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Abstract

Let X be a smooth compact manifold. We propose a geometric model for the

group K0(X,R/Z). We study a well-defined and non-degenerate analytic duality

pairing between K0(X,R/Z) and its Pontryagin dual group, the Baum-Douglas

geometric K-homology K0(X), whose pairing formula comprises of an analytic

term involving the Dai-Zhang eta-invariant associated to a twisted Dirac-type

operator and a topological term involving a differential form and some character-

istic forms. This yields a robust R/Z-valued invariant. We also study two special

cases of the analytic pairing of this form in the cohomology groups H1(X,R/Z)

and H2(X,R/Z).

xi





Introduction

The purpose of this thesis is to introduce an R/Z-valued invariant defined by

an analytic duality pairing between the even K-theory with coefficients in R/Z
and the even Baum-Douglas geometric K-homology [13],

K0(X,R/Z)×K0(X,Z)→ R/Z,

for a smooth compact manifold X. It is commonly known as the Pontryagin

duality pairing. By the Universal Coefficient Theorem in K-theory [53], there is

a short exact sequence

0→ Ext(K−1(X),R/Z)→ K0(X,R/Z)→ Hom(K0(X),R/Z)→ 0.

Since R/Z is divisible, the vanishing of the Ext group implies a natural iso-

morphism K0(X,R/Z)
∼−→ Hom(K0(X),R/Z). We formulate an analytic pairing

implementing the isomorphism. By ‘analytic’, we mean that the pairing involves

the eta-invariant associated to a Dirac-type operator twisted by some pullback

bundle over a smooth compact manifold.

This is inspired by the work of Lott [36] on the R/Z index theory. As moti-

vated by Karoubi’s model of K-theory with coefficients [31] and the index the-

orem for flat bundles of Atiyah-Patodi-Singer [7], Lott formulated an analytic

K1-pairing K1(X,R/Z)×K1(X) in terms of the eta-invariant of Atiyah-Patodi-

Singer [5]. In the physical aspect, such a pairing has been observed by Maldacena-

Seiberg-Moore [37] as describing the Aharonov-Bohm effect of D-branes in Type

IIA String theory. An extended discussion of such a manifestation in String the-

ory was given by Warren [51]. Beyond this, there are several studies related to

the R/Z K-theory from different points of view. For instance, Basu [11] provided

xiii
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a model via bundles of von Neumann algebras, according to the suggestion in [7,

Section 5, Remark 4]; Antonini et al [1] gave a construction of R/Z K-theory via

an operator algebraic approach; on the other hand, the strategy of Deeley [23] is

rather different in that he studied the pairing between the usual K-theory and

the K-homology with R/Z coefficients.

However, there is no known work, to the author’s knowledge, on the direct

analog of the analytic K1-pairing of Lott in the even case. This thesis is aimed

to fill in this gap. We construct a geometric model of the group K0(X,R/Z),

whose cocycle is a triple consisting of an element g of K1(X), a pair of flat

connections (d, g−1dg) on a trivial bundle and an even degree differential form µ

on X satisfying a certain exactness condition on the odd Chern character of g. Its

pairing with an even geometric K-cycle (M,E, f) can then be explicitly described

by an (reduced) even eta-type invariant of some twisted Dirac-type operator on

a cylinder M × [0, 1], which appears as one of the boundary correction terms in

the Dai-Zhang Toeplitz index theorem on manifolds with boundary [21], and a

topological term, whose integrand is the wedge product of the pullback of µ and

some characteristic forms on M. The resulting R/Z-valued invariant is robust in

the sense that it is independent of the geometry of the underlying manifold and the

bundle. We also show that such an analytic pairing is non-degenerate, and thus it

is a valid implementation of the isomorphism K0(X,R/Z)
∼−→ Hom(K0(X),R/Z).

As an intermediate step, we consider the special case of n-spheres. This provides

a non-trivial example of the pairing. In terms of application, we believe that the

analytic pairing in K0 describes the Aharonov-Bohm effect of D-branes in Type

IIB String theory, as explained in Section 5.3.

Then, we study two non-trivial special cases of the analytic pairing in the

R/Z-cohomology of degree one and two. In the case of H2, by the pullback via

a smooth map, we investigate the pairing on H2(S2,R/Z), elements of which are

represented by pure Hermitian local line bundles introduced by Melrose [41]. A

local line bundle is projective in that it is defined locally over a neighbourhood

of the diagonal. Thus, the corresponding twisted Dirac operator is projective

ala Mathai, Melrose and Singer [39, 40]. These are projective differential op-

erators with kernels whose supports are contained in the diagonal of S2. The

caveat is that these operators do not have a spectrum and thus do not have a
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well-defined eta-invariant. We make several assumptions and define a variant of

the Dai-Zhang eta-invariant for twisted projective Dirac operators in the special

case of S2. On the other hand, the analytic pairing in H1 is less complicated. The

pairing consists of the Atiyah-Patodi-Singer eta-invariant of the Dirac operator

on S1 twisted by a flat bundle and the holonomy of a flat connection over S1.

This can be viewed as a special case of the analytic K1-pairing.

Organisation. We discuss the necessary preliminaries in Chapter 1. This

includes an overview of fundamental objects and notions such as vector bundles,

K-theory, characteristic classes, and Dirac operators. With these established, we

propose a geometric model of R/Z K0-theory and study its properties in Chapter

2. A R/Q-valued Chern character map will then be formulated. In Chapter 3,

we revisit the classical notion of the Baum-Douglas geometric K-homology. In

particular, we study the homological Chern character on the level of K-cycles

and show its well-definedness under K-homology relations.

In Chapter 4, we discuss four crucial index theorems separately: the Atiyah-

Singer (even dimensional, closed manifold), the Atiyah-Patodi-Singer (even di-

mensional, manifolds with boundary), the classical Toeplitz (odd dimensional,

closed manifold) and the Dai-Zhang Toeplitz (odd dimensional, manifolds with

boundary). For the purpose of this thesis, the Dai-Zhang Toeplitz index theorem

plays a vital role and . In particular, we study the even Dai-Zhang eta-invariant

associated to a certain Dirac-type operator on a cylinder.

In Chapter 5, we establish the main result in this thesis. Using results in

Chapters 2,3 and 4, we formulate an explicit analytic K0-pairing in terms of the

Dai-Zhang eta-invariant. We show its well-definedness under various relations

and its non-degeneracy. For completeness, we also cover the discussion of the

odd case. In Chapter 6, we study the two aforementioned non-trivial cases of the

analytic pairing in cohomology theory.





Chapter 1

Preliminaries

1.1 Vector bundles and K-theory

In this chapter, we review the bundle-theoretic framework of topological K-

theory in the sense of Atiyah-Hirzebruch [2]. For the sake of self-containedness,

we lay out elementary facts about vector bundles, connections, curvature and so

on, as well as fixing terminology used throughout this thesis. These can be found

in standard references such as [2, 16, 18, 19, 29]. Readers who are familiar with

these notions can skip to the next chapter directly.

1.1.1 Vector bundles, connections and curvature

Definition 1.1.1. Let X and E be paracompact topological spaces. Let π : E →
X be a continous surjective map. A complex vector bundle of rank n is a locally

trivial fibration whose fiber is an n-dimensional complex vector space such that

for an open cover {Uα}α∈I of the base space X, two conditions are satisfied.

1. Local trivialisation: There is a homeomorphism

φα : E|Uα = π−1(Uα)
∼=−→ U × Cn

that fits into the commutative diagram

1



2 1.1. VECTOR BUNDLES AND K-THEORY

π−1(Uα) Uα × Cn

Uα Uα

φα

π π1

=

which restricts to a linear isomorphism of vector spaces for each x ∈ X

φx : π−1(x) ∼= {x} × Cn.

2. Cocycle condition: Over the double overlap Uαβ = Uα ∩ Uβ, we have

Uαβ × Cn
φ−1
β−−→ EUβ

∣∣
Uαβ

= EUα
∣∣
Uαβ

φα−→ Uαβ × Cn

for all α, β ∈ I. These are vector space automorphisms of Cn in each fiber.

Definition 1.1.2. Define the transition functions gαβ : Uαβ → GL(n,C) by

(1.1.1) gαβ(x) = φα ◦ φ−1
β

∣∣
{x}×Cn ,

whose inverse over Uαβ is gαβ = g−1
βα and these satisfy the cocycle condition

(1.1.2) gαβgβγgγα = 1 on Uαβγ.

Definition 1.1.3. Let π : E → X be a complex vector bundle. A local section

of E is a smooth map sα : Uα → E|Uα such that π ◦ s = IdUα . The space of all

smooth sections of E is denoted by Γ(E) = C∞(E).

Choose a good cover {Uα} of X so that there are non-vanishing local sections

sα : Uα → E|Uα , together with local trivialisations φα : E|Uα ∼= Uα × Cn. Then,

the composition φα ◦ sα : Uα → Uα × Cn is equivalent to a map Uα → Cn. We

write sα instead of φα ◦ sα to implicitly imply that a choice of local trivialisation

is made. Then, equation (1.1.1) can be rewritten as

(1.1.3) sα(x) = gαβ(x)sβ(x)

for all x ∈ Uαβ. Note that, in general there is no globally non-vanishing section,

i.e. there is no non–vanishing section sα for all Uα. In fact, a bundle is trivial if
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and only if there exists such a globally non-vanishing section. One can however

define a globally well-defined section by means of partition of unity subordinate

to the open cover Uα which extends to X.

Definition 1.1.4. Let E,F be complex vector bundles over X. Then, E is said

to be isomorphic to F, denoted by E ∼= F, if there exists a bundle isomorphism

h : E → F such that the following diagram

E F

X

h

πE πF

commutes.

Example 1.1.1. Let X be a smooth compact manifold.

1. We call X × Cn → X the complex trivial bundle of rank n. It is a globally

trivial bundle over X with the obvious projection (x, z) 7→ x.

2. A complex line bundle L→ X is a non-trivial bundle of complex dimension

one. Locally, the transition functions are given by gαβ : Uαβ → U(1) which

satisfy (1.1.2). The obstruction of L being trivial is encoded by the first

Chern class c1(L) ∈ H2(X,Z). In fact, there is an one-to-one correspon-

dence between the isomorphism classes of complex line bundles over X and

the isomorphism classes of principal U(1)-bundles over X.

3. Since X is smooth, the tangent bundle TX → X arises naturally, whose

fiber at each x ∈ X is the space TxX of vector fields at x. If X is a Rie-

mannian manifold with a given Riemannian metric, then there is a natural

isomorphism between TX and its ‘dual’ the cotangent bundle T ∗X.

Definition 1.1.5. Let
∧∗ T ∗X be the exterior algebra bundle of T ∗X. For 0 ≤

p ≤ dim(X), denote by Ωp(X) := Γ(
∧p T ∗X) the space of all smooth sections of∧∗ T ∗X. Equivalently, this is the space of all smooth differential p-forms on X.

Let E be a complex vector bundle over X. Denote by Ω∗(X,E) = Γ(
∧p T ∗X⊗E)

the space of all smooth differential forms with values in E.

Definition 1.1.6 (Operations on vector bundles). Let E and F be complex

vector bundles over X.
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1. Direct sum. Define E ⊕ F to be the fiberwise direct sum of E and F, i.e.

(E ⊕ F )x := Ex ⊕ Fx, for x ∈ X. The space of sections Γ(E ⊕ F ) coincides

with Γ(E)⊕ Γ(F ).

2. Dual. Define E∗ to be the fiberwise dual of E, i.e. (E∗)x := (Ex)
∗, for

x ∈ X.

3. Homomorphism. Define Hom(E,F ) to be the fibrewise homomorphism

bundle, i.e. Hom(E,F )x := Hom(Ex, Fx), for x ∈ X.

4. Tensor product. Define E⊗F to be the fibrewise tensor product Ex⊗Fx,
for x ∈ X. Alternatively, E⊗F can be viewed as Hom(E∗, F ), i.e. for v ∈ E
and u ∈ F, the tensor product v ⊗ u is a linear map E∗ → F ; ξ 7→ ξ(v)u.

5. Pullback. Let F be a complex vector bundle over a smooth compact

manifold Y. Let f : X → Y be a smooth map. Define the pullback bundle

f ∗F → X by {(a, x) ∈ F ×X | f(x) = π(a)}, whose fiber is (f ∗F )x := Ff(x)

for x ∈ X.

1.1.2 Connections and Curvature

Definition 1.1.7. Let E be a complex vector bundle over a smooth compact

manifold X. A connection ∇E on E is a R-linear first order differential operator

∇E : Γ(E) −→ Ω1(M,E)

satisfying the Leibniz rule

(1.1.4) ∇E(fs) = df ⊗ s+ f∇Es

for f ∈ C∞(X) and s ∈ Γ(E).

Proposition 1.1.8. The space A of all connections is an infinite dimensional

affine space modelled on Ω1(X,End(E)) where End(E) is the endomorphism bun-

dle over X.

Remark 1.1.9. Connections exist on every vector bundle and their existence

can be shown by means of partition of unity. Moreover, a connection extends
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canonically to a differential operator ∇E : Ωp(X,E) −→ Ωp+1(X,E) such that

∇E(ωs) = (dω)s+ (−1)deg ωω ∧∇Es

for any ω ∈ Ωp(X) and s ∈ Γ(E).

Remark 1.1.10. Let E → X be a complex vector bundle with a connection ∇.
Let {Uα} be a good cover of X. Locally over Uα, a local 1-form Aα is given by

∇sα = Aα ⊗ sα, where sα is a non-vanishing local section. Then, from (1.1.3),

two local 1-forms Aα and Aβ over the overlap Uαβ are related by

(1.1.5) Aα = g−1
αβAβgαβ + g−1

αβdgαβ.

Let fα ∈ C∞(Uα). By the Leibniz rule,

∇α(fαsα) = dfα ⊗ sα + fα(Aα ⊗ sα)

= (d+ Aα)(fαsα).

Then, a connection ∇ has the local form ∇α = ∇|Uα = d+ Aα.

Definition 1.1.11. The curvature F∇ of a connection ∇ is a map F∇ : Γ(E)→
Ω2(X,E) defined by F∇ = ∇2 = ∇ ◦∇.

By a direct computation we verify that the curvature F∇ is C∞(X)-linear,

i.e. F∇(fs) = fF∇s for any f ∈ C∞(X) and s ∈ Γ(E), but a connection is not,

by (1.1.4). Hence, the curvature F∇ can be viewed as a section of End(E) with

coefficients in Ω2(X), i.e. F∇ ∈ Ω2(X,End(E)).

Example 1.1.2. Let L → X be a complex line bundle. A transition function

takes the form gαβ : Uαβ → U(1) and the relation (1.1.5) reduces to Aα =

Aβ + g−1
αβdgαβ. Then, over Uαβ, we have

dAα = dAβ + d(g−1
αβdgαβ) = dAβ − g−1

αβdgαβg
−1
αβdgαβ + g−1

αβd
2gαβ = dAβ.

Since Uαβ is arbitrary, this defines a global 2-form over X, which is exactly the

curvature F∇ of the connection ∇ on the line bundle L.
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Definition 1.1.12. Let E and E ′ be complex vector bundles over X, equipped

with connections ∇E and ∇E′ respectively. Let E ⊗ E ′ be the tensor product

bundle. Then,

∇E⊗E′ = 1⊗∇E′ +∇E ⊗ 1(1.1.6)

F∇E⊗E′ = 1⊗ F∇E′ + F∇E ⊗ 1.(1.1.7)

Definition 1.1.13. A connection ∇ is flat if its curvature vanishes, i.e. F∇ = 0.

1.1.3 Characteristic classes

By (1.1.5) and a direct computation one can verify that the local curvature

matrix Fα satisfies the relation

(1.1.8) Fα = g−1
αβFβgαβ.

Equation (1.1.8) tells us that Fα does not depend on the local frames up to

conjugation. The trace of Fα is then given by

Tr(Fα) =
∑
i

(Fα)ii ∈ Ω2(Uα).

It is invariant under conjugation, i.e. by the multiplicative property of trace,

Tr(Fα) = Tr(g−1
α Fβgαβ) = Tr(Fβ).

By gluing along all overlaps Uαβ, we obtain a globally defined 2-form Tr(F ). Given

a bundle E with a connection ∇ and its curvature F∇, the trace map becomes

Tr : Ω2(X,End(E))→ Ω2(X)

with an “evaluation” map End(E)→ C.

Chern class. The total Chern form of E associated to ∇ is defined by

(1.1.9) c(E,∇) = det
(
Id +

i

2π
F∇

)
.



CHAPTER 1. PRELIMINARIES 7

Here, Id is the identity endomorphism of E. It has the total decomposition

(1.1.10) c(E,∇) = 1 + c1(E,∇) + · · ·+ ck(E,∇) + · · ·

where ck(E,∇) ∈ Ω2k(X) is the k-th Chern form. By the Chern-Weil theorem

1.1.15, all of these k-forms are closed, so they represent the k-th Chern class

ck(E) in H2k(X,Z). The total Chern class c(E) =
∑

k ck(E) is a finite sum and

thus is well-defined since ck(E) = 0 for k > dim(X).

On the other hand, we can rewrite the RHS of (1.1.9) as

(1.1.11) det
(
Id +

i

2π
F
)

= exp
(
Tr
(

log
(
Id +

i

2π
F
)))

.

By the Taylor expansion of log, we have

(1.1.12) log
(
Id +

i

2π
F
)

=
i

2π
F − 1

2(2π)2
F 2 + · · · .

Then,

(1.1.13) Tr
(

log
(
Id +

i

2π
F
))

=
i

2π
Tr(F )− 1

2(2π)2
Tr(F )2 + · · · .

By substituting (1.1.13) into (1.1.11), we obtain

(1.1.14) exp
(
Tr
(

log(Id +
i

2π
F )
))

= 1 +
i

2π
Tr(F )− 1

(2π)2
Tr(F )2 + · · · .

Definition 1.1.14. From (1.1.10) and (1.1.14), the first Chern class of E is given

by c1(E) :=
[
i

2π
Tr(F )

]
∈ H2(X,Z).

Example 1.1.3. The first Chern class of a line bundle L is c1(L) = i
2π
F, where

End(L) = L∗⊗L is trivial and the trace Tr is the identity map on F. Hence, line

bundles over X are fully classified by c1 ∈ H2(X,Z). In particular, L is trivial if

and only if c1(L) = 0.

Example 1.1.4. Assume that a complex vector bundle E with connection ∇ has

a Hermitian metric, so that its structure group GL(n,C) can be reduced to the

unitary group U(n). If it can be further reduced to SU(n), then its curvature is

a su(n)-valued 2-form. Hence, Tr(F∇) = 0 and c1(E) = 0.
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Let f(x) = a0 + a1x + · · · anxn + · · · be a power series in one variable. By

replacing x with the curvature F∇ of a connection ∇ on E, the polynomial f(F∇)

is a sum of even forms, which is again an even form in Ω2k(X).

Theorem 1.1.15 (Chern-Weil theorem). The trace Tr(f(F∇)) is a closed form,

i.e. dTr(f(F∇)) = 0. If ∇′ is another connection on E with curvature F∇′ , then

there exists a differential form ω ∈ Ω∗(X) such that

Tr(f(F∇))− Tr(f(F∇′)) = dω.

Pontryagin class. Let V be a real vector bundle. The total Pontryagin

form associated to ∇V is given by

p(V,∇V ) = det
((

Id−
(F∇

2π

)2) 1
2
)

= 1 + p1(V,∇V ) + · · ·+ pk(V,∇V ) + · · ·

where pj(V,∇V ) ∈ Ω4j(X). The sum is well-defined since pj(V,∇V ) = 0 when its

degree is larger than the dimension of X. Let V ⊗C be the complexified bundle,

which is now a complex vector bundle, then its relation with ck is given by

pk(V ) = (−1)kc2k(V ⊗ C).

The associated characteristic class is the Pontryagin class p(V ) ∈ H4k(X,Z).

Â-class. It turns out that the Pontryagin class is also deeply related to the

A-hat class Â(X) of a smooth compact oriented manifold X. The A-hat function,

in terms of polynomials, is given by the formula

Â(x) =
x/2

sinh(x/2)
.

Let TX be the tangent bundle of X with a connection ∇TX and F∇TX its curva-

ture. Then, Â(TX,∇TX) is explicitly given by

Â(TX,∇TX) = det

((
i

4π
F∇TX

sinh( i
4π
F∇TX )

) 1
2
)
∈ Ω∗(X).
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Let Â(TX) be its associated cohomology class. In terms of Pontryagin classes,

Â(TX) = 1− 1

24
p1(TX) +

7p2
1(TX)− 4p2(TX)

5760
+ · · · .

Let [X] be the fundamental class of X, then the A-hat genus of X is defined by

the pairing

(1.1.15) Â(X) = 〈Â(TX), [X]〉 =

∫
X

Â(TX,∇TX).

Todd class. Consider the formal power series and the product of r factors

td(t) =
t

1− e−t
= 1 +

t

2
+
t2

12
− t4

120
+ · · ·

Td(t1, . . . , tr) =
r∏
i=1

td(ti) = 1 + td1(t1) + td2(t1, t2) + · · ·

= 1 + Td1(x1) + Td2(x1, x2) + · · · .

Here, each xi is the elementary symmetric polynomial in ti. Let xi = c1(`i) where

`i is the line bundle from the decomposition E = ⊕`i by the Splitting Principle.

Then, the first few terms of Tdn(x1, . . . , xn) are

Td1(c1) =
1

2
c1, Td2(c1, c2) =

1

12
(c2 + c2

1), Td3(c1, c2, c3) =
1

24
(c2c1).

Now, when X is a smooth compact spinc manifold with E = TX, the Todd genus

is the rational number

(1.1.16) Td(X) = 〈Tdk(TX), [X]〉

where [X] ∈ H2k(X,Q) is the fundamental class of X. The Todd forms are related

to the A-hat forms by

(1.1.17) Td(TX,∇TX) = e
c1(L,∇L)

2 ∧ Â(TX,∇TX)

where L is the line bundle associated to the spinc structure. The Todd forms
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(1.1.17) are closed and represent Todd classes

(1.1.18) Td(TX) = [Td(TX,∇TX)] ∈ H2k(X,Q).

Theorem 1.1.16 ([3]). Let X be a compact spin manifold of dimension 4k. Then

Â(X) is an integer. If dim(X) ≡ 4(mod 8), then Â(X) is an even integer.

Remark 1.1.17. When X is a compact manifold which is not spin, the Â-genus

is often not an integer. This leads to the study of projective analytic indices of

projective differential operators, cf. [38–40].

Theorem 1.1.18 ([3]). Let X be a compact spinc manifold (i.e. an orientable

manifold with c ≡ w2(X)mod 2 for c ∈ H2(X,Z)). Then, Td(X) is an integer.

1.1.4 Topological K-theory

By Definition 1.1.4, we denote by [E] the isomorphism class of a complex

vector bundle E. Let [E] and [F ] be two isomorphism classes of vector bundles.

The addition is given by the direct sum of the underlying representatives

[E] + [F ] := [E ⊕ F ].

The formal inverse of [E] is −[E], which is the isomorphism class [	E] of the

formal inverse of E. Then, the formal difference is [E]− [F ] = [E 	 F ].

Definition 1.1.19. Let X be a smooth compact manifold. Let VectC(X) be

the monoid of all isomorphism classes of complex vector bundles over X. The K-

theory ofX, denoted byK0(X), is defined as the group given by the Grothendieck

completion of VectC(X). Every element in K0(X) can be written as [E] − [F ].

The stabilization relation is [E] − [F ] = [E ′] − [F ′] if and only if there exists a

bundle G over X such that E ⊕ F ′ ⊕G ∼= E ′ ⊕ F ⊕G.

The K0-group is abelian. It forms a commutative ring if we take

([E]− [F ]) · ([E ′]− [F ′]) = [E ⊗ E ′] + [F ⊗ F ′]− [E ⊗ F ′]− [F ⊗ E ′].

Since every bundle E has a complement Ec such that E ⊕ Ec ∼= X × Cn, the
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sum [E] + [Ec] defines a trivial class 1 = [X ×Cn] ∈ K0(X). Alternatively, every

element [E]− [F ] can be rewritten as [H]− 1 ∈ K0(X) for some bundle H.

Example 1.1.5. • Let X = pt. Then, K0(X) = K0(pt) = Z. Informally, an

associated integer indicates the rank of a trivial bundle over a point.

• Let X = S1. Then, K0(S1) = Z, also given by the rank of a trivial bundle,

since every complex vector bundle over S1 is necessarily trivial.

• Let X = S2. Then, K0(S2) = Z ⊕ Z, in which the first factor is generated

by trivial bundles and the second factor is generated by the Bott bundle

β0 = L0 − 1, where L0 is the canonical Hopf line bundle over S2 ∼= CP 1.

• Let Lk = L(3; k, 1) = S3/Zk be a three dimensional Lens space. By [31,

pp. IV, 1.14], Lk can be identified with the sphere bundle of the k-tensor

product of β0 → S2, i.e. Lk ∼= S(β⊗k0 ). Let π : Lk → S2 be the projection.

Then, π∗β∗0 → Lk, the pullback of the dual of β0, is a non-trivial bundle

and it generates a class in K0(Lk).

Proposition 1.1.20. K-theory is contravariant. Let f : X → Y be a continuous

map of smooth manifolds. Let E be a complex vector bundle over Y with [E] ∈
K0(Y ). Then, the pullback bundle f ∗F → X represents the class f ∗[E] := [f ∗E] ∈
K0(X). This defines a map f ∗ : K0(Y )→ K0(X).

Lemma 1.1.21 (Homotopy invariant). For t ∈ [0, 1], let ϕ(t) be a homotopy

between continuous maps f0, f1 : X → Y such that ϕ(0) = f0 and ϕ(1) = f1.

Then, f0 and f1 induces the same map f ∗0 = f ∗1 : K0(Y )→ K0(X).

Definition 1.1.22. The reduced K-theory K̃0(X) of X is defined by the kernel

of the map ι∗ in the following exact sequence

(1.1.19) 0→ K̃0(X)→ K0(X)
ι∗−→ K0(pt)→ 0,

where ι : pt→ X denotes the inclusion map. That is,

K̃0(X) ∼= ker{K0(X) −→ K0(pt) ∼= Z}.
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So, K0(X) ∼= Z ⊕ K̃0(X). On the other hand, if X is locally compact, the K-

theory K0(X) can be defined by

(1.1.20) K0(X) = K̃0(X+)

where X+ = X t {pt} denotes the one-point compactification of X.

Example 1.1.6. Let Sn = Rnt{pt} be the n-sphere obtained from the one-point

compactification of Rn. That is, there is a short exact sequence

0→ pt ι−→ Sn → Rn → 0.

The induced short exact sequence of K-theory is

(1.1.21) 0→ K0(Rn)→ K0(Sn)
ι∗−→ K0(pt)→ 0.

By Example 1.1.5, (1.1.19) and (1.1.21), there is an isomorphism K0(Rn) ∼=
K̃0(Sn). This verifies (1.1.20) since Rn is locally compact.

Definition 1.1.23. Define the higher K-groups K−n(X) (n ∈ N) by

K−n(X) := K0(X × Rn).

Theorem 1.1.24 (Bott Periodicity). For any locally compact space X, there is

a natural isomorphism K∗(X)→ K∗(X × R2).

Bott Periodicity is one of the fundamental results in K-theory. The proof can

be found in any standard references on K-theory cf. [2],[29],[31]. We illustrate

an example of this instead.

Example 1.1.7. Recall from Example 1.1.5 and (1.1.19) that K̃0(S2) ∼= Z is

generated by the Bott bundle β. Since β has virtual dimension 0, it defines a

generator of K0
c (R2), which coincides with the relative K-theory K0(S2, {∞}).

Then, the map K0(X) → K0(X × R2) is given by the external product with β,

i.e. E 7→ E � β. In the special case when X = pt and E = τ is a trivial bundle,

this map is an isomorphism. It can then be shown (the hard part) that this holds

for more general spaces.
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1.1.5 In relation to cohomology theory

Even Chern character. Let E be a complex vector bundle over a smooth

compact manifold X. Assume E is equipped with a Hermitian metric hE and a

compatible Hermitian connection ∇E. Define the Chern character of E by

(1.1.22) ch(E) := [ch(E,∇E)] = [Tr(eF
2
∇)] ∈ H∗(X,Q).

Let ch(x1, . . . , xn) =
∑n

i=1 e
ti be a symmetric polynomial in t1, . . . , tn in each

degree. It can be expressed as a polynomial in the elementary symmetric functions

x1, . . . , xn. In particular,

(1.1.23) ch(x1, . . . , xn) = n+ ch1(x1, . . . , xn) + ch2(x1, . . . , xn) + · · ·

whose k-th term is given by

chk(x1, . . . , xn) =
n∑
i=1

tki
k!
.

It is readily checked that the first two terms are respectively

ch(x1, . . . , xn) =
∑

ti = x1,

ch2(x1, . . . , xn) =
∑ t21

2
=

(
∑
ti)

2 − 2
∑

i<j titj

2
=
x2

1 − x2

2
.

Define the Chern character of E by

ch(E,∇) := ch(c1(E,∇), . . . , cn(E,∇))

where ci(E,∇) is the i-th Chern class of E. Then, (1.1.23) can be rewritten as

(1.1.24) ch(E) = rk(E) + c1(E) +
1

2
(c2

1(E)− 2c2(E)) + higher order terms.

Let E and F be complex vector bundles over X. Let E⊕F and E⊗F be the

corresponding direct sum and tensor product bundles respectively.

Lemma 1.1.25. The map ch respects the direct sum and the tensor product of
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vector bundles

ch(E ⊕ F ) = ch(E) + ch(E), ch(E ⊗ F ) = ch(E) ∧ ch(F )

where ∧ denotes the wedge product on the level of forms and cup product on the

level of characteristic classes. In particular, ch(E∗) = −ch(E).

By Lemma 1.1.25, the even Chern character map

ch : K0(X)→ Heven(X,Q)

is a ring homomorphism. By [4], it is a rational isomorphism

ch : K0(X)⊗Q ∼−→ Heven(X,Q).

Lemma 1.1.26 (Naturality). Let f : X → Y be a smooth map. Let E be a

complex vector bundle over X. Then, the map ch respects the pullback of E via

f, i.e. ch(f ∗E) = f ∗ch(E).

Example 1.1.8. • Let τ be the trivial bundle over X. Then, ch(τ) = rk(τ)

since ci(τ, d) = 0 for all i ≥ 1.

• Let β0 → S2 be the Bott bundle as in Example 1.1.5. Then,

ch(β0) = ch(L0 − 1) = c1(L0) ∈ H2(S2,Z).

• Let π∗β0 → Lk be the non-trivial line bundle over a Lens space as in Ex-

ample 1.1.5. Then, by Lemma 1.1.26 and Lemma 1.1.25,

ch(π∗β0) = −π∗ch(β0) ∈ H2(Lk,Z) ∼= Zk.

Chern-Simons form. Let E be a complex vector bundle over X. Let ∇1,∇2

be two connections on E. For t ∈ [0, 1], consider a path of connections ∇t on E

defined by

∇t = (1− t)∇1 + t∇2.
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It is clear that

(1.1.25)
d∇t

dt
= ∇2 −∇1 ∈ Ω1(X,End(E)).

Then, one computes

(1.1.26)
d

dt
Tr(eF∇t ) = Tr

(d(∇t)
2

dt
eF∇t

)
= Tr

([
∇t,

d∇t

dt

]
eF∇t

)
= Tr

([
∇t,

d∇t

dt
eF∇t

])
.

By (1.1.25), it is a basic fact that

dTr
(d∇t

dt
eF∇t

)
= Tr

([
∇t,

d∇t

dt
eF∇t

])
.

It is immediate from (1.1.26) that

dTr
(d∇t

dt
eF∇t

)
=

d

dt
Tr(eF∇t ).

Upon integrating over t ∈ [0, 1], we obtain the transgression form

(1.1.27) Tr(eF∇2 )− Tr(eF∇1 ) = d

∫ 1

0

Tr
(d∇t

dt
eF∇t

)
dt

of Chern character.

Definition 1.1.27. The term on the RHS of (1.1.27) is the Chern-Simons form

(1.1.28) CS(∇1,∇2) :=

∫ 1

0

Tr
(d∇t

dt
eF∇t

)
dt

satisfying the property

(1.1.29) dCS(∇1,∇2) = ch(∇2)− ch(∇1).

Let ∇1,∇2,∇3 be three connections on E, then the Chern-Simons forms sat-

isfy the relation

CS(∇1,∇2) + CS(∇2,∇3) = CS(∇1,∇3).

Definition 1.1.28. Given a short exact sequence of complex vector bundles
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0 → E1 → E2 → E3 → 0. Choose a splitting map j : E3 → E2. Let i : E1 → E2

be an inclusion map such that the pullback (i⊕ j)∗E2
∼= E1 ⊕ E3. Define

(1.1.30) CS(∇E
1 ,∇E

2 ,∇E
3 ) := CS((i⊕ j)∗∇E

2 ,∇E
1 ⊕∇E

3 ).

It is independent of the choice of splitting j. Then, relation (1.1.29) becomes

(1.1.31) dCS(∇E
1 ,∇E

2 ,∇E
3 ) = ch(∇E

2 )− ch(∇E
1 )− ch(∇E

3 ).

Odd Chern Character. Let X be a smooth closed manifold. An element

of K1(X) can be represented by a differentiable map g : X → GL(N,C) for

a sufficiently large positive integer N. Let τ = X × CN be the trivial complex

vector bundle of rank N over X, upon which g acts on it as an automorphism

i.e. g ∈ Γ(Aut(τ)). Suppose τ is endowed with a Hermitian metric. Without

loss of generality, we assume that its structure group GL(N,C) is reduced to the

unitary group U(N) = U(N,C) via the metric. Thus, equivalently we write

(1.1.32) g : X → U(N), [g] ∈ K1(X).

Let ∇t = d+tω be a path of connections on τ, connecting the trivial connection d

to ω = g−1dg ∈ Ω1(X,End(τ)). In particular, ∇1 = d+ g−1dg is gauge equivalent

to d. By (1.1.29), CS(d, d+ g−1dg) is a closed form of odd degree.

Definition 1.1.29 ([26]). Let g : X → U(N) be a K1-representative. Define the

odd Chern character of g by

(1.1.33) ch(g, d) = CS(d, d+ g−1dg).

Explicitly, it is given by the formula

(1.1.34) ch(g, d) =
∞∑
k=0

(−1)k
k!

(2k + 1)!
Tr
(
(g−1dg)2k+1

)
.

Lemma 1.1.30. Let [g] be the homotopy class represented by g. The cohomology

class of ch([g]) depends only on the class [g]. Moreover, the odd Chern charac-

ter respects the addition ch(g ⊕ h) = ch(g) + ch(h). Thus, it defines a group
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homomorphism

ch : K1(X) −→ Hodd(X,C)

which is an isomorphism after tensoring K1(X) with C.

Remark 1.1.31. Another similar formula to (1.1.34) is given by Zhang in [54,

Chapter 1,(1.50)]. His formulation includes the normalisation factor
(

1
2πi

) k+1
2 , so

that the k-th Chern form associated to (g, d) is

c2k+1(g, d) =
( 1

2πi

) k+1
2 Tr

(
(g−1dg)2k+1

)
.

Thus, ch(g, d) =
∑

(n!/(2n+ 1)!)c2n+1(g, d).

Facts and properties of odd Chern character [20, 21, 54].

• Tr((g−1dg)k) = 0 when k > 0 is an even integer. It is closed, i.e. dTr((g−1dg)k) =

0 when k > 0 is an odd integer.

• (Variation) If gt : X → U(N) is a smooth family which depends only on

t ∈ [0, 1], then for any odd integer k > 0, the identity holds

∂

∂t
Tr
(
(g−1
t dgt)

k
)

= ndTr
(
g−1
t

∂gt
∂t

(g−1
t dgt)

k
)
.

• (Product) Let f, g : X → U(N) be representatives in K1(X). For any odd

integer k > 0, there exists θk ∈ Ωk−1(X) satisfying

Tr
(
(fg)−1d(fg))k

)
= Tr

(
(f−1df)k

)
+ Tr

(
(g−1dg)k

)
+ dθk.

• (Independent of the choice of d) Let g ∈ Γ(Aut(τ)). Let d′ be another trivial

connection on τ. Then, for any odd integer k > 0, there exists θk ∈ Ωk−1(X)

such that

Tr
(
g−1dg)k

)
= Tr

(
(g−1d′g)k

)
+ dθk.

• There is a transgression form Tch(gt, d) of the odd Chern character ch(gt)

for a path gt connecting g0 and g1. In particular, for t ∈ [0, 1], define

(1.1.35) Tch(gt, d) =
∞∑
k=0

k!

(2k)!

∫ 1

0

Tr
(
g−1
t

∂gt
∂t

(g−1dgt)
2k
)
dt
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which satisfies the odd analog of the transgression formula

(1.1.36) ch(g1, d)− ch(g0, d) = dTch(gt, d).

1.2 spinc structures and Dirac operators

1.2.1 spin and spinc structures

Let X be a smooth oriented Riemannian manifold. Let {Uα} be a good cover

of X. Suppose E → X is an oriented real vector bundle of rank n equipped with

a fibrewise metric. Let F (E) be its frame bundle whose fiber at x is the set

of oriented orthonormal frames of Ex for all x ∈ X. Then, F (E) is a principal

SO(n)-bundle over X. In particular, locally over Uαβ the transition functions are

smooth maps

(1.2.1) gαβ : Uαβ −→ SO(n).

By a standard reconstruction procedure, E can be constructed from its frame

bundle as an associated bundle. Thus, E has structure group the general linear

group GL(n,R). Via the equipped fiberwise metric, the structure group GL(n,R)

can be reduced to SO(n). A collection of maps (1.2.1) defines a Cěch cocy-

cle [gαβ] ∈ H1
Cěch(X,SO(n)). By standard bundle theory, the cohomology group

H1
Cěch(X,SO(n)) classifies all principal SO(n)-bundles.

Given a Riemannian metric on X, the (real) Clifford algebra is defined by

(1.2.2) Cl(X) =
⊕
x∈X

Clx(X), Clx(X) =

(
∞⊕
k=0

(T ∗xX)k

)
/ ∼

where ∼ is given by 〈a⊗ b+ b⊗ a− 2(a, b)g〉 for a, b ∈ T ∗xX.

Definition 1.2.1. Let (Rn, 〈·, ·〉) be the Euclidean space equipped with the stan-

dard inner product. Let Cl(n) = Cl(Rn) be the Euclidean Clifford algebra gen-

erated by an orthonormal basis {ei}ni=1 of Rn subjected to the (Clifford) relation

(1.2.3) eiej + ejei = −2δij = −2〈ei, ej〉.
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Definition 1.2.2. The Euclidean Spin group is defined by

(1.2.4) Spin(n) = {v1v2 · · · vn ∈ Cl(n) | vi ∈ Rn, |vi| = 1}.

Proposition 1.2.3. There is a short exact sequence of groups

(1.2.5) 1→ Z2 → Spin(n)
ρ−→ SO(n)→ 1.

The group Spin(n) is the non-trivial double cover of SO(n) for n = 1 and is a

universal cover for n ≥ 2. Moreover, Spin(n) is a compact Lie group.

For a contractible open set Uαβ of a good cover, there exists a lift g̃αβ : Uαβ →
Spin(n) of gαβ. In particular, the lift of the cocycle condition (1.1.2) becomes

(1.2.6) g̃αβ g̃βγ g̃γα = ±1.

Definition 1.2.4. A spin structure on E is a collection of lifts {g̃αβ} such that

the condition (1.2.6) is

(1.2.7) g̃αβ g̃βγ g̃γα = 1.

A complex vector bundle E is spin if there exists a spin structure on E.

Now, a collection of double covering maps

(1.2.8) θαβγ = g̃αβ g̃βγ g̃γα : Uαβγ → Z2

represents a class [θ] ∈ H2
Čech(X,Z2). Equivalently, the bundle E is spin if and

only if [θ] is trivial. Such a class is called the second Stiefel-Whitney class of E,

denoted by w2(E) := [θ].

Proposition 1.2.5 ([33]). A bundle E admits a spin structure if and only if

there is a lift of the classifying map X → BSO(n) to a map X → BSpin(n).

Equivalently, E admits a spin structure if and only if w2(E) = 0. Moreover, the

class w2(E) is independent of the choice of lifts. Spin structures are not unique,

if they exist. They are determined by the group H1(X,Z2).

Alternatively, a spin structure can be defined in terms of principal bundles.
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Definition 1.2.6. Let E → X be a complex vector bundle. A spin structure on

E is a principal Spin(n)-bundle, together with a double-sheeted covering map

π : PSpin(n) −→ PSO(n)

such that π(p · g) = π(p) · ρ(g) for p ∈ PSpin(n), g ∈ Spin(n) and ρ : Spin(n) →
SO(n) is the non-trivial double covering map.

Definition 1.2.7. A smooth oriented Riemannian manifold X is spin if there

exists a spin structure on its tangent bundle TX, i.e. w2(X) := w2(TX) = 0.

It is natural to ask the question: can we extend the condition (1.2.7) of a

spin structure to one which is still well-defined when w2(X) 6= 0? The answer is

affirmative. Let {g̃αβ} be the lifting of {gαβ} satisfying (1.2.8). Such a map θαβγ
can be viewed as the coboundary of a collection {fαβ} of functions

fαβ : Uαβ → Z2.

These ‘signed’ functions relate gαβ to another transition function g̃′αβ by

g̃′αβ = fαβ g̃αβ.

Now, let f̃αβ : Uαβ → U(1) be an extension of fαβ.

Definition 1.2.8. A spinc structure on a bundle E consists of the lifts {g̃αβ} and
U(1)-valued functions {f̃αβ} such that

g̃αβ g̃βγ g̃γα = f̃αβ f̃βγ f̃γα.

Note that the functions f̃αβ include fαβ by fαβ = f̃ 2
αβ. This defines a complex

line bundle L → X whose first Chern class is c1(L) mod 2. Here, modulo 2

corresponds to the cocycle condition f̃αβ f̃βγ f̃γα being Z2-valued.

Definition 1.2.9. The Euclidean Spinc group is defined by

Spinc(n) = {cv1v2 · · · v2k ∈ Cl(n) | vi ∈ Rn s.t. |vi| = 1, c ∈ C s.t. |c| = 1}

= Spin(n)×Z2 U(1).
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This is a subgroup of the complexified Clifford algebra Cl(n) = Cl(n)⊗R C.

Remark 1.2.10. There is an associated short exact sequence

(1.2.9) 1→ Z2 → Spinc(n)
ρc−→ SO(n)× U(1)→ 1

with ρc([x, z]) = (ρ(x), z2). In particular, the Spinc group fits into the following

diagram

1

U(1)

1 Spin(n) Spinc(n) U(1) 1

SO(n)

1

γ θ

α

λ

β

λ

where both of the row and the column are short exact sequences. Here, the maps

α and γ are natural inclusions of Spin(n) and U(1) into Spinc(n) respectively; λ

is the universal cover Spin(n)→ SO(n); θ is the squaring map z 7→ z2; and β is

the map (a, z) 7→ z2.

As an analog to spin structure, we can alternatively define spinc structure in

terms of principal bundles.

Definition 1.2.11. A spinc structure on E → X consists of a principal Spinc(n)-

bundle PSpinc(n) and a principal U(1)-bundle PU(1) together with an equivariant

map

πc : PSpinc(n) −→ PSO(n) × PU(1)

i.e. πc(p · g) = πc(p) · ρc(g) for p ∈ PSpin(n), g ∈ Spin(n).

Definition 1.2.12. LetX be an oriented Riemannian manifold. Then, X is spinc

if the tangent bundle TX admits a spinc structure. The vanishing condition of

the Stiefel-Whitney class is given by W3(X) := W3(TX) = 0.
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Remark 1.2.13. Equivalently, a smooth oriented manifold X is spinc if and only

if there is a complex line bundle L→ X such that TX⊕L admits a spin structure.

Example 1.2.1. 1. The Euclidean space Rn, contractible manifolds, orientable

surfaces and all oriented 3-manifolds are spin.

2. It is well-known that RP2 is not orientable, and thus not spin. However,

for n > 2, RPn is spin if and only if n ≡ 3 mod 4. The complex projective

space CPn is spin if and only if n is odd.

3. Almost complex manifolds and all orientable 4-manifolds are spinc.

1.2.2 Spinors and Dirac operators

Definition 1.2.14. Let ∆n be the space of complex n-spinors defined by ∆n :=

C2r where r = [n/2] is the integer part of n/2.

Proposition 1.2.15.

Cl(n) ∼=

End(∆n) for n = 2k;

End(∆n)⊕ End(∆n) for n = 2k + 1.

By Proposition 1.2.15, one can view elements of Cl(n) as acting on complex

spinors, which leads to the following definition.

Definition 1.2.16. Let v ∈ Rn. The Clifford multiplication by v on spinors is

defined by a map c(v) : ∆n → ∆n which satisfies the Clifford relation

(1.2.10) c(v)c(w) + c(w)c(v) = −2〈v, w〉.

Definition 1.2.17. Let X be a spin manifold of dimension n. Define the complex

spinor bundle S → X as the associated bundle

(1.2.11) S = PSpin(n) ×ρn ∆n

where the (complex) spin representation

(1.2.12) ρn : Spin(n)→ End(∆n)
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is given by the restriction of an irreducible complex representation Cl(n) →
End(∆n) to Spin(n) ⊂ Cl(n) ⊂ Cl(n). A section ψ ∈ Γ(S) is called a spinor field.

Z2-grading. In the case n = 2k, the spin representation (1.2.12) is Z2-graded

(1.2.13) ρ±2k : Spin(2k)→ End(∆±2k),

where ∆2k = ∆+
2k ⊕ ∆−2k. Hence, the spinor bundle is also Z2-graded, i.e. S =

S+ ⊕ S−. To see this, let {ei} be a positively oriented orthonormal frame of TX.

Then, define the complex volume form as

(1.2.14) ωC = ike1 · · · e2k,

where i =
√
−1. It is readily checked that (1.2.14) is independent of the choice

of orthonormal frame and ω2
C = 1. Thus, S± is the ±1-eigenbundle of c(ωC) =

ikc(e1) · · · c(e2k), given by

(1.2.15) S± = (1± ωC)S.

Remark 1.2.18. More generally, for a spinc manifold X of dimension n, we can

generalise (1.2.11) to an associated bundle

(1.2.16) S = PSpinc(n) ×ρcn ∆n

where ρcn : Spinc(n) ⊂ Cl(n) → End(∆n) is the (complex) spinc representation.

When n = 2k, there is only one fundamental (complex Clifford representations

are irreducible) Z2-graded spinor bundle over X, given by a similar formula to

(1.2.15). When n = 2k + 1, there are two irreducible complex Clifford repre-

sentations but they are equivalent when restricted to Spinc(n). The intertwining

relation between a spinc spinor bundle and a spin spinor bundle is given by

(1.2.17) SSpinc = SSpin ⊗ L
1
2

where L is the complex line bundle associated to the spinc structure and L
1
2 is

its square root. Note that it is a non-trivial fact that even when SSpin and L1/2 in

(1.2.17) cannot be constructed individually, their product determines a globally
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defined bundle SSpinc , cf. [33, Appendix D]. It is clear from (1.2.17) that when

X is spin, then X is spinc with a canonical trivial class of L, i.e. SSpinc = SSpin.

Definition 1.2.19. A spinor connection ∇S on the spinor bundle S is a covariant

derivative

∇S : Γ(S) −→ Γ(T ∗X ⊗ S)

satisfying the compatibility condition

(1.2.18) ∇S(c(v)ψ) = c(∇v)ψ + c(v)∇Sψ

where c is the Clifford multiplication, v ∈ T ∗X and ψ ∈ Γ(S).

Definition 1.2.20. Let X be a spin manifold. Let S be the complex spinor

bundle. The Dirac operator D : Γ(S) → Γ(S) is the first order differential

operator defined by the composition of maps

Γ(S)
∇S−−→ Γ(T ∗X ⊗ S)

c−→ Γ(S)

where c is the Clifford multiplication v ⊗ s 7→ c(v)s. Locally, with respect to an

orthonormal basis {ei}, the Dirac operator can be expressed as

(1.2.19) D =
∑
i

c(ei)∇S
ei
.

Remark 1.2.21. The setting above can be slightly extended to the case of Clif-

ford modules. Let X be a spin manifold. Let E → X be a complex vector bundle.

Then, the tensor product bundle S ⊗E is a Clifford module over X, i.e. there is

a Clifford multiplication

c : Γ(T ∗X ⊗ (S ⊗ E)) −→ Γ(S ⊗ E)

v ⊗ a 7−→ c(v)a

which satisfies the Clifford relation (1.2.10). Let ∇S⊗E be the induced tensor

product connection on S ⊗ E. Then, ∇S⊗E satisfies the relation (1.2.18) for φ ∈
Γ(S ⊗ E). The Dirac operator twisted by E is given by

(1.2.20) DE = c ◦ ∇S⊗E.
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It is well known that Dirac operators are elliptic. Let E,F be two complex

vector bundles over a Riemannian manifold X. Let D : Γ(E) → Γ(F ) be a

differential operator of order m, which takes the form

(1.2.21) D =
∑
|α|≤m

Aα(x)
∂|α|

∂xα

in local coordinates, where α = (α1, . . . , αn) is a multi-index, ∂|α|x = ∂α1
x · · · ∂αnx

and Aα(x) : Ex → Fx is a fiberwise linear map. Then, the principal symbol σξ is

a linear map defined by

σξ(D) = im
∑
|α|=m

Aα(x)ξα : Ex → Fx

for ξ = ξkdx
k ∈ T ∗xX and ξα = ξα1

1 · · · ξαnn .

Definition 1.2.22. A differential operator D is called elliptic if σξ(D) is an

isomorphism for all ξ 6= 0 ∈ T ∗xX, x ∈ X.

Proposition 1.2.23. Let D be the Dirac operator on S. Then, for any ξ ∈ T ∗X
we have

σξ(D) = ic(ξ), σξ(D
2) = σξ(D) ◦ σξ(D) = ||ξ||2,

where c(ξ) denotes the Clifford multiplication by ξ. In particular, both of the Dirac

operators D and D2 are elliptic.

Proposition 1.2.24. There is a Hermitian inner product 〈·, ·〉 on ∆n such that

〈c(e)v, c(e)w〉 = 〈v, w〉 or equivalently 〈c(e)v, w〉 = −〈v, c(e)w〉

for a unit vector e ∈ Rn and spinors v, w ∈ ∆n. This inner product induces a

Hermitian metric (·, ·) on the spinor bundle S such that

(1.2.22) (c(e)s, s′) = −(s, c(e)s′)

and satisfies the compatibility condition ∇(s, s′) = (∇S
Xs, s

′)+(s,∇S
Xs
′). The met-

ric (·, ·) is understood to be (s, s′) =
∫
X

(s, s′)x where (·, ·)x denotes the fiberwise

inner product at x ∈ X.
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Proposition 1.2.25. Let S be the complex spinor bundle over a Riemannian

manifold X. Assume S is equipped with a connection and a metric as in (1.2.22).

Then, the Dirac operator D is formally self-adjoint with respect to the metric, i.e.

(1.2.23) (Ds, s′) = (s,Ds′)

for all compactly supported sections s, s′ of S.

Definition 1.2.26. Let X be a Riemannian manifold. A Dirac bundle is a

complex vector bundle E which is a left module over Cl(X), whose connection

∇E satisfies (1.2.18) and whose Riemannian metric satisfies (1.2.22).

Remark 1.2.27. If X has a boundary ∂X, then (1.2.23) becomes

(Ds, s′)− (s,Ds′) =

∫
∂X

(v · s, s′)x

where v is an outer normal vector to ∂X and · is the Clifford multiplication.

Proposition 1.2.28. Let S → X be a Dirac bundle. Let D be the Dirac operator

on S. Then, for any f ∈ C∞(X) and s ∈ Γ(S), we have

D(fs) = grad(f) · s+ fDs.

We end this subsection by discussing two classical examples.

Example 1.2.2. 1. LetX = Rn. The classical Dirac operator isD =
∑n

j=1Ejd/dxj

acting on (compactly supported) smooth sections of the trivial bundle Rn×
C2r . Here, Ej are matrices which satisfy certain properties, cf. [14]. For

instance, when n = 3, these E ′js are the renowned Pauli matrices [25].

2. LetX = S1. There are two distinct spin structures on S1 : the disconnected-

cover and the connected-cover spin structures. The space of complex spinors

of the former is ∆dc
1 = S1×C = R×C/ ∼, where (x, z) ∼ (x′, z′) if and only

if x − x′ ∈ Z and z = z′; whilst for the latter it is ∆c
1 = R × C/ ∼, where

(x, z) ∼ (x′, z′) if and only if x − x′ ∈ Z and z = eiπ(x−x′)z′. The Dirac

operators for both cases are Ddc = Dc = −id/dt but they are different

operators. In particular, ker(Ddc) is non-trivial whereas ker(Dc) is trivial.



Chapter 2

R/Z K-theory

2.1 R/Z K0-theory

2.1.1 The K0(X,R/Z) group

In this section, we propose a geometric model of even K-theory with coeffi-

cients in R/Z.We show that this model is a K0(X)-module and has a well-defined

R/Q Chern character map. We clarify that there is a rather different model of

R/Z K0-theory in the literature. In [11], Basu gave a model of this group in terms

of the suspension of Lott’s R/Z K1-theory [36], the cocycle of which is a pair of

vector bundles (E1, E2) over the suspension SX, together with an isomorphism

φ : E1 ⊗ V ∼= E2 ⊗ V, where V is a von-Neumann algebra bundle.

However, this is not an appropriate model in which to formulate the analytic

K0-pairing (5.1.2). The main reason is that differential forms are used in a

fundamental way, but the suspension SX may not be smooth even if X is smooth.

Moreover, the model we propose is compatible with the construction of the Dai-

Zhang eta-invariant, which forms a crucial term of the pairing formula (5.1.2).

As we will see later, this proposal is the direct analog of Lott’s R/Z K1-theory.

Definition 2.1.1. Let X be a smooth compact manifold. An R/Z K0-cocycle

over X is a triple

(2.1.1) (g, (d, g−1dg), µ)

• g : X → U(N) is a smooth map, i.e. a K1(X)-representative,

27
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• (d, g−1dg) is a pair of flat connections on the trivial bundle acted on by g,

• µ ∈ Ωeven(X)/dΩ satisfying the exactness condition

(2.1.2) dµ = ch(g, d)− Tr(g−1dg).

Here, the odd Chern character of g with flat connections (d, g−1dg) is explicitly

given by

(2.1.3) ch(g, d) :=
∞∑
n=0

n!

(2n+ 1)!
Tr(g−1dg)2n+1

cf. [26] and [54].

Definition 2.1.2. For i = 1, 2, 3, let gi : X → U(Ni) be smooth maps for some

large Ni ∈ Z. Let Ei be the R/Z K0-cocycles corresponding to gi. Then, the R/Z
K0-relation is given by

(2.1.4) E2 = E1 + E3,

i.e. whenever there is a sequence of maps g1 −→ g2 −→ g3 such that

(2.1.5) g2 ' g1 ⊕ g3,

i.e. g2 is homotopic to Diag(g1, g3) as unitary matrices, then

(2.1.6) µ2 = µ1 + µ3 − Tch(g1, g2, g3).

Here, Tch(g1, g2, g3) denotes the transgression form of the odd Chern character

satisfying

(2.1.7) dTch(g1, g2, g3) = ch(g1)− ch(g2) + ch(g3).

Remark 2.1.3. The transgression Tch(g1, g2, g3) is taken as Tch((i⊕ j)∗g2, g1⊕
g3) where i : g1 → g2 is an inclusion map and j : g3 → g2 is a splitting map.

The term with two entries is the transgression form (1.1.35) of the odd Chern
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character of gt given by

(2.1.8) Tch(gt, d) =
∞∑
n=0

n!

(2n)!

∫ 1

0

Tr
(
g−1
t

∂gt
∂t

(g−1dgt)
2n
)
dt

where gt a path of smooth maps connecting (i ⊕ j)∗g2 to g1 ⊕ g3, for 0 < t < 1.

One can show that Tch((i⊕ j)∗g2, g1 ⊕ g3) is independent of the choice of j.

Definition 2.1.4. Let X be a smooth compact manifold. The R/Z K0-theory

of X, denoted by K0(X,R/Z), is the free abelian group generated by R/Z K0-

cocycles with zero virtual trace in the lowest degree, modulo the R/ZK0-relation.

The group operation is given by the addition of R/Z K0-cocycles

(2.1.9) (g, (d, g−1dg), µ)+(h, (d, h−1dh), θ) = (g⊕h, (d⊕d, g−1dg⊕h−1dh), µ⊕θ).

Remark 2.1.5. There is another equivalent definition of K1(X), in which a class

is represented by a pair (E, h) where E is a complex vector bundle over X and h

is a smooth automorphism of E. One way to see the equivalence between these

two definitions of K1(X) is by first complementing E to a trivial bundle τ by

a complementary bundle Ec, which is always exists. Let T be an isomorphism

E ⊕ Ec ∼= τ. Let g̃ := T−1(h ⊕ IdEc)T be an automorphism of τ. Then, g̃ and h

define the same class in K1(X).

Note that the second entry of (2.1.1) is uniquely determined by g. However, if

another definition of K1(X) is used, then a choice of a pair of connections comes

into the picture. In particular, the cocycle (g, (d, g−1dg), µ) can be equivalently

modified to (h, (∇E, h−1 ◦ ∇E ◦ h), µ) for a pair (E, h) where E is a complex

vector bundle with connection ∇E, h is an automorphism of E, (∇E, h−1∇Eh)

is a pair of connections on E and µ is an even degree form on X satisfying the

exactness condition. The relation is similar: whenever there is a short exact

sequence of maps 0 → h1 → h2 → h3 → 0, the relation is given by ξ2 = ξ1 + ξ3.

The corresponding odd Chern character of (E, h) is defined by

(2.1.10) ch(h) := CS(∇E, h−1 ◦ ∇E ◦ h).

Its explicit formula is now in the general setting and becomes much more com-
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plicated, see [24].

K0(X)-module structure: We show that the groupK0(X,R/Z) is aK0(X)-

module. For clarity, we use the second definition of K1(X) as in Remark 2.1.5.

Let (E, g) be a K1-representative. The module multiplication is given by

K0(X)×K0(X,R/Z) −→ K0(X,R/Z)

V ⊗̂(g,(∇E, g−1∇Eg), µ)

=
(
V ⊗ E, (∇V ⊗∇E, h−1∇V h⊗ g−1∇Eg), ch(∇V ) ∧ µ

)
(2.1.11)

where h is a chosen automorphism of V.

The tensor product (2.1.11) requires a choice of automorphism h of V, which

is always exists from the viewpoint of the complementary bundle and the au-

tomorphism of the trivial bundle as a global trivialisation. Here, ∇V ⊗ ∇E :=

∇V ⊗ 1 + 1⊗∇E. Fix g, consider two choices h1 and h2 so that

(2.1.12) ch(h1 ⊗ g) = CS(∇V ⊗∇E, h−1
1 ∇V h1 ⊗ g−1∇Eg)

(2.1.13) ch(h2 ⊗ g) = CS(∇V ⊗∇E, h−1
2 ∇V h2 ⊗ g−1∇Eg).

By taking the difference (2.1.12) – (2.1.13), we get

ch(h1 ⊗ g)− ch(h2 ⊗ g)

= ch(g−1∇Eg) ∧
(
CS(∇V , h−1

1 ∇V h1)− CS(∇V , h−1
2 ∇V h2)

)
= ch(g−1∇Eg) ∧ CS(h−1

2 ∇V h2, h
−1
1 ∇V h1)

If h1 and h2 represent the same class, then h2h
−1
1 is homotopic to the identity.

The Chern-Simons form reduces to CS(∇V ,∇V ). For t ∈ [0, 1], let γ(t) be a

path of connections joining ∇V back to itself, which is a closed curve. Let At ∈
Ω1(X,End(V )) and Rt be the curvature of ∇V

t . Consider

cs(γ) =

∫ 1

0

∑
j=1

1

(j − 1)!

( 1

2πi

)j
Tr(At ∧ (Rt)

j−1).
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By [49, Proposition 1.6], the odd form cs(γ) is exact since γ is a closed curve.

Together with [49, (1.7)], we have

CS(∇V ,∇V ) = cs(γ) mod exact ≡ 0.

The above argument shows the following corollary.

Corollary 2.1.6. For a fixed K0-cocycle in K0(X,R/Z), the module multiplica-

tion given by (2.1.11) only depends on the homotopy class of h.

Moreover, since ch(∇V ) is closed, it is straightforward that

(2.1.14) d(ch(∇V ) ∧ µ) = ch(∇V ) ∧ dµ.

Remark 2.1.7. There is also a description using Z2-graded cocycles. A Z2-

graded K0-cocycle consists of (g±, (d, g±dg±), µ) where g± = g+ ⊕ g− is a Z2-

graded K1-representative and µ ∈ Ωeven(X)/dΩ such that

(2.1.15) dµ = ch(g±, d) = ch(g+, d)− ch(g−, d).

Explicit maps and exactness of (part of) sequence : Consider the

following sequence

(2.1.16) · · · → K0(X,R)
α−→ K0(X,R/Z)

β−→ K1(X,Z)
ch−→ K1(X,R)→ · · ·

associated to the short exact sequence of coefficients 1 → Z → R → R/Z → 1,

where the horizontal maps are respectively

α(µ) = (Id, (d, d), µ)− (Id, (d, d), 0) = (0, 0, µ) is the inclusion map,(2.1.17)

β(g, (d, d+ g−1dg), θ) = [g] is the forgetful map,(2.1.18)

ch(g) is the odd Chern character map given by (2.1.3).(2.1.19)

Lemma 2.1.8. With respect to the sequence (2.1.16), it is exact at K0(X,R/Z)

and at K1(X,Z).

Proof. For

K0(X,R)
α−→ K0(X,R/Z)

β−→ K1(X,Z),
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note that im(α) ⊆ ker(β) follows from the definition. We need to show ker(β) ⊆
im(α). Let E1 − E2 = (g1, (d, g

−1
1 dg−1

1 ), µ1) − (g2, (d, g
−1
2 dg−1

2 ), µ2) ∈ ker(β) so

that β(E1 − E2) = [g1] − [g2] = 0. In particular, [g1] = [g2] if and only if there

exists an identity matrix Id of suitable rank in the unitary group, such that

g1 ⊕ Id is homotopic to g2 ⊕ Id. The direct sum means that they sit along the

diagonal of a suitably large matrix h. This defines an element (h, (d, h−1dh), µ1)−
(h, (d, h−1dh), µ2) = (0, 0, µ1 − µ2) of im(α), as the image of µ1 − µ2 under α.

This shows ker(β) ⊆ im(α) and thus is exact at K0(X,R/Z).

On the other hand, consider

K0(X,R/Z)
β−→ K1(X,Z)

ch−→ K1(X,R).

Since any [g] inK1(X) with vanishing Chern character lies in the torsion subgroup

K1
Tors(X), the sequence reduces to

(2.1.20) K0(X,R/Z)
β−→ K1

Tors(X)→ 0.

Hence, an element of K1
Tors(X) lifts to an element of K0(X,R/Z) such that it is

the image under β. This shows ker(ch) ⊆ im(β). To show the opposite direction,

consider two elements E1 and E2 of K0(X,R/Z). By applying the odd Chern

character to the image of β, together with the exactness condition, we get ch([g1]−
[g2]) = [d(µ1 − µ2)] = 0. So, [g1] − [g2] lies in the kernel of ch. This shows

im(β) ⊆ ker(ch) and thus is exact at K0(X,Z).

2.1.2 The R/Q Chern character chR/Q

Next, we define the R/Q Chern character map chR/Q between K0(X,R/Z)

and Heven(X,R/Q) such that the following diagram commutes.

· · · → K0(X,R) K0(X,R/Z) K1(X,Z) K1(X,R)→ · · ·

· · · → Heven(X,R) Heven(X,R/Q) Hodd(X,Q) Hodd(X,R)→ · · ·

∼=

α β

chR/Q

ch

chQ ∼=

r β̃ i

The upper (resp. bottom) row is the long exact sequence of K-theory (resp.

cohomology) associated to the short exact sequence of the coefficients. Here r, i
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and β̃ are the reduction, inclusion and Bockstein maps in cohomology respectively.

The maps in the upper row are given by (2.1.17), (2.1.18) and the odd Chern

character. By tensoring the upper row by Q and by applying the Five lemma,

chR/Q is a rational isomorphism.

Now, the existence of µ in K0(X,R) implies that the odd Chern character

ch(g − IdN) = 0, where IdN denotes the identity matrix of size N × N with

respect to g : X → U(N), for some large N ∈ Z. So, g − IdN is torsion in

K1(X) and there exists some positive k such that kg ∼= IdkN , i.e. g ⊕ · · · ⊕ g =

Diag(g, ..., g) is homotopic to the identity matrix. Using the second definition of

K1, i.e. by viewing g as a smooth automorphism of a complex vector bundle E,

the unitary map kg corresponds to an automorphism on kE = E ⊕ · · · ⊕ E. Let
k∇E be its Hermitian connection and ∇kE

0 be a connection with trivial holonomy.

Then, we obtain the conjugation h−1k∇Eh and h−1∇kE
0 h by h = kg of these two

connections. For t ∈ [0, 1], fix k∇E and ∇kE
0 and vary h within the homotopy

class of g, giving a path h(t) connecting h(t)−1k∇Eh(t) and h(t)−1∇kE
0 h(t). This

defines

ch(h(t), t ∈ [0, 1]) ∈ Ωodd(X × [0, 1]).

By the standard construction in [26, 54], the respective transgression form is

Tch(h(t), [0, 1]) = ϕ

∫ 1

0

Tr
(
h(t)−1∂(h(t))

∂t

(
h(t)−1(k∇E)h(t)

)2n)
dt.

This is an analog of (1.1.35). Then,

(2.1.21)
1

k
Tch(h(t), t ∈ [0, 1])− µ

defines an element of Heven(X,R).

Definition 2.1.9. Let ch0
R/Q(g, (d, g−1dg), µ) be the image of 1

k
Tch(h(t), t ∈

[0, 1])− µ under the map Heven(X,R)→ Heven(X,R/Q).

Next, we show that ch0
R/Q(g, (d, g−1dg), µ) is well-defined.

Lemma 2.1.10. Let E = (g, (d, g−1dg), µ). As an image in Heven(X,R/Q),

ch0
R/Q(E) is independent of the choice of the homotopy class of h and the choice

of k.
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Proof. Let g1, g2 be two K1-representatives. Let h1(t) and h2(t) be the respective

paths as constructed above. That is, hi(t) connect h−1
i k∇Ehi to h−1

i ∇kE
0 hi for

i = 1, 2. Let Tch(h1(t)) and Tch(h2(t)) be their transgression forms respectively.

Note that in general h1(t) and h2(t) may not coincide, in which case both paths

lie within their homotopy class. However, it is possible to connect h1(t) and

h2(t) at the left endpoint. Since both h1 and h2 are unitary, we consider the

multiplication h−1
2 h1 for a fixed k. Then, the two left endpoints can be joined by

the conjugation of h−1
2 h1 since

(h−1
2 h1)−1(h−1

2 ◦(k∇E)◦h2)(h−1
2 h1) = h−1

1 h2h
−1
2 ◦(k∇E)◦h2h

−1
2 h1 = h−1

1 ◦(k∇E)◦h1.

Let r(h−1
2 h1) be the conjugation action. For t ∈ [0, 1], define

(h1h
−1
2 )(t) := h1(t) ◦ r(h−1

2 h1) ◦ h2(t)−1.

Then, the difference

(2.1.22)
1

k
Tch(h1(t))− 1

k
Tch(h2(t)) =

1

k
Tch((h1h

−1
2 )(t)) + dωn

holds, where the second term of the RHS of (2.1.22) is some exact form indepen-

dent of hi, cf. [54, Corollary 1.18]. In particular, the difference (2.1.22) is the

same up to multiplication by a rational number, as the image of ch([h1][h−1
2 ]) =

ch([h1]) ∧ ch([h−1
2 ]) ∈ Heven(X,Q) in Heven(X,R), so it vanishes when mapped

into Heven(X,R/Q). This shows that ch0
R/Q(E) is independent of the homotopy

class of h.

Next, for two different positive integers k and k′, while keeping the choice of

g fixed, we get h(t) = kgt and h′(t) = k′gt. Then, the difference is

1

k
Tch(h(t))− 1

k′
Tch(h′(t)) =

1

kk′
Tch((h′h−1)(t)) + dωn.

By a similar argument as in the previous paragraph, the difference is the same up

to multiplication by a rational number, as the image of the odd Chern character

in Heven(X,R/Q) vanishes. So, the image of ch0
R/Q is independent of the positive

integer k.
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2.2 R/Z K1-theory

As inspired by the work of Karoubi [31] on K-theory with local coefficient

systems, Lott proposed an explicit geometric model of K1(X,R/Z), elements of

which are cocycles defined in terms of vector bundle data and smooth differential

forms. These cocycles are the fundamental objects in the analytic duality pairing

of Lott (5.2.3), as we will see in chapter 5.

Definition 2.2.1. Let X be a smooth compact manifold. A R/Z K1-cocycle is

a triple

(2.2.1) V = (V,∇V , ω)

• (V,∇V ) is a complex vector bundle with a Hermitian connection ∇V on X,

• ω ∈ Ωodd(X)/im(d) such that

(2.2.2) dω = ch(V,∇V )− rk(V ).

Definition 2.2.2. Let Vi = (Vi,∇V
i , ωi) be R/Z K1-cocycles for i = 1, 2, 3. The

R/Z K1-relation on Vi is given by

(2.2.3) V2 = V1 + V3

whenever there is a sequence of bundles 0→ V1 → V2 → V3 → 0 such that

(2.2.4) V2
∼= V1 ⊕ V3 and ω2 = ω1 + ω3 + CS(∇V1 ,∇V2 ,∇V3)

where∼= denotes the vector bundle isomorphism (cf. Definition 1.1.4) and CS(·, ·, ·)
denotes the Chern-Simons form (1.1.30) of connections which satisfy the equation

(1.1.31).

Definition 2.2.3. Let X be a smooth compact manifold. The R/Z K1-theory

of X, denoted by K1(X,R/Z) is the free abelian group generated by R/Z K1-

cocycles with zero virtual rank, modulo the R/Z K1-relation. The group opera-
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tion is given by the addition of R/Z K1-cocycles

(2.2.5) (V1,∇V1 , ω1) + (V2,∇V2 , ω2) = (V1 ⊕ V2,∇V1 ⊕∇V2 , ω1 ⊕ ω2).

Remark 2.2.4. The identity element of K1(X,R/Z) is given by (τ, d, ω) where

τ is a trivial bundle with trivial connection d and ω is a closed form on X. There

is also a description of elements of K1(X,R/Z) by Z2-graded cocycles:

V± = (V ±,∇V ± , ω)

where (V ±,∇V ±) are Z2-graded vector bundles with connections and such that

dω = ch(V +,∇V +

)− ch(V −,∇V −).

K0-module structure. Let (E,∇E) be a complex vector bundle with con-

nection ∇E over X. Define the module multiplication by (E,∇E) on V by

(2.2.6) (E,∇E) · V = (E ⊗ V,∇E ⊗∇V , ch(E,∇E) ∧ ω)

where ∇E ⊗∇V is the usual tensor product connection (1.1.6).

Explicit maps and exactness of (part of) sequence : Consider the

following sequence

(2.2.7) · · · → K1(X,R)
α−→ K1(X,R/Z)

β−→ K0(X,Z)
ch−→ K0(X,R)→ · · ·

associated to the short exact sequence of coefficients 1 → Z → R → R/Z → 1,

where the horizontal maps are respectively

α(ω) = (τ, d, ω)− (τ, d, 0) = (0, 0, ω) is the inclusion map,(2.2.8)

β(V,∇V , ω) = [V ] is the forgetful map,(2.2.9)

ch(V ) is the even Chern character map given by (1.1.22).(2.2.10)

The exactness of the sequence (2.2.7) is implicit in [36]. For the sake of

completeness, we give a full elementary proof.

Lemma 2.2.5. With respect to the sequence (2.2.7), it is exact at K1(X,R/Z)



CHAPTER 2. R/Z K-THEORY 37

and at K0(X,Z).

Proof. For

K1(X,R)
α−→ K1(X,R/Z)

β−→ K0(X,Z),

note that im(α) ⊆ ker(β) is clear from (2.2.8). We need to show ker(β) ⊆ im(α).

Let V−W = (V,∇V , ω)−(W,∇W , θ) ∈ ker(β) so that β(V−W) = [V ]− [W ] = 0.

Recall that [V ] = [W ] if and only if V and W are stably equivalent. Without loss

of generality, there is an isomorphism V ⊕ τ ∼= W ⊕ τ for some trivial bundle τ.

Formally, V −W ∼= 0. This defines an element (0, 0, ω1 − ω2) of im(α), where ω1

(resp. ω2) is the odd form in V (resp. W). This shows that ker(β) ⊆ im(α) and

hence the exactness at K1(X,R/Z).

On the other hand, we consider the part

K1(X,R/Z)
β−→ K0(X,Z)

ch−→ K0(X,R).

Since any [V ] in K0(X) with vanishing Chern character lies in the torsion sub-

group K0
Tors(X,Z), the sequence reduces to

(2.2.11) K1(X,R/Z)
β−→ K0

Tors(X,Z)→ 0,

and hence [V ] is the image of some element of K1(X,R/Z) under β. This shows

ker(ch) ⊆ im(β). The opposite direction is straightforward. Let V ,W ∈ K1(X,R/Z).

The Chern character of the image of β, together with the exactness condition,

gives ch([V ]− [W ]) = [d(ω1−ω2)] = 0. So, [V ]− [W ] lies in the kernel of ch. This

shows that im(β) ⊆ ker(ch) and hence the exactness at K0(X,Z).

2.3 Mayer-Vietoris sequence in R/Z K-theory

Let X be a smooth manifold. Suppose X is covered by two open subsets U

and V. The sequence of inclusions

U ∩ V ⇒ U t V → X
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induces the Mayer-Vietoris sequence in K-theory with compact supports

(2.3.1) · · · → K∗c (U ∩ V )
δ−→ K∗c (U)⊕K∗c (V )

s−→ K∗c (X)→ · · ·

where δ is the signed inclusion a 7→ (a,−a) and s is the formal sum (u, v) 7→ u⊕v.
Roughly speaking, elements of K0

c (−) are compactly supported vector bundles;

whilst elements of K1
c (−) are compactly supported smooth invertible maps in the

sense that for every point in the subset there exists a compact set K contained

in that subset such that the maps are invertible inside K and are zero outside K.

Since K-theory is a generalised cohomology theory, it is a standard result

that the sequence (2.3.1) is exact and the proof of this is similar to the case of

compactly supported cohomology theory, cf. [18, Proposition 2.7]. By associating

(2.3.1) with coefficients in R/Z, we get a long exact sequence in a covariant way

(2.3.2)

· · · → K∗c (U ∩ V,R/Z)→ K∗c (U,R/Z)⊕K∗c (V,R/Z)→ K∗c (X,R/Z)→ · · · .

When X is compact, we write K∗(X,R/Z) = K∗c (X,R/Z) for ∗ = 0, 1. The

description of elements of compactly supported R/Z K-theory is quite straight-

forward. For instance, for U ⊂ X an open subset, an element V ∈ K1
c (U,R/Z)

is given by ((E,F, α), (∇E,∇F ), ωU), where (E,F, α) is a compactly supported

triple that lies in K0
c (U), i.e. α : E → F is a bundle homomorphism on U and

is a bundle isomorphism outside a compact subset K ⊂ U ; (∇E,∇F ) is a pair of

Hermitian connections on E and F respectively; and ωU is a compactly supported

odd degree differential form on U such that dωU = ch(E)− ch(F ).

Similarly, an elementW ∈ K0
c (U,R/Z) is given by (gU , (d, g

−1
U dgU), µU), where

gU : U → U(N,C) (for large N) is a smooth map such that for all x ∈ U there

exists K ⊂ U with gU(y) = 0 for y ∈ U\K; the second entry is a pair of flat

connections associated to gU ; and µU is a compactly supported even degree differ-

ential form satisfying (2.1.2). The relation is the stabilisation under homotopy.

We will use employ this tool to show the main results in Section 5.1.2 and

Section 5.2.2.



Chapter 3

Geometric K-homology

Informally, K-homology is the natural dual to Atiyah-Hirzebruch K-theory.

There are three equivalent definitions of K-homology defined via homotopy, an-

alytic and geometric approaches [12]. For our purposes, the model we will be

using is the geometric K-homology, first introduced by Baum and Douglas [13].

In this chapter, we explain the terminology, discuss its relation with rational ho-

mology theory via the homological Chern character map and compute some basic

examples. We will also establish the invariance of the Chern character under the

K-homology relations.

3.1 The group K∗(X)

Definition 3.1.1. Let X be a smooth compact manifold. A K-cycle over X is

a triple (M,E, f) where M is a closed Spinc manifold over X, E is a complex

vector bundle over M, and f : M → X is a continuous map.

A K-cycle (M,E, f) is odd (resp. even) if M is odd (resp. even) dimensional.

In general, M is not necessarily connected and E is allowed to have different fibre

dimensions on different connected components of M. For simplicity, we assume

M to be connected throughout. The addition operation on K-cycles is given by

the disjoint union (M1, E1, f1) t (M2, E2, f2).

Definition 3.1.2. There are three relations imposed on the K-cycles:

39
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1. Direct sum-disjoint union

Let E1 and E2 be two complex vector bundles on M, then

(3.1.1) (M,E1 ⊕ E2, f) ∼ (M,E1, f) t (M,E2, f).

2. Vector bundle modification

Let (M,E, f) be a K-cycle over X. Let H be a Spinc vector bundle of even

rank on M. Let R be a trivial real line bundle over M. The direct sum

H⊕R is a spinc vector bundle. Denote by ΣH = S(H⊕R) the unit sphere

bundle over M, which inherits the Spinc structure as the boundary of the

unit disk bundle. Over ΣH there is a complex vector bundle βH which is

an associated principal Spinc-bundle with the Bott generator vector bundle

β. Each fibre of βH is an even dimensional sphere S2p. Let ρ : ΣH →M be

a projection map. The composition f ◦ ρ is continuous. Then, the original

K-cycle is related to the modified K-cycle

(3.1.2) (M,E, f) ∼ (ΣH, βH ⊗ ρ∗E, f ◦ ρ).

3. Bordism

Let (M,E, f) and (M ′, E ′, f ′) be two K-cycles over X. Then, (M,E, f) is

said to be bordant to (M ′, E ′, f ′) if there exists a triple (W,F, ϕ) where W

is a compact Spinc manifold with boundary ∂W such that

(3.1.3) (∂W,F |∂W , ϕ|∂W ) ∼ (−M,E, f) t (M ′, E ′, f ′)

where −M denotes the same manifold M with the reverse Spinc structure.

Isomorphism: Two K-cycles (M,E, f) and (M ′, E ′, f ′) are said to be iso-

morphic if and only if there exists a Spinc structure preserving diffeomorphism

ψ : M → M ′ such that ψ∗E ′ ∼= E and f = f ′ ◦ ψ. Denote by {(M,E, f)} the

collection of all isomorphic K-cycles over X.

Remark 3.1.3. The bundle modification is sometimes viewed as the analog of

Bott Periodicity in K-homology.
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Definition 3.1.4. The geometric K-homology K∗(X) = {(M,E, f)}/ ∼ is an

abelian group. The addition of K-cycles is given by disjoint union. Such a group

is Z2-graded, i.e. K∗(X) = K0(X) ⊕ K1(X), where the grading is given by the

parity of M.

Example 3.1.1. 1. Let X = pt. Then, its K-homology is K0(pt) ∼= Z gener-

ated by (pt, pt× C, Id). On the other hand, K1(pt) = 0.

2. Let X = Sn be the n-sphere. When n is even, the K-homology of Sn is

(3.1.4) K0(Sn) ∼= Z⊕ Z generated by (pt, pt× C, ι) and (Sn, β, Id),

where ι : pt → Sn is the inclusion map. Clearly, K1(Sn) = 0 for even n.

When n is odd, the only non-trivial group is

(3.1.5) K1(Sn) ∼= Z generated by (Sn, τ, Id)

where τ is the trivial bundle on Sn.

3. Let X = Lk = L(k; 1, ..., 1) = S3/Zk be a three dimensional Lens space.

The K-homology Lk is

K0(Lk) ∼= Z generated by (pt, pt× C, ι)

where ι : pt→ Lk is the inclusion map. The odd K-homology is

K1(Lk) ∼= Z⊕ Zk

where the free and the torsion parts are generated by

(Lk, τLk , IdLk) and (Lk, π
∗β∗0 , IdLk)

respectively. Here, τLk is the trivial bundle over Lk and π∗β∗0 is the pullback

of the dual bundle of β0 via the projection map π : Lk → S2. Here, we

identify Lk with the sphere bundle S(β⊗k0 ) of the k-tensor product of the

canonical line bundle β0 over S2, cf. [31, 46].
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4. Let X = Rn. Consider the short exact sequence

(3.1.6) 0→ pt→ Sn → Rn → 0

where Sn the one-point compactification of Rn. For a positive odd integer

n, the induced sequence for odd K-homology is

(3.1.7) 0→ K1({∞})→ K1(Sn)→ K1(Rn)→ 0.

Note that this is covariant because K-homology is an extraordinary homol-

ogy theory. It then follows that since K1({∞}) = K1(pt) = 0, there is a

natural isomorphism

(3.1.8) K1(Rn) ∼= K1(Sn).

This means that a generator of K1(Rn) can be viewed as a generator of

K1(Sn) given by (3.1.5). Indeed, from the analytic side, the Dirac operators

on Rn and Sn share a similar formula. On the other hand, for a positive

even integer n, the induced sequence for even K-homology is

(3.1.9) 0→ K0({∞})→ K0(Sn)→ K0(Rn)→ 0.

By reducing the K0-group, we obtain a natural isomorphism

(3.1.10) K̃0(Rn) ∼= K̃0(Sn)

so a generator of K̃0(Rn) is given by the non-trivial generator in (3.1.4).

3.2 Homological Chern character

Definition 3.2.1. Let (M,E, f) be a K-cycle over a smooth compact manifold

X. Define the homological Chern character map by

ch : K0/1(X) −→ Heven/odd(X,Q)

ch(M,E, f) = f∗PD(ch(E)Td(M))(3.2.1)
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where ch(E) is the topological Chern character (1.1.22) of E, Td(M) is the Todd

class (1.1.18) of M, PD denotes the Poincaré duality isomorphism between ho-

mology and cohomology theories and f∗ : H∗(M,Q) → H∗(X,Q) is the induced

map in rational homology.

Remark 3.2.2. Note that the degree of the characteristic class ch(E)Td(M) is

always even for M of any dimension and for arbitrary complex vector bundles E.

However, if M is odd dimensional, then by Poincaré duality and the de-Rham

theorem, the induced homology class f∗PD(ch(E)Td(M)) is odd.

Example 3.2.1. 1. Let X = Sn be n-dimensional sphere. For an odd positive

integer n, the non-trivial Chern character map is

chodd : K1(Sn)→ Hodd(S
n,Q)

ch(Sn, τ, Id) = Id∗PD(ch(τ)Td(Sn)) = rk(τ)[Sn](3.2.2)

where Td(Sn) ≡ 1 and [Sn] is the fundamental class of Hn(Sn,Z). Thus,

in this special case the image lies in the integral homology. For an even

positive integer n, we have

cheven : K0(Sn)→ Heven(Sn,Q)

ch(Sn, β, Id) = Id∗PD(ch(β)Td(Sn)) = ch(β) a [Sn] = 1.(3.2.3)

Note that for n = 2r, let β0 = 1 − L0 → S2 be the canonical line bundle,

then β = β0 � · · ·� β0 is the generator of K0(S2r) and so

(3.2.4) ch(β0 � · · ·� β0) = c1(β0)r

showing that ch(β) is integral and of top degree.

2. Let X = Lk = S3/Zk be a three dimensional Lens space. Then, the non-

trivial Chern character map

(3.2.5) chodd : K1(Lk)→ Hodd(Lk,Q)

admits an integral lift, cf.[46]. Since the odd homology of Lk is H1(Lk) ⊕
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H3(Lk) ∼= Zk ⊕ Z, the map (3.2.5) reduces to

ch1/3 : K1(Lk)→ H1(Lk,Z)⊕H3(Lk,Z)

in which the map for the free and the torsion parts are respectively given

by

ch3(Lk, τLk , IdLk) = PD(ch(τLk)Td(Lk)) = rk(Lk)[Lk] ∈ H3(Lk,Z) ∼= Z.

ch1(Lk, π
∗β∗0 , IdLk) = PD(ch(π∗β∗0)Td(Lk)) = −π∗(c1(β0)) a [Lk] ∈ H1(Lk,Z) ∼= Zk.

Lemma 3.2.3. The Chern character map (3.2.1) is well-defined under the K-

homology relations.

Proof. The approach of proof below follows from [15]. We show that the homo-

logical Chern character ch respects the three relations on K-cycles. The relation

of direct sum-disjoint union is immediate:

ch(M,E ⊕ E ′, f) = f∗PD(ch(E ⊕ E ′)Td(M))

= f∗PD((ch(E) + ch(E ′))Td(M))

= ch(M,E, f) + ch(M,E ′, f).

Hence, ch is group homomorphism. For bordism, let (W,F, ϕ) be a K-chain over

X such that (3.1.3). Then, it is also immediate that

ch(∂W,F |∂W , ϕ|∂W ) = ch((M,E, f) t (−M ′, E ′, f ′))

= ch(M,E, f)− ch(M ′, E ′, f ′).

In particular, the homological Chern character satisfies the relation

(3.2.6) ch ◦ ∂ = ∂ ◦ ch

where the smooth ‘boundary’ map is given by

(3.2.7) ∂ : (W,F, ϕ) 7→ (∂W,F |∂W , ϕ|∂W ).
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For vector bundle modification, we need to establish the equality

(3.2.8) ch(M,E, f) = ch(ΣH, βH ⊗ ρ∗E, f ◦ ρ)

where ρ : ΣH →M is the projection map. By definition, the term on the RHS is

(3.2.9) ch(ΣH, βH ⊗ ρ∗E, f ◦ ρ) = (f ◦ ρ)∗PDΣH(ch(βH ⊗ ρ∗E)Td(ΣH)).

Since the Chern character respects the tensor product and the pullback, we have

(3.2.10) ch(βH ⊗ ρ∗E) = ch(βH) · ρ∗ch(E).

Note that on the level of singular chains ρ∗ is the induced map between the chain

groups of ΣH and M, which makes the following diagram

Ω•(ΣH) Ω•−2p(M)

CdimΣH−•(ΣH) CdimM−(•−2p)(M)

PDΣH

ρ!

PDM

ρ∗

commute. Here, the upper horizontal map ρ! is the push-forward given by the

integration along the fibre of ρ : ΣH → M ; the vertical PDM and the vertical

PDΣH are the Poincaré duality maps. Then, by commutativity we have

(3.2.11) ρ∗ ◦ PDΣH = PDM ◦ ρ!.

A connection on the tangent bundle TΣH amounts to the splitting

TΣH = T vΣH ⊕ T hΣH ∼= TS2p ⊕ ρ∗TM

where T vΣH and T hΣH denote the vertical and the horizontal tangent spaces

respectively. Then, we have

(3.2.12) Td(ΣH) = Td(TΣH) = Td(S2p) · ρ∗Td(M).
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From (3.2.9), we compute

ch(ΣH, βH ⊗ ρ∗E, f ◦ ρ)

= f∗ρ∗PDΣH(ch(βH ⊗ ρ∗E) · Td(ΣH))

= f∗ρ∗PDΣH(ch(βH) · ρ∗ch(E) · Td(ΣH)) by (3.2.10)

= f∗PDMρ!(ch(βH) · ρ∗ch(E) · Td(ΣH)) by (3.2.11)

= f∗PDMρ!(ρ
∗(ch(E)Td(M)) · ch(βH)Td(S2p)) by (3.2.12)

= f∗PDM(ch(E)Td(M))

∫
S2p

ch(βH |S2p)Td(S2p)

= f∗PDM(ch(E)Td(M))

= ch(M,E, f).

where the term
∫
S2p ch(βH |S2p)Td(S2p) = 1 by the Atiyah-Singer index theorem

[9]. See also [14, Proposition 6]. This completes the proof.

3.3 Mayer-Vietoris sequence in K-homology

Let X be a smooth compact manifold. Let {U, V } be a good cover of X, i.e.

U, V and their intersection U ∩ V are contractible. Consider the sequence

U ∩ V ⇒ U t V → X = U ∪X.

Since K-homology is an extraordinary homology theory, there is an associated

covariant exact sequence

· · · → K∗(U ∩ V )
i∗⊕j∗−−−→ K∗(U)⊕K∗(V )

r∗	s∗−−−→ K∗(X)
∂∗−→ · · ·

where i∗, j∗, r∗, s∗ are induced inclusion maps. In particular,

i∗ : K1(U ∩ V )→ K1(U)

(N, ξ, γ) 7→ i∗(N, ξ, γ) = (N, ξ, i ◦ γ).(3.3.1)

The induced K-cycles for j∗, r∗ and s∗ are defined similarly. Then, the first map

i∗ ⊕ j∗ is given by the disjoint union (N, ξ, i ◦ γ) t (N, ξ, j ◦ γ). The second map
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r∗ 	 s∗ is given by (N, ξ, r ◦ γ) t −(N ′, ξ′, s ◦ γ′). It is immediate that

(r∗ 	 s∗) ◦ (i∗ ⊕ j∗) = 0.

Let (M,E, f) be a K-cycle over X. Assume that Mn can be partitioned into

two compact manifolds with boundary M1,M2 of the same dimension by a hy-

persurface Nn−1, then the connecting map ∂∗ : K∗(X) → K∗−1(U ∩ V ) is given

by

∂∗(M,E, f) = ∂(M1, E1, f1) = (∂M1, E1|∂M1 , f1|∂M1)

where ∂ is the boundary map (3.2.7). An example of such Mn would be the

n-sphere Sn, in which we take M1 = M2 = Dn and Nn−1 = Sn−1.

Since K-homology is Z2-graded, it reduces to a six-term exact sequence in

K-homology

K0(U ∩ V ) K0(U)⊕K0(V ) K0(U ∪ V )

K1(U ∪ V ) K1(U)⊕K1(V ) K1(U ∩ V ).

3.4 Perspective from physics

K-homology is deeply related to string theory in physics. In our case, we

are only concern with Type IIA and IIB string theories since we are working

with the complex K-theory of X. It was argued by Reis-Szabo [46, 50] that the

fundamental objects in Type IIA and IIB string theories, known as D-branes,

can be naturally described in terms of geometric K-cycles: for an oriented spin

ten dimensional manifold X, a D-brane over X is a spinc submanifold M of X,

carrying the Chan-Paton bundle E, together with an embedding f : M ↪→ X.

One of the justifications that K-homology is a more suitable arena for de-

scribing D-branes (suggested by Reis-Szabo [46]) than K-theory (suggested by

Witten [52]) is that the former transforms covariantly under an induced “push-

forward” map f∗, which is natural in terms of D-branes when f is an embedding.

In contrast, K-theory behaves contravariantly with respect to f ∗. Besides this,

D-branes a priori carry stable vector bundles, rather than virtual bundles.
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In [46], the relationship between K-homology relations on K-cycles and non-

trivial dynamical aspects of D-branes was studied explicitly on the level of gener-

ators. In particular, the stability of D-branes corresponds to the decomposability

of K-cycles. The decaying of unstable D-branes into stable bound states is given

by a mechanism called tachyon condensation on their worldvolume; whilst the

opposite is known as the polarisation of D-branes, in which D-branes expand

or polarise into higher dimensional D-branes. It is also called the dielectric ef-

fect. Informally, this corresponds to the relation of vector bundle modification of

K-cycles.

As an evident topological object, we can talk about the deformation of D-

brane worldvolumes continuously together with the Chan-Paton gauge bundle

over it. This corresponds to the bordism relation of K-homology. A qualitative

meaning of this is that if a D-brane is bordant to a trivial cycle on X, then it

carries the same charge as the vacuum. On the other hand, the direct sum of

K-cycles corresponds to the gauge symmetry enhancement for coincident branes,

which happens when M is wrapped by several D-branes.

Although we do not discuss anaytic K-homology in this thesis, there is also

an explicit description of D-branes in terms of analytic K-cycles in [50]. In

particular, Szabo linked operations of tachyons such as tachyon condensation

and deformation of tachyons with the equivalence relation on analytic K-cycles,

showing that D-branes are Fredholm modules.

We end by summarizing the discussion above in the following table.

K-cycles D-branes

Direct sum-disjoint union

(M,E1, f) + (M,E2, f) = (M,E1 ⊕ E2, f)

Gauge symmetry enhancement

for coincident brane

Bordism

(∂W,F |∂W , φ|∂W ) ∼= (M1, E1, f1) + (−M2, E2, f2)
Continuous deformation of D-branes

Vector bundle modification

(M,E, f) ∼= (ΣH, βH ⊗ ρ∗E, f ◦ ρ)
Dielectric effect, branes within branes



Chapter 4

The Dai-Zhang Toeplitz index

theorem

In this chapter, we discuss a new and recent result by Dai and Zhang [21]

on the generalisation of the classical Toeplitz index theorem to manifolds with

boundary. In particular, they proved an index theorem for Toeplitz operators on

odd dimensional compact spin manifolds with even dimensional boundary. This

can be viewed as the direct odd dimensional analog of the celebrated Atiyah-

Patodi-Singer index theorem [5–7]. By ‘direct analog’, we mean that the Dai-

Zhang Toeplitz index theorem establishes an equality between the analytic index

of a certain perturbed Toeplitz operator and the topological index of that manifold

together with some boundary correction terms. One of the correction terms is a

new eta-type spectral invariant — the Dai-Zhang eta-invariant. It fits into the

role as a measure of spectral asymmetry in the even case. We will discuss the

construction of the Dai-Zhang eta-invariant in Section 4.5.

For the reader’s benefit, this chapter is accordingly devoted to the follow-

ing reviews. Section 4.1: the Atiyah-Singer index theorem (even dimensional

closed manifolds); Section 4.2: the Atiyah-Patodi-Singer index theorem (even

dimensional manifolds with boundary); Section 4.3: the classical Toeplitz index

theorem (odd dimensional closed manifolds); Section 4.4: the Dai-Zhang Toeplitz

index theorem (odd dimensional manifolds with boundary).

No new result is contained in this chapter. Readers who are familiar with

these notions can proceed to the next chapter and only come back for notation.

49
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4.1 The Atiyah-Singer index theorem

Let X be a closed spin manifold of even dimension 2n. Let S = S(TX) = S±

be the spinor bundle over X, whose Z2-grading is given by (1.2.15). Let

(4.1.1) /∂ : Γ(S±)→ Γ(S∓)

be the Dirac operator on X defined by (1.2.19), which is an elliptic self-adjoint

first order differential operator. The Dirac operator /∂ anti-commutes with c(ωC),

i.e. /∂c(ωC) = −c(ωC)/∂, since c(ωC) anti-commutes with c(ei) and ∇SωC = 0.

Thus, it can be written as

(4.1.2) /∂ =

(
0 /∂

−

/∂
+

0

)

with respect to S±. Since /∂ is self-adjoint, the equality (/∂
±

)∗ = /∂
∓ holds. Let

L2(S) be the space of L2-sections of S, i.e. the L2-completion of the space of

smooth sections Γ(S). By standard elliptic theory, the operator

/∂ : L2(S±) −→ L2(S∓)

is a self-adjoint Fredholm operator (i.e. a self-adjoint bounded linear operator

with closed range and with finite dimensional kernel and cokernel). Then, the

analytic index of /∂+ is defined by

(4.1.3) Ind(/∂
+

) = dim ker(/∂+
)− dim coker(/∂+

) ∈ Z

or equivalently Ind(/∂
+

) = dim ker(/∂+
)− dim ker(/∂−). The analytic index Ind is

a globally defined spectral invariant (under compact perturbations) of X.

Theorem 4.1.1 (Atiyah-Singer index theorem for spin Dirac operators [8–10]).

Let X be an even dimensional closed spin manifold. Let /∂ be a Dirac operator on

X. Then, its analytic index coincides with the topological index

(4.1.4) Ind(/∂
+

) =

∫
X

Â(TX,∇TX) = Â(X)
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where Â(X) is the A-hat genus (1.1.15).

Remark 4.1.2. The non-triviality of the equality (4.1.4) is that whilst the LHS is

an integer, the RHS is not in general. For instance, whenX is a compact manifold

of dimension 4, Â(X) = − 1
24
p1(X), where p1(X) is the rational (first) Pontryagin

number of X. Hence, the Atiyah-Singer index theorem for Dirac operators asserts

the integrality of Â(X) when X is closed and spin.

Let E be a complex vector bundle over X. Let S ⊗ E be the tensor product

bundle. Assume that S⊗E is equipped with a Hermitian metric and an induced

unitary connection. Let /∂S⊗E be the twisted Dirac operator defined by (1.2.20).

The Z2-grading (4.1.2) extends to

/∂S⊗E =

(
0 /∂

−
S⊗E

/∂
+
S⊗E 0

)
.

Theorem 4.1.3 (Atiyah-Singer index theorem for twisted spin Dirac operators

[8–10]). Let X be an even dimensional closed spin manifold. Let /∂S⊗E be the

Dirac operator on a Dirac bundle S ⊗ E. Then, we have

(4.1.5) Ind /∂
+
S⊗E =

∫
X

Â(TX,∇TX) ∧ ch(E,∇E),

where ch(E,∇E) is the Chern character form (1.1.22) of E.

Theorem 4.1.4 (Atiyah-Singer index theorem for twisted spinc Dirac operators

[8–10]). Let X be an even dimensional closed spinc manifold. Let S be a Spinc

spinor bundle on X as an associated bundle PSpinc ×ρc V for V a left Cl(X)-

module. Let E be a complex vector bundle on X. Then,

Ind(/∂
+
S⊗E) =

∫
X

Â(TX,∇TX) ∧ e
c1(L,∇L)

2 ∧ ch(E,∇E)

=

∫
X

Td(TX,∇TX) ∧ ch(E,∇E)(4.1.6)

where L is the canonical line bundle of the spinc structure and Td(TX,∇TX) is

the Todd form (1.1.17) of X.
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4.2 The Atiyah-Patodi-Singer index theorem

Let X be a compact oriented even dimensional manifold with odd dimensional

boundary ∂X = Y . Assume that X is isometric to (0, 1] × Y in a collar neigh-

bourhood of Y. Let p : (0, 1] × Y → Y be the projection map. Let /∂X be the

Z2-graded Dirac operator acting on sections of a Z2-graded Dirac bundle S = S±

over X. Let /∂Y be the Dirac operator acting on sections of an ungraded Dirac

bundle S ′ over Y. Assume that there is an isomorphism p∗(S ′ ⊕ S ′) ∼= S over the

collar neighbourhood whose Clifford action of TX is given by

c(∂t) =

(
0 −Id
Id 0

)
; cX(ν) =

(
0 cY (ν)

cY (ν) 0

)

for t ∈ (0, 1] and ν ∈ TY. Then, near the boundary we have

/∂X = c(∂t)(∂t + /∂Y ).

In matrix form, the Dirac operator can be written as

/∂ =

(
0 −∂t + /∂Y

∂t + /∂Y 0

)
,

in which the off-diagonal terms are the formal adjoints of each other.

Let L2(S ′) be the L2-completion of smooth sections of S ′, on which /∂Y acts

as an unbounded symmetric operator. In particular, /∂Y is essentially self-adjoint

and its closure has compact resolvent. Thus, L2(S ′) has spectral decomposition

{λi, φi} where λi and φi are eigenvalues and eigenvectors respectively, i.e. it can

be written as the direct sum of eigenspaces Eλi with respect to λi

(4.2.1) L2(S ′) =
⊕

λi∈spec(/∂Y )

Eλi .

Definition 4.2.1. [5–7] The eta-function associated to /∂Y is defined by the series

(4.2.2) η(/∂Y , s) =
∑
λi 6=0

sgn(λi)

|λi|s
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for s ∈ C and Re(s) sufficiently large. When s = 0, the term

(4.2.3) η(/∂Y ) = η(/∂Y , 0)

is called the Atiyah-Patodi-Singer eta-invariant.

Remark 4.2.2. In fact, the eta-invariant is defined for any self-adjoint elliptic

differential operator acting on sections of a vector bundle over a closed manifold.

The series (4.2.2) is absolutely convergent in the half plane Re(s) > dim(Y )/m,

where m is the order of the operator /∂Y . By Mellin transform, the eta-function

(4.2.2) has an integral expression

(4.2.4) η(/∂Y , s) =
1

Γ( s+1
2

)

∫ ∞
0

t
s−1

2 Tr(/∂e−t/∂
2

)dt.

When s = 0, the eta-invariant (4.2.3) can thus be written as

(4.2.5) η(/∂Y ) =
1√
π

∫ ∞
0

t−
1
2Tr(/∂e−t/∂

2

)dt.

The eta-invariant plays a crucial role as a boundary correction term in Theorem

4.2.3 below. Standard references on the eta-invariant are [16, 27, 44, 45].

Condition for /∂X being a Fredholm operator. Let

(4.2.6) P≥0 : L2(S ′)→ L2
≥0(S ′)

be the orthogonal projection onto the non-negative eigenspaces of /∂Y . Here,

L2
≥0(S ′) denotes the direct sum of E′λ with λ ≥ 0. Such P≥0 is often known

as the Atiyah-Patodi-Singer boundary projection. Consider the restriction of /∂X
to act on smooth sections s|Y subjected to the boundary problems

(4.2.7)

/∂
+
X(s) = 0

P≥0(s|Y ) = 0
and

/∂
−
X(s) = 0

P⊥≥0(s|Y ) = 0

where P⊥≥0 = Id−P≥0. Then, /∂X is a Fredholm operator. We denote the Fredholm

index of /∂X by Ind(/∂
+
X). The celebrated Atiyah-Patodi-Singer index theorem

asserts the following statement.
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Theorem 4.2.3 (The Atiyah-Patodi-Singer index thereom for spin Dirac opera-

tors [5]). Let X be an even dimensional compact spin manifold with odd dimen-

sional closed boundary Y. In the above setting, the equality

(4.2.8) Ind(/∂
+
X) =

∫
X

Â(TX,∇TX) ∧ ch(E,∇E)− dim ker(/∂Y ) + η(/∂Y )

2
∈ Z

holds where η(/∂Y ) is the eta-invariant (4.2.3).

Remark 4.2.4. Theorem 4.2.3 extends to the case of twisted spinc Dirac opera-

tors /∂+
E twisted by a complex vector bundle E on an even dimensional spinc com-

pact manifold X. In particular, the integrand becomes Td(TX,∇TX)∧ch(E,∇E),

similar to (4.1.6). In general, Theorem 4.2.3 holds for any elliptic first order dif-

ferential operator Q on X. See [5–7, 17] for more details on this index theorem.

An approach via b-calculus by Melrose is explained in [42].

4.3 The classical Toeplitz index theorem

Let X be an odd dimensional closed spin smooth manifold. Assume that

X has a Riemannian structure. Let /∂X be the (ungraded) self-adjoint Dirac

operator acting on L2(S) for the (ungraded) spinor bundle S → X. The Atiyah-

Singer index theorem for Dirac operators does not extend non-trivially to this

odd case because any elliptic differential operators on odd dimensional closed

manifolds have vanishing index. Hence, in order to obtain a non-trivial index,

Toeplitz operators on X are considered and will be explained below.

Let g : X → GL(N,C) be a smooth map into the general linear group for

some large positive integer N. Without loss of generality, we assume the group

GL(N,C) is reduced to the unitary group U(N) = U(N,C) via a given Rieman-

nian metric on X. So, g : X → U(N) represents a class of K1(X) as in (1.1.32).

Let τ be the complex trivial bundle upon which g acts on smoothly. Let E → X

be a complex vector bundle. Let L2(S ⊗ E ⊗ τ) be the space of L2 sections, on

which g extends to act as identity on L2(S ⊗ E) and as an automorphism on τ.

Then, the ungraded twisted Dirac operator

/∂X : L2(S ⊗ E ⊗ τ)→ L2(S ⊗ E ⊗ τ)
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is self-adjoint. Now, we have an orthogonal decomposition

(4.3.1) L2(S ⊗ E ⊗ τ) =
⊕

λ∈spec /∂

Eλ

where Eλ is the eigenspace associated to the eigenvalue λ. Define the orthogonal

projection

P≥0 : L2(S ⊗ E ⊗ τ) −→ L2
≥0(S ⊗ E ⊗ τ)

where L2
≥0(S ⊗ E ⊗ τ) corresponds to the eigenvalue λ ≥ 0. Then, the Toeplitz

operator TEg twisted by E is defined by

(4.3.2) TEg := P≥0gP≥0 : L2
≥0(S ⊗ E ⊗ τ) −→ L2

≥0(S ⊗ E ⊗ τ).

One can show that TEg is a Fredholm operator with parametrix TEg−1 . The odd

analog of the Atiyah-Singer index theorem, which we call the classical Toeplitz

index theorem, asserts the equality between the Fredholm index of the Toeplitz

operator and the topological index of X.

Theorem 4.3.1 (The classical Toeplitz index theorem [13]). Let X be an odd

dimensional closed spin manifold. Let TEg be the Toeplitz operator defined by

(4.3.2). Then, the equality

(4.3.3) Ind TEg = −
∫
X

ch(g, d) ∧ ch(E,∇E) ∧ Â(TX,∇TX)

holds where ch(g, d) is the odd Chern character given by (1.1.34) and the other

two terms are the standard characteristic forms as in (4.1.5).

Example 4.3.1. Let X = S1. It was shown in [17] that

(4.3.4) Ind(Tg) = sf(/∂, g−1/∂g) = −
∫
X

ch(g),

where /∂ = −id/dθ is the usual Dirac operator on S1 and sf is the spectral flow

of the one parameter family

/∂(s) = s/∂ + (1− s)g−1/∂g
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for s ∈ [0, 1]. The first equality of (4.3.4) follows from [17, Theorem 17.17]; the

second equality follows from [26, Theorem 2.8]. In particular, when g(θ) = exp(iθ)

is a smooth map of degree 1, then (4.3.4) is the K-theory Poincaré duality pairing

(4.3.5) K1(S1)×K1(S1)→ Z; (g, /∂S1) 7→ Ind(Tg) = −
∫
X

ch(g) = deg(g) = 1,

where Tg = P≥0gP≥0 and P≥0 is the orthogonal projection onto the non-negative

eigenspaces of /∂S1 . Here, we use the fact that Ind(Tg) = Ind(T̃g) for T̃g = P≥0 −
gP<0, cf. [16, 17].

4.4 The Dai-Zhang Toeplitz index theorem

In [21], Dai and Zhang have extended the classical Toeplitz index theorem to

the case of manifolds with boundary. It is indeed the direct odd analog to the

Atiyah-Patodi-Singer index theorem (4.2.3). In particular, there are contributions

from the boundary terms associated to an elliptic differential operator on an even

dimensional closed manifold Y. In the following, we sketch the idea and the setup

behind the formulation of the Dai-Zhang index theorem.

Let X be an odd dimensional compact spin Riemannian manifold with bound-

ary Y. Assume that Y has a Riemannian structure induced from that ofX. Denote

the Riemannian metrics on X and Y as gX and gY respectively. Assume that X

is isometric to (0, 1] × Y in a collar neighborhood of Y. Hence, we may assume

that the metric is of product type over the cylinder

gX |(0,1]×Y = dx2 ⊕ gY .

Let E → X be a complex vector bundle and S → X the canonical spinor bundle.

Over the cylinder (0, 1]× Y, the Dirac operator /∂E =
∑
c ◦∇S⊗E takes the form

/∂
E
X = c(∂x)(∂x + /∂

E
Y ).

The Dirac operator /∂EY is elliptic and self-adjoint. Here, we abuse notation by

writing /∂
E
Y for the Dirac operator twisted by E|Y , and it is assumed to be inde-

pendent of the parameter in (0, 1]. As in [5], we obtain a global elliptic boundary
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condition for /∂E by considering the orthogonal projection

(4.4.1) PY : L2(S ⊗ E ⊗ τ |Y )→ L2
>0(S ⊗ E ⊗ τ |Y ).

Since Y is even dimensional, we need a choice of ‘half-space’ in the kernel of /∂Y to

obtain an elliptic self-adjoint boundary condition. This is a Lagrangian subspace

L ⊂ ker(/∂
E
Y ) such that c(∂x)L = L⊥ ∩ ker(/∂

E
Y ) and dim(L) = dim(L⊥). Let PL be

the orthogonal projection onto L

(4.4.2) PL : L2(S ⊗ E ⊗ τ |Y )→ L.

Consider the modified Atiyah-Patodi-Singer projection

(4.4.3) P ∂ = PY + PL

from (4.4.1) and (4.4.2). By abuse of notation, a choice of L is assumed when

we write P ∂. Thus, for ν ∈ L2(S ⊗ E ⊗ τ),/∂
E
X(ν) = 0

P ∂(ν|Y ) = 0

is a well-defined elliptic self-adjoint boundary problem (/∂
E
X , P

∂). Let /∂EP∂ be the

corresponding elliptic self-adjoint operator which acts on L2
≥0,P∂

(S ⊗ E). Let

g : X → U(N) be a K1-representative on X, which acts as an automorphism on

the trivial bundle τ and as the identity on L2
P∂

(S⊗E). This extends to an action

on L2
P∂

(S ⊗ E ⊗ τ). Denote by

PP∂ : L2(S ⊗ E ⊗ τ)→ L2
≥0,P∂ (S ⊗ E ⊗ τ)

the orthogonal projection onto the non-negative eigenspaces

L2
≥0,P∂ (S ⊗ E ⊗ τ) =

⊕
λ∈spec(/∂

P∂
),λ≥0

Eλ.

In order to define generalised Toeplitz operators, we consider gP ∂g−1 the orthog-
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onal projection onto L2(S ⊗ E ⊗ τ |Y ). Let (/∂
E
, gP ∂g−1) be another associated

elliptic boundary problem. Let /∂EgP∂g−1 be the corresponding Dirac operator and

let PgP∂g−1 be the orthogonal projection

PgP∂g−1 : L2(S ⊗ E ⊗ τ)→ L2
≥0,gP∂g−1(S ⊗ E ⊗ τ).

Definition 4.4.1. In the above setting, the generalised Toeplitz operator TE
P∂

is

defined as the composition

(4.4.4) TEg,P∂ = PgP∂g−1 ◦ g ◦ PP∂ : L2
≥0,P∂ (S ⊗E ⊗ τ)→ L2

≥0,gP∂g−1(S ⊗E ⊗ τ).

To ensure the existence of such a Lagrangian subspace L, we have to make

the following assumption.

Assumption 1. The Dirac operator /∂E,+Y on an even dimensional boundary man-

ifold Y has vanishing index , i.e. Ind(/∂
E,+
Y ) = 0.

Let X be an odd dimensional spin manifold with boundary Y. Let gTX ,∇TX

and RTX be respectively the Riemannian metric, its associated Levi-Civita con-

nection and its curvature on X. Let E → X be a complex vector bundle equipped

with a Hermitian connection ∇E. Let /∂
E⊗τ be the Dirac operator acting on

L2(S ⊗ E ⊗ τ).

Let PX be the Calderón projection associated to /∂
E⊗τ on X, which is an

orthogonal projection onto L2(S⊗E⊗τ |Y ). Then, PX−P ∂ is a pseudodifferential

operator of order less than zero, c.f. [17]. Let Mas(gP ∂g−1, P ∂,PX) be the Maslov

triple index in the sense of Kirk-Lesch [32].

Theorem 4.4.2 (The Dai-Zhang Toeplitz index theorem [21]). In the above set-

ting, together with Assumption 1, we have the following identity

Ind(TEg,P∂ ) = −ϕ
∫
X

Â(TX,∇TX) ∧ ch(E,∇E) ∧ ch(g, d)

− η̄(Y, g) + Mas(gP ∂g−1, P ∂,PX) ∈ Z.(4.4.5)
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where ϕ is the constant term
(
2π
√
−1
)−(dim M−1)/2 and η̄(Y, g) is the Dai-Zhang

eta-invariant as explained below.

4.5 The Dai-Zhang eta-invariant

The Dai-Zhang eta-invariant η̄(Y, g) arises as (one of) the boundary correction

terms in (4.4.5), which fits in the role of the Atiyah-Patodi-Singer eta-invariant

(4.2.3) in this even case. The remainder of this section is devoted to the con-

struction of such an even eta-invariant and to see how a K1-representative is

incorporated in a fundamental way. This is particularly important in the formu-

lation of the analytic pairing (5.1.2) when such an element lifts to an element of

K0(X,R/Z). Full details on the analysis of this even eta-invariant can be found

in [20–22].

LetX be an even dimensional closed spinc manifold and E be a complex vector

bundle over X. Let /∂E,X be the Dirac operator on X twisted by E. Consider the

cylinder [0, 1]×X with a product metric near the boundary.

• Twist /∂E,X by g : X → U(N), acting on L2(S ⊗ E ⊗ τ). The smooth map

g acts as the identity on L2(S ⊗ E) and as an automorphism on τ. Denote

this by /∂
g
E⊗τ,X ;

• Extend S⊗E⊗ τ trivially to the cylinder [0, 1]×X, i.e. over each t ∈ [0, 1]

there is a copy of E. Let ψ = ψ(t) be a cut-off function on [0, 1] which is

identically 1 in a ε-neighborhood of X for small ε > 0 and 0 outside of a

2ε-neighborhood of X. Consider the Dirac-type operator

/∂
ψ
E⊗τ,X×[0,1] = (1− ψ)/∂E⊗τ + ψg/∂E⊗τg

−1

and its conjugation

(4.5.1) /∂
ψ,g
E⊗τ,X×[0,1] = g−1/∂

ψ
Eg = /∂E⊗τ + (1− ψ)g−1[/∂E⊗τ , g];

• Assume that the Lagrangian L ⊂ ker(/∂
g
E⊗τ,X) exists and fix a choice of L.

Equip (4.5.1) on one end X × {0} ∼= X with the modified Atiyah-Patodi-
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Singer boundary conditions (4.4.3)

(4.5.2) P ∂ = P≥0 + PL : L2
≥0(S ⊗ E ⊗ τ)→ L2

≥0(S ⊗ E ⊗ τ |X)⊕ L.

Equip (4.5.1) on the other end X×{1} with the complementary conjugated

orthogonal projection Id− g−1P ∂g.

Then, (/∂
ψ,g
E⊗τ,X×[0,1], P

∂, Id− g−1P ∂g) is a self-adjoint elliptic boundary problem.

For simplicity, we denote the boundary problem by /∂
ψ,g
E⊗τ,X×[0,1], i.e. with the

boundary conditions implicitly implied. Let the eta-function of /∂ψ,gE⊗τ,X×[0,1] be

given by the usual formula

(4.5.3) η(/∂
ψ,g
E⊗τ,X×[0,1], s) =

∑
λ6=0

sgn(λ)

|λ|s

for Re(s) sufficiently large and with the sum running through all non-zero eigen-

values λ of /∂ψ,gE⊗τ,X×[0,1]. Take η(/∂
ψ,g
E⊗τ,X×[0,1]) := η(/∂

ψ,g
E⊗τ,X×[0,1], 0). Let η̂(/∂

ψ,g
E⊗τ,X×[0,1])

be the full eta-invariant defined by

(4.5.4) η̂(/∂
ψ,g
E⊗τ,X×[0,1]) =

η(/∂
ψ,g
E⊗τ,X×[0,1]) + h(/∂

ψ,g
E⊗τ,X×[0,1])

2

where h(/∂
ψ,g
E⊗τ,X×[0,1]) = dim ker(/∂

ψ,g
E⊗τ,X×[0,1]).

Definition 4.5.1. [21] With the construction above, an eta-type invariant on an

even dimensional closed manifold is defined by

(4.5.5) η̄(X,E, g) = η̂(/∂
ψ,g
E⊗τ,X×[0,1])− sf

{
/∂
ψ,g
E⊗τ,X×[0,1](s); s ∈ [0, 1]

}
where the second term is the spectral flow of /∂ψ,gE⊗τ,X×[0,1](s), defined by

(4.5.6) /∂
ψ,g
E⊗τ,X×[0,1](s) = DE⊗τ + (1− sψ)g−1/∂E⊗τg

on X × [0, 1], with boundary projections P ∂ on X × {0} and Id − g−1P ∂g on

X × {1}. That is, /∂ψ,gE⊗τ,X×[0,1](s) is a path connecting g−1/∂E⊗τg and /∂
ψ,g
E⊗τ,X×[0,1].

We call (4.5.5) the Dai-Zhang eta-invariant.
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Remark 4.5.2. A priori, the spectral flow in (4.5.5) is an integer which measures

the net change of positive crossing (from negative to positive eigenvalues across

0) and negative crossing (from positive to negative eigenvalues across 0). Thus,

upon reduction modulo Z, we obtain an R/Z-valued invariant in the sense of

Atiyah-Patodi-Singer [7]:

η̄(/∂
ψ,g
E⊗τ,X×[0,1]) := η̄(X,E, g) ≡ η̂(/∂

ψ,g
E⊗τ,X×[0,1]) mod Z.

4.5.1 Properties of the Dai-Zhang eta-invariant

One observes that the RHS of (4.5.5) involves much more data than the LHS.

It is natural to ask whether this invariant is well-defined under the change of this

data. In fact, Dai and Zhang [20, 21] have shown that the eta-invariant only

depends on the triple (X,E, g), as summarised in the following.

For the choice of cut-off functions:

Proposition 4.5.3. [21, Proposition 5.1] The invariant η̄(X,E, g, ψ) is indepen-

dent of the cut-off function ψ.

For the choice of length of radial interval of cylinder [0, a]×X:

Proposition 4.5.4. [20, Lemma 3.1] Upon reducing modulo Z, the invariant

η̄(X,E, g) is independent of a.

Corollary 4.5.5. [20] The adiabatic limit of this invariant is

η̄(X,E, g) = lim
a→∞

η̄(/∂
ψ,g
E,[0,a]×X).

For the choice of boundary projections:

Let P be a Cl(1)-spectral section with respect to P ∂, introduced by Melrose-

Piazza [43] as a generalisation of the modified Atiyah-Patodi-Singer boundary

projection P ∂ associated to L. In particular, P differs from P ∂ by a finite dimen-

sional subspace. Both the spectral section P and its conjugation g−1Pg remain

self-adjoint elliptic boundary projections for /∂EX . The Dai-Zhang eta-invariant is

defined in the same way.
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Proposition 4.5.6. [21, Proposition 5.6] Let P and Q be any two Cl(1)-spectral

sections with respect to P ∂. Then,

η̄(X,E, P ) ≡ η̄(X,E,Q) mod Z.

For the change of g under continuous deformation:

Proposition 4.5.7. [21] Let {gt}t∈[0,1] be a smooth family of maps from X →
U(N) connecting g0 and g1. Then, the equality

(4.5.7)

η̄(X,E, g1)− η̄(X,E, g0) = ϕ

∫
X

Â(TX,∇TX) ∧ ch(E,∇E) ∧ Tch(gt, d) mod Z

holds where ϕ is the constant as in (4.4.5) and Tch(gt, d) is the transgression

form (1.1.35) of the odd Chern character ch(gt).



Chapter 5

Analytic Pontryagin duality in

K-theory

5.1 The even case: K0(X,R/Z)×K0(X)

This section is dedicated to the proof of the following theorem.

Theorem 5.1.1. Let M be an even dimensional closed spinc manifold and let E

be a complex vector bundle overM. Let X be a smooth compact manifold, together

with a smooth map f : M → X. Let h = g◦f : M → U(N) be a K1-representative

of M and let τ be the trivial bundle in which h acts as an automorphism. Let
/∂
ψ,h
E⊗τ,M×[0,1] be the Dirac operator twisted by E and τ on the cylinder M × [0, 1]

(5.1.1) /∂
ψ,h
E⊗τ,M×[0,1] = /∂E⊗τ + (1− ψ)h−1[/∂E⊗τ , h].

Let η̄(/∂
ψ,h
E⊗τ,M×[0,1]) be its reduced eta-invariant (4.5.5). Then, the analytic pairing

K0(X,R/Z)×K0(X) −→ R/Z

〈(g, (d, g−1dg), µ), (M,E, f)〉

= η̄
(
/∂
ψ,h
E⊗τ,M×[0,1]

)
−
∫
M

f ∗µ ∧ ch(E) ∧ Td(M) mod Z(5.1.2)

is well-defined and non-degenerate.

63
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5.1.1 Well-definedness of K0 pairing

Well-defined on the level of cycle:

Proposition 5.1.2. The analytic pairing (5.1.2) is independent of the Rieman-

nian metric of the manifold M, the Hermitian metric and the connection on the

complex vector bundle E.

Proof. Fix a R/Z K0-cocycle (r, (d, r−1dr), µ). For i = 1, 2, let Mi = (M, gi) be

the same even dimensional manifold with different Riemannian metrics gi, which

is the boundary of a cylinder N = M × [0, 1], i.e. ∂N ∼= M1 t −M2. Let

(5.1.3) gγ = γ(t) + (dt)2

be the extended metric on N, where γ(t) is a path in the space of Riemannian

metrics onM. Let gEi ,∇Ei be the metric and Hermitian connection on Ei = E|Mi

respectively. Let τ be the trivial bundle upon which h = r ◦ f : M → U(N) acts

as an automorphism. Let ∇E⊗τ be the Hermitian tensor product connection on

E ⊗ τ. Set
∇E⊗τ
p = ∂t ∧ dt+ p(t)

to be a path of connections on E ⊗ τ extended to N, where p(t) is a path of con-

nections on E⊗ τ over M. Let /∂ψ,hEi⊗τ,M×[0,1] be the corresponding Dirac operators

at the two ends M ×{i}. Let η̄(Mi, Ei, h) = η̄(/∂
ψ,h
Ei⊗τ,M×[0,1]). Then, we only need

to compute

η̄(M1, E1, h)− η̄(M2, E2, h)

−

(∫
M1

Td(ΩM1) ∧ ch(∇E1) ∧ f ∗µ−
∫
M2

Td(ΩM2) ∧ ch(∇E2) ∧ f ∗µ

)
mod Z

(5.1.4)

where ΩMi
is the respective Riemannian curvature of Mi for i = 1, 2.

Let θ be the transgression form of Td ∧ ch on N such that

dθ = Td(ΩM1) ∧ ch(∇E1)− Td(ΩM2) ∧ ch(∇E2).
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The integral part of (5.1.4) is immediate:

(5.1.5)∫
M1

Td(ΩM1)∧ch(∇E1)∧f ∗µ−
∫
M2

Td(ΩM2)∧ch(∇E2)∧f ∗µ =

∫
∂N

dθ∧f ∗µ mod Z.

By the Dai-Zhang Toeplitz index formula (4.4.5), upon reducing modulo Z,

(5.1.6) η̄(M1, E1, h)− η̄(M2, E2, h) =

∫
N

Td(Ωgγ ) ∧ ch(∇E
p ) ∧ ch(h, d) mod Z

where Ωgγ is the Riemannian curvature of N and ch(h, d) is the odd Chern char-

acter of h. By Stokes theorem, the left hand side of (5.1.6) is
∫
∂N
θ∧ ch(h, d). By

the exactness condition (2.1.2) and Stokes theorem again, the difference (5.1.4)

is zero.

Well-defined under the R/Z K0-theory relation:

Proposition 5.1.3. The analytic pairing (5.1.2) respects the R/Z K0-relation

(2.1.4).

Proof. Fix a K0-cycle (M,E, f). For i = 1, 2, 3, consider R/Z K0-cocycles Ei =

(ri, (d, r
−1
i dri), µi) such that E2 = E1 + E3, i.e. r2 ' r1 ⊕ r3 and satisfying (2.1.6):

µ2 − µ1 − µ3 = Tch(r1, r2, r3).

Let hi = ri ◦ f : M → U(Ni). For simplicity, we denote (5.1.2) by η̄(EMi ) for each

i. Assume there is a smooth path ht connecting h2 and h1 ⊕ h3, both of which

sit at each end of the cylinder M × [0, 1] respectively. Moreover, assume that the

extension to the cylinder is compatible with all of the relevant data associated

to each end, for instance there is a path µ̃t = f ∗µt connecting µ̃2 at M × {0}
and µ̃1 + µ̃3 at M × {1} by some suitable cut-off function. Then, by applying

the Dai-Zhang Toeplitz index theorem for M × [0, 1] using (4.4.5) and Stokes

theorem, we compute

η̄(EM2 )− η̄(EM1 )− η̄(EM3 )

=

∫
[0,1]×M

Td([0, 1]×M) ∧ ch([0, 1]× E) ∧
(
ch(ht; t ∈ [0, 1])− dµ̃t

)
mod Z
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=

∫
M

∫ 1

0

Td(M) ∧ ch(E) ∧
(
ch(ht; t ∈ [0, 1])− dµ̃t

)
mod Z

=

∫
M

Td(M) ∧ ch(E) ∧
(
Tch(h1, h2, h3)− (µ̃2 − µ̃1 − µ̃3)

)
mod Z = 0.

This shows that η̄(EM2 ) = η̄(EM1 ) + η̄(EM3 ) whenever r2 ' r1 ⊕ r3.

Well-defined under the K-homology relation:

Lemma 5.1.4. The analytic term η̄
(
/∂
ψ,h
E⊗τ,M×[0,1]

)
respects the K-homology rela-

tion [13, §11].

Proof. The following approach is inspired by [15]. For simplicity, we denote

η̄
(
/∂
ψ,h
E⊗τ,M×[0,1]

)
by η̄(M,E, h). It is straightforward for the case of direct sum-

disjoint union, i.e.

(5.1.7) η̄
(
(M,E1, h)t(M,E2, h)

)
= η̄(M,E1⊕E2, h) = η̄(M,E1, h)+η̄(M,E2, h)

where the Dirac operator splits into /∂ψ,hE1⊗τ,M×[0,1]⊕ /∂
ψ,h
E2⊗τ,M×[0,1]. For bordism, let

(W,F, ϕ) be a K-chain such that (∂W,F |∂W , ϕ|∂W ) ∼= (M,E, f) t (−M ′, E ′, f ′).

Then,

η̄(∂W,F |∂W , ϕ|∂W ) = η̄
(
(M,E, f) t (−M ′, E ′, f ′)

)
= η̄(M,E, f) + η̄(−M ′, E ′, f)

where the Dirac operator is given by /∂
ψ,h
E⊗τ,M×[0,1] ⊕ /∂

ψ,h′

E′⊗τ ′,M ′×[0,1].

The relation of vector bundle modification is given by

(5.1.8) (M,E, f) ∼ (ΣH, β ⊗ ρ∗E, f ◦ ρ),

where H is a spinc vector bundle over M, R is the trivial real line bundle, ΣH =

S(H ⊕ R) is the sphere bundle, ρ : ΣH → M is the projection and β is the

Bott bundle over ΣH. Since M is an even dimensional spinc manifold, so is ΣH.

Thus, the consideration of the Dai-Zhang eta-invariant η(ΣH, β ⊗ ρ∗E, f ◦ ρ) is

valid. Via r : X → U(N), the composition g = r ◦ f represents an element

of K1(M) and the composition h = g ◦ ρ : S(H ⊕ R) → U(N) represents an

element of K1(S(H ⊕ R)). Let τ be the trivial bundle upon which g acts as an

automorphism and SM be the spinor bundle on M. Now, we extend the tensor
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product bundle SM ⊗ E ⊗ τ on M trivially to the cylinder M × [0, 1], denoted

by SM×[0,1] ⊗ F for F = E ⊗ τ . By the Dai-Zhang construction, we obtain the

associated Dirac operator /∂ψ,gF,M×[0,1]. Let
˜/∂ψ,gF,M×[0,1] be its lift to ΣH × [0, 1]. This

requires some explanation. Note that, there is a lift S̃M×[0,1] of SM×[0,1] ⊗ F to

ΣH × [0, 1] via ρ′ = ρ × t where t ∈ [0, 1]. Let SS2p be the spinor bundle on the

even spheres S2p. Denote its lift to ΣH × [0, 1] by S̃S2p . Then, by [9] there is an

isomorphism of the tensor product

SΣH×[0,1]
∼= S̃M×[0,1]⊗̂S̃S2p

where SΣH×[0,1] is the primitive spinor bundle associated to T (ΣH × [0, 1]) of the

spinc manifold ΣH × [0, 1]. The ‘full’ bundle data on ΣH × [0, 1] is now

(5.1.9) SΣH×[0,1] ⊗ β̃ ⊗ (ρ′)∗F.

Let /∂β,S2p be the Dirac operator on S2p twisted by the Bott bundle β, with /̃∂β,S2p

its lift to ΣH × [0, 1], acting on (5.1.9) via S̃S2p and β̃ and by the identity on

others. On the other hand, the lift ˜/∂ψ,gF,M×[0,1] acts on (5.1.9) via S̃M×[0,1] and

(ρ′)∗F and by the identity on others. That is, both of the lifted Dirac operators
˜/∂ψ,gF,M×[0,1] and /̃∂β,S2p act on the bundle (5.1.9), as well as the primitive spinc Dirac

operator /∂ψ
′,h

β̃⊗(ρ′)∗F,ΣH×[0,1]
. Let P be the sharp product of the two operators

(5.1.10) P =
˜/∂ψ,gF,M×[0,1] # /̃∂β,S2p =

 ˜/∂ψ,gF,M×[0,1] ⊗ 1 1⊗ /̃∂β,S2p

−

1⊗ /̃∂β,S2p

+

− ˜/∂ψ,gF,M×[0,1] ⊗ 1

 .

It is an elliptic operator on ΣH × [0, 1] acting on the bundle (5.1.9). Moreover,

P can be identified with the primitive Dirac operator /∂ψ
′,h

β̃⊗(ρ′)∗F,ΣH×[0,1]
on ΣH ×

[0, 1] by the local triviality of the fibration ΣH × [0, 1] → M × [0, 1]. One can

alternatively view P as the sharp product

˜/∂ψ,gF,M×[0,1] #Dβ

whereDβ is a family of elliptic operatorsD given by the Dirac operator on S(Hm⊕
R) for m ∈M × [0, 1], and (Dβ)m is identified with /̃∂β,S2p by [14, Proposition 7].
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By [7], the eta-invariant of the sharp product operator P can be calculated

by

η(P ) = Ind
(
/̃∂β,S2p

+)
· η
( ˜/∂ψ,gF,M×[0,1]

)
= η
( ˜/∂ψ,gF,M×[0,1]

)
since Ind

(
/̃∂β,S2p

+)
= 1 by the Atiyah-Singer index theorem (4.1.3). This shows

that

η
(
/∂
ψ′,h

β̃⊗(ρ′)∗F,ΣH×[0,1]

)
= η
( ˜/∂ψ,gF,M×[0,1]

)
.

The rest of the proof involves the argument of the dimension of the kernel of the

Dirac operator, which is standard. In particular, the kernel of P or equivalently

/∂
ψ′,h

β̃⊗(ρ′)∗F,ΣH×[0,1]
coincides with the kernel of ˜/∂ψ,gF,M×[0,1]. Thus, the reduced eta-

invariant is invariant under vector bundle modification.

Lemma 5.1.5. The integral term
∫
M
f ∗µ ∧ ch(E) ∧ Td(M) mod Z respects the

K-homology relation [13, §11].

Proof. Fix a R/Z K0-cocycle V = (g, (d, g−1dg), µ). Let E = (M,E, f) be a

K0-cycle. For direct sum-disjoint union, it is straightforward to see that the

integral of the sum splits into the sum of the integral. For bordism, consider

a K-chain (W,F, g) and by pairing V with each term in (∂W,F |∂W , g|∂W ) ∼=
(M,E, f) t (−M ′, E ′, f ′), it is immediate that∫

W

(g|∂W )∗µ ∧ ch(F |∂W ) ∧ Td(∂W )mod Z

=

∫
M

f ∗µ ∧ ch(E) ∧ Td(M)mod Z +

∫
M ′
f ′
∗
µ ∧ ch(E ′) ∧ Td(M ′)mod Z.

For vector bundle modification, (M,E, f) ∼ (ΣH, β ⊗ ρ∗E, f ◦ ρ), we compute∫
ΣH

(f ◦ ρ)∗ω ∧ ch(β ⊗ ρ∗F ) ∧ Td(ΣH) mod Z

=
∑
Uα

ϕα

∫
Uα×S2p

f ∗(ω|Uα) ∧ ch(β)⊗ ch(E|Uα) ∧ Td(Uα × S2p) mod Z

=
∑
Uα

ϕα

∫
Uα

f ∗(ω|Uα) ∧ ch(E|Uα) ∧ Td(Uα)

∫
S2p

ch(β) ∧ Td(S2p) mod Z

=
∑
Uα

ϕα

∫
Uα

f ∗(ω|Uα) ∧ ch(E|Uα) ∧ Td(Uα) mod Z
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=

∫
M

f ∗ω ∧ ch(E) ∧ Td(M) mod Z.

Here, ϕα is a partition of unity subordinate to an open cover {Uα} of M and the

second integral (over S2p) on the second line is known to have index 1 by the

Atiyah-Singer index theorem. This completes the proof.

Proposition 5.1.6. The analytic pairing (5.1.2) respects the K-homology rela-

tion [13, §11].

Proof. The link between these two terms (via the exactness condition (2.1.4))

does not play a role here, so the claim follows from Lemma 5.1.4 and Lemma

5.1.5.

5.1.2 Non-degeneracy of K0 pairing

We show the non-degeneracy by an argument of Mayer-Vietoris sequence (cf.

Section 2.3) for the K0 pairing. The approach adapted here is inspired by Savin-

Sternin [48], in which their argument works for the duality pairing on abstract

cycles. In contrast, the following proof is much more delicate as explicit (co)cycles

are involved. First, we show that (5.1.2) is an isomorphism for a contractible open

set U ∼= Rn. Then, by the assumption that the isomorphism holds for contractible

U, V and intersection U ∩V, it holds for X = U ∪V. Lastly, we apply an induction

on the size of the open cover.

To do this, we need a description of K0(U) ∼= K0(Rn) for positive even n.

Consider the short exact sequence of the induced K0 groups associated to the

one-point compactification of the Euclidean space Rn

(5.1.11) 0 −→ K0({∞}) −→ K0(Sn) −→ K0(Rn) −→ 0.

Recall that for even n, the geometric K-homology of even sphere K0(Sn) is

(5.1.12) K0(Sn) ∼= Z〈(pt, pt× C, i)〉 ⊕ Z〈(Sn, β, Id)〉.

Here i : {∞} → Sn is the inclusion map and β is the non-trivial Bott bundle

over Sn. Since K0({∞}) ∼= Z is generated by (pt, pt × C, Id) and coincides with
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ker[K0(Sn)→ K0(Rn)], we obtain

K0(Rn) ∼= K̃0(Sn)

where K̃0(Sn) denotes the reduced K-homology of Sn, generated by the non-

trivial cycle. Thus, it suffices to consider the pairing in K̃0(Sn).

Remark 5.1.7. For n = 2, recall that from Example 1.1.5 the Bott bundle is

β0 = L0 − 1 ∈ K̃0(S2). To see the Bott bundle over n-spheres for n > 2, we

observe that by the multiplicative property of reduced K-theory of S2

K̃0(S2)× · · · × K̃0(S2)→ K̃0(S2 ∧ · · · ∧ S2) = K̃0(Sn)

where n = 2r for r times the wedge of 2-spheres. Then, the Bott bundle β ∈
K̃0(Sn) is β = β0 � · · ·� β0 = (L0 − 1)r. Its Chern character given by (3.2.4) is

thus integral.

Consider the following exact sequence

· · · → K̃0(Sn)→ K̃0(Sn,R)→ K̃0(Sn,R/Z)→ K̃1(Sn)→ · · ·

Recall that the odd K-theory K1(Sn) can be regarded as the set of homotopy

classes [Sn, U(∞)] of continuous maps from Sn to the stablised unitary group

U(∞), which is by definition the n-th homotopy group πn(U(∞)). By Bott Peri-

odicity, K1(Sn) ∼= πn(U(∞)) is trivial when n is even. Hence we have

· · · → K̃0(Sn)
ch−→ K̃0(Sn,R)→ K̃0(Sn,R/Z)→ 0.

By viewing K̃0(Sn,R/Z) as the cokernel of ch, its generator is represented by

(5.1.13) (0, 0, µ− ch(β)),

where µ ∈ Ωeven(Sn)/dΩ such that dµ = 0 and β ∈ K̃0(Sn).

Now, we are ready to show that the Pontryagin duality K0 pairing imple-

mented by (5.1.2) is non-degenerate.

The case of the K0 pairing for Rn for positive even n reduces to the K̃0 pairing
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for Sn. In particular, it suffices to show that the map

K̃0(Sn,R/Z)→ Hom(K̃0(Sn),R/Z)

implemented by

(5.1.14) η̄
(
/∂
β
Sn×[0,1]

)
−
∫
Sn

(
µ− ch(β)

)
∧ ch(β) ∧ Td(Sn) mod Z

is an isomorphism, which then implies the non-degeneracy of the pairing. Since

we are working on generators, the injectivity is implied and we only need to

show the surjectivity, i.e. it suffices to show that the image of the pairing is not

identically zero in R/Z. Since TSn is stably trivial, the Todd form Td(Sn) = 1.

The integrand then consists of two parts:

µ ∧ ch(β) and ch(β) ∧ ch(β).

It is clear that the integration of ch(β)2 over Sn is zero modulo Z since ch(β) is

just the wedge product of c1(L) and is already the top degree form on Sn. For

µ∧ ch(β), since ch(β) is already the top degree form on Sn, only the lowest term

(the 0-form of µ) survives in the integration. The 0-form is in general an R-valued
function on Sn. Hence, we conclude that

(5.1.15)
∫
Sn
µ ∧ ch(β) ∧ Td(Sn) mod Z 6= 0.

To consider the reduced Dai-Zhang eta-invariant η̄ of the even sphere Sn, we

need to compute η
(
/∂
β
Sn×[0,1]

)
. Let /∂β,Sn = /∂

±
β,Sn be the Z2-graded Dirac operator

on Sn twisted by β. By the Atiyah-Singer index theorem,

(5.1.16) Ind(/∂
+
β,Sn) =

∫
Sn
ch(β) ∧ Td(Sn) = 1 6= 0.

Hence, we cannot directly apply the method of Dai-Zhang to compute the eta-

invariant, as it requires the vanishing of Ind(/∂
+
β,Sn) to ensure the existence of

Lagrangian subspaces in ker(/∂β,Sn) for the modified boundary conditions. To

circumvent this, we adopt a method suggested in [20].

First, we extend β over Sn trivially to the cylinder Sn × [0, 1]. Then, the
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two ends of the interval [0, 1] is identified into a circle, and glue the bundle over

Sn×{0} and Sn×{1} using a smooth automorphism in K1(Sn). Since K1(Sn) is

trivial for even n, the gluing map is just the identity (infinite) matrix in U(∞) and

the bundles at the two ends are identified trivially, giving a well-defined bundle

β′ → Sn× S1. Moreover, Sn× S1 is closed and therefore no boundary conditions

are required. Let /∂β′,Sn×S1 be the resulting twisted Dirac operator. It can be

rewritten as the sharp product

(5.1.17) /∂β′,Sn×S1 = /∂β,Sn#/∂S1 =

(
/∂S1 ⊗ 1 1⊗ /∂

−
β,Sn

1⊗ /∂
+
β,Sn −/∂S1 ⊗ 1

)
.

Then, its Atiyah-Patodi-Singer eta-invariant is

ηAPS(/∂β′,Sn×S1) = Ind(/∂
+
β,Sn) · ηAPS(/∂S1) = 1 · 0 = 0.

To determine the kernel of (5.1.17), let

(
x1 ⊗ y1

x2 ⊗ y2

)
be the spinors. Then, the

calculation reduces to

(5.1.18)

/∂S1(x1)⊗ y1 = −x2 ⊗ /∂
−
β,Sn(y2)

/∂S1(x2)⊗ y2 = x1 ⊗ /∂
β,+
Sn (y1).

For instance, if (x1, x2) ∈ ker(/∂S1), then (y1, y2) ∈ ker(/∂
β,+
Sn ⊕ /∂

β,−
Sn ). In particular,

we have

(5.1.19) ker(/∂
β′

Sn×S1) ∼= ker(/∂S1)∩̇
(

ker(/∂
β,+
Sn )⊕ ker(/∂

β,−
Sn )

)
where ∩̇ means the ‘intersection’ of elements as in spinors, not as the intersection

of spaces. Since the Dirac operator /∂+
β,Sn has one dimensional kernel and zero

dimensional cokernel, we conclude that

(5.1.20) dim ker(/∂β′,Sn×S1) ≡ dim ker(/∂S1) = 1.
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Hence, for all positive even n, the reduced Dai-Zhang eta invariant is

(5.1.21) η̄(/∂β′,Sn×S1) ≡ 1

2
mod Z.

By (5.1.15) and (5.1.21), we conclude the following lemma.

Lemma 5.1.8. For even n ∈ Z+, the map K̃0(Sn,R/Z) → Hom(K̃0(Sn),R/Z)

implemented by (5.1.14) is an isomorphism, and thus so is the case of U ∼= Rn.

SinceK1(Rn) ∼= K1(Sn) ∼= 0 for even n, the relevant part of the Mayer-Vietoris

sequence in the analytic K0 pairing is

K0
c (U ∩ V,R/Z) K0

c (U,R/Z)⊕K0
c (V,R/Z) K0(U ∪ V,R/Z)

Hom(K0(U ∩ V ),R/Z) Hom(K0(U),R/Z)⊕ Hom(K0(V ),R/Z) Hom(K0(U ∪ V ),R/Z)

Lemma 5.1.9. Assume the isomorphism holds for contractible open sets U, V and

the intersection U ∩V. Then, it holds for X = U ∪V, i.e. the map K0(X,R/Z)→
Hom(K0(X),R/Z) implemented by (5.1.2) is an isomorphism.

Proof. The result follows by Lemma 5.1.8 and by the Five lemma.

Proof. (of Theorem 5.1.1) The non-degeneracy of the pairing is implied by the

isomorphism as in Lemma 5.1.9. The last step is to induct on the size of open cover

of X. The base case is that we have shown Ki(X,R/Z) → Hom(Ki(X),R/Z)

implemented by the analytic pairing (5.1.2) is an isomorphism for U, V and U∩V,
where {U, V } is a good cover of X.

Let {U0, . . . , Up−1} be any open cover of X of size p. Let V = U0 ∪ · · · ∪Up−2.

The induction hypothesis is the following: assume that the isomorphism holds for

V, Up−1 and the non-empty intersection V ∩Up−1, which then holds for V ∪Up−1.

Now, consider a good cover {U ′0, . . . , U ′p} of X of size p+ 1. Let

V ′ = U ′0 ∪ · · ·U ′p−1.
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By the induction hypothesis, the isomorphism holds for V ′ (since V ′ is of size p

union) and U ′p. The Mayer-Vietoris sequence for V ′, U ′p and V ′ ∩ U ′p is

· · · → Ki(V ′∩U ′p,R/Z)→ Ki(V ′,R/Z)⊕Ki(U ′p,R/Z)→ Ki(V ′∪U ′p,R/Z)→ · · · .

To claim the isomorphism for the union V ′ ∪ U ′p, we only need to consider the

intersection. Note that

V ′ ∩ U ′p = (U ′0 ∩ U ′p) ∪ · · · ∪ (U ′p−1 ∩ U ′p).

It is the p-union of contractible sets. By the induction hypothesis, the isomor-

phism holds for V ′∩U ′p. By the Mayer-Vietoris sequence and the Five lemma, we

conclude that the isomorphism holds for V ′ ∪U ′p. This completes the proof of the

non-degeneracy of the analytic K0 pairing.

5.2 The odd case: K1(X,R/Z)×K1(X)

The analytic pairing in the odd case, or what we refer to as the analytic K1-

pairing, was first introduced by Lott [36]. We stress that in this section we do

not re-prove what Lott had already proved, but show the well-definedness and

the non-degeneracy of the analytic pairing (5.2.3), which is not immediately clear

in his paper. Another upshot of providing a full proof of this observation is that

we provide evidence of the non-triviality of such a pairing. In particular, we will

consider an example which forms a crucial intermediate step in the proof.

Setup. Let X be a smooth compact manifold. LetM be an odd dimensional

closed spinc manifold and E be a complex vector bundle over M equipped with

a Hermitian connection ∇E. Let f : M → X be a smooth map. This defines a

triple (M,E, f) ∈ K1(X). Let SM be the spinor bundle associated to TM. Let
/∂E⊗f∗V,M be the twisted Dirac operator acting on L2(SM ⊗E ⊗ f ∗V ) defined via

the tensor product connection ∇E⊗f∗V , which locally takes the form

(5.2.1) /∂E⊗f∗V,M :=
∑
i

c(ei)∇E⊗f∗V
ei

where {ei} is an orthonormal frame of the tangent bundle TM. The Dirac op-
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erator /∂E⊗f∗V,M is an elliptic differential operator on an odd dimensional closed

manifold M. Let η(/∂E⊗f∗V,M) := η(/∂E⊗f∗V,M , 0) be the Atiyah-Patodi-Singer eta-

invariant associated to /∂E⊗f∗V,M , given by (4.2.3). In our case, we consider the

full eta-invariant (the boundary correction terms of (4.2.8)) and reduce modulo

the integers

(5.2.2) η̄(/∂E⊗f∗V,M) =
η(/∂E⊗f∗V,M) + h(/∂E⊗f∗V,M)

2
mod Z

where h(/∂E⊗f∗V,M) is the dimension of the kernel of /∂E⊗f∗V,M . For simplicity, we

call (5.2.2) the reduced eta-invariant. Observe that the reduced eta-invariant is

dependent on the geometry of the manifold and the bundle, e.g. the Riemannian

metric on M and the Hermitian metric and connection on both E and f ∗V.

Theorem 5.2.1 (Lott’s analytic K1-pairing [36]). In the above setting, the ana-

lytic K1-pairing is given by

K1(X,R/Z)×K1(X)→ R/Z

〈(V,∇V , ω), (M,E, f)〉

= η̄(/∂E⊗f∗V,M)−
∫
M

f ∗ω ∧ ch(E,∇V ) ∧ Td(M) mod Z.(5.2.3)

Note that (5.2.3) is the odd analog of (5.1.2). As mentioned before, it is not

immediately clear that the pairing (5.2.3) is well-defined since both of the terms

in (5.2.3) depend on the geometry of the manifold and the bundle. Thus, the rest

of this section is devoted to the proof of the following claim.

Theorem 5.2.2. The analytic K1-pairing (5.2.3) is well-defined and non-degenerate.

5.2.1 Well-definedness of K1 pairing

Well-defined on the level of cycle:

The idea is very similar to the even case. Fix a R/Z K1-cocycle (V,∇V , ω).

Let M1 = (M, g1) and M2 = (M, g2) be the same manifold equipped with two

Riemannian metrics g1 and g2 respectively. Let N = M× [0, 1] be a cylinder with

boundary ∂N = M1t−M2, i.e. N is equipped with a suitable metric such that g1

can be deformed continuously into g2. To be more precise, let γ : [0, 1]→ Met(M)
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be a path in the space of Riemannian metrics on M. Then,

gγ = γ(t) + (dt)2

is the extended metric on the cylinder N. The complex vector bundle E extends

trivially to the whole of N, and we still denoted this extension by E. Let gE1 , gE2

and ∇E1 ,∇E2 be the metric and Hermitian connection on E1 = E|M1 and E2 =

E|M2 respectively. Let p : [0, 1]→ Conn(E) be a path in the space of connections

on E. Its extension to N is

∇E
p =

∂

∂t
∧ dt.IdE + p(t).

Let (f ∗V,∇f∗V ) be the pullback of V via f. For i = 1, 2 let Ei ⊗ f ∗V be the

tensor product bundles with connections ∇Ei⊗f∗V
p . Let /∂E1⊗f∗V

M1
and /∂

E2⊗f∗V
M2

be

the corresponding Dirac operators twisted by E1⊗ f ∗V and E2⊗ f ∗V at the two

ends. The well-definedness of the pairing boils down to the equation

η̄(/∂
E1⊗f∗V
M1

)− η̄(/∂
E2⊗f∗V
M2

)

−

(∫
M1

Td(ΩM1) ∧ ch(∇E1) ∧ f ∗ω −
∫
M2

Td(ΩM2) ∧ ch(∇E2) ∧ f ∗ω

)
modZ

(5.2.4)

where ΩMi
are the respective Riemannian curvatures of Mi, for i = 1, 2.

Let θ be the transgression form of the characteristic form Td ∧ ch on N such

that

dθ = Td(ΩM1) ∧ ch(∇E1)− Td(ΩM2) ∧ ch(∇E2).

The integral part of (5.2.4) is immediate:

(5.2.5)∫
M1

Td(ΩM1)∧ch(∇E1)∧f ∗ω−
∫
M2

Td(ΩM2)∧ch(∇E2)∧f ∗ω =

∫
∂N

dθ∧f ∗ω mod Z.

By reducing the Atiyah-Patodi-Singer index formula (4.2.8) modulo Z, we have

0 =

∫
N

Td(Ωgγ ) ∧ ch(∇E
p ) ∧ ch(f ∗∇V )− (η̄(/∂

E1⊗f∗V
M1

)− η̄(/∂
E2⊗f∗V
M2

)) mod Z
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where Ωgγ is the Riemannian curvature of N. By Stokes theorem, we obtain

(5.2.6) η̄(/∂
E1⊗f∗V
M1

)− η̄(/∂
E2⊗f∗V
M2

) =

∫
∂N

θ ∧ f ∗ch(∇V ).

Since dθ and f ∗ch(∇V ) are both characteristic forms and are hence closed, by

Stokes theorem again and by (2.2.2), the difference (5.2.4) is zero.

Proposition 5.2.3. The analytic K1-pairing is independent of the Riemannian

metric of the manifoldM and the choice of Hermitian connection on E. A similar

approach shows that it is also independent of the choice of connection on f ∗V.

Well-defined under the R/Z K1-theory relation

Fix an odd K-cycle (M,E, f). For i = 1, 2, 3, consider Vi = (Vi,∇Vi , ωi) ∈
K1(X,R/Z) such that V2 = V1 + V3, i.e. V2

∼= V1 ⊕ V3 and ω2 − ω1 − ω3 =

CS(∇V1 ,∇V2 ,∇V3). For simplicity, denote by η̄(f ∗Vi) the K1 pairing between a

fixed (M,E, f) and each Vi, whose pairing formula is given by (5.2.3). Now,

let p : [0, 1] × M → M be the obvious projection. Let Ṽ → [0, 1] × M be a

complex vector bundle which restricts to p∗V2 near {1} ×M and to p∗(V1 ⊕ V3)

near {0}×M. Let ∇Ṽ be a unitary connection on Ṽ . Let ω̃ ∈ Ωodd([0, 1]×M)/dΩ

such that ω̃ restricts to p∗ω2 near {1} ×M and to p∗(ω1 + ω3) near {0} ×M.

By the Atiyah-Patodi-Singer index theorem and Stokes theorem, we compute

η̄(f ∗V2)− η̄(f ∗V1)− η̄(f ∗V3)

=

∫
[0,1]×M

Td([0, 1]×M) ∧ ch([0, 1]× E) ∧ f ∗
(
ch(∇Ṽ )− dω̃

)
mod Z

=

∫
M

∫ 1

0

Td(M) ∧ ch(E) ∧ f ∗
(
ch(∇Ṽ )− dω̃

)
mod Z

=

∫
M

Td(M) ∧ ch(E) ∧ f ∗
(
CS(∇V1 ,∇V2 ,∇V3)− (ω2 − ω1 − ω3)

)
mod Z = 0.

This shows that η̄(f ∗V2) = η̄(f ∗V1) + η̄(f ∗V3) whenever V2 = V1 + V3. �

Well-defined under the K-homology relation:

Let V ∈ K1(X,R/Z).We show that the reduced eta invariant η̄(f ∗V) respects

the K-homology relation (3.1.2). For simplicity, we will show this separately for
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the analytic part and the integral part. Unlike the previous proof, this is valid

because the exactness condition (2.2.2) does not play a role in the following proof.

Lemma 5.2.4. Let (M,E, f) be an odd K-cycle over X. Let /∂MF be the Dirac

operator on M twisted by F = E ⊗ f ∗V. Then, the reduced eta-invariant η̄(/∂
M
F )

respects the K-homology relation (3.1.2).

Proof. For simplicity, we write η̄(M,F, f) as the reduced eta-invariant. Let F ′ =

E ′ ⊗ f ∗V. By the distributivity of the tensor product of vector bundles, we have

S ⊗ (F ⊕ F ′) = (S ⊗ F ) ⊕ (S ⊗ F ′). Then, the corresponding Dirac operator is
/∂
M
F ⊕ /∂

M
F ′ . It follows that

(5.2.7) η̄
(
(M,F, f) t (M,F ′, f)

)
= η̄(M,F ⊕ F ′, f) = η̄(M,F, f) + η̄(M,F ′, f).

For bordism, let (W, F̃ , ϕ) be aK-chain such that (∂W, F̃ |∂W , ϕ|∂W ) ∼= (M,F, f)t
(−M ′, F ′, f ′). Since the Dirac operator is given by /∂

M
F ⊕ /∂

−M
F ′ , we have

η̄(∂W, F̃ |∂W , ϕ|∂W ) = η̄
(
(M,F, f) t (−M ′, F ′, f ′)

)
= η̄(M,F, f) + η̄(−M ′, F ′, f).

For vector bundle modification, consider the unit sphere bundle ρ : ΣH = S(H⊕
R)→ M, where H is an even dimensional spinc vector bundle and R is a trivial

real line bundle over M. Note that ΣH is a spinc vector bundle and is itself an

odd dimensional closed manifold. Let βH be the Bott bundle over ΣH. Let SM
(resp. SS2p) be the spinor bundle on M (resp. S2p) and denote by S̃M (resp.

S̃S2p) its lift to ΣH. Let SΣH be the primitive spinor bundle over ΣH. By [9],

there is an isomorphism of the tensor product

(5.2.8) S̃M ⊗ S̃S2p
∼= SΣH .

In particular, the “full” bundle data on ΣH is now SΣH⊗βH⊗ρ∗F. Let /∂
M
F be the

twisted Dirac operator onM and let /̃∂MF be its lift to act on L2(SΣH⊗βH⊗ρ∗F ).

On the other hand, let /∂S
2p

β be the self-adjoint twisted Dirac operator on S2p,

whose positive part /∂S
2p,+

β has index 1. Denote by /̃∂
S2p

β its lift to ΣH, which also

acts on L2(SΣH ⊗ βH ⊗ ρ∗F ). Then, by [7] their sharp product is given by
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P = /̃∂
M
F # /̃∂

S2p

β =

 /̃∂
M
F ⊗ 1 1⊗ /̃∂

S2p

β

−

1⊗ /̃∂
S2p

β

+

− /̃∂MF ⊗ 1

 .

It is readily verified that P is an elliptic operator on ΣH. Moreover, P can be

identified with the primitive spinc Dirac operator /∂ΣH
βH⊗ρ∗F on ΣH, by the local

triviality of the fibration ΣH → M. Strictly speaking, P is the sharp product
/̃∂
M
F #Dβ where Dβ is a family of elliptic operators D given by the Dirac operator

on S(Hm ⊕ R) for each m ∈ M, and (Dβ)m can be identified with /̃∂
S2p

β , cf. [14,

Proposition 7 & 16].

By [7], the eta-invariant of the sharp product operator P is given by

(5.2.9) η(P ) = Ind
(
/∂
S2p,+
β

)
· η(/∂

M
F ) = η(/∂

M
F ),

since Ind(/∂
S2p,+
β ) = 1 by the Atiyah-Singer index theorem (4.1.3) . Hence,

(5.2.10) η
(
/∂

ΣH
βH⊗ρ∗F

)
= η(/∂

M
F ).

It is readily verified that the kernel of P and the kernel of /∂MF coincide. This shows

that the reduced eta-invariant η̄(/∂
M
F ) is invariant under vector bundle modifica-

tion.

Lemma 5.2.5. The integral part of the pairing (5.2.3) respects the K-homology

relation (3.1.2).

Proof. The proof is almost the same (except on the (co)cycles) as that of Lemma

5.1.5 since the integral term of (5.2.3) does not involve the pullback bundle f ∗V.

By Lemma 5.2.4 and Lemma 5.2.5, we conclude the following.

Proposition 5.2.6. The analytic K1-pairing given by (5.2.3) is well-defined un-

der the K-homology relation (3.1.2).

5.2.2 Non-degeneracy of K1-pairing

This section is devoted to the full proof of the non-degeneracy of Theorem

5.2.2. The main strategy is the same — we approach by applying the Mayer-

Vietoris sequence of R/Z K-theory (Section 2.3) and of K-homology (Section
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3.3) and the Five lemma. However, there are some subtleties which require careful

arguments.

Let {U, V } be a good open cover of size two of X with X = U ∪ V. There are

two things to show:

1. the map K1(X,R/Z) → Hom(K1(X),R/Z) implemented by the pairing

(5.2.3) is an isomorphism for contractible U,

2. if the pairing is an isomorphism for contractible U, V and the intersection

U ∩ V, then it is an isomorphism for X = U ∪ V.

To show the first point, it suffices to consider K1(Rn,R/Z) for odd n ∈ Z+. The

corresponding K-homology is K1(Rn). Let

(5.2.11) Sn = Rn ∪ {∞}

be the one-point compactification of Euclidean space Rn. Then, we have the

associated short exact sequence of K-homology

0 −→ K1({∞}) −→ K1(Sn) −→ K1(Rn) −→ 0.

Since K1({∞}) = K1(pt) = 0, there is a natural isomorphism

(5.2.12) K1(Rn) ∼= K1(Sn).

Thus, the analytic K1-pairing on Rn reduces to the case of Sn. Recall from Ex-

ample 3.1.1 that when n is even K1(Sn) = 0, and when n is odd K1(Sn) = Z
which is explicitly generated by (Sn, τ, Id). Here, τ is the trivial bundle over odd

dimensional sphere Sn and Id : Sn → Sn is the identity map. The analytic pairing

is thus given by

K1(Sn)×K1(Sn,R/Z) −→ R/Z

〈(Sn, τ, Id), (τ, d, ω)〉 = η̄(/∂Sn)−
∫
Sn
ω ∧ ch(τ) ∧ Td(Sn) mod Z.(5.2.13)

The analytic term of (5.2.13) is the reduced eta-invariant η̄ of the Dirac operator

twisted by the trivial bundle on Sn and ω is an odd degree closed form since
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dω = ch(τ)− rk(τ) = 0.

Since we are working on generators, the injectivity of (5.2.13) is implied. To

show surjectivity, we only need to show that the RHS of (5.2.13) is non-zero.

First, note that Td(Sn) ≡ 1 for all positive odd n. Since ch(τ) ≡ rk(τ), the

integral term is dominated by

−rk(τ)

∫
Sn
ω mod Z.

In general, the integral of ω over Sn is R-valued and this yields an element in R/Z
upon reducing modulo Z. For the analytic term, we consider two cases separately

and summarise in the table below.

n η(/∂Sn) dim ker(/∂Sn) η̄(/∂Sn)

1 0 1 1
2

≥ 3 0 0 0

When n = 1, the eta-invariant of the Dirac operator /∂S1 = −id/dθ (with

respect to the disconnected-cover-spin-structure) is known to be 0 and has kernel

of dimension 1. For n ≥ 3, the eta-invariant remains zero since there are orienta-

tion reversing diffeomorphisms on odd dimensional spheres which essentially flip

the signs of the eigenvalues and this yields a symmetric spectrum. Since Sn is a

compact spin manifold which admits positive scalar curvature, by Lichnerowicz’s

theorem (cf. [33, Section II, Corollary 8.9]), the Dirac operator has no harmonic

spinors, so the dimensional of the kernel is zero. The resulting reduced eta invari-

ant η̄ is zero. Hence, for odd n ∈ Z+ the pairing (5.2.13) has image not identically

zero.

Lemma 5.2.7. For positive odd n, the map K1(Sn,R/Z)→ Hom(K1(Sn),R/Z)

given by (5.2.13) is an isomorphism, and so is the K1 pairing for Rn ∼= U.

It follows immediately that since n is odd, the K0-homology group of odd

spheres (and hence Rn), as well as K0(Rn,R/Z) are all trivial. So, for odd n the

map between K0(Rn,R/Z) → Hom(K0(Rn),R/Z) is trivially an isomorphism.

The only non-trivial and relevant part of the Mayer-Vietoris sequence is
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K1
c (U ∩ V,R/Z) K1

c (U,R/Z)⊕K1
c (V,R/Z) K1(U ∪ V,R/Z)

Hom(K1(U ∩ V ),R/Z) Hom(K1(U),R/Z)⊕ Hom(K1(V ),R/Z) Hom(K1(U ∪ V ),R/Z)

where the upper horizontal row is the Mayer-Vietoris sequence for R/ZK1-theory,

the bottom row is the Mayer-Vietoris sequence for the Hom functor and each

vertical line is the map implemented by the analytic pairing. We can now state

the following result.

Lemma 5.2.8. Suppose the isomorphism holds for contractible U, V and the in-

tersection U∩V. Then, for X = U∪V, the map K1(X,R/Z)→ Hom(K1(X),R/Z)

implemented by the analytic pairing (5.2.3) is an isomorphism.

Proof. The result follows from Lemma 5.2.7 and the Five lemma.

Proof. (of Theorem 5.2.2) The non-degeneracy of the pairing is implied by the

isomorphism as in Lemma 5.2.8. For the general case, we apply induction on the

size of the open cover, as in the proof of Lemma 5.1.9. This completes the proof

for the analytic K1-pairing.

5.3 Perspective from physics

As we have explained in Chapter 3, geometric K-homology is a natural plat-

form in describing D-branes on X. Both of the analytic K1 and K0 pairings have

the following qualitative meaning: they measure the Aharonov-Bohm phase at

infinity of Type IIA and Type IIB string theories respectively. We recall that

Type IIA (resp. IIB) string theory is classified by K1(X) (resp. K0(X)) whose

elements are stable supersymmetric Dp-branes for all even 0 ≤ p ≤ 8 (resp. for

all odd −1 ≤ p ≤ 9), cf. [46, Section 2.2].

The Aharonov-Bohm effect inD-branes can be informally described as follows.

Let X9 be a smooth compact spinc 9-manifold with boundary X. In the odd case,

we consider the Type IIA String theory on X9×Rt. Assume that a brane produces

a torsion flux. This flux defines an element of K0
Tors(X). From the short exact

sequence (2.2.11)

K1(X,R/Z)
β−→ K0

Tors(X,Z)→ 0,
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this flux lifts to an element ofK1(X,R/Z). On the other hand, a test brane defines

an element of K0(X). By the module multiplication (2.2.6), a pair consisting of

a torsion flux and a test brane defines another element V of K1(X,R/Z). Then,

the Aharonov-Bohm phase is obtained by “transporting” V along an element

of K1(X), which is a lift of an element of H1(X). This happens topologically.

The pairing (5.2.3) provides an analytical description of such a transportation in

terms of the eta-invariant of Dirac operators on X, cf. [37, 51]. The reason as to

why the resulting R/Z-valued invariant of the analytic K1-pairing (5.2.3) is the

Aharonov-Bohm phase is explained in [51].

Analogously, the even case of the analytic pairing corresponds to the Aharonov-

Bohm effect in Type IIB String theory on X. In this case, the torsion flux defines

an element of K1
Tors(X), which lifts to K0(X,R/Z) from the short exact sequence

(2.1.20)

K0(X,R/Z)
β−→ K1

Tors(X)→ 0.

Then, by module multiplication a pair consisting of a torsion flux and test brane

define another element E ofK0(X,R/Z). Analytically, the Aharonov-Bohm phase

at infinity is then measured by evaluating E over some cycles in K0(X) by the

pairing formula (5.1.2) in terms of the Dai-Zhang eta-invariant of Dirac operators

(5.1.1) on X.





Chapter 6

Analytic Pontryagin duality in

cohomology theory

6.1 Degree 1: H1(X,R/Z)×H1(X,Z)

In this section, we study the analytic Pontryagin duality pairing in the coho-

mology of degree one, which is another phase calculation of the Aharonov-Bohm

effect in Quantum Mechanics, c.f. [25]. Let X be a smooth compact manifold.

By Fact 1, the group H1(X) is identified with the first oriented bordism group

Ωor
1 (X), whose element is given by [S1 γ−→ X]. Then, the (classical) topological

pairing

(6.1.1) H1(X,R/Z)×H1(X)→ R/Z

given by

(6.1.2)
(
A, [S1 γ−→ X]

)
7→
∫
S1

γ∗A mod Z

is the holonomy of a (pullback) flat connection A over a closed curve. Apart from

the classical pairing, there is also an analytic aspect. Let /∂S1 = −id/dθ be the

usual Dirac operator on S1, with respect to the disconnected-cover spin structure,

given by

(6.1.3) τ = S1 × C = R× C/ ∼,

85
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where (t, z) ∼ (t′, z′) if and only if t − t′ ∈ Z, z = z′. In other words, this is

the ‘bad’ spin structure of S1 that does not extend to the disc D. The group

H1(X,R/Z) is usually interpreted as the set that classifies all of the isomorphic

flat complex line bundles with connections over X whose first Chern classes are

torsion in H2(X,Z). The pullback, via γ, defines a flat complex line bundle over

S1, which is necessarily trivial by a torsionality argument. More precisely, let

(6.1.4) Lρ = X̃ ×ρ U(1)

be the associated line bundle defined by an unitary representation ρ : π1(X) →
U(1). This bundle is flat and has the first Chern class c1(Lα) ∈ H2

Tors(X,Z). Via

γ : S1 → X, we obtain the unitary representation ρ′ through the composition

ρ′ = ρ ◦ γ∗ : π1(S1)→ U(1),

which defines the flat line bundle

(6.1.5) L̃ := Lρ′ = R×ρ′ U(1)

over S1. A section of L̃ takes the form f(θ)vρ′(θ), where f is a function on S1 and

νρ′ is a generating section given by

(6.1.6) νρ′(θ) = exp(2πiaθ), a ∈ (0, 1).

Let /∂L̃S1 be the twisted-by-L̃ Dirac operator on S1. It is an ordinary self-adjoint

elliptic differential operator. According to [6, 27], its eigenvalues are λn = n+ a,

where n is an integer obtained by differentiating f. Then, its Atiyah-Patodi-Singer

eta-invariant is

(6.1.7) ηAPS(/∂
L̃
S1) = 1− 2a.

which is non-zero in general, yielding the non-triviality of the eta-invariant.
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Moreover, since dim ker(/∂
L̃
S1) = 1, the reduced eta-invariant is

(6.1.8) η̄APS(/∂
L̃
S1) =

ηAPS(/∂
L̃
S1) + dim ker(/∂

L̃
S1)

2
= 1− a mod Z

which is again non-vanishing.

Theorem 6.1.1. Let X be a smooth compact manifold and let γ : S1 → X be

a loop. Let L̃ be the associated flat line bundle over S1 defined by (6.1.5) via γ.

Let /∂L̃S1 be the corresponding twisted Dirac operator. Then, the analytic pairing

H1(X,R/Z)×H1(X)→ R/Z is given by

(6.1.9) 〈A, [S1 γ−→ X]〉 = η̄APS(/∂
L̃
S1)−

∫
S1

γ∗A mod Z.

This pairing is well-defined and non-degenerate.

Proof. The validity and non-triviality of the analytic part of (6.1.8) are discussed

above. The topological term is the (reduced modulo Z) holonomy of a flat con-

nection A over a closed curve. This pairing formula is a special case of the

analytic K1-pairing in Section 5.2. In particular, the well-definedness and the

non-degeneracy follow from the general case. For instance, the pullback data

defines a triple (L̃,∇L̃, ω) over S1, where ω is a 1-form satisfying

(6.1.10) dω = c1(L̃,∇L̃) = 0.

From a standard calculation of the curvature F∇L̃ = ∇L̃ ◦ ∇L̃ = dA′, where

A′ = γ∗A, we see that ω is cohomologous to A′. By Stokes theorem, the topological

integration is independent of the choice of 1-form. The others are routine work

and are left to the reader.

6.2 Degree 2: H2(X,R/Z)×H2(X,Z)

In this section, we study the analytic Pontryagin duality pairing in the R/Z-
cohomology of degree two. Let X be a smooth compact manifold. The classical
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(topological) pairing

(6.2.1) H2(X,R/Z)×H2(X,Z)→ R/Z

is given by the holonomy of the pullback of a representative ω in H2(X,R/Z)

over some singular cycle c in H2(X,Z) via a continuous map f : c→ X.

Fact 1 ([47, IV. 7.35]). Every homology class z ∈ Hi(X,Z) with i ≤ 6 can be

represented by a smooth manifold. Let Ωor
i (X) be the i-th oriented bordism group

of X. The map

Ωor
i (X)→ Hi(X,Z); (S, f) 7→ f∗[S]

is an isomorphism for i ≤ 3.

Without loss of generality, we replace c by an oriented, connected, closed

Riemannian surface Σ. Let [f : Σ → X] ∈ H2(X), with the equivalence relation

given by thin bordism, c.f. [47]. Then, the pairing (6.2.1) can be expressed as

(6.2.2)
(
ω, [Σ

f−→ X]
)
7→
∫

Σ

f ∗ω mod Z.

By classification results, there are 3 cases: Σ0 = S2 (of genus zero), Σ1 = T 2 =

S1 × S1 (of genus 1), and in general Σ2g = T#g (of genus 2g for g > 1). Since

genus(T#g) > genus(S2), there exists a degree 1 map φ : T#g → S2, see [28].

Hence, it suffices to consider Σ = S2, and the other cases follow by the composi-

tion

Σ2g X.

S2

f ′

φ
f

From (6.2.2), this reduces to the analytic pairing on S2 by pullback. In the

literature, the geometric object associated to f ∗ω is often known as a flat gerbe

with connection over S2, c.f. [30]. However, it is not clear how to ‘twist’ a Dirac

operator on S2 with a gerbe. To circumvent this, we use the Hermitian local

bundles of Melrose [41].



CHAPTER 6. ANALYTIC PAIRING IN COHOMOLOGY 89

6.2.1 Representative of H2(S2,R/Z) as projective line bun-

dles

For i = 2, 3, 4, let Diagi = {(x, . . . , x) ∈ S2 × · · · × S2} be the diagonal of S2.

Definition 6.2.1 ([41]). A Hermitian local line bundle L over S2 is a complex

line bundle over a neighbourhood V2 of the diagonal Diag2, together with a tensor

product isomorphism of smooth bundles

(6.2.3) π∗3L⊗ π∗1L
∼=−→ π∗2L

over a neighbourhood V3 of the diagonal Diag3, where πi : S2×S2×S2 → S2×S2

is the projection omitting the i-th element πi(x1, x2, x3) = (x̂i), and satisfying

the associativity condition L(x,y) ⊗ L(y,z) ⊗ L(z,t) → L(x,t) on a sufficiently small

neighbourhood of the diagonal Diag4.

Strictly speaking, L is not a genuine line bundle but is only projective in the

sense of [40]. It is only defined locally over some neighbourhood of the diagonal.

More precisely, choose a good cover {Ui} of S2, then the product Ui×Ui defines an
open cover of Diag2, which is contained in small neighbourhood V2, i.e. Diag2 ⊂
Ui×Ui ⊂ V2 ⊂ S2×S2. Choose pi ∈ Ui and consider the ‘left’ and ‘right’ bundles

(6.2.4) Li,pi = L|Ui×{pi}, Rpi,i = L|{pi}×Ui .

Then, by the composition law (6.2.3), a line bundle

(6.2.5) L = Li,pi ⊗Rpi,i

is defined over Ui×Ui.Moreover, there is a dual bundle identification Rpi,i
∼= L−1

i,pi

over Ui. By [41, Lemma 1], a local line bundle L on S2 can be equipped with a

multiplicative unitary structure and a multiplicative Hermitian connection. A

connection ∇ is multiplicative if for a local section u of L near (x, y) ∈ Ui × Ui
with ∇u = 0 at (x, y), and for a local section v of L near (y, z) ∈ Ui × Ui with
∇v = 0 at (y, z), the composition C(u, v) of (6.2.3) is locally constant at (x, y, z).

The multiplicative Hermitian structure is taken as a Hermitian structure

g(·, ·)i on each Li,pi . Using the dual identification on Rpi,i, this defines a Her-
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mitian structure on it over Ui and thus L over Ui × Ui via (6.2.5). Using a

partition of unity ρi subordinate to Ui × Ui, the Hermitian structure g(u, v) =∑
i(ρi × ρi)g(u, v)i is well-defined.

By [41, Proposition 2], there is a one-to-one correspondence between the group

H2(S2,R) and the set of Hermitian local line bundles modulo unitary multiplica-

tive isomorphisms in some neighbourhood of the diagonal. In particular, the

representative closed 2-forms are identified with the curvature of the Hermitian

local line bundle, i.e. [B/2π] ∈ H2(S2,R) and B = ∇◦∇ for (L,∇). It is the first

Chern class of L. In this way, we have obtained another geometric interpretation

of H2(S2,R/Z).

Lemma 6.2.2. The group H2(S2,R/Z) is isomorphic to the quotient of H2(S2,R)

by the reduced cohomology H̃2(S2,Z).

Proof. Consider the long exact sequence

(6.2.6)

· · · → H1(S2,R/Z)
c1−→ H2(S2,Z)→ H2(S2,R)→ H2(S2,R/Z)→ H3(S2,Z)→ · · ·

where the first1 map c1 : H1(S2,R/Z) → H2(S2,Z) is the first Chern class. Let

L0 be a flat line bundle over S2. Then, there are two cases:

c1(L0) = 0 or c1(L0) ∈ H2
Tors(S

2,Z).

Since H2(S2,Z) ∼= Z is non-torsion, we have c1(L0) ≡ 0. So, all such flat line

bundles are necessarily trivial. They are labelled by the integer 0 in Z. Let
H̃2(S2,Z) be the group generated by the Bott bundle β = L−1 which corresponds

to the generator 1 ∈ Z. Since H3(S2,Z) = 0, from (6.2.6) we get

(6.2.7) 0→ H2(S2,Z)/im(c1)→ H2(S2,R)→ H2(S2,R/Z)→ 0

and thus H2(S2,R/Z) ∼= H2(S2,R)/H̃2(S2,Z).

1For clarity, the notation H1(S1,R/Z) denotes the circle group R/Z ∼= U(1) equipped with
the discrete topology. This should not be confused with the notation H1(S2, U(1)) ∼= H2(S2,Z)
where U(1) denotes the sheaf of germs of U(1)-valued functions on X. In particular, by standard
bundle theory the latter classifies all principal U(1)-bundles, in which U(1) is the circle group
equipped with the usual topology.
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Remark 6.2.3. In other words, we interpret a representative of H2(S2,R/Z) as

a pure Hermitian local line bundle L over S2, in the sense that it is ‘trivial’ when

it descends to an ordinary non-trivial line bundle on S2.

6.2.2 Projective Dirac operator on S2 twisted by L

Let L be a pure Hermitian local line bundle with connection over S2 defined

above, whose (normalized) curvature is a representative in H2(S2,R). The ap-

propriate notion of the twisted Dirac operator is the projective Dirac operator
/∂
L
S2,proj introduced by Mathai, Melrose and Singer, c.f. [39–41]. See also [38] for

its relation with transversally elliptic operators. Such an operator is a projective

elliptic differential operator of order one defined on some neighbourhood of the

diagonal Diag2, with its kernel supported on the intersection of that neighbour-

hood and where L exists. From [39], there is a projective spinor bundle S over S2

associated to the Azumaya bundle Cl(TS2). Since S2 is spinc, it can be viewed

as the lift of the ordinary spinor bundle, also denoted as S, trivially to some ε-

neighbourhood Nε of the diagonal. Then, the projective bundle S ⊗ L is defined

over

N ′ε := Nε ∩ Ui × Ui ⊃ Diag2.

Let ∇S⊗L be the tensor product connection, defined by taking an appropriate

partition of unity subordinate to N ′ε. Such a tensor product connection always

exists, by the existence of the multiplicative Hermitian connection of L defined

above, and the restriction to N ′ε of a global spin connection on S. The projective

Dirac operator is given in term of distributions

(6.2.8) /∂
L
S2,proj := cl · ∇S⊗L

left (κId)

where κId = δ(z−z′)IdS⊗L is the kernel of the identity operator in Diff1(S2, S⊗L);

∇S⊗L
left is the connection restricted to the left variables and cl denotes the Clifford

action of T ∗S2 on the left. The projective Dirac operator /∂LS2,proj is elliptic and

is odd with respect to the Z2-grading

/∂
L,±
S2,proj ∈ Diff1(S2;S± ⊗ L, S∓ ⊗ L).
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By [39, Theorem 1], the projective analytical index of the positive part /∂L,+S2,proj is

given by

(6.2.9) Ind(/∂
L,+
S2,proj) = Tr(/∂L,+S2,projQ− 1S−⊗L)− Tr(Q/∂L,+S2,proj − 1S+⊗L)

for any parametrix Q of /∂L,+S2,proj. By [41, Theorem 2] (and also [39, Theorem 2]),

the projective analog of the Atiyah-Singer index formula of the positive part is

given by

(6.2.10) Ind
(
/∂
L,+
S2,proj

)
=

∫
S2

Td(S2) ∧ exp(B/2π) ∈ R

where exp(B/2π) denotes the first Chern class of the local line bundle L.

6.2.3 Analytic pairing formula in H2(S2,R/Z)

To formulate the analytic pairing in the case of H2(S2,R/Z), we need to

consider the eta-invariant for projective Dirac operators. There are two subtleties

here. Firstly, for parity reasons we need an even analog of the eta-invariant.

Secondly, the operator involved is projective and does not have a spectrum. Thus,

there is no well-defined notion of spectral asymmetry yet.

To tackle the first point, we adopt the Dai-Zhang eta-invariant (4.5.5) of an

elliptic operator on S2. To incorporate the even eta-invariant in this projective

case, we have to make several assumptions.

Definition 6.2.4. Define

(6.2.11) ηDZ
(
/∂
L
S2,proj

)
:= ηAPS

(
/∂
L
S2×S1,proj

)
where ηDZ (resp. ηAPS) denote the (unreduced) eta-invariant of the projective

Dirac operator on S2 of Dai-Zhang (resp. on S2 × S1 of Atiyah-Patodi-Singer).

Both of the LHS and RHS of (6.2.11) are not well-defined, since these op-

erators are projective. However, we can still work on the RHS. In particular,

this definition is consistent with the construction of the Dai-Zhang eta-invariant,

which is done on the extension of S2 to the cylinder S2 × [0, 1], cf. Section 4.5.

Moreover, we use the fact that the projective analytical index Ind(/∂
L,+
S2,proj) given
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by (6.2.9) is non-zero. Then, we circumvent the technical assumption in the Dai-

Zhang construction (requiring vanishing index) by considering the gluing of the

bundle data on both ends S2×{0} and S2×{1} by a K1-representative g. Since

K1(S2) ≡ 0 by Bott Periodicity, the bundle S ⊗ L, extended trivially over to

S2× [0, 1], is glued trivially without any twisting at either end. This justifies the

notation /∂
L
S2×S1,proj.

Next, to calculate the RHS of (6.2.11) , we rewrite the operator /∂LS2×S1,proj as

the sharp product of elliptic operators on the product manifold

(6.2.12) R := /∂
L
S2×S1,proj = /∂

L
S2,proj#/∂S1 =

(
/∂S1 ⊗ 1 1⊗ /∂

L,−
S2,proj

1⊗ /∂
L,+
S2,proj −/∂S1 ⊗ 1

)
.

Here, /∂S1 is the ordinary Dirac operator on S1 given by /∂S1 = −id/dθ. Note that
both of the usual Dirac operator S1 and the projective Dirac operator /∂LS2,proj are

elliptic, and so is /∂LS2×S1,proj. This can be seen from the square of (6.2.12)

(6.2.13) R2 =

(
/∂

2
S1 ⊗ 1 + 1⊗ /∂

L,−
S2,proj/∂

L,+
S2,proj 0

0 /∂
2
S1 ⊗ 1 + 1⊗ /∂

L,+
S2,proj/∂

L,−
S2,proj

)
.

Moreover, it is readily verified that R is self-adjoint. Nevertheless, R is still

projective and does not have a spectrum. To interpret the RHS term of (6.2.11),

we define a projective analog of the usual relation of the eta-invariant of the sharp

product [9, 27] .

Definition 6.2.5. Let P = P± be a projective Dirac operator (with P+ = (P−)∗)

on an even dimensional closed manifold M1 and let A be an ordinary self-adjoint

Dirac operator on an odd dimensional closed manifold M2. Let R′ be the sharp

product of P and A, as an elliptic differential operator on the product manifold

M1 ×M2, given by the following formula similar to (6.2.12)

(6.2.14) R′ := P#A =

(
A⊗ 1 1⊗ P−

1⊗ P+ −A⊗ 1

)
.

Define its projective Atiyah-Patodi-Singer eta-invariant as

(6.2.15) ηAPS(R′) := Ind(P+) · ηAPS(A)
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where Ind(P+) is the projective analytic index given by the similar formula (6.2.9)

and ηAPS(A) denotes the usual eta-invariant of A.

Remark 6.2.6. Note that it might be misleading to write ηAPS(R′), since R′ has

no spectrum. The point here is that we view the LHS of (6.2.15) as the projective

analog of the measure of the spectral asymmetry, given by the product of the two

terms on the RHS of (6.2.15). This is valid because the projective analytical

index is indepedent of the choice of parametrix Q of P+ and the other term is

just the usual Atiyah-Patodi-Singer eta-invariant.

Remark 6.2.7. Moreover, Definition 2.5 holds for the ordinary case: when both

P and A are ordinary Dirac operators, or more generally elliptic differential 2

operators. For the benefit of the reader, we illustrate an argument in [27] on

the equality of (6.2.15) when P and A and thus R′ are elliptic differential. Let

∆+ = P ∗P and ∆− = PP ∗ be the associated Laplacians. Let {λi, νi} be a

spectral resolution of ∆+ on

(6.2.16) ker(∆+)⊥ = Range(P−).

Then, {λi, Pνi/
√
λi} is a spectral resolution of ∆− on

(6.2.17) ker(∆−)⊥ = Range(P+).

Observe that on the space Vi = span{(νi⊕ 0), (0⊕Pνi/
√
λi)}, the operator R′ is

given by

(6.2.18) R′i =

(
k
√
λi√

λi −k

)
,

which has eigenvalues

±
√
k2 + λi.

2See [7, Pg 85] for this statement on the eta-invariant of the sharp product of two elliptic
differential operators. This is not true if either one is pseudodifferential. One cannot apply the
approximating-R′-by-pseudodifferential-operator argument under the natural Fredholm topol-
ogy (c.f. [27, Sec. 3.7]) since it is not clear that the eta-invariant is continuous in the Fredholm
topology. However, by some perturbation method, Gilkey [27, Sec 3.8.4] shows that it still holds
when P or A is pseudodifferential.
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Since λi > 0, the eigenvalues are non-zero and taking the eta-invariant is equiv-

alent to taking the summation of these eigenvalues, which is zero. So, on Vi it

does not contribute to the eta. On the other hand, the complement of ⊕iVi is

(6.2.19) W = (ker(∆+)⊕ 0)⊕ (0⊕ ker(∆−)).

On W, the operator R′ is given by

(6.2.20) R′ =

(
k · πker(∆+) 0

0 −k · πker(∆−)

)
.

Then, taking the eta is equivalent to taking the normalised trace of (6.2.20),

which gives

(6.2.21) η(R′) =
∑

sgn(k) · [Tr(πker(∆+))− Tr(πker(∆−))] = η(A) · Ind(P+).

Unfortunately, this does not extend to the projective case. In particular, the

equality of PQ − 1 = πker(∆+) and QP − 1 = πker(∆−) does not hold because

the projective operators P and Q and thus PQ and QP are supported on some

neighourhood of the diagonal, but the orthogonal projections πker(∆±) are by no

means only supported on a small neighbourhood of the diagonal. This should

justify the ad hoc definition of (6.2.15), although at the current stage it is not

clear how to show such a relation in the projective case.

Let /∂LS2×S1,proj be the projective Dirac operator on S2 × S1 given by (6.2.12).

By Definition 2.5, its projective Atiyah-Patodi-Singer eta-invariant is

(6.2.22) ηAPS
(
/∂
L
S2×S1,proj

)
:= Ind(/∂

L,+
S2,proj) · ηAPS(/∂S1)

where Ind(/∂
L,+
S2,proj) is the projective analytical index in (6.2.9) and ηAPS(/∂S1)

denotes the usual eta-invariant of the ordinary Dirac operator on S1.

Corollary 6.2.8. ηAPS
(
/∂
L
S2×S1,proj

)
= 0.

Proof. This follows from the fact that ηAPS(/∂S1) = 0.

On the other hand, due to projectiveness, the kernel of /∂LS2×S1,proj is not well-

defined.
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Assumption 2. Define h(P#A) := dim ker(A).

Definition 6.2.9. Let P,A and R′ as in Definition 6.2.5. Define the reduced

eta-invariant of the projective Dirac operator R′ by

(6.2.23) η̄APS(R′) =
η(R′) + h(R′)

2
mod Z.

Corollary 6.2.10. Let M2 = S1. Take P = /∂
L
S2,proj and A = /∂S1 . By Assumption

2, we have

(6.2.24) h(/∂
L
S2×S1,proj) = dim ker(/∂S1) = 1

(6.2.25) η̄APS(/∂
L
S2×S1,proj) =

η(/∂
L
S2×S1,proj) + h(/∂

L
S2×S1,proj)

2
mod Z =

1

2
mod Z.

Combining the discussions above, we are now ready to state the result of this

section.

Theorem 6.2.11. Let X be a smooth compact manifold. Let S2 be the Rieman-

nian 2-sphere, together with a smooth map f : S2 → X. Let L be the Hermitian

local line bundle whose normalised curvature is B/2π, defined by the pullback of a

representative ω/2π in H2(X,R/Z) via f. Let /∂LS2,proj be the projective Dirac oper-

ator twisted by L on S2. Then, the analytic pairing H2(X,R/Z)×H2(X)→ R/Z
is given by

(6.2.26)
〈 ω

2π
, [Σ

f−→ X]
〉

= η̄DZ(/∂
L
S2,proj)−

∫
S2

B

2π
mod Z.

Moreover, it is non-degenerate and well-defined.

Proof. From (6.2.11), we consider the reduced Dai-Zhang eta invariant η̄DZ(/∂
L
S2,proj)

as the invariant η̄APS(/∂
L
S2×S1,proj) defined by Corollary 6.2.8, Assumption 2, and

(6.2.25). Its justification has been given above, which follows from the extension

to the cylinder and trivial gluing at both ends. The topological part (the second

term) is the (modulo Z) holonomy of the (normalised) curvature 2-form associ-

ated to the representative L over S2. To show non-degeneracy, it suffices to show
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that

(6.2.27) H2(S2,R/Z)→ Hom(H2(S2,Z),R/Z)

implemented by the formula (6.2.26) is an isomorphism. Notice that we are actu-

ally working on generators on both groups, i.e. the generator L in H2(S2,R/Z)

and the fundamental class [S2] in H2(S2). So, the injectivity is implied. For sur-

jectivity, it suffices to show that the map is non-zero, and thus sending generator

to generator in R/Z. Let k ∈ R be the integration of the topological term. To-

gether with (6.2.25), the pairing (6.2.26) reduces to 1/2− k modulo Z, which is

non-zero in general. The isomorphism implies that the analytic pairing is non-

degenerate. The well-definedness follows as a special case of the analytic pairing

in R/Z K0-theory with torsion twists, which will be proven elsewhere [34].
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