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Abstract: Steroids yield great influence on neurological development through nuclear hormone recep-
tor (NHR)-mediated gene regulation. We recently reported that cell adhesion molecule protocadherin
19 (encoded by the PCDH19 gene) is involved in the coregulation of steroid receptor activity on gene
expression. PCDH19 variants cause early-onset developmental epileptic encephalopathy clustering
epilepsy (CE), with altered steroidogenesis and NHR-related gene expression being identified in these
individuals. The implication of hormonal pathways in CE pathogenesis has led to the investigation
of various steroid-based antiepileptic drugs in the treatment of this disorder, with mixed results so
far. Therefore, there are many unmet challenges in assessing the antiseizure targets and efficiency of
steroid-based therapeutics for CE. We review and assess the evidence for and against the implication
of neurosteroids in the pathogenesis of CE and in view of their possible clinical benefit.

Keywords: epilepsy; variant; protocadherin; hormones; nuclear hormone receptor; neurosteroids;
estrogen receptors; progesterone receptor; androgen receptor

1. Introduction

PCDH19 clustering epilepsy (CE, previously known as girls clustering epilepsy, GCE;
female-limited epilepsy, FE; or epilepsy and mental retardation limited to females, EFMR:
OMIM #300088) is an X-linked encephalopathy with an incidence rate of 1 per 20,600 live-
born females and is characterized by seizures with an average onset of 11.9 months [1–5].
These seizures occur in clusters and generally reduce in frequency by adolescence [1].
CE individuals are often affected by psychiatric comorbidities such as autism spectrum
disorder (ASD), hyperactive and/or attention-deficit disorder (ADHD), and behavioural
disturbances [1,2]. CE is caused by heterozygous pathogenic variants of the Protocadherin 19
(PCDH19) gene [3]. Despite this disorder being X-linked, CE affects heterozygous females
and postzygotic mosaic males, while hemizygous males are asymptomatic carriers [4,5].
Cellular interference remains the best model to explain this unusual pattern of inheri-
tance [3]. This model is supported by mouse and cellular studies that show altered cell
sorting in the developing cortex of Pcdh19WT/KO female mice and increased network activity
in mixed cell cultures containing 1:1 Pcdh19WT/WT and Pcdh19KO/KO mouse hippocampal
neurons when compared to cultures only containing WT or KO cells [6,7]. Furthermore,
recent data from Pcdh19 knockout mice show that Pcdh19KO/WT female but not Pcdh19KO/Y

mice exhibit mossy fibre presynaptic dysfunction and cognitive impairment [8]. Though
PCDH19MT/MT girls have not yet been identified, the cellular interreference hypothesis
contends that these girls may be unaffected, like transmitting males. However, recent
studies on Pcdh19KO/KO female mice showed a lower seizure threshold when compared to
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that of Pcdh19WT/WT female mice [9]. These data suggest that cellular interference may not
be sufficient to fully explain the mechanisms underlying CE.

The PCDH19 gene encodes for the PCDH19 protein, which belongs to the δ2 subclass
of the nonclustered Pcdh family. PCDH19 is expressed in neurons and glial cells during
embryonic development and adulthood and is regulated by miR-99b-3p and T-box brain
protein 2 (TBR2) [10–13]. Like other protocadherins, PCDH19 influences cell adhesion and
actin cytoskeleton dynamics [7,10,14–16]. PCDH19 also regulates neural morphological
maturation and migration through binding the γ-aminobutyric acid type A receptors
(GABAARs) and regulating GABAAR subunit surface levels [17]. PCDH19 downregulation
reduces GABAAR-mediated tonic currents and neuronal hyperexcitability [18]. Taken
together, differences in PCDH19 function may be due to the binding of interacting proteins
to the cytoplasmic or extracellular domain of PCDH19 (for example, N-cadherin binds
the PCDH19 extracellular cadherin repeats while GABAAR alpha 1 binds the cytoplasmic
domain) [14,17]. However, recent evidence indicates a new role for PCDH19 in the nucleus,
and potentially implicates steroid signalling pathways in CE pathogenesis. This area of
research is the focus of this critical review.

2. Role of Steroids in CE
2.1. Clinical Evidence

Neurosteroids (synthesized in the cortex and hippocampus) and corticosteroids (syn-
thesized in the adrenal glands) [19,20] can influence neurotransmission through binding
the GABAAR complex and altering chloride influx [21]. Alterations in individual steroid
levels are linked to anxiety, stress, depression, and seizure susceptibility [20,22]. In general,
neurosteroids such as androgens, and progesterone and its metabolites have anticonvulsant
properties (Figure 1a–c), while those such as oestrogen have proconvulsant properties [22]
(Figure 1d). Altered basal and postseizure levels of cortisol (Figure 1e, a corticosteroid
produced in response to stress) were observed in some adult epileptic patients [23]. The
influence of hormones on seizure susceptibility is most obvious in the case of catamenial
epilepsy, which refers to changes in seizure frequency relating to alterations in circulating
progesterone and oestradiol levels during the menstrual cycle [24].

Gene-expression studies of primary skin fibroblasts from patients with CE indicated a
possible deregulation of nuclear hormone receptor (NHR)-regulated gene expression in CE
girls and likely also boys (more in Section 2.2 below) [25]. Subsequent follow-up studies
using blood samples from seizure-active CE girls from multiple cohorts showed lower
levels of progesterone metabolite allopregnanolone (which has anticonvulsant properties)
than that in normal individuals of the same age [25,26]. Though a link between steroids
and seizure patterns has long been known [27], these studies were the first to directly show
altered steroid levels in CE.
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Steroid levels fluctuate during specific stages of normal human development, leading
to sex-specific differences in a range of traits [29]. In epilepsy patients, these fluctua-
tions in steroid levels during puberty and menopause are linked to changes in seizure
frequency [30,31]. CE seizure onset and offset generally correlate with changes in sex
steroid levels during minipuberty and puberty (Figure 2a) [25]. Sex steroid levels and their
neuroprotective effects falling below a threshold after minipuberty may, therefore, open an
opportunity for various stressors, such as infection and associated fever, to facilitate the
onset of CE. The onset of seizures with low hormonal levels during this developmental
period might also be simply coincidental, which is yet to be determined. Seizures often
offset when sex steroid levels rise above a threshold during puberty, and thus may provide
an anticonvulsant protective effect [25]. To determine if CE girls are deficient in other
steroids during development, Trivisano et al. (2017) [26] investigated the steroid levels of
pre- and postpubertal CE girls. Although they observed a significant reduction in cortisol
and pregnenolone sulfate (PS) levels in postpubertal CE girls (Figure 1e,f), prepubertal
CE girls showed no difference in hormonal levels when compared to those of controls.
The stimulation of adrenal steroidogenesis through adrenocorticotropic hormone (ACTH)
administration to pre- or postpubertal CE girls did not increase PS levels to that of controls.
Furthermore, an increase in cortisol levels due to ACTH stimulation was less sustained
in prepubertal CE girls than that in the controls [26]. This study shows that there is an
abnormal adrenal response in CE individuals throughout development and changes in
steroid levels postpuberty. Taken together, these investigations strongly suggest alerted
steroidogenesis in seizure-active CE girls. However, steroid-level variations during CE
seizure onset and offset have not yet been investigated.
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Although seizure onset in CE mosaic males coincides with a decrease in oestradiol
levels, seizure offset cannot be correlated with an increase in steroid levels at present due to
the small number and young age of male patients (Figure 2b) [32]. As more mosaic males
are identified, it is interesting to see if seizure offset follows the same pattern as that in
the affected females. One possibility that should be investigated is the effect of androgen
levels on CE seizure onset and offset. Androgens have anticonvulsant properties, although
evidence is inconsistent. This may be due to the conversion of testosterone into various
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metabolites that have pro- or anticonvulsant properties [22]. Men with epilepsy often
have low levels of serum-free testosterone, and may experience abnormalities relating to
reproduction and gonadal function [33]. Steroid levels have not yet been systematically
measured in mosaic males, and androgen levels have not been measured in any CE patients,
which opens an opportunity for further investigation. Therefore, the effect of steroids on
seizure onset and offset in mosaic males cannot yet be confirmed or ruled out.

2.2. Gene-Expression Evidence

Steroids can regulate neural gene expression by binding to NHRs [34]. This occurs
through either genomic or nongenomic mechanisms [35]. The microarray-based gene
expression analysis of CE patient fibroblasts identified significantly dysregulated genes
involved in cellular processes such as cell-to-cell signalling, morphology, growth, prolifera-
tion, and development [25]. Interestingly, 22% of the dysregulated genes identified were
bona fide targets of the NHRs’ progesterone receptor (PGR), chorionic gonadotropin (Cg),
and oestrogen receptor (ER) α. Many of the sex-biased dysregulated genes identified in
CE girls had expression patterns more like those of males than those of female controls.
Some of these genes (oxytocin receptor (OXTR), glutamate receptor 1 (GRIA1), and aldo-keto
reductase family 1 member C3 (AKR1C3)) were also dysregulated in mosaic males, where
expression levels were more like female controls [25]. As sex biases in gene expression
can occur during embryonic development [36], it is possible that the molecular changes
responsible for altered sex-biased gene expression in CE fibroblasts occur in utero long
before the first seizure. However, these observations are yet to be independently validated,
and in utero gene-expression studies on Pcdh19KO/WT mice have not been performed.

2.2.1. Aldo-Keto Reductase Family 1 Member C3 (AKR1C3)

The AKR1C superfamily contains four paralogous genes (all located on chromosome
10 in Homo sapiens) that play crucial roles in the production and metabolism of steroids and
neurosteroids [37]. For example, AKR1C2 and AKR1C4 are genetically mutated in 46 XY
individuals with disordered sexual development (DSD) [37]. Consequently, the dysregu-
lation of some of the AKR1C1-4 identified genes could be related to the pathophysiology
present in CE individuals. In that regard, the hydroxysteroid dehydrogenase AKR1C3 was
significantly downregulated in the skin fibroblasts of CE girls when compared to that of
controls [25]. AKR1C3 is a moonlighting protein, with enzymatic and activator functions
among its many roles. AKR1C3 is involved in the metabolism of neurosteroids such as the
conversion of oestrone into 17β-oestradiol, progesterone into 20α-hydroxyprogesterone,
androstanedione into dihydrotestosterone (DHT), and androstenedione into testosterone,
thus influencing the action of their associated NHRs (Figure 3a) [25,38–40]. AKR1C3
also interacts with androgen receptor (AR) in a ligand-dependent manner to coactivate
AR-mediated gene expression (Figure 3b). These enzymatic and AR activation functions
are mediated by different regions of the AKR1C3 protein, with the full-length protein
required for enzymatic function, and ammino acids 171–237 required for AR activation [41].
The downregulation of AKR1C3 could contribute to altered steroidogenesis in CE girls,
or influence gene expression through the regulation of PGR and ERα ligand production.
Interestingly, unaffected transmitting males, compared to the male controls, were observed
to have slight upregulation of AKR1C3 [25]. It is unknown if this could result in higher
serum steroid levels, thereby providing a seizure-protective effect for transmitting males.
The dysregulation of AKR1C3 could explain at least some of the altered steroidogenesis
and gene expression seen in CE individuals.
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Figure 3. AKR1C3 influence on steroidogenesis and NHR-mediated gene regulation: (a) AKR1C3 influences NHR-mediated
gene regulation through converting oestrone into the more potent ERα ligand 17β-oestradiol, progesterone into the weaker
PGR ligand 20α-dihydroxyprogesterone, androstenedione into the weaker AR ligand testosterone, and androstanedione
into the potent AR ligand DHT. Grey arrows represent the NHR corresponding to each ligand; (b) AKR1C3 regulates
AR-mediated gene regulation through acting as a coactivator of AR and production of the AR ligands, testosterone, and
DHT; (c) ligand-bound AR represses AKR1C3 gene expression [40].

An important question to consider is the cause of AKR1C3 dysregulation in CE
individuals. AKR1C3 expression is repressed by androgen-bound AR in the prostate
(Figure 3c) [40]. At the same time, AKR1C3 is involved in the production of androgens
such as DHT and testosterone (Figure 3a). This means that AKR1C3 could possibly reg-
ulate its own transcription through a feedback mechanism, an observation that is yet to
be demonstrated. It is, therefore, unknown if ARK1C3 dysregulation in CE individuals
is caused by altered AR-mediated AKR1C3 regulation through, for example, an overall
disruption of the steroid synthesis pathway or a disruption to AR coregulators. This
could lead to a perpetual cycle of altered androgen production and AR-mediated AKR1C3
dysregulation. On the other hand, disruptions in other underlying gene-regulator mecha-
nisms (such as transcription factors or epigenetic regulatory mechanisms) could also cause
AKR1C3 dysregulation, in turn leading to altered steroidogenesis. Although the promoter
region of AKR1C3 contains putative binding sequences for several transcription factors,
their regulatory role is yet to be demonstrated [40]. In the case of epigenetic-mediated
regulation, AKR1C3 is unlikely regulated by cytosine–guanine (CpG) methylation, as the
AKR1C3 promoter sequence lacks CpG islands, although its regulation by other epigenetic
factors cannot be excluded [40]. Therefore, whether AKR1C3 dysregulation is a cause or a
consequence of altered steroidogenesis in CE remains unknown.

2.2.2. Oxytocin Receptor (OXTR)

Another interesting CE dysregulated gene is Oxytocin Receptor (OXTR) (located on
chromosome 3), which is highly expressed in the brain and associated with social be-
haviour [42]. OXTR has significantly higher expression in CE female primary skin fibrob-
lasts when compared to age- and sex-matched controls [25]. In addition, the overexpression
of the recombinant wildtype PCDH19 protein increases OXTR mRNA expression, while
the overexpression of the CE variant PCDH19 protein suppresses OXTR mRNA expression
in MCF-7 cells [43]. Like AKR1C3 dysregulation, OXTR could contribute to certain CE
phenotypes such as seizure and ASD [2]. In animal models, Oxtr–/– mice display autism like
behaviour and increased seizure susceptibility [44]. The impact of OXTR on development
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is thought to be due to OXTR influencing the GABA switch, thus affecting neuronal GABA
transition from depolarizing to hyperpolarizing during brain development. This occurs by
the OXTR-mediated upregulation of chloride cotransporter KCC2 activity by promoting its
stabilization at the neuronal surface in a very early and narrow window during postnatal
development [45]. In humans, reduced OXTR expression is linked to disorders that are
known comorbidities of CE, such as schizophrenia and ASD [1,42,46,47]. Treatment of
ASD children with oxytocin improves social abilities, and this improvement was more
pronounced in children with deficits in OXT signalling [48]. Therefore, OXTR could present
a plausible target in the treatment of CE comorbidities.

2.2.3. Apolipoprotein D (APOD)

Apolipoprotein D (encoded by the APOD gene, located on chromosome 3) is a glyco-
protein known to bind lipids and steroids such as cholesterol, pregnenolone, testosterone,
and oestradiol [49]. APOD expression is regulated by hormones, as its promoter region
contains the oestrogen, progesterone, and glucocorticoid response elements [50,51]. Like
OXTR, the overexpression of the wildtype recombinant PCDH19 protein increases APOD
mRNA expression, while the overexpression of the CE variant PCDH19 protein suppresses
APOD mRNA levels in MCF-7 cells [43]. While APOD is significantly downregulated in CE
skin fibroblasts when compared to control females, the increased expression of APOD was
found in patients affected by a variety of disorders, including schizophrenia, Alzheimer’s
disease, Parkinson’s disease, bipolar disorder, and multiple sclerosis [25,49,52]. Knock-out
(KO) studies in model organisms indicated a role of ApoD in neuroprotection and oxidative
stress response [53,54]. The loss of Glial Lazarillo (GLaz, a homolog of APOD) in Drosophila
increased susceptibility to oxidative and starvation stress, reduced lifespan, reduced body-
fat physiology, and reduced locomotor activity when under oxidative stress [54]. Likewise,
ApoD-KO mice have reduced locomotor activity and increased vulnerability to oxidative
stress [53]. Although the effect of reduced APOD expression on seizure susceptibility is yet
to be investigated, a study by Najyb et al. (2017) found that ApoD overexpression in trans-
genic mice reduced the number and severity of KA-induced seizures. ApoD overexpression
was also found to reduce KA-induced apoptosis, attenuate the inflammatory process, and
decrease cholesterol levels in the cytosolic fraction of the brain. The authors found that
ApoD is involved in the regulation of cholesterol uptake by hippocampal neurons, which
was increased after KA treatment [55]. Therefore, reduced APOD expression in CE girls
may be caused by alterations in the steroid pathway/NHR-mediated gene regulation and
may contribute to the CE phenotype through its roles in neuroprotection.

2.2.4. PCDH19 as a Coregulator of NHR-Mediated Gene Regulation

How could heterozygous variants in PCDH19, a gene encoding a protein involved in
calcium-dependent cell adhesion, cause such widespread gene dysregulation? The answer
to this question comes from our evolving understanding of the function of PCDH19 in the
cell. We showed that PCDH19 localizes to the nuclear fraction of MCF-7 breast-cancer cells
and interacts with non-POU-domain-containing octamer-binding protein (NONO)/p54nrb
(a regulator of steroid hormone receptors) to coregulate oestrogen receptor (ER) α-mediated
transcription. ERα-mediated gene transcription is enhanced in the presence of PCDH19
and NONO, but not PCDH19 alone. Interestingly, CE pathogenic variants were unable
to enhance ERα-mediated gene transcription [43]. ERα can influence gene transcription
not just through the genomic pathway, but also indirectly through cascade signalling from
the cell surface (Figure 4) [35]. It is, therefore, possible that PCDH19 plays a role in ERα-
mediated cascade activation that emanates from the cell membrane through interactions
with other proteins. Furthermore, whether PCDH19 associates with other NHRs (such as
PGR and AR) to regulate gene expression is unknown. Taken together, the consequences
of pathogenic PCDH19 variants on NHR-mediated gene dysregulation could be more
pronounced than what we currently understand, and therefore need further investigation.
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cancer cells and interacts with non-POU-domain-containing octamer-binding protein 
(NONO)/p54nrb (a regulator of steroid hormone receptors) to coregulate oestrogen recep-
tor (ER) α-mediated transcription. ERα-mediated gene transcription is enhanced in the 
presence of PCDH19 and NONO, but not PCDH19 alone. Interestingly, CE pathogenic 
variants were unable to enhance ERα-mediated gene transcription [43]. ERα can influence 
gene transcription not just through the genomic pathway, but also indirectly through cas-
cade signalling from the cell surface (Figure 4) [35]. It is, therefore, possible that PCDH19 
plays a role in ERα-mediated cascade activation that emanates from the cell membrane 
through interactions with other proteins. Furthermore, whether PCDH19 associates with 
other NHRs (such as PGR and AR) to regulate gene expression is unknown. Taken to-
gether, the consequences of pathogenic PCDH19 variants on NHR-mediated gene dysreg-
ulation could be more pronounced than what we currently understand, and therefore 
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Figure 4. ERα-mediated gene regulation. ERα regulates gene expression through the genomic and 
nongenomic pathways. Genomic gene regulation involves the binding of oestrogen (E) to cytoplas-
mic or nuclear localized ERα, resulting in dimerization, a change in receptor confirmation, and, in 
the case of cytoplasmic ERα, translocation to the nucleus. ERα may recruit corepressors or coactiva-
tors (such as PCDH19 and NONO) to regulate gene expression either by directly binding an oestro-
gen-response element (ERE) or via binding to another transcription factor (TF). The nongenomic 
pathway involves membrane-bound ERα, rapidly and indirectly influencing gene expression 
through the cascade activation of DNA binding proteins [35]. 

Figure 4. ERα-mediated gene regulation. ERα regulates gene expression through the genomic and
nongenomic pathways. Genomic gene regulation involves the binding of oestrogen (E) to cytoplasmic
or nuclear localized ERα, resulting in dimerization, a change in receptor confirmation, and, in the case
of cytoplasmic ERα, translocation to the nucleus. ERα may recruit corepressors or coactivators (such
as PCDH19 and NONO) to regulate gene expression either by directly binding an oestrogen-response
element (ERE) or via binding to another transcription factor (TF). The nongenomic pathway involves
membrane-bound ERα, rapidly and indirectly influencing gene expression through the cascade
activation of DNA binding proteins [35].

2.3. Cellular Evidence

Despite the large body of the published PCDH19 literature, cellular localisation of
this protein appears to be an unsettled issue. PCDH19 is widely regarded as a membrane
localised protein, as identified in proliferating human induced pluripotent stem cells (iP-
SCs) and mature neurons [56]. PCDH19 also plays a role in facilitating cell adhesion and
aggregation, supporting the concept that PCDH19 is membrane-bound [7,14]. Further-
more, PCDH19 localises to the synapses and presynaptic puncta of mouse hippocampal
neurons [6,12]. However, as mentioned above, Pham et al. (2017) used subcellular frac-
tionation to show that PCDH19, along with NONO and ERα, are present in the nuclear
fraction of MCF-7 cells. Immunofluorescence studies in HeLa cells, MDCK cells, and mouse
hippocampal neurons showed that the C-terminal region of PCDH19 has a predominantly
perinuclear and occasional NONO-paraspeckle localisation [43]. These experiments were
performed in MCF-7 cancer cells, which may not be the best model for investigating the
consequences of PCDH19 variation that causes heterogenous neurological phenotypes [2].
Other immunofluorescence studies in proliferating iPSCs and polarized cells of the neural
rosette lumen show that PCDH19 localises to the mitotic spindle pole of the dividing cells
and affects its formation, suggesting that PCDH19 may play a role in regulating asymmetric
versus symmetric cell division during neurogenesis [56,57]. Taken together, these data
indicate differences in the localisation and possible function of PCDH19 in different cell
types and at different cell cycle stages. Therefore, the role of PCDH19/ERα-mediated gene
regulation in the brain may also vary depending on developmental stage and cell type.

3. Opportunities for Intervention

CE seizures are often resistant to currently available antiepileptic drugs (AEDs), mak-
ing research into discovering new treatment options vital [58]. Currently, the most effective
AEDs used in the treatment of CE, clobazam and bromide, have response rates (defined as
a seizure reduction of at least 50% after 3 months) of only 68% and 67%, respectively [59].
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Although the use of progesterone and 17β-oestradiol for treating epilepsy was extensively
studied [60–62], steroids are infrequently used in treating CE, and there are conflicting
reports on their effectiveness [59,63] (see Table 1). Higurashi et al. (2015) investigated the
effect of corticosteroids on reducing seizure frequency in five CE patients [64]. Higurashi
et al. (2015) recruited patients before the age of typical spontaneous seizure remission to
prevent the overestimation of drug efficacy [64]. This study showed that all CE patients
had a reduction in seizure clusters, findings that are supported by those of Bertani et al.
(2015), who also observed improvements in social interactions and speech function with
therapy [64,65]. However, follow-up analysis suggests that these steroid-based AEDs may
have only short-term effects, with seizures often recurring within a few weeks to months
after treatment, especially with fever [59,64]. As these studies were performed on a small
number of patients and with considerable variation in the experimental design, the results
should be interpreted with caution.

Table 1. Hormone-based AEDs for treating CE. Investigations into the efficacy of steroids for CE
treatment have given mixed results.

Hormone-Based Treatment No. of
Patients Age

Seizure
Reduction

(≥50%)
Reference

Corticosteroids 5 10 months–11.6
years

5/5 after the first
or second
treatment.
Clustering

recurred within
3 weeks with the
onset of fever for

3/5.

[64]

Corticosteroids 1 8 years 1/1. [64]
Ganaxolone Phase II 11 4–15 years 4/11. [66]

Steroids 3 Unknown

1/3 after 3
months of
treatment.

0/3 after 12
months of
treatment.

[59]

Vitamin B6 2 7–8 years 0/2 [63]

Ganaxolone, a synthetic analogue of allopregnanolone, is the only neurosteroid-like
agent undergoing human clinical trials for the treatment of epilepsy [67]. The structure of
ganaxolone differs from that of allopregnanolone by the presence of a single 3β-methyl
group, which eliminates its backconversion by 3α-hydroxysteroid oxidoreductase
(3α-HSOR) isoenzymes to the hormonally active intermediate dihydroprogesterone form.
Ganaxolone is metabolised to at least 16 different compounds; the primary product,
16α-hydroxyganaxolone, is inactive in the pentylenetetrazol (PTZ)-induced seizure model [68].
Ganaxolone is a positive allosteric modulator of GABAAR [69] that reduced induced
seizures in mice and rats [70]. Ganaxalone does not bind steroid receptors, which reduces
adverse effects [67]. Since its development, ganaxolone underwent many clinical trials
for the treatment of adult and paediatric epilepsy [67,71]. Ganaxolone is currently in a
Phase 2 placebo-controlled clinical trial by Marinus Pharmaceuticals (Violet Study) for the
treatment of CE [72]. Recent preliminary data released from Marinus showed a median
61.5% reduction in seizure frequency for ganaxolone compared to 24.0% for the placebo
(p = 0.17) [73]. This is an exciting and very promising result.

Though the development of AEDs for the treatment of CE is vital, CE comorbidities
are often just as debilitating. CE has a penetrance of 90%, with the severity of seizure
clusters and the presence of comorbidities differing among patients [1]. In fact, several
cases of discordant monozygotic CE twins were identified, indicating that variable clinical
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outcomes are not solely due to the underlying genetic differences [74–76]. This diverse
range of comorbid phenotypes and seizures pose a major barrier in identifying a therapeutic
agent that can be used for treating all CE patients [59]. The differences in clinical symptoms
could be due to multiple factors, including X-inactivation skewing or individual steroid
levels among different patients [77,78]. Consequently, it would be interesting to investigate
differences in gene expression and steroid levels between discordant monozygotic twins,
which may explain their variable penetrance.

4. CE Mouse Model

Animal models of epilepsy play a major role in AED development [79]. Several
mouse models of CE exist and greatly contribute to CE research [12,80,81]. However,
they do not closely recapitulate the phenotype of CE patients. For example, Pcdh19+/β–Geo

mice (exon 1–3 deleted and replaced with a β-Galactosidase-Neomycin fusion cassette) do
not display spontaneous seizures [12], though electrocorticogram (ECoG) analysis shows
that these mice have increased spike-wave discharge (SWD) events when compared to
control Pcdh19+/+ or Pcdh19β–Geo/β–Geo mice [7]. Furthermore, whereas variable cortical
folding abnormalities are a characteristic of CE [7], Pcdh19+/β–Geo mice do not show any
structural brain abnormalities [12]. Female Pcdh19+/β–Geo and male Pcdh19Y/β–Geo mice
have autism-like phenotypes when compared to wildtype mice [81]. As CE girls are often
affected by ASD [1], this may be a good model for this comorbidity. Another Pchd19+/KO

mouse model (exon 1 deleted and replaced with LacZ-neo, which was then removed
using Sox-2::Cre transgenic mouse) displayed normal social interaction and anxiety-like
behaviour, but abnormal mobility under stress and decreased fear response [80]. Whether
this model also lacked spontaneous seizures was not reported [80]. Another Pcdh19+/KO

mouse model (generated using the CRISPR/Cas9 system with guide RNAs specific for
exon 1) showed presynaptic defects at mossy fibre synapses and impairment in cognitive
behaviours associated with mossy fibre function (such as pattern completion ability),
but not other cognitive tasks [8]. The lack of an obvious CE phenotype in these mouse
models is not unusual, as null variants in human and mouse orthologues often result in
different phenotypes [82]. Another point to consider is that of differences in steroid levels
between mice and humans [83,84]. This could perhaps be partially caused by phylogenetic
divergence and functional differences between human and mouse AKR1C enzymes that
are responsible for producing androgens, oestrogens, progesterone, and prostaglandins
(PGs) [85]. Therefore, the lack of an obvious CE phenotype and differences in the steroid
pathways between mice and humans may impact the usefulness of Pcdh19 mouse models
in AED development.

5. Conclusions and Challenges

CE is a debilitating disorder in desperate need of novel therapeutic intervention.
Recent research into the role of steroids in CE pathogenesis has resulted in the identification
of CE gene dysregulation, altered steroidogenesis, and the implication of PCDH19 in NHR-
mediated gene regulation. The identification of reduced allopregnanolone levels in the
blood of CE patients has led to ganaxolone trials. However, many aspects relating to
the mechanism of CE pathogenesis, particularly that can directly or indirectly facilitate
development of treatments, remain unexplored. First, interactions between PCDH19 and
other NHRs should be investigated to fully understand the extent of PCDH19 influence
on the steroid pathways. The levels of other hormones such as testosterone in the blood
of CE females and mosaic males, and the effectiveness of long-term hormone-based AED
treatment should also be investigated. Second, though this review focuses on the role of
steroids and PCDH19 in the pathogenesis of CE, changes in the steroid pathway are linked
to a variety of other encephalopathies and mental illnesses [20,22,86]. For example, studies
in Cdkl5-KO mouse neurons (a model for the X-linked encephalopathy CDKL5 deficiency
disorder; CDD) identified neuron defects that could be restored with pregnenolone or
pregnenolone-methyl-ether treatment [87]. This lead to CDD patients being included
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in ganaxolone clinical trials, with results of the Marigold Study showing a significant
reduction in major motor seizure frequency when compared to in the placebo [86]. With
further research into the role of steroids and their receptors in CE, there is a promise and
optimism of tangible outcomes for CE patients.
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