86.97
Zhou et al. [2012] 95.50 84.80 89.83
Ours (37-way outputs) 97.56 95.24 96.38
Ours (2-way outputs) 97.39 89.89 93.49
Ours (37-way outputs without
plate/non-plate CNN used)

92.96 96.58 94.73

Based on the evaluation criterion described above, our approach outperforms

all the five methods in both precision and recall on both datasets. To be specific,

on Caltech cars dataset, our method achieves a recall of 95.24%, which is 4.77%

higher than the second best one achieved by the method in [Lim and Tay, 2010]. The

precision of our approach is 97.56%, which is also the best, with 2.06% higher than
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Table 3.5: Comparison of plate detection results by different methods on the AOLP
dataset. Our method produces better results than the previous one on all three sub-

sets. (’P’ for Precision, ’R’ for Recall, and ’F’ for F-measure)

Method
Subset

AC LE RP

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)
Hsu et al. [2013] 91 96 93.43 91 95 92.96 91 94 92.48
Ours 98.53 98.38 98.45 97.75 97.62 97.69 95.28 95.58 95.43

the second. On AOLP dataset, our method gives the highest precisions and recalls on

all three sub-datasets, with an even obvious superiority on precision. With GPU, it

needs about 5 seconds to process an image from Caltech cars dataset, and 2-3 seconds

for images from AOLP dataset.

The second last row in Table 3.4 shows a detection result using our framework

but with 2-way classification outputs (text/non-text). As we described before, in our

detection phase, we use a 37-way CNN classifier instead of a binary text/non-text

classifier. The 37-way CNN classifier can learn more discriminative and specific fea-

tures of each character. By contrast, the 2-way CNN classifier that sorts all characters

in one class may omit features specific for certain characters, which would be in-

accurate and may miss some characters during detection. The detection result on

Caltech cars dataset proves this point, where the 2-way classifier produces a lower

recall compared to the 37-way classifier.

The last row in Table 3.4 shows a detection result without the plate/non-plate

CNN classifier used. The precision decreases about 5%, which demonstrates the

effectiveness of that plate/non-plate CNN classifier in eliminating false positives.

Some plate detection results on Caltech cars dataset are shown in Figure 3.6.

3.2.3.4 Experimental Results on License Plate Recognition

In this part, we only test the recognition performance on AOLP dataset as we do

not have training data with similar pattern and distribution as Caltech cars license

plates. For AOLP dataset, the experiments are carried out by using license plates
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Figure 3.6: Examples of license plate detection on Caltech cars dataset. The green
rectangles indicate our detection results. The results show that our method is able
to detect license plates in images under various capture conditions, such as strong
lighting, bluring, etc.. The last image shows a failure case where the last letter is not

contained in the bounding box although after bounding box refining.

Table 3.6: Comparison of plate recognition results by different methods on AOLP
dataset. The recognition accuracy is presented in percentage.

Method
Subset

AC LE RP

Plate (%) Character (%) Plate (%) Character (%) Plate (%) Character (%)
Hsu et al. [2013] 88.5 96 86.6 94 85.7 95
baseline approach 93.53 97.84 89.83 97.27 86.58 95.57
Our approach 94.85 − 94.19 − 88.38 −

from different sub-datasets for training and test separately. For example, to test on

AC sub-dataset, we use the license plates from LE and RP sub-datasets to train the

model. Data augmentation is implemented via image translation and affine trans-

formation to reduce over-fitting. Since the license plates in RP have a large degree

of rotation and projective orientation, features extracted horizontally through slid-

ing window are inaccurate for each character. Hence Hough transform is employed

here to correct rotations [Rasheed et al., 2012]. Experimental results are presented in
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Table 3.6.

In [Hsu et al., 2013], MSER is applied firstly for character segmentation. LBP

features are extracted from each character and classified using linear discriminant

analysis. We also present a recognition result with a baseline method, which carries

out character segmentation by a CC based method and then recognizes each charac-

ter using CNN-III. Experimental results in Table 3.6 show that our CNN model gives

better character recognition performance than the model used in [Hsu et al., 2013].

In addition, our sequence labeling based method gives even higher accuracy for the

whole plate recognition. It not only skips the challenging task of character separa-

tion, but also takes advantage of the abundant contextual information via BLSTMs

which helps to enhance the recognition accuracy furthermore.

To show the advantage of BLSTMs, we visualize the recognition results from the

Softmax layer of CNNs and BLSTMs respectively. CNN-III is retrained by adding

background images and using bootstrapping so that it can distinguish characters

from various kinds of background. The recognition probability distributions from the

10 20 30 40 50 60 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

10 20 30 40 50 60 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

10 20 30 40 50 60 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

10 20 30 40 50 60 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

10 20 30 40 50 60 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

10 20 30 40 50 60 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

10 20 30 40 50 60 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

10 20 30 40 50 60 70

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Figure 3.7: License plate recognition confidence maps. The first row is the detected
license plates. The second row is the recognition probabilities from the Softmax layer
after CNNs. The third row is the recognition probabilities from the Softmax layer
after BLSTMs. For each confidence map, the recognition probabilities of current sub-
window on 37 classes are shown vertically (with classes order from top to bottom:
non-character, 0-9, A-Z). BLSTMs produce much better recognition results. Charac-
ters on each license plate can be read straightforward from the outputs of BLSTMs.
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Softmax layer of CNNs and BLSTMs are compared in Figure 3.7. It can be observed

that the character recognition probabilities are more clear and correct on the output

maps of BLSTMs. Characters can then be separated naturally, and the final license

plate reading is straightforward by applying CTC on these maps.

Some experimental results on car license plate detection and recognition are

shown in Figure 3.8 for AOLP dataset. Some failure cases are also presented which

shows that the car logos, front cross and wheels are easy to cause false positives.

Figure 3.8: Examples of license plate detection and recognition on AOLP dataset. The
green rectangles indicate our detection results, with the yellow tags above showing
the recognition results. Our method can detect and recognize license plates under
various illuminations and certain orientations. It should be note that there are still
some oversize bounding boxes, e.g., the third image in the first row. Bounding box
refining does not work well if there is noise in the license plate, such as extra letters,
strong lighting, etc.. In addition, car logos, front cross, etc.can easily cause false

positives, and sometimes are difficult to get rid of.
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3.3 A Stepwise Method for General Scene Text Detection and

Recognition

In this section, we extend the stepwise method to tackle general text spotting in

natural scene images. Considering that there is no definitive borderlines for general

text in natural scene images, like the border of license plates, some new ideas are

proposed so as to let the framework more suitable for general scene text. We begin

by detecting characters from the input image via a sliding window manner based on

the well-trained CNN classifier. The detected characters are then grouped into text

lines instead of words as it is not easy to group characters into word directly from

heaps of detections. In contrast to the separately trained CNNs and RNNs in car

license plate recognition, we integrate them together as an end-to-end trainable deep

neural network. The network is expected to complete three tasks simultaneously: 1)

separating the text lines into words; 2) recognizing each word; 3) getting rid of false

positives. The pipeline of the proposed method is shown in Figure 3.9.

Text Line Detection

Sliding window based 
character detection

Text line generation

Detected 
text linesInput image

Text Line Recognition

CNNs

BRNNs

CTC

Sequential 
feature extraction

Sequence labeling

Sequence decoding

Word bounding 
boxes and labels

An end-to-end trainable network

Figure 3.9: The stepwise framework for text spotting.

The main difference between this work and the method used in the previous

section is the end-to-end trainable deep neural network that is specifically designed

for recognizing sequence-like objects in images. Compared with existing systems for

text spotting and our stepwise method for car license plate detection and recognition,

the proposed architecture has four distinctive properties:
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• Not only character separation free, in this method, the challenging word sepa-

ration task is also handed over to the deep neural network. The separation task

is accomplished via supervised learning instead of employing heuristic rules,

which would be more robust and accurate.

• In contrast to most of the existing approaches where the components are sepa-

rately trained or tuned, e.g., several CNNs used in the previous section, the

character CNNs used in [Jaderberg et al., 2014c; He et al., 2016b], the sec-

ond stage in our method adopts an end-to-end trainable network for sequence

recognition, including CNNs for feature learning, RNNs and CTC for sequence

labeling. Instead of training a separate character CNN classifier for features

extraction, the CNN parameters can be tuned together with RNNs according

to the final word recognition loss. The learning process is simplified and the

learned features would be more specific and discriminative.

• Apart from word recognition, the network designed in the second stage is also

trained to eliminate false positives, which helps improve detection precision.

• The end-to-end network for sequence recognition is unconstrained to the lengths

of sequence-like objects, requiring only height normalization in both training

and test phases, which avoids image deformation that may happen with the

method in the previous section.

Because this method is an extension of the stepwise method for car license plate

detection and recognition in the previous section, in the following we will explain

each part in brief, with more description on the difference. Experiments on general

text spotting will be implemented to demonstrate the effectiveness of this method.

3.3.1 Text Line Detection

Sliding window based character detection method is adopted here to get the text

saliency map of the input image, as we used in Chapter 3.2.1. To be specific, the
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well-trained 37-class CNN classifier is applied in a sliding window fashion across

the input image. Positions with characters will results in a high probability while

the background positions will have a low probability close to zero, as demonstrated

in Figure 3.10. The input image is resized into 16 scales so that characters of dif-

ferent size can be covered. At each scale, the probability map is thresholded and

non-maximal suppressed to eliminate noise. The high probability pixels are then

connected as text lines with 4-connected neighborhood. Here, we remove the ones

that are nearly flat, i.e., regions with height less than 10 pixels. The rest text lines are

kept for further classification and recognition.
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Figure 3.10: Text line detection procedure in a single scale. (a) is the input image,
(b) is the text heat map by sliding window based detection, (c) shows the candi-
date bounding boxes after CCA, (d) shows the detected text lines annotated by red

bounding boxes.

3.3.2 Text Line Separation and Word Recognition

In this part, an end-to-end trainable deep neural network is proposed which can

recognize the text line and separate it into words simultaneously. Moreover, it has

the ability to remove false positives as well. The architecture of the network refers to

“CRNN” [Shi et al., 2015], as shown in Table 3.7. The beginning of the network is sev-

eral convolutional layers to get a feature sequence from each text line image. Then

bi-direction LSTMs are built on top of the convolutional layers directly to predict

each frame of the feature sequence. CTC is adopted lastly as the transcription layer
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to translate the frame prediction into a label sequence. In contrast to the model we

used in Chapter 3.2.2 for license plate recognition, both CNNs and RNNs are trained

jointly in a unified network with one loss function. Compared with “CRNN” [Shi

et al., 2015], the end-to-end trainable network for word recognition, our model in-

volves another background class, besides the 36 character classes (26 case-insensitive

alphabets and 10 digits). We denoted it as “*”. It is used to represent the background

as well as the spaces between words. Hence, the network is trained to distinguish

background and identify word intervals in text lines.

Table 3.7: Configuration of the end-to-end network for text line recognition (from up
to bottom, referring to Figure 3.9). “k”, “s” and “p” represent kernel size, stride and

padding size respectively.

Layer Type Parameters
Input W× 32 pixels gray-scale image

Convolution #filters:64, k:3× 3, s:1, p:1
Maxpooling k:2× 2, s:2, p:0
Convolution #filters:128, k:3× 3, s:1, p:1
Maxpooling k:2× 2, s:2, p:0
Convolution #filters:256, k:3× 3, s:1, p:1

Batch Normalization
Convolution #filters:256, k:3× 3, s:1, p:1
Maxpooling p:2× 2, s:1× 2 p:1× 0
Convolution #filters:512, k:3× 3, s:1, p:1

Batch Normalization
Convolution #filters:512, k:3× 3, s:1, p:1

Batch Normalization
Maxpooling k:2× 2, s:1× 2, p:0
Convolution #filters:512, k:2× 2, s:1, p:0

Batch Normalization
Transform to Sequence

BLSTMs #hidden units: 256
BLSTMs #hidden units: 256
Softmax

CTC for Transcription

Sequential Feature Extraction The architecture of convolutional layers is similar

to VGG-16, with small convolutional kernels (3× 3) and deep layers (15 layers), as
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presented in Table 3.7. We keep the aspect ratio of the obtained text line images, but

scale them into the same height (32 pixels), so that after convolutions and poolings, a

sequence of feature vector can be generated. Each frame in the sequence represents

the feature of corresponding rectangular region of the input image (i.e., the receptive

field), as illustrated in Figure 3.11. The features are arranged from left to right with

the same order as the characters appeared in the input image. They not only include

the information for each character, but also contain sufficient contextual information.

We denote the feature sequence as x = {x1, x2, . . . , xL}, where xt ∈ R512, L is the

length of feature sequence.

Receptive field

...

Input	image

Convolutional	
Features

Figure 3.11: The illustration of the receptive field. Each frame of the convolutional
feature corresponds to a rectangular region of the input image. The features are

complementary with each other.

Sequence Labeling Two layers of bi-directional LSTMs are adopted after the con-

volutional layers, as presented in Table 3.7. As we described and verified in car

license plate recognition, RNNs have a strong capability of exploiting contextual in-

formation, which would benefit a lot the sequence recognition. For example, several

successive frames of features will be complementary with each other in recognizing a

wide character, like “W”. Besides, it would be easier to recognize “il” by contrasting

the character heights if the contextual information is available than by recognizing

each of them separately. LSTM can also back-propagate errors to its input, which

allows the joint training of both CNNs and RNNs in a unified network. A Softmax

layer is followed which transforms the BLSTMs’ states into a probability distribution
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over 38 classes, i.e.,

pt(c = ck|xt) = Softmax([h( f )
t , h(b)t ]), k = 1, . . . , 38, t = 1, . . . , L (3.9)

where h( f )
t and h(b)t are the hidden states of the forward LSTMs and backward LSTMs

at the top layer respectively. The forward and backward hidden states are concate-

nated together and transformed into a probability by a Softmax layer. The 38 classes

includes 36 characters, 1 background denoted as “*”, and 1 “blank” between charac-

ters in one word denoted as “-”.

Sequence Decoding The method for sequence decoding is the same as what we

used in the previous section, with CTC employed to transform the probabilities into

a character string. For instance, the image in Figure 3.11 will finally be recognized as

“University*of*Essex”, and then be separated into words intuitively as “University”,

“of”, “Essex”. Note that if the transformed string is only composed of “*”, it means

the corresponding image is background and should be abandoned.

3.3.3 Experiments

Experiments are carried out in this section to demonstrate the effectiveness of this

method. The character CNN is implemented by MatConvNet [Vedaldi and Lenc,

2015], while the end-to-end recognition network is implemented by Torch 7. The

experiments are conducted on NVIDIA Tesla K40c GPU with 6GB memory.

3.3.3.1 Datasets and Model Training

The 37-class character CNN well trained in Chapter 3.2.3 is adopted again for char-

acter detection in the first step. The end-to-end recognition model is fine-tuned from

the well-trained “CRNN” model [Shi et al., 2015] with additional text line images and

background images. We crop text lines from the commonly used scene text training

datasets including ICDAR2003 [Lucas et al., 2003], ICDAR2011 [Shahab et al., 2011],

ICDAR2015 [Karatzas et al., 2015] and Street View Text (SVT) [Wang et al., 2011]. We
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also photograph some natural scene images with text inside, and annotate the text

lines by ourself. Totally we harvest 5485 text line images. 7000 background images

are cropped from the above mentioned scene text training datasets, with height set

to 32 pixels and width randomly sampled from 50 to 800 pixels. There are ultimately

around 12000 training images in total, which are used to fine-tune the end-to-end

recognition network. We rescale the height of all the images to 32 pixels, while the

width is calculated according to the image aspect ratio but no more than 800 pixels.

The network is trained with ADADELTA [Zeiler, 2012], with the decay rate ρ set to

0.9. Data augmentation is added with certain degrees of rotation (no more than 15

degree).

We evaluate the proposed approach on the test dataset of ICDAR2015 [Karatzas

et al., 2015] “Focused Scene Text”, which composed of 233 images. The dataset also

provides three types of lexicons for reference during test phase, i.e., “Strongly Con-

textualized”, “Weakly Contextualized” and “Generic”. “Strongly Contextualized”

lexicon means 100 words are provided for each image including all words that ap-

pear in the image as well as a number of distractors. “Weakly Contextualized” lex-

icon provides all proper words that appear in the entire test set for reference, with

totally around 600 words. “Generic” is a general vocabulary with 90k words.

3.3.3.2 Evaluation Criteria

We follow the evaluation criterion used in ICDAR2015 Robust Reading Competi-

tion [Karatzas et al., 2015]: a bounding box is considered as correct if its IoU ratio

with any ground-truth is greater than 0.5 and the recognized word also matches, ig-

noring the case. The words that contain alphanumeric characters and no longer than

three characters are ignored.

There are two evaluation protocols used in the task of scene text spotting: “End-

to-End" and “Word Spotting". “End-to-End" protocol requires that all words in the

image are to be recognized, with independence of whether the string exists or not
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Table 3.8: Text spotting results on ICDAR2015 “Focused Scene Text” dataset with
two evaluation protocols. F-measures are presented in the table in percentage. Our
method achieves the best performance under all three lexicons with both evaluation

criteria.

Method
ICDAR 2015

Word-Spotting
ICDAR 2015
End-to-End

Strong Weak Generic Strong Weak Generic
TextSpotter
[Neumann and Matas, 2016]

85 66 57 77 63 54

Deep2Text II+
[Yin et al., 2014]

84.84 83.43 78.90 81.81 79.47 76.99

Jaderberg et al.
[Jaderberg et al., 2016]

90.49 − 76 86.35 − −

Ours 91.39 90.16 82.91 87.19 86.39 80.12

in the provided contextualized lexicon, while “Word Spotting" protocol, on the other

hand, only looks at the words that actually exist in the lexicon provided, ignoring

all the rest that do not appear in the lexicon. It should be note that the dictionaries

provided for each image contain a standardized form of words (e.g., if a word finishes

in ’s or an exclamation mark, this is not included in the dictionary). Strings like

telephone numbers, prices, etc.are not included either. The dictionaries are only

supposed to provide a context for the “End-to-End" protocol, while if we evaluate

with “Word Spotting" protocol, we only focus on the subset of words that actually

exist in the dictionary.

As to each protocol, both precision and recall are evaluated, and F-measure is

calculated according to equation 3.10, which provides a comprehensive evaluation of

the result.

F-measure =
2× (precision× recall)
(precision + recall)

(3.10)

3.3.3.3 Experimental Results

As shown in Table 3.8, our system achieves the best performance on the “Focused

Scene Text” Task in ICDAR2015 Competition at that time, under both “End-to-End”
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Figure 3.12: Examples of Text spotting results on ICDAR2015 benchmark. The de-
tection and recognition results are presented in red bounding boxes with red labels
above. Our proposed method can detect and recognize text in scene images even if
it is a long word with a big aspect ratio, or it consists of digits. However, because
of the horizontal text line generation method, it is hard to detect text with some
orientations. In addition, small text and text with unfamiliar fonts are difficult to
be detected or recognized. Some failure cases are presented here in the fourth line,

where the green bounding boxes and green labels show the ground-truth.

and “Word Spotting” protocols. Especially when we test with the “Generic” lexicon,

our method produces the F-measure of 82.91% under “Word Spotting”, which is

about 4% higher than the second best result. Some examples of the text spotting

results are presented in Figure 3.12, which show the effectiveness of our method.



§3.4 Conclusion 72

Some failure cases are also provided, which shows that our method can not deal

with text with some orientations or very small text.

3.4 Conclusion

In this chapter, we proposed a stepwise method to address the problems of car li-

cense plate detection and recognition, and general scene text spotting respectively,

using the promising CNN techniques. To be specific, for car license plate detection

and recognition, a cascade detection framework was proposed with a sliding window

based approach for character level detection, heuristic rules for character grouping

and bounding box refining, and a plate/non-plate classifier for false positives elimi-

nating. It is robust under various conditions. The plate recognition was formulated

as a sequence labeling problem. BRNNs and CTC were employed for sequence recog-

nition, which skipped the challenging task of character segmentation. The recurrent

property of RNNs enables contextual information exploration, which contributes a

lot to the final recognition result. As to text spotting in natural scene images, a

similar sliding window based method was employed at the beginning for character

detection. The detected characters were grouped into text lines instead of generally

used words, which skipped the challenging word separation tasks. An end-to-end

trainable deep neural network was trained to recognize the text lines, split words and

remove false positives. Experimental results on both car license plates and general

scene text demonstrated the validity of these ideas.

However, this framework has a few drawbacks. An obvious one is that the slid-

ing winow based detection method is too slow to real-time application. Therefore,

methods will be explored to improve the processing speed. In addition, the detection

method works in an unsupervised manner, where the information of ground-truth

bounding box position has not been used in the whole process. Although some post-

processing like bounding boxes refining can improve the overlap ratio, it is affected

easily by the unwanted noises in the image, as shown in the last image of Figure 3.6
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and the 3rd and 5th images of Figure 3.8. In the future, we will exploit methods

that can take full advantage of the provided ground-truth information to improve

the detection accuracy.



Chapter 4

Towards End-to-End Car License

Plate Detection and Recognition

4.1 Introduction

In the previous chapter, we provide a stepwise method for car license plate detection

and recognition, where two separate modules are used respectively for plate detec-

tion and recognition. Although it shows good performance on several datasets, this

framework has a number of weaknesses: 1) There are several CNNs trained sepa-

rately for different subtasks, which seems to be cumbersome. 2) The sliding window

based detection method is too slow to real-time application. 3) The sequential fea-

tures for recognition are extracted by a separate CNN, whose parameters cannot be

tuned anymore according to the final recognition loss. 4) The character grouping and

bounding box refining work in a heuristic manner, which are not robust.

With these shortcomings in mind, in this chapter, an integrated deep neural net-

work is proposed for simultaneous car license plate detection and recognition. In

fact, the tasks of plate detection and recognition are highly correlated as we can see

from the previous chapter. Accurate bounding boxes obtained via detection meth-

ods can improve the recognition accuracy, while the recognition result can be used

to eliminate false positives vice versa. Thus in this chapter, we propose a unified

framework to jointly tackle these two tasks at the same level. A deep neural network

is designed, which takes an image as input and outputs the locations of the license

74
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Figure 4.1: The overall structure of our model. It consists of several convolutional
layers, a region proposal network for license plate proposals generation, proposal in-
tegrating and pooling layer, multi-layer perceptrons for plate detection and bounding
box regression, and RNNs for plate recognition. Given an input RGB image, with a
single forward evaluation, the network outputs scores of predicted bounding boxes
being license plates, bounding box offsets with a scale-invariant translation and log-
space height/width shift relative to a proposal, as well as the recognized license plate
labels at the same time. The extracted region features are used by both detection and

recognition, which not only shares computation, but also reduces model size.

plates as well as the plate labels simultaneously in a single forward pass, with both

high efficiency and accuracy. We prove that the low level convolutional features can

be used for both detection and recognition.

With CNNs, RNNs and CTC layer integrated in one network, and with a multi-

task loss jointly optimized, the whole network is trained end-to-end, without using

any heuristic rules. Both training and test processes are simplified largely compared

to the ones in the previous chapter. The bounding box localization works in a su-

pervised manner, where the information of the ground-truth bounding box position

provides guidance for accurate bounding box regression. The well-trained model

achieves higher accuracies on both license plate detection and recognition, using a

shorter processing time. An overview of the network architecture is shown in Fig-

ure 4.1.

It should be note that although a number of integrated methods have been pro-

posed for end-to-end text detection and recognition [Wang et al., 2011; Neumann

and Matas, 2013a], as we described in Chapter 1.1.3, the most remarkable difference
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between our method and the existing ones is that our network can be trained end-

to-end for both detection and recognition, while the other methods need to combine

results from separately trained models to obtain the final detection and recognition

results. With this innovation, some pre-processings, like character detection or char-

acter grouping, can be eliminated, which not only simplifies the whole process, but

also avoids the intermediate error accumulation. To our best knowledge, this is the

first work at that time that integrates both license plate detection and recognition

into a single network with an end-to-end optimization. The main contributions of

this work are as follows:

• A single unified deep neural network is proposed, which can detect license

plates from an image and recognize the labels all at once. The whole frame-

work involves no heuristic processes, such as the use of plate colors or character

space, and avoids intermediate procedures like character grouping or separa-

tion. It can be trained end-to-end, with only the image, plate positions and

labels needed for training. The resulting system achieves high accuracy on

both plate detection and letter recognition.

• Secondly, the convolutional features are shared by both detection and recog-

nition, which leads to fewer parameters compared to using separated models.

Moreover, with the joint optimization of both detection and recognition losses,

the extracted features would have richer information. Experiments show that

both detection and recognition performance can be boosted via using the jointly

trained model.

• By integrating plate recognition directly into the detection pipeline, the result-

ing system is more efficient. With our framework, we do not need to crop

the detected license plates from the input image and then recognize them by a

separate network. The whole framework takes about 0.31 second for an input

image of 600× 600 pixels on a Titan X GPU, which is much more faster than

the stepwise method in the previous chapter.
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In the following sections, we will introduce the integrated model as well as each

component in detail. Experiments are also performed to verify the effectiveness and

efficiency of this method.

4.2 Model

Our approach addresses both license plate detection and recognition by a single

deep network. As illustrated in Figure 4.1, our model consists of a number of convo-

lutional layers to extract discriminative features for license plates, a region proposal

network tailored specifically for car license plates, a Region of Interest (RoI) pooling

layer, multi-layer perceptrons for plate detection and bounding box regression, and

RNNs with CTC for plate recognition. With this architecture, the plate detection and

recognition can be achieved simultaneously, with one network and a single forward

evaluation of the input image. Moreover, the whole network is trained end-to-end,

with both localization loss and recognition loss being jointly optimized, and shows

improved performance.

4.2.1 Low-level Feature Extraction

The VGG-16 network Simonyan and Zisserman [2015] which is pre-trained on Ima-

geNet Russakovsky et al. [2015] is adopted here to extract low level CNN features.

VGG-16 consists of 13 layers of 3× 3 convolutions followed by Rectified Linear Unit

(ReLU) non-linearity, 5 layers of 2× 2 max-pooling, and fully connected layers. Here

we keep all the convolutional layers and abandon the fully connected layers as we

require local features at each position for plate detection. Given that the license

plates are small compared with the whole image size, we use 2 pooling layers in-

stead of 5, in case the feature information of license plates is vanished after pooling.

So the resulting feature maps are one fourth size of the original input image. The

higher-resolution feature maps will benefit the detection of small objects Redmon

and Farhadi [2017]. They are used as a base for both detection and recognition.
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4.2.2 Plate Proposal Generation

Ren et al. [2015] designed a Region Proposal Network (RPN) for object detection,

which can generate candidate objects in images. RPN is a fully convolutional net-

work that takes the low-level convolutional features as input, and outputs a set of

potential bounding boxes. It is trained end-to-end so that high quality proposals can

be generated. In this work, we modify RPN slightly to make it suitable for car license

plate proposal.

Car license plates generally have a larger width than height, but the aspect ratios

are nearly fixed for license plates in one country. According to the scales and aspect

ratios of license plates in our datasets, we designed 6 scales anchors (the heights are

respectively 5, 8, 11, 14, 17, 20) with an aspect ratio (width/height = 5), which results

in k = 6 anchors at each position of the input feature maps. In addition, inspired by

inception-RPN [Zhong et al., 2016], we use two 256-d rectangle convolutional filters

(W1 = 5, H1 = 3 and W2 = 3, H2 = 1) instead of the regularly used one filter size 3×

3, as shown in Figure 4.2. The two convolutional filters are applied simultaneously

across each sliding position. The extracted local features are concatenated along the

channel axis and formed a 512-d feature vector, which is then fed into two separate

fully convolutional layers for plate/non-plate classification and box regression. On

one hand, these rectangle filters are more suitable for objects with larger aspect ratios

(i.e., license plates). On the other hand, the concatenated features keep both local and

contextual information, which will benefit the plate classification later.

For k anchors at each sliding position on the feature map, the plate classification

layer outputs 2k scores which indicate the probabilities of the anchors as license

plates or not. The bounding box regression layer outputs 4k values which are the

offsets of anchor boxes to a nearby ground-truth. Given an anchor with the center at

(xa, ya), width wa and height ha, the regression layer outputs 4 scalars (tx, ty, tw, th)

which are the scale-invariant translations and log-space height/width shifts. The
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Figure 4.2: Plate Proposal Gener-
ation. Two rectangular convolu-
tional filters are applied in each
sliding window, which include
rich contextual information. The
features are concatenated and then
fed into the classification layer for
plate/non-plate classification and
the regression layer to calculate co-
ordinate offsets, with respect to k

anchors at each position.

bounding box after regression is given by

x = xa + txwa, y = ya + tyha,

w = wa exp(tw), h = ha exp(th),
(4.1)

where x, y are the center coordinates of the bounding box after regression, and w, h

are its width and height.

For a convolutional feature map with size M × N, there will be M × N × k an-

chors in total. Those anchors are redundant and highly overlapped with each other.

Moreover, there are much more negative anchors than positive ones, which will lead

to bias during training if we use all those anchors. We randomly sample 256 anchors

from one image as a mini-batch, where the ratio between positive and negative an-

chors is up to 1 : 1. The anchors that have Intersection over Union (IoU) scores larger

than 0.7 with any ground-truth bounding boxes are selected as positives, while an-

chors with IoU lower than 0.3 as negatives. The anchors with the highest IoU scores

with any ground-truth are also regarded as positives, so as to make sure that every

ground-truth box has at least one positive anchor. If there are not enough positive

anchors, we pad with negative ones.
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The binary logistic loss is used here for box classification, and smooth L1 loss [Ren

et al., 2015] is employed for box regression. The multi-task loss function used for

training RPN is

LRPN =
1

Ncls

Ncls

∑
i=1

Lcls(pi, p?i ) +
1

Nreg

Nreg

∑
i=1

Lreg(ti, t?i ), (4.2)

where Ncls is the size of a mini-batch and Nreg is the number of positive anchors

in this batch. Bounding box regression is only for positive anchors, as there is no

ground-truth bounding box matched with negative ones. pi is the predicted proba-

bility of anchor i being a license plate and p?i is the corresponding ground-truth label

(1 for positive anchor, 0 for negative anchor). ti is the predicted coordinate offsets

(ti,x, ti,y, ti,w, ti,h) for anchor i, and t?i is the associated offsets for anchor i relative to

the ground-truth. RPN is trained end-to-end with back-propagation and Stochastic

Gradient Descent (SGD).

At test time, the forward evaluation of RPN will result in M×N× k anchors with

objectiveness scores as well as bounding box offsets. We employ Non-Maximum

Suppression (NMS) to select 100 proposals with higher confidences based on the

predicted scores. To be specific, we sort the proposed bounding boxes according

to their classification scores firstly. The one who has an overlap ratio with another

bounding box larger than 0.7, but has a smaller classification score as plate, will

be suppressed. Then we choose the top 100 proposals with higher scores for the

following processing.

4.2.3 Proposal Processing and Pooling

As we state before, 256 anchors are sampled from the M × N × k anchors to train

RPN. After bounding box regression, the 256 samples will later be used for plate

detection and recognition.

We denote the bounding box samples as p = (x(1), y(1), x(2), y(2)), where (x(1), y(1))

is the top-left coordinate of the bounding box, and (x(2), y(2)) is the bottom-right coor-
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dinate of the bounding box. For all the positive proposals pi,j = (x(1)i,j , y(1)i,j , x(2)i,j , y(2)i,j ),

i = 1, . . . , n that are associated with the same ground-truth plate gj, a bigger bound-

ing box bj = (x(1)j , y(1)j , x(2)j , y(2)j ) is constructed that encompasses all proposals pi,j,

i.e., 

x(1)j = mini=1,...,n(x(1)i,j ),

y(1)j = mini=1,...,n(y
(1)
i,j ),

x(2)j = maxi=1,...,n(x(2)i,j ),

y(2)j = maxi=1,...,n(y
(2)
i,j ).

(4.3)

This process is also illustrated in Figure 4.3. The constructed bounding boxes

bj, j = 1, . . . , m will then be used as positive samples for later plate localization

and recognition. To avoid the bias caused by the unbalanced distribution between

positive and negative samples, we randomly choose 3m negative ones from the 256

samples and form a mini-batch with 4m samples.

Considering that the sizes of the samples are different from each other, in order

to interface with the following plate detection network as well as the recognition

network, RoI pooling [Girshick, 2015] is adopted here to extract a fixed-size feature

representation from each sample. Each RoI is projected into the image convolutional

feature maps, and results in feature maps of size H′ ×W′. The varying size feature

maps H′ ×W′ are then divided into X× Y grids, where boundary pixels are aligned

by rounding. Features are max-pooled within each grid. Here we choose X = 4 and

Y = 28 instead of 7× 7 that is used in [Girshick, 2015], because of the subsequent

plate recognition task. To be specific, since we need to recognize each character in

the license plate, it would be better if we keep more feature horizontally. However,

the model size p from this layer to the next fully connected layer is closely related to

X and Y, i.e., p ∝ XY. A large feature map size will result in more parameters and

increase the computation burden. After experimental analysis, we adopt a longer

width Y = 28 and a shorter height X = 4.



§4.2 Model 82

Figure 4.3: Proposal processing and pooling. Since some positive anchors (the green
ones in the image) cannot cover all letters in the license plate, the corresponding
features may not be included after RoI pooling, which is not suitable for recognition.
Hence we construct a new proposal (the red one in the image) that encircles all
positive anchors and big enough to contain sufficient features for recognition. RoI
pooling is then followed to get fixed size feature maps. It should be note that this
process is only implemented in training stage, while in test stage, the select 100
proposals with higher plate classification scores are processed directly for detection

and recognition.

4.2.4 Plate Detection Network

Plate detection network aims to judge whether the resulted RoIs are car license plates

or not, and refine the coordinates of the plate bounding boxes.

Two fully connected layers with 2048 neurons and a dropout rate of 0.5 are em-

ployed here to extract discriminative features for license plate detection. The features

from each RoI are flattened into a vector and passed through the two fully connected

layers. The encoded features are then fed concurrently into two separate linear trans-

formation layers respectively for plate classification and bounding box regression.

The plate classification layer has 2 outputs, which indicate the softmax probability of

each RoI as plate/non-plate. The plate regression layer produces the bounding box
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coordinate offsets for each proposal, as used in the region proposal network.

4.2.5 Plate Recognition Network

Plate recognition network aims to recognize each character in RoIs based on the

extracted region features. Similarly, to avoid the challenging task of character seg-

mentation, we regard the plate recognition as a sequence labeling problem as what

we did in the previous chapter. Bidirectional RNNs (BRNNs) with CTC loss [Graves

et al., 2009a] are employed to label the sequential features, which is illustrated in

Figure 4.4.

...
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Figure 4.4: Plate Recognition Net-
work. The pooled region features
are regarded as a feature sequence,
and encoded by BRNNs, which
capture the contextual information
in both sides. CTC is used for plate
decoding without character sepa-

ration.

The region features after RoI pooling are denoted as Q ∈ RC×X×Y, where C

is the channel size. First of all, we add two additional convolutional layers with

ReLUs. Both of them have 512 filters. The kernel sizes are 3 and 2 respectively, with

a padding of 1 used in the first convolutional layer. A rectangular pooling window

with kW = 1 and kH = 2 is applied between them, which would be beneficial for
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recognizing characters with narrow shapes, such as “1” and “I”, referring to [Shi

et al., 2015]. These operations will transform the region features Q into a sequence

of the size D × L, where D = 512 and L = 19. We denote the resulting features as

V = (v1, v2, . . . , vL), where vi ∈ RD.

Then BRNNs are applied on top of the sequential features. As presented in Fig-

ure 4.4, Two separated RNN layers with 512 units are used. One processes the feature

sequence forward, with the hidden states updated via h( f )
t = g(vt, h( f )

t−1). The other

one processes it backward with the hidden states updated via h(b)
t = g(vt, h(b)

t+1). The

two hidden states are concatenated together and fed to a linear transformation with

37 outputs. A Softmax layer is followed to transform the 37 outputs into probabili-

ties, which correspond to the distributions over 26 capital letters, 10 digits, and the

space between characters. We record the probabilities at each time step. Hence, after

BRNNs encoding, the feature sequence V is transformed into a sequence of prob-

ability estimation q = (q1, q2, . . . , qL) with the same length as V. BRNNs capture

abundant contextual information from both directions, which will make the charac-

ter recognition more accurate. Similarly, LSTMs [Hochreiter and Schmidhuber, 1997]

are adopted here, to overcome the shortcoming of gradient vanishing or exploding

during traditional RNN training.

Then CTC layer [Graves et al., 2009a] is adopted for sequence decoding as we

used in the previous chapter, which is to find an approximately optimal path l∗ with

the maximum probability through the Softmax output q, i.e., ,

l∗ ≈ B
(

arg max
π

P(π|q)
)

. (4.4)

Here a path π is a label sequence based on the output of Softmax layer, and P(π|q) =

∏L
t=1 P(πt|q). The operator B is the operation of removing the repeated labels and

the character spaces from the path, as we used in the previous chapter. The optimal

label sequence l∗ is exactly the recognized plate label.
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4.2.6 Loss Functions and Training

As we demonstrate previously, the whole network takes as inputs an image, the plate

bounding boxes and the associated labels during training time. After obtaining the

samples as well as the region features, we combine the loss terms for plate detection

and recognition, and jointly train the detection and recognition networks. Hence, the

multi-task loss function is defined as

LDRN =
1
N

N

∑
i=1

Lcls(pi, p?i ) +
1

N+

N+

∑
i=1

Lreg(ti, t?i ) +
1

N+

N+

∑
i=1

Lrec(q(i), s(i)) (4.5)

where N is the size of a mini-batch used in the detection network and N+ is the

number of positive samples in this batch. The definitions of Lcls and Lreg are the

same as that used in RPN. pi, p?i , ti, t?i also use the same definition as that used in

RPN. s(i) is the ground-truth plate label for sample i and q(i) is the corresponding

output sequence after BRNNs and Softmax.

It is observed that the length of BRNNs’ outputs q(i) is not consistent with the

length of target label s(i). Following CTC loss in [Graves et al., 2009a], the objective

function for plate recognition is defined as the negative log probability of the network

outputting correct label, i.e.,

Lrec(q(i), s(i)) = − log P(s(i)|q(i)) (4.6)

where

P(s(i)|q(i)) = ∑
π:B(π)=s(i)

P(π|q(i)) (4.7)

which is the sum of probabilities of all π that can be mapped to s(i) by B.

We use the approximate joint training process [Ren et al., 2015] to train the whole

network, ignoring the derivatives with respect to the proposed boxes’ coordinates.

Fortunately, this does not have a great influence on the performance, as demonstrated

in [Ren et al., 2015]. We train the whole network using SGD. CNNs for extracting
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low-level features are initialized from the pre-trained VGG-16 model. We do not

fine-tune the first four convolutional layers for efficiency. The rest of CNN layers are

fine-tuned only in the first 50K iterations. The other weights are initialized according

to Gaussian distribution. For optimization, we use ADAM [Kingma and Ba, 2014],

with an initial learning rate of 10−5 for parameters in the pre-trained VGG-16 model,

and 10−4 for other parameters. The latter learning rate is halved every 10K iterations

until 10−5. The network is trained for 200K iterations. Each iteration uses a single

image sampled randomly from the training dataset. For each training image, we

resize it to the shorter side of 700 pixels, while the longer side no more than 1500

pixels.

4.3 Experiments

In this section, we conduct experiments to verify the effectiveness of the proposed

method. The network is implemented using Torch 7 and the experiments are per-

formed on NVIDIA Titan X GPU with 12GB memory.

4.3.1 Datasets

In this phase, we obtained some more datasets that can be used to train the model

and evaluate the effectiveness of our proposed method.

The first dataset is collected from China, denoted as "CarFlag-Large". We col-

lected 460K images in total. The images are captured from frontal viewpoint by fixed

surveillance cameras under different weather and illumination conditions, e.g., in

sunny days, in rainy days, or at night, with a resolution of 1600× 2048. The plates

are nearly horizontal. Only the nearest license plate in the image is labeled in the

ground-truth file. We use 322K images for training, and 138K images for test.

The second one is the AOLP database [Hsu et al., 2013], as we introduced before

in the previous chapter. Considering the small number of training images, data

augmentation is implemented by rotation and affine transformation.



§4.3 Experiments 87

The third dataset is Caltech-cars (Real) 1999 dataset car [2003], which is also used

in the previous chapter. To test the effectiveness of our framework on this dataset,

we collect extra 1626 images with America license plates from Dlagnekov [2015];

ope [2013] to train the end-to-end model. Data augmentation is implemented by

translation and rescaling.

The fourth dataset is issued by Yuan et al. Yuan et al. [2017], and denoted as

"PKUData". It has 3977 images with Chinese license plates captured from various

scenes. This dataset is also used only for test, by applying the well-trained model

from CarFlag-Large. It is categorized into 5 groups (i.e., , G1-G5) corresponding to

different configurations. As there are only the plate bounding boxes given in the

ground-truth file, we merely evaluate the detection performance on this dataset.

We summarize related information of all these datasets in Table 4.1 for reference.

Table 4.1: Car plate datasets summary

Dataset Image quantity
Image resolution
(height × width)

Number of
training/test Images

Number of plate
Plate size

(height × width)
CarFlag-Large 460000 1600× 2048 322000/138000 138000 (20 ∼ 56)× (85 ∼ 265)

AOLP
AC

2049
240× 352 1368/681 681 (25 ∼ 32)× (70 ∼ 87)

LE 480× 640 1292/757 757 (28 ∼ 48)× (80 ∼ 133)
RP 240× 320 1438/611 611 (30 ∼ 58)× (70 ∼ 120)

Caltech-cars 126 592× 896 1626/126 126 (23 ∼ 59)× (70 ∼ 87)

PKUData

G1 810 728× 1082 322000/810 810 (35 ∼ 57)× (145 ∼ 184)
G2 700 728× 1082 322000/700 700 (30 ∼ 62)× (160 ∼ 184)
G3 743 728× 1082 322000/743 743 (29 ∼ 53)× (145 ∼ 184)
G4 572 1236× 1600 322000/572 572 (30 ∼ 58)× (158 ∼ 170)
G5 1152 1200× 1600 322000/1152 1438 (20 ∼ 60)× (136 ∼ 168)

4.3.2 Evaluation Criteria

To evaluate the “End-to-end” performance with both detection and recognition re-

sults considered, we refer to the "End-to-end" evaluation protocol for general text

spotting in natural scenes [Karatzas et al., 2015] as they have similar application sce-

nario. The bounding box is considered to be correct if its IoU with the ground-truth

bounding box is more than 50% (IoU > 0.5), and the plate label matches, i.e., all

characters in the plate are correctly recognized. F-measures are calculated and com-

pared in our experiments which synthesize both precision and recall according to the
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following equation 4.8:

F-measure =
2× (precision× recall)
(precision + recall)

(4.8)

It should be note that we denote all Chinese characters in license plates as “*”,

since the training images in CarFlag-Large are all from one province and use the

same Chinese character. The trained network cannot be used to distinguish other

Chinese characters.

The detection-only evaluation criterion is the same as what we used in the pre-

vious chapter for fair comparison, i.e., a detection is considered to be correct if the

license plate is totally encompassed by the detected bounding box, and IoU > 0.5,

refering to [Zhou et al., 2012; Yuan et al., 2017]

4.3.3 Performance Evaluation on CarFlag-Large

In this section, we run a number of ablations to analyze the network structure. A

comparison experiment between our unified framework and a commonly used two-

stage approach is also carried out to demonstrate the superiority of our end-to-end

jointly trained network.

4.3.3.1 Network Structure Analysis

Feature size after RoI pooling: In order to determine the feature size X and Y af-

ter RoI pooling, a set of experiments are performed with different feature width Y.

Experimental results in Table 4.2 show that a longer Y will result in a better perfor-

mance, but accompany with more parameters. By considering both the performance

and the model size, we choose X = 4 and Y = 28 in the following experiments.

Feature extraction method in plate recognition network: As we illustrated in sec-

tion 4.2.5, two additional convolutional layers with ReLUs and rectangular poolings

are added at the beginning of the plate recognition network, which convert the re-

gion feature map Q into a feature vector V for BRNNs processing. In Table 4.3, we
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compare this to using solely average pooling or max pooling. 2-D average or max

pooling with the kernel size as 4× 4 and the step size as 1× 1 is adopted before

BRNNs respectively. Experimental results in Table 4.3 suggest that the additional

CNN layers can learn more discriminative features and lead to a better end-to-end

performance.

Table 4.2: Affect of feature map size after RoI pooling on performance. The result
shows that the performance can be improved by a denser pooling. However, the
model size increases accordingly (“M” means million). Balancing the model size and

performance, we choose 4× 28 in the following experiments.

Size
End-to-end

Performance (%)
Model size in
detection net

4× 16 95.45 73M
4× 20 96.13 90M
4× 24 96.76 107M
4× 28 97.13 124M
4× 32 97.15 141M

Table 4.3: Influence of feature extraction method in plate recognition network on
performance. The additional 2 convolutional layers plus rectangular max pooling

lead to a better performance.

Method
End-to-end

Performance (%)
Convs.+pooling 97.13
Average pooling 91.83

Max pooling 95.61

4.3.3.2 Unified vs. Stepwise Framework

As illustrated in Figure 4.5, a commonly used two-stage approach implements plate

detection and recognition by two separated models. Plate detection is carried out

firstly. The detected objects are cropped out and then recognized by another differ-

ent model. In contrast, our proposed network outputs both detection and recognition

results at the same time, with a single forward pass and requiring no image crop-

ping. The convolutional features are shared by both detection and recognition net-
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Object
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The Proposed Jointly-trained Network

Figure 4.5: A two-stage approach VS. our proposed method. In the two-stage ap-
proach, after license plate detection by Faster R-CNN, we crop the detected license
plates from the image, and then recognize them by another separate model (fine-
tuned “CRNN” [Shi et al., 2015] in this paper). The features need to be re-computed
during recognition phase. In contrast, our proposed unified network takes an image
as input, and produces license plate bounding boxes and plate labels in one-shot. It
avoids some intermediate processes like image cropping, and share computation for

convolutional feature extraction.

works, which omits feature re-computation. For fair comparison with the proposal

based detection framework, instead of adopting the sliding window based detec-

tion method that we designed in the previous chapter, we train another independent

Faster R-CNN model [Ren et al., 2015] solely for car license plate detection, without

recognition. We denote it as “Ours (Detection-only)”. The two-stage approach we

used in this chapter is denoted as “Ours (New-Two-stage)” and the jointly trained

network is “Ours (Jointly-trained)”.

In “Ours (New-Two-stage)”, the detection only Faster R-CNN model [Ren et al.,

2015] ( “Ours (Detection-only)”) is trained by the 322K training images too. We mod-

ify the scales and shapes of anchors as the ones we used in section 4.2.2 so as to fit

the license plates. The network is also trained with 200K iterations, using the same

initial parameters and learning rate. As to the plate recognition, we employ “CRNN”

framework [Shi et al., 2015], which produces the state-of-the-art performance on gen-
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eral text recognition. It is an end-to-end framework for cropped word recognition,

including CNN layers, RNN layers and CTC for transcription, from bottom to top.

We crop the groud-truth license plates from the 322K training images, and resize

them to 160× 32 pixels. Then we fine-tune the “CRNN” model with these training

data.

In order to boost the performance, we rescale the input image into multiple

sizes in test phase for both our proposed network “Ours (Jointly-trained)” and the

detection-only Faster R-CNN network “Ours (Detection-only)”. The input images

are resized to the shorter side of 600, 1200 pixels respectively, with the longer side

less than 1500 pixels. With “Ours (Jointly-trained)”, both detection and recognition

results come out together, while with “Ours (New-Two-stage)”, we have to crop the

detected bounding boxes from the input images, resize them to 160× 32 pixels, and

then feed into the well-trained “CRNN” model for recognition. Only bounding boxes

with classification scores larger than 0.95 are kept and merged via NMS, with the

overlap ratio threshold setting to 0.7. Considering that there is only one plate labeled

as ground-truth per image, we finally choose the one that has 7 characters recog-

nized and/or with the highest detection score for evaluation. The evaluation results

are presented in Table 4.4. “Ours (Jointly-trained)” gives the “End-to-end” perfor-

mance with F-measure of 97.13% on 138K test images. It is around 3% higher than

the result produced by “Ours (New-Two-stage)”, which demonstrates the advantage

of end-to-end training for both detection and recognition in a unified network. The

learned features are more informative, and the two subtasks can promote each other.

In terms of the computational speed, the unified framework takes about 310ms

per image for a forward evaluation on the single small input scale, while the two-

stage approach needs around 450ms to get both detection and recognition results, as

it needs to implement image cropping and CNN feature re-calculation.

We also compare the detection-only performance. “Ours (Jointly-trained)” pro-

duces a detection accuracy of 98.33%, which is 1% higher than the result given by
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Table 4.4: Experimental results on CarFlag-Large dataset. We compare both perfor-
mance and running speed of our jointly trained network with a two-stage baseline
method based on “Faster R-CNN + CRNN” for fair comparison. F-measures are
presented here in percentage. The jointly trained network not only achieves higher
accuracies on both detection and “End-to-end” performance, but also in a shorter

time.

Method
End-to-end

Performance
(%)

Detection-only
Performance

(%)

End-to-end
Speed

(per image
single scale)

(ms)
Ours (Jointly-trained) 97.13 98.33 310
Ours (Two-stage) 94.09 97.05 450

“Ours (Detection-only)”. This result illustrates that car license plate detection can be

improved with the multi-task loss used during training phase.

Some experimental results using “Ours (Jointly-trained)” are presented in Fig-

ure 4.6, which show that the jointly trained model can deal with images under dif-

ferent illumination conditions.

4.3.4 Performance Evaluation on AOLP

In this subsection, we compare the “End-to-end” performance of our method with

other state-of-the-art methods on AOLP dataset. Note that the network is only

trained with 15K iterations because of the small number of training images in this

dataset. Moreover, since the sizes of license plates in AOLP are almost the same, and

the ratios between license plates and images sizes are also similar, for this dataset,

we only use a single image scale with the shorter side as 700 pixels in test phase.

The detection and recognition results are presented in Figure 4.7. Comparison

results with other methods in Table 4.5 show that “Ours (Jointly-trained)” performs

better on AC and LE subsets under “End-to-end” evaluation. It also produces the

best performance for plate detection on all three subsets, with averagely 2% higher

than the results in the previous chapter, and 4% higher than the results by the edge
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Figure 4.6: Experimental results on CarFlag-Large dataset by our jointly trained
model. The detection and recognition results are presented in red bounding boxes,
with red labels above. The third line demonstrates some failure cases, which shows
that the car license plate cannot be recognized correctly if it is too dark or partially

occluded.

Table 4.5: Experimental results on AOLP dataset. We compare our proposed method
with other state-of-the-art methods on both performance and running speed. The
performance is presented here in F-measures. Our jointly-trained network shows
improved performance for images with license plates in nearly horizontal position.

Method

End-to-end
Performance

(%)

Detection-only
Performance

(%)

End-to-end
Speed

(per image
single scale)

(ms)
AC LE RP AC LE RP

Hsu et al. [2013] − − − 93.43 92.96 92.48 260
The stepwise method in
the previous chapter

94.85 94.19 88.38 98.45 97.69 95.43 1000-2000

Ours (Jointly-trained) 95.29 96.57 83.63 99.56 99.34 98.85 400

based method used in [Hsu et al., 2013]. As to the computational speed, out network

takes about 400ms to get both detection and recognition results, while the stepwise
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Figure 4.7: Experimental results on AOLP dataset by our jointly trained model. The
red bounding box and red label in each image present the detection and recognition

results respectively. The third line shows some failure cases.

method described in previous chapter costs 2-3s. Hsu et al. [2013]’s method needs

averagely 260ms since it adopts a shallow network.

It should be noted that in Table 4.5, the “End-to-end” performance on RP subset

is worse than that in the previous chapter. This is because the license plates in RP

have a large degree of rotation and projective orientation. In the previous chapter,

the detected license plates are cropped out and Hough transform is adopted to cor-

rect the orientation. Nevertheless, the integrated method in this chapter does not

explicitly handle the rotated plates. Integrating the spatial transform network into

our end-to-end framework may be a solution, referring to [Shi et al., 2016], which is

a future work.
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4.3.5 Performance Evaluation on Caltech-cars

To further evaluate the effectiveness of the proposed framework, in this section, we

test the “End-to-end” performance of our method on the Caltech-cars dataset car

[2003], which has license plates from America. We fine-tune the model trained

by CarFlag-Large dataset with about 1626 training images and test the model on

Caltech-cars. Experimental results in Table 4.6 show that our framework is also fea-

sible for detecting and recognizing license plates from America. It achieves the best

detection performance compared to the previous methods. It should be note that this

dataset does not include any training data. Although we collect 1626 images with

America car license plates, they are not very consistent with each other. We believe

the end-to-end performance can be further improved if we have enough consistent

training data. Experimental results on Caltech-cars are presented in Figure 4.8. Com-

pared to the results in the previous chapter, the generated bounding boxes tend to

regard the license plate as a whole object, and lead to much better result. Failure

cases in the third line of Figure 4.8 show that the model fails when the image is too

dark or overexposure. The license plate with unusual characters cannot be correctly

recognized.

Table 4.6: Experimental results on Caltech-cars dataset. Our method achieves the
best detection performance compared to the previous methods.

Method
Detection-only
Performance

(%)

End-to-end
Performance

(%)
Zhou et al. Zhou et al. [2012] 89.83 -
Tian et al. Tian et al. [2017] 90.70 -
Kim et al. Kim et al. [2017] 97.60 -
The stepwise method in
the previous chapter

96.38 -

Ours(Jointly-trained) 98.04 94.12



§4.3 Experiments 96

Figure 4.8: Experimental results on Caltech-cars dataset by our jointly trained model.
The red bounding box and red label in each image present the detection and recog-

nition results respectively. The third line shows some failure cases.

Table 4.7: Experimental results on PKUData. G1 - G5 correspond to different image
capturing conditions. Our jointly trained network achieves a average detection ratio
of 99.73%, which is 2% higher than the previous best performance. In addition, the
jointly trained network performs better than that trained only with the detection

information.

Method
Detection Performance (%)

Detection
Speed

(per image
single scale)

End-to-end
Speed

(per image
single scale)

G1 G2 G3 G4 G5 Average
Zhou et al. [2012] 95.43 97.85 94.21 81.23 82.37 90.22 475 ms -
Li et al. [2013] 98.89 98.42 95.83 81.17 83.31 91.52 672 ms -
Yuan et al. [2017] 98.76 98.42 97.72 96.23 97.32 97.69 42 ms -
Ours(Detection-only) 99.88 99.71 99.46 99.83 98.68 99.51 283 ms -
Ours(Jointly-trained) 99.88 99.86 99.60 100 99.31 99.73 279 ms 310 ms

4.3.6 Performance Evaluation on PKUData

Because the ground-truth file in PKUData only provides the plate bounding boxes,

we simply evaluate the detection performance on this dataset. Both the detection

accuracy and computing speed are compared with other methods [Li et al., 2013;
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Zhou et al., 2012; Yuan et al., 2017]. We use the same model trained by the CarFlag-

Large dataset, as they are both datasets with Chinese license plates.

Images in Figure 4.9 show examples with both detection and recognition results.

The detection-only results by our approach and other three methods are presented

in Table 4.7. Our jointly trained model demonstrates absolute advantage on all 5

subsets, especially on G4, where we achieve 100% detection rate. This result proves

the robustness of our approach in face of various scenes and diverse conditions.

Qualitatively, our jointly trained network achieves a average detection ratio of 99.73%,

which is 2% higher than the previous best performance.

Figure 4.9: Experimental results on PKUData by our jointly trained model. The red
bounding box and red label in each image present the detection and recognition
results respectively. The third line shows some failure cases, where plates are not

completely detected.

In addition, the detection performance by our jointly trained network is slightly

better than that by the detection-only network as seen from Table 4.7. This is consis-
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tent with the outcome on CarFlag-Large dataset, and proves again that the detection

performance can be boosted when training with the label information.

In terms of the computational speed, Yuan et al.’s method [Yuan et al., 2017] is

relatively faster than ours’, because they use simple linear SVMs, while we adopt

deep CNNs and RNNs.

4.4 Conclusion

In this chapter we have presented a jointly trained network which integrates CNNs

and RNNs for simultaneous car license plate detection and recognition. With this

network, car license plates can be detected and recognized all at once in a single for-

ward pass, with both high accuracy and efficiency. By sharing convolutional features

with both detection and recognition networks, the model size decreases largely. The

whole network can be trained approximately end-to-end, without intermediate pro-

cessing like image cropping or character separation. The whole computational time

decreases a lot compared to the stepwise method used in the previous chapter. Com-

prehensive evaluation and comparison on three datasets with different approaches

validate the advantage of our method.

In the future, we will extend our network to process multi-oriented car license

plates by integrating the spatial transform network [Jaderberg et al., 2015]. On the

other hand, although the processing speed accelerates a lot, it remains to be im-

proved. After time analysis, it is found that NMS takes about half of the whole

processing time. Hence, we will optimize the code on NMS to speed up the whole

process. In addition, existing researches show that the direct regression based meth-

ods, such as YOLO or SSD, are relatively faster than the proposal based methods. So

we will also try to exploit the direct regression based architectures to accelerate the

detection and recognition speed furthermore.



Chapter 5

Towards End-to-end Text Spotting

with Convolutional Recurrent

Neural Networks

5.1 Introduction

As we described in Chapter 1.1.3, previous methods on text spotting can be catego-

rized into stepwise or integrated manners. Stepwise methods conduct text detection

firstly with a high recall to get candidate text regions. Word recognition is performed

on the cropped text bounding boxes by a totally different model, in accompany with

text line separation or character grouping sometimes. Integrated methods, on the

other hand, tackle both word detection and recognition jointly. However, a separate

character detection step is usually needed to be carried out in the existing integrated

methods [Wang et al., 2011; Neumann and Matas, 2013a]. The detected characters are

then grouped into words and recognized simultaneously. In this chapter, we leave

out the character detection step furthermore, and propose a unified framework to de-

tect and recognize word level bounding boxes directly and concurrently. As a matter

of fact, the tasks of word detection and recognition are highly correlated. Firstly,

the feature information can be shared between them. Furthermore, these two tasks

can complement each other: better detection improves recognition accuracy, and the

recognition information can refine detection results vice versa.

99
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In the previous chapter, we have proposed a unified deep neural network for si-

multaneous car license plate detection and recognition. However, general scene text

is more flexible and varied than car license plates, and with some special character-

istics. For example, in contrast to the nearly fixed aspect ratio of license plates in one

country, the length of words may vary drastically, like the words of “I” and “con-

gratulations”. In addition, there is a kind of a potential language model embedded

in words, while the characters appeared in car license plates are totally random.

With these particularities into mind, we propose an end-to-end trainable text

spotter in this chapter, which jointly detects and recognizes words in an image. An

overview of the network architecture is presented in Figure 5.1. It consists of a

number of convolutional layers, a region proposal network tailored specifically for

text (refer to as Text Proposal Network, TPN), an Recurrent Neural Network (RNN)

encoder for embedding proposals of varying sizes to fixed-length vectors, multi-

layer perceptrons for detection and bounding box regression, and an attention-based

RNN decoder for word recognition. Via this framework, both text bounding boxes

and word labels are generated with a single forward evaluation of the network. We

do not need to process the intermediate issues such as character grouping [Zhu

and Zanibbi, 2016; Tian et al., 2015] or text line separation [Zhang et al., 2015], and

thus avoid the error accumulation. The whole network takes an image as input and

outputs the coordinates of word bounding boxes as well as text labels directly and

simultaneously, with both high efficiency and accuracy. The main contributions are

thus three-fold.

(1) An end-to-end trainable DNN is designed to optimize the overall accuracy

and share computations. The network integrates both text detection and word recog-

nition. With the end-to-end optimization of multiple tasks, the learned features are

more informative, which can promote the detection results as well as the overall

performance. The convolutional features are shared by both detection and recogni-

tion, which saves processing time. To our best knowledge, this is the first successful
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Figure 5.1: Model overview. The network takes an image as input, and outputs
both text bounding boxes and text labels in one forward pass. The whole network is

trained end-to-end.

attempt to integrate word level detection and recognition into a single end-to-end

trainable network. It should be note that as we mentioned in Chapter 1.1.3, Busta

et al. [2017] also proposed a unified text localization and recognition framework.

However, in their architecture, the convolutional features are not shared. It is only

the multi-task loss that be jointly optimized. The detected bounding boxes need to

be cropped out from the image as usual, and features are extracted again by another

recognition network.

(2) We propose a new method for region feature extraction. In previous work [Gir-

shick, 2015; Ren et al., 2015] as well as our integrated network for car license plate

detection and recognition in Chapter 4, Region-of-Interest (RoI) pooling layer con-

verts regions of different sizes and aspect ratios into feature maps with a fixed size.

Considering the significant diversity of aspect ratios in text bounding boxes, it is

sub-optimal to fix the size after pooling. To accommodate the original aspect ratios

and avoid distortion, RoI pooling is tailored to generate feature maps with varying

lengths. An RNN encoder is then employed to encode feature maps of different

lengths into the same size.

(3) A curriculum learning strategy is designed to train the system with gradually

more complex training data. Starting from synthetic images with simple appearance

and a large word lexicon, the system learns a character-level language model and
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finds a good initialization of appearance model. By employing real-world images

with a small lexicon later, the system gradually learns how to handle complex ap-

pearance patterns. We conduct a set of experiments to explore the capabilities of

different model structures. The best model outperforms state-of-the-art results on

several standard benchmarks, including ICDAR2011, 2015.

Notation For legibility, the following notations are defined. All bold capital let-

ters represent matrices and all bold lower-case letters denote column vectors. [a; b]

concatenates the vectors a and b vertically, while [a, b] stacks a and b horizontally

(column wise). In the following sections, the bias terms in neural networks are omit-

ted.

5.2 Model

Our goal is to design an end-to-end trainable network, which simultaneously detects

and recognizes all words in images. Our model is motivated by recent progresses

in DNN models such as Faster R-CNN [Ren et al., 2015] and sequence-to-sequence

learning [Shi et al., 2016; Lee and Osindero, 2016], but we take the special character-

istics of text into consideration.

The whole system architecture is illustrated in Figure 5.1. Firstly, the input image

is fed into a convolutional neural network that is modified from VGG-16 net [Si-

monyan and Zisserman, 2015]. VGG-16 consists of 13 layers of 3× 3 convolutions

followed by Rectified Linear Units (ReLUs), 5 layers of 2× 2 max-pooling, and Fully-

Connected (FC) layers. Here we remove FC layers. As long as text in images can be

relatively small, we only keep the 1st, 2nd and 4th layers of max-pooling, so that the

down-sampling ratio is increased from 1/32 to 1/8.

Given the computed convolutional features, TPN provides a list of text region

proposals (bounding boxes). Then, Region Feature Encoder (RFE) converts the con-

volutional features of proposals into fixed-length representations. These representa-

tions are further fed into Text Detection Network (TDN) to calculate their textness
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scores and bounding box offsets. Next, RFE is applied again to compute fixed-length

representations of text bounding boxes provided by TDN (see purple paths in Fig-

ure 5.1). Finally, Text Recognition Network (TRN) recognizes words in the detected

bounding boxes based on their representations. In the following subsections, we will

present a detailed description about each part.

5.2.1 Text Proposal Network

Text Proposal Network (TPN) is inspired from RPN [Ren et al., 2015; Zhong et al.,

2016], which can be regarded as a fully convolutional network. As presented in

Figures 5.2, it takes convolutional features as input, and outputs a set of bound-

ing boxes accompanied with textness scores and coordinate offsets which indicate

scale-invariant translations and log-space height/width shifts relative to pre-defined

anchors, as in [Ren et al., 2015].
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Sliding 
Window
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Layer

Convolutional Feature Map
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2k
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4k
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512-d

Intermediate 
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Figure 5.2: Text Proposal Network
(TPN). We apply multiple scale
sliding windows over the convo-
lutional feature maps. Both lo-
cal and contextual information are
retained which helps to propose
high quality text bounding boxes.
The concatenated local and contex-
tual features are further fed into
the cls layer for computing textness
scores and the reg layer to calculate
coordinate offsets, with respect to

k anchors at each position.

Considering that word bounding boxes usually have larger aspect ratios (W/H)

and varying scales, we designed k = 24 anchors with 4 scales (with box areas of 162,

322, 642, 802) and 6 aspect ratios (1 : 1, 2 : 1, 3 : 1, 5 : 1, 7 : 1, 10 : 1).
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Inspired by the work in [Zhong et al., 2016], we apply two 256-d rectangle con-

volutional filters of different sizes (W = 5, H = 3 and W = 3, H = 1) on the feature

maps to extract both local and contextual information. The rectangle filters lead to

wider receptive fields, which is more suitable for word bounding boxes with large

aspect ratios. The resulting features are further concatenated to 512-d vectors and fed

into two sibling layers for text/non-text classification and bounding box regression.

5.2.2 Region Feature Encoder

To process RoIs of different scales and aspect ratios in a unified way, most existing

work re-samples regions into fixed-size feature maps via pooling [Ren et al., 2015].

However, for text, this approach may lead to significant distortion due to the large

variation of word lengths. For example, it may be unreasonable to encode short

words like “Dr” and long words like “congratulations” into feature maps of the

same size. In this work, we propose to re-sample regions according to their respec-

tive aspect ratios, and then use RNNs to encode the resulting feature maps of differ-

ent lengths into fixed length vectors. The whole region feature encoding process is

illustrated in Figure 5.3.

For an RoI of size h×w, we perform spatial max-pooling with a resulting size of

H ×min(Wmax, 2Hw/h), (5.1)

where the expected height H is fixed and the width is adjusted to keep the aspect

ratio as 2w/h (twice the original aspect ratio) unless it exceeds the maximum length

Wmax. Note that here we employ a pooling window with an aspect ratio of 1 : 2,

which benefits the recognition of narrow shaped characters, like “i”, “l”, etc., as

stated in [Shi et al., 2015].

Next, the resampled feature maps are considered as a sequence and fed into

RNNs for encoding. Here we also use LSTMs instead of vanilla RNNs to over-

come the shortcoming of gradient vanishing or exploding. The feature maps af-



§5.2 Model 105

Text 
Proposals

Conv.
Features

Varying-Size
RoI Pooling

Region Features

Fixed
length 
Region 

Features 
𝐡𝑊

𝐡#

𝐪%

LSTM

𝐡% 𝐡&

𝐪# 𝐪&

Figure 5.3: Region Features Encoder (RFE). The region features after RoI pooling are
not required to be of the same size. In contrast, they are calculated according to
aspect ratio of each bounding box, with height normalized. LSTM is then employed

to encode different length region features into the same size.

ter the above varying-size RoI pooling are denoted as Q ∈ RC×H×W , where W =

min(Wmax, 2Hw/h) is the number of columns and C is the channel size. We flatten

the features in each column, and obtain a sequence q1, . . . , qW ∈ RC×H which are

fed into LSTMs one by one. Each time LSTM units receive one column of feature qt,

and update their hidden state ht by a non-linear function: ht = f(qt, ht−1). In this

recurrent fashion, the final hidden state hW (with size R = 1024) captures the holistic

information of Q and is used as an RoI representation with fixed dimension.

5.2.3 Text Detection and Recognition

Text Detection Network (TDN) aims to judge whether the proposed RoIs are text or

not and refine the coordinates of bounding boxes once again, based on the extracted

region features hW . Two fully-connected layers with 2048 neurons are applied on

hW , followed by two parallel layers for classification and bounding box regression

respectively.

The classification and regression layers used in TDN are similar to those used

in TPN. Note that the whole system refines the coordinates of text bounding boxes

twice: once in TPN and then in TDN. Although RFE is employed twice to calcu-

late features for proposals produced by TPN and later the detected bounding boxes

provided by TDN, the convolutional features only need to be computed once.
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Text Recognition Network (TRN) aims to predict the text in the detected bounding

boxes based on the extracted region features. As shown in Figure 5.4, we adopt

LSTMs with attention mechanism [Luong et al., 2015; Shi et al., 2016] to decode the

sequential features into words.
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Figure 5.4: Text Recognition Network (TRN). The region features are encoded by
one layer of LSTMs, and then decoded in an attention based sequence to sequence
manner. Hidden states of encoder at all time steps are reserved and used as context

for attention model.

Firstly, hidden states at all steps h1, . . . , hW from RFE are fed into an additional

layer of LSTMs with 1024 units to encode once more. We record the hidden state at

each time step and form a sequence of V = [v1, . . . , vW ] ∈ RR×W . It includes local

information at each time step and works as the context for the attention model.

As for decoder LSTMs, the ground-truth word label is adopted as input during

training phase. It can be regarded as a sequence of tokens s = {s0, s1, . . . , sT+1}

where s0 and sT+1 represent the special tokens START and END respectively. We feed

decoder LSTMs with T + 2 vectors: x0, x1, . . . , xT+1, where x0 = [vW ; Atten(V, 0)] is

the concatenation of the encoder’s last hidden state vW and the attention output with

the guidance equals to zero; and xi = [ψ(si−1); Atten(V, h′i−1)], for i = 1, . . . , T + 1, is
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made up of the embedding ψ() of the (i− 1)-th token si−1 and the attention output

guided by the hidden state of decoder LSTMs in the previous time-step h′i−1. The

embedding function ψ() is defined as a linear layer followed by a tanh non-linearity.

The attention function ci = Atten(V, h′i) is defined as follows:


gj = tanh(Wvvj + Whh′i), j = 1, . . . , W,

α = Softmax(w>g · [g1, g2, . . . , gW ]),

ci = ∑W
j=1 αjvj,

(5.2)

where V = [v1, . . . , vW ] is the variable-length sequence of features to be attended, h′i

is the guidance vector, Wv and Wh are linear embedding weights to be learned, α is

the attention weights of size W, and ci is a weighted sum of input features.

At each time-step t = 0, 1, . . . , T + 1, the decoder LSTMs compute their hidden

state h′t and output vector yt as follows:


h′t = f(xt, h′t−1),

yt = ϕ(h′t) = Softmax(Woh′t)
(5.3)

where LSTM is used for the recurrence formula f(), and Wo linearly transforms

hidden states to the output space of size 38, including 26 case-insensitive characters,

10 digits, a token representing all punctuations like “!” and “?”, and a special END

token.

At test time, the token with the highest probability in previous output yt is se-

lected as the input token at step t + 1, instead of the ground-truth tokens s1, . . . , sT.

The process is started from the START token, and repeated until we get the special

END token.
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5.2.4 Loss Functions and Training

Loss Functions As we demonstrate above, our system takes as input an image,

word bounding boxes and their labels during training. Both TPN and TDN employ

the binary logistic loss Lcls for classification, and smooth L1 loss Lreg [Ren et al., 2015]

for regression. So the loss for training TPN is

LTPN =
1
N

N

∑
i=1

Lcls(pi, p?i ) +
1

N+

N+

∑
i=1

Lreg(di, d?
i ), (5.4)

where N is the number of randomly sampled anchors in a mini-batch and N+ is the

number of positive anchors in this batch (the range of positive anchor indices is from

1 to N+). The mini-batch sampling and training process of TPN are similar to that

used in [Ren et al., 2015]. An anchor is considered as positive if its Intersection-over-

Union (IoU) ratio with a ground-truth is greater than 0.7 and considered as negative

if its IoU with any ground-truth is smaller than 0.3. In this paper, N is set to 256 and

N+ is at most 128. pi denotes the predicted probability of anchor i being text and p?i

is the corresponding ground-truth label (1 for text, 0 for non-text). di is the predicted

coordinate offsets (dxi, dyi, dwi, dhi) for anchor i, and d?
i is the associated offsets for

anchor i relative to the ground-truth. Bounding box regression is only for positive

anchors, as there is no ground-truth bounding box matched with negative ones.

For the final outputs of the whole system, we apply a multi-task loss for both

detection and recognition:

LDRN =
1
N̂

N̂

∑
i=1

Lcls( p̂i, p̂?i ) +
1

N̂+

N̂+

∑
i=1

Lreg(d̂i, d̂?
i ) +

1
N̂+

N̂+

∑
i=1

Lrec(Y(i), s(i)) (5.5)

where N̂ = 128 is the number of text proposals sampled from the output of TPN, and

N̂+ ≤ 64 is the number of positive ones. The thresholds for positive and negative an-

chors are set to 0.6 and 0.4 respectively, which are less strict than those used for train-

ing TPN. In order to mine hard negatives, we first apply TDN on 1000 randomly sam-

pled negatives and select those with higher textness scores. p̂i and d̂i are the outputs
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of TDN. s(i) is the ground-truth tokens for sample i and Y(i) = {y(i)
0 , y(i)

1 , . . . , y(i)
T+1} is

the corresponding output sequence of decoder LSTMs. Lrec(Y, s) = −∑T+1
t=1 log yt(st)

denotes the cross entropy loss on y1, . . . , yT+1, where yt(st) represents the predicted

probability of the output being st at time-step t and the loss on y0 is ignored.

Following [Ren et al., 2015], we use an approximate joint training process to min-

imize the above two losses together (ADAM [Kingma and Ba, 2014] is adopted),

ignoring the derivatives with respect to the proposed boxes’ coordinates.

Data Augmentation We sample one image per iteration in the training phase.

Training images are resized to the shorter side of 600 pixels and the longer side of at

most 1200 pixels. Data augmentation is also implemented to improve the robustness

of our model, which includes:

1) randomly rescaling the width of the image by ratio 1 or 0.8 without changing

its height, so that the bounding boxes have more variable aspect ratios;

2) randomly cropping a subimage which includes all text in the original image,

padding with 100 pixels on each side, and resizing to 600 pixels on shorter side.

Curriculum Learning In order to improve generalization and accelerate the con-

vergence speed, we design a curriculum learning [Bengio et al., 2009] paradigm to

train the model from gradually more complex data.

1) We generate 48k images containing words in the “Generic” lexicon [Jaderberg

et al., 2016] of size 90k by using the synthetic engine proposed in [Gupta et al., 2016].

The words are randomly placed on simple pure colour backgrounds (10 words per

image on average), as shown in Figure 5.5. We lock TRN initially, and train the rest

parts of our proposed model on these synthetic images in the first 30k iterations, with

convolutional layers initialized from the trained VGG-16 model and other parameters

randomly initialized according to Gaussian distribution. For efficiency, the first four

convolutional layers are fixed during the entire training process. The learning rate is

set to 10−5 for parameters in the rest of convolutional layers and 10−3 for randomly

initialized parameters.
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Figure 5.5: Synthetic images with words randomly placed on simple pure colour
backgrounds. These images are used to pre-train our model.

2) In the next 30k iterations, TRN is added and trained with a learning rate of

10−3, together with other parts in which the learning rate for randomly initialized

parameters is halved to 5× 10−4. We still use the 48k synthetic images as they contain

a comprehensive 90k word vocabulary. With this synthetic dataset, a character-level

language model can be learned by TRN.

3) In the next 50k iterations, the training examples are randomly selected from

the “Synth800k" [Gupta et al., 2016] dataset, which consists of 800k images with

averagely 10 synthetic words placed on each real scene background, as presented in

Figure 5.6. The learning rate for convolutional layers remains at 10−5, but that for

others is halved to 10−4. These images have more complex background, so that the

model will be further fine-tuned to handle complicated appearance patterns.

4) Totally 2044 real-world training images from ICDAR2015 [Karatzas et al., 2015],

SVT [Wang et al., 2011] and AddF2k [Zhong et al., 2016] datasets are employed for

another 20k iterations. In this stage, all the convolutional layers are fixed and the

learning rate for others is further halved to 10−5. These real images contain much less

words than synthetic ones, but their appearance patterns are much more complex.

Some example images are shown in Figure 5.7.
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Figure 5.6: Synthetic images from [Gupta et al., 2016], which are created via blending
rendered words into real natural scene images. The background is more complex

than that of images in Figure 5.5.

5.3 Experiments

In this section, we perform experiments to verify the effectiveness of the proposed

method. All experiments are implemented on a NVIDIA Tesla M40 GPU with 24GB

memory. We rescale the input images into multiple sizes during test phase in order

to cover the large range of bounding box scales, and sample 300 proposals with the

highest textness scores produced by TPN. The detected bounding boxes are then

merged via NMS according to their textness scores with the overlap threshold of 0.3

and fed into TRN for recognition.

5.3.1 Datasets

As we describe before, in order to train the deep network, three kinds of datasets

are adopted step by step in a curriculum learning process, including two synthetic

datasets and one real image dataset. To show the superiority of our method, we

evaluate the well-trained model on four test datasets, including commonly used

scene text benchmarks: “Focused Scene Text” in ICDAR2015 [Karatzas et al., 2015],

ICDAR2011 [Shahab et al., 2011], Street View Text (SVT) [Wang et al., 2011] and

another electronic document dataset: “Born-Digital Images (Web and Email)” in
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Figure 5.7: The real-world images captured from natural scene, with the 1st, 2nd and
3rd columns corresponding to images from datasets ICDAR2015, SVT and AddF2k

respectively.

ICDAR2015 [Karatzas et al., 2015].

The dataset for “Focused Scene Text" in ICDAR2015 Robust Reading Competition

consists of 229 images for training and 233 images for test. These images are captured

in natural scene, and focused around the text content of interest. In addition, it

provides 3 specific lists of words as lexicons for reference in test phase, i.e., “Strong”,

“Weak” and “Generic”, as we introduced in Chapter 3.3.

ICDAR2011 dataset is quite similar to ICDAR2015, with 255 images for test. But

it does not provide any lexicon. So we only use the 90k “Generic” vocabulary as

context.

SVT dataset consists of 100 images for training and 249 images for test. These

images are harvested from Google Street View and often have a low resolution which

makes this dataset more challenging. It also provides a “Strong” lexicon with 50

words per-image. As there are unlabeled words in SVT, we only evaluate the “Word-

Spotting” performance on this dataset.

“Born-Digital Images (Web and Email)” dataset in ICDAR2015 is harvest from

electronic documents in web-pages and Emails. Automatically extracting text from

born-digital images is useful. It enables a number of applications such as indexing
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and retrieval of web content, content filtering, etc.. In contrast to natural scene text

images which are usually high-resolution camera captured ones, born-digital images

are inherently low-resolution (made to be transmitted online and displayed on a

screen) and text is digitally created on the image. They may suffer from compression

artefacts and severe anti-aliasing. The dataset of “Born-Digital Images (Web and

Email)” provides 410 images for training and 141 images for test. It also provides 3

lexicons for reference in test.

5.3.2 Evaluation Criteria

We also follow the evaluation protocols used in ICDAR2015 Robust Reading Com-

petition [Karatzas et al., 2015] for fair comparison: a bounding box is considered as

correct if its IoU ratio with any ground-truth is greater than 0.5 and the recognized

word also matches, ignoring the case. One- or two- character words as well as words

deemed unreadable (annotated as “do no care” in the dataset) are ignored. Similarly,

both “End-to-End" and “Word Spotting" protocols (as we introduced in Chapter 3.3)

are adopted in evaluating the ICDAR2015 test data. For ICDAR2011 and SVT, we

only evaluate the “Word-Spotting” performance. F-measures are reported for com-

prehensive comparison.

5.3.3 Evaluation under Different Model Settings

In order to show the effectiveness of our proposed varying-size RoI pooling (see

Section 5.2.2) and the attention mechanism (see Section 5.2.3), we examine the per-

formance of our model with different settings in this subsection. With the fixed RoI

pooling size of 4× 20, we denote the models with and without the attention mech-

anism as “Ours Atten+Fixed” and “Ours NoAtten+Fixed” respectively. The model

with both attention and varying-size RoI pooling is denoted as “Ours Atten+Vary", in

which the size of feature maps after pooling is calculated according to Equation (5.1)

with H = 4 and Wmax = 35.
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Although the last hidden state of LSTMs encodes the holistic information of RoI

image patch, it still lacks details. Particularly for a long word image patch, the initial

information may be lost during the recurrent encoding process, even if LSTMs are

used instead of vanilla RNNs. Thus, we keep the hidden states of encoder LSTMs

at each time step as context. The attention model can choose the corresponding lo-

cal features for each character during decoding process, as illustrated in Figure 5.8.

From Table 5.2, we can see that the model with attention mechanism, namely “Ours

Atten+Fixed”, achieves higher F-measures on all scene text data than “Ours NoAt-

ten+Fixed” which does not use attention.

One contribution of this work is a new region feature encoder, which is com-

posed of a varying-size RoI pooling mechanism and an LSTM sequence encoder. To

validate its effectiveness, we compare the performance of models “Ours Atten+Vary"

and “Ours Atten+Fixed". Experiments shows that varying-size RoI pooling performs

significantly better for long words. For example, “Informatikforschung" can be rec-

ognized correctly by “Ours Atten+Vary", but not by “Ours Atten+Fixed" (as shown

in Figure 5.8 (a)), because a large portion of information for long words is lost by

fixed-size RoI pooling. Similarly, as illustrated in Table 5.2, adopting varying-size

RoI pooling (“Ours Atten+Vary") instead of fixed-size pooling (“Ours Atten+Fixed")

makes F-measures increase around 1% for ICDAR2015, 4% for ICDAR2011 and 3%

for SVT with strong lexicon used.

5.3.4 Joint Training vs. Separate Training

Previous works [Jaderberg et al., 2016; Gupta et al., 2016; Liao et al., 2017] on text

spotting typically perform in a two-stage manner, where detection and recognition

are trained and processed separately. The text bounding boxes detected by a model

need to be cropped from the image and then recognized by another model. By con-

trast, our proposed model is trained jointly for both text detection and recognition.

By sharing convolutional features and RoI encoder, the knowledge learned from the
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(a)

(b)

Figure 5.8: Attention mechanism based sequence decoding process by “Ours At-
ten+Vary” and “Ours Atten+Fixed” separately. The heat maps show that at each
time step, the position of the character to be decoded has higher attention weights,
so that the corresponding local features will be extracted and assist the text recogni-
tion. However, if we use the fixed size RoI pooling, information may be lost during
pooling, especially for a long word, which leads to an incorrect recognition result. In
contrast, “Ours Atten+Vary” gives the correct result, even if some parts of the word

image are missed, such as “I”, “n” in the first example.
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correlated detection and recognition tasks can be transferred between each other and

results in better performance for both tasks.

To fairly compare with the model “Ours Atten+Vary" which is a word based

jointly trained model, instead of using the sliding window based character detection

method as in Chapter 3.3, we build another two-stage system (denoted as “Ours

New-Two-Stage” in order to distinguish with our stepwise method described in

Chapter 3.3), in which detection and recognition models are trained separately. The

detector in “Ours New-Two-Stage” is built by removing the recognition part from

model “Ours Atten+Vary” and trained only with the detection objective (denoted

as “Ours DetOnly”). As to recognition, we employ “CRNN” [Shi et al., 2015] that

produces state-of-the-art performance on text recognition. Model “Ours New-Two-

Stage” firstly adopts “Ours DetOnly” to detect text with the same multi-scale inputs.

“CRNN” is then followed to recognize the detected bounding boxes. We can see

from Table 5.2 that model “Ours New-Two-Stage” performs worse than “Ours At-

ten+Vary" on all the evaluated scene text datasets.

Furthermore, we also compare the detection-only performance of these two sys-

tems. Note that “Ours DetOnly” and the detection part of “Ours Atten+Vary" share

the same architecture, but they are trained with different strategies: “Ours DetOnly”

is optimized with only the detection loss, while “Ours Atten+Vary" is trained with

a multi-task loss for both detection and recognition. In consistent with the “End-

to-End” evaluation criterion, a detected bounding box is considered to be correct if

its IoU ratio with any ground-truth is greater than 0.5. The detection results are

presented in Table 5.1. Without any lexicon used, “Ours Atten+Vary” produces a

detection performance with F-measures of 85.6% on ICDAR2015 Scene text data and

85.1% on ICDAR2011, which are averagely 2% higher than those given by “Ours

DetOnly”. This result illustrates that detector performance can be improved via joint

training.
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Table 5.1: Text detection results on scene text datasets. Precision (P) and Recall
(R) at maximum F-measure (F) are reported in percentage. The jointly trained model
(“Ours Atten+Vary") gives better detection results than the one trained with detection

loss only (“Ours DetOnly").

Method
ICDAR2015

“Focused Scene Text”
ICDAR2011

R P F R P F
Jaderberg et al. [2016] 68.0 86.7 76.2 69.2 87.5 77.2
FCRNall+multi-filt
[Gupta et al., 2016]

76.4 93.8 84.2 76.9 94.3 84.7

Ours DetOnly 78.5 88.9 83.4 80.0 87.5 83.5
Ours Atten+Vary 80.5 91.4 85.6 81.7 89.2 85.1

5.3.5 Comparison with Other Methods

In this part, we compare the text spotting results of “Ours Atten+Vary” with other

state-of-the-art approaches on both scene text images and born-digital images. As

shown in Table 5.2 and Table 5.3, “Ours Atten+Vary” outperforms all compared

methods on both datasets. In particular, our method shows a significant superiority

when using a generic lexicon. It leads to a 1.5% higher recall on average than the

state-of-the-art “TextBoxes” [Liao et al., 2017] in scene text images, using only 3 input

scales compared with 5 scales used by “TextBoxes”.

Several text spotting examples are presented in Figure 5.9 for scene text images

and in Figure 5.10 for born-digital images. The results demonstrate that model “Ours

Atten+Vary” is capable of dealing with words of different fonts, aspect ratios and

illuminations.

5.3.6 Running Speed

Using an M40 GPU, model “Ours Atten+Vary” takes approximately 0.9s to process

an input image of 600× 800 pixels. It takes nearly 0.45s to compute the convolu-

tional features, 0.02s for text proposal calculation, 0.25s for RoI encoding, 0.01s for

text detection and 0.15s for word recognition. On the other hand, model “Ours New-

Two-Stage” spends around 0.45s for word recognition on the same detected bound-
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Figure 5.9: Examples of text spotting results by “Ours Atten+Vary”. The first two
columns are images from ICDAR2015 “Focused Scene Text”, and the rest are images
from SVT. Red bounding boxes are both detected and recognized correctly. Green
bounding boxes are missed words, and yellow dashed bounding boxes are false
positives. The results show that our model is able to detect and recognize words

of different aspect ratios. Most missed words have small bounding boxes.

Table 5.3: Text spotting results on born-digital image dataset. We present the F-
measure here in percentage. “Ours Atten+Vary” achieves the best performance on

this dataset under both evaluation protocols.

Method
ICDAR2015

“Born-Digital Images”
Word-Spotting

ICDAR2015
“Born-Digital Images”

End-to-End
Strong Weak Generic Strong Weak Generic

Baseline
[Gomez and Karatzas, 2014]

45.95 43.09 29.22 41.28 38.72 26.90

Stradvision-2
[Karatzas et al., 2015]

85.59 81.53 62.27 78.10 74.08 57.01

Deep2Text II+
[Yin et al., 2014]

87.64 86.81 83.68 82.08 80.75 78.77

Megvii-Image++
[Karatzas et al., 2015]

91.05 90.25 84.32 85.35 84.40 78.92

Ours Atten+Vary 93.43 92.16 86.62 86.33 85.06 80.12
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Figure 5.10: Examples of text spotting results by “Ours Atten+Vary” on ICDAR2015
“born-digital image”. Red bounding boxes are both detected and recognized cor-
rectly. Green bounding boxes are missed words, and blue dashed bounding boxes
are false positives. Our model can also detect and recognize words in low-resolution

images. Small words are difficult to cover.

ing boxes, as it needs to crop the word patches, and re-calculate the convolutional

features during recognition.

5.4 Conclusion

In this chapter we presented a unified end-to-end trainable DNN for simultaneous

text detection and recognition in natural scene images. With this framework, scene

text can be detected and recognized in a single forward pass efficiently and accu-

rately, avoiding intermediate processes like image cropping, feature re-calculation,

word separation, or character grouping. Compared to previous integrated methods

for text spotting, we eliminated a separate character detection step. In contrast to

the integrated method we proposed in the previous chapter for car license plate de-

tection and recognition, some innovations were introduced to make the framework
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more suitable for general scene text. A novel RoI pooling and encoding method was

proposed to tackle the large diversity of aspect ratios of word bounding boxes. An

attention based sequence to sequence learning method was adopted for word recog-

nition, which can incorporate a character level language model implicitly. Through

end-to-end training, the learned features can be more informative, which improves

the overall performance. The convolutional features are calculated only once and

shared by both detection and recognition, which saves processing time. Our pro-

posed method has achieved competitive performance on several benchmark datasets.

One limitation of our work is to handle images with multi-oriented text. Al-

though our method can detect and recognize words with a certain degree of orien-

tation, e.g., the first image on the second row of Figure 5.9, the resulted bounding

boxes are horizontal, which cannot fit the words very well. It would be much better

if the orientation angle can be estimated. 2-D RNN + 2-D attention model may be a

solution. In addition, experimental results show that small text is still hard to be de-

tected and recognized well with this framework. We will try to concatenate features

from multiple convolutional layers for improvement.



Chapter 6

Conclusion and Future Directions

In this chapter, we summarize the work we have done in this thesis and discuss some

potential directions for future research.

6.1 Conclusion

In this thesis, we concentrated on text detection and recognition in natural scene im-

ages. Contributions have been made to improve text spotting performance during

the research progress, all built upon the advanced deep learning techniques. Gen-

erally speaking, we proposed a stepwise and a unified framework for car license

plate detection and recognition, and general scene text detection and recognition,

respectively. Car license plates can be regarded as a special case of general scene

text, as they are both composed of characters and appear in natural scenes. However,

they have their respective characteristics. Car license plates have distinct borders

compared to general scene text, but the characters are usually randomly selected

from an alphabetic set and do not have inter-dependency. Moreover, they are ex-

pected to be distinguished from other text in the background. General scene text, by

contrast, does not have noticeable borderlines in the image appearance. It usually

appears with the clustering of several words, but a character level language model

is potentially embedded within the word. With these differences into mind, some

innovations are proposed in each framework to tackle the specific task.

In particular, in Chapter 3 we present a stepwise framework for text detection and

recognition, in which the detection and recognition are performed step by step by

122
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two separated models. The framework is firstly applied to car license plates and then

extended to general scene text. Basically, a well-trained character CNN classifier is

applied in a sliding window manner across the input image for fast character detec-

tion. The detected characters are then grouped into car license plates or text lines. A

sequence labeling based method is proposed for sequence recognition, which lever-

ages the recurrent property of RNNs and eliminates the challenging character sepa-

ration or word splitting tasks. To discriminate car license plates with other text in the

background, a plate/non-plate CNN classifier is trained. This framework produces

promising performance on both detection and recognition compared to conventional

methods with shallow features used. Moreover, for general scene text, we incorpo-

rate the functions of word recognition, word splitting and false positive removal into

a single sequence recognition network, which simplifies the whole pipeline greatly.

This method achieves No. 1 on the task of “End-to-End Focused Scene Text Recog-

nition” in ICDAR2015 at that time.

The stepwise method is flexible, where additional components can be added con-

veniently to improve the performance, e.g., the Hough transform employed to deal

with rotated license plates. However, it is quite complex, with several CNNs to

be trained and used separately. In addition, the sliding window based detection

method is too slow to real-time application. On account of the sequence labeling

based recognition framework and Faster R-CNN [Ren et al., 2015], in Chapter 4, we

integrate CNNs and RNNs in one network for joint car license plates detection and

recognition. The convolutional features are shared by both detection and recognition

modules, which results in less parameters and faster computation compared to the

stepwise method. The whole network can be trained end-to-end. Via a single eval-

uation of the input image, both plate bounding boxes and the corresponding labels

are generated concurrently, without any heuristic rules used. With both detection

and recognition losses jointly optimized, the well-trained model produces even bet-

ter results. Compared to the previous stepwise method, the end-to-end detection
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and recognition performance improves by about 2%, and the computational speed is

almost 10 times faster.

Considering the particularities of general scene text compared with car license

plates, in Chapter 5, we further propose a unified end-to-end trainable deep neu-

ral network for simultaneous text detection and recognition in natural scene im-

ages. Apart from sharing convolutional features, which leads to less parameters and

faster processing speed, a varying-size RoI encoding method is proposed to tackle

the large diversity on aspect ratio of general scene text. An attention based sequence

to sequence learning method is adopted in the recognition module, instead of the se-

quence labeling based method for license plate recognition, which enables a character

level language model to be learned, and would benefit the word recognition further-

more. Our end-to-end network achieves state-of-the-art results on several benchmark

datasets, including “End-to-End Focused Scene Text Recognition” in ICDAR2011,

ICDAR2015, SVT, etc.. It is the first successful attempt for text spotting by a single

end-to-end trainable network, and attracts much attention in the area [He et al., 2018;

Liu et al., 2018; Bartz et al., 2018].

6.2 Future Work

Although this work has made considerable progress to the end-to-end text detection

and recognition in natural scene images, some issues are still unsolved. In this part,

we discuss some potential research directions.

• Multi-oriented text Recently, some more datasets with inclined text or curved

text appear [Veit et al., 2016; Yuliang et al., 2017; ChâĂŹng and Chan, 2017],

which shows an increasing requirement of solving this problem. He et al. [2018]

proposed a unified framework for end-to-end text spotting, with a novel text-

alignment layer designed to precisely compute features for oriented text. Liu

et al. [2018] introduced “RoIRotate” to share convolutional features between

detection and recognition, which can extract the oriented text regions from
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convolutional feature maps. The idea of extending our framework to handle

multi-oriented text is to take advantage of 2-D RNN and spatial 2-D attention

model. To be specific, the oriented angle is expected to be regressed via the de-

tection network, apart from the central point, height and width of the detected

bounding box. Then 2-D RNN will be adopted to encode image features both

horizontally and vertically, while 2-D attention model will be used to acquire

local character features for recognition. The whole network can still be trained

end-to-end with a multi-task loss, but can localize and recognize inclined text.

• Multi-lingual scene text detection and recognition Our methods can pro-

cess alphabet (mainly for English) and digits. However, in modern cities where

multiple cultures live and communicate together, a lot of images emerge with

various languages. How to extend current methods to other languages or char-

acters is also a future work. Two new datasets appear recently [Yuan et al.,

2018; Nayef, 2017] which will stimulate future development of detection and

recognition algorithms of other languages.

• Image retrieval with text information With the improvement of text spotting

on both performance and speed, it is possible to retrieve images from a huge

corpus that contain the given text query. A simple method is to assign each

image a score of containing the query word, and then return the top K images

with higher scores. Another trend is to integrate text information and visual

appearance to improve the performance. A fast processing speed is vital in this

application, since millions of images are needed to be computed.

• Very deep architectures for text spotting Stimulated by the great improve-

ment of very deep residual network in image recognition [He et al., 2016a],

it seems to be useful to explore deeper CNN and RNN architectures for text

detection and recognition. However, how to design the CNN and RNN archi-

tecture is a critical issue, which is also investigated widely in other areas. A
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great deal of experiments are needed to achieve better performance.

• Transplant to mobile systems With the wide use of smart mobile phones,

it becomes increasing desirable to incorporate text spotting as a function in

mobile phones, for example, the text translation system as we described in

Chapter 1. With this application, there would be a high demand to the com-

putation efficiency. How to optimize the framework to speed up the compu-

tation is another research direction. A possible solution is to integrate Mo-

bileNets [Howard et al., 2017]. MobileNets adopt depthwise separable convo-

lutions to build light weight deep neural networks, which demonstrate good

trade off between efficiency and accuracy. Moreover, the model should also fit

in the limited memory and processing budget of low-power mobile devices. A

possible strategy is to split the pipeline into several parts, where some parts

are computed locally on the phone and some parts are processed remotely on

a server, so as to achieve the fastest overall processing speed.
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