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Abstract

Computer vision-based and deep learning-driven applications and devices are now
a part of our everyday life: from modern smartphones with an ever increasing
number of cameras and other sensors to autonomous vehicles such as driverless
cars and self-piloting drones. Even though a large portion of the algorithms behind
those systems has been known for ages, the computational power together with
the abundance of labelled data were lacking until recently. Now, following the
Occam’s razor principle, we should start re-thinking those algorithms and strive
towards their further simplification, both to improve our own understanding and
expand the realm of their practical applications.

With those goals in mind, in this work we will concentrate on a particular type
of computer vision tasks that predict a certain quantity of interest for each pixel in
the input image – these are so-called dense per-pixel tasks. This choice is not by
chance: while there has been a huge amount of works concentrated on per-image
tasks such as image classification with levels of performance reaching nearly 100%,
dense per-pixel tasks bring a different set of challenges that traditionally require
more computational resources and more complicated approaches. Throughout this
thesis, our focus will be on reducing these computational requirements and instead
presenting simple approaches to build practical vision systems that can be used in
a variety of settings – e.g. indoors or outdoors, on low-resolution or high-resolution
images, solving a single task or multiple tasks at once, running on modern GPU
cards or on embedded devices such as Jetson TX.

In the first part of the manuscript we will adapt an existing powerful but slow
semantic segmentation network into a faster and competitive one through a manual
re-design and analysis of its building blocks. With this approach, we will achieve
nearly 3× decrease in the number of parameters and in the runtime of the network
with an equally high accuracy. In the second part we then will alter this compact
network in order to solve multiple dense per-pixel tasks at once, still in real-time.
We will also demonstrate the value of predicting multiple quantities at once, as
an example creating a 3D semantic reconstruction of the scene.

In the third part, we will move away from the manual design and instead will
rely on reinforcement learning to automatically traverse the search space of compact
semantic segmentation architectures. While the majority of architecture search



methods are computationally extremely expensive even for image classification,
we will present a solution that requires only 2 generic GPU cards. Finally, in the
last part we will extend our automatic architecture search solution to discover
tiny but still competitive networks with less than 300K parameters taking only
1.5MB of a disk space.
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1
Introduction

Imagine yourself being tasked with associating elements from two disjoint sets, for

example, a set of images of paintings and a set of names of artists, or a set of

photos of birds and a set of sounds they produce. What would your strategy be?

Perhaps, for each pair of elements you would come up with some sort of number

– a compatibility estimate. Or you would first try to reduce the burden of the task by

grouping elements in each set based on some sort of similarity measure. Regardless

of the strategy you choose, you will be hard-pressed to come up with a method that

does not require you to seek patterns across the elements of both sets. Those patterns,

in turn, emerge from the features that the elements possess. In our example, some

features you could come up with would be the proportion of the red colour present in

the painting, or the longevity of a bird’s chirping. Obviously, some features would

be good and some would be bad – for example, if all the sounds were of the same

length, the sound longevity feature would give you no useful information at all.

Evidently, machine learning algorithms tend to follow the same logic: namely,

given some sort of data and some features, they would come up with some set of

rules (a solution) describing patterns that tie the features with the corresponding

data points. Importantly, where do the features come from? As per the

examples above, the features can be (and often are) manually engineered, but this

1
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brings a disadvantage of not being able to know whether the given feature is good

or bad. Can we do better – can we automatically extract useful features?

As it turns out, we can. The big shift in the paradigm of feature engineering

came in 2010s with the resurgence of deep learning (Krizhevsky et al., 2012; LeCun

et al., 2015). Deep learning represents a set of algorithms built upon the concepts of

artificial neurons and neural networks (Rosenblatt, 1958) loosely based on biological

neurons. Given raw data sources, e.g. images, text or audio, and the desired

objective function, deep neural networks learn the most appropriate set of features

– often not readily interpretable to human experts.

In this manuscript we will focus on applications of deep learning to computer

vision, in particular, on so-called dense per-pixel tasks where one is interested in

predicting a certain quantity of interest for each pixel in the input image (or images)

– be it a regression or classification vector (for example, a semantic labelling in the

case of semantic segmentation, or distance to the object from the camera center

– for the task of depth estimation; see Fig. 1.1).

This choice is not by chance: while there has been a huge amount of works

concentrated on per-image tasks such as image classification (i.e. predicting a

single label per image – e.g. a breed of a dog) with levels of performance reaching

nearly 100%, dense per-pixel tasks bring a different set of challenges that need more

computational resources and more complicated approaches. In particular, one set of

challenges is simply due to the high-dimensionality of the dense output: this not only

requires a larger memory for data processing but also larger networks for solving

a more difficult problem. Another set of challenges is due to a significant class

imbalance – oftentimes, the majority of the pixels in the image belong to an over-

represented class, such as background, or road. This leads to longer training times

and the necessity of more data. Hence, one of the goals of this manuscript is to build

solutions that alleviate these problems and the need for an extreme processing power.
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(a) (b)

Figure 1.1: Examples of dense per-pixel tasks in action. (a) Depth estimation (bottom)
of the input image (top). The depth colours are ranging from light blue indicating
that the pixel is close to the camera to dark red – meaning that the pixel is further
away from the camera. (b) Semantic segmentation (right) of the input image (left)
with the given colour map (bottom). The results were produced by running a Light-
Weight RefineNet network described in later chapters inside an internet browser at
https://drsleep.github.io/demos – you can try it yourself! No post-processing was
used.

On a related note, largely thanks to deep learning, computer vision-driven appli-

cations and devices are now a part of our everyday life: from modern smartphones

with an ever increasing number of cameras to autonomous vehicles such as driverless

cars and self-piloting drones. Dense per-pixel tasks, in particular, play an important

role in perceiving the world around us through the camera lenses, as they process

the given image holistically, pixel-by-pixel, opposed to a plain recognition of classes

present in the image. These sorts of applications usually come with two major

requirements: namely, performing computations in a reasonable amount of time

(we will define this more rigorously below) and computing multiple quantities of

interest at once. For example, in order for an autopilot of a vision-based driverless

car to plan a safe trajectory, it must at least know what objects and obstacles

surround it, as well as how far those are at any given time. In that regard, yet

another goal of this manuscript is to lay down simple foundations for building and

https://drsleep.github.io/demos
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diagnosing such practical dense vision systems. As the term “practical” is often-

times domain-specific, let us first clarify its connotation here: a practical vision

system is the one that performs its task (or tasks) accurately enough

in real-time. For the sake of concrete numbers, we will assume that “real-time”

implies the runtime of at least 30 frames per second (FPS) subject to an underlying

device and input data1. The accuracy constraint is again domain-specific, and

we will discuss actual numbers in later chapters.

While automatic feature extraction is one of attractive sides of deep learning,

it turns out it can even be extended to automatic architecture design (also called

neural architecture search (Zoph and Le, 2017)), where the structure of the neural

network used to solve the task is learned together with its parameters. Even for

small image-level problems this approach often requires an extensive amount of

computational resources, hence it is non-trivial to scale it up for dense per-pixel tasks

such as semantic segmentation. Thus, another goal of this manuscript is to come

up with a more efficient way of searching for dense neural networks automatically.

1.1 Motivation

A curious and attentive reader might be wondering why the resurgence of deep

learning only happened around 2010 when artificial neural networks had been known

for more than 50 years? Two main reasons are large-scale datasets and greater

computational resources. In particular, the ImageNet dataset (Deng et al., 2009)

with more than 1M images and 1000 classes significantly advanced research in image

classification and consequently led to the creation of datasets suitable for other

tasks, for example, MS COCO (T. Lin et al., 2014) for object detection and semantic

segmentation, and CityScapes (Cordts et al., 2016) for semantic segmentation and

depth estimation. On the other hand, this coincided with hardware improvements

of graphics processing units (GPUs), well-suited for quickly performing many

algebraic computations in parallel on individual neurons or groups of neurons

(also called layers) in neural networks.
130FPS, or, more precisely, 29.97FPS, has been one of the television standards for years.
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If the trends are to continue, i.e. if data and hardware resources keep improving,

why should we care about building compact and practical vision systems now when

we can simply wait for those advances to take place?

First of all, our focus is on software and on solutions that are hardware-agnostic,

making any hardware improvements complementary.

Secondly, even with hardware improvements in-place, devices with limited

resources (such as mobile phones and embedded platforms) will always benefit

from having more efficient models.

Thirdly, compact systems are much more amenable to analysis, debugging and

prototyping than unnecessarily complicated ones.

Lastly, training of larger neural networks causes a significantly higher amount

of CO2 emissions (Strubell et al., 2019). While this manuscript is not explicitly

aimed at targetting this particular problem, it is important to raise the awareness

of the community and be mindful of various trade-offs involved in building deep

learning-based solutions. For example, neural architecture search methods can often

require several thousand GPU-days, thus making it important to develop more

cost-effective solutions (presented in Chapters 5 and 6).

With those considerations in mind, dense per-pixel tasks in particular constitute

a great and non-trivial case study as existing solutions tend to be over-complicated

and consume a significant amount of resources.

1.2 Contributions

Aligned with the major goals of this manuscript mentioned above, we summarise

its contributions in the following:

• in this manuscript we outline a way of building a practical, real-time se-

mantic segmentation network by carefully rethinking an existing but slow

segmentation network;

• in particular, we demonstrate the redundancy in certain operations which can

be removed without a significant performance degradation;
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• furthermore, we extend this approach to multi-task learning with a single

network solving multiple dense per-pixel tasks at once in real-time;

• at the same time, this multi-task network is able to learn various domains

simultaneously, such as indoor and outdoor scenes;

• additionally, we show that its predictions of depth and semantic segmentation

made in 2D can be used to produce a 3D semantic map of the environment.

We also make significant contributions in the area of automated architecture

search for dense per-pixel tasks, specifically:

• we propose an algorithm to find high-performing compact networks for

semantic segmentation with a limited number of resources;

• concretely, our solution is able to reliably estimate the quality and the

performance potential of any given architecture in less than two minutes;

• furthermore, we extend this approach to search for a larger number of neural

network components;

• which, in turn, permits discovering high-performing tiny networks with less

than 300K parameters.

1.3 Outline

In Chapter 2 of this thesis we will lay out necessary background information and

will cover related work in the area of semantic segmentation. Each consecutive

chapter will contain additional chapter-specific literature review.

In Chapter 3 we will start the discussion on real-time semantic image segmen-

tation. The deep learning-based solutions for semantic segmentation has been

constantly improving over the last years, largely due to the progress in other

vision tasks. We will underline the challenges associated with building a real-time

semantic segmentation network and lay out the motivation behind re-thinking

an existing architecture such that redundant (non-needed) layers can be safely
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omitted. In the context of next chapters, such an approach can be labelled as

a manual architecture search.

In Chapter 4 we will consider a simple way of extending the single-task real-time

network to support multiple dense per-pixel tasks at once. One of the main challenges

in multi-task learning is the lack of joint annotations for all the tasks at once. To that

end, we will cover a general solution that leads to stable training and superior results.

In Chapter 5 we will switch the focus to an automated architecture search

of real-time networks suitable for semantic segmentation as well as other dense

per-pixel tasks. Opposed to the manual approach guided by a human expert, in

the automated search a secondary function, oftentimes another neural network,

is tasked to predict a neural structure most suitable for the given task. While

computationally expensive in the most general case, we will present the solution

that achieve superior results given a limited number of GPU-machines.

Chapter 6 will continue where Chapter 5 left off: we will further overcome other

limitations and restrictions of the automated neural architecture search and will

discover extremely compact networks with less than 0.3M parameters.



8



2
Background

For clarity of our ideas and their presentation in later chapters, here we will provide

necessary foundations and conventions used throughout the manuscript, as well

as the overview of the related work.

2.1 Primer

First of all, all the algorithms discussed here operate on images, which we will

represent as three-dimensional tensors with dimensions C×H×W , where C (stands

for the channel dimension) equals 1 for grayscale and 3 for colour images, while H

and W denote the height and width of the image, respectively. We will often stack

several images together, in which case a new dimension, B (stands for batch), will

be introduced: B×C×H×W . A single operational element of an image X is called

pixel; it will be a vector for colour images and a scalar for grayscale ones. We will

usually denote the spatial coordinates of a pixel as i, j such that X:,i,j is the pixel

value, where colon (:) denotes a subset operation through the channel dimension.

Each image (or a batch of images) will be processed by a function f with

trainable (or learnable) parameters (or weights) θ, resulting in the output tensor Y .

A simple neural network can be represented as some operation g between inputs

X and weights θ. For example, g can be a dot product such that g(X; θ) := θTX.

9
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It is easy to see that this new representation can be itself regarded as an input to

another neural network with weights θ̂: g(X̂; θ̂) = θ̂T X̂ = θ̂Tg(X; θ) = θ̂T (θTX).

Since the dot product is a linear operation, we can replace θ̂T θT with a single set of

weights θ̃T := θ̂T θT taking us back to the simple dot product of θ̃TX. As a mapping

between inputs and outputs is rarely governed by a trivial linear relationship, an

element-wise non-linear operation (which we denote as h(·)) is usually applied in-

between – also called non-linearity or activation function. Some popular activation

functions include sigmoid ( 1
1+exp (−x)), hyperbolic tangent (tanh(x) = exp (x)−exp (−x)

exp (x)+exp (−x))

and rectified linear unit, or ReLU (max(0, x)) (Glorot et al., 2011). Returning back

to the example with weights θ̂ we can now write g(X̂; θ̂) = θ̂Th(X̂) = θ̂Th(g(X; θ)) =

θ̂Th(θTX). While the addition of an activation function facilitates the learning

of non-trivial representations, it also leads to a more difficult and most often

non-convex optimisation problem1.

In the most general case, a feedforward neural network f is represented as a

composition of various operations (also called layers) f = lN ◦ lN−1 . . . l0, where each

layer li takes as input the output from the previous layer li−1 (except for the first

layer l0 which takes X as input) and performs some operation on it (for example, a

dot product or a non-linearity), perhaps with some parameters θi. We will refer to

the outputs of the layers as feature maps, or hidden representations.

Since the computation of the dot product between the whole image and a multi-

dimensional weight tensor is expensive, a commonly used substitute is convolution

(or, to be more precise, correlation) that computes a dot product between regions in

the input image and a set of weights (also called filters or kernels) of the appropriate

size in a sliding window manner (see Fig. 2.1). Usually, these filters are shared

across various spatial locations, making them spatially invariant and allowing them

to detect presence of the same feature at various locations. All the kernels of

a convolutional layer are usually arranged in a four-dimensional tensor of shape

Cin×Cout×kh×kw where Cin represents the channel dimension of the input feature

maps and Cout is the channel dimension of the output feature maps, while kh and
1Note that ReLU almost behaves as identity, which is easy to optimise and to compute, making

it a very popular choice.
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Figure 2.1: Convolution example on a 4×4 input using a single 2×2 kernel applied with
the stride of 2. Colours in the input cells indicate that the dot product between the given
region and the weight produces the output value in the corresponding cell of the same
colour. In this example, the number 17 in the output is computed through the following
sequence of multiplications and additions: 2 · 5 + 5 · 0.5 + 1 · 2 + 2.5 · 1 = 17.

kw are height and width of the kernel, respectively. Often, we will omit channel

dimensions and will simply denote a convolutional layer with its kernel dimensions

kh×kw (e.g. 1×1 convolution would imply a convolution with Cin×Cout kernels of

size 1×1). When spatially sliding the kernels, we can control the step size between

each application of the kernel; this hyper-parameter is called stride. By increasing

the stride of the convolution one can decrease the size of the spatial output. It is

trivial to see that in the general case with an input of the spatial size of Hin×Hin

and a k×k convolutional kernel, the output dimension is equal to Hout = Hin−k
s

+ 1.

Some other commonly used operations include pooling and batch normalisa-

tion (Ioffe and Szegedy, 2015). Pooling acts on image regions in the same way as

convolution does, but instead of relying on a dot product uses a non-parametric

operation – for example, by taking an average or a maximum of the region. Batch

normalisation reparameterises feature maps such that they would follow a standard

normal distribution, which tends to facilitate the optimisation process.

A neural network for which the output height and width depend on the spatial

dimensions of the input, is called a fully convolutional network (or FCN) (Long et al.,

2015). We will make an extensive use of a specific type of an FCN, called encoder-

decoder (Noh et al., 2015) (see Fig. 2.2). This design implies a nominal division

of the network into two parts – encoder and decoder. In the encoder the image

undergoes a series of operations with some reducing the original spatial dimensions
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by having strides larger than 1 (i.e. downsampling), while in the decoder the learned

representations are being transformed up until the final prediction layer, often with

some operations increasing the spatial dimensions (i.e. upsampling). The necessity

of downsampling in the encoder is motivated by computational limits: if we were

to remove it, we would end up with extremely large (both in spatial and channel

dimensions) feature maps. In addition, that would further force us to increase either

sizes of convolutional kernels or the number of layers so that each output pixel

would still be a function of some other pixel at the same maximum distance (more

formally, this distance is called the receptive field size of the network).2 We will also

rely on skip-connections (Long et al., 2015) that combine information from some

encoder layers with some decoder layers of the same spatial size. It is believed (Long

et al., 2015) that the decoder layers answer the question of what is present in the

image, while the encoder layers answer the question of where it is present in the

image, thus their combination answers both questions at the same time.

To find optimal weights θ for a given task, we will be minimising some loss

function L on the training set, which is achieved by updating the network parameters

using their gradient (i.e. a multi-dimensional derivative of the loss). We will

rely on backpropagation (Rumelhart et al., 1986) and will carry out all the

gradient computations with the help of automatic differentiation packages, such as

PyTorch (Paszke et al., 2019). To define a loss function for semantic segmentation,

we will follow the maximum likelihood principle,3 which states that the optimal

weights are the weights that maximise the product of probabilities of predicting the

correct class at each pixel of each image from the training set, or, equivalently, that

minimise the negative logarithm of the sum of these probabilities. More formally,

for the training set of N images {X|X ∈ RN×Cin×H×W} and N corresponding

annotations {Y |Y ∈ {1, Cout}
N×H×W} with Cout semantic classes, and a neural

network f with weights θ, we can write:
2Larger receptive field size implies larger contextual coverage, which is important in cases when

local information does not suffice to make a decision.
3Here we implicitly assume that all the training samples and their pixels are independent and

identically distributed.
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θoptimal = arg max
θ

∏
i,j,k

f(X; θ)i,Yi,j,k,j,k = − arg min
θ

∑
i,j,k

log f(X; θ)i,Yi,j,k,j,k (2.1)

Here we assume that the outputs of the network are probabilities; the common

way to make it explicit is by applying an activation function called softmax on the

outputs, which for the input vector ~z ∈ RC is formulated as follows:

softmax(~z) = ( exp (z1)∑C
i=1 exp (zi)

,
exp (z2)∑C
i=1 exp (zi)

, . . . ,
exp (zC)∑C
i=1 exp (zi)

)T (2.2)

It is easy to verify that all the values in the vector softmax(~z) lie between 0 and 1,

while their sum is equal to 1, making it a valid probability distribution.

Since semantic segmentation is a (multi-label) classification task, conventional

classification metrics can be applied to it, too. Formally, for semantic segmentation

with C classes, we define accuracy of a single class i as the number of true positives

(nii – i.e. the number of pixels belonging to class i and predicted as such) divided

by the sum of true positives and false positives (∑j 6=i nij – i.e. the number of

pixels belonging to class i but predicted as class j 6= i); or, in other words, the

number of true positives divided by the total number of pixels belonging to class

i, computed as nii

nii+
∑

j 6=i
nij

. While this gives us a vector, it is common to take

an average of its values and report a scalar called mean per-class accuracy. Since

mean per-class accuracy does not penalise for having false negatives (∑j 6=i nji –

i.e. the number of pixels not belonging to class i but predicted as such), another

metric called intersection-over-union, or Jaccard Index (Everingham et al., 2010), is

usually measured: nii

nii+
∑

j 6=i
nij+

∑
j 6=i

nji
. Once again, the average across the classes

gives rise to a quantity named mean intersection-over-union, or mean iou, which

we will rely upon extensively throughout the manuscript.

In addition to that, we will often report network-specific characteristics, such as

the number of floating point operations (or FLOPs), or equivalently – the number

of multiplications and additions (or MAdds). These numbers can serve as a rough

estimate of the latency of the network – often implying that the network with

fewer floating point operations is faster.
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Figure 2.2: A structural depiction of the encoder-decoder segmentation network. Feature
maps in convolutional neural networks are commonly presented as parallelepipeds, with
height and width denoting the spatial resolution, and depth denoting the number of
channels. The network takes as input a 3-channel RGB image which is first processed
by multiple convolutional layers in the encoder part that reduce the spatial size of the
feature maps, while increasing the number of channels. The encoder output is then fed
into the decoder part, where the spatial size is being recovered. Skip-connections (in blue)
connect intermediate feature maps between the encoder and the decoder parts. The final
output is of the same spatial size as the input and the depth being equal to the number
of predicted classes (here, three – background, car and person). Red colour in the outputs
implies a higher probability of the given class at the corresponding location, whereas blue
indicate a low probability.
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2.2 Related Work

Whereas each consecutive chapter comes with its own specific survey on the relevant

work, here we will provide a general overview of semantic segmentation and place

some of the thesis contributions in the wider context.

2.2.1 Semantic Segmentation

Semantic image segmentation is a dense per-pixel labelling task, the goal of which

is to assign a semantic class out of a pre-defined set to each pixel in the input

image, e.g. body parts such as head / torso, or general categories – cat / dog /

person / car. Early approaches relied on handcrafted features such as histogram

of oriented gradients, or HOG (Dalal and Triggs, 2005) and scale-invariant feature

transform, or SIFT, descriptors (Lowe, 2004), in combination with some popular

classifiers (such as SVMs and decision trees) (Shotton et al., 2006; Csurka and

Perronnin, 2008; Shotton et al., 2008; Fulkerson et al., 2009) and hierarchical

graphical models (Ladicky et al., 2009; Plath et al., 2009; Krähenbühl and Koltun,

2011). This manual feature construction lasted until the resurgence of deep learning

when a neural network-based approach led by Krizhevsky et al., 2012 famously

won the ImageNet competition (Deng et al., 2009).

Ciresan et al., 2012 first proposed to use a neural network to segment cell

membranes in a sliding window manner by classifying the central pixel of each

window, while Pinheiro and Collobert, 2014 increased the contextual coverage by

refining the output of the network recurrently. At the same time Farabet et al.,

2013 combined multi-scale convolutional features, superpixels (Felzenszwalb and

Huttenlocher, 2004) and a conditional random field (CRF), while still employing

a patch-based training. Long et al., 2015 were the first to propose a complete

fully-convolutional approach for the task of semantic segmentation. This was done

by changing fully-connected (or linear) layers of existing classification networks into

convolutional ones with 1×1 filters. Besides the general architecture that became

known as FCN (standing for fully-convolutional network) Long et al., 2015 also

proposed skip-connections between feature maps from earlier to later layers. As
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earlier layers in convolutional networks tend to act as edge detectors with later

layers learning more class-specific details (Zeiler and Fergus, 2014), such a fusion of

information between low-level and high-level feature maps led to a more accurate

delineation of contours of segmentation objects.

The simplicity of that approach spurred more research in the field; in particular,

L. Chen et al., 2015 were responsible for two important modifications – dilated

convolutions and post-processing with CRFs using convolutional features (opposed

to Farabet et al., 2013 who built the CRF with superpixels). The first modification

was proposed to reduce the effects of multiple downsampling layers present in image

classification networks; concretely, L. Chen et al., 2015 removed the last two max-

pooling layers in the fully-convolutional VGG network (Simonyan and Zisserman,

2015). In order to compensate for the shrinkage in the contextual coverage, they

used so-called atrous or dilated convolutions (see Fig. 2.3) (Holschneider et al.,

1990) that kept the field of view of the network intact. The second modification was

a direct adaptation of the fully-connected CRF model proposed few years earlier by

Krähenbühl and Koltun, 2011, where the outputs of the convolutional networks were

used in-place of unary potentials. This work later became known as DeepLab-v1.

As the removal of downsampling operations leads to an increase in the spatial size

of feature maps, the memory footprint and the latency of networks with dilated

convolutions tend to be significantly higher than those with the standard setup.

Noh et al., 2015 paired a fully-convolutional network with a structural copy

giving a name to the encoder-decoder approach. They also exploited un-pooling

layers in the decoder part that negated the pooling in the first part (encoder) by

propagating pooling indices. At the same time, due to the success of post-processing

with CRF in DeepLab, several authors built other combinations of probabilistic

graphical models with neural networks. In particular, G. Lin et al., 2016 relied on

the piecewise training (C. A. Sutton and McCallum, 2005) of the CRF model, while

Z. Liu et al., 2015 turned to the mean-field approximation (Opper, Winther, et al.,

2001). Zheng et al., 2015 proposed to recast CRF updates as a recurrent neural

network (RNN), allowing to train the full system end-to-end in a simple way.
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Figure 2.3: (top) An example of dilated convolution with the dilation rate of 2 on a
4×4 input using a single 2×2 kernel applied with the stride of 1. (bottom) The dilated
convolution is equivalent to the standard convolution with zeros inserted between the
values of the kernel (in gray colour), making it of size 3×3. Colours in the input cells
indicate that the dot product between the given region and the weight produces output
value in the corresponding cell of the same colour. Several colours in the same cell are
used to denote that the value is being used multiple times to compute different outputs.
In the bottom example, the number 12.5 in the output is computed through the following
sequence of multiplications and additions: (1 · 5 + -4 · 0 + -3 · 0.5) + (5 · 0 + 9 · 0
+ -8 · 0) + (2.5 · 2 + -3 · 0 + 4 · 1) = 12.5.

The success of residual networks (He et al., 2016) also led to significant improve-

ments on semantic segmentation benchmarks with the most popular being PASCAL

VOC (Everingham et al., 2010). With additional annotations from Hariharan et al.,

2011 it contained roughly 10000 training images with the maximum resolution of

500×500. Later, Cordts et al., 2016 collected a novel dataset with nearly 3000

high-resolution (2048×1024) training images of European urban street scenes using

a camera mounted on a car. Largely due to those advances, a significant research

went into exploring ways of capturing contextual information without any reliance

on computationally expensive graphical models. With that regard, DeepLab-v2 by

L. Chen et al., 2018b used an atrous spatial pyramid pooling layer (ASPP) that

contained several dilated convolutions arranged in parallel in order to better capture

various features at different scales. Instead of relying on dilated convolutions in the

contextual block, Zhao et al., 2017 built a variation of pyramid pooling (He et al.,

2014) with several spatial resolutions, before aggregating information from all the
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scales using concatenation. In yet another line of work, which we will cover in detail

in next chapters, G. Lin et al., 2017 enhanced the encoder-decoder network with

multiple residual blocks in the decoder part, including a pooling-based contextual

structure called chained residual pooling (CRP).

More recently, L. Chen et al., 2017 (DeepLab-v3) further improved their approach

by experimenting with multiple design choices related to the usage of atrous

convolution: as the result, the authors added a global pooling layer inside ASPP in

order to better capture global context. In another follow-up, DeepLab-v3+ (L. Chen

et al., 2018c) was proposed with a skip-connection from a lower layer and the

inclusion of depthwise separable convolutions to reduce computational costs (Sifre

and Mallat, 2014; Chollet, 2017).

The latest advances in semantic segmentation has been achieved by neural

architecture search: in particular, Auto-DeepLab (C. Liu et al., 2019) employed

a stochastic differentiation method (H. Liu et al., 2019), while L. Chen et al.,

2018a searched for a single set of operations (dense predictive cell, or DPC) using

400 GPUs for 7 days. In Chapter 5 we will discuss a way of efficiently searching

for real-time semantic segmentation networks, which was developed in parallel

to DPC and requires only 8 GPU-days.

2.2.2 Real-Time Semantic Segmentation

Advances in general semantic segmentation also spurred a significant progress in

building practical semantic segmentation networks.

SegNet proposed by Badrinarayanan et al., 2015 comprised two copies of the

VGG-16 net (Simonyan and Zisserman, 2015) for the encoder and the decoder,

and explicitly preserved pooling indices from the encoder for their further reuse in

the decoder (analogously to the work by Noh et al., 2015). They also abandoned

computationally expensive layers of VGG and added batch normalisation layers (Ioffe

and Szegedy, 2015) to stabilise the training. While this led to a faster runtime,

the structure of both the encoder and the decoder were identical and the authors

did not explore ways of designing each part separately.
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ENet (Paszke et al., 2016) instead used custom encoder and decoder with

factorised residual blocks, where 5×5 2D convolution was split into 2 separate 1D con-

volutions (1×5 and 5×1, respectively). Neither of those methods were close to state-

of-the-art results achieved by larger models as they primarily prioritised the runtime.

Hence other works were directly adapting existing larger networks: e.g., IC-

Net (Zhao et al., 2018), where the authors relied on PSPNet (Zhao et al., 2017)

to deal with multiple image scales progressively. Specifically, they used 3 scales

of the input image, and applied the smallest number of layers to the input with

the highest resolution. It must be noted that such a division into scales is only

effective for large inputs, limiting the range of applications of ICNet.

Li et al., 2017 proposed a cascading approach where in each progressive level

of the cascade only a certain portion of pixels was processed. The choice of

which pixels to propagate was done explicitly by setting a hard threshold on

intermediate classifier outputs.

Notably, their most accurate approach (80.3% mean iou on PASCAL VOC (Ev-

eringham et al., 2010)) was also the slowest with the runtime of only 1 FPS. In

contrast, in Chapter 3 we will talk about Light-Weight RefineNet (Nekrasov et al.,

2018b) that was proposed at the same time with those works, and was able to reach

nearly 83% mean iou on PASCAL VOC running at more than 30 FPS, as well as

being close to state-of-the-art results on several other benchmarks.

Akin to ICNet, some recent works on real-time semantic segmentation largely

concentrated on high-resolution images from CityScapes (Cordts et al., 2016) and

ways of making models more compact. In particular, BiSeNet (C. Yu et al.,

2018) contained two paths – one that kept the spatial information intact, and one

contextual with an aggressive downsampling strategy. Two paths were merged by

a specifically designed fusion module with per-channel attention. In contrast, in

ESPNet (Mehta et al., 2018) the authors replaced a convolutional layer with a

hierarchical pyramid of point-wise and dilated convolutions. Later, Mehta et al.,

2019 made ESPNet even more efficient by exploiting separable convolutions (Sifre

and Mallat, 2014; Chollet, 2017). Importantly, as we will see in Chapter 6, neural
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architecture search can discover competitive architectures on that benchmark with

less than 0.5M parameters underlining that the number of parameters needed for

a decent performance on this dataset can a priori be quite low.



3
Real-Time Semantic Segmentation

In this chapter we will consider an important task of effective and efficient semantic

image segmentation. While significant strides have been made towards improving

the accuracy of semantic segmentation models, these advances has come at the

expense of latency. Mitigating this trade-off is non-trivial but essential for creating

practical vision systems as introduced in Chapter 1.

To this end, here we will propose a manual way of adapting a powerful yet slow

segmentation approach of RefineNet (G. Lin et al., 2017) into the more compact

and faster one. In particular, we will identify computationally expensive blocks in

the original setup and come up with two modifications aimed to decrease the number

of parameters and floating point operations without any significant performance

degradation. We will demonstrate that it is possible to build a faster version of

RefineNet through a careful manual re-design of the underlying architecture. This

simpler version will also allow us to gain a better understanding of the importance

of various components used in the encoder-decoder semantic segmentation models.

The results of this chapter first appeared in the proceedings of the 29th British Ma-

chine Vision Conference, (BMVC 2018), under the title of ‘Light-Weight RefineNet

for Real-Time Semantic Segmentation’ (Nekrasov et al., 2018b).1

1The trained models and the training code have been released and are available here: https:
//github.com/DrSleep/light-weight-refinenet

21

https://github.com/DrSleep/light-weight-refinenet
https://github.com/DrSleep/light-weight-refinenet
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3.1 Related Work

Perhaps, the most straightforward path towards a real-time network is by manual

design from scratch: for example, such compact classification networks as Mo-

bileNet (Howard et al., 2017; Sandler et al., 2018), ShuffleNet (X. Zhang et al.,

2018; Ma et al., 2018), SqueezeNet (Iandola et al., 2016) were carefully crafted out

of groupwise and 1×1 convolutions (which, when applied sequentially, leads to a

separable convolution (Sifre and Mallat, 2014; Chollet, 2017)). Recent works in

semantic segmentation has followed the same principles (Mehta et al., 2018; Mehta

et al., 2019; Romera et al., 2018), but, opposed to the classification counterparts,

are lagging far behind state-of-the-art results established by larger models – for

example, by up to 20% in mean iou on CityScapes (Cordts et al., 2016).

The next logical approach is to manually adapt the design of an already existing,

but larger network. This is the direction we consider in this chapter. Prior to our

contribution, Zhao et al., 2018 proposed a real-time variation of PSPNet (Zhao

et al., 2017) varying the number of layers needed for different image resolutions.

With the latency being reduced, this also led to a drop in performance by more

than 10% in mean iou on CityScapes in comparison to PSPNet. In contrast, our

methodology achieves results on par with those of the original RefineNet (G. Lin

et al., 2017) by carefully selecting unnecessary layers.

More recently, due to the advances in the neural architecture search (Zoph and

Le, 2017), compact and real-time designs can be found automatically: in particular,

in Chapter 5 we will do so by restricting the search space. On smaller domains,

such as image classification, Tan et al., 2019; B. Wu et al., 2019 demonstrated

that an addition of a latency-specific objective (e.g. as measured on mobile phones)

helps in discovering tiny yet accurate networks.

While so far we have only discussed ways of altering the design of a network

before the training even starts, several solutions exist for compressing an existing

network – for example, in pruning (Han et al., 2015b; LeCun et al., 1989; Hassibi

and Stork, 1992; Han et al., 2015a; Molchanov et al., 2019) some connections

(or even whole layers) are being removed within the trained network, while in
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quantisation (Gong et al., 2014; S. Zhou et al., 2016; A. Zhou et al., 2017; Jacob

et al., 2018; K. Wang et al., 2019) either the network weights or activations (or even

both) are being converted into a lower-precision format that reduces the memory

footprint and can further lead to a faster inference runtime on certain hardware

setups. Yet another approach involves factorisation of existing layers into lower-

dimensional ones (Denton et al., 2014; Jaderberg et al., 2014). Here it is important

to emphasise that all these methods are often-times task-agnostic and orthogonal

to existing design solutions, which makes them applicable to a variety of cases.

Finally, we must mention knowledge distillation (Ba and Caruana, 2014; Hinton

et al., 2014; Bucila et al., 2006; Romero et al., 2015) as a sensible way of acquiring

a compact, high-performing model. Its main idea is to force a smaller network

(oftentimes, called student) to mimic the outputs of a larger existing network (or

teacher). We will see the application of knowledge distillation in the next chapter.

3.2 RefineNet Primer

The RefineNet architecture (G. Lin et al., 2017) belongs to the family of the

encoder-decoder approaches (Noh et al., 2015). As the encoder backbone, it can

re-use most popular classification networks; in particular, the original contribution

was showcased using residual networks (He et al., 2016). The approach does

not amend an underlying classification network in any way except for omitting

last classification layers.

We have chosen this particular structure as it i.) shows the best performance

among other encoder-decoder networks, and ii.) does not operate over large feature

maps in the last layers as methods exploiting atrous convolution do (L. Chen

et al., 2015; L. Chen et al., 2018b; L. Chen et al., 2017; Zhao et al., 2017; F. Yu

et al., 2017). The processing of large feature maps significantly hinders real-time

performance of such architectures as DeepLab (L. Chen et al., 2015; L. Chen et al.,

2018b; L. Chen et al., 2017) and PSPNet (Zhao et al., 2017) due to the increase

in the number of floating point operations. As a weak point, the encoder-decoder

approaches tend to have a larger number of parameters due to the decoder part
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that recovers the high resolution output. In this chapter, we tackle the real-time

performance problem by specifically concentrating on the decoder and will show

empirically that both the number of parameters and floating point operations can

be drastically reduced without a significant drop in accuracy.

In the decoder part, RefineNet relies on two types of additional abstractions:

residual convolutional unit (RCU) (Fig. 3.1(b)) and chained residual pooling

(CRP) (Fig. 3.1(c)). The first one is a simplification of the original residual

block (He et al., 2016) without batch normalisation (Ioffe and Szegedy, 2015), while

the second one is a sequence of multiple convolutional and pooling layers, also

arranged in a residual manner; as noted by G. Lin et al. (2017), the abundance of

residual connections facilitates the optimisation of RefineNet. All of these blocks

use 3×3 convolutions and 5×5 pooling with an appropriate padding so that the

spatial size would stay intact.

The decoding process starts with the propagation of the last output from the

classifier (with the lowest resolution) through two RCU blocks followed by four

pooling blocks of CRP and another three RCU blocks before an application of

a fusion block (Fig. 3.1(d)) that merges these features with the features of the

second to last output. Inside the fusion block, each path is convolved with 3×3

convolution and upsampled to the largest resolution among the paths. Two paths

are then summed up, and are analogously propagated further through several

RCU, CRP and fusion blocks until the desired resolution is reached. The final

convolutional layer produces the score map.

The authors motivate the usage of the CRP block as a way of increasing the

contextual coverage, and they demonstrate its value through a set of ablation

experiments. The role of the RCU block, on the other hand, is left unclear. In

contrast, we not only amend the design choices for both blocks (Sect. 3.3.1), but also

measure the value of the RCU block (Sect. 3.3.2) and provide an in-depth analysis

of the importance of these two components from the perspective of contextual

coverage (Sect. 3.5.1) and feature learning (Sect. 3.5.2).
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Figure 3.1: RefineNet structure. (a) General network architecture with RefineNet for
semantic segmentation, where CLF stands for a single 3x3 convolutional layer with the
number of channels being equal to the number of output classes; (b)-(d) general outline of
original RCU, CRP and fusion blocks; (e)-(g) light-weight RCU, CRP and fusion blocks.
In the interests of brevity, we only visualise 2 convolutional layers for the CRP blocks
(instead of 4 used in the original architecture). Note that we do not use any RCU blocks
in our final architecture as discussed in Sec. 3.3.2.
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Model Parameters,M FLOPs,B
RefineNet-101 (G. Lin et al., 2017) 118 263
RefineNet-101-LW-with-RCU 54 76

RefineNet-101-LW 46 52

Table 3.1: Comparison of the number of parameters and floating point operations on
512×512 inputs between original RefineNet, Light-Weight RefineNet with RCU (LW-
with-RCU), and Light-Weight RefineNet without RCU (LW). All the networks exploit
ResNet-101 as backbone.

3.3 Light-Weight RefineNet

3.3.1 Replacing 3x3 convolutions

We start by highlighting that 3×3 convolutions are the most expensive parts

in the original RefineNet in terms of both the number of parameters and the

number of floating point operations. Thus, we focus on replacing them with simpler

counterparts without a performance drop.

Intuitively, convolutions with larger kernel sizes aim to increase the receptive

field size (and the global context coverage), while 1×1 convolutions are merely

transforming per-pixel features from one space to another locally. We argue that

in the case of RefineNet we do not require expensive 3×3 convolutions in the

decoder part at all, and we are able to show empirically that replacing them

with 1×1 convolutions does not hurt performance. To further establish our

claims, we evaluate the empirical receptive field size (B. Zhou et al., 2015) in

the original and modified RefineNet, and do not find any significant difference

(Section 3.5.1). In particular, we replace 3×3 convolutions within CRP and fusion

blocks with 1×1 counterpart (Fig. 3.1(f-g)), and we amend RCU into the one

with the bottleneck design (He et al., 2016) (Fig. 3.1(e)). This way, we reduce

the number of parameters by more than 2× times, and the number of FLOPs

by more than 3× times (Table 3.1).
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3.3.2 Omitting RCU blocks

We proceeded with initial experiments and trained the light-weight architecture

outlined in the previous section using PASCAL VOC (Everingham et al., 2010). We

were able to achieve close to the original network performance, and, furthermore,

observed that removing RCU blocks did not lead to any accuracy deterioration –

in fact, the weights in RCU blocks almost completely saturated.

To confirm that this only occurs in the light-weight case, we omitted RCU blocks

in the original RefineNet architecture – this led to more than 5% performance

drop on the same dataset. We argue that this happens due to the RCU blocks

being redundant in the 1×1 convolution regime, as the only important goal of

increasing the contextual coverage is essentially performed by pooling layers inside

CRP. To back up this claim, we conduct a series of ablation experiments which

are covered later in Section 3.5.2.

Our final architecture does not contain any RCU blocks and only relies on

CRP blocks with 1×1 convolutions and 5×5 max-pooling inside, which makes our

method extremely fast and light-weight.

3.3.3 Adaptation to different backbones

A significant practical benefit of the RefineNet architecture is that it can be mixed

with any backbone network as long as the backbone has several subsampling

operations inside (which is the case for most SOTA classifiers). Thus, there are no

specific changes needed to be made in order to apply the RefineNet architecture

using any other model. In particular, in the experiments section, we showcase

its adaptation using efficient NASNet-Mobile (Zoph et al., 2018) and MobileNet-

v2 (Sandler et al., 2018) networks; we still achieve solid performance with the

limited number of parameters and floating point operations.

3.4 Experiments

In the experimental part, our aims are to prove empirically that we are able

i.) to achieve similar performance levels with the original RefineNet while ii.)
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significantly reducing the number of parameters and iii.) drastically increasing

the speed of a forward pass; and iv.) to highlight the possibility of applying our

method using other architectures.

To this end, we consider five segmentation datasets: namely, NYUDv2 (Silber-

man et al., 2012; Gupta et al., 2013), PASCAL VOC (Everingham et al., 2010),

PASCAL Person-Part (X. Chen et al., 2014; L. Chen et al., 2016), PASCAL

Context (Mottaghi et al., 2014) and CityScapes (Cordts et al., 2016), and five

classification networks: i.e., ResNet-50, ResNet-101, ResNet-152 (He et al., 2016),

NASNet-Mobile (Zoph et al., 2018) and MobileNet-v2 (Sandler et al., 2018) (only

for Pascal VOC), all of which have been pre-trained on ImageNet (Deng et al.,

2009). As a general practice, we report mean intersection over union (Everingham

et al., 2010) on each benchmark.

We perform all our experiments in PyTorch (Paszke et al., 2019), and train using

stochastic gradient descent with momentum. For all residual networks we start with

the initial learning rate of 5e-4, for NASNet-mobile and MobileNet-v2 we start with

the learning rate of 1e-3. We keep batch norm statistics frozen during the training.

For benchmarking, we use a workstation with 8GB RAM, Intel i5-7600 processor,

and one GT1080Ti GPU card. For a fair comparison of runtime, we re-implement

the original RefineNet in PyTorch.2 We compute 100 forward passes with random

inputs, and average the results; when reporting, we provide both the mean and

standard deviation values.

We provide qualitative results for PASCAL VOC in the main text and for

the rest of datasets in Appendix A.

3.4.1 NYUDv2

We first conduct a series of initial experiments on the NYUDv2 dataset (Silberman

et al., 2012; Gupta et al., 2013). This dataset comprises 1449 RGB-D images with

40 segmentation classes, of which 795 are used for training and 654 for testing,

respectively. We do not make use of depth information in any way. We reduce
2The re-implementation of RefineNet is available here: https://github.com/DrSleep/

refinenet-pytorch

https://github.com/DrSleep/refinenet-pytorch
https://github.com/DrSleep/refinenet-pytorch
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Model NYUD mIoU,% Person mIoU,% Params,M Runtime,ms
FCN16-s RGB-HHA (Long et al., 2015) 34.0 - - -

Context (G. Lin et al., 2016) 40.6 - - -
DeepLab-v2-CRF (L. Chen et al., 2018b) - 64.9 (msc) 44 -

RefineNet-50 (G. Lin et al., 2017) 42.5 65.7 99 54.18± 0.46
RefineNet-101 (G. Lin et al., 2017) 43.6 67.6 118 60.25± 0.53
RefineNet-152 (G. Lin et al., 2017) 46.5 (msc) 68.8 (msc) 134 69.37± 0.78B

RefineNet-LW-50 (ours) 41.7 64.9 27 19.56± 0.29
RefineNet-LW-101 (ours) 43.6 66.7 46 27.16± 0.19
RefineNet-LW-152 (ours) 44.4 67.6 62 35.82± 0.23

Table 3.2: Quantitative results on the test sets of NYUDv2 and PASCAL Person-Part.
Mean iou, the number of parameters and the runtime (mean±std) of one forward pass on
625× 468 inputs are reported, where possible. Multi-scale evaluation is defined as msc.

the learning rate by half after 100 and 200 epochs, and keep training until 300

epochs, or until an earlier convergence.

Our quantitative results are provided in Table 3.2 along with the results from

the original RefineNet, and other competitive methods on this dataset. We note

that for all ResNet networks we are able to closely match the performance of the

original RefineNet, while having only a slight portion of the original parameters –

in particular, the smallest RefineNet, i.e. RefineNet-50, achieves 42.5% mean iou

with 99M parameters, while the largest Light-Weight RefineNet, i.e. Light-Weight

RefineNet-152, shows 44.4% mean iou with 62M parameters. In fact, the largest

Light-Weight RefineNet model is 1.5× faster than the smallest RefineNet model –

with nearly 30FPS for RefineNet-LW-152 against nearly 20FPS for RefineNet-

50 on 625×468 inputs.

3.4.2 Person-Part

PASCAL Person-Part dataset (X. Chen et al., 2014; L. Chen et al., 2016) consists of

1716 training and 1817 validation images with 6 semantic classes (head, torso, and

upper/lower legs/arms) and a single background class. We follow the same training

strategy as for NYUDv2, and provide our results in Table 3.2. Again, we achieve

analogous to the original models results with the Light-Weight RefineNet models

showing mean iou values of 64.9%, 66.7%, 67.6%, respectively, against 65.7%, 67.6%

and 68.8% of those by the original RefineNet networks.
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3.4.3 PASCAL VOC

We continue our experiments with a standard benchmark dataset for semantic

segmentation, PASCAL VOC (Everingham et al., 2010). This dataset consists of

4369 images with 20 semantic classes plus background, of which 1464 constitute the

training set, 1449 – validation, and 1456 – test, respectively. As commonly done, we

augment it with additionally annotated VOC images from BSD (Hariharan et al.,

2011), as well as images from MS COCO (T. Lin et al., 2014).

We train all the networks using the same strategy, but with different learning

rates as outlined above: in particular, we reduce the learning rate by half after 20

epochs of COCO training and after 50 epochs of the BSD training, and keep training

until 200 total epochs, or until the accuracy on the validation set stops improving.

Our quantitative results on validation and test sets are given in Table 3.3 along

with the results from the original RefineNet. We again notice that for all ResNet

networks, we achieve performance on-par with the original RefineNet, while having

significantly fewer FLOPs – e.g. 71B for Light-Weight RefineNet-152 against 263B

for RefineNet-101; for NASNet-Mobile and MobileNet-v2, we outperform both

MobileNet-v1+DeepLab-v3 and MobileNet-v2+DeepLab-v3 approaches (Sandler et

al., 2018), which are closely related to our method. Qualitative results are provided in

Figure 3.2 – note how all Light-Weight RefineNet with the ResNet-backbone models

are able to segment a small bottle in the bottom row and nearly correctly segment

dogs in rows 2 and 3; also note how both networks with the light-weight backbones

(NAS and MOB) seem to slightly struggle with thin bicycle structures in the first row.

3.4.4 PASCAL-Context

This dataset comprises 60 semantic labels (including background), and consists

of 4998 training images, and 5105 validation images. During training, we divide

the learning rate by half twice after 50 epochs and after 100 epochs, respectively,

and keep training until 200 epochs, or an earlier convergence. We do not pre-train

on PASCAL VOC or COCO.
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Model val mIoU,% test mIoU,% FLOPS,B
DeepLab-v2-ResNet-101-CRF (L. Chen et al., 2018b) 77.7 79.7 -

RefineNet-101 (G. Lin et al., 2017) - 82.4 263
RefineNet-152 (G. Lin et al., 2017) - 83.4 283

RefineNet-LW-50 (ours) 78.5 81.1 33
RefineNet-LW-101 (ours) 80.3 82.0 52
RefineNet-LW-152 (ours) 82.1 82.7 71

MobileNet-v1-DeepLab-v3 (Sandler et al., 2018) 75.3 - 14.2
MobileNet-v2-DeepLab-v3 (Sandler et al., 2018) 75.7 - 5.8

RefineNet-LW-MobileNet-v2 (ours) 76.2 79.2 9.3
RefineNet-LW-NASNet-Mobile (ours) 77.4 79.3 11.4

Table 3.3: Quantitative results on PASCAL VOC. Mean iou and the number of FLOPs
on 512× 512 inputs are reported, where possible.

Image GT RF-101 RF-50-LW RF-101-LW RF-152-LW MOB-LW NAS-LW

Figure 3.2: Visual results on validation set of PASCAL VOC with residual models (RF),
MobileNet-v2 (MOB) and NASNet-Mobile (NAS). The original RefineNet-101 (RF-101)
is our re-implementation. ‘GT’ stands for ‘ground truth’.

Our quantitative results are provided in Table 3.4 – single-scale evaluation of

Light-Weight RefineNet-101 and RefineNet-152 achieves 45.1% and 45.8% mean

iou against 47.1% and 47.3% of RefineNet-101 and RefineNet-152 evaluated with

multiple scales.

3.4.5 CityScapes

Finally, we turn our attention to the CityScapes dataset (Cordts et al., 2016), that

contains 5000 high-resolution (1024 × 2048) images with 19 semantic classes, of

which 2975 images are used for training, 500 for validation, and 1525 for testing,

respectively. We use the same learning strategy as for PASCAL-Context. Our
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single-scale model with ResNet-101 as backbone is able to achieve 72.1% mean

iou on the test set, which is close to the original RefineNet result of 73.6% with

multi-scale evaluation (G. Lin et al., 2017).

Model mIoU,%
DeepLab-v2-CRF (L. Chen et al., 2018b) 45.7 (msc)

RefineNet-101 (G. Lin et al., 2017) 47.1 (msc)
RefineNet-152 (G. Lin et al., 2017) 47.3 (msc)

RefineNet-LW-101 (ours) 45.1
RefineNet-LW-152 (ours) 45.8

Table 3.4: Quantitative results on the test set of PASCAL Context. Multi-scale
evaluation is defined as msc.

3.5 Discussion

As noted above, we are able to achieve similar results by omitting more than half of

the original parameters. This raises the question on how and why this does happen.

We conduct a series of experiments aimed to provide some insights into this matter.

3.5.1 Receptive field size

First, we consider the issue of the receptive field size. Intuitively, dropping

3×3 convolutions should significantly harm the receptive field size of the original

architecture. Nevertheless, we note that we do not experience this due to i.) the

skip-design structure of RefineNet, where low-level features are being summed

up with the high-level ones, and ii.) keeping CRP blocks that are responsible

for gathering contextual information.

In particular, we explore the empirical receptive field (ERF) size (B. Zhou

et al., 2015) in Light-Weight RefineNet-101 pre-trained on PASCAL VOC (Fig. 3.3).

Before CRP ERF is concentrated around small object parts, and barely covers the

objects. The CRP block tends to enlarge ERF, while the summation with the lower

layer features further produces significantly larger activation contours.
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Figure 3.3: Comparison of empirical receptive field before CRP (top left), after CRP
(top right), and after the summation of levels 4 and 3 (bottom) in RefineNet-LW-101
pre-trained on PASCAL VOC. Top activated images along with top activated regions are
shown.

We also compare ERF of the last (classification) layer between original RefineNet-

101 and RefineNet-LW-101 both pre-trained on PASCAL VOC. From Figure 3.4, it

can be noticed that both networks exhibit semantically similar activation contours,

although the original architecture tends to produce less jagged boundaries.

3.5.2 Representational power

Even though the RCU block seems not to influence the receptive field size of the

network, it might still be responsible for producing important features for both

segmentation and classification.

To evaluate whether it is the case indeed, we conduct ablation experiments by

adding multi-label classification and segmentation heads in the lowest resolution

block of RefineNet-101 pre-trained on PASCAL VOC 1.) before RCU, 2.) after

RCU, and 3.) after CRP. We fix the rest of the trained network and fine-tune

only these heads separately using 1464 training images of the VOC dataset. We

evaluate all the results on the validation subset of VOC.
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RefineNet-101

RefineNet-LW-101

dog horse person

Figure 3.4: Comparison of empirical receptive field in the last (classification) layer
between RefineNet-101 (top) and RefineNet-LW-101 (bottom). Top activated regions for
each unit are highlighted.

Model mIoU,% acc,%
Before RCU 54.63 95.39
After RCU 55.16 95.42
After CRP 57.83 97.71

Table 3.5: Ablation experiments comparing CRP and RCU. Multi-label accuracy
(without background) and mean IoU are reported as measured on the validation set of
PASCAL VOC.

As seen from Table 3.5, CRP is the main driving force behind accurate seg-

mentation and classification as the results after CRP are improved by more than

2% in both mean iou and accuracy, while the RCU block improves the results just

marginally – by only 0.5% in mean iou and 0.03% in accuracy.

3.6 Conclusion

In this chapter, we tackled the problem of rethinking an existing semantic seg-

mentation architecture into the one suitable for real-time performance, while

keeping the performance levels mostly intact. We achieved that by proposing

simple modifications to the existing network and highlighting which building blocks
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were redundant for the final result. Our method can be applied along with any

classification network for any dataset and can further benefit from using light-

weight backbone networks. Quantitatively, we were able to closely match the

performance of the original network while significantly surpassing its runtime and

even acquiring 55 FPS on 512×512 inputs (from initial 20 FPS). Besides that, we

demonstrated that having convolutions with large kernel sizes may be unnecessary

in the decoder part of segmentation networks.

This chapter serves as an important milestone on our way towards building

practical vision systems as we demonstrate the value of manually re-designing

and analysing various components of a deep neural network used for arguably the

most popular dense per-pixel task – semantic segmentation. As we show in the

next chapter, the benefits of Light-Weight RefineNet are not limited to semantic

segmentation, and are applicable to other dense per-pixel tasks, such as monocular

depth prediction and surface normals estimation. More crucially, we will extend

our approach to solve all these tasks at once in real-time using a single network.

From another perspective, in Chapter 5 we will build an algorithm that au-

tomatically finds compact and accurate architectures, thus reducing the number

of manual decisions required from a human expert.
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4
Real-Time Multi-Task Learning of Dense

Per-Pixel Tasks

In the last chapter, we derived a compact and accurate semantic segmentation

architecture through a careful re-design and analysis of a larger network. In this

chapter, we will go beyond semantic segmentation and apply the same architecture to

other dense per-pixel tasks, such as depth prediction and surface normals estimation.

In particular, our focus will be on the real-time multi-task learning scenario where

a single network solves several tasks at once.

In theory, multi-task learning leads to considerable savings of resources, and may

often result in an overall performance improvement. In practice, a few prominent

hurdles must be addressed, namely, i.) how to adapt a single model to perform

multiple tasks at once, while ii.) doing it in real-time, and iii.) using asymmetric

datasets with an unequal number of annotations per each modality. These hurdles

are innate for various vision and non-vision tasks but are especially challenging

for dense per-pixel tasks with extreme annotation costs, where it is rare to have

ground truth labels for all the modalities at the same time.

To overcome the above issues, we will rely on Light-Weight RefineNet introduced

in the previous chapter, and we will make several changes to it to further reduce

the number of floating-point operations. To compensate for the asymmetry in

37
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annotations, we will leverage hard knowledge distillation, where outputs of a large

and slow ‘teacher’ network serve as noisy ground truth annotations for missing

modalities. In addition to that, we will conduct experiments with a single model

performing depth estimation and segmentation both indoors and outdoors at once,

while also showcasing that the raw predictions of our network can be used to create

a dense 3D semantic reconstruction of the indoor scene.

The results of this chapter first appeared in the proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA 2019) under the title of

‘Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric

Annotations’ (Nekrasov et al., 2019b).1

4.1 Related Work

With semantic segmentation previously covered, we first turn our attention to two

other inter-related dense per-pixel tasks – depth prediction and surface normals

estimation. The goal of the first one is to determine the distance to each pixel in

the image from the centre of the camera with which the image was taken, while

the goal of the second one is to predict a 3-dimensional vector orthogonal to the

surface at each pixel in the image. In contrast to the costly manual collection of

semantic segmentation annotations required for supervised learning, several sensors

exist that readily provide depth measurements – e.g. Kinect (Z. Zhang, 2012) and

LiDAR (Wikipedia contributors, 2020). Given depth, it is further possible to acquire

an estimate of surface normals using least squares (Silberman et al., 2012).2 As in

case of semantic segmentation, deep learning networks can be used to map a given

image to depth or surface normals – e.g. Eigen et al. (2014), F. Liu et al. (2015),

and Laina et al. (2016) did so in a fully-supervised manner, while Garg et al. (2016),

Godard et al. (2017), Kuznietsov et al. (2017), and Godard et al. (2019) relied
1The trained models have been released and are available here: https://github.com/DrSleep/

multi-task-refinenet with the training code example provided here: https://github.com/
DrSleep/DenseTorch/tree/master/examples/multitask

2The estimate of the reverse (i.e. of depth given surface normals) can also be found, e.g.
see (X. Qi et al., 2018).

https://github.com/DrSleep/multi-task-refinenet
https://github.com/DrSleep/multi-task-refinenet
https://github.com/DrSleep/DenseTorch/tree/master/examples/multitask
https://github.com/DrSleep/DenseTorch/tree/master/examples/multitask
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on unsupervised, or semi-supervised learning, exploiting stereo pairs of images to

impose various consistency losses based on the predicted depth.

The main focus of this chapter is on multi-task learning; according to Caruana

(1993) and Baxter (2000), learning a single model that simultaneously performs

several related tasks can improve generalisation via imposing an inductive bias on

the learned representations – i.e. in effect regularising the set of all possible weights

configurations. For example, the information learned from the semantic labels can

help in depth prediction as closely located pixels from the same semantic category

tend to have similar depth values; in reverse, nearby pixels with equal depth values

are likely to belong to the same object and, hence, the same semantic class. Such

dependencies will implicitly arise during the training of a multi-task network through

the gradients of loss functions with respect to shared and task-specific parameters.

Multi-task computer vision works tend to follow this strategy: in particular,

Eigen and Fergus (2015) trained a single architecture to predict depth and surface

normals with a shared computation in the early layers (the authors also used the

same architecture but with different weights for semantic segmentation). Kokkinos

(2017) proposed a universal network to tackle 7 different vision tasks at once with

shared features – the tasks included boundary detection, surface normals estima-

tion, saliency estimation, semantic segmentation, human body part segmentation,

semantic boundary detection and object detection. Dvornik et al. (2017) instead

concentrated on the real-time component of joint semantic segmentation and object

detection by appending only few layers with task-specific parameters at the end of

the network, while Kendall et al. (2018) learned optimal task-specific loss weights

with the help of Bayesian modelling to perform instance segmentation, semantic

segmentation and depth estimation. Dharmasiri et al. (2017) showcased performance

benefits of jointly predicting depth, surface normals and surface curvature, while

X. Qi et al. (2018) directly encoded the geometric interrelation between depth and

surface normals as a part of the network architecture. None of the aforementioned

methods makes any use of already existing models for each separate task, and none

of them, except BlitzNet (Dvornik et al., 2017), achieves real-time performance. In
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contrast, we will show how to exploit large pre-trained models to stabilise the training

of a smaller model and acquire better results, and how to do inference in real-time.

In the ideal scenario with an equal number of annotations per each given task,

the multi-task training procedure barely differs from that of the single-task. The

most interesting (and difficult) case arises when various tasks have various numbers

of labels, making the learned features biased towards the tasks with the highest

presence. To overcome this problem, Kokkinos (2017) resorted to asynchronous

gradient updates, where the gradients computed from task-specific losses are being

summed up and stored in-memory until a certain number of examples belonging

to a particular task has been processed. After that, the standard gradient rule

is applied (Sect. 2.1), the accumulated gradients are reset, and the process is

repeated until convergence. In contrast to this approach, Dvornik et al. (2017)

simply resorted to keeping the task branch with no ground truth available intact

until at least one example of that modality is seen.

Several works also explored alternative ways of learning task-specific and shared

features: Misra et al. (2016) proposed learnable cross-stitch units, which are linear

combinations of representations from several single-task networks; Mallya et al.

(2018) and Mallya and Lazebnik (2018) optimised for task-specific binary masks

applied on weights inside a single network. Since for N tasks this requires N

forward passes (with a selected mask turned on), S. Liu et al. (2019) instead used

N task-specific blocks that learned to attend to a shared representation, thus

reducing the number of forward passes at the expense of the number of parameters.

Zamir et al. (2018) and Standley et al. (2019) further conducted an extensive set of

experiments to computationally measure task relationships highlighting how various

tasks must be learned together. While the above methods might be beneficial for a

specific situation, they require either a non-trivial amount of computations (Zamir

et al., 2018; Mallya and Lazebnik, 2018; Standley et al., 2019) or complicated

design implementations (Misra et al., 2016; Mallya et al., 2018; S. Liu et al., 2019).

Aligned with the goal of creating practical vision systems, we will instead choose

a simple path of branching out into task-specific layers at the end of the network



4. Real-Time Multi-Task Learning of Dense Per-Pixel Tasks 41

requiring us to make only few changes to a single-task architecture presented in

Chapter 3. In the next sections, we will demonstrate that this choice leads to highly

competitive performance and can easily be extended to handle different situations,

such as learning of multiple tasks from multiple domains at once.

4.2 Methodology

While we primarily discuss the case with only two tasks present, the same machinery

applies for more tasks, as demonstrated in Sect. 4.4.1.

4.2.1 Backbone Network

As a backbone network we consider Light-Weight Refinet built on top of MobileNet-

v2 (Sect. 3.3.3). Even though this network already achieves real-time performance

and has a small number of parameters for a single task, for the joint estimation of

depth and semantic segmentation (of 40 classes) it requires more than 14 GFLOPs

on inputs of size 640×480, which may hinder it from the direct deployment on

mobile platforms with few resources available. In particular, the last chained residual

pooling (CRP) block is responsible for more than half of the FLOPs as it deals with

the high-resolution feature maps (1/4 from the original resolution). This cost is due

to 1×1 convolutions that are equivalent to a matrix product between Cin×H×W

input tensor with Cin input channels and Cin×Cout weight matrix with Cout output

channels. Since for convolutions used in CRP we have Cin = Cout = C, instead of

a scalar weight for each pair of input and output channels (hence the dimension

Cin×Cout of the weight matrix), we can resort to a single weight vector of size C

multiplied H×W times with each input feature (see Fig. 4.1). This reduces the

number of operations by more than half, down to just 6.5 GFLOPs. Such convolution

is often called depthwise convolution (Sifre and Mallat, 2014; Chollet, 2017).

4.2.2 Joint Semantic Segmentation and Depth Estimation

In the general case, it is non-trivial to decide where to branch out the backbone

network into separate task-specific paths in order to achieve the optimal performance
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Figure 4.1: An example of depthwise 1×1 convolution on 1×4 input with the stride of 1
and 4 input-output channels. It is equivalent to a scalar multiplication of each pixel with
the weight value of the same colour. In this example, the numbers (10, 0, 2, 6) in the
output of Channel 0 are equal to the numbers in the input of Channel 0 multiplied by
the corresponding weight value of 1.
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Figure 4.2: General network structure for joint semantic segmentation and depth
estimation. Each task has only 2 specific parametric layers, while everything else is shared.
In the depth image, closer pixels have dark violet colours, while pixels further away are
coloured orange.

on all of the tasks simultaneously. For simplicity, we branch out right after the

last CRP block, and append two additional convolutional layers (one depthwise

1×1 and one plain 3×3) for each task (Fig. 4.2).

If we denote the output of the network before the branching as ỹ = fθb
(X), where

fθb
is the backbone network with a set of parameters θb, and X is the input RGB-

image, then the depth and segmentation predictions can be denoted as ỹs = gθs(ỹ)

and ỹd = gθd
(ỹ), where gθs and gθd

are segmentation and depth estimation branches

with the sets of parameters θs and θd, respectively. We use the standard softmax

cross-entropy loss for segmentation (Eqn. 2.1) and the reverse Huber loss for depth

estimation (Laina et al., 2016). Our total loss (Eqn. 4.1) contains an additional

scaling parameter, λ, which, for simplicity, we set to 0.5:
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Ltotal(X, Ys, Yd; θb, θs, θd) = λ · Lsegm(X, Ys; θb, θs) + (1− λ) · Ldepth(X, Yd; θb, θd),

Ldepth(X, Y ) =
|ỹd − Y |, if |ỹd − Y | ≤ c

((ỹd − Y )2 + c2)/(2c), otherwise,

c
def= 0.2 ·max |ỹd − Y |,

(4.1)

where Ys and Yd denote ground truth segmentation mask and depth map, correspond-

ingly.

4.2.3 Expert Labeling for Asymmetric Annotations

As one would expect, it is impossible to have all the ground truth sensory information

available for every single image. Quite naturally, this poses a question of how to

deal with a set of images S = {X} among which some have an annotation of one

modality, but not another. Assuming that one modality is always present for each

image, this then divides the set S into two disjoint sets S1 = ST1 and S2 = ST1,T2

such that S = S1 ∪ S2, where T1 and T2 denote two tasks, respectively, and the

set S1 consists of images for which there are no annotations of the second task

available, while S2 comprises images having both sets of annotations.

Plainly speaking, there is nothing that prohibits us from still exploiting equa-

tion (4.1), in which case only the weights of the branch with available labels will

be updated. As we will show in our ablation experiments (Sect. 4.3.2), this leads

to biased gradients and, consequently, sub-optimal solutions. Instead, emphasising

the need for updating both branches simultaneously, we rely on an expert model to

provide us with noisy estimates in place of missing annotations. By the expert model

here we understand a larger neural network able to solve the given task with a certain

accuracy. This concept is in line with knowledge distillation (Ba and Caruana, 2014;

Hinton et al., 2014; Bucila et al., 2006; Romero et al., 2015), where the expert model

is called teacher (see Sect. 3.1 for a brief discussion on knowledge distillation).

More formally, if we denote the expert model on the second task as ET2 , then

its predictions S̃1 = ET2(S1) on the set S1 serve as proxy ground truth data, which
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we will use to pre-train our joint model before the final fine-tuning on the original

set S2 with readily available ground truth data for both tasks.

Note also that our framework is directly transferable to the case where the set

S comprises several datasets. In Sect. 4.4.2 we showcase a way of exploiting all

of them in the same time using a single copy of the model.

4.3 Experimental Results

In our experiments, we consider two datasets, NYUDv2-40 (Silberman et al., 2012;

Gupta et al., 2013) and KITTI (Geiger et al., 2013; Ros et al., 2015), representing

indoor and outdoor settings, respectively, and both being used extensively in

the robotics community.

All the training experiments follow the same protocol. In particular, we initialise

the classifier part using the weights pre-trained on ImageNet (Deng et al., 2009), and

train using mini-batch SGD with momentum with the initial learning rate of 1e−3

and the momentum value of 0.9. Following the setup of Light-Weight RefineNet

from Chapter 3, we keep batch norm statistics frozen. We divide the learning rate by

10 after pre-training on a large set with proxy annotations. We train with a random

square crop of 350×350 augmented with random mirror (i.e. random horizontal flip).

4.3.1 Evaluation metrics

To report the quality of depth estimation for a given set D with examples {i},

ground truth depth maps {Yi} and predicted depth {ỹi} we will compute the metrics

from Table 4.1. For surface normals we will compute the angle between the predicted

and the ground truth vectors and report the mean and median of this distribution.

4.3.2 NYUDv2

NYUDv2 is an indoor dataset with 40 semantic labels containing 1449 RGB images

with both segmentation and depth annotations, of which 795 comprise the training

set and 654 – validation. The raw dataset has more than 300K training images

with only depth annotations. During training, we use less than 10% (25K images)
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Name Abbr. Equation

Linear Root Mean Square Error RMSE lin
√

1
|D|

∑i=|D|
i=1 ||Yi − ỹi||2

Log Root Mean Square Error RMSE log
√

1
|D|

∑i=|D|
i=1 || log(Yi)− log(ỹi)||2

Absolute Relative Difference abs rel 1
|D|

∑i=|D|
i=1

|Yi−ỹi|
Yi

Squared Relative Difference sqr rel 1
|D|

∑i=|D|
i=1

||Yi−ỹi||2
Yi

Threshold δ < threshold 1
|D|

∑i=|D|
i=1 (max(Yi

ỹi
, ỹi

Yi
) < threshold)

Table 4.1: Commonly used metrics for depth estimation (Eigen et al., 2014). For the
reported RMSE, abs rel and sqr rel the lower the better, whereas for accuracies (δ) the
higher the better.

of this data following Dharmasiri et al. (2018). As discussed in Sect. 4.2.3, we

annotate these images for semantic segmentation using a teacher network – here, we

take Light-Weight RefineNet-152 that achieves 44.4% mean iou on the validation

set (Sect. 3.4.1). After acquiring the proxy annotations, we pre-train the network

on the large set and then fine-tune it on the original small set of 795 images.

Quantitatively, we are able to achieve 42.02% mean iou and 0.565m RMSE

(lin) on the validation set (Table 4.2), outperforming several large models, while

performing both tasks in real-time simultaneously. In depth estimation we achieve

the lowest sqr rel and joint highest accuracy for the threshold of 1.253 (Table 4.3).

Qualitatively (Fig. 4.3) our model predicts smooth depth maps and able to correctly

segment the majority of objects present in the environment.

Ablation Studies. To evaluate the importance of pre-training using the proxy

annotations and the benefits of performing two tasks jointly, we conduct a series of

ablation experiments. In particular, we compare three baseline models trained on the

small set of 795 images and three other approaches that make use of additional data

– ours with noisy estimates from a larger model, and two methods, one by Kokkinos

(2017), where the gradients are being accumulated until a certain number of examples

is seen, and one by Dvornik et al. (2017), where the task branch is updated every

time at least one example with the corresponding task annotation is seen.



46 4.3. Experimental Results

Segm. Depth General
Model Regime mIoU,% RMSE (lin),m Param.,M GFLOPs Runtime,ms
†Multi-Task RefineNet-LW Segm,Depth 42.02 0.565 3.07 6.49 12.8±0.1
RefineNet-101 (G. Lin et al., 2017) Segm 43.6 − 118 − 60.3± 0.5
RefineNet-LW-50 Segm 41.7 − 27 33 19.6± 0.3
Context (G. Lin et al., 2016) Segm 40.6 − − − −
†Sem-CRF+ (Mousavian et al., 2016) Segm,Depth 39.2 0.816 − − −
‡Kendall and Gal (2017) Segm,Depth 37.3 0.506 − − 150
Zuo and Drummond (2017) Segm 34.3 − − − 48.4
‡Eigen and Fergus (2015) Segm,Depth 34.1 0.641 − − −
Laina et al. (2016) Depth − 0.573 63.6 − 55
†X. Qi et al. (2018) Depth,Normals − 0.569 - − 870

Table 4.2: Results on the test set of NYUDv2. The speed of a single forward pass and
the number of FLOPs are measured on 640 × 480 inputs. For the reported mIoU the
higher the better, whereas for the reported RMSE the lower the better. (†) means that
both tasks are performed simultaneously using a single model, while (‡) denotes that two
tasks employ the same architecture but use different copies of weights per task.

Ours Laina et al. (2016) Kendall and Gal (2017) X. Qi et al. (2018)
RMSE (lin) 0.565 0.573 0.506 0.569
RMSE (log) 0.205 0.195 − −
abs rel 0.149 0.127 0.11 −
sqr rel 0.105 − − 0.128
δ < 1.25 0.790 0.811 0.817 0.834
δ < 1.252 0.955 0.953 0.959 0.960
δ < 1.253 0.990 0.988 0.989 0.990

Table 4.3: Detailed results on the test set of NYUDv2 for the depth estimation task.
For the reported RMSE, abs rel and sqr rel the lower the better, whereas for accuracies
(δ) the higher the better.

The results of our experiments are given in Table 4.4. The first observation that

we make is that performing two tasks jointly on the small set does not provide any

significant benefits for each separate task, and even substantially harms semantic

segmentation – 32.5% mean iou and 0.633m RMSE of the joint model against 34.4%

mean iou and 0.638m RMSE of the single-task models. In contrast, having a large

set of depth annotations results in improvements both in depth estimation and even

semantic segmentation, when it is coupled with a clever strategy of accumulating

gradients – 34.8% mean iou and 0.582m RMSE for BlitzNet (Dvornik et al., 2017)

and 35.9% mean iou and 0.573m RMSE for UberNet (Kokkinos, 2017). Nevertheless,

none of the methods can achieve competitive results on semantic segmentation,

whereas our proposed approach reaches 42.0% mean iou and 0.565m RMSE without
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Image GT-Segm Pred-Segm GT-Depth Pred-Depth

Figure 4.3: Qualitative results on the test set of NYUD-v2. The black and dark-blue
pixels in ‘GT-Segm’ and ‘GT-Depth’, respectively, indicate pixels without an annotation
or label.

any changes to the underlying optimisation algorithm.

Annotations Update Frequency Segm. Depth
Method Pre-Training Fine-Tuning Task Base mIoU,% RMSE (lin),m
Baseline (SD) 795SD − 1 1 32.48 0.6328
Baseline (S) 795S − 1 1 34.44 −
Baseline (D) 795D − 1 1 − 0.6380
BlitzNet (Dvornik et al., 2017) 25405D + 795SD 795SD 1 1 34.82 0.5823
UberNet (Kokkinos, 2017) 25405D + 795SD 795SD 10 30 35.88 0.5728
Multi-Task RefineNet-LW 25405SD 795SD 1 1 42.02 0.5648

Table 4.4: Results of ablation experiments on the test set of NYUDv2. SD means how
many images have a joint pair of annotations – both segmentation (S) and depth (D);
task update frequency denotes the number of examples of each task to be seen before
performing a gradient step on task-specific parameters; base update frequency is the
number of examples to be seen (regardless of the task) before performing a gradient step
on shared parameters.

4.3.3 KITTI

KITTI is an outdoor dataset that contains 100 images semantically annotated for

training (with 11 semantic classes) and 46 images for testing (Ros et al., 2015)

without ground truth depth maps. Following the previous work by S. Wang et al.

(2015) we only keep 6 well-represented classes.

Besides segmentation, we follow Eigen et al. (2014) and employ 20K images
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Segm. Depth General
Model Regime mIoU,% RMSE (lin),m RMSE (log) Param.,M Input Size GFLOPs Runtime,ms
Multi-Task RefineNet-LW Segm,Depth 87.02 3.453 0.182 2.99 1200x350 6.45 16.9±0.1
Zuo and Drummond (2017) Segm 84.9 − − − 1200x350 − 106.35
S. Wang et al. (2015) Segm 74.8 − − − − − −
Garg et al. (2016) Depth − 5.104 0.273 − − − −
Godard et al. (2017) Depth − 4.471 0.232 31 512x256 − 35.0
Kuznietsov et al. (2017) Depth − 3.518 0.179 − 621x187 − 48.0

Table 4.5: Results on the test set of KITTI-6 for segmentation and KITTI for depth
estimation.

with depth annotations available for training (Geiger et al., 2013), and 697 images

for testing. Due to the similarities with the CityScapes dataset (Cordts et al.,

2016), we consider ResNet-38 (Z. Wu et al., 2019) trained on CityScapes as our

teacher network and use it to annotate the training images that have depth but

not semantic segmentation. In turn, to annotate missing depth annotations on 100

images with semantic labels from KITTI-6, we first train a separate copy of our

network on the depth task only and then use it as a teacher. Note that we abandon

this copy of the network and do not make any further use of it.

After pre-training on the large set, we fine-tune the model on the small set of

100 examples. Among other methods (Table 4.5) we achieve the highest mean iou

of 87% (against the second-best of 84.9% by Zuo and Drummond (2017)) and the

lowest linear RMSE of 3.45m. In the semantic segmentation task we outperform

other methods in 4 out of 6 classes (Table 4.6). Besides being superior across a

large set of metrics, our approach is also light-weight with low latency. We further

visualise a few of the network predictions in Fig. 4.4.

Model sky building road sidewalk vegetation car Total
Multi-Task RefineNet-LW 85.1 87.7 92.8 82.7 86.1 87.6 87.0
Zuo and Drummond (2017) 84.5 85.9 92.3 78.8 87.8 80.3 84.9
S. Wang et al. (2015) 88.6 80.1 80.9 43.6 81.6 63.5 74.8

Table 4.6: Detailed segmentation results on the test set of KITTI-6.
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Image Pred-Depth Pred-Segm

Figure 4.4: Qualitative results on the test set of KITTI (for which only GT depth maps
are available). We do not visualise GT depth maps due to their sparsity.

4.4 Extensions

The goal of this section is to demonstrate the ease with which our approach can be

directly applied in other practical scenarios, such as, for example, the deployment of

a single model performing three tasks at once, and the deployment of a single model

performing two tasks at once under two different scenarios – indoor and outdoor. As

the third task, here we consider surface normals estimation, and as two scenarios, we

consider training a single model on both NYUD and KITTI simultaneously without

the necessity of having a separate copy of the same architecture for each dataset.

In this section, we strive for simplicity and do not aim to achieve high-performance

numbers, thus we directly apply the same training scheme as outlined in the

previous section.

4.4.1 Single Model – Three Tasks

Analogously to the depth and segmentation branches, we append the same structure

with two convolutional layers for surface normals. We employ the negative dot

product (after l2-normalisation) as the training loss for surface normals, and we

multiply the learning rate for the normals parameters by 10, as done by Eigen

and Fergus (2015).

We exploit the full raw training set of NYUDv2, having (noisy) depth maps from

the Kinect sensor and with surface normals computed using the toolbox provided
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Image GT-Segm Pred-Segm GT-Depth Pred-Depth GT-Normals Pred-Normals

Figure 4.5: Qualitative results on the test set of NYUD-v2 for three tasks. The black
pixels in the ‘GT-Segm’ images indicate those without a semantic label, whereas the dark
blue pixels in the ‘GT-Depth’ images indicate missing depth values.

by the authors (Silberman et al., 2012). To acquire missing segmentation labels,

we repeat the same procedure outlined in the main experiments – in particular, we

use the Light-Weight RefineNet-152 network to get noisy labels. After pre-training

on this large dataset, we divide the learning rate by 10 and fine-tune the model on

the small dataset of 795 images having annotations for each modality.

Our straightforward approach achieves practically the same numbers on depth

estimation (0.565m RMSE of the two-task model against 0.566m RMSE of the three-

task model) but suffers a significant performance drop of nearly 3.5% mean iou on

semantic segmentation (Table 4.7). This might be directly caused by the excessive

number of imperfect and noisy labels, on which the semantic segmentation part is

being pre-trained. Nevertheless, the results on all three tasks remain competitive,

and we are able to perform all three of them in real-time simultaneously, on average

spending less than 13.5ms per a single image. We provide a few examples of

our approach in Figure 4.5.

Segm. Depth Surface Normals General
mIoU,% RMSE (lin),m RMSE (log) Mean Angle Median Angle Runtime,ms (mean/std)

38.66 0.566 0.209 23.95 17.74 13.4±0.1
42.02 0.565 0.205 − − 12.8±0.1

Table 4.7: Results on the test set of NYUDv2 of our single network predicting three
modalities at once with surface normals annotations from Silberman et al. (2012). The
speed of a single forward pass is measured on 640× 480 inputs. Baseline results (with a
single network performing only segmentation and depth) are in bold.
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4.4.2 Single Model – Two Datasets, Two Tasks

Next, we consider the case when it is undesirable to have a separate copy of the same

model architecture for each dataset. Concretely, our goal is to train a single model

that can perform semantic segmentation and depth estimation on both NYUD and

KITTI at once. To this end, we simply concatenate both datasets and amend the

segmentation branch to predict 46 labels (40 from NYUD and 6 from KITTI-6).

We follow the same training strategy, and after pre-training on the union of large

sets we fine-tune the model on the union of small training sets. Our network exhibits

no difficulties in differentiating between two regimes (Table 4.8) and achieves results

on the same level with two separate networks. In particular, the single network

shows 38.8% mean iou on NYUD (nearly 3.5% decrease against the NYUD-only

model) and 86.1% mean iou on KITTI (less than 1% decrease against the KITTI-

only model), while for depth estimation only linear RMSE drops significantly – by

0.25m and 0.2m on NYUD and KITTI, respectively.

NYUDv2 KITTI
Segm. Depth Segm. Depth
mIoU,% RMSE (lin),m RMSE (log) mIoU,% RMSE (lin),m RMSE (log)

38.76 0.59 0.213 86.1 3.659 0.190
42.02 0.565 0.205 87.0 3.453 0.182

Table 4.8: Results on the test set of NYUDv2, KITTI (for depth) and KITTI-6 (for
segmentation) of our single network predicting two modalities on both datasets together.
Baseline results (with separate networks per dataset) are in bold.

4.4.3 Dense Semantic SLAM

Finally, we demonstrate that quantities predicted by our joint network performing

depth estimation and semantic segmentation indoors can be directly incorporated

into an existing SLAM framework.

In particular, we consider SemanticFusion (McCormac et al., 2017), where

the SLAM reconstruction is carried out by ElasticFusion (Whelan et al., 2016),

which relies on RGB-D (RGB-image and depth map) inputs in order to find dense
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Point Cloud (ours) RGB Frame

Segm. Map (ours) Segm. Map (McCormac et al., 2017)

Figure 4.6: 3D reconstruction output using our per-frame depths and segmentation
inside SemanticFusion (McCormac et al., 2017). The segmentation map by McCormac
et al. (2017) was computed using Kinect depth measurements and a standalone semantic
segmentation network; in contrast, our results are based on a single network performing
both depth estimation and semantic segmentation at the same time.

correspondences between frames. A separate CNN, also operating on RGB-D inputs,

was used by McCormac et al. (2017) to acquire 2D semantic segmentation map

of the current frame. A dense 3D semantic map of the scene is obtained with the

help of tracked poses predicted by the SLAM system.

We consider one sequence of the NYUD validation set provided by the authors3,

and directly replace ground truth depth measurements with the outputs of our

network performing depth and segmentation jointly (Sect. 4.3.2). Likewise, we do

not make use of the authors’ segmentation CNN and instead exploit segmentation

predictions from our network with the results directly re-mapped into the 13-classes
3https://bitbucket.org/dysonroboticslab/semanticfusion/overview

https://bitbucket.org/dysonroboticslab/semanticfusion/overview
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domain (Couprie et al., 2013). We visualise dense surfel-based reconstruction along

with the dense segmentation and current frame in Fig. 4.6. Please refer to the

video material for the full sequence results.4

4.5 Conclusion

Based on the foundations laid in the previous chapter, here we extended the

architecture of Light-Weight RefineNet and presented a simple way of achieving real-

time performance for the joint task of depth estimation and semantic segmentation.

We showcased that it is possible (and indeed beneficial) to re-use large existing

models in order to generate proxy labels important for the pre-training stage of

a compact model. Moreover, we demonstrated how our method can be easily

extended to handle more tasks and more datasets simultaneously, while raw

depth and segmentation predictions of our network can be seamlessly used within

available dense SLAM systems. Our multi-task network solves two tasks of

semantic segmentation and depth estimation simultaneously in 12.8ms on average

on 640×480 inputs, and solves three tasks (with the addition of surface normals)

in 13.4ms on average.

It is important to re-emphasise that efficient and effective exploitation of visual

information using deep learning models is crucial for further development and

deployment of robots and autonomous vehicles, and the creation of practical vision

systems. While so far we have achieved these goals by manually designing necessary

components, in the next two chapters we will turn our attention to an automated

search of compact and accurate networks. In the next chapter in particular we will

once again showcase how semantic segmentation architectures can be transferred

to the task of depth estimation.

4https://youtu.be/qwShIBhaq8Y

https://youtu.be/qwShIBhaq8Y
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5
Neural Architecture Search of Efficient

Dense Per-Pixel Networks

In the last two chapters, we were designing efficient single-task and multi-task

fully convolutional networks manually through the removal of redundant layers

and replacement of expensive operations with cheaper alternatives in an otherwise

untouched encoder-decoder structure. In this chapter we will formally define a

search space of compact architectures, increasing the range of possible structural

changes that can be applied to the baseline network and considering a larger number

of operations. To discover high-performing networks we will move from manual

analysis to the usage of an automated algorithm.

In doing so we will be relying on reinforcement learning (R. S. Sutton and

Barto, 1998), abbreviated as RL. In the traditional RL setting an agent ( e.g. a

robot) interacts with its environment through a sequence of actions and receives a

reward signal based on its decisions. The agent’s goal is to improve its strategy of

selecting actions (also called “policy”) to maximise the expected reward. In our case,

in place of the agent we will have another neural network, called “controller”, with

the search space of compact segmentation architectures serving as the environment.

Each sequence of actions made by the controller will define a single design from

55



56 5.1. Related Work

this search space, with the controller receiving the reward based on the performance

of the corresponding architecture.

Our main focus here will be on semantic segmentation, although we will also

demonstrate the transferability of discovered architectures to another dense per-pixel

task of depth estimation. To reduce the computational burden, we will only search

for decoder structures given a pre-trained encoder part. Later in Chapter 6 we

will introduce a series of modifications to the search space that would allow us to

lessen the dependency on the fully-defined encoder.

We will further show that our methodology automatically discovers architectures

that perform better and faster than manually designed ones with a comparable

number of training parameters.

The results outlined in this chapter first appeared in the proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR

2019) under the title of ‘Fast Neural Architecture Search of Compact Semantic

Segmentation Models via Auxiliary Cells’ (Nekrasov et al., 2019a).1

5.1 Related Work

Traditionally, architecture search methods have been relying upon evolutionary

strategies (Angeline et al., 1994; Stanley and Miikkulainen, 2002; Stanley et al.,

2009), where a population of networks (oftentimes together with their weights) is

being continuously mutated with less promising networks being discarded. Since

these methods often require an extensive number of iterations, modern neuro-

evolutionary approaches (Real et al., 2017; H. Liu et al., 2018) greatly benefit

from available computational resources that facilitate search in much larger spaces

and permit mutations of whole layers.

Bayesian optimisation (BO) methods, on the other hand, have long been used

for hyper-parameter search (Snoek et al., 2012; Bergstra et al., 2013); they work

by estimating the probability density of an objective function (or its surrogate)
1The algorithm implementation and discovered models are available here: https://github.

com/DrSleep/nas-segm-pytorch

https://github.com/DrSleep/nas-segm-pytorch
https://github.com/DrSleep/nas-segm-pytorch


5. Neural Architecture Search of Efficient Dense Per-Pixel Networks 57

and selecting the most promising next candidate for the evaluation. While BO can

also find hyper-parameters of each individual layer in the given neural network,

reasoning about whole network structures and comparing different architectures in

BO are not trivial; these directions are at the centre of an ongoing work with few

kernel-based solutions already showing solid results in discovering high-performing

designs (Swersky et al., 2014; Kandasamy et al., 2018).

Most recently, neural architecture search (NAS) strategies based on rein-

forcement learning (Fig. 5.1) have become popular across various domains (Baker

et al., 2017; Zoph and Le, 2017; Zoph et al., 2018). Relying on enormous

computational resources, these algorithms comprise a separate neural network,

controller, that emits an architecture design and receives a scalar reward after the

architecture is trained on the task of interest. The controller is then updated to

maximise the reward of architectures it produces. Notably, thousands of iterations

and GPU-days are usually needed for convergence.

Controller

Sample

Train

Evaluate

Figure 5.1: High-level overview of NAS with RL: an architecture is first sampled from a
recurrent neural network, controller, and then trained on the meta-train set. Finally, the
validation score on the meta-val set is used as the reward signal to train the controller.

The first NAS work in image classification (Zoph and Le, 2017) emitted a full

description of the layers to use – including the number of input/output channels,

kernel sizes, strides, etc. To limit the search space Zoph et al. (2018) later proposed

to search only for two sets of operations – so-called, reduction and normal cells that

are stacked and arranged in multiple blocks to form the final network. In a similar

vein, H. Liu et al. (2018) defined so-called motifs that comprised several operations

in a unified block – those were used inside an evolutionary search algorithm and

underwent mutations depending on their fitness scores.
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Several other works have focused on making NAS methods more efficient. In

particular, Pham et al. (2018) unrolled the computational graph of all possible

architectures and allowed sharing the weights among different architectures. Since

this alleviated the need to re-train each sampled architecture from scratch, the

number of resources required to run the search process was dramatically reduced to

a single GPU. C. Liu et al. (2018) instead exploited a progressive strategy where the

network complexity was gradually increased, and the ranking network was trained

in parallel to predict the performance of a new architecture. A few other methods

have been built around continuous relaxation of the search problem. Particularly,

Luo et al. (2018) used an encoder to embed the architecture description into a

latent space, and an estimator to predict the performance of an architecture given

its embedding. Similar to Pham et al. (2018), H. Liu et al. (2019) initialised a

set of all possible architectures, but instead of relying on RL, applied continuous

relaxation to directly optimise a weighted average of all possible networks at once.

Although these methods succeed in reducing computational requirements, they

achieve so by significantly limiting the expressiveness of the search space, and

hence may result in a sub-optimal solution.

NAS approaches for semantic segmentation have followed in the footsteps of

NAS in image classification – in particular, L. Chen et al. (2018a) used random

search to find a single cell on top of a fully convolutional classifier, while C. Liu

et al. (2019) directly adapted the continuous learning relaxation method of H. Liu

et al. (2019) to find a whole network structure. Importantly, L. Chen et al. (2018a)

needed nearly 400 GPUs over the range of 7 days. In contrast, our presented

method is able to find compact segmentation models only in a fraction of that

time – in 4 days on 2 GPUs, which is more efficient by more than two orders of

magnitude. We further differ from C. Liu et al. (2019) in that we rely on RL, do

not perform weight sharing across architectures and, as in the previous chapters,

focus exclusively on compact networks for practical applications.
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5.2 Methodology

5.2.1 Overview

The focus of this chapter is on an automatic discovery of compact high-performing

fully convolutional architectures, able to run in real-time on a low-computational

budget, for example, on the Jetson platform. To this end, we are explicitly looking

for structures that not only improve the performance on the held-out set but also

facilitate the optimisation during the training stage.

As in the previous chapters we consider the encoder-decoder type of a fully-

convolutional network (Long et al., 2015). While the encoder is still a pre-trained

image classifier, the decoder structure here is emitted by the controller network; we

only search for the decoder part due to computational limitations and the fact that

the majority of gains in semantic segmentation came from better decoder designs –

e.g. RefineNet (G. Lin et al., 2017), PSPNet (Zhao et al., 2017), DeepLab (L. Chen

et al., 2018b).

The controller generates the connectivity structure between the encoder and the

decoder, as well as the sequence of operations (that form the so-called cell) to be

applied on each connected path. The same cell structure is used to form an auxiliary

classifier, the goal of which is to provide intermediate supervision and to implicitly

over-parameterise the model. Over-parameterisation is believed to be the primary

reason behind the successes of deep learning models, and a few theoretical works

have already addressed it in simplified cases (Soltanolkotabi et al., 2018; Du and

Lee, 2018). Along with empirical results, this is the primary motivation behind the

described approach. We discuss the details of the auxiliary cell later in Sect. 5.2.4.

With the above in mind, we devise a search strategy that permits discovering

high-performing architectures within a small number of days using only few GPUs.

Concretely, we pursue two goals here:

i.) To prevent ‘bad’ architectures from being trained for long; and

ii.) To achieve a solid performance estimate as soon as possible.
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To tackle the first goal, we divide the training process during the search into two

stages. During the first stage, we fix the encoder’s weights and pre-compute its

outputs, while only training the decoder part. For the second stage, we train the

whole model end-to-end. We validate the performance after the first stage and

terminate the training of unpromising architectures. For the second goal, we employ

Polyak averaging (Polyak and Juditsky, 1992) and knowledge distillation (Hinton

et al., 2014) to speed-up the convergence.

To summarise, our main contribution in this chapter is an efficient neural

architecture search strategy for semantic segmentation that (i.) allows to sample

compact high-performing architectures, which, in turn, (ii.) can be used in real-

time on low-computing platforms, such as JetsonTX2. In particular, the above

points are made possible by:

• Devising a progressive strategy that eliminates poor candidates early in the

training;

• Developing a training schedule for semantic segmentation that quickly provides

reliable results via the means of knowledge distillation and Polyak averaging;

• Searching for an over-parameterised auxiliary cell that facilitates the training

process and is obsolete during inference.

5.2.2 Problem Formulation

We consider a dense prediction task T , for which we have multiple training tuples

{(Xi, Yi)}, where both Xi and Yi are 3-dimensional tensors with equal spatial and

arbitrary third dimensions. In this work, Xi is a 3-channel RGB image, while Yi
is a C-channel one-hot segmentation mask with C being equal to the number of

classes. Furthermore, we rely on a mapping f : X → Y with parameters θ, that is

represented by a fully convolutional neural network. We assume that the network

f can further be decomposed into two parts: e – representing the encoder, and

d – for the decoder. We initialise the encoder e with weights from a pre-trained

classification network consisting of multiple down-sampling operations that reduce

the spatial dimensions of the input. The decoder part, on the other hand, has access
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to several outputs of the encoder with varying spatial and channel dimensions. The

search goal is to choose which feature maps to use and what operations to apply

to them. We next describe the decoder search space in full detail.

5.2.3 Search Space

As mentioned above, the decoder has access to multiple layers from the pre-trained

encoder with varying dimensions. To keep sampled architectures compact and of

approximately equal size, each encoder output undergoes a single 1×1 convolution

with the same number of output channels. We rely on a recurrent neural network,

controller, to sequentially produce pairs of indices of which layers to use, and what

operations to apply on them. In what follows, we use the term block to denote a

single layer or a sequence of several layers and the term branch – to denote a set of

one or two operations; in turn, multiple connected branches give rise to a cell.

Connectivity Structure

To form connections inside the decoder part, we i.) first sample with replacement

a pair of indices of the encoder layers, ii.) apply the same set of operations (cell)

on each sampled index, iii.) sum up the outputs (Fig. 5.2), and iv.) add the

resultant layer into the sampling pool such that it can be chosen during the next

step. In the end, all non-sampled summation outputs are concatenated, before

being fed into a single 1× 1 convolution to reduce the number of channels followed

by the final classification layer.

cell

cellx2

x1
y

Figure 5.2: Block structure of the decoder. The same cell operation is applied to two
different layers specified by the connectivity configuration. If the two layers have different
sizes, the smaller one is scaled up via bilinear upsampling to match the larger one.



62 5.2. Methodology

Cell Structure

The cell design is similarly generated by sampling a set of operations and corre-

sponding indices. Nevertheless, there are several notable differences:

1. The operation at each position can vary;

2. A single operation is applied to the input without any aggregation operator;

3. After that, two indices and two operations are being sampled with replacement,

with the corresponding outputs being summed up;

4. The outputs of each operation along with their summation layer are added

into the sampling pool and can be sampled during the next step.

An example of the cell structure with its complete search space is illustrated in

Fig. 5.3.

op1x
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Figure 5.3: Example of the cell structure. Digits on top of the upper left corner of
each operator are the indices of layers. Except for the layer after the first operator, the
output layers of all other operators can be sampled at any subsequent step. The solid
black lines indicate the used paths and dashed grey lines are other unused possible paths.
The cell configuration for the above cell is [op1, [1, 0, op2, op3], [4, 3, op4, op5], [2, 0,
op6, op7]], where the first two values in each block of four (except for op1) indicate the
chosen layers and the last two – the corresponding operations applied to each layer, e.g.
the branch [4, 3, op4, op5] is equivalent to op4(layer4) + op5(layer3).
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Operations

Based on the existing research in semantic segmentation, we consider 11 operations:

• conv 1× 1,

• conv 3× 3,

• separable conv 3× 3,2

• separable conv 5× 5,

• global average pooling3 followed by upsampling and conv 1× 1,

• conv 3× 3 with dilation rate 3,

• conv 3× 3 with dilation rate 12,

• separable conv 3× 3 with dilation rate 3,

• separable conv 5× 5 with dilation rate 6,

• skip-connection,

• zero-operation that effectively nullifies the path.

We present an example of the search layout with 2 decoder blocks and 2

cell branches in Fig. 5.4.

5.2.4 Search Strategy

We randomly divide the training set into two disjoint sets – meta-train and meta-

val. The meta-train subset is used to train the sampled architecture on the given

task (i.e., semantic segmentation), whereas meta-val – to evaluate the trained

architecture and provide the controller with a scalar reward. Given the sampled

sequence, its log-probabilities and the reward signal, the controller is optimised via

a popular RL algorithm – proximal policy optimisation (PPO) (Schulman et al.,

2017). Hence, there are two training processes present: inner – optimisation of the

sampled architecture on the given task, and outer – optimisation of the controller.

In other words, the inner loop evaluates how well a chosen architecture can perform
2A separable k×k convolution is a k×k depthwise convolution (Fig. 4.1) followed by 1×1

standard convolution.
3A global pooling performs its operation (e.g. average or max) over the whole spatial size of

the input.
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Figure 5.4: Example of the encoder-decoder auxiliary search layout. The controller
RNN (bottom) first generates connections between the encoder and the decoder (top left),
and then samples locations and operations to use inside the cell (top right). All the cells
(including the auxiliary cell) share the emitted design. clf stands for classifier, and it is a
single convolutional layer with the number of output channels equal to the number of
output classes. The decisions made by the controller RNN are highlighted in red.
In this example, the controller first samples two indices (block1 and block3 ), both of
which pass through the corresponding cells, before being summed up to create block4.
The controller then samples block2 and block3 that are merged into block5. Since block4
was not sampled, it is concatenated with block5 and fed into 1×1 convolution followed
by the final classifier. The output of block4 is also passed through an auxiliary cell for
intermediate supervision. To emit the cell design, the controller starts by sampling the
first operation applied on the cell input (op1 ), followed by sampling of two indices –
index0, corresponding to the cell input, and index1 of the output layer after the first
operation. Two operations – op2 and op0 – are applied on each index, respectively, and
their summation serves as the cell output.

by optimising its weights, while the outer loop learns to sample good architectures

by optimising the controller via RL. We next concentrate on the inner loop.

Progressive Stages

We divide the inner training process into two stages. During the first stage,

the encoder weights are fixed and its outputs are pre-computed with only the

decoder being trained. Requiring only few seconds for each architecture, this leads
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to a quick adaptation of the decoder weights and a reasonable estimate of the

performance of the sampled design.

We exploit a simple heuristic to decide whether to continue training the sampled

architecture in the second stage or not. Concretely, we proceed to the second

stage if the current reward value is larger than the running mean of rewards seen

so far. Otherwise, we terminate the training process with probability 1 − p; p is

initially set to 0.9 and annealed throughout the search. This heuristic filters out

unpromising architectures after the first stage, while still encouraging exploration

during early iterations akin to the ε-greedy strategy often used in the multi-armed

bandit problem (Watkins, 1989).

Fast Training via Knowledge Distillation and Weights’ Averaging

Semantic segmentation models are notable for requiring many iterations to converge.

Partially, this is addressed by initialising the encoder part from a pre-trained

classification network. Unfortunately, no such thing exists for the decoder.

Fortunately, though, we can explore several alternatives that provide faster

convergence. Besides tailoring our optimisation hyper-parameters, we rely on two

more tricks: firstly, we keep track of the running average of the parameters during

each stage and apply them before the final validation. This is a so-called Polyak

averaging (Polyak and Juditsky, 1992), an effective and efficient way of quickly

attaining good optima. Secondly, we append an additional l2−loss term between

the logits of the current architecture and a pre-trained teacher network, encouraging

the current architecture to mimic the teacher – it is an example of knowledge

distillation (Hinton et al., 2014) also used in Chapter 4 to acquire proxy ground

truth data. We can either pre-compute the teacher’s outputs beforehand or acquire

them on-the-fly in case the teacher’s computations are negligible.

The combination of both of these approaches allows us to receive a very reliable

estimate of the performance of the semantic segmentation model in just few minutes.
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Intermediate Supervision via Auxiliary Cells

We further look for ways of easing optimisation during the fast search, as well as

during a longer training of semantic segmentation models. Thus, still aligning with

the goal of having a compact but accurate model, we aim to find ways of performing

steps that are beneficial during training and obsolete during evaluation.

One approach that we consider here is to rely on intermediate supervision

where the supervisory signal is present at some middle layers. As visualised in

Fig. 5.4, we apply intermediate supervision on the outputs of auxiliary cells after

each summation between the pairs of the main cells. The auxiliary cell is identical

to the main cell and can either be conditioned to output ground truth directly

or to mimic the teacher’s network predictions (or the combination of the above

two). At the same time, it does not influence the output of the main classifier

either during the training or testing and merely provides better gradients for the

rest of the network. In the end, the reward per the sampled architecture will still

be decided by the output of the main classifier. For simplicity, we only apply the

segmentation loss on all the auxiliary outputs.

The motivation behind searching for cells that may also serve as intermediate

supervisors stems from ever-growing empirical (and theoretical under certain

assumptions) evidence that deep networks benefit from over-parameterisation during

training (Soltanolkotabi et al., 2018; Du and Lee, 2018). While auxiliary cells provide

an implicit notion of over-parameterisation, we could have explicitly increased the

number of channels and then resorted to pruning. The downside of the pruning

methods is that they tend to result in unstructured networks often carrying no

tangible benefits in terms of the runtime, whereas our solution simply permits

omitting unused layers during inference.

5.3 Experiments

We conduct extensive experiments on PASCAL VOC (Everingham et al., 2010;

Hariharan et al., 2011). As commonly done, we keep 10% of those images for



5. Neural Architecture Search of Efficient Dense Per-Pixel Networks 67

validation of the sampled architectures and computation of the reward signal. For

the first stage, we pre-compute the encoder outputs on 4000 images and store

them in-memory for faster processing.

The controller is a two-layer recurrent LSTM (Hochreiter and Schmidhuber,

1997) neural network with 100 hidden units. All the units are randomly initialised

from a uniform distribution. We use PPO (Schulman et al., 2017) with the learning

rate of 0.0001 for the controller optimisation.

The encoder part of our network is MobileNet-v2 (Sandler et al., 2018), pretrained

on MS COCO (T. Lin et al., 2014) for semantic segmentation using the Light-

Weight RefineNet decoder (Chapter 3). We omit the last layers and consider

four outputs from layers 2, 3, 6, 8 as the inputs to the decoder; 1×1 convolutional

layers used for the adaptation of the encoder outputs have 48 output channels

during search and 64 during training.

The number of times pairs of layers are sampled in the decoder is set to 3, allowing

the controller to recover such encoder-decoder architectures as FCN (Long et al.,

2015) and RefineNet (G. Lin et al., 2017). To further keep the number of all possible

architectures to a feasible amount, we also set to 3 the number of times the locations

are sampled inside the cell. All decoder weights are randomly initialised using the

Xavier scheme (Glorot and Bengio, 2010). To perform knowledge distillation, we

use Light-Weight RefineNet-152 and apply `2−loss with the coefficient of 0.3 which

was set using the grid search. The knowledge distillation outputs are pre-computed

for the first stage and omitted during the second one in the interests of time. Polyak

averaging is applied with the decay rates of 0.9 and 0.99, correspondingly. Batch

normalisation statistics are updated during both stages.

5.3.1 Search Results

For the inner training of the sampled architectures, we devise a fast and stable

training strategy: we exploit the Adam learning rule (Kingma and Ba, 2014) for

the decoder part of the network, and SGD with momentum – for the encoder. In

particular, we use the learning rates of 3e−3 and 1e−3, respectively (lower for the
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encoder since it is already pre-trained). We pre-train each sampled architecture

for 5 epochs on the first stage, and for 1 on the second (in case the stopping

criterion is not triggered). As the reward signal, we consider the geometric mean

of three quantities: namely,

i.) mean intersection-over-union (mean IoU) (Sect. 2.1), or Jaccard Index (Ev-

eringham et al., 2010),

ii.) frequency-weighted IoU, that scales each class IoU by the number of

pixels present in that class, and

iii.) mean-pixel accuracy (Sect. 2.1), that averages the number of correct pixels

per each class. When computing these metrics, we do not include the background

class as it tends to skew the results due to a large number of pixels belonging to

the background. As mentioned above, we keep the running mean of rewards after

the first stage to decide whether to continue training a sampled architecture.

We visualise the reward progress during both stages in Figure 5.5 and compare

it with the random selection of architectures. The quality of the architectures

discovered by the RL-based controller grows with time, while the quality of those

selected randomly stays nearly the same as expected.

We further evaluate the impact of the inclusion of Polyak averaging, auxiliary

cells and knowledge distillation across each training stage. To this end, we randomly

sample and train 140 architectures. We visualise the distributions of rewards

in Fig. 5.6. All the tested settings significantly outperform the baseline in both

stages, and the highest rewards in the second stage are attained when all the

above components are present.

5.3.2 Effect of Intermediate Supervision via Auxiliary Cells

At the end of the search process, we select 10 discovered architectures with the

highest rewards and proceed by carrying out additional ablation studies aimed to

estimate the benefit of the proposed auxiliary scheme.

In particular, we train each architecture for longer: i.e. for 20 epochs on BSD

together with PASCAL VOC followed by another 30 epochs on PASCAL VOC only.



5. Neural Architecture Search of Efficient Dense Per-Pixel Networks 69

[0,400]

(400,800]

(800,1200]

(1200,1600]

0.3 0.4 0.5 0.6 0.7 0.8
Reward

S
ea

rc
h 

Ite
ra

tio
n

RL Stage−1

RL Stage−2

RS Stage−1

RS Stage−2

Figure 5.5: Distribution of rewards per each training stage for reinforcement learning
(RL) and random search (RS) strategies. Higher peaks correspond to higher density.
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Figure 5.6: Distribution of rewards during each training stage of the search process
across setups with Polyak averaging (Polyak), intermediate supervision through auxiliary
cells (AUX) and knowledge distillation (KD).

For simplicity, we omit Polyak averaging and knowledge distillation. Three distinct

setups are being tested: whether intermediate supervision helps at all and whether

the auxiliary cell is superior to a plain single-layer classifier.
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The results for these ablation studies are in Fig. 5.7, where we compare the

effect of intermediate supervision with an auxiliary cell (cell) against the supervision

with a single layer classifier (clf) and no intermediate supervision at all (none).

Intermediate supervision helps to achieve significantly higher mean IoU values for all

the architectures, with the inclusion of the auxiliary cell leading to 8 best results out

of 10 and 3 absolute best numbers across all the setups with nearly 73% mean iou.
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Figure 5.7: Ablation studies on the value of intermediate supervision with an auxiliary
cell (cell), a single-layer classifier (clf), or no intermediate supervision (none). Each tick
on the x-axis corresponds to a different architecture.

5.3.3 Relation between search rewards and training per-
formance

We further measure the correlation between the rewards acquired during the search

and mean IoU attained by the same architectures trained for longer. To this end, we

randomly sample 30 architectures out of those explored by the controller: for a fair

comparison, we sample 10 architectures with poor search performance (with rewards

being less than 0.4), 10 with medium rewards (between 0.4 and 0.6), and 10 with high

rewards (> 0.6). We train each architecture on BSD+VOC and VOC as in Sect. 5.3.2,

rank each according to its rewards and mean IoU, and measure the Spearman’s rank

correlation coefficient. As visible in Fig. 5.8, there is a strong positive correlation of
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more than 0.92 present between the rewards after each stage, as well as between

the final reward and mean IoU. This signals that our search process can reliably

differentiate between poor-performing and well-performing architectures.
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Figure 5.8: Correlation between rewards acquired during search stages (a) and mean
IoU after full training (b) of 30 architectures on BSD+VOC/VOC.

5.3.4 Full Training Results

Finally, we choose 3 best performing architectures from Sect. 5.3.2 and train

each on the full training set, augmented with annotations from MS COCO (T.

Lin et al., 2014). The training setup is analogous to the aforementioned one

with the first stage being trained for 30 epochs (on COCO+BSD+VOC), the

second stage – for 50 (BSD+VOC), and the last one – for 100 (VOC only). After

each stage, the learning rates are halved. Additionally, halfway through the last

stage we freeze the batch norm statistics and divide the learning rate in half.

We exploit intermediate supervision via auxiliary cells with the coefficients of

0.3, 0.25, 0.2, 0.15 across the stages.

Quantitative results are given in Table 5.1.4 The architectures discovered by our

method achieve competitive performance in comparison to other state-of-the-art

compact models (with the increase of 1.1−1.8% in mean iou) and even do so with a
4Per-class measures are provided in Appendix B.
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Model Val mIoU,%, MAdds,B Params,M Output Res Runtime,ms (JetsonTX2/1080Ti)
DeepLab-v3-ASPP (Sandler et al., 2018) 75.7 5.8 4.5 32×32 69.67±0.53 8.09±0.53

DeepLab-v3 (Sandler et al., 2018) 75.9 8.73 2.1 64×64 122.07±0.58 11.35±0.43
RefineNet-LW 76.2 9.3 3.3 128×128 144.85 ± 0.49 12.00±0.26

arch0 78.0 4.47 2.6 128×128 109.36±0.39 14.86±0.31
arch1 77.1 2.95 2.8 64×64 67.57±0.54 11.04±0.23
arch2 77.3 3.47 2.9 64×64 64.60±0.33 8.86±0.26

Table 5.1: Results on the validation set of PASCAL VOC after full training on
COCO+BSD+VOC. All networks share the same backbone - MobileNet-v2. FLOPs and
runtime are being measured on 512× 512 inputs. For DeepLab-v3 we use official models
provided by the authors.

significantly lower number of floating point operations for the same output resolution

– e.g. with 2.95B operations for 64×64 output resolution in arch1 against 8.73B

operations in DeepLab-v3 (Sandler et al., 2018). At the same time, the found

architectures can be run in real-time both on a generic GPU card (here 1080Ti)

and an embedded device such as JetsonTX2.5 Qualitatively (Fig. 5.9), our model

is able to better recognise similar and easily confused classes (e.g. horse – dog

in row 3, and cat – dog in row 5), better segment foreground from background

and avoid spurious predictions (rows 1,2,4,5).

We visualise the structure of the highest performing architecture (arch0 ) in

Fig. 5.10.6 With multiple branches encoding information of different scales, it

resembles several prominent blocks in semantic segmentation, notably the ASPP

module (L. Chen et al., 2018c). Importantly, the cell found by our method differs in

the way the receptive field size is controlled. Whereas ASPP solely relies on various

dilation rates, here convolutions with different kernel sizes arranged in a cascaded

manner allow more flexibility. Furthermore, this design is more computationally

efficient and has a higher expressiveness as intermediate features are easily re-used.

5.3.5 Transferability to depth estimation

We further apply the top-discovered architectures to the task of depth estimation

on the NYUDv2 (Silberman et al., 2012) dataset. As in Chapter 4, we only use

25K training images with depth annotations from the Kinect sensor, and report
5Please refer to Appendix C for the note regarding the Jetson’s runtime.
6Other architectures are visualised in Appendix D.
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Image GT arch0 RF-LW DL-v3

Figure 5.9: Inference results of (arch0 ) on the validation set of PASCAL VOC, together
with Light-Weight-RefineNet (RF-LW ) and DeepLab-v3 (DL-v3 ). All the models rely on
MobileNet-v2 as the encoder. ‘GT’ stands for ‘ground truth’.

validation results on 654 images in Table 5.2. Among other compact real-time

networks, we achieve significantly better results across all the metrics without any

additional tricks and no extra information. In particular, arch1 attains absolute

best results on 6 out 8 metrics, showing the joint best in accuracy at the threshold

of 1.253 and slightly inferior results in RMSE (lin) – 0.526m against 0.523m of arch0

and 0.525m of arch2. While CReaM (Spek et al., 2018) is still the smallest network

with just 1.5M parameters (against 2.6M, 2.8M and 2.9M for each arch, respectively),

its numbers are significantly lower than those of the discovered architectures. The

discovered architectures further outperform the manually designed Multi-Task Light-
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Figure 5.10: Automatically discovered decoder architecture (arch0 ). We visualise the
connectivity structure between encoder and decoder (left), and the cell design (right).

⊕
represents an element-wise summation operation applied to each branch scaled to the
highest spatial resolution among them (via bilinear interpolation), while ‘gap’ stands for
global average pooling.

Weight RefineNet (Chapter 4), which also used extra information for training in

the form of semantic segmentation annotations. A few qualitatives examples of

our approach are provided in Appendix B.

Model
Metric arch0 arch1 arch2 Multi-Task RF-LW CReaM (Spek et al., 2018)

RMSE (lin) 0.523 0.526 0.525 0.565 0.687
RMSE (log) 0.184 0.183 0.189 0.205 0.251
abs rel 0.136 0.131 0.140 0.149 0.190
sqr rel 0.089 0.086 0.093 0.105 −
δ < 1.25 0.830 0.832 0.820 0.790 0.704
δ < 1.252 0.967 0.968 0.966 0.955 0.917
δ < 1.253 0.992 0.992 0.992 0.990 0.977
Parameters, M 2.6 2.8 2.9 3.0 1.5

Table 5.2: Quantitative results on the validation set of NYUDv2. For RMSE, abs rel
and sqr rel lower values are better, whereas for accuracy (δ) higher values are better.

5.4 Conclusion

There is little doubt that a manual design of neural architectures is a tedious and

difficult task to handle, especially without significant domain knowledge. While

we did rely on the manual design in the previous chapters, we only considered a
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limited set of changes that could be applied to an existing network. In contrast,

in this chapter we introduced a much larger search space of compact architectures

and used reinforcement learning to traverse it. The key component of our approach

that enabled an efficient traversal is a quick evaluation of the potential of a

given segmentation network. In particular, a combination of Polyak averaging,

knowledge distillation, auxiliary intermediate supervision and progressive training

led to significantly faster convergence of promising architectures and to the early

stopping of unpromising ones. We achieved competitive performance to manually

designed state-of-the-art compact architectures on PASCAL VOC while searching

only for 4 days on 2 GPU cards. Moreover, the best found architectures also

attained excellent results on another dense per-pixel task of depth prediction.

The major limitation of the current approach lies in its reliance on the fully pre-

trained encoder that already contains nearly 2M parameters. At the same time, we

cannot simply extend the algorithm to also search for the encoder part, as it would

require to make an excessively large number of decisions by the controller. Instead

of that, in the next chapter we will re-think the definitions of the search space and

the cell design, which would allow us to search for high-performing and extremely

compact segmentation architectures with less than half a million parameters.
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6
Neural Architecture Search of Compact

Segmentation Networks

In the last chapter, we presented an automated method of finding real-time and

high-performing dense per-pixel networks. We did so by searching for the decoder

part given a fully pre-trained encoder. Because of that, the lower bound on the

number of parameters was already defined by the size of the encoder with nearly 2M

weights. In this chapter, we will propose several modifications to the search space

that would reduce the number of required pre-trained parameters to just 60K.

Instead of searching for a single cell design with several sets of operations inside

it, we will introduce the notion of a template consisting of just 3 operations. For

each generated architecture, we will generate a set of templates and predict which

template to apply to each pair of input layers (also predicted). In addition to that,

we will predict the number of times the given template must be stacked and whether

to spatially downsample feature maps inside the template. All the decisions will

once again be made by the reinforcement learning-based controller.

As in the previous chapters, our focus will be on both real-time and high-

performing networks, but, unlike the previous chapters, we will aim to discover

extremely compact networks with fewer than a million training parameters. Because

of that we will consider two semantic segmentation benchmarks with a relatively

77
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low number of diverse training samples – namely, popular urban driving datasets

CamVid (Brostow et al., 2009) and CityScapes (Cordts et al., 2016).

The results outlined in this chapter first appeared in the proceedings of the

IEEE/PAMI-TC Winter Conference on Applications of Computer Vision (WACV

2020) under the title of ‘Template-Based Automatic Search of Compact Semantic

Segmentation Architectures’ (Nekrasov et al., 2020b).1

6.1 Overview

In the previous chapter, we introduced the neural architecture search problem,

where the space of thousands of different architectures is traversed with the help of

reinforcement learning (Fig. 5.1). On top of that, we built an automated approach

for discovering segmentation architectures. Since we relied on the pre-trained

classifier in the encoder part, our discovered architectures already contained a

large number of parameters.

A naive approach of overcoming this limitation may first include the search

of extremely compact classification networks followed by the search of operations

specific for semantic segmentation. While potentially working, it would require a

significant amount of resources to carry out two instantiations of NAS and might

be sub-optimal as the structures found for image classification may still possess

redundant operations that are not necessary for semantic segmentation. Another

way might include an end-to-end search of segmentation architectures: in such a

case our reinforcement learning-based methodology will not fare well as it would

require to make an exceedingly large number of sequential decisions.

As a reminder, in the previous chapter we introduced the notion of a cell,

which is a sequence of several operations arranged in a certain design. The

design together with the operations were predicted by the RL-based controller.

Importantly, the same cell design was used across various locations in the decoder,

and individual combinations of cell operations could not be re-applied elsewhere
1The algorithm implementation and pre-trained discovered models are available here: https:

//github.com/DrSleep/nas-segm-pytorch

https://github.com/DrSleep/nas-segm-pytorch
https://github.com/DrSleep/nas-segm-pytorch
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in the network. Here instead we will propose a more flexible way of generating

sequences of operations. In particular, in place of a single long sequence (i.e. cell), we

will generate several short sequences (of 3 operations), which we will call templates.

Each template can be applied at any of the predicted locations and can be stacked

multiple times. Concretely, at each decision step, the search algorithm will predict

two locations of layers to be used as template inputs, the template to use, the

number of repetitions that the template will be used for and the downsampling

factor (stride) of the first operations in the template. As we will demonstrate below,

such an approach leads to flexible representations of end-to-end architectures for

semantic segmentation and reduces the number of decisions to make, hence allowing

us to rely only on few layers of a pre-trained classifier.

6.2 Methodology

As the stem of our architecture we consider three initial residual blocks of MobileNet-

v2 (Sandler et al., 2018) – in total, they contain only 60K parameters and reduce

the spatial resolution to 1
8 . This aggressive downsampling at the beginning is a

common feature among most fully convolutional networks. Notably, we will generate

a significantly larger portion of the network automatically.

From the stem, we record two outputs with 1
4 and 1

8 spatial resolutions of the

input, respectively. Given those, for the rest of the network we use a recurrent neural

network, controller, to predict actions aij at each step i of block j. We begin from the

sequence of actions used in the last chapter (Sect. 5.2.3) that can be written as follows:

A = [loc1, loc2, op1, op2], where loci is the layer the operation opi will be applied to.2

6.2.1 Hierarchical template modelling

First of all, we note that the definition of the action sequence above is restrictive:

if we were to re-apply the same arrangement of operations somewhere in the

network again, we would need to sample it again, too – which would be wasteful.

To this end, we separate the sampling process of locations and operations. In
2From here on we omit the block indices and use capitals to denote the sequence of tokens.
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Figure 6.1: We generate M templates each of which takes two inputs and produces one
output. The template comprises two individual operations (OPs) and one aggregation
operation (AGG OP).

particular, we generate a set of templates of operations that can be plugged

into the network at multiple locations. Inside the template, we also include the

aggregation operation opagg (to be either per-pixel summation or channel-wise

concatenation). The template takes two inputs and produces one output. Each

input undergoes the corresponding operation, and the aggregation operation is used

on the intermediate outputs (Fig. 6.1). Thus, any template can be written as follows:

T = [op1, op2, opagg]. In cases where inputs have an unequal number of channels, the

output channel dimension of each operation is set to the largest among the inputs.

Having generated the templates, we move on to generating the network structure:

in particular, we sample (with replacement) two locations out of the sampling pool

(initialised with two stem outputs), and the index of the template (Fig. 6.2) –

A = [loc1, loc2, idT ]. The template’s output is added into the sampling pool and

the process is repeated multiple times. In the end, we concatenate all non-sampled

outputs from the sampling pool, reduce their channel dimension with the help of

1×1 convolution and predict per-pixel labels with a single 3×3 convolutional layer.

The benefit of using templates in this approach is that the number of decisions

to be made increases slowly with the number of blocks: e.g. for N blocks and M

templates the length of the sequence that describes an architecture would be equal to



6. Neural Architecture Search of Compact Segmentation Networks 81

Locations

Block 
0

...

0

1

2

Templates

0

1

2

0 1

0

Block 
N-1 

1 2

1

Figure 6.2: We generate N blocks by sampling two locations and one template applied
to them.

(2+ 3) ·N for the baseline solution introduced in the previous chapter (two locations

and three operations), and to (2 + 1) ·N + 3 ·M for the template one (two locations

and one template index together with three operations per each template). Hence,

having the number of templates lower than 2/3 of the number of blocks would

require fewer decisions for the same network depth. At the same time, the template

modelling would allow the controller to efficiently re-use already predicted designs.

6.2.2 Increasing the number of templates

While the template modelling has its benefits, it still possesses one significant

disadvantage: in order to generate a deeper network, we can only increase the

number of blocks, which, in turn, would lead to significantly more decisions to be

made and would be no different from the way of scaling up the approach from

Chapter 5. Hence, we propose to include an additional parameter in the structure

generator at the cost of having N more decisions to be made. Concretely, we

generate k – the number of times the template must be repeated3; accordingly, the

action sequence then becomes A = [loc1, loc2, idT , k]. While we could have also

abstracted away k into the template definition to reduce the number of decisions,

we chose not to because at different blocks it might be preferable to vary k.
3To keep the number of parameters of the generated architectures low we will consider k to

take values from 1 to 4 in the experiments.
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j 

2 0

1

1

1

Figure 6.3: A template can be recursively applied multiple times (with non-shared
weights): the output of the previous template becomes the first input to the current
one, and the final output is considered as the block’s output. New instantiations of the
template together with connections are depicted with dotted lines.

The process of repeating the template is as follows: after the template is applied

on two sampled locations and the template’s output is recorded, the second input and

the template’s output are considered as another two inputs to a new instantiation

of the same template with non-shared weights (Fig. 6.3). This is repeated k times,

and the last output is appended to the sampling pool.

6.2.3 Adding strides

Up until now we did not make any assumptions about the strides of the operations

(apart from the fixed stem block). Nevertheless, in order to generate a complete

segmentation architecture it is important to consider the downsampling factors.

Keeping all consecutive operations at a constant stride would not fare well as

the common wisdom suggests that in order to extract better features, we need to

keep reducing the spatial dimensions while increasing the number of channels

until a certain point.

Taking this into account, we append an additional decision to make in the

sequence definition: the stride prediction – either 1 or 2. If the stride is 2, we

decrease spatial dimensions and multiply the channel dimension by a predefined

constant that would allow us to control the compactness of the generated network if
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needed. We only predict strides for the first half of all the blocks and assume that the

rest of them uses stride 1. Analogously, to deal with the inputs of varying resolutions

when applying an aggregation operation, we downsample the inputs to the lowest

resolution among them for the first half and upsample to the largest resolution –

for the rest. This is similar to the encoder-decoder architecture design that fares

well in semantic segmentation. The stride prediction is taken out of the template

definition to allow the same template to be used with varying strides at different

locations. Likewise, it is straightforward to add the prediction of dilation rates per

template to recover the dilated decoder approach (L. Chen et al., 2018b) if needed.

Our final string describing a complete architecture can be written as follows:

[loc1, loc2, idT , k, s]×N , whereN is the number of blocks and {T i = [opi1, opi2, opiagg]}Mi=1

are M templates. As can be easily seen, we decomposed the original decision

sequence into multiple reusable components.

6.3 Search Experiments

6.3.1 NAS setup

As the stem of the network, we use three first blocks of MobileNet-v2 (Sandler

et al., 2018) pre-trained on ImageNet (Deng et al., 2009); two outputs from the

second and third blocks with 24 and 32 channels and the spatial resolution of 1
4

and 1
8 from the original size, respectively, are added into the initial sampling pool.

We double the number of channels after each spatial downsampling operation in

the discovered structure. In the beginning, all the layers in the sampling pool are

transformed to have 48 channels with the help of 1×1 convolution. The pre-classifier

layer has the same number of 48 channels.

To keep the number of potential architectures to discover at a reasonable level,

we set the number of templates and the number of layers to 3 and 7, correspondingly.

The maximum number of times the template can be used sequentially is set to 4.

As the search dataset, we consider the training split of CityScapes (Cordts

et al., 2016) with 2975 images randomly divided into meta-train (2677, or 90%) and

meta-val (298). We resize all the images to have a longer side of 1024 and train on
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square crops of 321×321. Each sampled architecture is trained for 10 epochs and

validated twice every 5 epochs. For the first five epochs, we pre-compute the stem

outputs and only train the generated part of the network; for the second five, the

whole network is trained end-to-end. As the reward we employ the geometric mean

of mean iou, mean accuracy and frequency-weighted iou as done in the previous

chapter (Sect. 5.3.1). To speed up the convergence of sampled architectures, we

rely on Adam with the learning rate of 7e−3, used on mini-batches of 32 examples.

We consider the following set of operations

• separable conv 3× 3,

• separable conv 5× 5,

• global average pooling followed by upsampling and conv 1× 1,

• max-pool 3× 3,

• separable conv 5× 5 with dilation rate 6,

• skip-connection.

Two aggregation operations that we rely upon are summation and channel-wise con-

catenation.

To train the controller, we use PPO (Schulman et al., 2017) with the learning

rate of 0.0001. In total, we sample, train and evaluate over 2000 architectures

in 8 days using two 1080Ti GPUs.

6.3.2 Analysis of Search Results
Does the controller discover better architectures with time?

We first study the progress of rewards through time. The median reward is

steadily increasing with more epochs as can be inferred from Fig. 6.4. While

most architectures are tightly clustered together, there are several notable outliers

on the far right with the reward of near 0.55 that we will explore in the full

training experiments in Sect. 6.4.
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Figure 6.4: Distribution of rewards attained by architectures sampled by the controller.
For compactness of the plot, we only visualise rewards greater than or equal to 0.40.

What is the controller policy with respect to downsampling?

We also consider how the resolution of the architecture is related to its reward

score. To this end, we first analyse how often the controller chose to downsample4.

Considering that all outcomes are equally likely in the beginning, one would expect

the extreme resolutions of 1 and 1
8 to be less present. As seen in Fig. 6.5, it is

indeed what happens with the controller at the start of the training. Nevertheless,

by the end of the search process, the controller becomes far too conservative with

regards to downsampling and is more likely to pass on actions that reduce the

spatial dimensions. This raises the question of how the downsampling factor

in the generated architecture relates to the reward?

In an attempt to answer that question, we visualise the reward distribution of
4With 7 blocks the maximum number of times downsampling can be performed is b7/2c = 3.

Note that here we do not take into account the resolution of two stem layers ( 1
4 and 1

8 , respectively).
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Figure 6.5: Proportion of downsampling factors through time. The minimum
downsampling of 1 happens when the controller chooses to use stride=1 everywhere;
the maximum downsampling of 8 happens when the controller uses stride=2 three times
(hence, 23 = 8) Note that here we do not take into account the resolution of two stem
layers (1

4 and 1
8 , respectively).

architectures with different downsampling factors in Fig. 6.6. As the plot implies,

the rewards for architectures with a higher resolution output tend to be larger,

hence, the controller becomes biased towards sampling fewer downsampling actions.

More parameters = better performance?

We further consider the distribution of rewards based on the number of parameters

(Fig. 6.7). From it, the size of the architecture appears to have no connection with its

reward. A more detailed plot though tells a different story (Fig. 6.8): while for small

architectures (≤ 250K) the rewards are almost identically distributed, a negative

trend is seen when the number of parameters is growing. It is possible that this

effect occurs due to the utilised training strategy favouring compact architectures.

What rewards does each template achieve?

We remind the reader that during the search process the controller samples 3

template structures that can be applied at any of 7 blocks recursively 1−4 times.

Since each template consists of two individual operations and one aggregation

operation, with 6 unique operations and 2 unique aggregation operations, the total
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Figure 6.6: Distribution of rewards attained by architectures sampled by the controller
with varying downsampling factors. For compactness of the plot, we only visualise rewards
greater than or equal to 0.40. Note that here we do not take into account the resolution
of two stem layers (1

4 and 1
8 , respectively).
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Figure 6.7: Reward as a function of the size of the architectures.

number of unique templates is C2
6+1 = 7!

5!2! = 42 after taking into account the

symmetry in the order of individual operations.

We consider a particular template to be sampled during the search process, if

its structure was sampled and it was chosen by the controller at least once. We

visualise the distribution of rewards for each of 42 templates sampled during the

search process in Fig. 6.9 – note that several templates can share the same reward

as they might belong to a single architecture. Overall, around half of the templates

steadily achieve rewards higher than 0.5.
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Figure 6.8: Distribution of rewards attained by architectures with varying size. For
compactness of the plot, we only visualise rewards greater than or equal to 0.40.

We further depict each of top-5 templates with the highest rewards in Fig. 6.10.

Interestingly, all top-performing templates rely on separable 5×5 convolution, and

some of them differ only in the aggregation operation used (e.g. Template 0 and

Template 4, or Template 1 and Template 3).

6.3.3 Comparison with Random Search

As in the previous chapter (Sect. 5.3.1), an important question to ask with NAS

is whether the trained controller performs reliably better than a naive baseline

– e.g. random search. Relevant to that is the question of whether the ranking of

architectures based on rewards achieved during the search is well-correlated with

the ranking of architectures based on their scores during a longer training.

To answer these questions, we perform experiments similar to those in the

last chapter: concretely, we sample two sets with 20 architectures each – the first
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Figure 6.9: Distribution of rewards for each of 42 unique templates. For compactness
of the plot, we only visualise rewards greater than or equal to 0.40.
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sconv 5x5 dil6
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sconv 5x5 
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maxpool 3x3
C

C Concatenation

Summation

Figure 6.10: Top-5 templates with the highest average reward. Each template takes 2
inputs, applies 2 corresponding operations and produces a single output via an aggregation
operator (concatenation or summation).

set is coming from the pre-trained controller, while the second set is sampled

randomly. Each set is trained and evaluated on two setups – the search one as

described in Sect. 6.3.1 and the one where the training continues for more epochs

(we increase it to 20 for the second stage).

We visualise the performance results in Fig. 6.11. The architectures sampled by
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the trained controller reliably achieve higher rewards – both within the search

and longer training setups.

0.40

0.45

0.50

0.55

0.60

Controller Random Search
Sampled by

R
ew

ar
d

Training Setup Longer Search

Figure 6.11: Rewards distribution of 40 architectures, 20 of which are sampled by the
trained controller and 20 by random search.

We further plot corresponding rankings in Fig. 6.12. As evident from the plot,

when trained for longer the architectures tend to be ranked similarly to the order

attained during the search process. In particular, high values of Spearman’s rank

correlation – ρ = 0.734 for the controller, and ρ = 0.904 for random search –

indicate that the rewards achieved during the searching process may serve as a

reliable estimate of the architecture’s potential.

6.4 Training Experiments

6.4.1 Setup

To evaluate the best discovered architectures we consider two common urban

driving benchmarks for semantic segmentation – CityScapes (Cordts et al., 2016)

and CamVid (Brostow et al., 2009). Reliably solving both of them is important

for such a practical application as autonomous driving, and our choice is further

motivated by the fact that the majority of hand-designed compact networks is

being extensively tested on these two datasets.



6. Neural Architecture Search of Compact Segmentation Networks 91

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

Controller Random Search

1 5 10 20 1 5 10 20

1

5

10

20

Longer Training Rank

S
ea

rc
h 

Tr
ai

ni
ng

 R
an

k

Figure 6.12: Ranks of architectures based on rewards during the longer training setup
(x-axis) and the search training setup (y-axis). All the architectures on the left are
sampled by the RL-based controller, while all the architectures on the right are randomly
sampled.

The training setup slightly differs from the searching one: in particular, we use

the ‘poly’ training schedule (L. Chen et al., 2018b) – lrinit · (1− epoch
nepochs

)0.9 – with

SGD with the initial learning rate of 5e−2 and the momentum value of 0.9. The

weight decay is set to 1e−5, the initial number of channels to 64.

6.4.2 CityScapes

We train on the full training split and test on the validation split of 500 images.

Here we use a square crop size of 769 and train for 1000 epochs with mini-batches

of 6 examples.

As given in Table 6.1, two of our automatically discovered models achieve

67.7% and 67.8% mean iou, respectively, with both having less than 300K trainable

parameters. We outperform all other compact methods with the exclusion of

ERFNet (Romera et al., 2018) that comprises 7× more parameters than any

of our models, and BiSeNet (C. Yu et al., 2018) – with more than 20× more

parameters. We overcome ICNet (Zhao et al., 2018) on the validation set, but fall

behind on the test set as their method was further trained on the validation set,

too. Furthermore, we significantly surpass the results of ESPNet (Mehta et al.,
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2018) and ESPNet-v2 (Mehta et al., 2019) by more than 5.4% in both cases while

requiring considerably fewer parameters.

Method val miou,% test miou,% Params,M
ENet (Paszke et al., 2016) - 58.3 0.37
ESPNet (Mehta et al., 2018) 61.4 60.3 0.36
ESPNet-v2 (Mehta et al., 2019) 62.7 62.1 0.72
ICNet (Zhao et al., 2018) 67.7 69.5 6.7
ERFNet (C. Yu et al., 2018) 72.0 71.4 5.8
arch0 68.1 67.75 0.28
arch1 69.5 67.86 0.27

Table 6.1: Quantitative results on the validation and test sets of CityScapes among
compact models (<10M parameters). Note that opposed to what is commonly done, for
simplicity we did not train our models on the val set and did not use any post-processing
for test evaluation.

We plot the test mean iou as a function of the number of parameters across other

popular methods in Fig. 6.13. The discovered architectures belong to the Pareto

front as they attain the highest performance with the fewest number of parameters.

We further visualise qualitative results in Fig. 6.14. Both architectures are able

to correctly segment most parts of the scenes and even identify thin structures

such as traffic lights and poles (rows 1−2). Nevertheless, they tend to misclassify

large objects, such as trains (row 3).

6.4.3 CamVid

CamVid (Brostow et al., 2009) is another outdoor urban driving dataset that

contains 367 images for training and 233 – for testing with 11 semantic classes and

resolution of 480×360. We train for 1000 epochs with 10 examples in mini-batch.
5Link to test results: https://bit.ly/2HItlwm
6Link to test results: https://bit.ly/2FlAfEW
7ENet (Paszke et al., 2016), ESPNet (Mehta et al., 2018), ESPNet-v2 (Mehta et al., 2019),

SegNet (Badrinarayanan et al., 2015), FRRN (Pohlen et al., 2017), ERFNet (Romera et al.,
2018), ICNet (Zhao et al., 2018), FCN-8s (Long et al., 2015), Dilation8 (F. Yu and Koltun,
2016), BiSeNet (C. Yu et al., 2018), PSPNet (Zhao et al., 2017), RefinetNet (G. Lin et al., 2017),
DeepLab-v3+ (L. Chen et al., 2018c)

https://bit.ly/2HItlwm
https://bit.ly/2FlAfEW
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Figure 6.13: Comparison of our networks to other methods7 on the test set of
CityScapes (Cordts et al., 2016) with respect to the number of parameters and mean iou.

Image GT arch0 arch1

Figure 6.14: Qualitative results of the discovered models – (arch0 and arch1 ) – on the
validation set of CityScapes. The last row shows failure cases. ‘GT’ stands for ‘ground
truth’.

The architectures discovered by our method attain mean iou values of 63.9%

and 63.2%, respectively, once again exceeding the majority of other compact and

even larger models. We outperform both SegNet (Badrinarayanan et al., 2015)

and ESPNet (Mehta et al., 2018) by more than 7%, DeepLab-LFOV (L. Chen
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Image GT arch0 arch1

Figure 6.15: Qualitative results of the discovered models - (arch0 and arch1 ) - on the
test set of CamVid. Last row includes failure cases. ‘GT’ stands for ‘ground truth’.

et al., 2018b) – by more than 1.6%, and fall behind BiSeNet (C. Yu et al.,

2018) and ICNet (Zhao et al., 2018), both of which exploited higher resolution

images of 960×720.

Method miou,% Params,M
SegNet (Badrinarayanan et al., 2015) 55.6 29.7
ESPNet (Mehta et al., 2018) 55.6 0.36
DeepLab-LFOV (L. Chen et al., 2018b) 61.6 37.3
†BiSeNet (C. Yu et al., 2018) 65.6 5.8
†ICNet (Zhao et al., 2018) 67.1 6.7
Ours (arch0) 63.9 0.28
Ours (arch1) 63.2 0.26

Table 6.2: Quantitative results on the test set of CamVid. (†) means that 960×720
images were used opposed to 480×360.

With the lower quality and resolution of annotations, the predictions are no

longer sharp as on CityScapes (Fig. 6.15). Overall, both architectures capture the

semantics of the scenes well (rows 1−2) and only fail significantly at delineating

long chunks of the same class on the edges of the image (row 3).
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6.4.4 Architecture Characteristics

We provide quantitative details of the trained architectures in Table 6.3. Two models

possess similar qualities – they are light-weight, both in terms of parameters and

the size on disk, and have output resolution of 1
4 . Interestingly, even though arch0

is slightly larger than arch1, it is still faster with almost 20FPS on high-resolution

2048×1024 images. This likely happens because arch1 uses high-resolution stem0

more often than arch0 – four times against three.

Characteristic arch0 arch1
Parameters,K 280.15 268.24

Latency, ms (2048×1024 inputs) 52.25±0.03 97.11±0.24
Latency, ms (480×360 inputs) 8.97±0.10 11.51±0.14

Output Resolution 1/4 1/4
Size on disk, MB 1.46 1.41

Table 6.3: Quantitative characteristics of discovered architectures. All the numbers are
measured using a single 1080Ti GPU.

Stem 0

Stem 1

T0, 1, 2 T2, 2, 1 T1, 2, 1

T2, 1, 1

T2, 1, 1

T2, 2, 1 T0, 2, 1

Template X ... Template X

Y

Stride Z

Template 0
maxpool 3x3

sconv 3x3
C Template 1

sconv 5x5 dil6

sconv 3x3
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maxpool 3x3

sconv 5x5
C

C conv1x1

conv3x3

TX, Y, Z C Concatenation

Figure 6.16: Depiction of arch0. We visualise the sampled templates at the top of the
figure. Each non-stem block, TX, Y, Z is the template X (either 0, 1, or 2) applied Y
times (either 1, 2, 3, or 4) with the stride Z in the first operation (either 1 or 2).

We further visualise arch0 in Fig. 6.16 and arch1 in Fig. 6.17. Notably, all the

templates in arch0 rely on concatenation with the generated structure having

multiple connections between intermediate blocks that allows the network to
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simultaneously operate on high-level and low-level features; arch1 instead fully

relies on the summation as its aggregation operation and tends to duplicate the

templates more often, which, thanks to the light-weight layers in each template,

does not lead to a significant growth in the number of parameters.

Stem 0

Stem 1

T0, 1, 1 T1, 2, 2 T2, 4, 1

T1, 4, 1

T2, 3, 1

T2, 1, 1 T2, 3, 1

Template X ... Template X

Y

Stride Z

Template 0
sconv 5x5

sconv 5x5
C Template 1

sconv 5x5

maxpool 3x3
Template 2

maxpool 3x3

sconv 5x5 dil6

C conv1x1

conv3x3

TX, Y, Z
C Concatenation

Summation

Figure 6.17: Depiction of arch1. We visualise the sampled templates in the top of the
figure. Each non-stem block, TX, Y, Z is the template X (either 0, 1, or 2) applied Y
times (either 1, 2, 3, or 4) with the stride Z in the first operation (either 1 or 2).

6.5 Conclusion

In this chapter we mitigated one of the limitations of the neural architecture search

approach from Chapter 5 – namely, its reliance on the fully pre-trained encoder

network. Here, we overcame this issue by decomposing the sequence of decisions

to make into templates which are sets of operations that can be applied anywhere

in the network. With that we also predicted how many times the template must

be repeated and what downsampling factor to use inside the template. As the

results of those changes, we were able to discover extremely compact and highly

competitive networks with less than 300K parameters, achieving 68% mean IoU on

the test set of CityScapes and 63−64% mean IoU on the test set of CamVid.
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Overall, we devoted the last two chapters to demonstrate the value and simplicity

of setting up an automated approach to find compact and accurate networks using

only a handful of GPU-cards. In contrast to the manual design that we practised

in Chapters 3 and 4, it allowed us to consider a much larger set of possible

architectures, which would have been difficult to traverse manually. Nevertheless,

the automatic search is not a silver bullet, as it does require spending significant

efforts on manually designing the search space and manually designing efficient

ways of traversing that space. Thus, it is important to keep this in mind when

approaching a new problem and deciding whether to rely on your own expertise

in adapting an existing architecture or to spend time on designing a search space

for an automatic discovery of high-performing networks.
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7
Conclusion

We started our journey towards building practical dense per-pixel systems by

manually adapting an existing large and slow segmentation network into a smaller

and faster architecture with nearly equal performance (Chapter 3). Since solving

a single task might not be enough in certain applications, we further extended

that approach to support multi-task learning (Chapter 4) and to work equally well

with depth prediction and surface normals estimation. We then shifted gears and

concentrated on the automatic search of compact and high-performing architectures

(Chapters 5 and 6). In particular, we first searched only for the decoder part given

a fully-pretrained encoder (Chapter 5) and then amended the search space in a

way that permitted discovering extremely compact networks using only a handful

of pre-trained encoder layers (Chapter 6).

Along this way, we made the following concrete contributions:

• in Chapter 3 we analysed computationally expensive parts of RefineNet (G. Lin

et al., 2017) and proposed a light-weight version of it – Light-Weight RefineNet

– with more than twofold decrease in runtime and in the number of parameters,

while nearly equal performance across five different semantic segmentation

benchmarks;
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• we further coupled Light-Weight RefineNet with two existing compact classifi-

cation networks – MobileNet-v2 (Sandler et al., 2018) and NASNet-Mobile (Zoph

et al., 2018), achieving 76.2% miou and 77.4% miou on the validation set of

PASCAL VOC (Everingham et al., 2010), respectively (against 78.5% miou

of a much larger network with the ResNet-50 backbone);

• in Chapter 4 we altered the design of Light-Weight RefineNet to perform

multiple dense per-pixel tasks at once in real-time solving semantic segmenta-

tion, depth prediction and surface normals estimation at nearly 100FPS on

640×480 input images;

• to compensate for missing annotations of a certain modality, we generated

proxy labels based on the knowledge distillation concept (Hinton et al., 2014),

where we made use of Light-Weight RefineNet with the ResNet-152 backbone;

• in Chapter 5 we designed the search space of compact architectures with

a pre-trained encoder and concentrated on speeding-up the training of an

encoder-decoder segmentation network in order to estimate its potential in

only few minutes;

• this, in turn, allowed us to automatically discover fast and accurate networks

using reinforcement learning in only 8 GPU-days, with the best-performing

one achieving 78% miou on the validation set of PASCAL VOC (against

75.9% miou of the manually designed DeepLab-v3 (Sandler et al., 2018)) and

the fastest one with 77.3% miou showing nearly 20FPS on 512×512 on the

low-compute JetsonTX2 platform (against 7FPS of the manually designed

Light-Weight RefineNet);

• in Chapter 6 we proposed a novel design of the search space that reduced the

dependency on a fully-pretrained encoder, allowing to discover tiny networks

with less than 0.3M parameters;
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• two top-discovered architectures from this space achieved nearly 68% miou

on the test set of the popular urban driving dataset CityScapes (Cordts et al.,

2016) – against 72.1% miou of Light-Weight RefineNet (with 153× more

parameters) and 73.6% miou of RefineNet (with 393× more parameters).

—–

Throughout the thesis, our primary focus was on the simplicity; since deep

learning networks comprise extremely large numbers of parameters and hyperpa-

rameters (both structural – e.g. layer connectivity, – and optimisation-related – e.g.

learning rates), it is important to have simple and reliable solutions available. In

this thesis we did so by largely concentrating on structural patterns and operations

used inside while abstracting away the rest of choices. Intuitively, if we find a

well-performing neural network on a single problem, chances are that its structure

can be transferred to a variety of other problems – e.g. see VGG (Simonyan and

Zisserman, 2015) and ResNets (He et al., 2016), or what we did with Light-Weight

RefineNet in Chapters 3 and 4, or transfer learning experiments in Chapter 5. In

that sense, we may say that structures tend to generalise across various problems.

On the other hand, optimisation-related hyperparameters tend to vary a lot across

various problems and rarely generalise well. Furthermore, since we were concerned

with the inference time, different optimisation strategies could not affect it in any

way. What they did affect were the training time and convergence of the networks,

and in Chapter 5 we focused on ways of speeding those up.

As we presented both the manual and automatic sides of designing compact

networks, one may be left wondering which of them to use in practice? A good rule of

thumb is to stick to the manual way and to adapt an existing network if the domain is

well-known and the results are needed as soon as possible. Conversely, the automatic

search may require several days of experimentations, especially on unexplored

domains, since the user must first come up with a reasonable search space design.
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Future Work

While in this manuscript we did lay the groundwork for creating practical dense

per-pixel networks, several important directions were understandably omitted and

are worth mentioning as future research directions:

1. 3D segmentation, video segmentation and instance segmentation.

Although we only considered a 2D semantic segmentation, the world around

us is 3D and temporal with instances of various classes being present at all

times.

While for videos we can simply predict segmentation masks independently

per each frame, such an approach will lack any temporal cohesion. How to

propagate temporal information? Most solutions tend to rely on the optical

flow that describes the motion in the scene between adjacent frames (Gadde

et al., 2017; Zhu et al., 2017). Since the optical flow is usually expensive to

compute and does not work with occlusions and newly appeared objects, better

ways are needed. In our recent work we instead applied the NAS approach from

Chapter 5 to search for a dynamic cell that propagates information between

adjacent frames (Nekrasov et al., 2020a). To tackle long-term propagation,

we can also search for a fully-differentiable way of storing and retrieving some

information about the current frame – perhaps, as done in Neural Turing

machines (Graves et al., 2014).

Arguably the most well-known approach for instance segmentation, Mask

R-CNN (He et al., 2017), is a direct combination of semantic segmentation

and object detection (or bounding box prediction). Hence, it is an obvious

question to ask whether existing improvements in semantic segmentation

lead to similar improvements in instance segmentation (both in accuracy

and runtime)? Moreover, recent fully-convolutional ways of solving object

detection (Tian et al., 2019) make it even more straightforward to adapt

semantic segmentation networks for the task of instance segmentation.
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In Sect. 4.4.3 we showed a way of acquiring 3D segmentation in a SLAM

system with a sequence of 2D predictions of segmentation and depth. This

approach required lots of image frames and was far from perfect in capturing

3D structures. What if we already have a 3D shape (for example, in the form

of a point cloud) and now want to semantically label it in real-time? While

there are networks that support 3D inputs, e.g. PointNet (C. R. Qi et al.,

2017), it is still an open challenge to make them practical to the same extent

as current 2D segmentation networks are.

In addition to the above, we should not only consider each of the above tasks

in isolation, but also all of them at the same time – i.e. how to solve a 3D

video instance semantic segmentation in real-time?

2. Uncertainty and diagnostics. In this thesis we did not consider any

notions of uncertainty in network predictions. Nevertheless, uncertainty is

crucial when using these networks in real situations (Kendall and Gal, 2017).

At its core, uncertainty quantifies the confidence in the network predictions.

Since uncertainty estimates tend to require lots of computations, having

small and fast networks can dramatically reduce these costs. On the other

hand, small networks are also amenable to quick diagnostics on the given

datasets that would allow to spot weaknesses of the networks before using

them in real situations. Some preliminary work in this direction is already

available (Nekrasov et al., 2018a).

An important question to ask is how to build dense per-pixel networks that are

aware of their own limitations and that can deal with uncertainties in their

predictions?

3. Semi-supervised and unsupervised learning. In Chapter 4 we first

encountered the problem of missing labels. We overcame it through knowledge

distillation using an existing powerful network, or teacher. What should we

do if we do not have a good teacher network? How to acquire missing labels

in such cases? Or, more generally, how to reduce the costs of annotations?
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For certain dense per-pixel tasks, such as depth estimation, it is possible to

train a network in a fully-unsupervised manner by exploiting geometrical

constraints (Garg et al., 2016; Godard et al., 2017). For semantic segmentation,

one may rely on domain adaptation and use simulated data to pre-train the

network (Y. Zhang et al., 2017).

With an abundance of unlabelled data in the world, can we find a way of

leveraging that data? For example, it has been shown that tracking and dense

correspondences naturally appear by learning to colourise video frames (Von-

drick et al., 2018; Lai and Xie, 2019). It is highly likely that the features

learned in that process can also be helpful for semantic segmentation and depth

estimation. On the related note, representations extracted through contrastive

learning (T. Chen et al., 2020; Sohn et al., 2020) lead to improvements not

only in image classification (Khosla et al., 2020), but also in reinforcement

learning (Srinivas et al., 2020). In contrastive learning, the network is tasked

to pull closer representations of the same sample (e.g. of the input image

and its augmented version), while pushing apart representations of different

samples (e.g. of two different input images). Can this paradigm improve

performance in dense per-pixel tasks, too?

Overall, we should be asking how to build practical dense per-pixel systems

without the need for large fully-annotated datasets?
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A
Qualitative Results of Light-Weight

RefineNet

In addition to the results presented in Chapter 3, here we include more qualitative

figures. We denote Light-Weight RefineNet with different ResNet backbones

(ResNet-50, ResNet-101 and ResNet-152) as RF-50-LW, RF-101-LW and RF-

152-LW, correspondingly, and ground truth masks as ‘GT’.
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Image GT RF-50-LW RF-101-LW RF-152-LW

Figure A.1: Visual results on validation set of NYUDv2 with ResNet-backbones.
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Image GT RF-50-LW RF-101-LW RF-152-LW

Figure A.2: Visual results on validation set of PASCAL Person-Part with ResNet-
backbones.
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Image GT RF-101-LW RF-152-LW

Figure A.3: Visual results on validation set of PASCAL-Context with ResNet-backbones.
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Image GT RF-50-LW RF-101-LW RF-152-LW

Figure A.4: Visual results on validation set of CityScapes with ResNet-backbones.
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B
Experimental Results of Efficient Neural

Architecture Search

Here we include additional details about experimental results from Chapter 5.

Semantic Segmentation

We start training with the learning rates of 1e-3 and 3e-3 – for the encoder and

the decoder, respectively. The encoder weights are updated using SGD with the

momentum value of 0.9, whereas for the decoder part we rely on Adam (Kingma

and Ba, 2014) with default parameters of β1=0.9, β2=0.99 and ε=0.001. We exploit

the batch size of 64, evenly divided over two 1080Ti GPU cards. Each image in the

batch is randomly scaled in the range of [0.5, 2.0], randomly mirrored, before being

randomly cropped and padded to the size of 450×450. During training, in order to

calculate the loss term, we upsample the logits to the size of the target mask.

In addition to the results presented in the main text, we provide per-class

intersection-over-union values across the models in Table B.1.
Model bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

DL-v3 (Sandler et al., 2018) 0.94 0.873 0.416 0.849 0.647 0.753 0.937 0.86 0.904 0.391 0.893 0.564 0.847 0.892 0.831 0.844 0.578 0.859 0.525 0.852 0.677 0.759
RF-LW 0.942 0.895 0.594 0.872 0.761 0.669 0.912 0.85 0.876 0.383 0.801 0.605 0.804 0.886 0.835 0.854 0.603 0.843 0.479 0.834 0.703 0.762
arch0 0.947 0.885 0.558 0.885 0.748 0.74 0.944 0.868 0.898 0.429 0.863 0.604 0.846 0.842 0.866 0.86 0.592 0.869 0.593 0.875 0.669 0.780
arch1 0.944 0.888 0.615 0.866 0.781 0.733 0.933 0.865 0.894 0.394 0.828 0.603 0.833 0.848 0.854 0.855 0.568 0.829 0.555 0.85 0.662 0.771
arch2 0.947 0.873 0.589 0.887 0.753 0.75 0.943 0.885 0.895 0.372 0.829 0.635 0.845 0.832 0.867 0.866 0.555 0.843 0.537 0.851 0.671 0.773

Table B.1: Per-class intersection-over-union on the validation set of PASCAL VOC.
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Depth estimation

For depth estimation, we start training with the learning rates of 1e-3 and 7e-3

- for the encoder and the decoder, respectively. For both we use SGD with the

momentum value of 0.9, and anneal the learning rates via the ‘Poly’ schedule:

lr ∗ (1− epoch
400 )0.9. The training is stopped after 300 epochs. We exploit the batch

size of 32, evenly divided over two 1080Ti GPU cards. Each image in the batch is

randomly scaled in the range of [0.5, 2.0], randomly mirrored, before being randomly

cropped and padded to the size of 500×500. We upsample the logits to the size of

the target mask and use the reverse Huber loss (Laina et al., 2016) for optimisation,

ignoring pixels with missing depth measurements.

We visualise qualitative results on the validation set in Fig. B.1.

Image GT arch0 arch1 arch2 Multi-Task RF-LW

Figure B.1: Depth estimation qualitative results on NYUDv2. Dark-blue pixels in
ground truth are pixels with missing depth measurements. ‘GT’ stands for ‘ground truth’.



C
Jetson TX2 runtime

During our experiments in Chapter 5 we observed a significant difference between

models’ runtime on JetsonTX2 and 1080Ti. To better understand it, we additionally

measured the runtime of each discovered architecture from Chapter 5 together with

Light-Weight RefineNet varying the input resolution.

As evident from Fig. C.1, the models with a larger number of floating point

operations (i.e., Arch0 and RF-LW) do not scale well with the input resolution. The

effect is even more pronounced on JetsonTX2, as been independently confirmed

by an NVIDIA employer in a private conversation.
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Figure C.1: Models’ runtime on JetsonTX2 (a) and 1080Ti (b). We visualise mean
together with standard deviation values over 100 passes of each model.

115



116



D
Automatically Discovered Decoder

Structures

Here we provide visualisations of architectures discovered in Chapter 5.

Architecture description

We use a list of integers to encode a single architecture found by the controller,

corresponding to the output sequence of the RNN. Specifically, the list describes

the connectivity structure followed by the cell configuration. For example, the

following connectivity structure [[c1, c2], [c3, c4], [c5, c6]] contains three pairs of digits,

indicating the input index ck of a corresponding layer in the sampling pool.

The cell configuration, [o1, [i2, i3, o2, o3], [i4, i5, o4, o5], [i6, i7, o6, o7], comprises the

first operation o1 followed by three cell branches with the operation oj applied

on the index ij.

We provide the description of operations in Table D.1, and visualise the

discovered structures in Fig. D.1 (arch0), Fig. D.2 (arch1), and Fig. D.3 (arch2). Note

that inside the cell only the final summation operator is displayed as intermediate

summations would lead to identical structures.
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Index Abbreviation Description
0 conv1x1 conv 1×1
1 conv3x3 conv 3×3
2 sep3x3 separable conv 3×3
3 sep5x5 separable conv 5×5
4 gap global average pooling followed by upsampling and

conv 1×1
5 conv3x3 rate 3 conv 3×3 with dilation rate 3
6 conv3x3 rate 12 conv 3×3 with dilation rate 12
7 sep3x3 rate 3 separable conv 3×3 with dilation rate 3
8 sep5x5 rate 6 separable conv 5×5 with dilation rate 6
9 skip skip-connection
10 zero zero-operation that effectively nullifies the path

Table D.1: Operation indices and abbreviations used to describe the cell configuration.
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Figure D.2: arch1: [[[2, 3], [3, 1], [4, 4]], [2, [1, 0, 3, 6], [0, 1, 2, 8], [2, 0, 6, 1]]]
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