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Abstract

Water supply and distribution systems are an integral part of our society and can incur significant costs
in their construction and operation. Many different optimization techniques have been applied to both
the design and operation of traditional potable systems, which generally receive water from natural
water bodies. As climate change and increasing populations prompt concerns of water security, in
addition to natural harvested water supplies, alternative sources such as harvested stormwater,
recycled wastewater and desalination are becoming more commonly used for both potable and non-
potable supply. These systems have not been researched as extensively, particularly their operation.
This thesis examines the optimisation of pumping operations in water supply and distribution systems
that can include conventional potable systems as well as systems that use alternative water sources.

The major contributions of this research are presented in three publications. Firstly, a single-objective
optimisation model was applied to potable water distribution systems, both hypothetical and real, for
different types of pump operating regimes using the EPANET toolkit to alter rule-based controls. While
minimizing pump energy costs was the primary objective, minimization of greenhouse gas emissions
was also explored, including the variation of greenhouse gas emission factors for different electrical
energy sources. Time-based scheduling operating strategies were found to perform better than the
other operating regimes, and significant cost savings were achieved for the real-life system compared to
its current operation.

In the second paper, a framework for the optimization of water supply and distribution systems that use
alternative water sources is presented, along with a detailed discussion of the components and key
variables. The framework connects the potential decision variables, both design and operational, the
physical components of the water system to be modelled, the simulation of each potential system
configuration and evaluation against objectives and constraints, and relevant policies from regulating
bodies. These all exist within an optimization algorithm structure, and sensitivity analysis of uncertain
variables is also discussed. Two case study systems are used to illustrate how the framework would be
applied to minimize the cost of water system operations.

The final paper applies multi-objective optimisation techniques to a harvested stormwater case study
system and also covers an extensive sensitivity analysis of the inputs to the system. This system has
distinct winter (harvesting) and summer (irrigation) operational seasons; for the winter operation,
operating rules were optimized to minimize the cost of pumping into an aquifer and to maximize the
volume harvested, considering restrictions on the aquifer injection rate and pressure; during summer,
irrigation scheduling was optimized to minimize pumping costs, considering the requirements for
irrigation rates and amounts at various public parks and green area reserves. Results from both the
optimisation and sensitivity analysis found operational cost savings if new pumps are installed, wider
trigger levels are used, and certain reserves are irrigated together.

This research has produced significant overall contributions to the body of knowledge. Methodologies
have been developed for optimisation of potable and alternative water sources systems, highlighting
important considerations and generalizable results. For three real-life case study systems, operating
strategies and infrastructure changes have been suggested to provide significant savings in the cost of
pumping operations.
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Chapter1 Introduction

1.1 Research Background

Water supply and distribution systems are vital parts of today’s society, ensuring the health of our
communities and providing commercial, industrial and recreational benefits. These systems can have
high construction and operating costs, as well as associated greenhouse gas (GHG) emissions and have
long been the focus of research to make them more efficient, lower cost, and more reliable, among other
objectives. Climate change is a major concern for society as a whole, and also for water resources
managers. Different regions of the world will experience the effects of climate change in different ways;
some areas will experience drying, while others will be wetter and the variability of rainfall is likely to
increase. Climate change will also affect how rainfall is translated into runoff, as climate conditions affect
the ability of soil and plants to intercept and retain water. This has major implications for how we obtain
our water supply, as many regions around the world source their water from natural catchment runoff. An
increasing population into the future will also put a strain on water resources. In light of this, alternative
water sources are increasingly being sought out by water system managers to provide security of water
supply into the future.

Some alternative sources of water, such as groundwater and imported catchment water have historically
been used in conjunction with natural catchment waters. Other sources, such as harvested stormwater,
treated wastewater, desalination, and aquifer storage and recovery (ASR) have gained popularity more
recently. Groundwater from aquifers may be used for various applications, depending on the quality of
the water. In some cases, it may already be at potable standard, or able to be further treated with little
cost to obtain potable standard, and therefore be used in mains distribution systems. If it is not of potable
standard, it is often used for irrigation of private gardens and public parks and reserves, especially when
water restrictions are put in place to limit outdoor irrigation with mains water. Imported water is often used
in areas with low local rainfall, obtaining water from other areas with higher rainfall or significant water
bodies through long pipelines or canals. Harvesting of urban stormwater runoff is often applied at
community scales to provide water for irrigation of public spaces. It can provide other benefits such as
reducing urban runoff and creating amenity in public recreation areas. Desalination plants, while energy
intensive and expensive to run, provide a climate independent source of water, and as such is a popular
choice for regions prone to long or intense droughts. Recycled wastewater is another source that is also
climate independent and is often used for non-potable supply, such as large scale irrigation or industrial
use. Advances in treatment technologies have allowed potable standard water to be produced from
wastewater, however, public perception regarding the acceptability of usage still lags behind. Stormwater
harvesting and wastewater recycling systems are sometimes combined with ASR, allowing water to be
stored for long periods of time in an underground aquifer and utilized when needed (without the need for
large storage tanks or above-ground reservoirs that would have large construction costs and reduce
amenity of public spaces). On a household scale, rainwater tanks are used to collect water from roofs
generally for outdoor irrigation, however, this water may also be used indoors and for drinking. Greywater
recycling systems are also gaining popularity, typically re-purposing water from showers, taps and
washing machines for outdoor irrigation.

Uptake of alternative water source systems has been restricted by public and industry perception, cost,
and development of appropriate technologies. While alternative sources can be, or are treated to potable
quality, there is a perception that they are not suitable for drinking or human contact. The public often do
not want to use alternative sources such as stormwater and recycled wastewater where there is the
potential for human contact, which has restricted their application. As many systems using alternative
sources are on small, decentralized (local) scales, technology to capture, treat and store water may not
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be available at the appropriate capacity or at a reasonable cost. The design and operation of these smaller
scale systems may not necessarily be handled by people with the required expertise, and as a result the
system will not perform as well as desired. Natural catchment water is a relatively low cost source, as the
infrastructure to capture the water is usually already in place, the main ongoing cost is the treatment of
the water. Developing alternative water source systems requires more capital infrastructure costs, and
may also require higher levels of treatment or transportation over long distances, therefore increasing
their ongoing costs compared to existing resources.

Energy use is one of the major contributors to ongoing costs in water distribution systems (WDSs).
Reducing their energy use starts in the design phase, investing more in capital infrastructure may allow
the system to operate with less energy requirements and therefore reduce ongoing costs. There is usually
a trade-off between capital and ongoing pumping costs that should be explored to find the best
compromise for a particular system. For existing systems, energy efficiency can be improved using
strategies such as leak identification and repair or system maintenance as well as by altering the pump
operating rules of the system. Variable speed pumps (VSPs) can also be used to adjust the pump
operating points for different system conditions and save energy by reducing pumping heads and flows.
In systems where excess pressure energy occurs, it may be recovered using mini-hydro systems or
pumps and turbines. Pump operating strategies can broadly be split into trigger levels (based on the
amount of water or level in a storage) and scheduling (based on the time of day or week). Electricity tariff
periods should be considered when optimizing pump operating rules, and different rules may be required
for different seasonal conditions.

While engineering judgement can be used to guide the design and operation WDSs successfully, there is
often a large number of decisions to be made and multiple objectives. Formal optimization algorithms are
very useful in order to efficiently find solutions that will improve the performance of the system with regard
to the objectives. They do not necessarily need to analyse all possible solutions to find the optimal
solution(s). When multiple objectives exist, care needs to be taken when determining the objective
function(s). Multiple objectives can often be combined into one function, however, this requires the
normalization of objective values and the relative importance of each objective needs to be decided upon.
There are many multi-objective optimization algorithms available, that are able to deal with each objective
function separately, allowing them to retain more meaning. Engineering judgement should always be used
in conjunction with optimization, as it can help to limit the search space of the problem and ensure the
optimal solutions found are reasonable. Simulation of the system prior to optimization is very important
as it provides an understanding of how the system works and helps these engineering judgements to be
made. Genetic algorithms (GAs) are a robust and efficient optimization method that have been used
extensively for the design and operation of WDSs. They are a population based technique, which means
they evaluate multiple solutions at once and use operators based on natural selection principles to
gradually improve the performance of the population through successive generations. Given the
complexity and cost constraints of alternative water source systems, optimization methods such as GAs
are very useful to improve their performance and make them more cost comparable to traditional WDSs.

1.2 Research Objectives
The overall aim of this research is to develop and apply methodologies for optimizing complex pumping
operations to systems that use alternative water sources; this is split into six objectives:

Objective 1. To develop a framework to optimize alternative water system pump operations for multiple
objectives including minimizing cost and maximizing volume harvested.
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Objective 2. To apply the use of new rule-based controls in a modified EPANET2 programmer’s toolkit
to optimize complex pump operational strategies using a combination of trigger levels and
scheduling, and variable trigger levels.

Objective 3. To optimize pumping operations and irrigation scheduling for short time horizons for
systems using harvested stormwater with aquifer storage and recovery and multiple
pumping stations.

Objective 4. To demonstrate the importance of performing detailed simulation analysis of water systems
in order to better understand the system and to inform optimization of the system.

Objective 5. To analyse the sensitivity of optimal pump operations to changes in streamflow (system
inflow) and system design in a stormwater harvesting system.

Objective 6. To minimize GHG emissions from pump operations where operational characteristics are
considered as decision variables and characterize trade-offs between optimal cost and
optimal GHG solutions for these problems.

As shown in Figure 1.1, the six objectives are connected and each of the Chapters in the main body will
contribute to multiple objectives. The development of a framework in Objective 1 will inform the execution
of Objectives 3 and 6. Rule-based controls in a modified EPANET2, which are specifically included within
Objective 2, will also be used in Objectives 3 and 6. The detailed analyses in Objectives 4 and 5 will
inform the optimization of a harvested stormwater system in Objective 3. Objectives 2 and 6 represent a
gap in the current research on optimization of pump operations in potable WDSs and are investigated in
the Chapter 4 for two potable WDS case studies. Chapter 5 investigates Objective 1, and how the current
methodologies used for potable WDSs need to be altered to take into account additional complexity and
processes that come with the use of alternative water sources. It also discusses variables that should be
taken into account in sensitivity analyses of water systems, such as in Objective 5. Objectives 3, 4 and 5
are addressed in Chapter 6, which details the analysis and optimization of pumping operations in a
harvested stormwater and ASR case study.
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Figure 1.1: Connections between the six objectives and chapters in this thesis



Introduction

1.3  Thesis Outline

This thesis is presented as a collection of three journal publications that were developed along with the
research undertaken and is arranged in seven chapters. Chapter 2 presents a detailed review of the
relevant literature on the topics of pumping operations, alternative water sources and genetic algorithm
optimization. The three publications that make up this work are summarised in Chapter 3, which
demonstrates how the publications are linked to each other and to the research objectives identified in
Section 1.2.

Chapter 4 presents the first publication (Blinco et al. 2016a): ‘Comparison of pumping regimes for water
distribution system to minimize cost and greenhouse gas emission,” published in the Journal of Water
Resources Planning and Management. In this paper, five different types of pump regimes were explored;
lower and upper trigger levels, reduced upper trigger level, combined trigger levels and scheduling,
variable trigger levels, and variable speed pump (VSP) scheduling (Objective 2). These regimes were
optimized and compared for two potable case study networks, considering objectives of minimizing pump
energy costs and minimizing GHG emissions from pumping (Objective 6).

The second publication (Blinco et al. 2017a) is in Chapter 5: ‘Framework for the optimization of operation
and design of systems with different alternative water sources,” published in Earth Perspectives. This
paper presents a methodology for optimizing water supply and distribution systems that use alternative
water sources such as harvested stormwater, imported water (from adjacent catchments), groundwater
and desalination (Objective 1). The framework details the different design and operational options, the
water and electrical energy infrastructure, the relevant government policies, the simulation model and
evaluation options and how these components fit within and optimization algorithm. Variables that may
be considered in sensitivity analyses of water systems are also discussed (Objective 5) and two case
studies are used to demonstrate the application of the framework.

Chapter 6 contains the final publication (Blinco et al. 2017c): ‘Optimization of pumping costs and
harvested volume for a stormwater harvesting system,” submitted to the Journal of Water Resources
Planning and Management. This paper demonstrates the application of the framework methodology from
the second publication, and the pumping operations optimization from the first paper to a harvested
stormwater system (Objective 3). The first part of the paper shows a detailed analysis of the current
operation of the system and possible operation under different design scenarios (Objective 5).
Optimization of the system is then presented and the importance of both the pre-analysis and optimization
procedures is discussed (Objective 4).

The main conclusions and contributions of this research are presented in Chapter 7. This chapter also
summarizes the limitations of the research and suggested future directions in this study area.



Chapter2 Literature Review

21 Pumping Operations

The operations stage of a WDS s a significant contributor to life-cycle energy use (Stokes and Horvath
2005) and therefore often represents a significant cost to water utilities (Boulos et al. 2001). Optimizing
how WDSs operate, particularly in terms of pumping controls, can therefore have a significant impact on
reducing cost and energy use for water system managers. Other strategies for recovering or reducing
energy use in WDSs include energy dissipation by mini-hydro systems or pumps as turbines (Carravetta
et al. 2013b, Fecarotta et al. 2015), leak reduction (Giustolisi et al. 2013) and system maintenance or
repairs. Cabrera et al. (2016) highlight the importance of examining ‘topographical energy’, that is excess
pressure at nodes of low elevation, in a network. Where large amounts of topographical energy exist,
pumps as turbines can be used to recover some, or pressure reducing valves can be installed to reduce
leaks. As well as cost, there are other objectives that may improve the operation of WDSs, such as water
quality (Stokes et al. 2012a), pump switches or maintenance cost (Lansey and Awumah 1994, Lopez-
Ibanez et al. 2005), system effectiveness (Carravetta et al. 2013a), and resilience (Prasad and Park
2003). The design of the system also has a significant impact on the ongoing energy use and there is
often a trade-off between initial construction costs and ongoing operational costs. Networks with smaller
diameter pipes have increased friction losses compared to those with larger diameter pipes, and hence
require more energy during pumping operations (Wu et al. 2011). This means that while smaller diameter
networks are generally less expensive to construct, they are more expensive to operate than larger
diameter networks and there will be a different compromise between capital and operational costs for
different systems. For existing system rehabilitation, installing newer, smoother pipes, or replacing pumps
with more efficient ones, usually may incur a significant capital cost, however, these actions can reduce
ongoing operational costs (Fernandez Garcié et al. 2016). Elevated storages in a network used to store
water judiciously, can be used to reduce the amount of pumping in peak periods, therefore reducing
energy costs (Jin et al. 2015). Where energy sources with higher air pollutant emission rates are used as
top-up during times of peak electricity demands, the environmental impact of pumping can also be
reduced (Jin et al. 2015). An initial step to reducing the energy use of a WDS is to conduct an energy
assessment (Cabrera et al. 2010, 2015) to determine which parts of the system should be the focus for
removing energy inefficiencies. The research presented in this thesis is focussed on optimizing energy
cost of pumping operations.

There are two main types of pumping controls; trigger levels, which turn pumps on or off depending on
the level or volume in a storage, and scheduling, which requires pumps to be on or off at particular times
of the day. Both have been investigated extensively by optimization to reduce costs of WDS operation.
An important result is the benefit of pumping only in off-peak (lower cost) electricity tariff periods,
investigated in Mackle et al. (1995) for pump scheduling and Kazantzis et al. (2002) for combined trigger
levels and pump scheduling. Both of these studies found that optimal solutions occurred when tanks were
full at the start of the peak tariff period, and at their minimum allowable level at the end of the peak tariff
period (Figure 2.1). This meant that the minimum possible amount of pumping would occur at the
expensive tariff rate, and the maximum possible amount of pumping at the lower cost tariff rate. For
systems with multiple pumps, the most efficient pumps should be used during the peak (expensive)
electricity tariff period, and the least efficient during the off-peak period (Mackle et al. 1995). Two type of
alterations to typical lower and upper trigger levels were examined in Kazantzis et al. (2002); adding a
scheduled pump start and pump stop, or using a reduced upper trigger level. A pump stop can be
scheduled before the end of the peak period, to ensure the water level in the tank is at the minimum
allowable level at the end of this period. Likewise, a scheduled pump start before the end of the off-peak
period, can ensure the water level is at the maximum allowable level for the start of the peak period. A
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reduced upper trigger level applied over the peak tariff period will limit the static head of the system, and
therefore less energy will be required for pumping. At a specified switch time during the off-peak period,
the reduced upper trigger level will be removed so that the tank can fill before the start of the peak period.
The solution presented in Kazantzis et al. (2002) optimized the reduced upper trigger level, a scheduled
pump stop, and the switch time for the reduced level. Lower and upper trigger levels were used in the
solution, however, they were not optimized.

A Maximum allowable level

Tank level

Minimum allowable level

Maximum tank level Minimum tank level Maximum tank level at
at start of peak period ~ at end of peak period end of off-peak period
< Peak tariff period > Off-peak tariff period :
Time

Note: it is difficult to achieve these tank level criteria using only a lower and upper trigger level

Figure 2.1: Example of tank water level with efficient pumping in WDSs (adapted from Kazantzis et al. (2002))

While peak and off-peak tariffs are an important consideration for cost minimization, in order to reduce
GHG emissions, it may be better to pump steadily throughout the day with a VSP to reduce the velocity
of flow in the pipe and hence reduce the friction loss (Simpson 2009). Lingireddy and Wood (1998) and
Wu et al. (2011) have demonstrated the benefits of using VSPs to reduce both energy use and GHG
emissions in WDSs. They are particularly effective in smaller diameter networks with high friction losses,
as VSPs run at reduced flows, they can reduce the friction losses through the system (Wu et al. 2011).
The relative speed of VSPs may be a decision variable in an optimization formulation. In systems
controlled by trigger levels, the VSP speed at discrete time intervals during the day could be optimized,
which would be overridden by the trigger levels if they require the pump(s) to be off. The inclusion of VSP
decision variables in pump scheduling optimization depends on the form of the schedule. Pump
scheduling may be structured in two different ways; firstly using a discrete on or off (1 or 0, or VSP relative
speeds) at set time intervals (say every hour in a 24 hour simulation), or represented as continuous values
with set times (for example, 8:15am or 12:35pm) to turn pumps on or off. Continuous representation is
more flexible, however, can produce a high proportion of infeasible solutions depending on the coding of
the optimization algorithm (Sadatiyan Abkenar et al. 2015) and would require additional decision variables
to set the speed of VSPs.

Many studies into pump operations of WDSs use EPANET2 hydraulic simulation software to determine
energy use and cost of the systems (for example Kazantzis et al. 2002, Lopez-Ibafiez et al. 2005, and
Fernandez Garcia et al. 2014). Gomez et al. 2016 examine the limitations and errors in EPANET with
regards to energy, which should be considered and addressed if needed when using the software. Three
major issues and four minor issues were raised. The first major issue was the error in calculating the
efficiency of VSPs operating at a reduced speed and this research utilized code to correct this error
(Marchi and Simpson 2013). The second major error is that ‘natural’ energy (from elevated tanks and
storages) is ignored, which may be important for performing energy audits (as in Cabrera et al. 2010) or
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when considering different system layouts. This thesis is focussed on operations of existing systems (no
layout changes are considered) and minimizing electrical energy use, and thus this limitation is not
relevant to the current work. The final major issue raised is that the energy use and costs presented in
the EPANET? interface are scaled to a 24 hour time period, even if the simulation is run for a different
length of time. When connected to an optimization algorithm, the energy cost can be calculated outside
of EPANET2 based on the energy use in each time step, thus avoiding the problem.

Two of the minor problems relate to the specification of electricity price tariffs, in particular for systems
with multiple pumping stations. Tariff patterns can be specified for each pump individually in order to take
into account changes to electricity prices over the simulation period (typically this represents daily or
weekly peak and off-peak tariffs). The peak power demand charge, however, is usually set for the whole
system, not each pump, which may be limiting. If a peak power demand charge applies to only some
pumps, or differs across pumps, external code (outside of EPANET?2) may need to be used to accurately
compute the cost. The energy efficiency of variable speed drives (VSDs) and electric motors was another
issue raised, as EPANET2 considers only the pump efficiency. Both the motor and VSD efficiencies are
typically much higher than pump efficiencies, and if the pump speed is reduced to no less than 75% of
full speed, the pump efficiency needs to be altered (Sarbu and Borza 1998). If no VSPs are used, the
motor and VSD efficiencies do not change (whereas the pump efficiency may change with the pump
operating point), and as such will be the same for all operating strategies. While the energy costs
computed will not take into account motor and VSD efficiencies, they can still be compared between
different operating strategies as the effect of these other efficiencies would be the same for each strategy.
The final minor issue raised was the energy intensity (the energy used per volume), which is calculated
based on the volume supplied by pumps rather than the volume received by consumers (therefore
ignoring leaks). For systems with leaks, external code (to EPANET2) could again be used to work around
this problem.

A recent advance for EPANET2 is the additional capability of the programmer’s toolkit developed by
Marchi et al. (2016Db) to allow rule-based controls to be optimized. Previously, only simple controls (with
only one condition) and pump scheduling could be optimized through EPANET2. Optimization of rule-
based controls (as implemented by Marchi et al. (2016b)) provides much greater flexibility and complexity
to be considered in pump operations optimization. Rule-based controls in EPANET2 are made up of many
different components, including logical operators, EPANET?2 objects (tanks, pipes and so on) and their
identifying indices, hydraulic and system variables (for example pressure, flow, clock-time), relational
operators, status (open or closed pipes, valves or pumps) and values of the variables. Using the new
EPANET2 modified toolkit from Marchi et al. (2016b), each of these components can be optimized
individually, or the entire rule can be optimized as a whole.

In WDS simulation and optimization, it is often assumed that water is available in an upstream storage
reservoir. This separates the distribution system from the supply system, and does not consider
uncertainty in supply. The main source of uncertainty for WDSs is therefore in the consumer demands,
which naturally fluctuate daily, weekly and seasonally, and will also vary into the future with population
and climate change. Most studies incorporate a daily diurnal variation in water demands, however,
seasonal variation is also an important consideration. Paschke et al. (2001) optimized tank trigger levels
considering different water demands in different seasons. During summer, when demands are higher, the
optimal trigger levels kept the water level higher in the tank, whilst during winter, the water level was
allowed to be lower in the tank, as demands were reduced. Basupi and Kapelan (2015) used Monte Carlo
simulation to find optimal WDS design and operation that was flexible to future changes in demand. They
assumed that the demand follows a normal distribution, with the mean and standard deviation increasing
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over time to represent greater future uncertainty. Stochastic programming was used by Goryashko and
Nemirovski (2014) to determine optimal robust pump schedules; that is, operations that are feasible for
all demand realisations. In their methodology, complex systems with non-linear hydraulics need to be
reduced down to equivalent linear systems as they used linear programming for optimization. Eck et al.
(2015) examined how estimates of demand mean and covariance can be produced from smart meter
data, and then used to develop demand scenarios for robust valve operation optimization. They found
that incorporating only a small number of scenarios could give significant improvement in pressure
constraint violation with little cost increase. Marques et al. (2015) used a ‘real-options’ approach to
consider multiple future demands with two objectives; the first was the combination of economic costs
and GHG emissions (using a carbon price), and the second was the level of service. For their case study,
the ‘real-options’ method considered the probability of different possible WDS adaptations at three stages
over a 60 year horizon through a decision-tree structure.

2.2  Alternative Water Sources

Water is increasingly being seen as a fundamental and finite resource (Bogardi et al. 2012) and alternative
water sources are being used to supplement potable demand as climate change and population growth
highlight water security issues (Fielding et al. 2015). Decentralised harvested stormwater systems (often
managed by local councils in Australia) and household greywater recycling systems are popular for
supplying non-potable demands such as household gardens and public green spaces (Naylor et al. 2012).
At household scales, installation of rainwater tanks is increasing in popularity (Campisano and Modic
2012), which reduces consumption of water from utilities and decreases stormwater runoff from residential
areas. The millennium drought prompted several Australian cities to construct desalination plants (King
et al. 2012), providing a climate-independent source of water. Use of desalination is also increasing in
other areas of the world, however is not always the most cost effective or environmentally sustainable
source of water (Miller et al. 2015, Becker et al. 2010). Recycling of wastewater and greywater on
community and regional scales is also gaining popularity, often for non-potable applications (Muga and
Mihelcic 2008, Oron et al. 2014), however in some cases it may also be used for indirect potable supply
(Rodriguez et al. 2009). Recycling wastewater for re-use at the same site is becoming common,
particularly in industrial settings (Mariano-Romaro et al. 2007). Imported water refers to water transported
through pipe or canal systems from different regions and is already used in many major cities, for example,
Adelaide (from the Murray River) and Los Angeles and San Diego (from the Colorado River). This typically
requires a lot of energy even in well-designed or optimized systems, because of the distance the water
must travel and the height it needs to be lifted (Water in the West 2013).

An alternative strategy to supplementing potable supplies with other water sources is demand
management to reduce per capita demand (for example, Freidman et al. 2014). Such strategies should
be considered under future climate change and population growth (Dawadi and Ahmed 2013). This can
take on forms such as mandated outdoor irrigation times, water efficiency standards for shower heads,
taps, toilets and appliances, and awareness campaigns to encourage the public to use less water
(Berhanu et al. 2016). Smart metering, which is becoming more commonly used by water utilities, can
provide information for demand management, such as data for early leak detection and demand pattern
classification and forecasting (McKenna et al. 2014). Each of these alternative sources, along with
demand management strategies, play a role in delivering water security to towns and cities around the
world. Communities also value other benefits of alternative water sources, for example, improved
hydraulic function and water quality from stormwater schemes (Londofio Cadavid and Ando 2013).
Negative public perception can come from a low awareness or understanding of associated risks (Hwang
et al. 2006) and different types of sources will have different levels of acceptance by the public (Feilding
et al. 2015). One of the main barriers to uptake of alternative source systems from a water system
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manager’s perspective is the cost of running and maintaining the system (Dobbie and Brown 2012, West
etal. 2016).

The inclusion of alternative sources in water supply system increases the complexity of system simulation
and the corresponding optimization problem (Paton et al. 2014). Marchi et al. (2016a) optimized the
design of a harvested stormwater system, taking into account climate change and externalities such as
reduced runoff to receiving water bodies and reduced urban stream flows. They highlighted the need to
consider the supply and distribution sides of the system together, the use of longer simulation times and
the inclusion of rainfall and evaporation scenarios as factors that increased the simulation complexity
compared to traditional WDSs. Optimization of alternative water source systems often considers
objectives and constraints other than just construction or ongoing costs. In groundwater systems, land
subsidence is an important consideration and can be reduced by extracting water intermittently (Wang et
al. 2009). Water quality may need to be considered, such as in Labadie et al. (2012), which optimized
releases from multiple stormwater reservoirs to reduce pollutant loadings on downstream waters. When
alternative water sources are used to supplement potable supply, the amount of water than can be
harvested from the system is a key variable. It may be the single objective of an optimization problem (for
example, Eusuff and Lansey 2004), or combined in a multi-objective optimization with design or
operational costs and other objectives (for example, Karamouz et al. 2007, McArdle et al. 2011, di Matteo
etal. 2016). Tsai et al. (2009) optimized pump schedules in an integrated surface and groundwater system
for six objectives (combined into one weighted objective function); minimum pump energy use, minimum
pressure violation, minimum tank residence time, minimum tank level deviation, minimum weekly
drawdown and maximum tank reliability. Through altering the weightings of the different objectives, they
found that some of the objectives were interrelated and some could act as surrogates for others, with
energy use and pressure violation being the most important. Factors such as pressure violation and tank
level balancing are often included in optimization problems as constraints, however they can also be
formulated as objectives.

Sustainability is often a key concern in alternative water source systems and can be evaluated using a
‘triple bottom line’ of economic, environmental and social criteria. Kang and Lansey (2012) optimized life-
cycle cost (economic), GHG emission (environmental) and system reliability (social) of a dual-pipe
network using recycled wastewater for non-potable supply. In comparison to single-pipe systems, the
dual-pipe systems were more expensive, however they performed better in terms of the environmental
and social criteria. McArdle et al. (2011) also considered three objectives; minimizing present-worth or
capital and ongoing costs (economic), maximising the amount of water harvested from a stormwater
scheme (environmental benefits to urban water system and increased water security), and minimizing the
size of a storage reservoir in a public park (therefore minimizing the impact on the social amenity of the
park).

Due to the complexity of WDS simulation and optimization, and the additional considerations for
alternative water sources, many different frameworks, methodologies and decision-support tools have
been developed. Stokes et al. (2014) presented a framework for the design and operation of WDSs using
traditional water sources. The focus of this framework was the water-energy nexus, with different energy
sources and GHG emissions factors included for consideration, and cost and GHG emission objectives.
There was no consideration of the supply side of the WDS or alternative water sources. A framework by
Ashbolt et al. (2014) can be used to optimize operating plans for water systems using surface water,
groundwater, desalination, recycled wastewater and imported water. Multiple objectives are incorporated
by weighting their importance and multiple replicates of inflows can be used for uncertainty analysis. The
design of the system is not included in the decision variables and the operations consider the levels in
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main reservoirs that trigger different water sources to be used, not the operation of pumps and smaller
storages within the individual water source systems. Harvested stormwater systems have not often been
included in these frameworks, however, the methodology in Marchi et al. (2016a) optimizes the design of
ASR stormwater systems with consideration of future climate scenarios. Externalities are included in the
analysis, such as reduced volume of stormwater to treat before discharge, reduced peak flows (and
therefore reduced capital expenditure), and increased economic value of properties near stormwater
schemes. For the case study system in South Australia, the yield and net present value of the scheme
would both be decreased under future climate, however, they acknowledge that urban stormwater runoff
is likely to be less affected by a drier climate than rural surface water runoff. Water saving and demand
management strategies were incorporated into a decision-support tool developed by Makropoulos et al.
(2008) and Rozos and Makropoulos (2013). This model was a demand-oriented mass balance simulation,
not incorporating hydraulic or hydrologic modelling, for the entire water cycle including wastewater
streams.

As alternative water sources are important parts of climate change adaption strategies, frameworks
developed for these sources have often been focussed on water security in future climates. Paton et al.
(2014) produced a methodology for evaluating water source alternatives under multiple future scenarios
to minimise cost and maximise water security. For nine water source alternatives with different
combinations of surface water, harvested stormwater, desalination and rainwater tanks, these objectives
were evaluated by simulating them over different future demand and climate scenarios and different
stochastic time series’ for the years 2030 and 2050. Beh et al. (2014) also investigated different water
source alternatives, however were focussed on how their implementation is sequenced. Two different
sequencing approaches were applied to the same case study and water source types used in Paton et
al. (2014); the first method was to optimise the sources used at each decision stage in sequential order,
the second method optimised the sources used in the final decision stage first, and then scheduled the
implementation of those sources. Neither of these studies considered the detailed design or operations
of the alternative water source systems. Chung and Lansey (2009) also developed a methodology for
optimal planning of WDSs, where the available sources were groundwater, surface water and recycled
wastewater. The systems were analysed over a 20 year time period, with demands increasing in line with
expected population growth and no changes to climate conditions. Chung et al. (2008) present a
mathematical model for water supply management and applied it to a hypothetical case study system to
investigate the differences between decentralized and centralized systems. Multiple sources, uses,
transportation and treatment systems can be incorporated for surface water, groundwater and recycled
wastewater sources. This does not incorporate optimization of the system, only analysis of different
systems or scenarios proposed by the user. The decision-support framework from Cai et al. (2015) can
be used for strategic planning for drought mitigation in agricultural systems under climate change. A range
of options such as infiltration ponds, parallel terraces, irrigation triggering thresholds and irrigation water
sources are available to be implemented in multiple decision stages. The performance of each possible
solution is evaluated based on three objectives; minimizing cost of drought preparedness and mitigation,
maximising agricultural production, and maximizing low flows for ecosystem conservation.

2.3  Genetic Algorithm Optimization

GAs are a robust and efficient optimization method that have been applied to many different applications,
including various water resources problems (Nicklow et al. 2010). From their first application in 1989,
Goldberg noted their desirability compared to traditional optimization techniques stemmed from four
significant differences; they work with coded representations of the solution parameters, not the
parameters themselves; they search from a population of points, not a single point; they use performance
information as the objective function, not derivatives or other system equations; and, they use probabilistic

10



Literature Review

rather than deterministic transition rules. Since then, they have been shown to perform very well in water
resources applications in many studies. Simpson et al. (1994) compared GAs to other optimization
techniques for pipe network design, and found that they performed better in regards to final solution
optimality and iterative efficiency. Wang et al. 2015 compared the performance several different multi-
objective evolutionary algorithms (of which GAs are a sub-set). They found GAs, in particular the non-
dominated sorting algorithm Il (NSGA-II, introduced in Deb et al. 2002), performed well compared to the
other algorithms for twelve benchmark WDS design problems. Many different GAs have been developed,
and NSGA-II has been shown to perform well compared to other algorithms on multiple occasions (Baran
et al. 2005, Reed et al. 2013, Wang et al. 2015).

The basic premise of GAs is that they find (near) global optimal solutions using processes akin to natural
selection. Solutions are coded as ‘strings’ which contain decision variables. Each solution has a different
set of decision variable values. An initial population of solutions is generated at random, and the ‘fitness’
of each solution evaluated using the objective function(s). Solutions then undergo processes of selection,
crossover and mutation to produce the next generation (Figure 2.2). The fitness of each solution is
evaluated again, and the process repeated for a number of generations to converge to the optimal solution
(Goldberg 1994). The selection process randomly pairs up solutions and takes the fittest (best, for
example, minimum cost) solutions through to the next step, this is done twice, so that the number of
solutions in the population remains the same. This means that two copies of the best solution and zero
copies of the worst solution will go through to the next step. All other solutions will have either zero, one
or two copies go through, depending on their fitness values and which solutions are paired together. The
solutions that make it through the selection process are then randomly paired again for crossover. Each
pair may or may not actually undergo the crossover process, depending on the probability of crossover,
which is generally between 70 and 100%. Pairs that are selected for crossover, will then have parts of
their string swapped from a randomly selection position. The final operator is mutation, which occurs with
a much lower probability, generally less than 10%. Each gene in the string may or may not be changed
to a random value depending on this probability of mutation (Simpson et al. 1994). Constraints on the
system (such as minimum pressures for WDSs) are generally taken into account in one of two ways. The
first way is to add a penalty cost to the objective function, with the magnitude of the cost being relative to
the magnitude of the constraint violation (this could be in a linear, exponential or other type of function).
The second way is by a process called constraint tournament selection (Deb et al. 2002, Wu et al. 2010b).
When two solutions are paired up during selection, there are three possible scenarios; firstly, that both
solutions are feasible, in which case the one with higher fitness will go through; if one solution is feasible,
and one infeasible, the feasible solution will be selected regardless of their fitness values; finally if both
solutions are infeasible, the solution that violates the constraints least is selected. This type of selection
removes the need to determine an appropriate for a penalty cost value or formula.

When there are multiple objectives, the fitness evaluation and selection process is more complicated.
Multiple objectives may be combined into a single objective function using weights to normalize the values
and place different levels of importance on different objectives. Alternatively, each objective may have its
own objective function, which are then treated separately. This means that a different selection method is
required to take into account the different objectives. One such method is non-dominated sorting; when a
multi-objective algorithm is used, multiple optimal solutions are found, termed ‘Pareto’ optimal or ‘non-
dominated’ solutions. Rather than converging to a single global optimum, the algorithm converges to a
Pareto front (for two objectives, for three objectives it is a surface). Solutions on the Pareto front cannot
be improved in all objectives at the same time (Kasprzyk et al. 2012). For example, in an optimization to
minimize pumping cost and maximize the volume harvested by a water system, to decrease the cost of a
solution, the volume harvested must also decrease (the inverse of the volume harvested increases), and
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to increase the volume harvested, the cost must also increase (Figure 2.3). Rather than comparing fitness
values of potential solutions as in a single objective algorithm, non-dominated sorting compares solutions
based on their ‘rank’, which is determined by how many other solutions they are dominated by. If two
solutions have the same rank, the ‘crowding distance’ will be compared in order to preserve variety in the
optimal front (Deb et al. 2002). NSGA-Il was used in this research, and in addition to the basic GA process
shown in Figure 2.2, it implements non-dominated sorting, crowding distance comparisons and constraint
tournament selection (Figure 2.4).
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Figure 2.3: Example of a Pareto front

Comparisons of multi-objective and single objective optimization algorithms applied to the same problem
have been made by Savic et al. (1997) and Wu et al. (2010b). Savic et al. (1997) used GA optimization
to find optimal pump schedules to reduce energy cost and pump switches (a surrogate for maintenance
costs). Wu et al. (2010b) optimized both energy cost and greenhouse gas (GHG) emissions in WDS
design. Single-objective algorithms may be able to find some or all of the Pareto optimal solutions from a
multi-objective algorithm applied to the same problem. This can be achieved by using different weights
for the different objectives in the single objective function. The problem with this, however, is that some
information about the trade-offs between objectives is lost, and the modeller must make decisions about
the relative importance of each objective before starting the optimization. When a multi-objective algorithm
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is used to develop a Pareto front, the trade-off information can be supplied to the decision maker, and the
relative importance of each objective examined after the optimization is performed (Savic et al. 2002).

Generate initial

population
Crossover Generate child Objective function
Mutation population evaluation
Constraint Comparison and Simulation
Handling selection model(s)
4
Non-domlnated Ranking
sorting
+ v
Crowding Generate global « Stopping
distance population No . Criteria met?
¢ Yes
Stop

Figure 2.4: Schematic of the NSGA-Il process (adapted from Wu et al. 2010b)

The primary objective for many optimization problems, in any field, is the minimization of cost, either initial,
ongoing or life-cycle. In water resources applications, other objectives such as system reliability, water
quality and environmental factors have been investigated. As climate change becomes an increasingly
serious problem for society, reduction of GHG emissions from many different industries, including the
water industry, becomes more important (Stokes et al. 2014). Stokes and Horvath (2005) undertook a
life-cycle energy analysis of two WDS case studies to determine which life-cycle stages and which water
sources (selected from imported, treated wastewater and desalination) used the most energy. Production
of electrical energy for WDSs was the biggest contributor to global warming potential throughout the life-
cycle. They also highlighted the importance of the assumed energy mix or emissions factor used in GHG
analysis. Economic costs and GHG emissions may be combined into a single objective function using a
carbon cost (for example, Marques et al. 2015), which may or may not be informed by government policy.
Itis very difficult, however, to calculate the true cost of carbon emissions (Vale 2015), and as such a multi-
objective algorithm may be more appropriate. Wu et al. (2012a) investigated the sensitivity of trade-offs
between cost and GHG emissions of WDS design to the assumed electricity tariff and energy generation
mix. The assumed electricity tariff had a significant effect on the total economic costs and the optimal
solutions found, while the emissions factors affected only the GHG emissions and not the optimal
solutions on the Pareto front. If a constant GHG emissions factor is used, then the amount of GHGs
emitted is directly proportional to the electrical energy use and thus minimization of energy use can be a
surrogate for minimization of GHG emissions, such as in Ramos et al. (2011). GHG emissions factors are
variable with time, however, as the energy generation mix changes in both the short term (particularly
with renewable source reliant on weather conditions) and in the long term. An example of this is shown in
Figure 2.5 for the variation in solar photovoltaic output over one day. Generation of electricity from solar
photovoltaic panels produces less greenhouse gas emissions than traditional fossil fuel sources. As such,
when solar photovoltaic output increases during the middle of the day, overall emission factors for a region
decrease. Energy used in the middle of the day therefore results in less GHG production, and as such
energy cannot always be used as a direct surrogate for GHG emissions. Time-dependent emissions
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factors were considered in Stokes et al. (2012b) in the optimal design of WDSs to minimize life-cycle costs
and GHG emissions. The use of time-dependent emissions factors did not affect the trade-off between
costs and GHG emissions, however, they were useful in identifying electricity usage with high emissions
intensity. The selected discount factor is another important factor that affects the trade-off between cost
and GHG emissions (Wu et al. 2010a), however, this is not applicable to studies of operations only. Stokes
et al. (2014) discussed the cost-GHG nexus for WDSs, including energy generating infrastructure, and
highlight the importance of using time-dependent emission factors and considering external factors that
influence GHG emissions such as carbon taxes and discounting.

35 0.605
&
3 0.602 ©
o (&)
525 059 2
= - E
3 2 05% S =
z 15 0593 & T
(<1}
g 059 &
S St
n n
05 0587 g
w
0 0.584
0.00 4.00 800 12.00 16.00 20.00 24.00

Time (hr)

Figure 2.5: Daily variation in solar photovoltaic output (solid) and emission factors (dashed) (note that this figure
has been taken from Blinco et al. (2016))

For systems that utilize alternative water sources in order to reduce reliance on potable supply, the volume
of water harvested or produced by a system is also a key objective. Eusuff and Lansey (2004) considered
the amount of water reclaimed from a recycled wastewater ASR system as a sole objective. The decision
variables were the amount of recharge into the aquifer through a spreading basin (water infiltrates into
the aquifer naturally) and the rate of extraction through pumping. Various targets for water quality,
extraction well water level and residence time were analysed as constraints, with stricter targets resulting
in less water extracted. McArdle et al. (2011) performed a multi-objective optimization of a stormwater
harvesting system for potable use, considering three objectives; minimizing the present worth of capital
and operating costs (as the cost per kilolitre of water delivered to the consumer), maximizing the average
daily yield of potable water from the system, and minimizing the size of the storage in a public park to
minimize the impact on the park’s amenity. Decision variables were the capacities of the retention basin,
storage reservoir, pump, and treatment plant, and the diameter of a transfer pipe, with no operational
variables included. Without the third objective, optimal solutions would have utilized a very large reservoir
in the public park, however, to minimize the size of this reservoir, the capacity of the treatment plant can
be increased to obtain a similar yield. The cost of producing potable water from the harvested stormwater
was greater than the cost of mains water, however, this cost may increase in the future with population
growth and water security concerns. Karamouz et al. (2007) optimized an integrated surface and
groundwater system for three objectives; maximising supply for irrigation demands, minimizing pumping
costs and minimizing groundwater level fluctuations. If the groundwater level objective is ignored, water
is taken from surface sources as a priority because of the high cost of groundwater pumping. Utilizing
more groundwater, however, can help to regulate the groundwater level, which may be important in some
systems. An alternative problem formulation is minimizing the amount of potable water used, such as in
Mariano-Romaro et al. (2007) for industrial wastewater re-use.
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24 Knowledge Gaps

The review of literature revealed gaps in the current knowledge that will be addressed in this thesis. With
regard to pumping operations, complex operating rules such as those utilising variable trigger levels or
combined trigger levels and scheduling have not been extensively analysed previously. The new
EPANET? capability for optimization of rule-based controls allows these more complex control types to
be considered in optimization problems. This gap is addressed by Objective 2 (Section 1.2) and Chapter
4 (Publication 1), which optimises both simple and complex pump operating controls for two case study
systems. Another gap is the consideration of GHG emissions, which has previously been considered
using energy as a surrogate, or only with design decision variables, rather than operational decision
variables. This is covered by Objective 6 and also in Chapter 4, which specifically optimises GHG
emissions and energy use separately for pump operations.

Previous analysis and optimization of alternative water source systems has been generally focussed on
specific systems, with broad frameworks and methodologies not considered. Objective 1 covers the
development of a framework to optimize alternative water source systems and this is presented in
Chapter 5 (Publication 2). Application of this framework to two case studies — a harvested stormwater
system and an integrated alternative water source supply system — is also included in Chapter 5.
Optimization of detailed pump operations and consideration of hydraulics has often been left out of studies
on alternative water sources. This gap is addressed in Objective 3 and Chapter 6 (Publication 3), which
focuses on the harvested stormwater case study and utilises EPANET2 for detailed pump energy use and
hydraulic calculations.

Many studies also perform only optimization, without in depth simulation or sensitivity analysis performed
prior to carrying out the optimization study. Pre-optimization analysis by extensive simulation analysis can
provide vital information for the formulation of the optimization problem. The size of the optimization
problem can be reduced by identifying infeasible or undesirable options by simulation of the system.
Sensitivity analysis can also be combined with optimisation in order to assess the robustness of the
system to different conditions. This gap is addressed by Objectives 4 and 5, as well as in Chapter 5
which performs a simulation analysis of a harvested stormwater system and in Chapter 6 which then
covers sensitivity analysis and optimization of the same system.
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Chapter 3  Synopsis of Publications

This chapter discusses the contributions made by the three publications presented in this thesis, their
connections, and how they address the objectives of the work. The overall aim of this research is to
develop and apply methodologies for optimizing complex pumping operations to systems that use
alternative water sources. EPANET2 hydraulic simulation software is utilised in all of the publications,
and this guarantees the conservation of energy and mass, which are constraints of the pump operations
optimization problem. Figure 3.1 shows the contributions of the publications to the six specific objectives
listed in Section 1.2. Publication 1 investigated five different types of pumping regimes using EPANET?2
rule-based controls (Objective 2). These regimes were optimized and compared for two potable case
study networks, considering objectives of minimizing pump energy costs and minimizing GHG
emissions from pumping (Objective 6). Publication 2 presents a framework for the optimization of water
supply and distribution systems that use alternative water sources (Objective 1). Sensitivity analysis of
variables that have some uncertainty is also discussed (Objective 5) and two case studies demonstrate
the application of the framework. Finally, Publication 3 applies the framework methodology from
Publication 2 and the use of rule-based controls from Publication 1 to a harvested stormwater system
(Objective 3). It includes extensive analysis of the case study system (Objective 4) and sensitivity
analysis of the operation of the system to pump and tank sizing (Objective 5).

Publication 1 Publication 2
Complex pump operating rules in potable Framework for optimization of alternative water
WDSs source systems
2.* EPANET2 6. Cost and GHG 1 Eramework S. SenS|t!V|ty
rule-based controls trade-off analysis

Publication 3
Pump operations in a harvested stormwater system

3. Optimize harvested 4. Pre-optimization

. ) 5. Sensitivity analysis
stormwater operations analysis

*Numbers refer to objectives listed in Section 1.2
Figure 3.1: Connection between publications and their contributions to the research objectives

Optimization techniques have been extensively applied to pump operations problem for WDSs, both
using trigger levels and scheduling. Previously, the ability to optimize complex operating rules using
hydraulic simulation software was limited; simple trigger levels or scheduled could be controlled,
however, trigger levels that vary with time could not. New developments for EPANET software to
optimize the more complex rule-based controls were presented and tested in Marchi et al. (2016b). The
main objectives considered in many optimization studies has been cost of energy use, system efficiency
and reliability. Often, design and operation of a system have been optimized together, and in some of
these cases, GHG emissions have been considered as an objective. GHG emissions are becoming a
more important objective, as many water system managers have sustainability goals to consider. For
existing systems, the majority of GHG emissions come from electrical energy use for pumping
operations. Many previous studies focussing on GHG emissions have considered design decision
variables rather than operational changes. Reducing the GHG emissions of existing systems through
operational decision variables has not been extensively researched.

17



Synopsis of Publications

Publication 1 compares different operational pumping strategies, using both simple controls and
complex controls, for cost and GHG emissions of pumping operations in potable WDSs. The new
EPANET programmer’s toolkit to alter rule-based controls was applied to consider five different types of
pump operating regimes; (1) lower and upper trigger levels; (2) a reduced upper trigger level; (3)
combined trigger levels and scheduling; (4) variable trigger levels; and (5) variable speed pump
scheduling (Objective 2). A single-objective genetic algorithm as used to optimize the cost and GHG
emissions from pumping separately (Objective 5). Costs were calculated based on the energy use of the
pumps across a 24-hour period with a peak and off-peak electricity tariff. Energy use of the pumps was
converted to GHG emissions based on emissions factors of energy generation technology (in kg of CO,
equivalent per kWh). The emissions factors were based on the current South Australia energy
generation breakdown, with some variation over the 24-hour simulation period based on the varying
contribution of solar photovoltaic energy over a day. Two case study WDSs were used to compare the
performance of the different pump operating regimes; a hypothetical one-pipe network, and a portion of
the real-life South Australian WDS. Time-based scheduling operating strategies were found to perform
better than the other regimes for both case studies. Significant cost savings were achieved for the South
Australian system compared to its current operation.

Applying the methodologies that have been developed for and used on potable WDSs to alternative
water source systems requires additional complexities to be taken into account. Traditional natural
catchment supplies have often been split between hydrological analysis of the supply side, and
hydraulic analysis of the demand side, with large storages delineating the two. Analysis and
optimization of WDSs has assumed that there is always enough water available in the supply reservoir
or there is a set discharge available from a water treatment plant. For alternative water source systems,
this is not always the case, and it is important to analyse the supply from the catchment for sources
such as stormwater and groundwater to know when the alternative water can be supplied, and when
potable back-up should be used. Alternative water source systems also use infrastructure and
technology that are not often part of a potable WDS and need to be modelled. This includes
components such as wetlands bioretention basins in stormwater systems, bores in groundwater
systems and small-scale treatment technologies in decentralized systems. Previous methodologies and
frameworks for traditional potable WDSs therefore do not have the modelling capability required by
alternative water source systems. Those developed for alternative water source systems, however, are
often not generalized to many different water source types, and do not include detailed consideration of
pumping and hydraulics.

Publication 2 presents a framework for the optimization of water supply and distribution systems that
use alternative water sources along with a detailed discussion of the components and key variables
(Objective 1). The options component describes the potential decision variables, both design and
operational; the infrastructure component describes the physical components of the system to be
modelled, including energy infrastructure that affects the evaluation of electricity costs and emissions;
the analysis component describes the simulation of each potential system configuration and how it is
evaluated against objectives and constraints; there is also a government policy component that covers
policies from regulating bodies that may affect other parts of the framework. These all exist within an
optimization algorithm structure, which would analyse and evaluate different potential solutions to find
those that meet the constraints and perform best in terms of the objectives. Sensitivity analysis of
demand, rainfall and streamflow, electricity and GHG emissions, discount rates, and climate change is
also discussed (Objective 5). Two case study systems are used to illustrate how the framework can be
applied to minimize the cost of water system operations. The first - the Ridge Park Managed Aquifer
Recharge System - is a harvested stormwater and managed aquifer recharge (MAR) that supplies non-

18



Synopsis of Publications

potable water for irrigation of public reserves. This system can be split into seasonal operations; winter
stormwater harvesting and injection, and summer extraction and irrigation. The current operation of this
system is analysed by hydraulic simulation in order to formulate an optimization of pumping operations.
The second case study — the Orange Integrated Supply System — utilizes several different water
sources; natural catchment, harvested stormwater, groundwater and imported water (from an adjacent
catchment) to supply potable water to over 35, 000 people. In this system, it is important not to waste
water by pumping from one of the three alternative sources only to have rain fill the natural catchment
reservoirs, and this is considered by including an objective to minimize spills. Optimization of pumping
operations for this case study focusses on reducing pump energy use. Figure 3.2 and Figure 3.3
demonstrate how these case studies fit in to the developed framework. The elements highlighted in the
framework diagrams are those that are considered by each case study. Note that while optimization of
the Ridge Park Case Study is not performed in Publication 2, it is covered in Publication 3 and therefore
is highlighted in Figure 3.2.

As for potable WDSs, pumping energy is a large contributor to costs in alternative water sources
systems, including harvested stormwater schemes. The focus of optimization of stormwater systems
has been on their design, rather than operation. Harvested stormwater schemes often include multiple
pumps between multiple storages, which can result in complex operating rules. The status of each
pump relies on the level in more than one storage, and the level in each storage relies on the status of
more than one pump. Optimization of complex pump operating rules, as in Publication 1, can be applied
to harvested stormwater systems, however, additional modelling capability needs to be incorporated
and different constraints and objectives considered, as discussed in Publication 2. Expanding current
methods for optimizing pump operations in potable WDS to alternative water source systems will allow
these systems to perform better and become more a desirable option to water system managers. As
climate change and population growth raise water security concerns into the future, alternative water
sources will become more necessary, and as such reducing their cost of operation is important.

Publication 3 explores the operation of a harvested stormwater case study system from South Australia
both through simulation sensitivity analysis (Objective 5) and multi-objective optimization. The system
has distinct winter and summer operational seasons; harvesting water from an urban creek, treating and
injecting it into an aquifer during winter, and extracting water from the aquifer for irrigation of public
reserves during summer (Objective 3). Most of the irrigation sites are on a gravity fed line, with the three
closest to the harvest site, and highest in elevation, are on a pressure line. There are four pumps in the
system, two used only in winter, one used in both winter and summer, and one used only in summer
(Objective 3). Significant analysis of the system was preformed prior to optimization, to determine the
current operation with different possible inflows, and determine the most appropriate way to model some
of the components (Objective 4). For the winter operation, storage trigger levels were implemented as
rule-based controls in EPANET and optimized to minimise the cost of pumping and maximise the
volume of water harvested. During summer, irrigation scheduling, and the trigger levels for the bore
extraction pump were optimized to minimize pumping costs. Restrictions on the aquifer injection rate
and pressure are considered, as well as pressure and demand requirements at the various parks and
reserves. The installation of new pumps and a larger tank are considered in both the simulation
sensitivity analysis and optimization. Recommendations from the results of the optimization were to
install new pumps with lower flow rates and better efficiencies, to utilize the full height of the storages by
using wider trigger levels and to irrigate all reserves on the pressure line together.
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Abstract

A single-objective optimization model has been developed for water distribution system (WDS) pumping
operations, considering five different types of pump operating regimes. These regimes use tank trigger
levels, scheduling, and a combination of both to control pumps. A new toolkit development to alter rule-
based controls in hydraulic simulation software has allowed more complex pump operating regimes than
have previously been considered to be optimized. The performance of each of the regimes is compared
with respect to two different objectives: cost and greenhouse gas (GHG) emissions, which were optimized
separately to allow the comparison of regimes to be made more clearly. Two case study networks,
including one that represents a segment of the South Australian WDS, illustrate the effectiveness of the
model. Time-based scheduling operating strategies were found to perform better than the other types of
pump operating regimes. Significant cost savings were achieved for the South Australian case study
network compared with its current operation.
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41 Introduction

Energy costs can account for up to 65% of a water utility’s operating budget (Boulos et al. 2001), and as
such optimizing the cost of energy used for pumping will have significant benefits. Previous investigations
of optimal pump operating strategies have generally been restricted to either lower and upper tank trigger
levels or scheduling. Consideration of more complex pump operating regimes, for example, using trigger
levels that vary throughout the day or combining trigger levels and scheduling, has been restricted in part
by simulation model capabilities. A modification of the existing EPANET2 toolkit (Rossman 2000) has
been developed by Marchi et al. (2016b) in order to modify rule-base controls. This new toolkit is called
‘EPANET2-ETTAR” (EPANET2 Toolkit to Alter Rules) and allows more complex pump operating regimes
to be optimized. Human-induced climate change presents a serious global risk and action to mitigate the
impact by reducing greenhouse gas (GHG) emissions is important. Production of electrical energy for
water distribution system (WDS) pumping operations is the biggest contributor to GHG emissions from
the water industry (Stokes and Horvath 2006; Wu et al. 2013).

This paper describes the development of a single-objective genetic algorithm (GA) optimization model for
WDS pump operations integrating EPANET2 (including EPANET2-ETTAR) and a Microsoft Excel
interface. The performance of five different types of pump operating regimes, including trigger levels that
vary throughout the day and combined trigger levels and scheduling, is compared with respect to either
the minimization of cost or the minimization of GHG emissions. The model is applied to two different case
studies, a hypothetical one-pipe network and a real-life network from South Australia. In the second case
study, two different pump sizes are considered and the results compared.

4.2 Literature Review

Efficient operation of WDSs can be achieved in several ways. The first step is to optimize the design of
pumps and infrastructure, then, for existing or designed systems, pump operating rules can be optimized.
Other strategies include recovering energy that would otherwise be dissipated using mini-hydro systems
(Carravetta et al. 2013b; Fecarotta et al. 2015), reducing leakage to reduce pump and water treatment
energy requirements (Giustolisi et al. 2013) and pump maintenance or replacements. There are many
different objectives that can be considered to achieve efficient WDS operation, with the most common
being to minimize the cost of electrical energy use. GHG emissions, based on energy use, or simply
energy use itself can be used as environmental impact objectives (Simpson 2009). Water quality can be
addressed by minimizing water age, which can be obtained from EPANET2 (Stokes et al. 2012a); pump
maintenance cost, represented by pump switches, could be formulated as an objective (Lopez-lbafiez et
al. 2005) or as a constraint (Lansey and Awumah 1994); system effectiveness (Carravetta et al. 2013a),
resilience (Prasad and Park 2003), and leak reduction (Giustolisi et al. 2015) can also be used as
objectives to improve the performance of WDSs.

The research presented in this paper focuses on the optimization of pump operating rules and the
comparison of different types of pump operating structures. The case studies investigated are existing
systems, and therefore no design optimization is considered. Objectives of pumping electricity cost and
GHG emissions are considered separately and the characteristics of the optimal operating strategies for
the objectives are compared. Multiobjective optimization of cost and GHG emissions for WDSs has been
extensively covered in Wu et al. (2010a, b, 2011, 2012a, b, 2013) and Stokes et al. (2012b, ¢, 2014). This
research is different in that it considers the effect of the different pump operating regimes on each
objective individually. WDSs are often required to perform under different conditions, including different
demands (e.g., seasonal and daily variations), emergencies (such as fires), and failure scenarios (such
as power outages or pipe breaks), all of which have some uncertainty associated with them. Goryashko
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and Nemisrovski (2014) use stochastic methods to find optimal operating strategies that are robust to
different demand scenarios, while Basupi and Kapelan (2015) combine Monte Carlo analysis with GA
optimization for the WDS design problem. Analysis of emergency conditions and system failure in
optimization has been much more widely applied to the design problem (e.g., Morley et al. 2012) while,
for pumping operations, the use of a constraint on the minimum tank level or an emergency reserve
storage is usually used to guarantee a reliable service.

Optimization of pump operations is highly complex due to a large number of possible pump operating
strategies, variable electricity price, and fluctuating consumer demands. Operational policies are also
subject to several constraints, including acceptable levels of water in storage tanks, maximum pumped
volumes, long-term tank level balancing, nodal pressure limits, and maximum pipe velocities. Previous
studies have usually been restricted to using either trigger levels (Paschke et al. 2001; Stokes et al. 2012b)
or scheduling (Mackle et al. 1995; Goryashko and Nemisrovski 2014) and have not considered more
complex operations such as trigger levels that vary throughout the day or combinations of trigger levels
and scheduling. Lower and upper trigger levels represent the tank levels at which the pump(s) will turn on
or off, respectively (when pumping to a downstream tank). Pump scheduling involves a set of temporal
rules indicating when pumps should be switched on or off during the day. Scheduling requires an accurate
estimation or a forecast of the expected daily water demand. Kazantzis et al. (2002) combined the use of
trigger levels and scheduling, however, the trigger levels were fixed, and only the scheduling variables
optimized. In EPANET2 (Rossman 2000), only simple controls (used for trigger levels) and pump patterns
(used for scheduling) can be altered through the programmer’s toolkit (which can be used to trial different
potential solutions within, say, a genetic algorithm optimization framework), and rule-based controls that
are required for more complex operating regimes cannot be changed via the current toolkit. EPANET2-
ETTAR gives access to these rule-based controls, therefore allowing more complex pump operating
regimes to be considered in the pumping optimization process.

When a peak and off-peak electricity tariff structure applies, operational costs will be minimized by
reducing the amount of pumping in the peak electricity period and deferring this pumping to the off-peak
period. Operational costs will also be reduced by reducing the static head and by increasing the efficiency
of the operating point. Maximizing the amount of off-peak electricity pumping can generally be achieved
when the tank water level is at its maximum at the beginning of the peak period and at its lowest allowable
level at the end of the peak period (Mackle et al. 1995; Kazantzis et al. 2002). A future approach, primarily
concerned with GHG emissions, may be to pump steadily throughout the day with a variable speed pump
(VSP), or in response to demands rather than electricity prices, with reduced energy through the use of
slower velocities leading to a smaller friction head loss (Simpson 2009).

To properly account for the GHG emissions of WDSs, the sources of electricity should be identified
because each will have different GHG emissions per unit of energy produced (Dandy et al. 2006). An
emission factor is used to convert energy use to GHG emissions, considering all types of GHGs and their
global warming potential as an equivalent mass of CO2 (CO2-eq). Previous studies have used an average
GHG emission factor value for the region, including Dandy et al. (2006) and Wu et al. (2010a, b). Stokes
et al. (2012b) took into account time-varying emission factors in their optimization of water distribution
system design and operation. This identified high emission intensity electricity use and helped to reduce
operational GHG emissions. The objectives of cost and GHG emissions may be aligned if no variation in
electricity tariffs or emission factors is considered. When variations in these factors are taken into account,
times with lower electricity prices will not necessarily coincide with times of lower emission factors, so
optimal solutions for the two objectives will be different.
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GAs represent an efficient method for the optimization of nonlinear problems, particularly when applied to
complex WDSs. These algorithms are a population-based optimization technique that use coded
representations of solutions (Goldberg 1989). After generating a random initial population, the GA
determines the fitness of each potential solution by simulating them and evaluating an objective function.
In many optimization problems, the objective function is based on cost, but it can also be formulated for
other objectives. All solutions then go through GA operators based on evolutionary principles—typically
selection, crossover, and mutation-to produce the next generation of solutions (Goldberg 1994). This
process is repeated to converge on optimal or near-optimal solutions. When applied to the optimization
of WDSs, GAs have been found to perform significantly better than other optimization techniques in areas
of final solution optimality and iterative efficiency and are still competitive with other optimization methods
today (Simpson et al. 1994; Wang et al. 2015).

4.3 Methodology

4.31 Optimization Model Formulation

The aim of this research was to compare the performance of five different pump operating control cases
and the characteristics of their optimal solutions. To achieve this aim, a single-objective optimization
model was developed, linking a GA with EPANET2- ETTAR and a Microsoft Excel Interface. EPANET2-
ETTAR was used to simulate the different potential solutions from the GA in order to provide information
about their performance relative to the objective function and constraints. The interface allowed the
optimization parameters, decision variables, choice tables, and other inputs to be changed and
customized for different networks. A single-objective GA with tournament selection, a choice of one- or
two-point crossover, and bitwise mutation was used. Trigger level cases, with a small number of decision
variables, used one-point crossover with a crossover probability of 0.8, a mutation probability of 0.05, 200
generations, and a population size of 200. Scheduling cases, with a large number of decision variables,
used two-point crossover with a crossover probability of 0.7, a mutation probability of 0.02, 400
generations, and a population size of 300.

Wherever possible, full enumeration of the search space was used in preference to the genetic algorithm
optimization. Two different objective functions were considered separately: cost and GHG emissions. The
value of each objective function was calculated in terms of units per volume of water pumped to remove
any bias between solutions that pumped different volumes of water over the day. For the cost optimization,
the objective function was dependent on the energy use, electricity tariff rates, and the volume of water
pumped over the whole day as given by Eq. (4.1)

0C = XiTixE; (4.1)
|4

where OC = operational cost (dollars/m3); Ti = electricity tariff for each time step i (dollars/kWh); E; =
energy consumption for each time step i (kWh); and V = total volume pumped (m3) during the time
simulation period. EPANET2-ETTAR was utilized to determine energy use for each time period as well
as the volume of water pumped. In this research, a two-part electricity tariff has been considered, however,
the pattern for the electricity tariff could easily be altered to consider other, perhaps more complex, tariff
structures, such as a multipart tariff (more than two periods). In addition, a monthly peak energy demand
charge (that is, an additional charge for the maximum kilowatt usage) could also be included if desired.
An electricity price pattern can be specified in EPANET2, as well as a demand charge variable, which
may apply if there is a monthly peak energy demand charge. Electricity costs were based on a
representative South Australian tariff; a peak electricity price of 22 c¢/kWh (¢ = cents) between 7 a.m. and
11 p.m., and an off-peak electricity price of 9 c=kWh from 11 p.m. to 7 a.m.
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The objective function for GHG emissions was based on the distribution of emission factors throughout
the day and the energy used in each time period as given by Eq. (4.2)

i FiXE;

OGHG = (4.2)

where OGHG = operational GHG emissions (kgCO2-eq/m?3); F; = emissions factor at each time step i
(kgCO2-eq/kWh); and E; = energy at each time step i (kWh), which ranged from 0 to 23 for hourly time
increments. Emission factor data were collated from Dey and Lenzen (2000), Lenzen (2008), and Evans
etal. (2010) in order to take into account the varying contributions to GHG emissions from different energy
technologies. To calculate the overall emission factor, South Australia’s current energy sources, mainly
gas, brown coal, and wind (Australian Energy Market Operator 2011), have been used. The emission
factors were also adjusted to account for the variation in output from solar photovoltaic systems
throughout the day and this output was greatest during the middle of the day (Figure 4.1). The contribution
of each energy source at every hour was adjusted depending on the solar photovoltaic multipliers to give
a daily variation in emission factors, which were lowest in the middle of the day (Figure 4.1). Minimization
of energy consumption was also available in the model and acted as a surrogate for optimization of cost
or GHG emissions where no daily variation in electricity tariffs or emissions factors was present.
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Figure 4.1: Daily variation in solar photovoltaic output (solid) and emission factors (dashed)

A number of constraints could be used in the optimization process, with penalties added to the objective
function in the case of constraint violation. In addition to pressure, velocity, and head loss constraints, a
minimum tank level may be specified to account for emergency and dead storages. There was also a tank
balancing constraint, formulated as the maximum allowable difference between the storage tank’s start
and end level each day, and this could be used to prevent depletion of the water in the tank at the end of
the simulation period. The maximum number of pump switches to occur within a 24-h period may also be
specified, which could be used to address issues of pump maintenance costs.

4.3.2 Pump Operating Control Cases

Optimization of five distinct pump operating control cases was considered: (1) Case A, lower and upper
trigger levels; (2) Case B, a reduced upper trigger level; (3) Case C, combined trigger levels and
scheduling; (4) Case D, variable trigger levels; and (5) Case E, variable speed pump scheduling. The
pump operation was optimized over a period of 24 h, with the simulation period beginning at the start of
the off-peak tariff period and the water level in the tank being at its lowest allowable level. This serves as
a known starting point for an optimal solution and also means that the final water level of the tank is likely
to be close to the initial level as less pumping will benefit either of the objective functions. The available
decision variables and constraints for each pumping control case are summarized in Table 4.1.
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Table 4.1: Summary of decision variables and constraints for each control case

Case Decision Variables Constraints
A Lower trigger level; upper trigger level
B Lower trigger level; reduced upper trigger level; upper trigger level
c Lower trigger level; upper trigger level; scheduled pump start(s); scheduled pump
stop(s)
Peak lower trigger level; peak upper trigger level; off-peak lower trigger level; off-
peak upper trigger level
Pump speed multiplier(s) (number depends on time interval)

Minimum tank level
Tank balancing tolerance
Maximum pump switches
Max./min. nodal pressures
Max./min. pipe velocities
Max./min. pipe headloss

D

Control Case A optimized two decision variables—the lower and upper trigger levels in a downstream
tank that determined when a pump would be switched on and off, respectively. While trigger levels are
effective at keeping the water level in a tank within a certain operating range, there are both advantages
and disadvantages to different trigger level operating strategies. Increasing either trigger level will
increase the average static head of the system and therefore requires the pump to expend more energy
to pump the same volume of water to the tank. A lower value of the upper trigger level may increase the
amount of pumping required in the peak electricity tariff period because the tank will not be full at the start
of this period, and hence may increase costs. The closer the trigger levels are to each other, the more
times the pump will switch on and off during the day, which will increase general wear and tear of the
pumps. Additionally, having both trigger levels or just the lower trigger level closer to the minimum
allowable tank level may jeopardize the system’s capability to meet demand requirements. In times of
extremely high demand, the rate at which the tank is draining may exceed the maximum pumping
capacity, resulting in overall depletion of the tank volume even with the pump switched on. In these
circumstances, if the trigger levels are too low, the water level in the tank may fall below the minimum
allowable level.

A reduced upper trigger level was considered in Control Case B, which implemented EPANET2-ETTAR
for optimization of rule-based controls. This model had three decision variables: a lower trigger level, an
upper trigger level, and a reduced upper trigger level. During most of the 24-h simulation period, a reduced
upper trigger level was permitted in order to reduce the static head of the system. There was a user-
selected switch time before the start of the peak period at which the control would swap to the ultimate
upper trigger level in order to fill the tank before the peak period.

Control Case C combined the use of tank trigger levels and pump scheduling. There were two trigger
level decision variables—an upper and lower trigger level—which governed most of the pump operation.
In addition to this, multiple time-based scheduling decision variables were also included that would specify
a time for pump starts and pump stops. These time-based decision variables allow the tank water level
criteria at the end of each tariff period [as identified by Mackle et al. (1995) and Kazantzis et al. (2002)] to
be met where trigger levels alone cannot achieve this. For example, if the trigger levels in a particular
network were such that the tank was draining at the end of the off-peak period, a scheduled pump start
was added so that the tank is full at the start of the peak period. If the tank is filling at the end of the peak
period, a scheduled pump stop was added to ensure the tank would be at its lowest allowable level at the
end of the peak period and therefore avoid excess peak pumping.

Control Case D allowed for different trigger level sets for the peak and off-peak periods and this also
utilized the EPANET2- ETTAR toolkit. There were four decision variables—an upper and lower trigger
level in the peak period and an upper and lower trigger level in the off-peak period. In order to reduce the
pumping cost, the two trigger levels used for the off-peak period will be higher than the two trigger levels
used for the peak period because this allows the tank level to be closer to full at the beginning of the peak
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tariff period and close to the minimum allowable tank level at the beginning of the off-peak period. As
suggested by Kazantzis et al. (2002), in order to optimize costs the tank should be at its minimum level
at the end of the peak period and at its maximum level at the start of the peak period. The two different
sets of trigger levels also allow for the reduction of the static head (and therefore energy use) during the
period of higher electricity cost.

VSPs were incorporated into Control Case E, which optimized pump scheduling regimes. The decision
variables in this model were the pump speed multipliers at each time interval. If fixed speed pumps (FSPs)
were used, the only possible values for the pump speed multipliers would be 0 or 1. For VSPs, additional
choices for the multipliers could range from 0.85-1.0 (as well as 0 for when the pump is off). The minimum
pump speed multipliers calculated for the specific case studies take into account the guidelines by Marchi
et al. (2012): (1) the minimum relative speed of the pump is larger than 0.7 so that the affinity laws can
be used to predict the pump efficiency curve with reasonable accuracy, and (2) the shutoff head of the
pump curve at the reduced speed is still higher than the static head of the system in order to deliver a
flow larger than zero. In particular, the lower limit (0.85 in this case) depends on the pump shutoff head
relative to the maximum system static head. Variable speed drive efficiency is not taken into account and
this could affect the energy use of VSP solutions (Walski et al. 2003). When choosing a VSP for a
particular system, the overall efficiency, including the variable speed drive efficiency and motor efficiency,
should be taken into account. The time interval for the simulation of the pump schedule could be modified
to reflect different demand patterns and pumping restrictions or requirements. For example, half-hourly
time intervals would result in 48 decision variables, which could increase operational flexibility but also
could increase optimization run times and effectiveness compared with hourly time intervals with only 24
decision variables. For systems with multiple pumps, a larger time interval may need to be used because
otherwise the number of decision variables may easily become excessive, leading to long optimization
run times and a larger search space, making finding the optimal solution more difficult.

4.4 Results

441 Case Study 1: One-Pipe Network

The models were initially used to analyze a one-pipe network introduced by Wu et al. (2010a), who
performed a multiobjective optimization for the pump size and pipe diameter of the network, finding eight
nondominated solutions in terms of capital and operating costs and GHG emissions. A design solution
that represented an acceptable trade-off between costs and GHG emissions was used in this research
(Figure 4.2 shows the network configuration). The network pumped water from an upstream reservoir to
a downstream tank, which supplied an average peak day demand of 80 L/s. A diameter of 20 m was
assumed for the downstream circular tank. Potential trigger level values for this network ranged from 1.0
to 5.0 m, with an increment of 0.2 m. The minimum possible trigger level value accounted for dead storage
and emergency reserves. VSP multipliers considered were between 0.85 and 1.0 in 0.05 increments
(Table 4.2). The minimum feasible VSP multiplier was determined using the first pump affinity law
relationship between pump head (Hp) and speed (N) [Eq. (4.3)]. Pump speed can be reduced to a point
where the shutoff head of the pump is equal to the static head of the system. At full speed [1,475
revolutions per minute (rpm)], the pump shutoff head is 143 m (Hp1) and the static head of the system
when the tank is full is 100 m (Hp2). Applying Eq. (4.4) gives a minimum pump speed multiplier (N2) of
0.84; to be conservative, a minimum value of 0.85 is considered (equivalent to approximately 1,254 rpm)

fiea _ (M)’ 43)

Hp, N,
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if e = 1 (full speed) then N, = |2 (4.4)
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Figure 4.2: One-pipe network

Control Case A

Cost Minimization. When optimizing pump operating Control Case A, a lower trigger level of 1.0 m and
an upper trigger level of 5.0 m was the best solution in terms of cost (Table 4.3). Because there were only
two decision variables, each with 21 possible values (using increments of 0.2 m), the total number of
possible solutions was 212 = 441. Complete enumeration of the problem was performed and confirmed
this result. The second-best through to the sixth-best solutions as presented in Table 4.3 show the same
characteristic of having the trigger levels far apart, allowing maximum off-peak pumping. Solutions 7, 8,
and 10 reduce energy use and therefore cost by reducing the static head of the system. These solutions
all had a trigger level range of 1.6 m, with different lower and upper trigger levels. This trigger level range
allowed the tank to half-fill twice during the off-peak period while also maintaining a lower water level than
the first six solutions (Figure 4.3). As can be seen in the “Energy” column, the seventh solution had the
lowest energy use per volume of water pumped from the cost optimization solutions. It had a greater cost
per volume pumped because there is a greater percentage of energy being used in the peak period
compared with the first six solutions (‘Peak energy” and “Off-peak energy” columns). This indicates that
for this network, the effect of the peak and off-peak tariff prices on the cost is greater than the effect of
reducing the static head.

Table 4.2: Summary of choices and constraints applied to each case study

Decision Variable / Constraint One-Pipe Network South Australian Network
Trigger levels (m) (Cases A-D) 1.0-5.0 m, 0.2 m increment 4.0-7.9 m, 0.1 m increment
First pump start (Case C) 3am-7am, 5 min. increment 3am-7am, 5 min. increment
Second pump start (Case C) 4pm-10pm, 5 min. increment -

Pump stop (Case C) 10pm-11:30pm, 5 min. increment 6pm-10pm, 5 min. increment
Pump speed multipliers (Case E) 0.85-1.0, 0.05 increment 0.88-1.0, 0.04 increment
Minimum tank level (m) None, 0.8 m, 1.0 m 25m,40m

Tank balancing tolerance (m) None, 0.5 m None, 0.1 m,0.5m
Maximum pump switches 12, 96 12, 96

Min./max. nodal pressures (m) - None, 20/120 m
Min./max. pipe velocities (m/s) - None, 0/5 m/s
Min./max. pipe headloss (m/km) - None, 0/50 m/km

The solutions represented in Table 4.3 and Figure 4.3 did not have a minimum tank level constraint
enforced, which allowed the water level to fall significantly below the lower trigger level of 1 m due to high
demands in the evening (“Minimum water level” column Table 4.3). If a minimum tank level constraint of
1 mis used, the optimal trigger levels are found to be 1.6 and 3.2 m (the 10th-best solution in Table 4.3),
which has a minimum tank level of 1.32 m, well above the constraint. If the minimum level constraint is
relaxed slightly, the optimal trigger levels are found to be 1.2 and 2.8 m (the eighth-best solution in Table
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4.3). This results in a minimum tank level of 0.96 m, which may be acceptable to the decision maker. This
shows the impact of the minimum tank level in finding the optimal trigger levels.

Table 4.3: Top solutions from pump operating Control Case A optimization for the one-pipe network

Lower Upper Trigger Min.
Soluti Cost Trigger Tr%%er Leg\?el Energy Peak — Off-peak Water GHGs
olution Energy  Energy (kg CO2-
($/m3) Level Level Range  (kWh/m3) (%) (%) Level eq/m?)
m  (m  (m) ° D (mp ™
Cost: 1t 0.0683 1.0 5.0 4.0 0.3725 72.0 28.0 0.36 0.2222
Cost: 2d  0.0688 1.0 4.8 3.8 0.3721 731 26.9 0.40 0.2220
Cost: 3¢ 0.0690 1.2 5.0 3.8 0.3728 731 26.9 0.59 0.2224
Cost: 4th 0.0695 1.0 4.6 3.6 0.3718 745 255 0.48 0.2219
Cost; 5th 0.0696 1.2 4.8 3.6 0.3725 744 25.6 0.66 0.2223
Cost: 6th 0.0697 1.4 5.0 3.6 0.3731 744 25.6 0.85 0.2227
Cost: 7th 0.0698 1.0 2.6 1.6 0.3702 75.9 241 0.77 0.2213
Cost: 8th 0.0699 1.2 2.8 1.6 0.3708 75.8 242 0.96 0.2218
Cost; 9th 0.0701 1.0 4.4 34 0.3716 75.9 241 0.60 0.2218
Cost: 10t 0.0701 1.6 3.2 1.6 0.3721 75.7 243 1.32 0.2225
GHG: 1t 0.0721 1.0 1.2 0.2 0.3685 81.2 18.8 0.45 0.2204
aMaximum water level for each solution is equal to the upper trigger level.
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Figure 4.3: Daily tank level variation of the one-pipe network: cost optimization solutions: (a) pump operating
Control Case A, first solution; (b) Control Case A, seventh solution

GHG Minimization. The optimal solution for GHG emissions was different than the optimal cost solution.
The lower and upper trigger levels were as low and as close together as possible, at 1.0 and 1.2 m,
respectively (while in the cost optimal solution they were as far apart as possible), reducing the static
head. No effect due to the daily variation in GHG emission factors was observed in the optimal GHG
solution. Because the trigger levels are very close together, the pump turns on and off quite often (62
pump switches) throughout the day, with the exception of two blocks in the peak period where the pump
is on, resulting in higher costs. The seventh cost solution had lower GHG emissions than the other top 10
cost solutions (“GHGs” column of Table 4.3). Because it reduced energy use and costs by reducing the
static head as well as reducing peak pumping, it was an acceptable compromise between the cost and
GHG objectives.

Control Case B: Cost Minimization

With the addition of a reduced upper trigger level in Control Case B, the minimum operating cost was
lowered to $0.0652/m3, compared with the $0.0683/m3 for the Control Case A solution. A switch time of
2 a.m. gave the lowest cost and was able to fill the tank just before the start of the peak period at 7 a.m.
[Figure 4.4(a)]. Using a reduced upper trigger level did not benefit GHG emissions because there was no

34




Publication 1: Comparison of Pumping Regimes for Water Distribution Systems to Minimize Cost and
Greenhouse Gases

need to fill the tank before the start of the peak period and a reduced static head could be achieved using
a low value for the upper trigger level.
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Figure 4.4: Daily tank level variation of the one-pipe network: cost optimal solutions for pump operating (a) Control
Case B; (b) Control Case C; (c) Control Case D; (d) Control Case E

Control Case C: Cost Minimization

For Control Case C, the combination of trigger levels and scheduling, the cost was reduced slightly
compared with the previous control cases at $0.0651/m3. Due to the high demands at the end of the peak
period, shutting the pump down during this time would not be feasible. Therefore, an additional decision
variable in the form of a pump startup during the peak time was considered as well as those proposed in
the methodology. The time range for this pump startup was 4 to 10 p.m. at an increment of 5 min, which
allowed the tank level to stay above 1 m, and a pump shutoff was considered between 10 and 11:30 p.m.,
also at an increment of 5 min. The optimal cost solution found using this strategy again had wide trigger
levels of 1 and 5 m, the pump was started again at 5:35 a.m. and this allowed the tank to fill exactly for
the start of the peak period [Figure 4.4(b)]. During the peak period, the optimal solution started the pump
at 6:20 p.m. and then shut it down at 10:20 p.m. to have the tank empty at the end of the peak period.

Control Case D: Cost Minimization

Using variable trigger levels in Control Case D found an optimal solution that maintained a low water level
during the peak period, with trigger levels of 1.2 and 2.2 m, and a high water level during the off-peak
period, with trigger levels of 4.4 and 5.0 m [Figure 4.4(c)]. Even though this solution had a slightly greater
percentage of pumping during the peak period compared with the Control Case C solution, it reduced the
static head for much of the simulation period and was therefore slightly cheaper at $0.0649/m3.
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Control Case E: Cost and GHG Minimization

Scheduling in Control Case E was able to find solutions with reduced cost and GHG emissions compared
with the other control cases. The best cost solution using VSPs used lower pump speeds throughout the
off-peak period to fill the tank exactly at the start of the peak period [Figure 4.4(d)] and had a cost of
$0.0625/m3. The use of FSPs was more expensive than VSPs; the cost optimal solution using FSP had
a cost of $0.0656/m3. FSP scheduling was less flexible than VSP operation and was not able to completely
fill the tank for the start of the peak period. The optimal solution for GHG emissions pumped constantly
throughout the day at reduced speeds, compared with the cost optimal solution, which pumped as much
as possible in the off-peak period. This resulted in a cost of $0.0682/m3 and GHG emissions of 0.2156
kgCO2-eq/m?3, both of which are lower than for all of the solutions (cost or GHG optimal) presented in
Table 4.3 for Control Case A.

442 Case Study 2: South Australian Network

The second case study was a real-life WDS in South Australia, consisting of 324 pipes, 278 nodes, two
pumps (one on standby), one reservoir, and two tanks (Figure 4.5). This case study was chosen to show
the advantages and disadvantages of the different pump operating control cases and objectives for a real
network. With only one pump operating, the comparison between the control cases could be made clearly
and their effect on the objectives more easily understood. With an average daily peak day demand of 30.7
L/s compared with the pump operational flow of 126 L/s, the pump in this network was oversized and only
required to operate for 8 h each day. Under the current operational regime using trigger levels of 3.96 and
5.54 m, almost half of this pumping occurred during the peak electricity tariff period (Figure 4.6), when
electricity rates were much higher (22 c/kWh compared with 9 c/kWh for off-peak). Cost and GHG
emissions for the current operation were $0.0360/m3 and 0.1460 kgCO-eq/m3, respectively. The
maximum tank water level was 7.92 m, with a minimum tank water level set at 2.5 m, representing 30%
of the full volume to account for emergency reserves and dead storage. Trigger level values considered
in the optimization ranged from 4.0 to 7.9 m at an increment of 0.1 m, with the initial tank water level set
at 4.0 m for all simulations. The minimum pump speed multiplier was calculated to be 0.87 [Eq. (4.4) with
a pump shutoff head of 92 m and maximum static head of 69.4 m], so choices for multipliers ranged from
0.88 to 1.0 in 0.04 increments (Table 4.2). The optimization results for all control cases for this network
are presented in Tables 4.4 and 4.5 and discussed in the following sections.

Control Case A: Cost and GHG Minimization

For Control Case A, the optimal trigger levels to minimize cost for this network were 4.0 and 6.1 m, costing
$0.0219/m3, 39% less than the current operation (Table 4.4). The pumping in this solution occurred
entirely within the off-peak period, with the tank filling between the hours of 11 p.m. and 6:30 a.m. and
then draining for the rest of the day [Figure 4.7(a)]. Optimizing for GHG emissions found that trigger levels
of 4.0 and 4.3 m reduced emissions to 0.1434 kgCO.-eq/m3, a 1.8% saving on the current operation
(Table 4.4).

Control Cases B, C, and D: Cost Minimization

With all pumping able to be completed in the off-peak period, the addition of a reduced upper trigger
(Control Case B) found optimal solutions with the same cost as the optimal trigger levels solution (Control
Case A). Regardless of switch time, the optimal upper trigger level was greater than 6.1 m (the optimal
upper trigger level value for Control Case A), and the reduced upper trigger level varied such that all the
pumping could still be achieved during the off-peak period. This indicated that it was better to pump
entirely within the off-peak period with the ultimate upper trigger level in effect rather than pump
throughout the day with a reduced static head. Control Cases C and D, which also attempted to take
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advantage of the off-peak tariff and reduce the static head during the peak period, were also not useful
(Table 4.4). In Control Case C, the optimal scheduled pump start occurred at times when the pump was
already on and the optimal pump stop when the pump was already off, leaving the operation to be entirely
governed by the trigger levels, which were the same as for Control Case A. In Control Case D, the
operation was governed by the off-peak lower trigger level and the peak upper trigger level, which were
the same as the Case A optimal trigger levels.
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Figure 4.5: South Australian Network
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Figure 4.6: Daily tank level (solid) and pump flow (dashed) variation for the South Australian network: current
operation

Control Case E: Cost and GHG Minimization

Optimization of VSP scheduling (Control Case E) found a marginally better solution to the cost optimal
trigger levels operation with a cost of $0.0218/m3. It pumped at a reduced speed from 11 p.m. to 6 a.m.
and then at full speed for the last hour of the off-peak period [Figure 4.7(c)]. While the reduced speed
would lead to less friction loss through the system and hence reduced energy requirements, there was
an extra 90 min of pumping that meant the cost and GHG emissions from the VSP solution were very
similar to the trigger levels solution (Table 4.4). The optimal GHG solution pumped during half of the time
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periods, including during the middle of the day when the emissions factors were lowest. This solution had
emissions of 0.1419 kgCO,-eq/m3, a reduction of 2.9% compared with current operation.

Table 4.4: Optimal solutions for each pump operating control case for the South Australian network

Control Objective Cost Cost Diff. GHGs (kg GHG Diff. Peak Energy Off-Peak
Case ($/m3) (%)? CO2-eg/m?) (%)? (%) Energy (%)
A Cost 0.0219 -39.2 0.1466 +0.4 0.0 100.0
A GHGs 0.0438 +21.6 0.1434 -1.8 71.3 28.7
B Cost 0.0219 -39.2 0.1464 +0.3 0.0 100.0
C Cost 0.0219 -39.2 0.1466 +0.4 0.0 100.0
D Cost 0.0219 -39.2 0.1466 +0.4 0.0 100.0
E Cost 0.0218 -39.5 0.1459 -0.1 0.0 100.0
E GHGs 0.0466 +29.3 0.1419 -2.9 80.4 19.6

a; negative difference indicates that the cost or GHGs in the optimal solution is less than the current operation (cost:
$0.0360/m3, GHG: 0.1460 kg CO2-eq/m3).

Table 4.5: Optimal solutions for each pump operating control case for the South Australian network with a smaller

pump
Control Objective Cost Cost Diff. GHGs (kg GHG Diff. Peak Energy Off-Peak
Case ($/m3) (%)? CO2-eq/m3) (%)? (%) Energy (%)
A Cost 0.0291 -19.2 0.1339 8.3 31.0 69.0
A GHGs 0.0385 +7.0 0.1320 9.6 64.7 35.3
B Cost 0.0291 -19.3 0.1339 8.3 31.0 69.0
C Cost 0.0291 -19.2 0.1339 8.3 31.0 69.0
D Cost 0.0291 -19.3 0.1139 8.3 31.0 69.0
E Cost 0.0280 -22.3 0.1348 -1.7 27.0 73.0
E GHGs 0.0409 +13.4 0.1315 -10.0 72.6 274

aA negative difference indicates that the cost or GHGs in the optimal solution is less than the current operation (cost:
$0.0360/m3, GHG: 0.1460 kg CO2-eq/m?).

Replacement with a Smaller Pump

In order to apply all of the pump operating control cases to a real-life network, the current pump was
assumed to be replaced with a smaller pump that would be required to pump for more than the 8 off-peak
hours each day. The current pump operated at a flow of 126 L/s at a head of approximately 70 m. Because
the average demand was 30.7 L/s, a pump with a flow of approximately 40 L/s at a head of 70 m was
selected. This pump required roughly 13 h of pumping per day. The shutoff head was 80 m, which gave
a minimum pump speed multiplier of 0.93 and thus multipliers between 0.94 and 1.0 in increments of 0.02
were considered.

Control Case A: Cost and GHG Minimization with a Smaller Pump. Using the smaller pump in Control
Case A, the optimal trigger levels for cost were 4 and 5.5 m; at $0.0291/m3, this was more expensive than
with the original pump (Table 4.5). This suggests that when there are large differences between the peak
and off-peak cost of electricity, it may be more economical to install a larger, more expensive pump but
have reduced operating costs by only pumping during the off-peak period. With a smaller pump, the tank
did not fill as quickly and hence some of the pumping occurred during the peak period [Figure 4.7(b)].
This solution still reduced the cost by 19% compared with the cost of the current operation with the original
pump (Table 4.5). Using the smaller pump reduced both GHG emissions and cost at the same time. The
cost-optimal solution for Control Case A with the original pump slightly increased GHG emissions
compared with the current operation. With the smaller pump, however, the cost-optimal trigger levels also
reduced GHG emissions by approximately 8%. The optimal GHG trigger levels when the smaller pump
was used were 4.0 and 4.7 m, further apart than with the original pump.
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Figure 4.7: Daily tank level and pump flow variation for the South Australian network: cost optimal solutions for (a)
Control Case A with original pump; (b) Control Case A with smaller pump; (c) Control Case E with original pump; (d)
Control Case E with smaller pump

Control Cases B, C, and D: Cost Minimization with a Smaller Pump. With the use of the smaller pump,
Control Cases B, C, and D found optimal solutions that had effectively the same operation as for the
Control Case A solution (Table 4.5). With a reduced upper trigger level (Control Case B), the ultimate
upper trigger level was ineffective and the pump was entirely controlled by the reduced upper trigger level
at an optimal level of 5.5 m. When trigger levels and scheduling were combined (Control Case C), the
same optimal trigger levels were found and the scheduled pump startup occurred when the pump was
already on, and similarly the pump shut down when the pump was already off. With variable trigger levels
(Control Case D), the peak levels governed the operation; during the off-peak period, the tank level did
not reach the off-peak upper trigger level, and the peak upper trigger level, at 5.5 m, controlled when the
pump stopped.

Control Case E: Cost and GHG Minimization with a Smaller Pump. VSP scheduling (Control Case E)
with the smaller pump gave a better result than the trigger level operation with a cost of $0.0280/m3 (Table
4.5); however, it was still more expensive than with the original pump because some pumping in the peak
period was required [Figure 4.7(d)]. The optimal GHG pump schedule with the smaller pump provided the
best GHG solution for all of the South Australian network solutions in Tables 4.4 and 4.5 with emissions
of 0.1315 kgCO2-eq/m3 giving a 10% saving on the current operation.

4.5 Conclusions

A single-objective genetic algorithm model has been developed to optimize pumping operations in water
distribution systems. It was combined with a new toolkit for EPANET2 that allowed optimization of more
complex pump operating strategies than have previously been considered to be performed. Five different
pump operating control cases were implemented, using various types of trigger levels, scheduling, and
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the combination of both. Optimization of both cost and GHG emissions were considered separately in
order to compare the optimal solution characteristics of the different pump operating control cases for
each of these objectives. The optimization model was applied to two different case study systems, a
hypothetical one-pipe system and a real-life system from South Australia.

VSP scheduling, implemented in Control Case E, performed better in terms of both cost and GHG
emissions compared with the other control cases. Generally, solutions that had a lower percentage of
energy used in the peak period were cheaper; the effect of the peak and off-peak tariff was greater than
the effect of reducing the static head of the system. The more complex trigger level control cases (B, C,
and D) were able to improve upon the cost of just using lower and upper trigger levels (Control Case A)
because they were able to defer more pumping to the off-peak period. Cost and GHG objectives were not
always aligned because of the variation in electricity prices and emission factors.

As well as producing optimal pump operating regimes, the optimization highlighted particular features of
the two case study networks and their operation. For the one-pipe network, the optimization highlighted
the high demands during the evening period, which necessitated the use of a minimum tank level
constraint and affected the number of decision variables used in Control Case C. The oversized pump in
the South Australian network made the use of Control Cases B, C, and D redundant because all pumping
could be achieved in the off-peak period. Using a smaller pump was more expensive because some peak
pumping was required; however, it was able to reduce GHG emissions at the same time as reducing cost
compared with the current operation. The comparison of the two pumps suggested that when there is a
large difference in peak and off-peak electricity prices, it may be more economical to spend more money
initially with a larger pump, and be able to pump entirely within the off-peak period to reduce ongoing
costs. The model proved effective, reducing costs by almost 40% compared with the current operation of
the South Australian network.
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Abstract

Water security has become an increasing concern for many water system managers due to climate
change and increased population. In order to improve the security of supply, alternative sources such as
harvested stormwater, recycled wastewater and desalination are becoming more commonly used. This
brings about the need for tools to analyze and optimize systems that use such sources, which are
generally more complex than traditional water systems. Previous methodologies have been limited in their
scope and cannot be applied to all types of water sources and systems. The framework presented in this
paper has been developed for holistic analysis and optimization of water supply and distribution systems
that use alternative water sources. It includes both design and operational decision variables, water and
energy infrastructure, simulation of systems, analysis of constraints and objectives, as well as policies
and regulations which may affect any of these factors. This framework will allow users to develop a
comprehensive analysis and/or optimization of their water supply system, taking into account multiple
types of water sources and consumers, the effect of their own design and operational decisions, and the
impact of government policies and different energy supply options. Two case study systems illustrate the
application of the framework; the first case study is a harvested stormwater system that is used to
demonstrate the importance of simulation and analysis prior to optimization, the second utilizes four
different water sources to increase security of supply and was optimized to reduce pump energy use.
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5.1 Introduction

A changing climate and increasing population have put a strain on traditional water resources, which
typically rely on natural catchment water. This has made water security an increasing concern for many
water system managers, who have investigated options for reducing demand and supplementing supply.
Alternative water sources, such as harvested stormwater, recycled wastewater and desalination, are
increasingly being used to improve water security of cities and towns. Methods for simulation, analysis
and optimization of traditional potable water distribution systems (WDSs) cannot necessarily be directly
transferred to systems that use alternative water sources. Therefore there is a need to develop a
methodology specifically for alternative water source systems, which includes both hydraulic and
hydrologic considerations, as well as the many additional parameters and variables associated with
alternative water sources. There are many modelling tools used in current practice for integrated water
management, such as eWater Source, WEAP (Water Evaluation and Planning System) and Mike Basin.
These modelling tools do not include hydraulic simulation, and therefore may not accurately represent
performance of urban water networks. Moreover, this framework is not software, rather its purpose is to
guide water system managers in how to best simulate and optimize their systems, particularly those that
integrate multiple water sources, and natural and human-made systems. The framework should be used
to determine which system components need to be modelled, which type of modelling tools are most
appropriate, what regulations and policies need to be taken into account and how to evaluate the
performance of the system.

The framework introduced in this paper can be applied to the optimization of the design and operation of
water supply and distribution systems from source to consumer, considering multiple traditional and
alternative sources, multiple uses and multiple objectives. Electrical energy sources and their effect on
electricity prices and greenhouse gas (GHG) emissions are included, as are several types of government
policies that may affect the design, operation, data and evaluation of the system. The objectives of this
paper are to (1) develop a generalized framework that could be applied to any water supply and/or
distribution system optimization problem and (2) outline the application of this framework to two case
study systems with a focus on optimizing their operation.

5.2 Literature Review

Since 2000, there has been significant consideration of the concept of water security (Cook and Bakker,
2012) as water is increasingly seen as a fundamental and finite resource (Bogardi et al., 2012).
Consequently, the use of alternative sources, such as harvested stormwater, desalination, recycled
wastewater and rainwater, has gained traction (Fielding et al., 2015). Harvested stormwater schemes are
often decentralized and used for non-potable supply such as household gardening and irrigation of public
reserves (Naylor et al. 2012), however, in some cases are also used for potable supply (McArdle et al.,
2011). While desalination is a climate independent (and therefore more reliable) source, is often not the
most cost effective or environmentally sensitive option (Becker et al., 2010; Miller et al., 2015). Recycled
wastewater is also climate independent, and generally used for large scale non-potable applications
(Muga and Mihelcic, 2008; Oron et al., 2014), however, it can also be used for indirect or direct potable
supply (Rodriguez et al. 2009; Nagal 2015). Domestic rainwater tanks are increasing in popularity and
have benefits of reducing water usage from utilities and reducing stormwater runoff from houses
(Campisano and Modic, 2012, Umapathi et al., 2013). Demand management strategies have also been
used to reduce per capita consumption and therefore reduce the pressure on limited water supplies
(Dawadi and Ahmad, 2013; Friedman et al., 2014).
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Some alternative sources, such as harvested stormwater, introduce additional complexity to the problem
of modeling and optimization than has been previously considered for traditional water systems (Marchi
et al., 2016a). There is, for example, the need to consider the supply and distribution systems together,
rather than separately, as it is less likely that there will be large storages isolating the supply side from
the distribution side. When including the supply side, longer simulation times often need to be used,
requiring rainfall and evaporation scenarios to be taken into account. The security of supply with regard
to climate change needs to be considered (Paton et al., 2014; Cai et al., 2015), as some sources are
climate dependent and some are climate independent. The social acceptability of using particular sources
for particular applications and the willingness of consumers to pay more for alternative source systems to
be constructed and maintained may need to be incorporated (Hwang et al., 2006; Londofio Cadavid and
Ando, 2013; Fielding et al., 2015). The perception of risks associated with alternative water source
systems by water system managers may also present a barrier to the implementation and success of
such systems (Dobbie and Brown 2012; West et al. 2016). Many alternative sources also have associated
externalities that result in either cost or benefit to the user, such as reduced effluent flow to the ocean or
receiving water body by reusing wastewater and reduced urban stream flows by harvesting stormwater
(Marchi et al., 2016a).

The increased use of alternative water sources then raises the question of how such systems should by
analyzed and optimized to ensure they are implemented as effectively as possible. Stokes et al. (2014)
developed a framework for optimizing the cost and GHG emissions of WDSs, taking into account both the
design and operation of the system, energy sources and GHG emission factors. This study, however, was
applicable only to traditional WDSs, with no consideration of the supply side and alternative water sources.
Chung et al. (2008) developed a mathematical model for evaluating integrated water supply systems with
decentralized treatments. Multiple sources, uses, transportation and treatment systems can be
considered, however only surface water, groundwater and recycled wastewater sources are included.
This model does not incorporate any optimization procedure, only analysis of different options developed
by the user. Makropoulos et al. (2008), with further developments in Rozos and Makropoulos (2013),
produced a decision-support tool for modeling the urban water system from source to tap. The software
can be used to select combinations of water saving strategies and technologies, including how much
water from each type of demand (for example domestic, commercial) is obtained from each source and
how the system is operated. It uses a demand-oriented, water balance approach and does not include
capability for other types of simulation models such as hydraulic and hydrologic modeling.

Uncertainty, particularly with regard to climate change, is an important consideration that has been taken
into account in several methodologies. Paton et al. (2014) developed a framework for water supply system
planning with alternative sources and climate change considerations, while Beh et al. (2014, 2015)
developed two methods for optimal sequencing of urban water supply augmentation options under deep
uncertainty regarding demands and climate. The research by both Paton et al. (2014) and Beh et al.
(2014, 2015) considered only the planning of water supply projects, and did not optimize the specific
design or operation of the systems. Sequencing is also considered in Cai et al. (2015), however, in this
case it is applied to planning of drought mitigation strategies in agricultural systems. They consider
multiple decision stages in which options such as infiltration ponds, parallel terraces, irrigation triggering
threshold and irrigation water sources can be implemented. Marchi et al. (2016a) developed a
methodology for optimizing the design of harvested stormwater systems taking into account future climate
scenarios; however, it does not apply to other types of alternative sources or optimization of system
operation. It does include a detailed analysis of the associated externalities, such as reduced peak flows
and improved economic value of properties near stormwater schemes. Ashbolt et al. (2014) introduced a
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framework for planning of short-term operations for water systems using surface water, groundwater,
desalination, and recycled wastewater with multiple objectives and multiple inflow replicates to account
for uncertainty. Long-term operating strategies and the design of the system were not included and the
operating strategies considered were limited to bulk water transfers and not the operation of pumps and
smaller storages.

5.3  Framework for the Optimization of Alternative Water Sources

The framework presented in the current paper was developed to guide the modeling and optimization of
water supply and distribution systems that use alternative water sources. It is comprised of several
components and sub-components that fit within an optimization structure, for example, a multi-objective
evolutionary algorithm (Figure 5.1). The options component [OPT] describes the potential ‘decision
variables’ that are available in an optimization problem, that is, the factors that can be changed in order
to produce a different outcome. This includes both the initial design of the water supply and distribution
infrastructure and the long- and short-term rules that govern the operation of the system once it has been
commissioned. The infrastructure component [INF] describes the physical components of the system that
need to be modeled and the data associated with each, including both water infrastructure and energy
infrastructure, which may affect the evaluation of electrical energy cost and life-cycle GHG emissions.
There is also a government policy component [G] that covers the policies from regulating bodies that may
affect other aspects of the framework. The analysis component [ANL] describes the simulation of each
potential system configuration and evaluation against objectives and constraints. The optimization
algorithm [OA] investigates different possible combinations of decision variables from the options
component, models the system according to the infrastructure component and evaluates it using the
analysis component to find the optimal solution(s).

Details of the components and sub-components are shown in Figure 5.1 and described in Sections 5.3.1
to 5.3.4. Table 5.1 summarizes the parameters that need to be considered in the optimization and
simulation of alternative water source systems with respect to the different items that are presented in
Figure 5.1 and in the following sections. There are three (non-exclusive) categories that each parameter
may be placed in — decision variables, parameters that are set, and uncertain parameters. Decision
variables are parameters that the user may be able to examine using optimization. It is important to note
that in most optimization problems, not all of these parameters will be available as decision variables at
once, and it is likely that only a small number will be considered. For example, when optimizing pump
operations for an irrigation system, only the first three ‘decision variables’ shown in Table 5.1 (pump
schedules, tank trigger levels, and demand scheduling) may be considered. The remaining parameters
that are designated as decision variables in Table 5.1, particularly those relating to the design of the
system (for example, delivery system layout and pump sizing) would already be set and not able to be
optimized if the existing infrastructure cannot be modified. The parameters that are set are those that very
rarely, if ever, are able to be optimized by the user. These include parameters that would be controlled by
external sources, for example consumers of domestic or commercial demands, pipe manufacturers and
higher level government and regulatory bodies; and also parameters that need to be predefined to a
known or assumed value before optimization or simulation can be performed, for example, fire
demand/reserve, hydrologic/hydraulic variables and objective and constraint selection and definition. The
final category, uncertainty, designates those externally set or predefined variables that are not well known
or may be subject to change in the future and therefore may need to be considered in a sensitivity analysis.
While the selected values of decision variables have an impact on the performance of a system, they are
generally within the control of the decision maker, and therefore are not classed as ‘uncertain’. It is
important to note that the categorization in this table is indented as an indication of how each parameter
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is typically treated. There are, of course, exceptions to this, as almost all of the parameters could be
considered as decision variables if desired and have some associated uncertainty. For example,
environmental flows have been designated as an externally set parameter, as it is likely that the operator
of a system will have to meet requirements set by an external organization such as the Environmental
Protection Agency. They may, however, want to investigate providing greater environmental flows, or
show the benefits of reducing their environmental flow requirements and being able to supply more water
elsewhere.

5.3.1 Options Component [OPT]

The options component covers the potential decision variables (and the range of possible choices for the
decision variables) for an optimization problem. This component is split into two sub-components; the
operational decisions sub-component [O] and the design decisions sub-component [D]. Design decisions
include elements that can be changed before a system is constructed, such as the layout and capacities,
materials and other properties of the various infrastructure components. Operational decisions include
elements that can be changed after construction during the daily management of the system, such as the
operating rules for pumps and valves and allocation of water from different sources.

Operational Decisions Sub-Component [O]

Both short- and long-term operations are considered in the operational decisions sub-component. The
critical aspects of this sub-component (items in bold can be optimized), as shown in Figure 5.1 and Table
5.1 are:

[O1] the specific short term operating strategies including pump schedules (when pumps are
turned on or off based on time), trigger levels (water levels in tanks or other storages that
determine when pumps or valves turn on or off), irrigation or demand schedules (for
systems where they can be pre-determined), valve settings and operating rules, and
pressure settings for pumps (to maintain the set pressure at a particular point).

[02] the specific long term operating strategies including volumetric allocation of water from
different alternative sources, trigger levels (for example in reservoirs) that determine
allocations from different sources or water demand restriction levels, switch times between
different operating regimes (for example between different trigger level sets for different
seasons) and power source selection.

[03] the overall short-term operating strategy, including operating rules that are optimized in [O1]
and operating rules that are pre-set and are not to be optimized (acting as constraints).
Where there are multiple operating rules, the priority of each rule and order they are enforced
in is important to consider.

[O4] the overall long-term operating strategy, including operating rules that are optimized in [O2]
and operating rules that are pre-set and are not to be optimized. Again, the priority and order
of the rules is important to consider.

Most systems have multiple operating conditions to meet and therefore multiple operating rules will be in
place. Prioritization of the different operating rules is important, and this may be set by the operator or be
chosen by the optimization tool. This component requires information from the government policy sub-
component ([G] in Figure 5.1), specifically in terms of water source licensing and environmental flow
regulations. These policies would typically be regulated by local or state government departments or the
environmental protection authority. Operational rules set in this sub-component will inform the simulation
sub-component [S] as they will need to be represented in any simulation model(s) of the system.
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Table 5.1: Summary of parameters for the design and operation of alternative water source systems

Parameter Decision Parameter Uncertain  Relevant Items in
Variable* that is set Parameter  Figure 5.1

OPERATIONAL INPUTS [O]

Pump schedule X 01

Tank trigger levels X 01

Tank / storage maximum and minimum allowable X 01, W3, W11
levels

Demand pattern (irrigation, agriculture) X 01, D4, W13

Demand pattern (domestic, commercial, industrial) X X 01, D4, W13

Demand flow rate (peak, average, peak day) X X 01, D4, W14

Valve settings or operating rules X 01

Pump pressure settings X 01

Volumetric allocation of water X 02

Reservoir trigger levels X 02

Switch time between operating regimes X 02

Priority ranking of operating rules X 03, 04
DESIGN INPUTS [D] AND WATER INFRASTRUCTURE [W]

Water source selection X D1, W2

Water source infrastructure (layout, capacity) X D1, W2

Treatment type selection X D2, W8

Treatment infrastructure (layout, capacity, treatment X D2, W8
rate/level)

Delivery system type selection X D3

Delivery system layout (lengths, elevations, junctions, X D3, W7, W10,
tank locations) W12, W15

Pipe material and diameters X D3, W7, W10,

W12

Pipe parameters (unit cost, pipe wall roughness (), X X(g) D3, W6, W7,
wall thickness, embodied energy) W10, W12

Pump sizing X D3, W5, W9

Pump performance characteristics and cost X D3, W4

Tank sizing (capacity, height, diameter) X D3, W3, W11

Fire demand / reserve X D3, W11

Water user type selection X D4

Rainfall / streamflow series X X W1

Reservoir capacity and volume curve X W3

Pond (e.g. wetland) capacity and volume curve X W3

Prioritization rules for demands types X W15

OTHER INPUTS [P], [G] AND [S]

Power source selection X X P1, P3, G5

Electricity tariff structure and cost X X P2

GHG emission factors X X P3, G5

Fit-for-purpose requirements X G1

Water license amounts X G2

Environmental flow amounts X G3

Discount rate X X G4

Hydrologic variables (e.g. permeability) X S1

Hydraulic variables (e.g. water temperature) X S3

OPTIMIZATION PROBLEM FORMULATION [E]

Objective selection X E1

Objective function(s) X E2

Constraint selection X E3

Constraint limits (maximum and minimum) X E4

Penalty costs X E4

*Note: Parameters specified as decision variables are shown in bold throughout Sections 5.3.1 and 5.3.2.
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Design Decisions Sub-Component [D]

This sub-component incorporates all of the design decisions that are available to the designer for the
entire water supply and distribution system, from source to user. The critical aspects of this sub-
component (items in bold can be optimized), as shown in Figure 5.1 and Table 5.1 are:

[D1] the water sources selected to be used including natural catchments, harvested stormwater,
recycled wastewater, groundwater, imported water, domestic rainwater, desalination,
domestic greywater and sewer mining; and the layout and capacity of source
infrastructure.

D2] the types of treatment selected including centralized treatment at plants such as
mechanical filtration, chemical dosing, ultraviolet treatment and ozonation, and decentralized
in situ treatments such as gross pollutant traps, wetlands and biofilters; and the layout,
capacity, dosing rates and retention times for treatment facilities.

[D3] the type and configuration of the delivery system used including potable, non-potable
(for example dual reticulation systems to deliver recycled water), centralized and
decentralized, and the infrastructure design variables such as system layout, pipe sizes,
lengths and materials, pump sizing, valve sizing, and tank sizing.

[D4] the types of water users that are supplied by the system including potable, irrigation,
agriculture, industrial, non-potable domestic/commercial and firefighting, and the demand
rate and pattern for water use (for example, scheduling of irrigation demands).

Regulations on fit-for-purpose water use from the government policy component [G] in Figure 5.1 inform
what water sources can be used for particular applications and these are likely to be specified by state or
federal government departments or health authorities. Generally, sources such as harvested stormwater
and recycled wastewater cannot be used for potable supply and rather serve non-potable demands in
dual-reticulation systems or are supplied to irrigation, agricultural and industrial users. There may be some
systems, however, in which necessary approvals have been obtained to use these sources for potable
supply. The design decisions are inputs to the water system infrastructure sub-component [W] which
describes the system elements and data to be modeled.

5.3.2 Infrastructure Component [INF]

The purpose of this component is to describe the infrastructure that needs to be modeled in order to
evaluate the objectives and constraints of the problem. There are two sub-components; the water system
infrastructure sub-component [W] and the electrical energy infrastructure sub-component [P]. Water
system infrastructure includes the specific aspects of the water supply and distribution system and the
data required, including construction and maintenance costs. Electrical energy infrastructure includes the
power source (fossil fuel types and renewable types) and the electricity price and GHG emission factor
data needed.

Water System Infrastructure Sub-Component [W]

This sub-component includes the specific infrastructure aspects of the water system design and the
relevant data that is needed in order to simulate it. Most systems and optimization problems will not require
all of these factors to be considered or modeled; however, the purpose of this framework is to cover a
large range of the possible requirements for an optimization and hence the scope is intentionally broad.

The water system infrastructure sub-component [W] as shown in Figure 5.1 represents a system with one
water source, one treatment plant, one storage tank and one demand node. In reality, many systems will
have more than one of each of these components, particularly the treated storage [W11] and demand
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node [W15]. Pumping of water between storages may occur in multiple stages, particularly when there is
a large difference in elevation. For typical centralized potable WDSs, all treatment will occur at one water
treatment plant. In decentralized systems such as for harvested stormwater schemes, however, treatment
may occur in multiple stages. For example, a gross pollutant trap may be located on an urban creek before
the water is collected in a harvest pond, then the water may be pumped to be treated through a wetland,
and then treated again in a treatment plant.

The critical aspects of this sub-component (items in bold can be optimized) as shown in Figure 5.1 and
Table 5.1 are:

[W1]

[W2]
[W3]

[W4]

[W5]

[We]

[Wr]
[W8]
[W9]
[W10]

[W11]
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the rainfall or inflow scenarios for the water source; for example rainfall or streamflow
scenarios for natural catchments and stormwater sources, or a sewer system flow pattern
for recycled wastewater. Sources such as desalination and, depending on the temporal scale
of the optimization, groundwater, do not usually require an inflow scenario. Rainfall and
streamflow scenarios may be a data series obtained from measurements at gauging stations
or modeled in a hydrologic simulation program [S1]. Multiple inflow scenarios may be used,
particularly for systems with highly variable inflows. Losses such as evaporation and
infiltration may also need to be taken into account for sources with large open storages such
as reservoirs and natural water ways.

the source type as described in [D1] with input from [WA1].

the raw water storage; this may be a reservoir (typical for a natural catchment), a harvest
pond for a stormwater system, a tank (for example for a recycled wastewater system) or an
aquifer for groundwater. Associated data including capacity, a volume curve, elevation,
height and diameter is required.

characteristics of available pumps such as performance curves (head, efficiency, and power
against flow), cost, rated speed and variable speed pump (VSP) information where
applicable.

the pump transferring water from the raw water storage to a treatment facility, requiring data
from [W4].

pipe size and material information such as available diameters, unit costs, pipe wall
roughness, wall thickness and embodied energy. For new pipes, this information will be
easily obtained from the pipe manufacturer. For existing systems, however, there may be
some uncertainty in these parameters if detailed records of the ‘as constructed’ system and
any pipe replacements have not been kept. In addition to this, the pipe wall roughness of
existing pipes will generally be uncertain. Pipe wall roughness increase as pipes age, and
pipe condition assessment may be needed to provide an estimate.

the pipe system transferring water from the raw water storage to the treatment facility, pipe
lengths and layouts need to be known as well as information from [W6].

the treatment facility that will produce water of the required quality based on the source
type and demand type. Characteristics of the individual treatment methods as described in
[D2] need to be known.

the pump transferring water to a treated storage, requiring the same data as [W5].

the pipe system transferring water to a treated storage, with the same information as [W7]
required.

the treated storage, for example, a tank or multiple tanks that are typically at a high elevation
point of the network in order to supply demands by gravity. Data required includes the
elevation, height, diameter and maximum and minimum allowable water levels.
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[W12]  the pipe system transferring water from the treated storage to consumers, which again
requires information as in [W7]. This pipe system is likely to be more complex than those in
[W7] and [W10], particularly for systems with many different demand nodes. For systems
with only one source of water, [W7] and [W10] are likely to be single pipelines. For
decentralized systems with only one specific consumer, [W12] will also most likely be a
single pipeline. Most systems, however, have much more than one demand point and as
such distribution systems are often looped or branched systems that require more complex
analysis than single pipelines.

[W13] demand scenarios that will be applied to the demand nodes, consisting of a pattern of
demand multipliers over a day, week or year. There may be multiple demand scenarios
required for a system, for example, if there are different types of demand nodes (such as
domestic, commercial, industrial) or different seasonal demands.

[W14]  the peak demand is the demand rate that is typically used to size the system components
and so will affect the design of the system. The demand scenarios [W13] are more likely to
affect the operation of the system as the demand varies over the simulation time. The peak
day demand (average demand over the peak day), the peak hour demand (the average
demand over the hour with maximum consumption in the peak day) and average demand
rates may also be required. Fire loading demands and other emergency conditions will affect
the design of the system, for example storage tanks should be sized to be able to provide
demand in the case of fires, other emergencies and system failures (e.g. if the supply to the
tank is cut off).

[W15]  the demand nodes for the consumers, these may be different types of users as described in
[D4] and require information from [W13] and [W14]. Different types of users will have different
demand rates [W14] and demand patterns [W13]. When simulating the system, an average
demand rate will often be used with the demand pattern, rather than the peak demand.
Systems with multiple demand nodes may prioritize different types of demands over other,
for example, irrigation systems using non-potable water may prioritize high profile sport fields
over reserves with no formal usage.

Choices made in the optimization of the design decisions sub-component [D] in Figure 5.1 will be inputs
to the water system infrastructure sub-component. There may be other parameters that are not decision
variables in the optimization (as differentiated in Table 5.1) though are still required by this sub-component
in order to simulate the system. The construction and maintenance costs of each of the infrastructure
components needs to be known in order to calculate the initial construction cost and ongoing costs as
part of life-cycle economic costing. Information collected through this sub-component will be input to the
simulation sub-component [S] depending on the types of simulation models used and to the evaluation
sub-component [E] through the construction cost or other factors calculated for the specific objectives of
a problem.

Electrical Energy Infrastructure Sub-Component [P]

The electrical energy infrastructure sub-component includes any power infrastructure that affects the
electricity prices and GHG emission factors. The critical aspects of this sub-component as shown in Figure
5.1 and Table 5.1 are:

[P1] the breakdown of power sources including fossil fuel sources such as coal and oil, and
renewable sources such as solar, wind and hydrothermal.
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[P2] the electricity price tariff structure, which may be a peak and off-peak structure, or multi-part
(more than two price levels) and could include a peak demand charge which applies to the
peak electricity power usage in each month.

[P3] the GHG emission factor, which is based on the power source breakdown [P1] and may vary
with time, either in the short-term (with sources that do not have storage such as solar panels
and wind turbines) or the long-term (as fossil fuel sources tend to be phased out and
renewable sources become more popular).

Climate and energy policy [G5] in the government policy component in Figure 5.1 will affect the power
source breakdown and electrical energy pricing now and into the future. This is likely to be regulated by
a federal government department or body. Information from this sub-component is used to calculate
electrical energy costs in order to evaluate life-cycle economic costs and also to calculate life-cycle GHG
emissions in the evaluation sub-component [E].

5.3.3 Government Policy Component [G]

The government policy component covers policies by regulating bodies at any level (local, state, federal)
that may affect other aspects of the framework. These policies need to be considered over the operational
life-span of the system, for example, climate and energy policy may affect future energy sources and
therefore affect future GHG emissions. The critical aspects of this component as shown in Figure 5.1 and
Table 5.1 are:

[G1] fit-for-purpose water use, which may be regulated by state or federal governments or health
agencies and affects which water sources [D1] and water uses [D4] can be combined in the
design decisions sub-component. It may also guide which design decisions (for example,
treatment) are appropriate.

[G2] water source licenses, which may be regulated by local or state governments or the
environmental protection agency, depending on the catchment size, and will affect the
amount of water available from particular sources for allocation in long-term operations [O4].

[G3] environmental flows, which similarly to water source licenses may be regulated by local or
state bodies depending on the size of the catchment and affect the amount of water available
for allocations [O4].

[G4] the discount rate applied to operational costs and GHG emissions in life-cycle analysis [E1].
This is unlikely to be set by a government body and rather will be informed from outside the
decision making team, generally by recommendations from economists.

[GH] climate and energy policy set by state and federal governments will affect the energy sources
available now and in the future, therefore affecting GHG emission factors and any GHG
objectives [P].

5.3.4 Analysis Component [ANL]

The analysis component uses information from the options, infrastructure and government policy
components to simulate the system and evaluate how it performs relative to the objectives and
constraints. Within an optimization algorithm, the analysis component is used to assess multiple
combinations of decision variables from the options component to determine how they perform. There are
two sub-components within the analysis component; the simulation sub-component [S] and the evaluation
sub-component [E]. The simulation sub-component includes the modeling aspects of the problem and the
key variables that are required to be output from the models in order to evaluate the system. Optimization
objectives and constraints are defined in the evaluation sub-component, which also provides information
to the optimization algorithm as to which of the potential solutions perform best.
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Simulation Sub-Component [S]

The simulation sub-component considers the type of simulation model that is most applicable to the
particular system and problem, and specifies the key variables that need to be calculated in the model(s).
The critical aspects of this sub-component as shown in Figure 5.1 and Table 5.1 are:

[S1] the hydrologic simulator, which is required if rainfall scenarios need to be transformed to
streamflow, typically for systems using natural catchment water or harvested stormwater.

[S2] the mass balance model, which may be required for systems that have multiple water
sources with long-term allocation decisions, particularly if there are different rainfall and
evaporation scenarios to be considered for the storages.

[S3] the WDS hydraulic simulator, which is required to analyze pump and pipe systems that
transfer water between different storages and treatments and to consumers.

[S4] information on constraints, such as yield from a hydrologic model, environmental releases
and system reliability from a mass balance model, and nodal pressures, pipe velocities,
pump switches and tank levels from a hydraulic model.

[S5] the water levels in storages, which are important particularly when considering operational
decisions, such as trigger levels, and for constraints, such as system reliability.

[S6] the power usage from any pumps or treatment facilities, which are important in informing the
ongoing electrical energy costs as part of life-cycle economic costing. Generally a WDS
hydraulic simulator is required to model detailed pump operations and therefore accurately
estimate the pump power usage.

Each of the three types of models will require different simplifications or assumptions depending on the
particular system. For example, mass balance modeling will generally only consider one pump operating
point so may not accurately calculate the pump power usage. When deciding which type of model to use
for a particular problem, the user will need to consider the different simplifications, assumptions,
advantages and disadvantages of each model. Trade-offs between accuracy of outputs and simulation
run times need to be considered. For example, when optimizing both short- and long-term operations of
a system, there is likely to be a trade-off between using a hydraulic simulator for detailed hydraulic
information and using a mass balance model for shorter run times. Most problems may ideally use
elements from more than one type of model; however, using multiple models will increase computational
complexity and run times. Wherever possible, the most applicable type of model should be selected and
augmented with the required elements from other types of models. Depending on the particular system
and optimization problem, there may be other key variables that need to be calculated in the simulation
models. For optimization of pumping operations, which is the focus of the case studies in this paper,
storage water levels and pump power usage are the most important. Existing hydrologic, mass balance
and hydraulic simulators, for example, MUSIC, WATHNET and EPANET, have often been used in
conjunction with optimization algorithms and should be taken advantage of where possible rather than
creating individual simulators for different problems.

Information from the operation decisions sub-component [O] will be input to the simulation sub-component
as the overall operating strategy for the system ([O3] and [O4]) will need to be modeled. Short-term
operations are likely to be considered in a hydraulic simulator and long-term operations, including
allocations, in a mass balance model. Parameter data on the physical components of the system from the
water system infrastructure sub-component [W] are also required as inputs for this sub-component.
Constraint information is provided to the evaluation sub-component to compare the systems performance
against specified requirements. Energy usage is used to calculate objective functions such as life-cycle
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economic costs and life-cycle GHG emissions. Simulating systems prior to optimization is an important
step to help inform the formulation of the optimization problem and provide a check that results from the
optimization are reasonable.

Evaluation Sub-Component [E]

The purpose of the evaluation sub-component is to compare the performance of each of the potential
solutions to the objectives and constraints of the problem. The critical aspects of this sub-component as
shown in Figure 5.1 and Table 5.1 are:
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[E1]

[E2]

[E3]
[E4]

the specific objective(s) to be considered in the optimization; typically, minimizing life-cycle
economic cost is a primary objective (or a component of that such as construction cost or
operational cost individually). Other possible objectives include minimizing spills from
reservoirs and other storages, minimizing life-cycle GHG emissions (or a component of that
such as embodied energy from construction or operational emissions), minimizing
supplemental potable water supply (in systems using non-potable sources), maximizing
water quality, maximizing reliability and minimizing environmental impact.

the objective function(s) to be optimized; multiple objectives may be evaluated as individual
functions in a multi-objective optimization algorithm or combined into a single function for
use in a single objective optimization algorithm. Itis important to consider how each objective
should be formulated, for example, when optimizing short-term pump operations to minimize
ongoing costs, the objective function may be evaluated in terms of cost per volume of water
pumped, as this will take into account the amount of water delivered to consumers. Reliability
of a system may be formulated in different ways, for example minimizing the time spent with
water restrictions applied or minimizing the time spent below a certain storage level. Some
objectives may be more difficult to quantify, such as minimizing environmental impact, so
more specific objectives may be required, for example, maximizing environmental flow or
minimizing the change in a water body’s natural hydrological regime. Simplifications and
assumptions may be required to formulate some objectives as mathematical functions.
When performing multi-objective optimization, trade-offs between the different objectives
should be considered by the development of Pareto fronts, allowing the decision maker to
determine which Pareto optimal solution best fits their needs (see examples in Wu et al.
2010a, 2010b, 2012a, 2012b, 2013).

the specific constraints to be considered as described in [S4].

the evaluation of the constraints compared to the limits set by the user; maximum and/or
minimum values for each constraint need to be specified. Some constraints may be flexible,
for example, if an environmental flow is set by a regulator, the operator could consider
increasing the set environmental flow as a decision variable in the optimization. There are
several different ways constraints can be incorporated into the optimization algorithm.
Penalty functions are often used for single-objective problems. They add value (often a
monetary amount) to the objective function in a minimization problem and remove value from
the objective function in a maximization problem based on the magnitude of the constraint
violation, therefore making solutions that violate constraints less desirable (Nicklow et al.,
2010). Care must be taken when formulating penalty functions to keep solutions that only
slightly violate constraints in consideration during the optimization process, while ensuring
the feasibility of the final optimal solutions. For multi-objective problems, a constraint-
handling technique that will ensure feasible solutions are retained in preference to infeasible
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solution is often employed. An example of this is the constraint tournament selection
procedure introduced by Deb et al. (2002).

Information about the objectives is received from the simulation sub-component [S] and from the
calculation of construction, maintenance and electrical energy costs based on the water system
infrastructure sub-component [W] and simulation sub-component. A discount rate for costs or GHG
emissions may be set in the government policy sub-component [G] which will impact the ongoing costs
and emissions in a life-cycle analysis. The discount rate may be informed by economists, such as the
Stern review which recommends low discount rates for projects that lead to the production of GHG
emissions (Stern 2006). Information about the performance of each potential solution in relation to the
objectives and constraints is provided to the optimization algorithm in order to find the best solutions.

5.3.5 Optimization Algorithm [OA]

The optimization algorithm is used to determine which solution(s), out of many potential solutions to the
problem, performs best in relation to the objective function(s). The procedure used to set up the
optimization will depend on the type of algorithm chosen; however, the first step is generally to define the
decision variables, objectives and constraints of the problem. This will then guide what aspects of the
system need to be modeled and what data is required in order to take into account all of the decision
variables and that will provide information for all of the objectives and constraints. Multiple potential
solutions to the problem form the ‘solution space’ and the optimization algorithm guides the search of this
solution space towards the global optimum. The size of the solution space depends on the number of
decision variables and number of choices available for those decision variables. More complex problems
are often described as having a more ‘rugged’ solution space, meaning the optimization algorithm is more
likely to get trapped in local optima and will have more difficulty finding the global optimum. When a single
objective optimization algorithm is used, one optimal solution will be found, while in multi-objective
optimization, a Pareto front will be developed with multiple solutions representing different trade-offs
between the objectives.

Most optimization algorithms have parameters that need to be defined by the user, such as the number
of generations or iterations and the population size in evolutionary algorithms. Although the choice of
these parameters does not influence the components shown in Figure 5.1, they have an effect on the
optimal solutions found by the algorithm. In general, the most effective set of parameter values to use
will vary between different optimization problems and the size of the solution space can only give some
indication of what parameter values to use. In fact, multiple parameter sets should be tested in order to
find the most appropriate values for the specific problem. Ideally, the chosen parameter set should find
the same optimal solution regardless of the starting point or initial solution(s) for the optimization. Dandy
et al. (1996) presented an improved genetic algorithm formulation for optimization of WDS design. Five
different parameter sets were trialed on both their improved genetic algorithm and a comparatively simple
genetic algorithm. They acknowledged that parameter selection does require some judgement on the part
of the user, however, they found their optimization results to be relatively insensitive to the parameter
choice, particularly for the improved genetic algorithm. As well as the effect of various parameter values,
different optimization algorithms will be more suited to different problems. This issue has been addressed
by the development of hybrid algorithms, such as AMALGAM (a multi-algorithm, genetically adaptive
multiobjective approach proposed by Vrugt and Robinson (2007)), which combines several different
optimization algorithms to improve search efficiency. These hybrid algorithms also have the benefit of
requiring little to no parameter specification by the user.
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5.3.6  Sensitivity Analysis

As identified in Table 5.1, values of some input parameters (for example, describing the network or water
demand loadings) are uncertain or subject to change in the future. Sensitivity analysis can be performed
to account for a wide range of possible future conditions when optimizing and simulating systems.
Variation of a particular parameter may result in different Pareto fronts (in multi-objective optimization) or
different optimal solutions (in single objective optimization), as seen in Wu et al. (2010b) when they
considered variations in discount rates. These various Pareto fronts or optimal solutions along with the
various parameter values that produced them can then be provided to the decision maker. Sensitivity
analysis will also help to identify if there are any uncertain parameters that do not affect the optimal results.
Robustness of the optimized solutions can also be explored a-posteriori: in general, solutions that perform
well for many different possible conditions are more desirable from the decision makers’ point of view.
Climate change provides an additional source of uncertainty for the parameters identified in Table 5.1 -
detailed discussion of this is omitted from Sections 5.3.6.1 t0 5.3.6.4 as it is covered in Section 5.3.6.5.

Demand

In some applications, such as irrigation and agriculture, the demand rate and pattern may be deterministic
[O1], either the water supplier has control over the consumption, or may be able to work with those who
do to determine an optimal demand schedule. For other applications, such as domestic, commercial and
industrial, the demand rate and pattern depends on the consumption of water by multiple individual users
[D4, W13, W14, W15], and therefore has greater uncertainty. Historical consumption can provide some
level of assurance as to how water may be used in the future, at least on an aggregated scale. Diurnal,
weekly and seasonal demand variations need to be considered. In the future, factors such as climate
change, population growth and water saving initiatives will affect how water is consumed and therefore
impact demand rates and patterns. Emergency conditions and system failure are by their nature
unpredictable and this should be taken into account when designing and operating WDSs.

An example of how demand uncertainty can be considered in the optimization of WDS design is the study
by Basupi and Kapelan (2015). The demand at each time step was based on a normal distribution with a
gradually increasing mean (based on deterministic demand forecasts) and an increasing standard
deviation. Monte Carlo or Latin Hypercube simulation was included in their methodology to consider
multiple demand scenarios. Each solution in the Pareto front was also further analyzed against three
demand projections — average, optimistic (low overall demand) and pessimistic (high overall demand).
Their results demonstrated the value of flexible WDS design over deterministic approaches when
considering uncertainty.

Rainfall and Streamflow

Rainfall and streamflow inputs [W1] may be required for systems using natural catchment water,
harvested stormwater or imported water, and they are often treated with higher uncertainty than demands
(Seifi and Hipel, 2001; Reis et al., 2005). Within the current climate, there may be multiple realizations of
possible rainfall and streamflow series (for example dry or wet years). Beh et al. (2015) considered rainfall,
as well as population and temperature, as uncertain variables in their optimal sequencing methodology
for water supply system augmentation. They considered both climate and hydrologic variability: seven
possible future climate scenarios provided different forecasted rainfall reductions, and within each of these
seven scenarios, 20 stochastic replicates of the rainfall sequence were produced. Different Pareto fronts
were produced for each climate scenario, with the more severe scenarios finding solutions that required
greater system augmentation and therefore had higher costs and GHG emissions. The robustness of
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each Pareto solution was calculated based on the average reliability and vulnerability of the solution over
the 20 rainfall sequences for the particular climate scenario.

Electricity and GHG Emissions

Power source(s) [P1], electricity tariffs and costs [P2] and GHG emission factors [P3] will generally be
known for the present time, however, it may not be clear how they will change in the future. The mix of
power sources changes naturally over time, as different power plants are built or decommissioned. This
change in power source types over time, as well as technical advancements will affect the cost and GHG
emissions associated with electrical energy generation. The electricity market and economic factors will
also affect the cost of electrical energy over time. Changes in electricity and GHG emissions can be an
important factor to consider during an optimization problem, as shown in the following examples. Blinco
et al. (2014) studied the optimization of pump operations in WDSs in relation to the minimization of GHG
emissions and the use of different power source scenarios, showing that optimal tank trigger levels can
be influenced by the variation in emission factors. Wu et al. (2012a) considered three different electricity
tariff scenarios, which increased over time, and three different GHG emission factor scenarios, which
decreased over time, in the optimization of WDS design. The different electricity tariff and emission factor
scenarios affected the solutions found in the Pareto front and their overall costs and GHG emissions.

Discount Rate

A discount rate [G4] may be used in life-cycle analysis for both ongoing economic costs and ongoing
GHG emissions. In practice, discount rates on economic costs vary significantly between different
organizations, generally from 2% to 10% (Rambaud and Torrecillas, 2005), while many water utilities use
discount rates in the range of 6% to 8% (Wu et al. 2010a). When selecting discount rates, consideration
should be given to whether both economic costs and GHG emissions are discounted, if they have the
same discount rate, and if intergenerational equity is taken into account using social discount rates.
Various social discount rates have been proposed for discounting ongoing costs; the Intergovernmental
Panel on Climate Change (IPCC) adopted a zero discount rate over a period of 100 years, after which no
consideration for future costs or benefits is given (Fearnside 2002), other suggestions include 1.4% (Stern
2006) for projects that are impacted by climate change, 2-4% (Weitzman, 2007) and a time declining rate
(Gollier and Weitzman, 2010). Wu et al. (2010b) gave an example of a sensitivity analysis of discount
rates in the optimization of WDS design for minimization of costs and GHG emissions. Discount rates of
0%, 1.4%, 2%, 4%, 6%, 8% and a time declining rate were applied to the economic costs, with GHG
emissions either not discounted at all, or discounted at the same rate as costs. They found that the
different discount rate scenarios produced different Pareto fronts; when GHG emissions were discounted,
the solutions tended to have lower capital costs and higher operating emissions.

Climate Change

Management of water resources in the developed world has been based on an assumption of stationarity
— that is, ‘that natural systems fluctuate within an unchanging envelope of variability’ (Milly et al. 2008).
The effects of human-induced climate change make this assumption no longer valid (Milly et al. 2008),
and introduce additional sources of uncertainty for many parameters. Uncertainty introduced by climate
change is twofold - firstly, the impacts of climate change increase the uncertainty of future weather
conditions; and secondly, our response to the threat of climate change and the types of adaption methods
that will be utilized in the future are uncertain. Climate change affects the magnitude and temporal and
spatial distribution of rainfall, temperature and other environmental factors, thus the possible rainfall and
streamflow series to consider for the future will likely be different to the present. Changes to temperature
and other environmental factors will also affect the hydrology of natural and urban catchments and
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therefore change how rainfall will transform to runoff or streamflow. Climate change impacts will also affect
how people consume water, for example, higher temperatures and lower rainfall may drive people to water
their gardens more. In order to simulate future climate conditions, general circulation models (GCMs) are
often used in conjunction with future emissions scenarios. According to Mpelasoka and Chiew (2009),
‘GCMs are the best tools available for simulating global and regional climate systems’, however, the
information provided is generally too coarse for applications to catchment runoff, and therefore some kind
of downscaling is required. The modeling uncertainty of both the GCMs and downscaling methods
increases the uncertainty of future climate scenarios (Paton et al., 2013). In 2000, the IPCC introduced
several emissions scenarios (termed SRES scenarios) projecting future global GHG emissions. The
various scenarios are based on different assumptions of the mix of energy generating technologies (fossil
fuel or non-fossil fuel dominant) and population, economic and technological growth (IPCC 2007).

The extent to which we can reduce our GHG emissions will affect the magnitude of climate change
impacts on rainfall and temperature. With the growing concerns of climate change and sustainability,
renewable sources such as solar and wind will become more prevalent and replace fossil fuel sources
such as coal and gas. This may affect electricity pricing and GHG emissions from power generation.
Multiple future power source scenarios assuming different levels of climate change mitigation may need
to be considered. Other climate change adaption strategies include economic incentives such as carbon
taxes and cap and trade systems, which may affect economic analysis of WDSs. As discussed in Section
3.6.4, when climate change and intergenerational equity are considered, social discount rates of 0%,
1.4%, 2-4% and time declining rates have been proposed.

Paton et al. (2013) analyzed the sources of uncertainty relating to climate change and their impact on
water supply security. They considered 19 different scenarios with different combinations of six SRES
scenarios, seven GCMs and six demand projections, as well as 1000 stochastic rainfall replicates. They
found that the impact of the different sources of uncertainty on the optimal solutions varied over the 40-
year planning period, with some having a greater effect in the short-term and others a greater effect in the
long-term. Roshani and Filion (2014) investigated the impact that different climate change abatement
strategies have on water main rehabilitation. They consider six carbon abatement strategies with different
combinations of two discount rates (1.4% and 8%) and three carbon tax scenarios (no tax, ‘fast and deep’,
and ‘slow and shallow’). Using a low discount rate and implementing a carbon tax encouraged the
optimization algorithm to find solutions that invested in rehabilitation early, to reduce the cost of continuing
leaks, pipe repair, energy use and GHG emissions.

5.4 Case Studies

The utility of the framework described in the previous sections will now be explored by two different case
studies that have different water sources and many variables that need to be considered. These case
studies are provided as an example of how the framework could be applied to optimize system operations.
The first case study is a managed aquifer recharge (MAR) system that harvests stormwater from an urban
creek for irrigation of reserves and sporting fields. This case study demonstrates the importance of
analyzing the system by simulation prior to optimization in order to formulate the optimization problem.
The second case study is a water supply system in a rural town that supplies potable water from multiple
alternative water sources. This system is optimized for minimization of energy use of the many pumps
used to transfer water from the various sources.

5.4.1 Ridge Park Managed Aquifer Recharge - Case Study 1
Ridge Park is located in the Adelaide metropolitan area in South Australia, within the City of Unley local
government area. The scheme supplies harvested stormwater to sports fields and recreational reserves
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in the local area for non-potable irrigation use. The scheme is designed to harvest up to 60 ML of
stormwater per year, which occurs over the winter, while in summer the harvested water is used for
irrigation. During winter, stormwater from Glen Osmond Creek, an urban waterway, is collected in the
Harvest Pond created by a dam on the creek (Figure 5.2). Water is then pumped to the Bioretention Basin
which provides some treatment, and then pumped to a small treatment plant that includes UV and
filtration. Once the water has been adequately treated, it is stored in an above ground tank next to the
treatment plant and final pump station. From the Storage Tank, water is injected into an artesian, fractured
rock aquifer for long term storage. In summer, when no water is being harvested, water is extracted from
the Aquifer and to the Storage Tank, before being pumped or gravity-fed to irrigation points. The Ridge
Park Reserve is irrigated by a pressurized irrigation line, as it is at higher elevation than the Storage Tank.
Fraser Reserve is also connected to the pressurized system to ensure adequate pressures for irrigation.
In total, the pressurized system supplies almost 15 ML of water per year. The remaining seven reserves
are on a gravity-fed line which supplies a total demand of roughly 35 ML per year. The layout and details
of the system are given in Figure 5.3. For more detailed data on this case study, please see Appendix E.
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Figure 5.2: Ridge Park Managed Aquifer Recharge System process schematic
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Figure 5.3: Ridge Park Managed Aquifer Recharge System layout and data
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For existing systems, simulation analysis of the current operation is an important first step in formulating
the optimization problem. Results of current operational simulations can highlight areas for improvement
that can then be focused on in the optimization. The operation of the Ridge Park stormwater harvesting
system was split between winter and summer operations and both were simulated in EPANET to
determine current pump operational costs. Trigger levels (related to volumes in the three storages as
shown in Table 5.2) control when the pumps in the Winter Harvesting and Injection system turn on and
off (Table 5.2). The Bore Pump is also controlled by trigger levels in the Storage Tank. During summer,
Pump 3 is controlled by the irrigation demands, which are on a schedule so that different reserves are
irrigated on different nights (Table 5.3). Pump 3 is a VSP and is operated at 80% of full speed for injection
(such that the flow is less than the 7 L/s maximum for injection) and 75% of full speed for irrigation (such
that the target pressure downstream of the pump is achieved at the expected demand rates). Both
systems were simulated for a period of one week in EPANET, with a 15 minute hydraulic time step and
five minute reporting time step. Several week-long streamflow series for the available flow in Glen
Osmond Creek at a daily resolution were used in the harvesting and injection model (Figure 5.4). A
peak/off-peak electricity price tariff applied to the entire system; a peak price of 25.53 c/kWh was applied
from 7am to 9pm on weekdays, and an off-peak price of 15.26 c/kWh was applied over night and on
weekends (tariff pattern and simulations started on a Sunday).

Table 5.2: Trigger levels for the Ridge Park System

Current Setpoint

Storage and Trigger Level Type Volume (%) Level (m) Start Pump Stop Pump
Harvest Pond High Level 80 1.6 1

Harvest Pond Low Level 50 1.0 - 1
Biofiltration Basin High Level 90 0.80 2 1
Biofiltration Basin Low Level 50 0.59 - 2
Storage Tank High Level 90 2.25 3 2, Bore
Storage Tank Low Level 70 1.75 Bore 3

Table 5.3: Irrigation demand schedule for the Ridge Park System

Reserve Demand Rate (L/s) Duration/day (hr) Start Time Irrigation Days
Ridge Park 1 3.53 8.33 9:30 PM Mon & Wed
Ridge Park 2 3.53 8.67 9:30 PM Tues & Thurs
Fraser Reserve 1.41 5.83 9:30 PM Mon & Wed
Ferguson Ave Reserve 2.00 5.00 9:30 PM Tues & Thurs
Scammell Reserve 2.15 6.00 10:00 PM Tues & Thurs
Fullarton Park 1 3.85 1.67 10:00 PM Mon & Wed
Fullarton Park 2 3.85 6.67 10:00 PM Tues & Thurs
Fern Ave Reserve 3.53 3.33 10:00 PM Mon & Wed
Windsor St Reserve 2.20 8.00 8:30 PM Tues & Thurs
Henry Codd Reserve 1.10 8.00 10:00 PM Mon & Wed
Unley Oval 5.57 9.00 9:00 PM Sun, Mon & Wed

Winter Harvesting and Injection System current pumping operation results

When there was adequate water available, such as in Streamflow Series 1, 4 and 5, the volume of water
injected into the aquifer (by Pump 3) was a little over 3 ML per week (Table 5.4). This was significantly
less than the volume available, which reflects the limited flow rate of Pump 3 (7 L/s for injection to the
aquifer), as well as the water that would be lost to overflow when the inflow rate is greater than the flow
rate of Pump 1 (approximately 22 L/s). The total pump energy cost estimate for the harvesting and
injection system ranged from $163 to $267 per week, with an average of $235 per week. Pump 1 was the
most cost-effective to run, while Pump 3 was the most expensive. Pumps 1 and 2 operated at similar
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times throughout the day, however, Pump 2 has much lower efficiencies, which increased its energy use.
Pump 3 operated at a lower flow rate but much higher head than Pumps 1 and 2, and was more likely to
be switched on for the entire day, which contributed to its higher cost of operation. Pumps 1 and 2 turned
on and off very frequently, and operated at a much higher flow rate than Pump 3 (Figure 5.5). The flow
rate of Pump 3 in Figure 5.5(c) reduced over the week as the headloss through the bore increased from
assumed clogging of the bore. As the storages are relatively small, in particular the storage tank, it did
not take long for them to be filled and emptied (Figure 5.6), which contributed to the frequent pump
switches. The current trigger levels in the Storage Tank are very close together (70% and 90% volume)
as a result of possible pump priming issues that occurred during the commissioning of the system. These
close together trigger levels also contributed to the short fill and empty times.
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Figure 5.4: Streamflow series used for simulation of the Winter Harvesting and Injection operation
Table 5.4: Current operation results for the Winter Harvesting and Injection System
Streamflow Available Volume Cost (c/kL) Volume Injected Total Cost
Series (ML/wk) Pump 1 Pump 2 Pump 3 (ML/wk) ($/wk)
1 19.0 0.64 2.28 5.49 3.14 267
2 2.29 0.68 2.32 6.19 1.76 163
3 6.19 0.69 2.23 5.87 244 222
4 15.4 0.64 2.24 5.46 3.18 258
5 29.7 0.63 2.25 5.47 3.16 264
Average 14.5 0.66 2.26 5.70 2.74 235

Summer Extraction and Irrigation System current pumping operation results

Simulation of the irrigation system gave a total weekly pump energy cost of $90 (Table 5.5). The Bore
Pump was more expensive overall, however, cost less per megaliter than Pump 3. This occurred because
while the Bore Pump has a greater efficiency than Pump 3, it also has a higher flow and head, which
increased the energy consumption. The higher volume pumped from the bore contributed to a lower cost
rate than Pump 3. All of the pumping for this system occurred overnight (Figure 5.7) when irrigation of all
fields is allowed. The Bore Pump turned on and off very frequently when it was operating, again due to
the small capacity of the Storage Tank which meant it did not take long for the pump to fill the operating
volume (Figure 5.8).
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Table 5.5: Current operation results for the Summer Extraction and Irrigation System

Pump Volume (ML/wk) Cost (c/kL)
Bore Pump 1.93 3.52
Pump 3 0.57 3.97
Total $90.3 / week
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Figure 5.7: Current demand rate and pump flows for the Irrigation System
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Figure 5.8: Storage Tank level and Bore Pump flow for the Summer Extraction and Irrigation System

Optimization Formulation
Initially, optimization of the Ridge Park system was considered to be an operational problem, however,
results of the current operation simulation suggest that design decision variables need to be considered
as well. Replacing Pumps 1 and 2 with models that would operate at much lower flow rates (to reduce the
headlosses) and increasing the size of the Storage Tank will be considered along with operational
decision variables (Table 5.6). These design decisions would aim to counter-act mismatched pump rates
(Pumps 1 and 2 operating at a much higher rate than Pump 3) and small storage volumes that lead to
frequent pump switches. Short-term operational decisions include trigger levels in the Harvest Pond,
Bioretention Basin and Storage Tank that will govern when pumps are turned on and off, a schedule for
irrigation (that is, which reserves will be irrigated at which times), and VSP multipliers for Pump 3. In the
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current operation, VSP multipliers for Pump 3 were selected to ensure the required flow rate (for injection)
and pressure (for irrigation) were achieved. With different levels in the Storage Tank considered, the VSP
multipliers for Pump 3 can be altered, especially if efficiency is improved. If the pump priming issues
discussed earlier were to be resolved, trigger levels that utilize the full height of the Storage Tank (rather
than the 20% range in water elevation that is currently used) would be considered in the optimization.
There are also long-term decision variables deciding when to switch between summer and winter
operation and vice versa (Table 5.6). As the scheme injects to and extracts from the aquifer through the
same bore, it is not possible to frequently switch between injecting and extracting water, therefore there
will be only two switch times per year; one going into winter operation and one going into summer
operation. The decision variables presented in Table 5.6 may all be considered together in an optimization
problem, however, they could also be analyzed prior to optimization in a simulation sensitivity analysis.
Simulating the system initially with the different pump models and storage tank sizes could help to decide
if these actions are worthwhile considering in an optimization formulation. Engineering judgement may be
sufficient to determine which pump model(s) would be best to replace Pumps 1 and 2, and therefore
reduce the size of the optimization problem.

Table 5.6: Possible decision variables for the Ridge Park MAR Scheme

SHORT-TERM WINTER HARVESTING AND INJECTION OPERATION

Pump 1 Off Harvest Pond Level Low
Bioretention Basin Level High
Pump 1 On Harvest Pond Level High
Pump 2 Off Bioretention Basin Level Low
Storage Tank Level High
Pump 2 On Bioretention Basin Level High
Pump 3 Off Storage Tank Level Low
Pump 3 On Storage Tank Level High
Pump 3 Speed Storage Tank Level
SHORT-TERM SUMMER EXTRACTION AND IRRIGATION OPERATION
Bore Pump Off Storage Tank Level High
Bore Pump On Storage Tank Level Low
Irrigation Schedule Days of Irrigation at each Reserve
Start Time of Irrigation at each Reserve
Pump 3 Speed Required Demand Rate

LONG-TERM OPERATIONS
Day to Switch Between Seasonal Summer to Winter

Operational Regimes Winter to Summer

SYSTEM DESIGN
Storage Tank Size Doubled, 5 times, 10 times current size
Pumps 1 and 2 Selection of pump curves with lower

operating rates

Constraints on the system include an environmental flow for Glen Osmond Creek, an extraction limit from
the Aquifer and meeting the weekly irrigation volumes for each reserve in the summer (Table 5.7). If there
was not enough water harvested over the winter to supply the summer demands, a potable back-up
supply is available at a cost. The main objective for this case study is to minimize the pump energy cost;
there is also a secondary objective of minimizing the number of pump switches. To create an incentive
for the optimization to find solutions that harvest more water, the cost objective includes the energy cost
for the harvesting and distribution operation as well as the cost of purchasing potable water if the
harvested volume is not enough to supply demand. The objective function is formulated as the cost per
volume of water harvested as another means to ensure enough water is harvested from the system during
winter to supply summer irrigation. During the conceptualization and design of this scheme, regulations
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from the South Australian Environmental Protection Authority (EPA), the Department for Environment,
Water and Natural Resources (DEWNR) and the Department of Health (DoH) were considered. A license
to recharge water into the aquifer was required from the EPA, while the DEWNR regulates how much
water can be extracted from MAR schemes. DoH regulations informed the level of treatment implemented
and the irrigation practices, which must limit the risk of public exposure.

Table 5.7: Possible constraints for the Ridge Park MAR System

Constraint Value

Glen Osmond Creek Environmental Flow >2L/s

Aquifer Extraction in Summer < 80% of Injection Volume
Pressurized System Demands > 15 ML/year
Gravity System Demands > 37 ML/year

5.4.2 Orange Integrated Supply System — Case Study 2

Orange is a rural town roughly 250 km west of Sydney in the state of New South Wales, Australia. The
water supply system serves a population of around 36,800 people with an average annual demand of
approximately 5,400 ML. The majority of water supply is from the local surface water catchment, which
culminates in the roughly 19,000 ML Suma Park reservoir (Figure 5.9). Australia experienced severe
drought between 2000 and 2010, and Orange was one of the hardest hit areas in New South Wales. Even
with severe water restrictions almost halving the town’s demand, Orange had less than 2 years of water
supply heading into summer of 2009, and was relying only on surface water catchments (Montgomery
Watson Harza, 2011). This prompted the Orange City Council to diversify their water supply, and they
therefore developed two stormwater harvesting schemes and a long pipeline from an adjacent catchment,
as well as re-opening several groundwater bores. Figure 5.9 shows a schematic process diagram of the
system, which is described below, and Figure 5.10 shows the layout (note that the ‘Shearing Shed’ Bore
and ‘Bore 5’ in Figure 5.9 are grouped as the ‘Clifton Grove’ Bores in Figure 5.10). For more detailed data
on this case study, please see Appendix F.

Water from the Ploughman’s Creek Stormwater Scheme is treated through a series of wetlands, and then
combined with water from the Blackman’s Swamp Creek Stormwater Scheme. After treatment, this water
can be used to top up Suma Park reservoir. Due to the severely low water supply levels during the drought,
Emergency Authorization was initially given, and Council subsequently sought approval for use of the
stormwater schemes on a permanent basis. Continuous water quality monitoring is undertaken to meet
regulations of the Office for Water, the New South Wales Environmental Protection Authority and the
Ministry of Health. To the authors’ knowledge, this is the only system in Australia that has been approved
to use harvested stormwater for potable supply. In order to use harvested stormwater for potable supply,
the Council had to meet requirements of the Office for Water. The Macquarie pipeline transfers water from
the adjacent Macquarie River catchment to Suma Park reservoir. It is 38 km long and requires more than
600 m of pumping head. Each of the three pumping stations has two pumps operating in parallel. Water
from the groundwater bores is pumped first to balancing storages and then to Suma Park reservoir, with
a combined licensed volume of 462 ML per year. Water from all of the sources is combined in Suma Park
reservoir and treated at a water treatment plant before being delivered to consumers.

The Orange City Council is interested in optimizing the operation of this while delivering a secure yield
from Suma Park Dam. In addition to the primary objective of minimizing energy cost, there are objectives
of minimization of spill from Suma Park reservoir, minimization of (perceived) environmental impact,
maximization of (perceived) water quality, and minimization of energy use. The Council has an explicit
objective to minimize spill to ensure water and energy are not wasted by pumping from one of the three
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alternative sources to fill up Suma Park reservoir just before a rainfall event that would supply water from
the natural catchment at no cost or energy output. As this system supplies potable demands, it is
undesirable to apply water restrictions to consumers, thus minimizing time spent in restrictions is
important. Objectives for the perceived environmental impact and water quality will be formulated as a
preference ranking between the different sources based on community views of which sources are better
for the environment and water quality. The constraints of the problem include environmental flows for the
Macquarie River (downstream of the pumping station offtake point) and stormwater schemes, a water
source license for the Macquarie River and extraction limits on the groundwater bores (Table 5.8).
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Table 5.8: Possible constraints for the Orange Integrated Supply System

Constraint Value
Macquarie River Environmental Flow > 108 ML/day
Blackmans’ Creek Environmental Flow > 20 ML/day
Ploughmans’ Creek Environmental Flow from Pump S4 > 0.4 ML/day
Ploughmans’ Creek Environmental Flow from Pump S5 > 2 ML/day
Ploughmans’ Creek Environmental Flow from Pump S6 > 2 ML/day
Clifton Grove Aquifer Extraction <182 ML/year
Showground Aquifer Extraction < 280 ML/year
Macquarie River Extraction License <12 ML/day

Energy Optimization Formulation

In this section, the developed framework is applied to the Orange Case Study to help set up the
optimization procedure and identify the components and data to be modeled. Note that the model has
been built taking into account all possible objectives of the system, however, the example of results
presented here will focus on the minimization of energy consumption.

As all components of the system have already been constructed and considered sufficient for the
operation of the system, there are no design decisions to consider, only operating decisions. For this case
study, operating decisions consist of trigger levels in the various storages. These types of decision
variables are chosen considering the control system available at each pump station (based on storage
levels and not on time of the day) and the fact that the controls have to be defined for an operational
horizon of one year or longer. As all of the pump stations have two or more pumps arranged in parallel,
having different trigger level values may have a large impact on the operating point of the pumps and
consequently their energy consumption. It is also likely that different trigger levels will be chosen for peak
and off-peak electricity tariff periods when they are included in a cost optimization. For this system a
peak/off-peak electricity tariff applies on weekdays, with weekends priced at the off-peak rate. A peak
monthly electrical energy demand charge also applies to the Macquarie River pipeline pumping system.
In order to assess the performance of different tank trigger levels, the infrastructure to be modeled
includes the natural and urban catchments for the surface water and stormwater systems respectively,
Suma Park reservoir, pipelines and pumps in the groundwater, Macquarie River and stormwater systems,
and wetlands and storage ponds in the stormwater systems.

In general, the system could be modelled using hydrologic models, mass balance models, and/or
hydraulic models. The choice of which model(s) will be used depends on the objectives and the processes
to be modelled, on the available data and the computational times. In particular, hydrologic modeling is
usually used to transform rainfall to runoff for the natural and urban catchments. For this case study,
inflows inputs or approximate relationships between rain and flows were provided by previous studies by
the Orange City Council. Hydraulic models are usually used for short term operations: pump energy costs
can be computed accurately based on the hydraulic equations. Mass balance modeling is usually used
for assessing the system in long term operations, as it can quickly compute the water available after
evaporation and other losses in the system have occurred and after minimum environmental flows have
been released. It cannot, however, take into account the non-linearity in the hydraulic equations and
therefore assumptions need to be made in regard to the flow delivered by the pumps in the system. While
hydraulic simulation would be most appropriate for the pumping stations in the system as they have
multiple pumps and sometimes have connected pipelines, mass balance models would need to be used
to compute the additional processes, such as evaporation and the release of minimum environmental
flows that need to be taken into account given the long duration of the simulation. During an optimization
process, simulating each potential solution using both a mass balance and a hydraulic model would
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increase considerably the computational time, particularly if data transfer between the two models was
required. It is therefore suggested that the primary simulation tool should be a hydraulic solver. Rainfall-
runoff modeling could be performed pre-optimization, and supplemental code added to a hydraulic model
to account for functionality of a mass balance model. This would allow for consideration of the evaporation
from and rainfall directly to reservoirs, changes to demands based on water restrictions and environmental
flows that depend on the combined volume of two reservoirs (Spring Creek and Suma Park), infiltration
losses when transferring water between reservoirs and peak power demand charges.

Another important issue to consider is what simulation time step should be used. Using a shorter time
step will increase the accuracy of this hydraulic analysis and often results in feasible optimization times
for storages that empty or fill in a day or two (as would likely be the case for the stormwater ponds and
Macquarie pipeline balancing storages). Simulating the behavior of Suma Park dam is more challenging,
however, as the variations in the water levels can have a period of several years. Thus, the computation
times with a short time step become prohibitively long. A balance needs to be found between using a
short enough time step for the detailed hydraulics and a long simulation time for the large storages without
having a prohibitively large computational time. Given the data availability (there is 118 years of rainfall
and inflow data available, with a daily time step) the time step chosen is one day.

Given that the time-step is automatically shortened by the hydraulic solver chosen (EPANET in this case),
the model of the real system has been simplified in order to avoid excessive computational times. In
particular, given that the levels in the balancing storages along the Macquarie pipeline vary rapidly, these
storages were removed and the pipeline simulated with two parallel pumps, each representing the
equivalent of the three stages of pumping (that is, the pump curves for Pumps M1a and b in Figure 5.9
were adjusted such that they represented Pumps M2a, M3a and Pumps M2b, M3b as well). This
simplification is considered acceptable as the pumps in series in the Macquarie pipeline will usually be
operated at the same time, given that each pump will still be controlled also by the level of Suma Park
Dam. Longer computational times were also caused by the small storages after the groundwater bores.
The pumps used for extraction from the aquifers (Pumps G1a, G2a and G3a in Figure 5.9) operate at
relatively consistent rates, and as such they could be removed from the model and their energy use
accounted for relative to the volume pumped from the second pump in each system (Pumps G1b, G2b
and G3b respectively). To take into account the limited volume available from the groundwater bores, the
storage tanks in the groundwater system each had a volume equivalent to a year’s allocation for the
respective bores. All of the stormwater pumps except for Pump S2¢ and Pump S3c, which are standby
pumps and not in use, were included in the model. As well as the operating point of the pumps changing
depending on the number of pumps used in parallel, there may be slight differences in efficiency and
therefore energy use, and thus including all pumps here provided more accuracy.

All of the pumps included in the model were controlled using rule-based controls in EPANET, with
conditions based on levels in one or more storages as well as time. Conditions based on downstream
storages were considered as decision variables, while conditions based on upstream storages were fixed
(Table 5.9). For the Macquarie pumps, there were also conditions based on the flow in the river to ensure
that no water would be taken when there was not enough water available. There were four possible
decision variables for each pump, a lower and upper trigger level in both the peak and off-peak time. For
optimization of energy use, only two are required, as peak and off-peak tariffs are not considered. As the
model was set up for other objectives including cost, which does use a peak and off-peak electricity tariff,
the capability to choose different trigger levels in different periods was incorporated. A maximum of 15
pump switches per day per pump were allowed, and the end level of Suma Park Dam was constrained to
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16 m (to be approximately the same as the start level). Based on license conditions, Macquarie River
water can only be used when the Suma Park Dam level is below 90%, so choices for Pump M1a and M1b
trigger levels in Suma Park Dam are more restricted than for other pumps.

Table 5.9: Decision variables and fixed controls for the Orange Integrated Supply System

Pump Station Action

Storage(s) Controlling Operation

Decision Variable or Fixed

Macquarie Pump M1a, M1b Off
Macquarie Pump M1a, M1b On
Stormwater Pump S1a, S1b Off
Stormwater Pump S1a, S1b On
Stormwater Pump S2a, S2b Off
Stormwater Pump S2a, S2b On
Stormwater Pump S3a, S3b Off
Stormwater Pump S3a, S3b On
Stormwater Pump S4a, S4b Off
Stormwater Pump S4a, S4b On
Stormwater Pump S5a, Sbb Off
Stormwater Pump S5a, S5b On
Stormwater Pump S6a, S6b Off
Stormwater Pump S6a, S6b On
Groundwater Pump G1 Off

Groundwater Pump G1 On

Groundwater Pump G2 Off

Groundwater Pump G2 On

Groundwater Pump G3 Off
Groundwater Pump G3 On

Suma Park Dam Level High
Suma Park Dam Level Low

Holding Pond Level High
Blackmans Stormwater Pond Level Low
Holding Pond Level Low
Blackmans Stormwater Pond Level High
Batch Ponds Level High
Holding Pond Level Low

Batch Ponds Level Low
Holding Pond Level High
Suma Park Dam Level High
Batch Ponds Level Low

Suma Park Dam Level Low
Batch Ponds Level High
Holding Pond Level High
Mitchell Wetland Level Low
Holding Pond Level Low
Mitchell Wetland Level High
Holding Pond Level High
Brooklands Wetland Level Low
Holding Pond Level Low
Brooklands Wetland Level High
Holding Pond Level High
Somerset Wetland Level Low
Holding Pond Level Low
Somerset Wetland Level High
Suma Park Dam Level High
Suma Park Dam Level Low
Suma Park Dam Level High
Suma Park Dam Level Low
Suma Park Dam Level High
Suma Park Dam Level Low

Decision Variable

Decision Variable

Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Fixed
Decision Variable
Decision Variable
Decision Variable
Decision Variable
Decision Variable
Decision Variable

Energy Optimization Results

Minimization of pump energy use over the longer term is presented here as an example of optimization
of this system. Note that the system is simulated over one year, at a daily time step in EPANET. Additional
computer code was added to the EPANET hydraulic simulation to take into account other process such
as rainfall to and evaporation from storages. This code essentially adds a mass balance component to
the hydraulic simulation. Historical rainfall for the catchments in the system was modelled in MUSIC
hydrologic software to develop inflow series for the ponds and reservoirs. For this optimization the year
with the closest to average rainfall was used, however, other years of rainfall were available and this
optimization could be extended to consider other climate conditions.

NSGAIl (Non-dominated Sorting Genetic Algorithm Il) software was used for the optimization, with five
random seeds, a population size of 50, 100 generations and probabilities of crossover and mutation of
0.8 and 0.02 respectively. In the best solution found, the system used a total of 793 MWh of energy over
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the entire year. Table 5.10 shows the volume of water pumped from each source to Suma Park Dam (and
supplied from the local catchment) and the energy used by each of the pumps for the optimal solution.
Pumping from the Macquarie is very energy intensive so this is only used at the very end of the simulation
when the level in Suma Park Dam is very low, in order to achieve the end target level constraint (Figure
5.11 and Figure 5.12). Groundwater and stormwater sources are used initially to increase the level of
Suma Park Dam to its maximum, and then not used again until around Day 160 when the level in the dam
has dropped again. Only one of the Macquarie pumps is used, as, despite operating at a lower energy
efficiency point, it uses less energy overall than operating two pumps in parallel. In dryer years, both
pumps may need to be utilized in order to ensure supply to Suma Park Dam. Nearly all of the available
groundwater license is used; G1 and G2 have a combined license of 180 ML /year, and G3 280 ML/year.
Groundwater is more energy intensive than stormwater, however, it can be used at any time throughout
the year, while stormwater is reliant of inflow. Most of the stormwater provided to Suma Park Dam came
from the Blackman’s Creek scheme (S1) rather than the Ploughman’s Creek scheme (S4, S5 and S6).
While the storage capacity of the Blackman’s Creek scheme is much lower, the pump capacity and energy
efficiency is much greater than in the Ploughman’s Creek scheme, so it provides more water.

Table 5.10: Volume of water pumped/supplied and energy used in the optimal energy solution

Energy Rate
Source Pump Volume (ML)  Energy (MWh) (MWh/ML)
M1a 0 0 0
Macquarie River M1b 74 150 2.02
Total 74 150 2.02
G1 24 11 0.46
Groundwater* - iid6 i L5
G3 235 106 0.45
Total 405 196 0.48
Sta 258 39 0.15
S1b 479 7 0.15
S2a 828 65 0.08
S2b 237 21 0.09
S3a 1022 170 0.17
S3b 22 5.5 0.25
Stormwater S4a 178 41 0.23
S4b 12 3.1 0.27
Sb5a 24 4.8 0.20
S5b 56 11 0.19
S6a 60 1 0.18
S6b 26 5.0 0.19
Total™ 1044 447 043
Spring Creek and Suma Park Catchment - 3865*** -

*The energy consumption for the groundwater pumps includes both the transfer and bore pumps, i.e. the energy for Pump G1
includes G1a (not modelling in EPANET, energy use estimated from volume) and G1b (modelled in EPANET)

**The total volume supplied by the stormwater schemes is measured as the combined volume supplied by Pumps S3a and
S3b (which discharge to Suma Park Dam), while the total energy is the total of all pumps.

***This is the volume supplied by the natural catchment for the town’s consumption, the total inflow from the catchment is
greater than this however some is used to provide environmental flows and some spills.
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Figure 5.12: Volume pumped from each source to Suma Park Dam for the energy optimal solution

5.5 Conclusions

A generalized framework for the optimization of the design and operation of water supply and distribution
systems has been developed and two case study systems have been used as examples of how to apply
it. The framework is comprised of several components; the options component describes the design and
operational decision variables for the optimization, the infrastructure component covers the infrastructure
aspects of the system that need to be modeled and their data requirements, the analysis component
includes the simulation of the system and evaluation against the objectives and constraints, and finally
the government policy component describes the regulations that may affect other aspects of the
framework. These components fit within an optimization algorithm structure, which firstly generates
potential solutions using the decision variables in the options component, models the system according
to the infrastructure component and evaluates potential solutions using the analysis component. The
evaluation of potential solutions then feeds into the solution space which informs how the decision
variables are changed in the next set of potential solutions. Sensitivity analysis of parameters will
significant uncertainty should be undertaken to ensure robust solutions. The framework also applies to
simulation of systems prior to or without optimization.
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The Ridge Park MAR Scheme Case Study harvests stormwater from an urban creek and stores it in an
aquifer, to be extracted at a later time and used as non-potable supply for irrigation of sporting fields and
reserves. For this case study, and similar ones, the simulation of the system may be simplified by splitting
the system into two parts, one for the components of the system used in winter operation (harvesting and
injection) and one for the components used in summer operation (extraction and irrigation). This system
highlighted the importance of simulation and analysis prior to optimization, in order to focus the formulation
of the optimization problem. The Orange Integrated Supply System Case Study uses multiple water
sources; natural catchment water, harvested stormwater, imported water and groundwater to supply
potable demands. For this case study, finding an appropriate combination of simulation models and time
step and simulation duration is important in order to provide accuracy in representing both long- and short-
term operations without excessive computational times. Optimization of pump energy use for this system
indicated that the groundwater and stormwater supplies are more desirable to supplement natural inflows
than the imported water from the Macquarie River, which required a lot of energy to transfer water over a
long distance and against a high elevation head.

The framework is generalized, and so could be applied to other water supply and distribution systems,
particularly those using non-traditional water sources, to optimize their design and operation. While the
framework attempts to cover all aspects of water supply in a generalized manner, it does have some
limitations. Along with the supply of water, there will always be a need to manage wastewater. Apart from
considering recycled wastewater as a source, this framework does not cover wastewater systems in terms
of collection, transport, treatment and potential discharge of wastewater into the environment. Treatment
of raw water supplies is included in the framework, however, the details of such treatment and
measurement of water quality throughout a water distribution system are not focused on as much as the
design and operation of the systems. A difficulty of applying this framework will be the definition of the
boundary of a system and which aspects should be analyzed. Currently, there does not exist commercial
software that has all of the capabilities considered in the framework (i.e. both hydrologic and hydraulic
simulation). This means that specialist simulation models may need to be developed for particular systems
(as was done for the second case study). Future developments in simulation software may reduce the
difficultly of combining hydrologic, mass balance and hydraulic considerations and remove the need for
specialist tools built for individual systems. In the future, the framework should be tested with other case
study systems to fully investigate its benefits.
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Abstract

A harvested stormwater and managed aquifer recharge system has been analysed through both
simulation sensitivity analysis and optimization to reduce operational pumping costs and increase the
volume of water harvested. The simulation sensitivity analysis explored increasing the size of a storage
tank, replacing the three harvesting pumps and using wider tank trigger levels in the system operation.
In the optimization, trigger levels and irrigation schedules were considered as decision variables.
Various streamflow (input) series have been considered in the optimization by finding the optimal
controls for each individual series or by finding the controls that best perform under a range of different
conditions. Optimal controls for the current system were compared to those found for the system with
new replacement pumps. The newly sized pumps were found to provide significant benefits by reducing
pump operating costs by 50%, and by increasing the volume of water able to be harvested. Using wider
tank trigger levels and altering the irrigation schedule so that the irrigation pump operated at a more
efficient point also resulted in a small reduction in cost for the current system.
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6.1 Introduction

As climate change and population growth highlight water security issues, alternative water sources are
increasingly being used to supplement potable supply (Fielding et al. 2015). Harvested stormwater is an
example of such a source, in which runoff from pervious and impervious surfaces (generally in urban
environments) is collected, treated and supplied to consumers (Naylor et al. 2012). Typically,
stormwater is supplied for non-potable end uses such as irrigation of public spaces, household garden
watering or toilet flushing, however, in some cases it has been used for potable supply (McArdle et al.
2011). As well as improving water security, harvested stormwater can have other benefits that
communities place value on such as reduced flooding, improved surface water quality, improved
hydrologic function and improved aquatic habitats (Londofio Cadavid and Ando 2013). Where there is
low understanding of the risks of stormwater to human health, communities may be less likely to accept
harvested stormwater projects and education programs may need to be considered (Hwang et al. 2006).
Water system managers perceive operation and maintenance costs as one of the greatest barriers to
implementation of harvested stormwater projects (Dobbie and Brown 2012). Determining strategies to
reduce ongoing energy costs of these systems is therefore an important task.

Previous studies on the optimization of harvested stormwater systems have usually considered only the
design of the system, not the operation. When harvested stormwater is used to supplement or add to
potable supplies, the yield of the system (volume of water harvested or provided to users) is an
important variable to be maximized (such as in McArdle et al. 2011; Marchi et al. 2016a; di Matteo et al.
2016). McArdle et al. (2011) optimized the design of a harvested stormwater system to minimize life-
cycle costs, maximize yield and minimize the impact of the system on the amenity of a public reserve.
Marchi et al. (2016a) also optimized the design of a harvested stormwater system, which included
Managed Aquifer Recharge (MAR). They included consideration of externalities and climate change,
and found that the values of both the net present value and yield objectives decreased when climate
change impacts were considered.

As well as objectives of minimizing costs and maximizing yield, maximizing water quality is often
included, such as in di Matteo et al. (2016). Studies assessing the performance of harvested stormwater
systems often focus on water quality rather than the cost of energy for pumping (for example, Burns and
Mitchell 2008; Nnadi et al. 2015; Petterson et al. 2016). Labadie et al. (2012) optimized the operation of
a stormwater system, however, the objective was to reduce the environmental impact on the
downstream ecosystem rather than minimization of pumping costs or maximization of the volume of
water harvested.

The remainder of this chapter is organized as follows; firstly, background on a case study system gives
context for the other sections, the methodology of the analysis and optimization of this case study is
then discussed, followed by results of the simulation sensitivity analysis and optimization, and finally
conclusions are drawn.

6.2 Case Study: Ridge Park Managed Aquifer Recharge System

The Ridge Park Managed Aquifer Recharge Scheme in South Australia supplies non-potable water to
sports and recreational areas for irrigation use. South Australia has largely seasonal rainfall, with most
occurring over the winter months around May to October. Water supplies also rely on imported water
from the River Murray, which is costly (due to distance and elevation rise) and highly regulated.
Alternative water source systems are important to reduce use of potable supplies from variable
catchment inflows and the River Murray. The system is located in the metropolitan area of the city of
Adelaide and is operated by the Unley City Council. It was designed to harvest up to 60 ML of
stormwater per year for injection into a confined aquifer, which occurs over the winter, while in summer
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the harvested water is drawn from the aquifer and used for irrigation. Figure 6.1 shows a schematic of
the system, which is described below. Note that the case study analyzed in this research was based on
the best available information for the real-life system. There may be some differences between the
simulated and real-life systems.
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Figure 6.1: Schematic of Ridge Park Managed Aquifer Recharge Scheme

In winter, stormwater is harvested from the Glen Osmond Creek, an urban waterway that receives
approximately 200 ML of runoff per year (on average) at the point of harvest. A dam has been
constructed in Ridge Park, in the suburb of Myrtle Bank, to create the 1500 kL Harvest Pond. Water is
then pumped to a Bioretention Basin which provides some treatment, and then pumped to a small
treatment plant that includes a micro-filter and ultra-violet (UV) treatment. Once the water has been
adequately treated, it is stored in a 36 kL above ground tank next to the treatment plant and final pump
station. From the Storage Tank, water is injected into an artesian, fractured rock aquifer for long term
storage.

In summer, when no water is being harvested, water is extracted from the aquifer using the same bore
and stored in the tank, before being pumped or gravity-fed to irrigation points. The Ridge Park Reserve
is irrigated by a pressurized 90 mm diameter irrigation line, as it is at higher elevation than the Storage
Tank. Fraser Reserve is also connected to the pressurized system; although it is at lower elevation, it is
not enough to ensure adequate pressures for irrigation. In total, the pressurized system supplies almost
15 ML per year for irrigation. The remaining seven open space reserves are on a 180 mm diameter
gravity-fed line which supplies a total demand of over 37 ML per year. The total irrigation pipeline length
is 4.3 km. As rainfall and therefore streamflow is variable year to year, the volume harvested will also
vary. On average the harvested volume should be enough to provide the irrigation demand for the
grassed reserves, however, the injection volume is not restricted to the harvest volume from the
previous season. If not enough stormwater was harvested over several winter seasons, potable back-up
supply is available (assuming no water restrictions are in place).
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6.3 Methodology

The framework presented in Blinco et al. (2017a) has been used to develop the methodology for this
study. Within an optimization algorithm, the framework incorporates the options (decision variables) for
the problem, the water and electricity infrastructure that may need to be modelled, the simulation tools
used to model the system and the analysis of the system in terms of objectives and constraints. Blinco
et al. (2017a) also discuss the importance of sensitivity analysis; as well as finding optimization results
that are robust for different inputs, this process can highlight parameters that are important to, or in
contrast, have little impact on, the results of an optimization problem.

In this research, sensitivity analysis is performed prior to optimization for a range of system
configurations and inputs, by simulating the system in EPANET hydraulic simulation software (Rossman
2000). Performing simulation runs is an extremely important part of the process so that the user can
fully understand the system prior to the investigation of optimization. Results from the simulation
sensitivity analysis are then compared in their absolute form (such as cost or number of pump switches)
and relative to the base case (current operation) as a percentage. These simulation results inform what
is investigated through optimization of the system; the solution space for the optimization may also be
reduced by removing options that had little impact in the simulation sensitivity analysis.

6.3.1 Simulation Model Development

Two models of the case study system have been developed in EPANET; one for the winter operation of
harvesting and confined aquifer injection, and one for the summer operation of confined aquifer
extraction and irrigation. The operation of the bore cannot be switched from injection to extraction
frequently, so the system is operated (and hence modelled) with two distinct seasons. For both models,
assumptions included that minor losses are negligible, the pump and efficiency curves from the
manufacturer catalogue are still valid, and there has been no build-up of biofilm in the pipe systems.
These models did not simulate water quality as the main focus of this study is operational pumping
costs. Both systems were simulated for one week in EPANET, with a 15 minute hydraulic time step. The
simulation time was representative of the full season as multiple streamflow scenarios were considered
in the winter system and the irrigation schedule repeats weekly in the summer. Each year the specific
start and end of each season will vary depending on the weather, however it is assumed that each
season lasts for 26 weeks.

Trigger levels (related to volumes in the three storages as shown in Table 6.1) control when the pumps
in the winter harvesting and injection system (Pumps 1, 2 and 3) turn on and off. During summer, the
Bore Pump is also controlled by trigger levels in the Storage Tank, while Pump 3 is controlled by the
irrigation demands instead of trigger levels. The irrigation schedule is arranged so that different open
space reserves are irrigated on different nights (Table 6.2 and Figure 6.2). Pump 3 is a variable speed
pump (VSP) and is operated at 80% of full speed for injection (such that the flow is less than the 7 L/s
maximum for injection) and 75% of full speed for irrigation (such that the target pressure downstream of
the pump is achieved at the expected demand rates). A peak/off-peak electrical energy price tariff
applied to the entire system; a peak price of 25.53 c/lkWh was applied from 7am to 9pm on weekdays,
and an off-peak price of 15.26 c/kWh was applied over night and on weekends. The electricity tariff
pattern assumed the simulation was starting on a Sunday. Blinco et al. (2017a) gives a detailed
description of the development of the simulation models.

81



Publication 3: Optimization of pumping costs and harvested volume for a stormwater harvesting system

Table 6.1: Trigger Levels for the Ridge Park system

Current Setpoint

Storage and Trigger Level Type Volume (%) Level (m) Start Pump Stop Pump
Harvest Pond High Level 80 1.6 1 -
Harvest Pond Low Level 50 1.0 - 1
Bioretention Basin High Level 90 0.80 2 1
Bioretention Basin Low Level 50 0.59 - 2
Storage Tank High Level 90 2.25 3 2, Bore
Storage Tank Low Level 70 1.75 Bore 3

Note that this table has been taken from Blinco et al. (2017a) and provided here for completeness.

Table 6.2: Irrigation demand schedule for the Ridge Park system

Open Space Reserve Demand Rate (L/s) Duration/day (hr) Start Time Irrigation Days
Ridge Park 1 3.53 8.33 9:30 PM Mon & Wed
Ridge Park 2 3.53 8.67 9:30 PM Tues & Thurs
Fraser Reserve 1.41 5.83 9:30 PM Mon & Wed
Ferguson Ave Reserve 2.00 5.00 9:30 PM Tues & Thurs
Scammell Reserve 2.15 6.00 10:00 PM Tues & Thurs
Fullarton Park 1 3.85 1.67 10:00 PM Mon & Wed
Fullarton Park 2 3.85 6.67 10:00 PM Tues & Thurs
Fern Ave Reserve 3.53 3.33 10:00 PM Mon & Wed
Windsor St Reserve 2.20 8.00 8:30 PM Tues & Thurs
Henry Codd Reserve 1.10 8.00 10:00 PM Mon & Wed
Unley Oval 5.57 9.00 9:00 PM Sun, Mon & Wed
Note that this table has been taken from Blinco et al. (2017a) and provided here for completeness.
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Figure 6.2: Irrigation schedules under the current operation (note that this figure has been taken from Blinco et al.
(2017a) for comparison to Figure 6.10)

Winter System (Stormwater Harvesting and Confined Aquifer Injection)

The winter simulation model within EPANET included the Harvest Pond, Biorentention Basin, Storage
Tank and Aquifer, and all the pumps and pipes required to transfer water between them (Figure 6.3).
Glen Osmond Creek was included as an input node, with a negative base demand applied to simulate
in EPANET that water should flow into the Harvest Pond. Recorded streamflow data were applied as a
demand pattern to this node. A volume-elevation curve was applied to the Bioretention Basin to account
for the porosity of the filter media and the height of water storage above this. No volume curve
information was available for the Harvest Pond, so it was assumed to have a constant surface area.
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Pressure sustaining valves (PSVs) were inserted into the simulation model to take into account the fact
that the discharges to the Bioretention Basin and Storage Tank are from pipes over the top of these
storages. A general purpose valve (GPV) upstream of the Storage Tank took into account the energy
losses through the micro-filter (losses over the UV machine are assumed negligible). A pressure
breaker valve was used to take into account the headloss through the bore during injection. The
minimum head loss over the bore was 3.0 m due to the water being injected around the Bore Pump.
This head loss increased to 4.8 m over the course of 1 week (0.3 m increase per day) as the bore starts
to clog (it was assumed that a backwash of the bore is initiated once a week). The effective water level
of the confined aquifer was estimated to be 5.0 m above the ground surface at the bore pit and the
impressed level during injection another 45.0 m above this.

Harvest Pond Bioretendon Basin

Glen Csmond

Creek Infiow ) ]
GPV - Micro-Fiker

Confined
Aguiker
[ e L . »
PBV - Bore Pump 2

Storage Tank Fav

Figure 6.3: EPANET model of the Winter System (harvesting and confined aquifer injection)

Summer System (Confined Aquifer Extraction and Irrigation)

The summer simulation model within EPANET included the Aquifer and Bore Pump, Storage Tank,
Pump 3 (for irrigation) and the pressure and gravity distribution systems (Figure 6.4). At each open
space reserve, there are small irrigation systems transferring water from the main distribution line to the
sprinkler heads. These pipes were not included in the EPANET model, as the demand information
available was for each open space reserve rather than individual sprinklers, and pressure constraints
were considered just downstream of Pump 3 to ensure there was enough pressure for the sprinklers to
operate effectively. Demands at Ridge Park and Fullarton Park were split into two groups of irrigation
stations so that the irrigation for these areas can be spread out over different nights. As in the winter
model, there was a PSV just upstream of the Storage Tank to account for the inlet being at the top of
the tank. There was also a PSV in the bore headworks which represented an existing valve. The
confined aquifer was modelled as a reservoir, with the head level assumed to be at the effective water
level for extraction. The Bore Pump was not likely to be operated for long enough to create significant
drawdown (Wang et al. 2009).

6.3.2 Optimization Model Formulation

The Non-dominated Sorting Genetic Algorithm [I (NSGA-II, Deb et al. 2002) was chosen as it can
incorporate multiple objectives and has been shown to perform well for water distribution system
problems (Wang et al. 2015). NSGA-Il was connected with the EPANET Toolkit To Alter Rule-based
controls (ETTAR) developed in Marchi et al. (2016b) to allow the optimization of the operating rules
(trigger levels and irrigation scheduling) for the case study system. ETTAR also incorporates the
variable speed pump (VSP) efficiency correction to allow for accurate calculation of pump energy use
for VSPs (Marchi and Simpson 2013). Simulation sensitivity analysis was performed prior to
optimization, in order to provide a better understanding of the system and refine the optimization
formulation. Objectives and decision variables are introduced here, and further developed after the
results of the sensitivity simulation analysis are presented.
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Figure 6.4: EPANET model of the Summer System (confined aquifer extraction and irrigation)

There were two objectives of the optimization problem; firstly to minimize the cost of electricity used to
operate the pumps (Eq. 6.1) and secondly maximize the volume of water harvested over the simulation
period (Eq. 6.2). In many water resources optimization problems, objective functions for operational cost
take into account the volume of water delivered, calculating the cost per unit volume pumped. In this
case, however, the volume harvested is considered as an additional objective function to be maximised,
and therefore does not need to be included in the cost objective function.

0C = ¥, TixE; (6.1)

where OC = operational cost (dollars/week); Ti = electricity tariff for each time step i (dollars/kWh); Ei =
energy consumption for each time step i (kWh); VH = volume harvested (ML); and Vi = volume
harvested in each time step i (ML). The time step i would range from 1 to 672 for the week long
simulation at 15 minute time increments used for the case study in this research.

Both operational and design decision variables were considered in this paper. Although the case study
system considered in this research had already been constructed, adjustments to the design were
possible, including upgrading the storage tank size and replacing the pumps. Operational decision
variables were in the form of trigger levels in each of the storages that would control the pump
operations. The irrigation schedule was also considered as a decision variable, which required new
computer code to be developed to implement this in NSGA-Il. For each open space reserve, two
decision variables and four set variables were defined. The decision variables were the start day for
irrigation (coded as integers with 0 being the starting day for the simulation) and the start time for
irrigation (also integer coded, referring to the time in hours, i.e. 8:30pm would be 20.50 for the
simulation). For each open space reserve, the demand rate (in L/s), duration of irrigation (in hours),
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number of days of irrigation (per week) and the gap between irrigation days (a gap of one day results in
irrigation every second day) were set.

As upgrades to the system infrastructure come at a cost, Net Present Value (NPV) analysis can be used
to determine if operational cost savings achieved with new infrastructure would provide a net financial
benefit. NPV analysis takes into account the costs and returns of a project over time, with future costs
and benefits discounted to current prices, as shown in Eq. (6.3). The operational costs savings realised
by any new infrastructure were treated as returns into the future, and the capital costs of new
infrastructure were assumed to occur at the start of the period and therefore were not discounted. A
positive NPV indicates that a project is financially beneficial, while a negative NPV indicates that it has a
net financial cost.

NPV =31 55— C (6.3)
where NPV = net present value (dollars); T = time period (years); t = time step (years); Co = operating
cost returns for one time step (dollars/time step) (in this study the difference in the operating cost with
new infrastructure and the operating cost with current infrastructure); r = discount rate (decimal); and Ce
= capital cost of new infrastructure (dollars).

Two different methods for incorporating different streamflow series were also implemented in the
optimization (Figure 6.5); (1) individual series and (2) looped series. The first considers each streamflow
series individually, which would be most applicable in situations where a good forecast is available and
the operating rules can be easily altered. Optimization of the system is performed with one streamflow
series used in the simulation, if other streamflow series are of interest, the optimization is repeated for
each new series. In this method, if n series are considered, n Pareto fronts will be produced. The
second method loops the streamflow series within the optimization algorithm, generating solutions that
will be robust to many possible realizations. Each potential solution in the optimization is simulated n
times for n streamflow series, however, only one Pareto front is produced. The objective function values
calculated for each of the n simulations of one potential solution are averaged to provide just one value
of each objective function for each solution.

6.4 Simulation Sensitivity Analysis

6.4.1 Simulation Sensitivity Analysis Scenarios

Simulation of the current operation of the system in Blinco et al. (2017a) showed that the pumps were
turning on and off very frequently, which should be avoided to reduce maintenance costs and prevent
general wear and tear of the pumps. One of the problems was that Pumps 1 and 2 are oversized
compared to Pump 3 (the flow into the aquifer is restricted to 7 L/s, however, Pumps 1 and 2 operate at
above 20 L/s). The operation of the system with the current pump curves was compared to that with
newly sized pump curves for Pumps 1 and 2 that will allow them to operate at around 7 L/s. The new
pump curve for Pump 2 was also chosen to significantly improve the efficiency of this pump. Sizing of
Pump 3 was considered; as it was originally designed to supply two bores, the best efficiency occurs
closer to 14 L/s than 7 L/s. A new pump was sized to achieve an operating point that had lower flow (at
full speed) and is closer to the best efficiency point. Sizing of the Bore Pump was not considered, as
while the head range of the current pump was higher than needed for extraction, it is also used to
backwash the bore when injecting, which may have a significantly higher head requirement.
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Figure 6.5: Methods for incorporating streamflow series in optimization

Another contributing factor to the frequent pump switches was that the trigger levels controlling the
pumps are close together, and the storages (particularly the Storage Tank) are small. Two sets of
trigger levels were investigated; (1) the current trigger levels (shown in Table 6.1) that only used the top
half of the Harvest Pond and Bioretention Basin, and only 20% of the volume of the Storage Tank, and
(2) wider trigger levels that used 70% of each storage volume (Table 6.3). Increasing the size of the
Storage Tank was also investigated: the current Storage Tank volume of 36 kL was compared to
double, five times and ten times the size of the existing tank.

Table 6.3: Wider trigger levels used in the simulation sensitivity analysis

Setpoint

Storage and Trigger Level Type Volume (%) Level (m) Start Pump Stop Pump
Harvest Pond High Level 90 1.8 1

Harvest Pond Low Level 20 04 - 1
Bioretention Basin High Level 90 0.80 2 1
Bioretention Basin Low Level 20 0.26 - 2
Storage Tank High Level 90 2.25 3 2, Bore
Storage Tank Low Level 20 0.50 Bore 3

A total of 20 different simulation sensitivity analysis scenarios (Table 6.4) were considered for the winter
system (harvesting and confined aquifer injection), with different combinations of current or wide trigger
levels, current or new pumps, and Storage Tank sizes. Scenario A used the current values for the
following — trigger levels, pump curves and tank sizes — therefore results from this scenario were
considered to be the baseline for comparing all other scenarios. The summer system (confined aquifer
extraction and irrigation) was simulated with the newly sized Pump 3, a larger tank and wider trigger
levels for the Bore Pump.

Each scenario was simulated six times with six different week-long streamflow series. The streamflow
series selected represented a range of operating conditions (dry, wet or average week and (relatively)
constant or variable flow) (Figure 6.6). Results of the current operation indicated that when the average
flow was above approximately 25 L/s, the injected volume could not be significantly increased. In the
analysis of current operations in Blinco et al. (2017a), it was found that when the average streamflow
was above 25 L/s, there was not a significant increase in the amount of water able to be harvested due
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to restrictions of storage volumes and pump flow rates. Of the six streamflow series selected for
simulation sensitivity analysis, four had average flows lower than 25 L/s to provide a wider range of
results and two had average flows around 25 L/s with different levels of variability. None of the series
used in the simulation sensitivity analysis had average flows significantly greater than 25 L/s.

Table 6.4: Simulation sensitivity analysis scenarios for the Winter System

Scenario Trigger Levels? Pumps? Storage Tank Size
Current Wide Current New 36 kL 72 kL 180 kL 360 kL
HP 50-80% HP: 20-90% Q:20L/s  Qu7Lis  Current
BB 50-90% BB: 20-90% Qz25Lis  Qu7Lis
ST 70-90% ST: 20-90% Qs:7L/s Qs:7L/s
Awinter X X X
Buinter X X X
Cuinter X X X
L x [ x |
Ewinter X X X
Fuinter X X X
Ghinter X X X
Huinter X X X
Jwinter X X X
Kwinter X X X
Lwinter X X X
Nwinter X X X
Pwinter X X X
Qwinter X X X
]
Swinter X 34 1, 2 X
Twinter X 3 1, 2 X
Uwinter X 3 1, 2 X
Vwinter X 3 1, 2 X

Boxed items correspond to scenarios with the ‘best values’ in Table 6.5.

2Trigger levels for the Harvest Pond (HP), Bioretention Basin (BB) and Storage Tank (ST).

3Typical pump operating flow rates for the current and new pump models.

4In Scenarios Swinter — Vwinter, NEW pump models were considered for Pumps 1 and 2 only, with the current model used for
Pump 3.
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Figure 6.6: Streamflow series used in the simulation sensitivity analysis
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6.4.2 Simulation Sensitivity Analysis Results — Winter System (Stormwater Harvesting and
Confined Aquifer Injection)

For each simulation, the cost of pumping, volume pumped into the confined aquifer and number of
pump switches were calculated. The results for each scenario were then averaged over the different
streamflow series (Table 6.5 and Table 6.6) and the results for each streamflow series were averaged
over the different scenarios (Table 6.7). Where the volume harvested is below 2.0 ML per week and
therefore below 52 ML (the total irrigation volume) in the season (26 weeks), additional water from the
aquifer may be drawn over the summer period depending on the extraction and injection levels in the
previous year. Potable back-up supply can also be used if required.

Simulation Results for Changes in Trigger Levels, Pump and Storage Volumes

Table 6.5 shows the cost rate (in c/kL) for each pump and overall, the total cost over a week of
operation, the total volume of stormwater injected to the confined aquifer over a week of operation, and
the number of pump switches per day for each. The highlighted cells show the ‘best’ value for each
result variable (for most of the variables this is the minimum, however, for the volume injected it is the
maximum). In all scenarios, the operation of the new pumps was less expensive than the current
pumps, with cost rates around 4-5 c/kL of water injected compared to 8-9 c/kL of water injected. The
overall and individual pump cost rates were lowest in Scenario Mwinter, Which used the wider trigger
levels and the second largest tank size as well as the new pumps. Scenario Muwinter also had the best
cost rate overall and for Pump 3. In terms of total cost per week, Scenario Dwinter Was the least
expensive, however, this was partly due to a reduced volume of stormwater injected. Incorporating all
possible changes to the system — the wider trigger levels, the new pumps and the largest Storage Tank
size in Scenario Ruwinter gave the best results in terms of the volume of stormwater injected and number
of pump switches. There were slight differences in the scenarios that resulted in the best values across
the streamflow series, however, the overall trends were very similar.
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Table 6.5: Comparison of simulation results for changes in trigger levels, pump sizes and storage volumes

What has been changed? Cost (c/kL) Pump
Scenario  Trigger Storage  Pump  Pump  Pump Cost volume Switches
Lovars  Pumps SRR T ’ 7 TotaP  (Swk) (ML (Iday)
eves an Pump 12,3
p12,
Aviner 36K 0677 2244 5780 8849 219 2.50 74,793
Buner | Wide 36K 0663 2212 5921 8804 209 2.42 70,69,1
Couintr New 36kl 0390 0453 3643 4503 _ 143 3.16 54,49,4
Wide ~ New  36kL 0381 0447 3568 4.408 3.11 47,431
Euier 72k 0665 2252 5795 8717 216 2.49 78,74,2
Funer | Wide 72k 0657 2273 5916 8853 212 2.44 72,67,0
Guintr New 72kl 0389 0454 3633 4492 143 3.17 53,47,2
Hiner | Wide ~ New 72kl 0379 0445 3528 4360 141 3.26 46,42,1
Juiter 180kL 0665 2278 5810 8693 215 2.49 75,671
Kuner | Wide 180kL 0656 2251 5797 8736 214 2.48 70,63,0
Luiner New  180kL 0390 0453 3630  4.490 144 3.20 48,461
Wide ~ New  180kL [ 0.368 | 0.426 | 3.379 | 4.187 | 145 3.38 40,38,0
Nuiter 360kL 0661 2289 5061 8774 215 2.48 75,68,1
Puner | Wide 360kL 0658 2273 5622 8603 217 2.54 67,61,0
Quinter New  360kL 0391 0459 3662 4537 143 3.17 49,44,1
Wide ~ New  360kL 0374 0432 3421 4233 152 [ 351 | 34320 |
Suiter 1,24 36kL 0392 0455 5810 6674 163 246 104,109,3
Tumer | Wide 1,2 36kL 0387 0451 5857 6702 159 2.41 99,1051
Uniter 1,2 72kL 0393 0455 5810 6670 163 246 101,109,2
Vuier | Wide | 1,2 72KL 0385 0445 5707 6546 159 2.44 93,100,0

Boxed cells represent the ‘best values’ for each variable, scenarios that resulted in these ‘best values’ are boxed here and in
Table 6.4 and Table 6.6.

2Current Storage Tank size is 36 kL.

3The total cost rate is calculated as the average of the individual cost rates for each streamflow series, rather than the
average cost per week divided by the average volume per week.

4In Scenarios Swinter — Vwinter, New pump models were considered for Pumps 1 and 2 only, with the current model used for
Pump 3.

Comparison of Simulation Results to Scenario Awinter as Baseline Case

Using Scenario Awinter @s a baseline (Table 6.6) shows that replacing the pumps has the most significant
impact on cost, while the other changes result in only minor cost reductions. The new pumps also have
the most significant impact on reducing the number of pump switches, however, using wider trigger
levels and increasing the Storage Tank size (to five or ten times the current size) does also have some
effect. Doubling the Storage Tank size does not have a significant impact on either cost or pump
switches. The percentages of volume pumped and cost of energy in the peak and off-peak times do not
vary significantly for the different scenarios. Slightly less volume is pumped in the peak time (there are
70 peak hours in the week and 98 off-peak hours), with peak volumes ranging from 43-49% of total
volume and off-peak volumes ranging from 51-57%. The cost of pumping in the peak time is greater
than that in off-peak, 57-61% of total cost occurs in peak times compared to 39-43% in off-peak,
because of the higher electricity price.
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Table 6.6: Comparison of simulation results for Scenarios Buinter-Vwinter to that of Scenario Awinter (Baseline Case)

Scenario Trigvg;/:rat has been chang(ta:r’.;ge To?al (‘;ost Pump S:)Ni'[Ch Cost to Harvest Diff. in Cost tg
Lovels  Pumps S Diff. (%) Diff. (%) 3ML(§)  Harvest3 ML (%)
Awinter 236 kL 0 0 265 0
Buinter Wide 36 kL -4 -10 264 -1
Cuinter New  36kL 35 31 135 -49
Wide  New = 36kL 37 41 132 50
Ewinter 72 kL -1 -1 262 0
Fumer | Wide 72 kL 3 11 266 -1
Guiter New  72ki 35 35 135 -49
Hier | Wide ~ New  72kL -36 43 131 50
Juiner 180 kL 2 8 261 2
Kuer | Wide 180 KL 2 15 262 -1
Luinter New  180kL 34 -39 135 -49
Wide ~ New  180kL 34 50 126 53
Nuintr 360 kL 2 8 263 -1
Puier | Wide 360 kL -1 A7 258 3
Quinter New 360 kL 35 40 136 49
Wide ~ New  360kL -30 58 127 52
Suinter 3,2 36 kL 25 +38 200 25
Tumer | Wide 1,2 36 kL 27 +46 201 24
Uwinter 1,2 72 kL -25 +97 200 -25
Vuiner | Wide 1,2 72KL 27 +341 196 26

Boxed items correspond to scenarios with the ‘best values’ in Table 6.5.

2Current Storage Tank size is 36 kL.

3In Scenarios Swinter — Vwinter, New pump models were considered for Pumps 1 and 2 only, with the current model used for
Pump 3.

Comparison of Simulation Results for Different Streamflow Series

Table 6.7 compares the results averaged over all scenarios for each streamflow series. A higher
average flow in a streamflow series does not necessarily mean that the volume of water injected will be
greater; the variability of the flow and the number of days with a flow rate less than 7 L/s (the maximum
confined aquifer injection rate) also has an impact. Series 1 and Series 6 both have flows consistently
above 7 L/s; a large increase (157%) in the average flow rate from Series 1 to Series 6 results in a small
increase (8%) in the volume harvested. Series 4 and Series 6 have similar average flow rates, however,
Series 4 has two days with flow rates of less than 7 L/s, which results in a 19% reduction in the volume
of stormwater harvested. Series 4 and Series 5 both have two days with flows below 7 L/s, the average
flow rate for Series 4 is almost double (93% increase) that of Series 5, however, the volume of
stormwater harvested for Series 4 is only slightly less (6%) than that for Series 5. This is caused by the
variability of flow in Series 4, which has a standard deviation 153% times than that of Series 5. As
expected, the total cost of pumping for each series increases with the volume of water harvested and
injected.

Table 6.7: Comparison of simulation results for each streamflow series (averaged across all scenarios Awinter-Vwinter)

Streamflow SAverage Standard Number of Days Cost Rate Total Cost Volume Injected
. treamflow L with Flow <7
Series (Us) Deviation of Flows Us (c/kL) ($/wk) (ML/wk)
1 9.90 0.81 0 6.287 208 3.30
2 10.2 8.09 4 6.406 117 2.77
3 2.79 1.44 7 6.631 72 1.09
4 26.4 23.5 2 6.489 187 2.88
5 13.7 9.30 2 6.308 193 3.05
6 254 2.88 0 6.087 217 3.56
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6.4.3 Simulation Sensitivity Analysis Results — Summer System (Confined Aquifer Extraction
and Irrigation)

Results from the simulation sensitivity analysis of the winter system suggested that increasing the tank
size would not provide a significant pumping cost reduction. Moreover, space restrictions of the site
mean that it is unlikely that increasing the tank size by five or ten times would be considered worthwhile
and it is also likely to be very expensive. Therefore, in the simulation sensitivity analysis of the summer
system, only the current and doubled tank sizes have been considered. This resulted in eight scenarios
with different combinations of current or wide trigger levels in the Storage Tank, current or new Pump 3,
and a Storage Tank size of 36 kL or 72 kL (Table 6.8).

Table 6.8: Simulation sensitivity analysis scenarios for the summer system

Scenario Trigger Levels Pumps Storage Tank
Current Wide Current New 36 kL 72 kL
ST: 70-90% ST: 20-90% Q3=7L/s 3Qs=7Lls
Asummer X X X
1Bsummer X X X
Csummer X X X
1Dsummer X X X
Esummer X X X
2F summer X | X X
Gsummer X X X
Hsummer X | X X

For scenarios Bsummer and Dsummer, @ lower trigger level of 40% was used because with a lower trigger level of 20%, the tank
will drain when the demands are greater than the bore pump flow.

2Boxed items correspond to scenarios with the ‘best values’ in Table 6.9.

SPump operating at a higher efficiency point.

There was minimal difference in the results for most variables except for the number of switches for the
Bore Pump (Table 6.9). As the irrigation demands remain the same, so does the operation of Pump 3
(although there is a slight difference in cost between the current and new Pump 3) and the volume of
water that needs to extracted by the Bore Pump. When the Storage Tank size increased or the trigger
levels were widened, the number of switches required by the Bore Pump was reduced. As all the
irrigation occurred overnight, the times when the Storage Tank required filling are in blocks and so the
operation of the Bore Pump was directly related to the operating capacity of the tank.

Table 6.9: Simulation sensitivity analysis results for the summer system

What has been changed? Cost (c/kL) Cost Volume Pump Switches
Scenario  Trigger Storage  Bore  Pump Extracted (/day) Bore

Levels Pumps Tank Pump 3 Total (Biwk) (ML/wk) Pump, Pump 3
Asummer 236kL 3516 3966 4682  90.31 1.93 16,1
Bsummer Wide 36kL 3509 3.966  4.688  89.45 1.91 7.1
Caurmer New 36kL 3516 3.892 4663  89.70 1.92 16,1
Dsummer Wide New 36kL 3509 3.892 4660  89.40 1.92 7.1
Esummer 72kL 3509 3.966  4.679  90.00 1.92 8,1
'Fsummer Wide 72kL 3509 3.966  4.695  89.09 190 | 2,1 |
Gummer New 72kl 3509 3892 [ 4657 | 8958 1.92 8,1
Hsummer Wide New 72kL 3509 3892 4672 | 8867 | 190 | 2,1 |

Boxed cells in represent the ‘best values’ for each variable, scenarios that resulted in these ‘best values’ are boxed here and
in Table 6.8.
2Current Storage Tank size is 36 kL.
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6.5 Optimization

6.5.1 Revised Optimization Model Formulation

The formulation of the optimization problem was revised on the basis of the sensitivity analysis results.
They showed that there was little benefit in increasing the size of the storage tank, therefore
optimization of pump operations was considered with only the current tank size either with (A) the
current pumps or (B) the newly sized pumps. In the winter system, both the cost and volume objectives
were considered. The cost was calculated as the cost of energy used by Pumps 1, 2 and 3 to the
confined aquifer divided by the volume pumped by Pump 3 (in units of c/kL) and the volume objective
was measured as the volume pumped by Pump 3. In this case, the cost objective was calculated
relative to the volume pumped so that it was more easily comparable to the cost of potable water.

For the summer system, only the cost objective was considered, and it was calculated as the total cost
of energy used by the Bore Pump and Pump 3. As the system pumps to meet demand, the volume
pumped does not change between different solutions and therefore it was not necessary to take it into
account in the objective functions. Different potential solutions may have resulted in different storage
tank levels at the end of the summer irrigation period, however, it was considered undesirable to have
more water in the Storage Tank at the end of summer than at the start, as this water would then be
pumped back into the confined aquifer when the winter harvesting season started. As extraction from
and injection to the confined aquifer are both energy intensive, solutions that extracted more water than
was required in summer were not as good as those that extracted the exact demand amount.
Constraints were applied for a maximum number of pump switches of 48 per day (less than the current
operation) for all pumps, a maximum pressure of 45 m and minimum velocity of 1.1 m/s (equivalent to
flow of 7 L/s) downstream of Pump 3 when injecting and a maximum pressure of 40 m downstream of
Pump 3 when irrigating.

For the winter system, there were six trigger level decision variables to be optimized (Table 6.10) and
four trigger level values that were set and not optimized. Possible choices for the trigger level values
ranged from 10% to 100% of the storage volumes, in 10% increments. For the summer system, there
were two trigger level decision variables and 22 irrigation scheduling decision variables (two each for 11
open space reserves). In fact, given that the demand rate and duration for each open space reserve
(Table 6.2) were set, and the number of days per week, only the start day and time of the irrigation need
to be found by the optimization process. Note that the number of days between each irrigation event
was fixed for all open space reserves in the system and set equal to one (i.e. irrigation occurs every
second day). All open space reserves excluding Unley Oval were irrigated twice a week, and had
choices of initial irrigation days of Monday or Tuesday. Unley Oval was irrigated three times a week and
could only start irrigation on Sunday. Possible start times for all open space reserves ranged from 8pm
to 11:30pm in 30 minute increments. For the summer period, the Bore Pump was controlled by the two
trigger level decision variables, which were levels in the Storage Tank (ranging from 10% to 100% in
10% increments).

Table 6.10: Optimization decision variables and set trigger levels for the winter system

Rule Set Conditions) Optimized Effect Restriction
1 Harvest Pond level > 0.2 AND Bioretetion level < a Pump 1 On b>a
2 Harvest Pond level < 0.2 OR Bioretention level = b Pump 1 Off
3 Bioretetion level > 0.13 AND Storage Tank level < ¢ Pump 2 On d>c
4 Bioretention level < 0.13 OR Storage Tank level = d Pump 2 Off
5 - Storage Tank level < e Pump 3 Off fse
6 - Storage Tank level = f Pump 3 On

Decision variables are a, b, ¢, d, e and f.
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6.5.2 Optimization Results — Winter System (Stormwater Harvesting and Confined Aquifer
Injection)

Using the looped streamflow method (with the streamflow series in Figure 6.6), Pareto fronts were
developed for both system configurations (current and new pumps) as shown in Figure 6.7. Note that in
all of the Pareto fronts presented in this section, the ‘best’ solution would be the one closest to the top
left corner of the plot (maximizing volume harvested on the vertical axis and minimizing the cost rate on
the horizontal axis). Moving from the front for System A to that for System B provides a large
improvement in the Pareto solutions, which indicates the effect of replacing the pumps. The new pumps
were also able to harvest more water, with the front for System B extending to over 3.5 ML/week, while
the fronts for System A did not quite reach 3.0 ML/week. In order to supply all of the summer irrigation
demands from harvested stormwater (therefore not using potable supply), a harvest volume of 2.0
ML/week is required on average.
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averaged over streamflows

# A: Current System B: New Pumps System A Solution for Comparison® X System B Solution for Comparison*

Figure 6.7: Pareto fronts for both system configurations using the looped streamflow method
*Solutions compared to current operation in Table 6.11

The Pareto fronts produced from the individual streamflow method showed small differences between
the streamflow series for System A (Figure 6.8) and almost no difference for System B (Figure 6.9).
Streamflow Series 3 showed the largest difference in the Pareto optimal solutions compared with the
other series. This series had flows consistently below 7 L/s (the maximum confined aquifer injection
rate), and therefore the system could not harvest as much when this series was used. For all of the
other streamflow series, the average inflow was above 7 L/s, and while the variability of flow and
number of days with flow below 7 L/s made a difference in the simulation sensitivity analysis, little
impact is shown in the optimization results. The individual streamflow method may show more variability
in results for systems that have a capacity much higher than the average streamflow.

For each system configuration using the looped streamflow method, a solution from the Pareto front that
represented a good trade-off between the objectives was chosen for comparison to the current
operation (Table 6.11, note that the selected solutions are highlighted in Figure 6.7). System A shows a
small improvement, while the new pumps in System B shows a significant cost rate reduction of 50%.
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Figure 6.8: Pareto fronts for System A using the individual streamflow method
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Figure 6.9: Pareto fronts for System B using the individual streamflow method

Table 6.11: Comparison of cost and volume harvested of Pareto optimal solutions to current operation for the winter

system
Variable Current System A Optimal Solution System B Optimal Solution
Operation' Actual Difference Actual Difference
Cost Rate (c/kL) 8.85 8.71 -1% 4.34 -51%
Volume Harvested (ML/week) 2.50 1.84 -26% 3.63 +47%

'Data for the current operation is taken from the simulation sensitivity analysis Scenario A

6.5.3 Optimization Results - Summer System (Confined Aquifer Extraction and Irrigation)

Cost reductions for the summer system could be achieved both with the current pumps and by replacing
Pump 3 (Table 6.12). The optimal solutions for both systems use trigger levels of 0.25 m (10%) and
2.25 m (90%) in the Storage Tank to control the bore pump. These are much wider than the current
trigger levels, utilizing 80% of the Storage Tank volume rather than 20%. Optimal irrigation schedules
for both systems have the two Ridge Park stations and Fraser Reserve (i.e. all demand points on the
pressure line) irrigated on the same night. For both the current Pump 3 and the new Pump 3,
efficiencies are improved with the higher flow rate of all three of the pressure demand points rather than
the flow rate required for only one or two demand points. Irrigation of some open space reserves on the
gravity line was then deferred to other nights, in order to distribute the irrigation more evenly, preventing
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the Storage Tank from draining if the Bore Pump could not keep up with higher demands (Figure 6.10
compared to Figure 6.2).

Table 6.12: Comparison of cost of Pareto optimal solutions to current operation for the summer system

. , System A Optimal Solution System B Optimal Solution
Variable Current Operation Actual Difference Actual Difference
Cost ($/week) $90.3 $85.3 6 $82.4 9
Cost Rate (c/kL)" 4.74 447 ° 4.32 °

The cost rate is based on the volume irrigated, which is the same for all solutions
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Figure 6.10: Irrigation schedules for the optimized operation for System B

While installing new pumps would be a significant investment, the amount of operational savings may
make it worthwhile to the system manager. The difference in cost rate from the optimized operation with
the current pump to the optimized operation with new pumps is 4.43 c/kL in winter and 0.15 c/kL in
summer. If the full irrigation demand of 52 ML is harvested in winter and supplied in summer, this
amounts to $2381 in savings per year. The cost of the newly sized pumps was estimated to be just
under $9000. Using a discount rate of 6% over a 20 year period, the net present value of replacing the
pumps comes to over $18 000. This indicates that replacing the pumps would be financially beneficial
for the Council.

6.6 Conclusions

The operation and system configuration of a harvested stormwater and managed aquifer recharge
system has been thoroughly analyzed both through simulation sensitivity analysis and optimization.
Simulation of the system was split between the winter operation of harvesting and confined aquifer
injection and summer operation of confined aquifer extraction and irrigation. The simulation sensitivity
analysis considered replacing the pumps with smaller, more efficient models, increasing the size of the
Storage Tank and using wider trigger levels. Replacement of the pumps with smaller models was also
considered in the optimization of the system. Different streamflow (input) series have been investigated
using two methods in the optimization; firstly by performing separate optimizations (and therefore
developing separate Pareto fronts) for each series, and secondly by looping the streamflow series within
the optimization to find robust solutions.

Simulation sensitivity analysis of the system found that increasing the size of the Storage Tank would
not provide significant benefits, however, installing smaller pumps with better efficiencies could reduce
costs by 30-37%. Optimization with these new smaller pumps could provide further savings of up to
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50% of current operational costs, and this would provide a net financial benefit. The new pumps were
also able to harvest a greater volume over the one week simulation period than the current pumps.
Installing new pumps had more of an impact in the winter system, which utilized three new pumps, than
in the summer system which only utilized one new pump. Without replacing the pumps, using wider
trigger levels, particularly in the Storage Tank during summer, as well as irrigating the three demand
points on the pressure irrigation line at the same time could provide reductions in operational costs of
6%. These results suggest that the design of the system may limit the possible savings able to be
achieved by operational changes. The case study system analysis in this research was not particularly
sensitive to changes in streamflow; when there was adequate water available, regardless of the
magnitude and variability of streamflow, the optimal operations were much the same.
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Chapter7  Conclusions and Future Work

7.1 Thesis Summary

Water supply and distribution systems are a critical part of our society. As climate change and a growing
population put pressure on existing supplies, alternative sources such as harvested stormwater are
becoming more commonly used. Energy use of pumps is a significant concern for water supply systems,
both in terms of cost of electricity and emissions of GHGs. Pump operations have been extensively
analysed and optimized for traditional water distribution systems, however, complex pump operating rules
have not previously been considered. Optimization techniques have not previously been applied to the
minimization of cost of pump operations in alternative water source systems. These systems are generally
more complex to simulate and optimize, as there are additional processes, such as streamflow, and
additional components, such as treatment wetlands that may need to be considered. This thesis
addressed these gaps through the following six objectives developed in Chapter 1:

Objective 1. To develop a framework to optimize alternative water system pump operations for multiple
objectives including minimizing cost and maximizing volume harvested.

Objective 2. To apply the use of new rule-based controls in a modified EPANET2 programmer’s toolkit
to optimize complex pump operational strategies using a combination of trigger levels and
scheduling, and variable trigger levels.

Objective 3. To optimize pumping operations and irrigation scheduling for short time horizons for
systems using harvested stormwater with aquifer storage and recovery and multiple
pumping stations.

Objective 4. To demonstrate the importance of performing detailed simulation analysis of water systems
in order to better understand the system and to inform optimization of the system.

Objective 5. To analyse the sensitivity of optimal pump operations to changes in streamflow (system
inflow) and system design in a stormwater harvesting system.

Objective 6. To minimize GHG emissions from pump operations where operational characteristics are
considered as decision variables and characterize trade-offs between optimal cost and
optimal GHG solutions for these problems.

Optimization of five different types of pump operating controls has been performed on two potable water
distribution system case studies using rule-based controls in EPANET. Minimization of energy costs and
GHG emissions were considered separately using a single-objective genetic algorithm. VSP scheduling
was found to perform better than the other types of pump operating controls, and significant cost savings
were achieved for the real-life South Australian case study. A framework has been developed to
demonstrate how these types of optimization tools could be applied to water systems that use alternative
sources. The framework incorporates design and operational options, water and electrical energy
infrastructure, simulation models, government policy, and objectives and constraints within an
optimization algorithm process. This framework was then applied to pump operations in a integrated
supply system with multiple alternative water sources and a harvested stormwater system, in order to
minimize pump energy costs and maximize the volume of water harvested. An extensive simulation
sensitivity analysis was performed on a case study stormwater system, demonstrating the importance of
pump selection. Optimization of the system found optimal pump operating strategies for both individual
streamflow (input) series and solutions that were robust to multiple streamflow series. As well as replacing
the pumps in the system, altering the tank trigger levels and irrigation schedule provided a reduction in
pump operating costs.
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7.2 Research Contributions

The overall contribution of this research is the application of pump operations optimization techniques that
have been successfully developed on traditional potable WDSs to systems that utilize alternative water
sources such as harvested stormwater. From the publications presented in Chapters 4 to 6 of this thesis,
the following key contributions have been made to address the knowledge gaps identified in Section 2.4:

The first contribution is the development of a framework for the optimization of systems using alternative
water sources (Objective 1). This framework describes a methodology for optimization of both design
and operations of water systems that use alternative water sources, incorporating options (decision
variables), infrastructure, simulation models, and analysis of objectives and constraints. It also identifies
interactions between different system components, in particular the integrated nature of water and energy
systems, as well as the influence of government policies. Other frameworks and methodologies presented
previously have not covered the same extent of both supply and distribution sides of WDSs, or the range
of alternative water sources considered in this framework. The framework is generalized, and while its
application to two case studies for optimal pump operations is demonstrated in Chapter 5, it could be
used for both design and operations of other alternative water source systems.

The second contribution is an improved understanding of the optimization of complex pump operating
rules including the combination of trigger levels and scheduling (Objective 2). Application of the new
EPANET Toolkit To Alter Rule-Based Controls (ETTAR) allowed five different pump operating control
cases to be investigated for two case study systems in Chapter 4. Previous studies have considered
trigger levels and scheduling separately, or where combined trigger levels and scheduling were used,
only one was formulated as a decision variable, with the other being set before optimization.

Another contribution from Chapter 4 is the minimization of GHG emissions for pump operations
(Objective 6). GHGs have been extensively investigated in WDSs, however, this has mainly been in the
optimization of the design of systems. These studies do consider pump operations in order to determine
life-cycle GHG emissions, however, the operating rules are not considered as decision variables. The
work in Chapter 4 minimizes GHG emissions for existing systems, where pump operating rules are
considered as decision variables, rather than the design of the system.

The fourth contribution is the application of optimization techniques developed on traditional WDSs to the
operation of a harvested stormwater system (Objective 3). Optimization of systems using alternative
water sources has not been as extensive as for traditional WDSs, and minimization of pumping costs for
systems harvesting stormwater for re-use has not been previously considered. Chapter 6 extends the
work done on potable WDSs to a harvested stormwater system, which is more complex to simulate and
therefore to optimize. Irrigation scheduling was optimized along with the pump operating rules; in
traditional WDSs, consumer demands cannot be controlled or perfectly predicted and as such represent
a constraint or uncertain variable for the system. In systems that use alternative sources for non-potable
uses such as irrigation of public spaces, the demands may be controlled by the system managers and
therefore considered as decision variables.

The final contribution of this thesis is the demonstration of the importance of extensive pre-optimization
simulation and analysis of water systems (Objective 4). Before optimization was performed on the case
study system in Chapter 6, extensive simulation sensitivity analysis was used to refine the optimization
problem. Sensitivity of the system to changes in the pump selection, tank size, trigger levels and
streamflow was rigorously tested (Objective 5). This helped to fully understand the system and to refine
the search space of the optimization.
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7.3 Recommendations for Future Research

Alternative water source systems are more complex to simulate than traditional WDSs and have different
modelling requirements. The harvested stormwater case study investigated in this thesis was simulated
in EPANET hydraulic simulation software, however, this may need to be connected to hydrological or
hydrogeological models for other systems. For the case study presented in Chapter 6, streamflow data
was available and this could easily be implemented as an input to the hydraulic model. Generally,
streamflow data is much more limited than rainfall data, and therefore other systems may only have rainfall
data available. In this case, a hydrological rainfall-runoff model would need to be used to provide input to
the hydraulic model. Hydrologic models could also be utilized in order to consider the impacts of climate
change on the stormwater runoff volumes and harvesting capacity of stormwater catchments.

Assumptions made about the groundwater aquifer in the case study also meant that it could be
represented purely through the hydraulic model, however, in systems with more complex ground and
surface water interactions, a hydrogeological model may be required. In order to make the methodology
used in the research more generally applicable to other alternative water source systems, hydrological
and hydrogeological simulation should be incorporated.

Water quality is another important consideration, for both traditional potable supply and alternative water
sources that could be included in the future. This may be done through hydraulic simulation; many
programs have at least the ability to calculate water age, if not chemical concentrations as well. Additional
code added on to hydraulic simulation or other programs already available for water quality modelling
could also be required to accurately account for water quality.

As the focus for this research was on the pumping operation of existing systems in the current climate
conditions, there was limited investigation of different streamflow or demand scenarios. Both of these
factors are uncertain now and into the future, particularly when climate change is considered. The
methodology used for the harvested stormwater case study allowed multiple streamflow inputs to be
considered, however, only a small number of recorded data series were used. To make the optimal
solutions more robust to current and future variation in streamflow and demand, multiple replicates based
on statistics of recorded data and projections should be incorporated. This could be achieved by
connecting the methodology in this research with algorithms such as Monte Carlo simulation.

Electricity tariffs are also uncertain into the future; while specific case studies have given electricity tariff
structures and prices for the short-term, energy infrastructure and markets will change in the future
resulting in different electricity tariffs. The case studies in this research all had relatively simple peak and
off-peak electricity tariffs, and one also considered peak demand charge. More complex tariffs such as
those with shoulder periods or different weekend tariffs would increase the complexity of the optimisation
and should be considered in the future.

The framework presented in Chapter 5 discusses many different types of alternative water sources,
however, only harvested stormwater was investigated further in this thesis. A natural extension of this
work would be to apply the framework and methodology to other types of alternative water source
systems, such as recycled wastewater, groundwater and imported water. These different sources will
each have unique components that need to be simulated, which would not be incorporated in the current
methodology developed for the harvested stormwater system. Applying the framework to systems with
more complex pumping arrangements would also help to further develop the methodology.

Further development of the methodology on different types of alternative water source systems would
make it more generalized and allow easier application to all types of alternative water source systems in
the future. An explicit mathematical model of the framework could be developed to allow other researchers
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to apply it with more consistency and ease.The framework presented in Chapter 5 incorporates
optimization in its structure, however, it does not specify a particular algorithm. This study utilized only
one type of optimization technique — Genetic Algorithms. Different optimization methods all have different
advantages and disadvantages, and the most suitable algorithm will depend on the specific problem. In
the future, different optimization tools could be utilized within the framework to determine which performs
best for different alternative water source problems.
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Comparison of Pumping Regimes for Water Distribution
Systems to Minimize Cost and Greenhouse Gases

Lisa J. Blinco'; Angus R. Simpson, M.ASCE?, Martin F. Lambert, M.ASCE?®; Angela Marchi*

Abstract: A single-objective optimization model has been developed for water distribution system (WDS) pumping operations, considering
five different ty pes of pump operating regimes. These regimes use tank trigger levels, scheduling, and a combination of both t control pumps.
A new wolkit development to alter rule-based controls in hydraulic simulation software has allowed more complex pump operating regimes
than have previously been considered to be optimized. The performance of each of the regimes is compared with respect to two different
objectives: cost and greenhouse gas (GHG) emissions, which were optimized separately to allow the comparison of regimes to be made more
clearly. Two case study networks, including one that represents a segment of the South Australian WDS, illustrate the effectiveness of the
model. Time-based scheduling operating strategies were found to perform better than the other ty pes of pump operating regimes. Significant
cost savings were achieved for the South Australian case study network compared with its current operation. DOI: 10.1061/(ASCE)WR

1943-5452.0000633. © 2016 American Society of Civil Engineers.
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Introduction

Energy costs can account for up to 65% of a water utility’s operat-
ing budget (Boulos et al. 2001), and as such optimizing the cost of
energy used for pumping will have significant benefits. Previous
investigations of optimal pump operating strategies have generally
been restricted to either lower and upper tank trigger levels or
scheduling. Consideration of more complex pump operating
regimes, for example, using trigger levels that vary throughout
the day or combining trigger levels and scheduling, has been re-
stricted in part by simulation mode! capabilities. A modification
of the existing EPANET2 toolkit (Rossman 2000) has been devel-
oped by Marchi etal. (2015) in order to modify rule-base controls.
This new toolkit is called “EPANET2-ETTAR" (EPANET2 Toolkit
to Alter Rules) and allows more complex pump operating regimes
to be optimized. Human-induced climate change presents a serious
global risk and action to mitigate the impact by reducing green-
house gas (GHG) emissions is important. Production of electrical
energy for water distribution system (WDS) pumping operations is
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the biggest contributor to GHG emissions from the water industry
(Stokes and Horvath 2006; Wu et al. 2013).

This paper describes the development of a single-objective
genetic algorithm (GA) optimization model for WDS pump oper-
ations integrating EPANET2 (including EPANET2-ETTAR) and
a Microsoft Excel interface. The performance of five different
types of pump operating regimes, including trigger levels that vary
throughout the day and combined trigger levels and scheduling, is
compared with respect to either the minimization of cost or the min-
imization of GHG emissions. The model is applied to two different
case studies, a hypothetical one-pipe network and a real-life net-
work from South Australia. In the second case study, two different
pump sizes are considered and the results compared.

Literature Review

Efficient operation of WDSs can be achieved in several ways. The
first step is to optimize the design of pumps and infrastructure, then,
for existing or designed systems, pump operating rules can be op-
tmized. Other strategies include recovering energy that would oth-
erwise be dissipated using mini-hydro systems (Carravetta et al.
2013b; Fecarotta et al. 2015), reducing leakage to reduce pump
and water treatment energy requirements (Giustolisi et al. 2013)
and pump maintenance or replacements. There are many different
objectives that can be considered to achieve efficient WDS oper-
ation, with the most common being to minimize the cost of elec-
trical energy use. GHG emissions, based on energy use, or simply
energy use itself can be used as environmental impact objectives
(Simpson 2009). Water quality can be addressed by minimizing
water age, which can be obtained from EPANET2 (Stokes et al.
2012a); pump maintenance cost, represented by pump switches,
could be formulated as an objective (Lopez-Ibdnez et al. 2005)
or as aconstraint (Lansey and Awumah 1994 ); system effectiveness
(Carravetta et al. 2013a), resilience (Prasad and Park 2003), and
leak reduction (Giustolisi et al. 2015) can also be used as objectives
to improve the performance of WDSs.

The research presented in this paper focuses on the optimization
of pump operating rules and the comparison of different types of

J. Water Resour. Plann. Manage.

J. Water Resour. Plann. Manage., 2016, 142(6): 04016010

112



Downloaded from sscelibrary org by The University of Adclaide on 06'06/16, Copyright ASCE. For personal use ondy: all rights reserved.

Appendix A: Final Published Version of Publication 1 (Chapter 4)

pump operating structures. The case studies nvestigated are
existing systems, and therefore no design optimization is consid-
ered. Objectives of pumping electricity cost and GHG emissions
are considered separately and the characteristics of the optimal op-
ermting strategies for the objectives are compared. Multiobjective
optimization of cost and GHG emissions for WDSs has been ex-
tensively covered in Wa et al. (2010a, d, 2011, 20124, b, 2013) and
Stokes et al. (2012b, ¢, 2014). This rescarch is different in that it
considers the effect of the different pump opemting regimes on
cach objective individually.

WDSs are often required to perform under different conditions,
including different demands (e.g., seasonal and daily variations),
emergencies (such as fires), and fatlure scenarios (such as power
outages or pipc breaks), all of which have some uncertainty
associted with them. Goryashko and Nemisrovski (2014) use sto-
chastic methods to find optimal operating strategies that are robust
to different demand scenarios, while Basupi and Kapelan (2015)
combine Monte Carlo analysis with GA optimization for the
WDS design problem. Analysis of emergency conditions and sys-
tem failure in optimization has been much more widely applied w0
the design problem {e.g., Morley et al. 2012) while, for pumping
operations, the use of a constraint on the minimum tink level or an
emergency reserve storage is usually used to guarantee a rehable
service,

Optmization of pump operutions is highly complex due to a
large number of possible pump operating strategies, vanable elec-
tricity price, and fluctuating consumer demands, Operational pol-
icies are also subject to several constraints, including acceptable
levels of water in storage tanks, maximum pumped volumes,
long-term tank level baluncing, nodal pressure limits, and maxi-
mum pipe velocities, Previous studies have usually been restricted
to using either tigger levels (Puschke et al. 20015 Stokes
et al. 2012b) or scheduling (Mackle et al, 1995:; Goryashko and
Nemisrovski 2014) and have not considered more complex oper-
ations such as trigger levels that vary throughout the day or combi-
nations of trigger levels and scheduling. Lower and upper trigger
levels represent the tank levels at which the pump(s) will turn on or
off, respectively (when pumping to a downstream tank), Pump
scheduling involves a set of temporal rules indicating when pumps
should be switched on or off during the day, Scheduling requires an
accurate estimation or a forecast of the expected duily water de-
mand. Kazantzis et al. (2002) combined the use of trigger levels
and scheduling, however, the trigger levels were fixed, wnd
only the scheduling vardables optimized. In EPANET2 (Rossman
2000), only simple controls (used for tngger levels) and pump pat-
terns (used for scheduling) can be altered through the programmer’s
toolkit (which can be used to trial different potential solutions
within, say, a genetic algorithm optimization framework ), and rule-
based controls that are required for more complex operating
regimes cannot be changed via the cument toolkit. EPANET2-
ETTAR gives wcess to these rule-based controls, therefore
allowing more complex pump operating regimes 10 be considered
in the pumping optimization process,

When a peak and off-peak electricity tanff structure applies,
operational costs will be minimized by reducing the amount of
pumping in the peak electricity period and deferring this pumping
1o the off-peak period, Opertional costs will also be reduced by
reducing the static head and by increasing the efficiency of the op-
eruting pomt. Maximizing the amount of off-peak clectricity pump-
ing can generally be achieved when the tank water level is ot ts
maximum at the beginning of the peak period and at its lowest al-
lowable level at the end of the peak period (Mackle et al. 1995;
Kazantzis et al. 2002). A future spproach, primanly concerned
with GHG cmussions, may be to pump steadily throughout the

© ASCE

04016010-2

day with u variable speed pump (VSP), or in response to demands
rather than electricity prices, with reduced energy through the
use of slower velocities leading to a smaller friction head loss
(Simpson 2009).

To properly sccount for the GHG emissions of WDSs, the
sources of electricity should be identified because each will
have different GHG emissions per unit of energy produced (Dandy
et al. 2006). An emission factor is used to convert energy use to
GHG emissions, considenng all types of GHGs and their global
wigrming potentinl as an equivalent mass of CO, (COy-eq). Pre-
vious studies have used an average GHG emission factor value
for the region, including Dandy et al. (2006) and Wu et al.
(20104, d). Stokes et al. (2012b) wok into account time-varying
emission factors in their optimization of water distribution system
design and operation. This identified high emission intensity elec-
tricity use and helped to reduce operational GHG emissions. The
objectives of cost and GHG emissions may be aligned if no varia-
tion in edectricity tariffs or emission factors is considered. When
variations in these factors are taken into account, times with lower
clectricity prices will not necessanly coincide with times of lower
emission factors. so optimal solutions for the two objectives will
be different,

GAs represent an efficient method for the optimization of non-
linear problems, particularly when applied 0 complex WDSs.,
These algonthms are a population-based optimization technique
that use coded representations of solutions (Goldberg 1989). After
generating a mndom initial population, the GA determines the
fitness of each potential solution by simulating them und evalu-
ating an objective function. In many optimization problems,
the objective function is based on cost, but it can also be formu-
lated for other objectives, All solutions then go through GA
operators based on evolutionary principles—typically selection,
crossover, and mutation-to produce the next generation of solu-
tions (Goldberg 1994). This process is repeated to converge on
optimal or near-optimal solutions. When applied to the optimiza-
tion of WDSs, GAs have been found to perform significantly bet-
ter than other optimization technigues in areas of final solution
optimality and iterative efficency and are sull competitive with
other optimization methods today (Simpson et al. 1994, Wang
et al. 2015).

Methodology

Optimization Model Formulation

The aim of this research was to compare the performance of five
different pump operating control cases and the characteristics of
their optimal solutions, To achieve this aim, a single-objective
optimization model was developed, linking a GA with EPANET2-
ETTAR and o Microsoft Excel Interface. EPANET2-ETTAR was
used to simulate the different potential solutions from the GA in
order to provide information about their performance relative to
the objective function and constraints, The interface allowed the
optimization pammeters, decision variables, choice tables, und
other inputs to be changed and customized for different networks.
A single-objective GA with toumament selection, a choice of
one- or two-point crossover, and bitwise mutation was used.
Trgger level cases, with a small number of decision variables, used
one-point crossover with a crossover probability of 0.8, a mutation
probability of 0.05, 200 generations, and a population size of 200.
Scheduling cases, with a large number of decision variables, used
two-point crossover with a crossover probahility of 0.7, a matation
probability of 0.02, 40 gencrations, and a population size of 300,
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Fig. 1. Daily variation in solar photovoltac output (solid) and emission
factors (dashed)

Wherever possible, full enumeration of the search space was used
in preference to the genetic algorithm optimization.

Two different objective functions were considered separately:
cost and GHG emissions. The value of each objective function
was calculated in terms of units per volume of water pumped to
remove any bias between solutions that pumped different volumes
of water over the day. For the cost optimization, the objective
function was dependent on the energy use, electricity tariff rates,
and the volume of water pumped over the whole day as given by

Eq. (1)

2iTi X E;

oC = 7

(1)
where OC = operational cost (dollars/m?); T; = electricity tariff
for each time step /i (dollars/kWh): E; = energy consumption
for each time step i (kWh); and V = total volume pumped (m?*)
during the time simulation period. EPANET2-ETTAR was utilized
to determine energy use for each time period as well as the volume
of water pumped. In this research, a two-part electricity tariff
has been considered, however, the pattern for the electricity tariff
could easily be altered to consider other, perhaps more complex.,
tariff structures, such as a multipart tariff (more than two periods).
In addition, a monthly peak energy demand charge (that is, an
additional charge for the maximum kilowatt usage) could also
be included if desired. An electricity price patiem can be specified
in EPANET?2, as well as a demand charge variable, which may ap-
ply if there is a monthly peak energy demand charge. Electricity
costs were based on a representative South Australian tariff; a peak
electricity price of 22 ¢/kWh (c = cents) between 7 a.m. and
11 p.m., and an off-peak elecrricity price of 9 ¢/kWh from
Il pm.to 7 am.

The objective function for GHG emissions was based on the
distribution of emission factors throughout the day and the energy
used in each time period as given by Eq. (2)

OGHG = (2)

2 Fi xE
4
where OGHG = operational GHG emissions (kg CO,-eq/m?); F; =
emissions factor at each time step i (kg CO,-eq/kWh); and E; =
energy at each time step i (kWh), which ranged from 0 to 23
for hourly time increments. Emission factor data were collated from
Dey and Lenzen (2000), Lenzen (2008), and Evans et al. (2010) in
order to take into account the varying contributions to GHG emis-
sions from different energy technologies. To calculate the overall
emission factor, South Australia’s cumrent energy sources, mainly
gas, brown coal, and wind (Australian Energy Market Operator
2011), have been used. The emission factors were also adjusted
to account for the variation in output from solar photovoltaic sys-
tems throughout the day and this output was greatest during the
middle of the day (Fig. 1). The contribution of each energy source
at every hour was adjusted depending on the solar phowvoltaic
multipliers to give a daily variation in emission factors, which were
lowest in the middle of the day (Fig. |). Minimization of energy
consumption was also available in the model and acted as a surro-
gate for optimization of cost or GHG emissions where no daily

variation in electricity tariffs or emissions factors was present.

A number of constraints could be used in the optimization pro-
cess, with penalties added to the objective function in the case of
constraint violation. In addition to pressure, velocity, and head loss
constraints, a minimum tank level may be specified to account for
emergency and dead storages. There was also a tank balancing con-
straint, formulated as the maximum allowable difference between
the storage tank’s start and end level each day, and this could be
used to prevent depletion of the water in the tank at the end of the
simulation period. The maximum number of pump switches to oc-
cur within a 24-h period may also be specified, which could be used
to address issues of pump maintenance costs.

Pump Operating Control Cases

Optimization of five distinct pump operating control cases was con-
sidered: (1) Case A, lower and upper trigger levels; (2) Case B, a
reduced upper trigger level; (3) Case C, combined trigger levels and
scheduling; (4) Case D, variable trigger levels; and (5) Case E, var-
iable speed pump scheduling. The pump operation was optimized
over a period of 24 h, with the simulation period beginning at the
start of the off-peak tariff period and the water level in the tank
being at its lowest allowable level. This serves as a known starting
point for an optimal solution and also means that the final water
level of the tank is likely to be close to the initial level as less pump-
ing will benefit either of the objective functions. The available de-
cision variables and constraints for each pumping control case are
summarized in Table I.

Control Case A optimized two decision variables—the lower
and upper trigger levels in a downstream tank that determined
when a pump would be switched on and off, respectively. While
rigger levels are effective at keeping the water level in a tank
within a certain operating range, there are both advantages and

Table 1. Summary of Decision Variables and Constraints for Each Control Case

Case Decision variables Constraints

A Lower trigger level: upper trigger level Minimum tank level. tank balancing tolerance,

B Lower trigger level: reduced upper trigger level; upper trigger level maximum pump switches, maximum and minimum
C Lower trigger level: upper trigger level: scheduled pump start(s); scheduled pump stop(s) nodal pressures, maximum and minimum pipe

D Peak lower trigger level; peak upper trigger level; off-peak lower trigger level: velocities, maximum and minimum pipe head Joss

off-peak upper trigger level
Pump speed multiplier(s) (number depends on time interval)

m
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disadvantages to different rigger level operating strategies. Increas-
ing either trigger level will increase the average static head of the
system and therefore requires the pump to expend more energy to
pump the same volume of water to the tank. A lower value of the
upper trigger level may increase the amount of pumping required in
the peak electricity tariff period because the tank will not be full at
the start of this period, and hence may increase costs. The closer the
trigger levels are to each other, the more times the pump will switch
on and off during the day, which will increase general wearand tear
of the pumps. Additionally, having both trigger levels or just the
lower trigger level closer to the minimum allowable tank level
may jeopardize the system’s capability to meet demand require-
ments. In times of exwremely high demand, the rate at which
the tank is draining may exceed the maximum pumping capacity,
resulting in overall depletion of the tank volume even with the
pump switched on. In these circumstances, if the trigger levels
are oo low, the water level in the tank may fall below the minimum
allowable level.

A reduced upper trigger level was considered in Control Case B,
which implemented EPANET2-ETTAR for optimization of rule-
based controls. This model had three decision variables: a lower
tigger level, an upper trigger level, and a reduced upper trigger
level. During most of the 24-h simulation period, a reduced upper
trigger level was permitted in order to reduce the static head of the
system. There was a user-selected switch time before the start of the
peak period at which the control would swap to the ultimate upper
trigger level in order to fill the tank before the peak period.

Control Case C combined the use of tank trigger levels
and pump scheduling. There were two trigger level decision
variables—an upper and lower trigger level—which governed most
of the pump operation. In addition to this, multiple time-based
scheduling decision variables were also included that would specify
a time for pump starts and pump stops. These time-based decision
variables allow the tank water level criteria at the end of each tariff
period [as identified by Mackle et al. (1995) and Kazantzis et al.
(2002)] to be met where trigger levels alone cannot achieve this.
For example, if the trigger levels in a particular network were such
that the tank was draining at the end of the off-peak period, a sched-
uled pump start was added so that the tank is full at the start of the
peak period. If the tank is filling at the end of the peak perod, a
scheduled pump stop was added to ensure the tank would be at its
lowest allowable level at the end of the peak period and therefore
avoid excess peak pumping.

Control Case D allowed for different trigger level sets for the
peak and off-peak periods and this also utilized the EPANET2-
ETTAR toolkit. There were four decision variables—an upper
and lower trigger level in the peak period and an upper and lower
trigger level in the off-peak period. In order to reduce the pumping
cost, the two trigger levels used for the off-peak period will be
higher than the two trigger levels used for the peak period because
this allows the tank level to be closer to full at the beginning of the
peak tariff period and close to the minimum allowable tank level at
the beginning of the off-peak period. As suggested by Kazantzis
et al. (2002), in order to optimize costs the tank should be at its
minimum level at the end of the peak period and at its maximum
level at the start of the peak period. The two different sets of trigger
levels also allow for the reduction of the static head (and therefore
energy use) during the period of higher electricity cost.

VSPs were incorporated into Control Case E, which optimized
pump scheduling regimes. The decision variables in this model
were the pump speed multipliers at each tme interval. If fixed-
speed pumps (FSPs) were used, the only possible values for the
pump speed multipliers would be 0 or 1. For VSPs, additional
choices for the multipliers could range from 0.85-1.0 (as well

@ ASCE

as 0 for when the pump is off). The minimum pump speed multi-
pliers calculated for the specific case studies take into account the
guidelines by Marchi et al. (2012): (1) the minimum relative speed
of the pump is larger than 0.7 so that the affinity laws can be used to
predict the pump efficiency curve with reasonable accuracy, and
(2) the shutoff head of the pump curve at the reduced speed is still
higher than the static head of the system in order to deliver a flow
larger than zero. In particular, the lower limit (0.85 in this case)
depends on the pump shutoff head relative to the maximum system
static head. Variable speed drive efficiency is not taken into account
and this could affect the energy use of VSP solutions (Walski et al.
2003). When choosing a VSP for a particular system, the overall
efficiency. including the vaniable speed drive efficiency and motor
efficiency, should be taken into account. The time interval for the
simulation of the pump schedule could be modified to reflect differ-
ent demand patterns and pumping restrictions or requirements. For
example, half-hourly time intervals would result in 48 decision var-
iables, which could increase operational flexibility but also could
increase optimization run times and effectiveness compared with
hourly time intervals with only 24 decision varables. For systems
with multiple pumps, a larger time interval may need to be used
because otherwise the number of decision variables may easily
become excessive, leading to long optimization mn times and a
larger search space, making finding the optimal solution more
difficult.

Results

Case Study 1: One-Pipe Network

The models were initially used to analyze a one-pipe network in-
roduced by Wu et al. (2010a), who performed a multiobjective op-
umization for the pump size and pipe diameter of the network,
finding eight nondominated solutions in terms of capital and oper-
ating costs and GHG emissions. A design solution that represented
an acceptable trade-off between costs and GHG emissions was used
in this research (Fig. 2 shows the network configuration). The net-
work pumped water from an upstream reservoir to a downstream
tank, which supplied an average peak day demand of 80 L/s. A
diameter of 20 m was assumed for the downstream circular tank.
Potential trigger level values for this network ranged from 1.0 to
5.0 m, with an increment of 0.2 m. The minimum possible trigger
level value accounted for dead storage and emergency reserves.
VSP multipliers considered were between 0.85 and 1.0 in 0.05
increments (Table 2). The minimum feasible VSP multiplier was
determined using the first pump affinity law relationship between
pump head (Hp) and speed (N) [Eq. (3)]. Pump speed can be re-
duced to a point where the shutoff head of the pump is equal to the
static head of the system. At full speed [1,475 revolutions per
minute (rpm)], the pump shutoff head is 143 m (Hp,) and the static
head of the system when the tank is full is 100 m (H p,). Applying
Eqg. (4) gives a minimum pump speed multiplier (N,) of 0.84; to be

EL95.0m

EL 0.0m

Fig. 2. One-pipe network
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Table 2. Summary of Choices and Constraints Applied to Each Case Study

Decision variable or constraint

One-pipe network

South Australian network

Trigger levels (Cases A-D)

First pump start (Case C)

Second pump start (Case C)

Pump stop (Case C)

Pump speed multipliers (Case E)
Minimum tank level

Tank balancing tolerance

Maximum pump switches

Minimum and maximum nodal pressures
Minimum and maximum pipe velocities
Minimum and maximum pipe head loss

1.0-5.0 m, 0.2-m increment

3 to 7 am., 5-min increment

4 to 10 p.m., 5-min increment —

10 to 11:30 p.m., 5-min. increment
0.85-1.0, 0.05 increment

4.07.9 m, 0.1-m increment
3 to 7 a.m.. 5-min increment

6 to 10 p.m., 5-min increment
0.88-1.0, 0.04 increment

None, 0.8, 1.0 m 25 40m
None, 0.5 m Nore. 0.1, 0.5 m
12,96 12, 96

— None, 20 and 120 m
. None, 0 and 5 m/s
— None. 0 and 50 m/km

conservative, a minimum value of 0.85 is considered (equivalent to
approximately 1,254 rpm)

=) ®
: Hp,
if Ny = 1 (full speed) then N, = H—‘ (4)
Py

Control Case A

Cost Minimization. When optimizing pump operating Control
Case A, a lower trigger level of 1.0 m and an upper trigger level

of 5.0 m was the best solution in terms of cost (Table 3). Because
there were only two decision variables, each with 21 possible val-
ues (using increments of 0.2 m), the total number of possible so-
lutions was 212 = 441. Complete enumeration of the problem was
performed and confirmed this result. The second-best through to
the sixth-best solutions as presented in Table 3 show the same char-
actenistic of having the trigger levels far apart, allowing maximum
off-peak pumping. Solutions 7, 8, and 10 reduce energy use and
therefore cost by reducing the static head of the system. These so-
lutions all had a wigger level range of 1.6 m, with different lower
and upper trigger levels. This trigger level range allowed the tank to
half-fill twice during the off-peak period while also maintaining a
lower water level than the first six solutions (Fig. 3). As can be seen

Table 3. Top Solutions from Pump Operating Control Case A Optimization for the One-Pipe Network

Lower Upper Trigger Peak Off-peak Minimum
Cost trigger level rigger level level range Energy energy energy water level GHGs
Solution ($/m?) (m) (m) (m) (kWh/m’) (%) (%) (m)* (kg CO,-eq/m’)
Cost: Ist 0.0683 1.0 5.0 40 0.3725 720 280 0.36 0.2222
Cost: 2nd 0.0688 1.0 48 38 0.3721 731 269 0.40 0.2220
Cost: 3rd 0.0690 1.2 50 38 03728 731 269 059 0.2224
Cost: 4th 0.0695 1.0 46 36 03718 745 255 048 0.2219
Cost: 5th 0.0696 1.2 48 36 03725 744 25.6 0.66 02223
Cost: 6th 0.0697 1.4 5.0 36 0.3731 744 25.6 0.85 02227
Cost: Tth 0.0698 1.0 2.6 1.6 0.3702 759 24.1 0.77 02213
Cost: 8th 0.0699 1.2 28 1.6 0.3708 758 242 0.96 0.2218
Cost: 9th 0.0701 1.0 44 34 0.3716 759 241 0.60 0.2218
Cost: 10th 0.0701 1.6 32 1.6 0.3721 757 243 1.32 0.2225
GHG: Ist 0.0721 1.0 12 02 0.3685 812 18.8 045 0.2204
*Maximum water level for each solution is equal to the upper trigger level.
o Off-Pcak Peak % . Off-Peak ., Peak e
50 T 3= > 50 ¢ >< >
0 pper Trigger chcy\S.O m 2
=40 — 40
M VA ; e Lot
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in the “Energy” column, the seventh solution had the lowest energy
use per volume of water pumped from the cost optimization solu-
tions. It had a greater cost per volume pumped because there is a
greater percentage of energy being used in the peak period com-
pared with the first six solutions (“Peak energy” and “Off-peak
energy” columns). This indicates that for this network, the effect
of the peak and off-peak tariff prices on the cost is greater than
the effect of reducing the static head.

The solutions represented in Table 3 and Fig. 3 did not have a
minimum tank level constraint enforced, which allowed the water
level to fall significantly below the lower trigger level of 1 m due
to high demands in the evening (“Minimum water level” column
Table 3). If a minimum tank level constraint of 1 m is used, the
optimal trigger levels are found to be 1.6 and 3.2 m (the 10th-best
solution in Table 3), which has a minimum tank level of 1.32 m,
well above the constraint. If the minimum level constraint is relaxed
slightly, the optimal trigger levels are found to be 1.2 and 2.8 m
(the eighth-best solution in Table 3). This results in a minimum
tank level of 0.96 m, which may be acceptable to the decision
maker. This shows the impact of the minimum tank level in finding
the optimal trigger levels.

GHG Minimization. The optimal solution for GHG emissions was
different than the optimal cost solution. The lower and upper trigger
levels were as low and as close together as possible, at 1.0 and
1.2 m, respectively (while in the cost optimal solution they were
as far apant as possible), reducing the static head. No effect due
to the daily variation in GHG emission factors was observed in
the optimal GHG solution. Because the trigger levels are very close
together, the pump turns on and off quite ofien (62 pump switches)
throughout the day, with the exception of two blocks in the peak

period where the pump is on, resulting in higher costs. The seventh
cost solution had lower GHG emissions than the other top 10 cost
solutions (“*GHGs" column of Table 3). Because it reduced energy
use and costs by reducing the static head as well as reducing peak
pumping, it was an acceptable compromise between the cost and
GHG objectives.

Control Case B: Cost Minimization

With the addition of a reduced upper trigger level in Control
Case B, the minimum operating cost was lowered to $0.0652/m?,
compared with the $0.0683 /m’ for the Control Case A solution. A
switch time of 2 a.m. gave the lowest cost and was able to fill the
tnk just before the start of the peak period at 7 am. [Fig. 4(a)].
Using areduced upper trigger level did not benefit GHG emissions
because there was no need to fill the tank before the start of the peak
period and a reduced static head could be achieved using a low
value for the upper trigger level.

Control Case C: Cost Minimization

For Control Case C, the combination of trigger levels and sched-
uling, the cost was reduced slightly compared with the previous
control cases at $0.0651/m’. Due to the high demands at the
end of the peak period, shutting the pump down during this time
would not be feasible. Therefore, an additional decision variable in
the form of a pump startup during the peak time was considered as
well as those proposed in the methodology. The time range for this
pump startup was 4 to 10 p.m. at an increment of 5 min, which
allowed the tank level to stay above 1 m, and a pump shutoff
was considered between 10 and 11:30 p.m., also at an increment
of 5 min. The optimal cost solution found using this strategy again
had wide trigger levels of 1 and 5 m, the pump was started again at
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Fig. 4. Daily tank level vardation of the one-pipe network: cost optimal solutions for pump operating (a) Control Case B; (b) Control Case C;

(¢) Control Case D; (d) Control Case E
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Fig. 5. South Australian network

5:35 a.m. and this allowed the tank to fill exactly for the starnt of the
peak period [Fig. 4(b)]. During the peak period, the optimal solu-
tion started the pump at 6:20 p.m. and then shut it down at
10:20 p.m. to have the tank empty at the end of the peak period.

Control Case D: Cost Minimization

Using variable trigger levels in Control Case D found an optimal
solution that maintained a low water level during the peak period,
with trigger levels of 1.2 and 2.2 m, and a high water level during
the off-peak period, with trigger levels of 4.4 and 5.0 m [Fig. 4(c)].
Even though this solution had a slightly greater percentage of
pumping during the peak period compared with the Control Case
C solution, it reduced the static head for much of the simulation
period and was therefore slightly cheaper at $0.0649 /m’.

Control Case E: Cost and GHG Minimization

Scheduling in Control Case E was able to find solutions with re-
duced cost and GHG emissions compared with the other control
cases. The best cost solution using VSPs used lower pump speeds
throughout the off-peak period to fill the tank exactly at the start of
the peak period [Fig. 4(d)] and had a cost of $0.0625/m’*. The use
of FSPs was more expensive than VSPs; the cost optimal solution
using FSP had a cost of $0.0656/m?. FSP scheduling was less flex-
ible than VSP operation and was not able to completely fill the tank
for the start of the peak period. The optimal solution for GHG emis-
sions pumped constantly throughout the day at reduced speeds,
compared with the cost optimal solution, which pumped as much
as possible in the off-peak period. This resulted in a cost of
$0.0682/m’ and GHG emissions of 0.2156 kg COs-eq/m’, both
of which are lower than for all of the solutions (cost or GHG opti-
mal) presented in Table 3 for Control Case A

Case Study 2: South Australian Network

The second case study was a real-life WDS in South Australia, con-
sisting of 324 pipes, 278 nodes, two pumps (one on standby), one
reservoir, and two tanks (Fig. 5). This case study was chosen to

@ ASCE

show the advantages and disadvantages of the different pump op-
erating control cases and objectives for a real network. With only
one pump operating, the comparison between the control cases
could be made clearly and their effect on the objectives more easily
understood. With an average daily peak day demand of 30.7 L/s
compared with the pump operational flow of 126 L/s, the pump in
this network was oversized and only required to operate for 8 h
each day. Under the current operational regime using trigger levels
of 3.96 and 5.54 m, almost half of this pumping occurred during the
peak electricity tariff period (Fig. 6), when electricity rates were
much higher (22 ¢/kWh compared with 9 ¢/kWh for off-peak).
Cost and GHG emissions for the current operation were
$0.0360/m’ and 0.1460 kg CO,-eq/m’, respectively. The maxi-
mum tank water level was 7.92 m, with a minimum tank water level
set at 2.5 m, representing 30% of the full volume to account for
emergency reserves and dead swrage. Trigger level values consid-
ered in the optimization ranged from 4.0 to 7.9 m at an increment
of 0.1 m, with the initial tank water level set at 4.0 m for all
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Fig. 6. Daily tank level (solid) and pump flow (dashed) variation of the
South Australian network: cumrent operation
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Table 4. Optimal Solutions for Each Pump Operating Control Case for the South Australian Network

Control Cost Cost difference GHGs GHG difference Peak energy Off-peak energy
case Objective ($/m?) (%) (kg CO,-eq/m?) (%)* (%) (%)

A Cost 0.0219 —39.2 0.1466 +0.4 0.0 100.0

A GHGs 0.0438 +21.6 0.1434 -1.8 713 2.7

B Cost 0.0219 —392 0.1464 +0.3 0.0 100.0

C Cost 0.0219 —392 0.1466 +0.4 0.0 100.0

D Cost 0.0219 —39.2 0.1466 +0.4 0.0 100.0

E Cost 0.0218 -395 0.1459 —0.1 0.0 100.0

E GHGs 0.0466 +293 0.1419 =29 804 19.6

*A negative difference indicates that the cost or GHGs in the optimal solution is less than the current operation (cost: $0.0360/m°, GHG:

0.1460 kg CO,-eq/m’).

Table 5. Optimal Solutions for Each Pump Operating Control Case for the South Australian Network with a Smaller Pump

Control Cost Cost difference GHGs GHG difference Peak energy Off-peak energy
case Objective ($/m’) (%) (kg CO,-eq/m’) (%)* (%) (%)
A Cost 0.0291 —192 0.1339 —83 310 69.0
A GHGs 0.0385 +7.0 0.1320 -9.6 64.7 353
B Cost 0.0291 —193 0.1339 —83 310 69.0
C Cost 0.0291 —192 0.1339 —-83 310 69.0
D Cost 0.0291 —19.3 0.1139 —83 310 69.0
E Cost 0.0280 -223 0.1348 =17 270 73.0
E GHGs 0.0409 +13.4 0.1315 —10.0 726 274

“A negative difference indicates that the cost or GHGs in the optimal solution is less than the current operation with the original pump (cost: $0.0360 /m’,

GHG: 0.1460 kg CO,-0q/m’).

simulations. The minimum pump speed multplier was calculated
to be 0.87 [Eq. (4) with a pump shutoff head 0f 92 m and maximum
static head of 69.4 m], so choices for multipliers ranged from 0.88
to 1.0 in 0.04 increments (Table 2). The optimization results for all
control cases for this network are presented in Tables 4 and 5 and
discussed in the following sections.

Control Case A: Cost and GHG Minimization

For Control Case A, the optimal tngger levels to minimize cost for
this network were 4.0 and 6.1 m, costing $0.0219/m?, 39% less
than the current operation (Table 4). The pumping in this solution
occurred entirely within the off-peak period, with the tank filling
between the hours of 11 p.m. and 6:30 a.m. and then draining for
the rest of the day [Fig. 7(a)]. Optimizing for GHG emissions found
that trigger levels of 4.0 and 43 m reduced emissions to
0.1434 kg CO,-eq/m*, a 1.8% saving on the current operation
(Table 4).

Control Cases B, C, and D: Cost Minimization

With all pumping able to be completed in the off-peak period, the
addition of a reduced upper trigger (Control Case B) found optimal
solutions with the same cost as the optimal trigger levels solution
(Control Case A). Regardless of switch time, the optimal upper
trigger level was greater than 6.1 m (the optimal upper trigger level
value for Control Case A), and the reduced upper trigger level var-
ied such that all the pumping could still be achieved during the off-
peak period. This indicated that it was better o pump entirely
within the off-peak period with the ultimate upper trigger level
in effect rather than pump throughout the day with a reduced static
head. Control Cases C and D, which also attempted to take advan-
tage of the off-peak tanff and reduce the static head during the peak
period, were also not useful (Table 4). In Control Case C, the op-
timal scheduled pump start occurred at times when the pump was
already on and the optimal pump stop when the pump was already
off, leaving the operation to be entirely govemed by the trigger lev-
els. which were the same as for Control Case A. In Control Case D,

© ASCE 04016010-8

the operation was governed by the off-peak lower trigger level and
the peak upper trigger level, which were the same as the Case A
optimal rigger levels.

Control Case E: Cost and GHG Minimization

Optimization of VSP scheduling (Control Case E) found a margin-
ally better solution to the cost optimal trigger levels operation with
acostof $0.0218/m?. Tt pumped at a reduced speed from 11 p.m. to
6 a.m. and then at full speed for the last hour of the off-peak period
[Fig. 7(c)]. While the reduced speed would lead to less friction loss
through the system and hence reduced energy requirements, there
was an extra 90 min of pumping that meant the cost and GHG emis-
sions from the VSP solution were very similar to the trigger levels
solution (Table 4). The optimal GHG solution pumped during
half of the time periods, including during the middle of the day
when the emissions factors were lowest. This solution had emis-
sions of 0.1419 kg CO,-eq/m?, a reduction of 2.9% compared with
current operation.

Replacement with a Smaller Pump

In order to apply all of the pump operating control cases to a real-
life network, the current pump was assumed to be replaced with a
smaller pump that would be required to pump for more than the 8
off-peak hours each day. The current pump operated at a flow of
126 L/s at a head of approximately 70 m. Because the average de-
mand was 30.7 L/s, a pump with a flow of approximately 40 L/s
at a head of 70 m was selected. This pump required roughly 13 h of
pumping per day. The shutoff head was 80 m, which gave a mini-
mum pump speed multiplier of 0.93 and thus multipliers between
0.94 and 1.0 in increments of 0.02 were considered.

Control Case A: Cost and GHG Minimization with a Smaller
Pump. Using the smaller pump in Control Case A, the optimal trig-
ger levels for cost were 4 and 5.5 m; at $0.0291/m?, this was more
expensive than with the original pump (Table 5). This suggests that
when there are large differences between the peak and off-peak cost
of electricity, it may be more economical to install a larger, more
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Fig. 7. Daily tank level and pump flow variation for the South Australian network: cost optimal solutions for (a) Control Case A with original pump:
(b) Control Case A with smaller pump; (¢) Control Case E with original pump: (d) Control Case E with smaller pump

expensive pump but have reduced operating costs by only pumping
during the off-peak period. With a smaller pump, the tank did not
fill as quickly and hence some of the pumping occurred during the
peak period [Fig. 7(b)]. This solution still reduced the cost by 19%
compared with the cost of the current operation with the original
pump (Table 5). Using the smaller pump reduced both GHG
emissions and cost at the same time. The cost-optimal solution for
Control Case A with the original pump slightly increased GHG
emissions compared with the current operation. With the smaller
pump, however, the cost-optimal trigger levels also reduced
GHG emissions by approximately 8%. The optimal GHG trigger
levels when the smaller pump was used were 4.0 and 4.7 m, further
apart than with the original pump.

Control Cases B, C, and D: Cost Minimization with a Smaller
Pump. With the use of the smaller pump, Control Cases B, C, and
D found optimal solutions that had effectively the same operation
as for the Control Case A solution (Table 5). With a reduced upper
trigger level (Control Case B), the ulimate upper trigger level was
ineffective and the pump was entirely controlled by the reduced
upper trigger level at an optimal level of 5.5 m. When trigger levels
and scheduling were combined (Control Case C), the same optimal
trigger levels were found and the scheduled pump startup occurred
when the pump was already on, and similarly the pump shut down
when the pump was already off. With variable trigger levels
(Control Case D), the peak levels governed the operation; during
the off-peak period, the tank level did not reach the off-peak upper
trigger level, and the peak upper trigger level, at 5.5 m, controlled
when the pump stopped.

Control Case E: Cost and GHG Minimization with a Smaller
Pump. VSP scheduling (Control Case E) with the smaller pump
gave a beter result than the trigger level operation with a cost
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of $0.0280/ m? (Table 5); however, it was still more expensive than
with the original pump because some pumping in the peak period
was required [Fig. 7(d)]. The optimal GHG pump schedule with
the smaller pump provided the best GHG solution for all of the
South Australian network solutions in Tables 4 and 5 with emis-
sions of 0.1315 kg CO,-eq/m? giving a 10% saving on the cument

operation.

Conclusions

A single-objective genetic algorithm model has been developed to
optimize pumping operations in water distribution systems. It was
combined with a new toolkit for EPANET2 that allowed optimiza-
tion of more complex pump operating strategies than have previ-
ously been considered to be performed. Five different pump
operating control cases were implemented, using various types
of trigger levels, scheduling, and the combination of both. Optimi-
zation of both cost and GHG emissions were considered separately
in order to compare the optimal solution characteristics of the dif-
ferent pump operating control cases for each of these objectives.
The optimization model was applied to two different case study
systems, a hypothetical one-pipe system and a real-life system from
South Australia.

VSP scheduling, implemented in Control Case E, performed
better in terms of both cost and GHG emissions compared with
the other control cases. Generally, solutions that had a lower per-
centage of energy used in the peak period were cheaper; the effect
of the peak and off-peak tariff was greater than the effect of reduc-
ing the static head of the system. The more complex trigger level
control cases (B, C, and D) were able to improve upon the cost of
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justusing lower and upper trigger levels (Control Case A) because
they were able to defer more pumping to the off-peak period. Cost
and GHG objectives were not always aligned because of the varia-
tion in electricity prices and emission factors.

As well as producing optimal pump operating regimes, the
optimization highlighted particular features of the two case study
networks and their operation. For the one-pipe network, the opti-
mization highlighted the high demands during the evening period,
which necessitated the use of a minimum tank level constraint and
affected the number of decision variables used in Control Case C.
The oversized pump in the South Australian network made the use
of Control Cases B, C, and D redundant because all pumping could
be achieved in the off-peak period. Using a smaller pump was more
expensive because some peak pumping was required; however, it
was able to reduce GHG emissions at the same time as reducing
cost compared with the current operation. The comparison of the
two pumps suggested that when there is a large difference in peak
and off-peak electricity prices, it may be more economical © spend
more money initially with a larger pump, and be able to pump en-
tirely within the off-peak peniod to reduce ongoing costs. The
model proved effective, reducing costs by almost 40% compared
with the current operation of the South Australian network.
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Abstract

Water security has become an increasing concern for many water system managers due to climate change and
increased population. In order to improve the security of supply, alternative sources such as harvested stormwater,
recycled wastewater and desalination are becoming more commonly used. This brings about the need for tools
to analyze and optimize systems that use such sources, which are generally more complex than traditional water
systems. Previous methodologies have been limited in their scope and cannot be applied to all types of water
sources and systems. The framework presented in this paper has been developed for holistic analysis and
optimization of water supply and distribution systems that use alternative water sources. It includes both design
and operational decision variables, water and energy infrastructure, simulation of systems, analysis of constraints
and objectives, as well as policies and regulations which may affect any of these factors. This framework will
allow users to develop a comprehensive analysis and/or optimization of their water supply system, taking into
account multiple types of water sources and consumers, the effect of their own design and operational decisions,
and the impact of government policies and different energy supply options. Two case study systems illustrate the
application of the framework; the first case study is a harvested stormwater system that is used to demonstrate
the importance of simulation and analysis prior to optimization, the second utilizes four different water sources to

framework, Alternative water sources, Optimization

increase security of supply and was optimized to reduce pump energy use.

Keywords: Water distribution systems, Integrated water resources management, Decision-making, Conceptual

Introduction

A changing climate and increasing population have put
a strain on traditional water resources, which typically
rely on natural catchment water. This has made water
security an increasing concern for many water system
managers, who have investigated options for reducing
demand and supplementing supply. Alternative water
sources, such as harvested stormwater, recycled waste-
water and desalination, are increasingly being used to
improve water security of cities and towns. Methods
for simulation, analysis and optimization of traditional
potable water distribution systems (WDSs) cannot
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necessarily be directly transferred to systems that use
alternative water sources. Therefore there is a need to
develop a methodology specifically for alternative water
source systems, which includes both hydraulic and
hydrologic considerations, as well as the many additional
parameters and variables associated with alternative
water sources. There are many modelling tools used in
current practice for integrated water management, such
as eWater Source, WEAP (Water Evaluation and Plan-
ning System) and Mike Basin. These modelling tools do
not include hydraulic simulation, and therefore may not
accurately represent performance of urban water net-
works. Moreover, this framework is not software, rather
its purpose is to guide water system managers in how to
best simulate and optimize their systems, particularly
those that integrate multiple water sources, and natural
and human-made systems. The framework should be

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http//crestivecommaons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a fink to

the Creative Commons license, and indicate if changes were made.
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used to determine which system components need to
be modelled, which type of modelling tools are most
appropriate, what regulations and policies need to be
taken into account and how to evaluate the perform-
ance of the system.

The framework introduced in this paper can be ap-
plied to the optimization of the design and operation
of water supply and distribution systems from source
to consumer, considering multiple traditional and alter-
native sources, multiple uses and multiple objectives.
Electrical energy sources and their effect on electricity
prices and greenhouse gas (GHG) emissions are in-
cluded, as are several types of government policies that
may affect the design, operation, data and evaluation of
the system. The objectives of this paper are to (1)
develop a generalized framework that could be applied
to any water supply and/or distribution system
optimization problem and (2) outline the application of
this framework to two case study systems with a focus
on optimizing their operation.

Literature review

Since 2000, there has been significant consideration of
the concept of water security (Cook and Bakker 2012)
as water is increasingly seen as a fundamental and finite
resource (Bogardi et al. 2012). Consequently, the use of
alternative sources, such as harvested stormwater,
desalination, recycled wastewater and rainwater, has
gained traction (Fielding et al. 2015). Harvested storm-
water schemes are often decentralized and used for non-
potable supply such as household gardening and irriga-
tion of public reserves (Naylor et al. 2012), however, in
some cases are also used for potable supply (McArdle et
al. 2011). While desalination is a climate independent
(and therefore more reliable) source, is often not the
most cost effective or environmentally sensitive option
(Becker et al. 2010; Miller et al. 2015). Recycled waste-
water is also climate independent, and generally used for
large scale non-potable applications (Muga and Mihelcic
2008; Oron et al. 2014), however, it can also be used for
indirect or direct potable supply (Rodriguez et al. 2009;
Nagal 2015). Domestic rainwater tanks are increasing in
popularity and have benefits of reducing water usage
from utilities and reducing stormwater runoff from
houses (Campisano and Modic 2012; Umapathi et al
2013). Demand management strategies have also been
used to reduce per capita consumption and therefore re-
duce the pressure on limited water supplies (Dawadi and
Ahmad 2013; Friedman et al. 2014).

Some alternative sources, such as harvested storm-
water, introduce additional complexity to the problem
of modeling and optimization than has been previously
considered for traditional water systems (Marchi et al.
2016). There is, for example, the need to consider the
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supply and distribution systems together, rather than
separately, as it is less likely that there will be large
storages isolating the supply side from the distribution
side. When including the supply side, longer simula-
tion times often need to be used, requiring rainfall and
evaporation scenarios to be taken into account. The
security of supply with regard to climate change needs
to be considered (Paton et al. 2014; Cai et al. 2015), as
some sources are climate dependent and some are cli-
mate independent. The social acceptability of using
particular sources for particular applications and the
willingness of consumers to pay more for alternative
source systems to be constructed and maintained may
need to be incorporated (Hwang et al. 2006; Londono
Cadavid and Ando 2013; Fielding et al. 2015). The
perception of risks associated with alternative water
source systems by water system managers may also
present a barrier to the implementation and success of
such systems (Dobbie and Brown 2012; West et al
2016). Many alternative sources also have associated
externalities that result in either cost or benefit to the
user, such as reduced effluent flow to the ocean or re-
ceiving water body by reusing wastewater and reduced
urban stream flows by harvesting stormwater (Marchi
et al. 2016).

The increased use of alternative water sources then
raises the question of how such systems should by ana-
lyzed and optimized to ensure they are implemented as
effectively as possible. Stokes et al. (2014) developed a
framework for optimizing the cost and GHG emissions
of WDSs, taking into account both the design and op-
eration of the system, energy sources and GHG emis-
sion factors. This study, however, was applicable only
to traditional WDSs, with no consideration of the sup-
ply side and alternative water sources. Chung et al
(2008) developed a mathematical model for evaluating
integrated water supply systems with decentralized
treatments. Multiple sources, uses, transportation and
treatment systems can be considered, however only
surface water, groundwater and recycled wastewater
sources are included. This model does not incorporate
any optimization procedure, only analysis of different
options developed by the user. Makropoulos et al. (2008),
with further developments in Rozos and Makropoulos
(2013), produced a decision-support tool for modeling
the urban water system from source to tap. The soft-
ware can be used to select combinations of water sav-
ing strategies and technologies, including how much
water from each type of demand (for example domes-
tic, commercial) is obtained from each source and how
the system is operated. It uses a demand-oriented,
water balance approach and does not include capability
for other types of simulation models such as hydraulic
and hydrologic modeling.
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Uncertainty, particularly with regard to climate
change, is an important consideration that has been
taken into account in several methodologies. Paton et al.
(2014) developed a framework for water supply system
planning with alternative sources and climate change
considerations, while Beh et al. (2014, 2015) developed
two methods for optimal sequencing of urban water
supply augmentation options under deep uncertainty
regarding demands and climate. The research by both
Paton et al. (2014) and Beh et al. (2014, 2015) consid-
ered only the planning of water supply projects, and did
not optimize the specific design or operation of the sys-
tems. Sequencing is also considered in Cai et al. (2015),
however, in this case it is applied to planning of drought
mitigation strategies in agricultural systems. They con-
sider multiple decision stages in which options such as
infiltration ponds, parallel terraces, irrigation triggering
threshold and irrigation water sources can be imple-
mented. Marchi et al. (2016) developed a methodology
for optimizing the design of harvested stormwater
systems taking into account future climate scenarios;
however, it does not apply to other types of alternative
sources or optimization of system operation. It does in-
clude a detailed analysis of the associated externalities,
such as reduced peak flows and improved economic
value of properties near stormwater schemes. Ashbolt et
al. (2014) introduced a framework for planning of short-
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term operations for water systems using surface water,
groundwater, desalination, and recycled wastewater
with multiple objectives and multiple inflow replicates
to account for uncertainty. Long-term operating strat-
egies and the design of the system were not included
and the operating strategies considered were limited to
bulk water transfers and not the operation of pumps
and smaller storages.

Framework for the optimization of alternative
water source systems

The framework presented in the current paper was de-
veloped to guide the modeling and optimization of water
supply and distribution systems that use alternative
water sources. It is comprised of several components
and sub-components that fit within an optimization
structure, for example, a multi-objective evolutionary
algorithm (Fig. 1). The options component [OPT] de-
scribes the potential ‘decision variables’ that are avail-
able in an optimization problem, that is, the factors
that can be changed in order to produce a different
outcome. This includes both the initial design of the
water supply and distribution infrastructure and the
long- and short-term rules that govern the operation of
the system once it has been commissioned. The infra-
structure component [INF] describes the physical com-
ponents of the system that need to be modeled and the
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data associated with each, including both water infra-
structure and energy infrastructure, which may affect
the evaluation of electrical energy cost and life-cycle
GHG emissions. There is also a government policy
component [G] that covers the policies from regulating
bodies that may affect other aspects of the framework.
The analysis component [ANL] describes the simulation
of each potential system configuration and evaluation
against objectives and constraints. The optimization al-
gorithm [OA] investigates different possible combina-
tions of decision variables from the options component,
models the system according to the infrastructure com-
ponent and evaluates it using the analysis component to
find the optimal solution(s).

Details of the components and sub-components are
shown in Fig. 1 and described in Sections ‘Options
component [OPT], ‘Infrastructure component [INF];
‘Government policy component [G] and ‘Analysis com-
ponent [ANL]". Table 1 summarizes the parameters that
need to be considered in the optimization and simula-
tion of alternative water source systems with respect to
the different items that are presented in Fig. 1 and in the
following sections. There are three (non-exclusive) cat-
egories that each parameter may be placed in — decision
variables, parameters that are set, and uncertain parame-
ters. Decision variables are parameters that the user may
be able to examine using optimization. It is important to
note that in most optimization problems, not all of these
parameters will be available as decision variables at once,
and it is likely that only a small number will be consid-
ered. For example, when optimizing pump operations
for an irrigation system, only the first three ‘decision var-
iables’ shown in Table 1 (pump schedules, tank trigger
levels, and demand scheduling) may be considered. The
remaining parameters that are designated as decision
variables in Table 1, particularly those relating to the de-
sign of the system (for example, delivery system layout
and pump sizing) would already be set and not able to
be optimized if the existing infrastructure cannot be
modified. The parameters that are set are those that very
rarely, if ever, are able to be optimized by the user.
These include parameters that would be controlled by
external sources, for example consumers of domestic or
commercial demands, pipe manufacturers and higher
level government and regulatory bodies; and also param-
eters that need to be predefined to a known or assumed
value before optimization or simulation can be per-
formed, for example, fire demand/reserve, hydrologic/
hydraulic variables and objective and constraint selection
and definition. The final category, uncertainty, desig-
nates those externally set or predefined variables that are
not well known or may be subject to change in the fu-
ture and therefore may need to be considered in a sensi-
tivity analysis. While the selected values of decision
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variables have an impact on the performance of a sys-
tem, they are generally within the control of the decision
maker, and therefore are not classed as ‘uncertain’. It is
important to note that the categorization in this table
is indented as an indication of how each parameter is
typically treated. There are, of course, exceptions to
this, as almost all of the parameters could be consid-
ered as decision variables if desired and have some as-
sociated uncertainty. For example, environmental flows
have been designated as an externally set parameter, as
it is likely that the operator of a system will have to
meet requirements set by an external organization
such as the Environmental Protection Agency. They
may, however, want to investigate providing greater
environmental flows, or show the benefits of reducing
their environmental flow requirements and being able
to supply more water elsewhere.

Options component [OPT]

The options component covers the potential decision
variables (and the range of possible choices for the deci-
sion variables) for an optimization problem. This com-
ponent is split into two sub-components; the operational
decisions sub-component [O] and the design decisions
sub-component [D]. Design decisions include elements
that can be changed before a system is constructed, such
as the layout and capacities, materials and other proper-
ties of the various infrastructure components. Oper-
ational decisions include elements that can be changed
after construction during the daily management of the
system, such as the operating rules for pumps and valves
and allocation of water from different sources.

Operational decisions Sub-component [O]

Both short- and long-term operations are considered in
the operational decisions sub-component. The critical
aspects of this sub-component (items in bold can be op-
timized), as shown in Fig. 1 and Table 1 are:

[O1] the specific short term operating strategies
including pump schedules (when pumps are
turned on or off based on time), trigger levels
(water levels in tanks or other storages that
determine when pumps or valves turn on or off),
irrigation or demand schedules (for systems
where they can be pre-determined), valve settings
and operating rules, and pressure settings
for pumps (to maintain the set pressure at a
particular point).

[O2] the specific long term operating strategies including
volumetric allocation of water from different
alternative sources, trigger levels (for example in
reservoirs) that determine allocations from different
sources or water demand restriction levels, switch
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Table 1 Summary of parameters for the design and operation of altemative water source systems

Parameter Decision Parameter Uncertain Relevant items
variable® that is set parameter in Fig. 1

Operational inputs [O]

Pump schedule X o1

Tank trigger levels X o1

Tank/storage maximum and minimum allowable levels X 01, W3, W11

Demand pattern (irrigation, agriculture) X 01, D4, W13

Demand pattern (domestic, commercial, industrial) X X 01, D4, W13

Demand flow rate (peak average, peak day) X X 01, D4, W14

Valve settings or operating rules X o1

Pump pressure settings X o1

Volumertric allocation of water X 02

Reservoir trigger levels X 02

Switch time between operating regimes X 02

Priority ranking of operating rules X 03,04
Design inputs [D] and water infrastructure [W]

Water source selection X D1, W2

Water source infrastructure (layout, capacity) X Di, w2

Treatment type selection X D2, W8

Treatment infrastructure (layout, capacity, treatment rate/level) X D2, w8

Delivery system type selection X D3

Delivery system layout (lengths, elevations, junctions, tank locations) X D3, W7, W10, W12, W15

Pipe material and diameters X D3, W7, W10, W12

Pipe parameters (unit cost, pipe wall roughness (g), X X (g) D3, W6, W7, W10, W12

wall thickness, embodied energy)

Pump sizing X D3, W5, Wa

Pump performance characteristics and cost X D3, w4

Tank sizing (capacity, height, diameter) X D3, W3, Wi1

Fire demand/reserve X D3, Wi

Water user type selection X D4

Rainfall/streamflow series X X wi

Reservoir capacity and volume curve X w3

Pond (e.g. wetland) capacity and volume curve X w3

Prioritization rules for demands types X wis

Other inputs [P}, [G] and [S]

Power source selection X X P1,P3,G5
Electricity tariff structure and cost X P2

GHG emission factors X P3,G5
Fit-for-purpose requirements X G1

Water license amounts X G2
Environmental flow amounts X G3
Discount rate X X G4
Hydrologic variables (e.g. permeability) X S1
Hydraulic variables (e.g. water temperature) X S3
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Table 1 Summary of parameters for the design and operation of altemative water source systems (Continued)

Optimization problem formulation [E]
Objective selection
Objective function(s)
Constraint selection
Constraint limits (maximum and minimum)

Penalty costs

X El
X E2
X E3
X E4
X E4

“Note: Parameters specified as decision variables are shown in bold throughout Sections ‘Options component [OPT]' and ‘Infrastructure component [INF)’

times between different operating regimes (for
example between different trigger level sets for
different seasons) and power source selection.

[O3] the overall short-term operating strategy, including
operating rules that are optimized in [O1] and
operating rules that are pre-set and are not to be
optimized (acting as constraints). Where there
are multiple operating rules, the priority of each
rule and order they are enforced in is important
to consider.

[O4] the overall long-term operating strategy, including
operating rules that are optimized in [O2] and
operating rules that are pre-set and are not to be
optimized. Again, the priority and order of the
rules is important to consider.

Most systems have multiple operating conditions to
meet and therefore multiple operating rules will be in
place. Prioritization of the different operating rules is
important, and this may be set by the operator or be
chosen by the optimization tool. This component re-
quires information from the government policy sub-
component ([G] in Fig. 1), specifically in terms of water
source licensing and environmental flow regulations.
These policies would typically be regulated by local or
state government departments or the environmental
protection authority. Operational rules set in this sub-
component will inform the simulation sub-component
[S] as they will need to be represented in any simula-
tion model(s) of the system.

Design decisions Sub-component [D]

This sub-component incorporates all of the design deci-
sions that are available to the designer for the entire water
supply and distribution system, from source to user. The
critical aspects of this sub-component (items in bold can
be optimized), as shown in Fig. 1 and Table 1 are:

[D1] the water sources selected to be used including
natural catchments, harvested stormwater,
recycled wastewater, groundwater, imported
water, domestic rainwater, desalination, domestic
greywater and sewer mining; and the layout and
capacity of source infrastructure.

[D2] the types of treatment selected including
centralized treatment at plants such as mechanical
filtration, chemical dosing, ultraviolet treatment and
ozonation, and decentralized in situ treatments such
as gross pollutant traps, wetlands and biofilters; and
the layout, capacity, dosing rates and retention
times for treatment facilities.

[D3] the type and configuration of the delivery
system used including potable, non-potable (for
example dual reticulation systems to deliver
recycled water), centralized and decentralized,
and the infrastructure design variables such as
system layout, pipe sizes, lengths and materials,
pump sizing, valve sizing, and tank sizing,.

[D4] the types of water users that are supplied by the
system including potable, irrigation, agriculture,
industrial, non-potable domestic/commercial and
firefighting, and the demand rate and pattern for
water use (for example, scheduling of irrigation
demands).

Regulations on fit-for-purpose water use from the
government policy component [G] in Fig. 1 inform what
water sources can be used for particular applications
and these are likely to be specified by state or federal
government departments or health authorities. Gener-
ally, sources such as harvested stormwater and recycled
wastewater cannot be used for potable supply and ra-
ther serve non-potable demands in dual-reticulation
systems or are supplied to irrigation, agricultural and
industrial users. There may be some systems, however,
in which necessary approvals have been obtained to use
these sources for potable supply. The design decisions
are inputs to the water system infrastructure sub-
component [W] which describes the system elements
and data to be modeled.

Infrastructure component [INF]

The purpose of this component is to describe the infra-
structure that needs to be modeled in order to evaluate
the objectives and constraints of the problem. There are
two sub-components; the water system infrastructure
sub-component [W] and the electrical energy infrastruc-
ture sub-component [P]. Water system infrastructure
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includes the specific aspects of the water supply and dis-
tribution system and the data required, including con-
struction and maintenance costs. Electrical energy
infrastructure includes the power source (fossil fuel
types and renewable types) and the electricity price and
GHG emission factor data needed.

Water system infrastructure Sub-component [W]

This sub-component includes the specific infrastructure
aspects of the water system design and the relevant data
that is needed in order to simulate it. Most systems and
optimization problems will not require all of these fac-
tors to be considered or modeled; however, the purpose
of this framework is to cover a large range of the pos-
sible requirements for an optimization and hence the
scope is intentionally broad.

The water system infrastructure sub-component [W] as
shown in Fig. 1 represents a system with one water source,
one treatment plant, one storage tank and one demand
node. In reality, many systems will have more than one of
each of these components, particularly the treated storage
[W11] and demand node [W15]. Pumping of water be-
tween storages may occur in multiple stages, particularly
when there is a large difference in elevation. For typical
centralized potable WDSs, all treatment will occur at one
water treatment plant. In decentralized systems such as
for harvested stormwater schemes, however, treatment
may occur in multiple stages. For example, a gross pollu-
tant trap may be located on an urban creek before the
water is collected in a harvest pond, then the water may
be pumped to be treated through a wetland, and then
treated again in a treatment plant.

The critical aspects of this sub-component (items in
bold can be optimized) as shown in Fig. 1 and Table 1 are:

[W1] the rainfall or inflow scenarios for the water
source; for example rainfall or streamflow
scenarios for natural catchments and stormwater
sources, or a sewer system flow pattern for
recycled wastewater. Sources such as desalination
and, depending on the temporal scale of the
optimization, groundwater, do not usually
require an inflow scenario. Rainfall and
streamflow scenarios may be a data series
obtained from measurements at gauging stations
or modeled in a hydrologic simulation program
[S1]. Multiple inflow scenarios may be used,
particularly for systems with highly variable
inflows. Losses such as evaporation and
infiltration may also need to be taken into
account for sources with large open storages
such as reservoirs and natural water ways.

[W2] the source type as described in [D1] with input
from [W1].
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[W3] the raw water storage; this may be a reservoir
(typical for a natural catchment), a harvest
pond for a stormwater system, a tank (for
example for a recycled wastewater system) or
an aquifer for groundwater. Associated data
including capacity, a volume curve, elevation,
height and diameter is required.

[W4] characteristics of available pumps such as
performance curves (head, efficiency, and power
against flow), cost, rated speed and variable speed
pump (VSP) information where applicable.

[W5] the pump transferring water from the raw
water storage to a treatment facility, requiring
data from [W4].

[W6] pipe size and material information such as
available diameters, unit costs, pipe wall
roughness, wall thickness and embodied energy.
For new pipes, this information will be easily
obtained from the pipe manufacturer. For existing
systems, however, there may be some uncertainty
in these parameters if detailed records of the ‘as
constructed’ system and any pipe replacements
have not been kept. In addition to this, the pipe
wall roughness of existing pipes will generally be
uncertain. Pipe wall roughness increase as pipes
age, and pipe condition assessment may be needed
to provide an estimate.

[W7] the pipe system transferring water from the raw
water storage to the treatment facility, pipe
lengths and layouts need to be known as well
as information from [W6].

[W8] the treatment facility that will produce water
of the required quality based on the source
type and demand type. Characteristics of the
individual treatment methods as described in
[D2] need to be known.

[W9] the pump transferring water to a treated storage,
requiring the same data as [\W5].

[W10]the pipe system transferring water to a treated
storage, with the same information as [W7]
required.

[W11]the treated storage, for example, a tank or
multiple tanks that are typically at a high
elevation point of the network in order to
supply demands by gravity. Data required
includes the elevation, height, diameter and
maximum and minimum allowable water levels.

[W12]the pipe system transferring water from the
treated storage to consumers, which again
requires information as in [W7]. This pipe
system is likely to be more complex than those
in [W7] and [W10], particularly for systems with
many different demand nodes. For systems with
only one source of water, [W7] and [W10] are
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likely to be single pipelines. For decentralized
systems with only one specific consumer, [W12]
will also most likely be a single pipeline. Most
systems, however, have much more than one
demand point and as such distribution systems
are often looped or branched systems that require
more complex analysis than single pipelines.

[W13]demand scenarios that will be applied to the
demand nodes, consisting of a pattern of demand
multipliers over a day, week or year. There may be
multiple demand scenarios required for a system,
for example, if there are different types of demand
nodes (such as domestic, commercial, industrial)
or different seasonal demands.

[W14]the peak demand is the demand rate that is
typically used to size the system components
and so will affect the design of the system. The
demand scenarios [W13] are more likely to
affect the operation of the system as the demand
varies over the simulation time. The peak day
demand (average demand over the peak day),
the peak hour demand (the average demand
over the hour with maximum consumption in
the peak day) and average demand rates may
also be required. Fire loading demands and other
emergency conditions will affect the design of
the system, for example storage tanks should be
sized to be able to provide demand in the case
of fires, other emergencies and system failures
(e.g. if the supply to the tank is cut off).

[W15]the demand nodes for the consumers, these may
be different types of users as described in [D4]
and require information from [W13] and [W14].
Different types of users will have different demand
rates [W14] and demand patterns [W13]. When
simulating the system, an average demand rate
will often be used with the demand pattern,
rather than the peak demand. Systems with
multiple demand nodes may prioritize different
types of demands over other, for example,
irrigation systems using non-potable water may
prioritize high profile sport fields over reserves
with no formal usage.

Choices made in the optimization of the design deci-
sions sub-component [D] in Fig. 1 will be inputs to the
water system infrastructure sub-component. There may
be other parameters that are not decision variables in
the optimization (as differentiated in Table 1) though are
still required by this sub-component in order to simulate
the system. The construction and maintenance costs of
each of the infrastructure components needs to be
known in order to calculate the initial construction cost
and ongoing costs as part of life-cycle economic costing.
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Information collected through this sub-component will be
input to the simulation sub-component [S] depending on
the types of simulation models used and to the evaluation
sub-component [E] through the construction cost or other
factors calculated for the specific objectives of a problem.

Electrical energy infrastructure Sub-component [P]
The electrical energy infrastructure sub-component in-
cludes any power infrastructure that affects the electricity
prices and GHG emission factors. The critical aspects of
this sub-component as shown in Fig. 1 and Table 1 are:
[P1] the breakdown of power sources including fossil
fuel sources such as coal and oil, and renewable
sources such as solar, wind and hydrothermal.
the electricity price tariff structure, which may
be a peak and off-peak structure, or multi-part
(more than two price levels) and could include a
peak demand charge which applies to the peak
electricity power usage in each month.
the GHG emission factor, which is based on the
power source breakdown [P1] and may vary with
time, either in the short-term (with sources that
do not have storage such as solar panels and
wind turbines) or the long-term (as fossil fuel
sources tend to be phased out and renewable
sources become more popular).

(P2]

(P3]

Climate and energy policy [G5] in the government
policy component in Fig. 1 will affect the power source
breakdown and electrical energy pricing now and into
the future. This is likely to be regulated by a federal
government department or body. Information from this
sub-component is used to calculate electrical energy
costs in order to evaluate life-cycle economic costs and
also to calculate life-cycle GHG emissions in the evalu-
ation sub-component [E].

Government policy component [G]

The government policy component covers policies by
regulating bodies at any level (local, state, federal) that
may affect other aspects of the framework. These policies
need to be considered over the operational life-span of the
system, for example, climate and energy policy may affect
future energy sources and therefore affect future GHG
emissions. The critical aspects of this component as
shown in Fig. 1 and Table 1 are:

[G1] fit-for-purpose water use, which may be regulated
by state or federal governments or health agencies
and affects which water sources [D1] and water
uses [D4] can be combined in the design decisions
sub-component. It may also guide which design
decisions (for example, treatment) are appropriate.
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[G2] water source licenses, which may be regulated by
local or state governments or the environmental
protection agency, depending on the catchment
size, and will affect the amount of water
available from particular sources for allocation in
long-term operations [O4].

environmental flows, which similarly to water

source licenses may be regulated by local or state

bodies depending on the size of the catchment
and affect the amount of water available for

allocations [O4].

the discount rate applied to operational costs and

GHG emissions in life-cycle analysis [E1]. This

is unlikely to be set by a government body and

rather will be informed from outside the decision

making team, generally by recommendations from
economists,

[G5] climate and energy policy set by state and
federal governments will affect the energy
sources available now and in the future,
therefore affecting GHG emission factors and
any GHG objectives [P].

[G3]

(G4]

Analysis component [ANL]

The analysis component uses information from the op-
tions, infrastructure and government policy components
to simulate the system and evaluate how it performs
relative to the objectives and constraints. Within an
optimization algorithm, the analysis component is used
to assess multiple combinations of decision variables
from the options component to determine how they
perform. There are two sub-components within the
analysis component; the simulation sub-component [S]
and the evaluation sub-component [E]. The simulation
sub-component includes the modeling aspects of the
problem and the key variables that are required to be
output from the models in order to evaluate the system.
Optimization objectives and constraints are defined in
the evaluation sub-component, which also provides in-
formation to the optimization algorithm as to which of
the potential solutions perform best.

Simulation Sub-component [S]

The simulation sub-component considers the type of
simulation model that is most applicable to the particu-
lar system and problem, and specifies the key variables
that need to be calculated in the model(s). The critical
aspects of this sub-component as shown in Fig. 1 and
Table 1 are:

[S1] the hydrologic simulator, which is required if
rainfall scenarios need to be transformed to
streamflow, typically for systems using natural
catchment water or harvested stormwater.
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[S2] the mass balance model, which may be required
for systems that have multiple water sources
with long-term allocation decisions, particularly
if there are different rainfall and evaporation
scenarios to be considered for the storages.

the WDS hydraulic simulator, which is required
to analyze pump and pipe systems that transfer
water between different storages and treatments
and to consumers.

information on constraints, such as yield from a
hydrologic model, environmental releases and
system reliability from a mass balance model,
and nodal pressures, pipe velocities, pump
switches and tank levels from a hydraulic model.
the water levels in storages, which are
important particularly when considering
operational decisions, such as trigger levels,
and for constraints, such as system reliability.
the power usage from any pumps or treatment
facilities, which are important in informing the
ongoing electrical energy costs as part of life-cycle
economic costing. Generally a WDS hydraulic
simulator is required to model detailed pump
operations and therefore accurately estimate the
pump power usage.

[S3]

[S4]

[S5]

[S6]

Each of the three types of models will require different
simplifications or assumptions depending on the par-
ticular system. For example, mass balance modeling will
generally only consider one pump operating point so
may not accurately calculate the pump power usage.
When deciding which type of model to use for a particu-
lar problem, the user will need to consider the different
simplifications, assumptions, advantages and disadvan-
tages of each model. Trade-offs between accuracy of out-
puts and simulation run times need to be considered.
For example, when optimizing both short- and long-
term operations of a system, there is likely to be a trade-
off between using a hydraulic simulator for detailed
hydraulic information and using a mass balance model
for shorter run times. Most problems may ideally use
elements from more than one type of model; however,
using multiple models will increase computational com-
plexity and run times. Wherever possible, the most
applicable type of model should be selected and
augmented with the required elements from other types
of models. Depending on the particular system and
optimization problem, there may be other key variables
that need to be calculated in the simulation models. For
optimization of pumping operations, which is the focus
of the case studies in this paper, storage water levels and
pump power usage are the most important. Existing
hydrologic, mass balance and hydraulic simulators, for
example, MUSIC, WATHNET and EPANET, have often
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been used in conjunction with optimization algorithms
and should be taken advantage of where possible rather
than creating individual simulators for different problems.

Information from the operation decisions sub-
component [O] will be input to the simulation sub-
component as the overall operating strategy for the
system ([O3] and [O4]) will need to be modeled.
Short-term operations are likely to be considered in a
hydraulic simulator and long-term operations, includ-
ing allocations, in a mass balance model. Parameter
data on the physical components of the system from
the water system infrastructure sub-component [W]
are also required as inputs for this sub-component.
Constraint information is provided to the evaluation
sub-component to compare the systems performance
against specified requirements. Energy usage is used
to calculate objective functions such as life-cycle eco-
nomic costs and life-cycle GHG emissions. Simulating
systems prior to optimization is an important step to
help inform the formulation of the optimization problem
and provide a check that results from the optimization
are reasonable.

Evaluation Sub-component [E]

The purpose of the evaluation sub-component is to
compare the performance of each of the potential solu-
tions to the objectives and constraints of the problem.
The critical aspects of this sub-component as shown in
Fig. 1 and Table 1 are:

[E1] the specific objective(s) to be considered in the
optimization; typically, minimizing life-cycle
economic cost is a primary objective (or a
component of that such as construction cost
or operational cost individually). Other possible
objectives include minimizing spills from reservoirs
and other storages, minimizing life-cycle GHG
emissions (or a component of that such as
embodied energy from construction or operational
emissions), minimizing supplemental potable water
supply (in systems using non-potable sources),
maximizing water quality, maximizing reliability
and minimizing environmental impact.
the objective function(s) to be optimized; multiple
objectives may be evaluated as individual
functions in a multi-objective optimization
algorithm or combined into a single function for
use in a single objective optimization algorithm.
It is important to consider how each objective
should be formulated, for example, when
optimizing short-term pump operations to
minimize ongoing costs, the objective function
may be evaluated in terms of cost per volume
of water pumped, as this will take into account

[E2]
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the amount of water delivered to consumers.
Reliability of a system may be formulated in
different ways, for example minimizing the time
spent with water restrictions applied or minimizing
the time spent below a certain storage level. Some
objectives may be more difficult to quantify, such
as minimizing environmental impact, so more
specific objectives may be required, for example,
maximizing environmental flow or minimizing
the change in a water body’s natural hydrological
regime. Simplifications and assumptions may

be required to formulate some objectives as
mathematical functions. When performing
multi-objective optimization, trade-offs between
the different objectives should be considered by
the development of Pareto fronts, allowing the
decision maker to determine which Pareto optimal
solution best fits their needs (see examples in Wu
et al. 2010a, b, 20124, b, 2013).

[E3] the specific constraints to be considered as
described in [S4].
[E4] the evaluation of the constraints compared to

the limits set by the user; maximum and/or
minimum values for each constraint need to be
specified. Some constraints may be flexible, for
example, if an environmental flow is set by a
regulator, the operator could consider increasing
the set environmental flow as a decision variable
in the optimization. There are several different
ways constraints can be incorporated into the
optimization algorithm. Penalty functions are
often used for single-objective problems. They
add value (often a monetary amount) to the
objective function in a minimization problem
and remove value from the objective function in
a maximization problem based on the magnitude
of the constraint violation, therefore making
solutions that violate constraints less desirable
(Nicklow et al. 2010). Care must be taken when
formulating penalty functions to keep solutions that
only slightly violate constraints in consideration
during the optimization process, while ensuring
the feasibility of the final optimal solutions. For
multi-objective problems, a constraint-handling
technique that will ensure feasible solutions
are retained in preference to infeasible solution
is often employed. An example of this is the
constraint tournament selection procedure
introduced by Deb et al. (2002).

Information about the objectives is received from the
simulation sub-component [S] and from the calculation
of construction, maintenance and electrical energy
costs based on the water system infrastructure sub-
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component [W] and simulation sub-component. A dis-
count rate for costs or GHG emissions may be set in the
government policy sub-component [G] which will im-
pact the ongoing costs and emissions in a life-cycle ana-
lysis. The discount rate may be informed by economists,
such as the Stern review which recommends low dis-
count rates for projects that lead to the production of
GHG emissions (Stern 2006). Information about the per-
formance of each potential solution in relation to the ob-
jectives and constraints is provided to the optimization
algorithm in order to find the best solutions.

Optimization algorithm [OA]

The optimization algorithm is used to determine which
solution(s), out of many potential solutions to the prob-
lem, performs best in relation to the objective func-
tion(s). The procedure used to set up the optimization
will depend on the type of algorithm chosen; however,
the first step is generally to define the decision vari-
ables, objectives and constraints of the problem. This
will then guide what aspects of the system need to be
modeled and what data is required in order to take into
account all of the decision variables and that will pro-
vide information for all of the objectives and con-
straints. Multiple potential solutions to the problem
form the ‘solution space’ and the optimization algo-
rithm guides the search of this solution space towards
the global optimum. The size of the solution space de-
pends on the number of decision variables and number
of choices available for those decision variables. More
complex problems are often described as having a more
‘rugged’ solution space, meaning the optimization algo-
rithm is more likely to get trapped in local optima and
will have more difficulty finding the global optimum.
When a single objective optimization algorithm is used,
one optimal solution will be found, while in multi-
objective optimization, a Pareto front will be developed
with multiple solutions representing different trade-offs
between the objectives.

Most optimization algorithms have parameters that
need to be defined by the user, such as the number of
generations or iterations and the population size in evo-
lutionary algorithms. Although the choice of these pa-
rameters does not influence the components shown in
Fig. 1, they have an effect on the optimal solutions found
by the algorithm. In general, the most effective set of
parameter values to use will vary between different
optimization problems and the size of the solution space
can only give some indication of what parameter values
to use. In fact, multiple parameter sets should be tested
in order to find the most appropriate values for the spe-
cific problem. Ideally, the chosen parameter set should
find the same optimal solution regardless of the starting
point or initial solution(s) for the optimization. Dandy et
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al. (1996) presented an improved genetic algorithm for-
mulation for optimization of WDS design. Five different
parameter sets were trialed on both their improved gen-
etic algorithm and a comparatively simple genetic algo-
rithm. They acknowledged that parameter selection does
require some judgement on the part of the user, however,
they found their optimization results to be relatively in-
sensitive to the parameter choice, particularly for the im-
proved genetic algorithm. As well as the effect of various
parameter values, different optimization algorithms will
be more suited to different problems. This issue has been
addressed by the development of hybrid algorithms, such
as AMALGAM (a multi-algorithm, genetically adaptive
multiobjective approach proposed by Vrugt and Robinson
(2007)), which combines several different optimization al-
gorithms to improve search efficiency. These hybrid algo-
rithms also have the benefit of requiring little to no
parameter specification by the user.

Sensitivity analysis

As identified in Table 1, values of some input parameters
(for example, describing the network or water demand
loadings) are uncertain or subject to change in the fu-
ture. Sensitivity analysis can be performed to account for
a wide range of possible future conditions when optimiz-
ing and simulating systems. Variation of a particular par-
ameter may result in different Pareto fronts (in multi-
objective optimization) or different optimal solutions (in
single objective optimization), as seen in Wu et al
(2010b) when they considered variations in discount
rates. These various Pareto fronts or optimal solutions
along with the various parameter values that produced
them can then be provided to the decision maker. Sensi-
tivity analysis will also help to identify if there are any
uncertain parameters that do not affect the optimal re-
sults. Robustness of the optimized solutions can also be
explored a-posteriori: in general, solutions that perform
well for many different possible conditions are more de-
sirable from the decision makers’ point of view. Climate
change provides an additional source of uncertainty for
the parameters identified in Table 1 — detailed discus-
sion of this is omitted from Sections ‘Demand; ‘Rainfall
and streamflow, ‘Electricity and GHG emissions’ and ‘Dis-
count rate’ as it is covered in Section ‘Climate change’.

Demand

In some applications, such as irrigation and agriculture,
the demand rate and pattern may be deterministic [O1],
either the water supplier has control over the con-
sumption, or may be able to work with those who do
to determine an optimal demand schedule. For other
applications, such as domestic, commercial and indus-
trial, the demand rate and pattern depends on the
consumption of water by multiple individual users
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[D4, W13, W14, W15], and therefore has greater uncer-
tainty. Historical consumption can provide some level of
assurance as to how water may be used in the future, at
least on an aggregated scale. Diurnal, weekly and sea-
sonal demand variations need to be considered. In the
future, factors such as climate change, population
growth and water saving initiatives will affect how water
is consumed and therefore impact demand rates and
patterns. Emergency conditions and system failure are
by their nature unpredictable and this should be taken
into account when designing and operating WDSs.

An example of how demand uncertainty can be con-
sidered in the optimization of WDS design is the study
by Basupi and Kapelan (2015). The demand at each time
step was based on a normal distribution with a gradually
increasing mean (based on deterministic demand fore-
casts) and an increasing standard deviation. Monte Carlo
or Latin Hypercube simulation was included in their
methodology to consider multiple demand scenarios.
Each solution in the Pareto front was also further ana-
lyzed against three demand projections — average, opti-
mistic (low overall demand) and pessimistic (high overall
demand). Their results demonstrated the value of flex-
ible WDS design over deterministic approaches when
considering uncertainty.

Rainfall and streamflow

Rainfall and streamflow inputs [W1] may be required for
systems using natural catchment water, harvested storm-
water or imported water, and they are often treated with
higher uncertainty than demands (Seifi and Hipel 2001;
Reis et al. 2005). Within the current climate, there may
be multiple realizations of possible rainfall and stream-
flow series (for example dry or wet years). Beh et al
(2015) considered rainfall, as well as population and
temperature, as uncertain variables in their optimal se-
quencing methodology for water supply system augmen-
tation. They considered both climate and hydrologic
variability: seven possible future climate scenarios pro-
vided different forecasted rainfall reductions, and within
each of these seven scenarios, 20 stochastic replicates of
the rainfall sequence were produced. Different Pareto
fronts were produced for each climate scenario, with the
more severe scenarios finding solutions that required
greater system augmentation and therefore had higher
costs and GHG emissions. The robustness of each Pa-
reto solution was calculated based on the average reli-
ability and vulnerability of the solution over the 20
rainfall sequences for the particular climate scenario.

Electricity and GHG emissions

Power source(s) [P1], electricity tariffs and costs [P2]
and GHG emission factors [P3] will generally be known
for the present time, however, it may not be clear how
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they will change in the future. The mix of power sources
changes naturally over time, as different power plants
are built or decommissioned. This change in power
source types over time, as well as technical advance-
ments will affect the cost and GHG emissions associated
with electrical energy generation. The electricity market
and economic factors will also affect the cost of elec-
trical energy over time. Changes in electricity and GHG
emissions can be an important factor to consider during
an optimization problem, as shown in the following
examples. Blinco et al. (2014) studied the optimization
of pump operations in WDSs in relation to the
minimization of GHG emissions and the use of different
power source scenarios, showing that optimal tank trig-
ger levels can be influenced by the variation in emission
factors, Wu et al. (2012a) considered three different elec-
tricity tariff scenarios, which increased over time, and
three different GHG emission factor scenarios, which
decreased over time, in the optimization of WDS design.
The different electricity tariff and emission factor scenar-
ios affected the solutions found in the Pareto front and
their overall costs and GHG emissions.

Discount rate

A discount rate [G4] may be used in life-cycle analysis
for both ongoing economic costs and ongoing GHG
emissions. In practice, discount rates on economic costs
vary significantly between different organizations, gener-
ally from 2 to 10% (Rambaud and Torrecillas 2005),
while many water utilities use discount rates in the range
of 6 to 8% (Wu et al. 2010a). When selecting discount
rates, consideration should be given to whether both
economic costs and GHG emissions are discounted, if
they have the same discount rate, and if intergenera-
tional equity is taken into account using social discount
rates. Various social discount rates have been proposed
for discounting ongoing costs; the Intergovernmental
Panel on Climate Change (IPCC) adopted a zero
discount rate over a period of 100 years, after which no
consideration for future costs or benefits is given
(Fearnside 2002), other suggestions include 1.4% (Stern
2006) for projects that are impacted by climate change,
2-4% (Weitzman 2007) and a time declining rate (Gollier
and Weitzman 2010). Wu et al. (2010b) gave an ex-
ample of a sensitivity analysis of discount rates in the
optimization of WDS design for minimization of costs
and GHG emissions. Discount rates of 0, 1.4, 2, 4, 6, 8%
and a time declining rate were applied to the economic
costs, with GHG emissions either not discounted at all,
or discounted at the same rate as costs. They found
that the different discount rate scenarios produced dif-
ferent Pareto fronts; when GHG emissions were dis-
counted, the solutions tended to have lower capital
costs and higher operating emissions.
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Climate change

Management of water resources in the developed world
has been based on an assumption of stationarity — that
is, ‘that natural systems fluctuate within an unchanging
envelope of variability’ (Milly et al. 2008). The effects of
human-induced climate change make this assumption
no longer valid (Milly et al. 2008), and introduce add-
itional sources of uncertainty for many parameters. Uncer-
tainty introduced by climate change is twofold - firstly,
the impacts of climate change increase the uncertainty of
future weather conditions; and secondly, our response to
the threat of climate change and the types of adaption
methods that will be utilized in the future are uncertain.
Climate change affects the magnitude and temporal and
spatial distribution of rainfall, temperature and other
environmental factors, thus the possible rainfall and
streamflow series to consider for the future will likely be
different to the present. Changes to temperature and other
environmental factors will also affect the hydrology of nat-
ural and urban catchments and therefore change how
rainfall will transform to runoff or streamflow. Climate
change impacts will also affect how people consume water,
for example, higher temperatures and lower rainfall may
drive people to water their gardens more. In order to
simulate future climate conditions, general circulation
models (GCMs) are often used in conjunction with future
emissions scenarios. According to Mpelasoka and Chiew
(2009), ‘GCMs are the best tools available for simulating
global and regional climate systems; however, the informa-
tion provided is generally too coarse for applications to
catchment runoff, and therefore some kind of downscaling
is required. The modeling uncertainty of both the GCMs
and downscaling methods increases the uncertainty of fu-
ture climate scenarios (Paton et al. 2013). In 2000, the
IPCC introduced several emissions scenarios (termed
SRES scenarios) projecting future global GHG emis-
sions (IPCC 2000). The various scenarios are based on dif-
ferent assumptions of the mix of energy generating
technologies (fossil fuel or non-fossil fuel dominant) and
population, economic and technological growth (IPCC
2007).

The extent to which we can reduce our GHG emissions
will affect the magnitude of climate change impacts on
rainfall and temperature. With the growing concerns of
climate change and sustainability, renewable sources such
as solar and wind will become more prevalent and replace
fossil fuel sources such as coal and gas. This may affect
electricity pricing and GHG emissions from power gener-
ation. Multiple future power source scenarios assuming
different levels of climate change mitigation may need to
be considered. Other climate change adaption strategies
include economic incentives such as carbon taxes and cap
and trade systems, which may affect economic analysis of
WDSs. As discussed in Section ‘Discount rate; when
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climate change and intergenerational equity are consid-
ered, social discount rates of 0, 1.4, 2-4% and time declin-
ing rates have been proposed.

Paton et al. (2013) analyzed the sources of uncertainty
relating to climate change and their impact on water
supply security. They considered 19 different scenarios
with different combinations of six SRES scenarios, seven
GCMs and six demand projections, as well as 1000 sto-
chastic rainfall replicates. They found that the impact of
the different sources of uncertainty on the optimal solu-
tions varied over the 40-year planning period, with some
having a greater effect in the short-term and others a
greater effect in the long-term. Roshani and Filion
(2014) investigated the impact that different climate
change abatement strategies have on water main re-
habilitation. They consider six carbon abatement strat-
egies with different combinations of two discount rates
(1.4 and 8%) and three carbon tax scenarios (no tax, ‘fast
and deep) and ‘slow and shallow’). Using a low discount
rate and implementing a carbon tax encouraged the
optimization algorithm to find solutions that invested in
rehabilitation early, to reduce the cost of continuing
leaks, pipe repair, energy use and GHG emissions.

Case studies

The utility of the framework described in the previous
sections will now be explored by two different case stud-
ies that have different water sources and many variables
that need to be considered. These case studies are pro-
vided as an example of how the framework could be ap-
plied to optimize system operations. The first case study
is a managed aquifer recharge (MAR) system that har-
vests stormwater from an urban creek for irrigation of
reserves and sporting fields. This case study demon-
strates the importance of analyzing the system by simu-
lation prior to optimization in order to formulate the
optimization problem. The second case study is a water
supply system in a rural town that supplies potable water
from multiple alternative water sources. This system is
optimized for minimization of energy use of the many
pumps used to transfer water from the various sources.

Ridge Park managed aquifer recharge - case study 1

Ridge Park is located in the Adelaide metropolitan area
in South Australia, within the City of Unley local gov-
ernment area. The scheme supplies harvested storm-
water to sports fields and recreational reserves in the
local area for non-potable irrigation use. The scheme is
designed to harvest up to 60 ML of stormwater per year,
which occurs over the winter, while in summer the har-
vested water is used for irrigation. During winter, storm-
water from Glen Osmond Creek, an urban waterway, is
collected in the Harvest Pond created by a dam on the
creek (Fig. 2). Water is then pumped to the Bioretention
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Fig. 2 Ridge Park managed aquifer recharge system process schematic
-

Treatment Plnm
Harvest Pond Bioretention & Pump 3 Storage Tank
Basin
. H . ........ $ Cravity
Pump | Pump 2 Demands
_ qun'e :
Glen Osmond Pressure ¢ .oues L
Creek Demands ¢ - “““‘ Bore Pump

Summer Operation

Basin which provides some treatment, and then pumped
to a small treatment plant that includes UV and filtra-
tion. Once the water has been adequately treated, it is
stored in an above ground tank next to the treatment
plant and final pump station. From the Storage Tank,
water is injected into an artesian, fractured rock aquifer
for long term storage. In summer, when no water is
being harvested, water is extracted from the Aquifer and
to the Storage Tank, before being pumped or gravity-fed
to irrigation points. The Ridge Park Reserve is irrigated
by a pressurized irrigation line, as it is at higher eleva-
tion than the Storage Tank. Fraser Reserve is also con-
nected to the pressurized system to ensure adequate
pressures for irrigation. In total, the pressurized system
supplies almost 15 ML of water per year. The remaining
seven reserves are on a gravity-fed line which supplies a

total demand of roughly 35 ML per year. The layout and
details of the system are given in Fig. 3. For more de-
tailed data on this case study, please see the Additional
files 1, 2, 3 and 4.

For existing systems, simulation analysis of the current
operation is an important first step in formulating the
optimization problem. Results of current operational
simulations can highlight areas for improvement that
can then be focused on in the optimization. The oper-
ation of the Ridge Park stormwater harvesting system
was split between winter and summer operations and
both were simulated in EPANET to determine current
pump operational costs. Trigger levels (related to vol-
umes in the three storages as shown in Table 2) control
when the pumps in the Winter Harvesting and Injection
system turn on and off (Table 2). The Bore Pump is also
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Fig. 3 Ridge Park managed aquifer recharge system layout and data
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Table 2 Trigger levels for the Ridge Park system

Storage and trigger level Current setpoint Start  Stop
ype Volume () Level (m) RAMR. “pmp
Harvest Pond High Level 80 16 1

Harvest Pond Low Level 50 10 - 1
Biofiltration Basin High Level 90 080 2

Biofiltration Basin Low Level 50 059 2
Storage Tank High Level 0 225 3 2, Bore
Storage Tank Low Level 70 175 Bore 3

controlled by trigger levels in the Storage Tank. During
summer, Pump 3 is controlled by the irrigation demands,
which are on a schedule so that different reserves are irri-
gated on different nights (Table 3). Pump 3 is a VSP and is
operated at 80% of full speed for injection (such that the
flow is less than the 7 L/s maximum for injection) and
75% of full speed for irrigation (such that the target pres-
sure downstream of the pump is achieved at the expected
demand rates). Both systems were simulated for a period
of 1 week in EPANET, with a 15 min hydraulic time step
and 5 min reporting time step. Several week-long stream-
flow series for the available flow in Glen Osmond Creek at
a daily resolution were used in the harvesting and injection
model (Fig. 4). A peak/off-peak electricity price tariff ap-
plied to the entire system; a peak price of 25.53 ¢/kWh was
applied from 7 am to 9 pm on weekdays, and an off-peak
price of 1526 ¢/kWh was applied over night and on week-
ends (tariff pattern and simulations started on a Sunday).

Winter harvesting and injection system current pumping
operation results

When there was adequate water available, such as in
Streamflow Series 1, 4 and 5, the volume of water
injected into the aquifer (by Pump 3) was a little over 3
ML per week (Table 4). This was significantly less than
the volume available, which reflects the limited flow rate

Table 3 Irrigation demand schedule for the Ridge Park system

Page 15 of 26

of Pump 3 (7 L/s for injection to the aquifer), as well as
the water that would be lost to overflow when the inflow
rate is greater than the flow rate of Pump 1 (approxi-
mately 22 L/s). The total pump energy cost estimate for
the harvesting and injection system ranged from $163 to
$267 per week, with an average of $235 per week. Pump
1 was the most cost-effective to run, while Pump 3 was
the most expensive. Pumps 1 and 2 operated at similar
times throughout the day, however, Pump 2 has much
lower efficiencies, which increased its energy use. Pump
3 operated at a lower flow rate but much higher head
than Pumps 1 and 2, and was more likely to be switched
on for the entire day, which contributed to its higher
cost of operation. Pumps 1 and 2 turned on and off very
frequently, and operated at a much higher flow rate than
Pump 3 (Fig. 5). The flow rate of Pump 3 in Fig. 5(c) re-
duced over the week as the headloss through the bore
increased from assumed clogging of the bore. As the
storages are relatively small, in particular the storage tank,
it did not take long for them to be filled and emptied
(Fig. 6), which contributed to the frequent pump switches.
The current trigger levels in the Storage Tank are very
close together (70 and 90% volume) as a result of possible
pump priming issues that occurred during the commis-
sioning of the system. These close together trigger levels
also contributed to the short fill and empty times.

Summer extraction and injection system current pumping
operation results

Simulation of the irrigation system gave a total weekly
pump energy cost of $90 (Table 5). The Bore Pump was
more expensive overall, however, cost less per megaliter
than Pump 3. This occurred because while the Bore
Pump has a greater efficiency than Pump 3, it also has a
higher flow and head, which increased the energy con-
sumption. The higher volume pumped from the bore
contributed to a lower cost rate than Pump 3. All of the
pumping for this system occurred overnight (Fig. 7)

Reserve Demand rate (L/s) Duration/day (hr) Start time Irigation days
Ridge Park 1 353 833 9:30 PM Mon & Wed
Ridge Park 2 353 867 930 PM Tues & Thurs
Fraser Reserve 141 583 930 PM Mon & Wed
Ferguson Ave Reserve 200 500 930 PM Tues & Thurs
Scammell Reserve 215 6.00 10:00 PM Tues & Thurs
Fullarton Park 1 385 167 1000 PM Mon & Wed
Fullarton Park 2 385 667 10:00 PM Tues & Thurs
Fern Ave Reserve 353 333 1000 PM Mon & Wed
Windsor St Reserve 220 800 830 PM Tues & Thurs
Henry Codd Reserve 1.10 800 1000 PM Mon & Wed
Unley Oval 557 900 900 PM Sun, Mon & Wed
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when irrigation of all fields is allowed. The Bore Pump
turned on and off very frequently when it was operating,
again due to the small capacity of the Storage Tank
which meant it did not take long for the pump to fill the
operating volume (Fig. 8).

Optimization formulation

Initially, optimization of the Ridge Park system was con-
sidered to be an operational problem, however, results of
the current operation simulation suggest that design de-
cision variables need to be considered as well. Replacing
Pumps 1 and 2 with models that would operate at much
lower flow rates (to reduce the headlosses) and increas-
ing the size of the Storage Tank will be considered along
with operational decision variables (Table 6). These
design decisions would aim to counter-act mismatched
pump rates (Pumps 1 and 2 operating at a much higher
rate than Pump 3) and small storage volumes that lead
to frequent pump switches. Short-term operational deci-
sions include trigger levels in the Harvest Pond, Biore-
tention Basin and Storage Tank that will govern when
pumps are turned on and off, a schedule for irrigation
(that is, which reserves will be irrigated at which times),
and VSP multipliers for Pump 3. In the current oper-
ation, VSP multipliers for Pump 3 were selected to en-
sure the required flow rate (for injection) and pressure
(for irrigation) were achieved. With different levels in

Table 4 Current operation results for the winter harvest and
injection system

Streamflow  Available  Cost (c/kL) Volume Total
Seres zﬁ:jr::) Pump1 Pump2 Pump 3 '&BCSS g;s‘:/k)
1 120 064 228 549 314 267

2 229 068 232 6.19 176 163

3 6.19 0.69 223 587 244 222

4 154 064 224 546 318 258

5 297 063 225 547 316 264
Average 145 066 226 570 274 235

the Storage Tank considered, the VSP multipliers for
Pump 3 can be altered, especially if efficiency is im-
proved. If the pump priming issues discussed earlier
were to be resolved, trigger levels that utilize the full
height of the Storage Tank (rather than the 20% range in
water elevation that is currently used) would be consid-
ered in the optimization. There are also long-term deci-
sion variables deciding when to switch between summer
and winter operation and vice versa (Table 6). As the
scheme injects to and extracts from the aquifer through
the same bore, it is not possible to frequently switch
between injecting and extracting water, therefore there
will be only two switch times per year; one going into
winter operation and one going into summer operation.
The decision variables presented in Table 6 may all be
considered together in an optimization problem, how-
ever, they could also be analyzed prior to optimization in
a simulation sensitivity analysis. Simulating the system
initially with the different pump models and storage tank
sizes could help to decide if these actions are worthwhile
considering in an optimization formulation. Engineering
judgement may be sufficient to determine which pump
model(s) would be best to replace Pumps 1 and 2, and
therefore reduce the size of the optimization problem.
Constraints on the system include an environmental
flow for Glen Osmond Creek, an extraction limit from
the Aquifer and meeting the weekly irrigation volumes
for each reserve in the summer (Table 7). If there was
not enough water harvested over the winter to supply
the summer demands, a potable back-up supply is avail-
able at a cost. The main objective for this case study is
to minimize the pump energy cost; there is also a sec-
ondary objective of minimizing the number of pump
switches. To create an incentive for the optimization to
find solutions that harvest more water, the cost objective
includes the energy cost for the harvesting and distribu-
tion operation as well as the cost of purchasing potable
water if the harvested volume is not enough to supply
demand. The objective function is formulated as the cost
per volume of water harvested as another means to ensure
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enough water is harvested from the system during winter
to supply summer irrigation. During the conceptualization
and design of this scheme, regulations from the South
Australian Environmental Protection Authority (EPA), the
Department for Environment, Water and Natural Re-
sources (DEWNR) and the Department of Health (DoH)
were considered. A license to recharge water into the
aquifer was required from the EPA, while the DEWNR
regulates how much water can be extracted from MAR
schemes. DoH regulations informed the level of treatment
implemented and the irrigation practices, which must
limit the risk of public exposure.

Orange integrated supply system - case study 2

Orange is a rural town roughly 250 km west of Sydney
in the state of New South Wales, Australia. The water
supply system serves a population of around 36,800
people with an average annual demand of approximately
5,400 ML. The majority of water supply is from the
local surface water catchment, which culminates in the
roughly 19,000 ML Suma Park reservoir (Fig. 9).
Australia experienced severe drought between 2000 and
2010, and Orange was one of the hardest hit areas in
New South Wales. Even with severe water restrictions
almost halving the town’s demand, Orange had less
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Table 5 Current operation results for the summer extraction
and irrigation system

Pump Volume (MLAVK) Cost (c/kL)
Bore Pump 193 352
Pump 3 057 397
Total $90.3/week

than two years of water supply heading into summer of
2009 and was relying only on surface water catchments
(Montgomery Watson Harza, 2011). This prompted the
Orange City Council to diversify their water supply,
and they therefore developed two stormwater harvest-
ing schemes and a long pipeline from an adjacent
catchment, as well as re-opening several groundwater
bores. Figure 2 shows a schematic process diagram of
the system, which is described below, and Fig. 3 shows
the layout (note that the ‘Shearing Shed’ Bore and ‘Bore
5" in Fig. 2 are grouped as the ‘Clifton Grove’ Bores in
Fig. 10). For more detailed data on this case study,
please see the Additional files 1, 2, 3 and 4.

Water from the Ploughman’s Creek Stormwater
Scheme is treated through a series of wetlands, and then
combined with water from the Blackman’s Swamp Creek
Stormwater Scheme. After treatment, this water can be
used to top up Suma Park reservoir. Due to the severely
low water supply levels during the drought, Emergency
Authorization was initially given, and Council subse-
quently sought approval for use of the stormwater
schemes on a permanent basis. Continuous water quality
monitoring is undertaken to meet regulations of the Of-
fice for Water, the New South Wales Environmental Pro-
tection Authority and the Ministry of Health. To the
authors’ knowledge, this is the only system in Australia that
has been approved to use harvested stormwater for potable
supply. In order to use harvested stormwater for potable
supply, the Council had to meet requirements of the Office
for Water. The Macquarie pipeline transfers water from
the adjacent Macquarie River catchment to Suma Park res-
ervoir. It is 38 km long and requires more than 600 m of
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pumping head. Each of the three pumping stations has two
pumps operating in parallel. Water from the groundwater
bores is pumped first to balancing storages and then to
Suma Park reservoir, with a combined licensed volume of
462 ML per year. Water from all of the sources is com-
bined in Suma Park reservoir and treated at a water treat-
ment plant before being delivered to consumers.

The Orange City Council is interested in optimizing the
operation of this while delivering a secure yield from Suma
Park Dam. In addition to the primary objective of minimiz-
ing energy cost, there are objectives of minimization of
spill from Suma Park reservoir, minimization of (perceived)
environmental impact, maximization of (perceived) water
quality, and minimization of energy use. The Council has
an explicit objective to minimize spill to ensure water and
energy are not wasted by pumping from one of the three
alternative sources to fill up Suma Park reservoir just be-
fore a rainfall event that would supply water from the nat-
ural catchment at no cost or energy output. As this system
supplies potable demands, it is undesirable to apply water
restrictions to consumers, thus minimizing time spent in
restrictions is important. Objectives for the perceived en-
vironmental impact and water quality will be formulated as
a preference ranking between the different sources based
on community views of which sources are better for the
environment and water quality. The constraints of the
problem include environmental flows for the Macquarie
River (downstream of the pumping station offtake point)
and stormwater schemes, a water source license for the
Macquarie River and extraction limits on the ground-
water bores (Table 8).

Energy optimization formulation

In this section, the developed framework is applied to
the Orange case study to help set up the optimization
procedure and identify the components and data to be
modeled. Note that the model has been built taking into
account all possible objectives of the system, however,
the example of results presented here will focus on the
minimization of energy consumption.
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As all components of the system have already been
constructed and considered sufficient for the operation
of the system, there are no design decisions to consider,
only operating decisions. For this case study, operating
decisions consist of trigger levels in the various storages.
These types of decision variables are chosen considering
the control system available at each pump station (based
on storage levels and not on time of the day) and
the fact that the controls have to be defined for an
operational horizon of 1 year or longer. As all of the

Table 6 Possible decision variables for the Ridge Park MAR scheme

Short-term winter harvesting and injection operation

Pump 1 Off Harvest Pond Level Low
Bioretention Basin Level High
Pump 1 On Harvest Pond Level High
Pump 2 Off Bioretention Basin Level Low
Storage Tank Level High
Pump 2 On Bioretention Basin Level High
Pump 3 Off Storage Tank Level Low
Pump 3 On Storage Tank Level High
Pump 3 Speed Storage Tank Level
Short-term summer extraction and irrigation operation
Bare Pump Off Storage Tank Level High
Bore Pump On Storage Tank Level Low

Irrigation Schedule

Pump 3 Speed
Long-term operations
Day to Switch Between
Seasonal Operational Regimes
System Design
Storage Tank Size

Pumps 1 and 2

Days of Irrigation at each Reserve

Start Time of Irrigation at each
Reserve

Required Demand Rate

Summer to Winter

Winter to Summer

Doubled, 5 times, 10 times current
size

Selection of pump curves with lower
operating rates

pump stations have two or more pumps arranged in
parallel, having different trigger level values may have a
large impact on the operating point of the pumps and
consequently their energy consumption. It is also likely
that different trigger levels will be chosen for peak and
off-peak electricity tariff periods when they are in-
cluded in a cost optimization. For this system a peak/
off-peak electricity tariff applies on weekdays, with
weekends priced at the off-peak rate. A peak monthly
electrical energy demand charge also applies to the
Macquarie River pipeline pumping system. In order to
assess the performance of different tank trigger levels,
the infrastructure to be modeled includes the natural
and urban catchments for the surface water and storm-
water systems respectively, Suma Park reservoir, pipe-
lines and pumps in the groundwater, Macquarie River
and stormwater systems, and wetlands and storage
ponds in the stormwater systems.

In general, the system could be modelled using hydro-
logic models, mass balance models, and/or hydraulic
models. The choice of which model(s) will be used
depends on the objectives and the processes to be mod-
elled, on the available data and the computational times.
In particular, hydrologic modeling is usually used to trans-
form rainfall to runoff for the natural and urban catch-
ments. For this case study, inflows inputs or approximate
relationships between rain and flows were provided by
previous studies by the Orange City Council. Hydraulic
models are usually used for short term operations: pump
energy costs can be computed accurately based on the hy-
draulic equations. Mass balance modeling is usually used
for assessing the system in long term operations, as it can

Table 7 Possible constraints for the Ridge Park MAR scheme

Constraint

Value
>2 LSs

Glen Osmond Creek Environmental Flow

Aquifer Extraction in Summer
Pressurized System Demands

Gravity System Demands

<80% of Injection Volume
>15 ML/year
>37 MUyear
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quickly compute the water available after evaporation and
other losses in the system have occurred and after mini-
mum environmental flows have been released. It cannot,
however, take into account the non-linearity in the hy-
draulic equations and therefore assumptions need to be
made in regard to the flow delivered by the pumps in the
system. While hydraulic simulation would be most appro-
priate for the pumping stations in the system as they have
multiple pumps and sometimes have connected pipelines,
mass balance models would need to be used to compute
the additional processes, such as evaporation and the
release of minimum environmental flows that need to be
taken into account given the long duration of the

simulation. During an optimization process, simulating
each potential solution using both a mass balance and a
hydraulic model would increase considerably the computa-
tional time, particularly if data transfer between the two
models was required. It is therefore suggested that the pri-
mary simulation tool should be a hydraulic solver. Rainfall-
runoff modeling could be performed pre-optimization, and
supplemental code added to a hydraulic model to account
for functionality of a mass balance model. This would
allow for consideration of the evaporation from and
rainfall directly to reservoirs, changes to demands based
on water restrictions and environmental flows that de-
pend on the combined volume of two reservoirs (Spring

Fig. 10 Orange integrated supply system layout and data
-
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Table 8 Constraints for the Orange integrated supply system

Constraint Value
Macquarie River Environmental Flow >108 ML/day
Blackmans' Creek Environmental Flow >20 ML/day
Ploughmans’ Creek Environmental Flow from Pump 54  >04 ML/day
Ploughmans' Creek Environmental Flow from Pump 55 >2 ML/day
Ploughmans' Creek Environmental Flow from Pump 56 >2 ML/day

Clifton Grove (Shearing Shed and Bore 5) Aquifer
Extraction

Showground Aquifer Extraction
Macquarie River Extraction License

<182 MLU/year

<280 ML/year
<12 ML/day

Creek and Suma Park), infiltration losses when transfer-
ring water between reservoirs and peak power demand
charges.

Another important issue to consider is what simula-
tion time step should be used. Using a shorter time step
will increase the accuracy of this hydraulic analysis and
often results in feasible optimization times for storages
that empty or fill in a day or two (as would likely be the
case for the stormwater ponds and Macquarie pipeline
balancing storages). Simulating the behavior of Suma
Park dam is more challenging, however, as the variations
in the water levels can have a period of several years.
Thus, the computation times with a short time step be-
come prohibitively long. A balance needs to be found
between using a short enough time step for the detailed
hydraulics and a long simulation time for the large stor-
ages without having a prohibitively large computational
time. Given the data availability (there is 118 years of
rainfall and inflow data available, with a daily time step)
the time step chosen is 1 day.

Given that the time-step is automatically shortened by
the hydraulic solver chosen (EPANET in this case), the
model of the real system has been simplified in order to
avoid excessive computational times. In particular, given
that the levels in the balancing storages along the
Macquarie pipeline vary rapidly, these storages were re-
moved and the pipeline simulated with two parallel
pumps, each representing the equivalent of the three
stages of pumping (that is, the pump curves for Pumps
MIla and b in Fig. 2 were adjusted such that they repre-
sented Pumps M2a, M3a and Pumps M2b, M3b as well).
This simplification is considered acceptable as the pumps
in series in the Macquarie pipeline will usually be operated
at the same time, given that each pump will still be con-
trolled also by the level of Suma Park Dam. Longer com-
putational times were also caused by the small storages
after the groundwater bores. The pumps used for extrac-
tion from the aquifers (Pumps G1a, G2a and G3a in Fig. 2)
operate at relatively consistent rates, and as such they
could be removed from the model and their energy use
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accounted for relative to the volume pumped from the
second pump in each system (Pumps G1b, G2b and G3b
respectively). To take into account the limited volume
available from the groundwater bores, the storage tanks
in the groundwater system each had a volume equiva-
lent to a year’s allocation for the respective bores. All of
the stormwater pumps except for Pump S2c¢ and Pump
S3c, which are standby pumps and not in use, were in-
cluded in the model. As well as the operating point of
the pumps changing depending on the number of
pumps used in parallel, there may be slight differences
in efficiency and therefore energy use, and thus includ-
ing all pumps here provided more accuracy.

All of the pumps included in the model were con-
trolled using rule-based controls in EPANET, with con-
ditions based on levels in one or more storages as well
as time. Conditions based on downstream storages were
considered as decision variables, while conditions based
on upstream storages were fixed (Table 9). For the Mac-
quarie pumps, there were also conditions based on the
flow in the river to ensure that no water would be taken
when there was not enough water available. There were
four possible decision variables for each pump, a lower
and upper trigger level in both the peak and off-peak
time. For optimization of energy use, only two are re-
quired, as peak and off-peak tariffs are not considered.
As the model was set up for other objectives including
cost, which does use a peak and off-peak electricity
tariff, the capability to choose different trigger levels in
different periods was incorporated. A maximum of 15
pump switches per day per pump were allowed, and the
end level of Suma Park Dam was constrained to 16 m
(to be approximately the same as the start level). Based
on license conditions, Macquarie River water can only
be used when the Suma Park Dam level is below 90%, so
choices for Pump Mla and M1b trigger levels in Suma
Park Dam are more restricted than for other pumps.

Energy optimization results

Minimization of pump energy use over the longer term
is presented here as an example of optimization of this
system. Note that the system is simulated over 1 year, at
a daily time step in EPANET. Additional computer code
was added to the EPANET hydraulic simulation to take
into account other process such as rainfall to and evap-
oration from storages. This code essentially adds a mass
balance component to the hydraulic simulation. Histor-
ical rainfall for the catchments in the system was mod-
elled in MUSIC hydrologic software to develop inflow
series for the ponds and reservoirs. For this optimization
the year with the closest to average rainfall was used,
however, other years of rainfall were available and this
optimization could be extended to consider other cli-
mate conditions.
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Table 9 Decision variables and fixed controls for the Orange integrated supply system

Pump station action

Storage(s) controlling operation

Decision variable or fixed

Macquarie Pump M1a, M1b Off
Macquarie Pump M1a, M1b On
Stormwater Pump S1a, S1b Off

Stormwater Pump S1a, S1b On
Stormwater Pump S2a, S2b Off
Stormwater Pump S2a, S2b On

Stormwater Pump 533, S3b Off

Suma Park Dam Level High
Suma Park Dam Level Low
Holding Pond Level High

Blackmans Stormwater Pond Level Low

Holding Pond Level Low

Blackmans Stormwater Pond Level High

Batch Ponds Level High
Holding Pond Level Low

Batch Ponds Level Low
Holding Pond Level High

Suma Park Dam Level High
Batch Ponds Level Low

Decision Variable
Decision Variable

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Decision Variable
Fixed

Stormwater Pump 532, S3b On Suma Park Dam Level Low Decision Variable
Batch Ponds Level High Fixed
Stormwater Pump 543, S4b Off Holding Pond Level High Decision Variable
Mitchell Wetland Level Low Fixed
Stormwater Pump 542, S4b On Holding Pond Level Low Decision Variable
Mitchell Wetland Level High Fixed
Stormwater Pump 553, S5b Off Holding Pond Level High Decision Variable
Brooklands Wetland Level Low Fixed
Stormwater Pump 552, S5b On Holding Pond Level Low Decision Variable
Brooklands Wetland Level High Fixed
Stormwater Pump S6a, S6b Off Holding Pond Level High Decision Variable
Somerset Wetland Level Low Fixed
Stormwater Pump 563, S6b On Holding Pond Level Low Decision Variable
Somerset Wetland Level High Fixed
Groundwater Pump G1 Off Suma Park Dam Level High Decision Variable
Groundwater Pump G1 On Suma Park Dam Level Low Decision Variable
Groundwater Pump G2 Off Suma Park Dam Level High Decision Variable
Groundwater Pump G2 On Suma Park Dam Level Low Decision Variable
Groundwater Pump G3 Off Suma Park Dam Level High Decision Variable
Groundwater Pump G3 On Suma Park Dam Level Low Decision Variable

NSGAII (Non-dominated Sorting Genetic Algorithm
11) software was used for the optimization, with five ran-
dom seeds, a population size of 50, 100 generations and
probabilities of crossover and mutation of 0.8 and 0.02
respectively. In the best solution found, the system used
a total of 793 MWh of energy over the entire year.
Table 10 shows the volume of water pumped from each
source to Suma Park Dam (and supplied from the local
catchment) and the energy used by each of the pumps
for the optimal solution. Pumping from the Macquarie
is very energy intensive so this is only used at the very
end of the simulation when the level in Suma Park Dam
is very low, in order to achieve the end target level con-
straint (Figs. 11 and 12). Groundwater and stormwater
sources are used initially to increase the level of Suma
Park Dam to its maximum, and then not used again
until around Day 160 when the level in the dam has

dropped again. Only one of the Macquarie pumps is
used, as, despite operating at a lower energy efficiency
point, it uses less energy overall than operating two
pumps in parallel. In dryer years, both pumps may need
to be utilized in order to ensure supply to Suma Park
Dam. Nearly all of the available groundwater license is
used; G1 and G2 have a combined license of 180 ML/
year, and G3 280 ML/year. Groundwater is more energy
intensive than stormwater, however, it can be used at
any time throughout the year, while stormwater is reliant
of inflow. Most of the stormwater provided to Suma
Park Dam came from the Blackman’s Creek scheme (S1)
rather than the Ploughman’s Creek scheme (S4, S5 and
S6). While the storage capacity of the Blackman’s Creek
scheme is much lower, the pump capacity and energy
efficiency is much greater than in the Ploughman’s Creek
scheme, so it provides more water.
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Table 10 Volume of water pumped/supplied and energy used
in the optimal energy solution

Source Pump  Volume  Energy  Energy Rate
(ML) (MWh) (MWh/ML)
Macquarie River Mia 0 0 0
Mib 74 150 202
Total 74 150 202
Groundwater® Gl 24 1 046
Q2 146 79 0.54
@3 235 106 045
Total 405 196 0.48
Stormwater Sla 258 39 0.15
Sib 479 7 0.15
S2a 828 65 0.08
S2b 237 21 009
S3a 1022 170 017
S3b 22 55 025
Sa 178 41 023
S4b 12 31 027
Ssa 24 48 020
S5b 56 11 0.19
S6a 60 1 0.18
S6b 26 50 0.19
Toal® 1044 447 043
Spring Creek and Suma 3865°

Park Catchment

The energy consumption for the groundwater pumps includes both the transfer
and bore pumps, i.e. the energy for Pump G1 includes Gla (not modelling in
EPANET, energy use estimated from volume) and G1b (modelled in EPANET)
The total volume supplied by the stormwater schemes is measured as the
combined volume supplied by Pumps S3a and S3b (which discharge to Suma
Park Dam), while the total energy is the total of all pumps

“This is the volume supplied by the natural catchment for the town's consum ption,
the total inflow from the catchment is greater than this however some is used to
provide envionmental flows and some spills
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Conclusions

A generalized framework for the optimization of the
design and operation of water supply and distribution
systems has been developed and two case study sys-
tems have been used as examples of how to apply it
The framework is comprised of several components;
the options component describes the design and oper-
ational decision variables for the optimization, the
infrastructure component covers the infrastructure as-
pects of the system that need to be modeled and their
data requirements, the analysis component includes
the simulation of the system and evaluation against the
objectives and constraints, and finally the government
policy component describes the regulations that may
affect other aspects of the framework. These compo-
nents fit within an optimization algorithm structure,
which firstly generates potential solutions using the
decision variables in the options component, models
the system according to the infrastructure component
and evaluates potential solutions using the analysis
component. The evaluation of potential solutions then
feeds into the solution space which informs how the
decision variables are changed in the next set of poten-
tial solutions. Sensitivity analysis of parameters will
significant uncertainty should be undertaken to ensure
robust solutions. The framework also applies to simu-
lation of systems prior to or without optimization.

The Ridge Park MAR Scheme Case Study harvests
stormwater from an urban creek and stores it in an aqui-
fer, to be extracted at a later time and used as non-
potable supply for irrigation of sporting fields and re-
serves. For this case study, and similar ones, the simula-
tion of the system may be simplified by splitting the
system into two parts, one for the components of the
system used in winter operation (harvesting and injec-
tion) and one for the components used in summer oper-
ation (extraction and irrigation). This system highlighted
the importance of simulation and analysis prior to
optimization, in order to focus the formulation of the
optimization problem. The Orange Integrated Supply
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System Case Study uses multiple water sources; natural
catchment water, harvested stormwater, imported water
and groundwater to supply potable demands. For this
case study, finding an appropriate combination of simula-
tion models and time step and simulation duration is im-
portant in order to provide accuracy in representing both
long- and short-term operations without excessive com-
putational times. Optimization of pump energy use for
this system indicated that the groundwater and storm-
water supplies are more desirable to supplement natural
inflows than the imported water from the Macquarie
River, which required a lot of energy to transfer water over
a long distance and against a high elevation head.

The framework is generalized, and so could be applied
to other water supply and distribution systems, particu-
larly those using non-traditional water sources, to
optimize their design and operation. While the frame-
work attempts to cover all aspects of water supply in a
generalized manner, it does have some limitations. Along
with the supply of water, there will always be a need to
manage wastewater. Apart from considering recycled
wastewater as a source, this framework does not cover
wastewater systems in terms of collection, transport,
treatment and potential discharge of wastewater into the
environment. Treatment of raw water supplies is in-
cluded in the framework, however, the details of such
treatment and measurement of water quality throughout
a water distribution system are not focused on as much
as the design and operation of the systems. A difficulty
of applying this framework will be the definition of the
boundary of a system and which aspects should be
analyzed. Currently, there does not exist commercial
software that has all of the capabilities considered in
the framework (i.e. both hydrologic and hydraulic simu-
lation). This means that specialist simulation models
may need to be developed for particular systems (as
was done for the second case study). Future develop-
ments in simulation software may reduce the difficultly
of combining hydrologic, mass balance and hydraulic

considerations and remove the need for specialist tools
built for individual systems. In the future, the frame-
work should be tested with other case study systems to
fully investigate its benefits.
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Abstract

A genetic algorithm (GA) model for water distribution system (WDS) operation has been developed. optimizing pumping by
time-based scheduling and tank trigger levels. An important focus was the minimization of operational greenhouse gas (GHG)
emissions. in conjunction with operational economic cost, to provide a comprehensive solution to the pumping problem. Various
possible future energy scenarios have been investigated to determine the effect of varying GHG enussions factors on the optimal
operational decisions for WDSs. The interface developed in this research allows users to apply the optimization algorithm to a
variety of water networks with full customization of inputs and parameters.
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1. Introduction

The operation of WDSs serves one of society’s most basic needs, that being the provision of potable water.
however these systems are also significant consumers of energy resources. Energy costs can account for up to 65%
of a water utility’s operating budget and as such. models that optimize pump operations can lead to large cost
savings for water utilities [1]. Worldwide and especially in Australia, the efficient use of both water and energy
resources has come under scrutiny. The implications associated with climate change are expected to exacerbate these
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concerns. and consequently one of the major challenges facing society is the efficient utilization and conservation of
existing resources. It has become a priority for the design and operation of WDSs to incorporate minimization of
environmental impacts in conjunction with economic optimization [2]. GAs represent an efficient method for the
optimization of non-linear problems. particularly when applied to complex WDSs. They apply principles of natural
selection to a population of solutions. gradually converging on optimal or near-optimal solutions in a relatively small
number of evaluations [3]. When applied to the optimization of WDSs, GAs have been found to perform
significantly better than other optimization techniques in areas of final solution optimality and iterative efficiency
[4]. In the past. pumping operation optimization has generally minimized costs only, with no consideration for GHG
emissions. This was achieved by maximizing pumping during off-peak electricity tariff periods and minimizing the
static head [5]. Most pumping system operations use either trigger levels or scheduling. Lower and upper trigger
levels represent the tank water levels at which the pump(s) will furn on or off respectively. Pump scheduling
involves a set of temporal rules indicating when pumps should be switched on or off during the day. requiring a good
estimation of the daily water demand. Kazantzis ef al. [5] used a GA to find optimal pumping strategies
incorporating both trigger levels and scheduling to minimize energy costs in WDSs. To properly account for the
GHG emissions of WDSs the sources of electricity should be identified. as each will have different GHG emissions
per unit of energy produced [6]. An ‘emissions factor’ is used to convert energy use to GHG emissions. considering
all types of GHGs and their global warming potential as an equivalent mass of carbon dioxide (CO2-eq). Many
previous studies have used an average GHG emissions factor value for the region, including Dandy ef al. [6] and Wu
ef al. [2.7]. A large amount of electricity is required for pumping, particularly during times of peak water demand.
which often correspond to times of peak electricity demand. Scheduling pumps to operate in off-peak periods may
provide cost savings through taking advantage of variable tariffs. A future approach. primarily concerned with GHG
emissions, may be to pump steadily throughout the day with a VSP, or in response fo demands rather than in
response to electricity prices. This would reduce energy consumption through the use of smaller velocities leading to
a smaller friction head.

This paper describes the development of a GA optimization model to solve the pump operations problem
considering trigger levels. scheduling and VSPs. There is a need for a user-friendly. flexible model that can easily be
applied to any network and used to develop pump operational strategies that reduce cost. GHG emissions and energy
consumption. In order to implement a more comprehensive assessment of GHG emissions than has previously been
considered, potential future energy scenarios and specific GHG emissions factors for each energy source are used.
The model is linked to hydraulic simulation software EPANET and a Microsoft Excel interface, allowing the user to
fully customize the program for any network specification and optimization parameters. Application of the model
provides insight into the trade-offs between cost, GHG emissions and energy in WDS pump operation.

2. Methodology
2.1. Environmental objective assessment

In order to more accurately take into account the different energy sources providing electricity for pumping,
different emissions factors were used for each type of electricity energy source. Multiple energy source scenarios
have been considered. each with different electricity generation technologies confributing to the energy required for
pumping (Fig. 1). South Australia’s current energy breakdown consists mainly of gas. brown coal and wind [8] (Fig.
1 (a)). Three possible future energy scenarios representing a range of predictions from the Australian Energy Market
Operator (AEMO) [9] were selected to be used in this research (Fig. 1 (b). (¢) and (d)). Beyond Zero Emissions have
produced two reports concerning Australia’s energy future: one proposing the replacement of Port Augusta’s (in
South Australia’s north) coal fired power station with concentrated solar thermal technology [10] and the other
mvestigating using 100% renewable energy in Australia [11]. Both of these scenarios have been considered in this

paper (Fig. 1 (e) and (f)).
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Fig. 1. Energy source scenarios (a) current South Australian (b) AEMO — fast rate of change (c¢) AEMO — o1l shock and adaption (d) AEMO —
slow rate of change (e) concentrated solar thermal at Port Augusta and (f) Australia 100% renewable. ‘Other’ includes oil, geothermal. biomass
and solar photovoltaic.

The emissions factors were also adjusted to account for the variation in output from solar photovoltaic systems
throughout the day. which has the greatest output during the afternoon. This gave a set of six scenarios. each with
unique values and daily variations in emissions factors. Typically. any previous modelling involving the calculation
of GHG emissions has not taken into account the daily variation in emissions factors. The ability for users to select
and customize the energy scenarios and use hourly emissions factors made the optimization model robust to
potential future energy conditions.

2.2. Genetic algorithm formulation

The models developed in this research were adaptations of a GA first developed by Keall [12]. which used
integer coding to optimize the design of pipe diameters. This research significantly modified the original GA
structure to optimize pumping operations. incorporating a choice of objective functions to optimize: including
minimization of cost. GHG emissions. energy. and a multi-objective combination of cost and GHG emissions with a
user-specified carbon price. The model included options for users to choose types and values of GA operators. such
as selection. crossover and mutation, as well as enabling customization of the GA parameters. such as population
size, number of generations. and stopping criteria. The value of each objective function was calculated in terms of
units per volume of water pumped. to remove any bias between solutions that pump slightly different amounts of
water over the day. Raw values of costs. GHG emissions. energy and volumes pumped during peak and off-peak
were also output from the model to provide users with comprehensive information about the operational
performance. The objective function for cost was given by

e ET, xE, +ETy x E,
. = ©

where OC = operational cost in $/m’, ET = electricity tariff in $/kWh. E = energy consumption in kWh, ¥ =
volume of water pumped over whole day in m?. subscript P = peak period and subscript O = off-peak period.
EPANET was utilized to determine energy consumption for each time period. and subsequently the total energy
used for pumping during peak and off-peak periods. as well as the volume pumped. Electricity tariffs could be
customized by the user. typical values of 9 ¢/kWh in the off-peak period. from 11pm to 7am. and 22 ¢/kWh in the
peak period were used in this research. The objective function for GHG emissions was given by

D EM; xE
OGHG = '# )
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where OGHG = operational GHG emissions in kg CO»-eq/my’. EM; = emissions factor in kg COs-eq/KWh. E; =
energy (in kWh) at each time step i.

Minimization of energy consumption acted as a surrogate for optimization of cost or GHG emissions where a flat
electricity tariff and constant emissions factor were used. The energy usage from each time step was summed to give
the total daily energy consumption and divided by the volume pumped to give the objective function value. A multi-
objective opfimization was also available and this combined the cost and GHG objectives using a user-defined
carbon cost. The objective function for this optimization was given by

ORJ = OC+CCxOGHG 3)

where OBJ = value of the objective function in $/m* and CC = user-defined carbon cost in $/kg CO2-eq.
Australia’s current carbon price is $25.40 per ton COz-eq, however there is uncertainty regarding future values. and
by enabling users to vary this price they are able to customize the importance weighting of GHG emissions.

A number of constraints were incorporated info the GA to ensure that the solutions found were hydraulically
feasible: these included minimum and maximum values for nodal pressures. pipe velocities and unit headloss. These
constraints could be the same for all nodes or pipes within a network. or customized for each element individually.
The user is also able to specify a maximum number of pump switches per day. which may be used fo constrain
pump maintenance costs. Tank balancing at the end of each time period can also be selected as a constraint, with
users able to specify the maximum amount by which the storage tank’s ending value should differ from its starting
value each day. To account for emergency and dead storage. a minimum tank level could be specified. Each
constraint had an associated penalty value that could be modified to reflect the relative importance of that constraint.

2.3. Optimization model development

Pump systems generally operate based on one of two operational control mechanisms; pump scheduling or
trigger levels, as described previously. In order to reduce operational costs. the pumping mechanism should
minimize the amount of pumping that occurs during the peak electricity tariff period: this is usually achieved when
the water level in the tank is at its maximum at the beginning of the peak period and at its lowest allowable level at
the end of the peak period. Three distinct optimization models were produced. each incorporating a different
pumping regime. These models begin the simulation at the beginning of the off-peak period. with the tank at its
minimum allowable level. This serves as a ‘known’ starting point for an optimal solution and also means that the
ending level of the tank is likely to be close to the initial level. as less pumping will benefit any objective function
chosen. This is important to mitigate long-term filling or depletion of the tank.

The first optimization model developed used lower and upper trigger levels: the GA had two decision variables,
one for each of the frigger levels. This model presents an effective method for keeping the tank level within a
specified operating range. however. does have conflicting optimal solution characteristics. Having a high upper
trigger level results in increased static head and therefore more energy consumption for the same volume of water
pumped. Having a low upper trigger level results in increased pumping during the peak period; the tank cannot
become full before the start of this period. and therefore must pump continuously throughout to fulfil the demands
on the tank. The second model utilized variable trigger levels to mitigate the above inefficiencies. This model had
three decision variables: a lower trigger level. upper trigger level and reduced upper trigger level. The additional
reduced upper trigger level could be applied during most of the simulation period to decrease the static head. The
ultimate upper trigger level came into effect at a switch time before the end of the off-peak period to allow the fank
to fill before the peak period began. such that an optimal solution would have the tank full at the beginning of the
peak elecfricity tariff period. This switch time was a parameter that could be customized by the user. The final
model optimized a pump-scheduling regime. in which the decision variables were the pump speed multipliers at
each time interval. If VSPs were used, the possible values for the pump speed multipliers could be specified by the
user, and would typically range from 0.8-1.0. as well as 0 to represent the pump being off. For fixed speed pumps
(FSPs). only multipliers of 0 (off) and 1 (on) were required. This model includes the capability for the user to
specify this time interval to reflect different demand patterns and pumping restrictions or requirements. For example
using half-hourly time intervals may provide more operational flexibility compared to howrly time intervals. with 48
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decision variables compared to 24. The user could specify the possible pump speed multipliers, depending on the
capability of the pumps and the WDS characteristics.

2.4. The Excel interface

A user-friendly interface, based on a significant expansion of work by Sankey [13], was developed in Microsoft
Excel to enable users to easily set the GA parameters, choice tables and other factors for the model. The interface
was written in Visual Basic computer programming language within Excel, with buttons and user forms providing a
convenient user interaction with the program. enabling them to setup and customize their optimization with ease.
Most of the GA parameters. as well as standard constraints. penalties, electricity tariff parameters and the EPANET
input file name are input by the user in the ‘Problem Configuration’ form. Various screens then allow for choice
table input, refinement of constraints and input of GHG parameters. For the top twenty solutions of each simulation,
information relating to the values of the decision variables and key results such as cost, GHG emissions. volumes
pumped and energy usage are presented. Significant modifications to the original interface include the addition of
constraints such as maximum headloss, maximum number of pump switches and tank balancing. Further
modifications included the ability to optimize the problem for various objective functions and a screen facilitating
the input of GHG and energy parameters. User buttons and forms within the interface allowed the user to easily
navigate through the screens and input all required information. The interface was developed to be flexible to be
applied to different WDSs as it is able to read in information from a specified EPANET input file to minimize the
input effort required by users.

3. Results

The models were applied to a case study network (Fig. 2) that was previously optimized by Wu ef al. [2] for its
physical characteristics but not its operation. This network transferred water from a reservoir to an upstream tank.
from which demands were withdrawn, with a base demand of 80 L/s and a diurnal pattern based on the peak
residential demands used by the South Australian Water Corporation. A minimum tank water level of 0.3 m was
applied fo account for dead storage. The lowest possible trigger level value was set to 1.0 m. to allow for times in
which the demands exceeded the pump capacity and the highest possible trigger level value was 5.0 m. A sensifivity
analysis was performed on various parameters including the objective function. electricity tariff. energy scenario.
reduced upper trigger level switch time, the use of FSPs and VSPs, and the carbon cost.

EL =95.0

Fig. 2. The one-pipe and one-pump network

Complete enumeration of the lower and upper trigger levels problem was undertaken. confirming the validity of
the optimization results obtained from the model. This was possible only because of the small number of decision
variables, which meant that the total number of possible solutions was 441. The lower and upper trigger level
optimization model found cost optimal solutions were achieved with a lower trigger level of 1.0 m and an upper
trigger level of 5.0 m as this solution enabled the maximum off-peak pumping (Table 1). In comparison, the optimal
GHG and energy solutions were the same and had lower and upper trigger levels of 1.0 m and 1.2 m respectively.
This optimal GHG and energy solution used the smallest possible range to achieve the lowest possible static head.
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with pumping spread evenly over the entire day. The sixth best solution from the cost optimization represented a
trade-off between the cost and GHG objectives. This solution reduced the static head by having an upper trigger
level of 2.6 m and half-filled the tank twice during the off-peak period. still taking advantage of the cheaper
electricity rate. It required more peak pumping than the best cost solution. however. so was more expensive.

Table 1. Selected solutions from initial analysis

e Do Do sabe) o i B o
Cost — Best 1.0 50 0.0683 0.2217 03718 72.0 280
Cost — 6® Best 1.0 26 0.0697 0.2210 0.3696 75.7 243
GHG - Best 1.0 12 0.0721 0.2204 0.3685 812 188

In comparison, when using a flat tariff structure with an energy price of 17.67 ¢/kWh (the weighted average of
the peak and off-peak price). all optimizations found the same solution regardless of which objective function was
used. This was the same solution that was found by the GHG and energy optimizations previously. with the two
trigger levels as close together as possible. With the flat tariff. this solution had a cost of 0.0651 $/m°>. which was a
lower cost than the best cost solution found using the peak/off-peak structure. Because the trigger levels are very
close together. the pump twrns on and off continually throughout the day (Fig. 3 (a)). with the exception of two
blocks where the pump is on from 7am to 9am and 7pm to 11pm due to high demands. These are both during the
peak electricity period and hence this solution is very expensive (and therefore not optimal) when evaluated with the
peak/off-peak electricity tariff. In practice. this solution may be less appealing to operators as there is a large number
of pump switches. and the model allowed this to be taken into account as a constraint if desired by the user.

Applying the various future energy scenarios gave the same optimal solutions as the initial analysis. with one
exception. When the percentage of solar photovoltaic energy contribution was relatively high. as it was for the
AEMO ‘Oil Shock and Adaption’ scenario. the solution found by GHG optimization had a much wider trigger level
range than was found previously. with trigger levels of 1.0 m and 4.8 m compared to 1.0 m and 1.2 m. The graph of
pump flow over 24 hours for this solution (Fig. 3 (b)) shows that the pump was switched on from 9am to 3pm. the
time when the solar photovoltaic contribution is highest and the thus emissions factors lowest. This catered to the
larger variation in emissions factors throughout the day. due to the increased proportion of solar photovoltaic
energy.
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Fig. 3. Daily pump flow variation with trigger levels of (a) 1.0 mand 1.2 mand (b) 1.0mand4.8m

To confirm that the difference in the optimal solutions was a result of the higher percentage of solar photovoltaic
energy and not a different aspect of the ‘Oil Shock and Adaption’ energy scenario. two custom energy scenarios
were created. They were based on the ‘Oil Shock and Adaption” scenario. with the percentage of solar photovoltaic
energy in one scenario increased to 10% and in the other decreased to 1%. The optimal solution found with the
higher proportion of solar photovoltaic energy had lower and upper frigger levels of 1.0 m and 5.0 m. while the
lower proportion of solar photovoltaic energy resulted in trigger levels of 1.0 m and 1.2 m. confirming that the
percentage of solar photovoltaic energy was causing the difference in the results. When a reduced upper trigger level
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was incorporated into the model. the minimum cost was lowered to 0.0652 $/m?. compared to 0.0683 $/m* when
only lower and upper trigger levels were used. A switch time of 2am was found to be optimal. as this allowed the
tank to completely fill just before the start of the peak period (Fig 4). hence minimizing the amount of pumping
required when electricity rates were more expensive. The addition of a reduced upper trigger level did not improve
upon the optimal solutions already found for the GHG and energy objectives. This was expected as GHG emissions
and energy were minimized by minimizing static head and having the trigger levels very close together. so no
additional benefit was achieved by filling the tank.

Off-peak [~ Upper trigger level =5.0 m
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A Peak |
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fZO 1 / \ { Reduced trigger level = 2.0 m
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Fig. 4. Daily tank level variation for the optimal cost solution with a reduced upper trigger level

VSP scheduling was found to reduce the cost and GHG emissions of pump operations compared to the trigger
levels solutions. An initial run of the scheduling optimization model gave a solution with a cost of 0.0637 $/m’ and
GHG emissions of 0.2185 kg CO»-eq/m’. This solution was able to fill the tank completely before the peak
electricity period and had slightly increased pumping over the afternoon period where GHG emissions factors were
lowest. Using a FSP with this model found a more expensive solution than for VSPs. with a cost of 0.0656 $/m>.
The FSP solution was not able to fill completely the tank before the peak period and therefore required more peak
pumping and had a higher energy cost.

Table 2. Cost optimal solutions using a peak/off-peak taniff and a flat taniff with scheduling

Tariff Cost GHGs(kg  Vol. Energy Energy Max tank  Peak Off-peak Peak Off-peak
($/m’°) COyeqmy’) (m®) (kWh) (KWh/m®) level (m) energy (%) energy (%)  cost($) cost($)

Peak/off-peak  0.06274 0.2185 6931 2529 0.3648 481 63.1 36.9 351 84

Flat 0.06375 0.2162 6919 2497 0.3608 281 73.6 264 325 116

When a flat tariff was applied to the scheduling problem. the optimal cost solution was slightly more expensive
than that found with the peak/off-peak tariff (Table 2). The optimal scheduling solution with a peak/off-peak tariff
was able to pump more in the off-peak period compared to the trigger levels and flat tariff solutions. While the flat
tariff solution had a lower energy use and reduced static head. the significant amount of off-peak pumping in the
peak/off-peak tariff solution had a greater effect on the cost. The cost of this scheduling solution was much less than
the trigger levels solutions presented previously. with the overall and peak period energy use reduced. The optimal
operating strategy for the one-pipe network was found using the multi-objective optimization with a carbon cost of
500 $/ton COx-eq. It cost 0.0626 $/m’. which is less than any other solution found using the three optimization
models and had GHG emissions of 0.2176 kg COz-eq/nr’. again less than any solution found using the trigger levels
models when the current South Australian energy scenario was used. This solution fulfilled the cost objective by
having the tank full at the start of the peak period (Fig. 5 (a)). It also satisfies the GHG objective by pumping more
in the afternoon (Fig. 5 (b)). coinciding with the low GHG emissions factor period due to the increased contribution
of solar photovoltaic energy. Scheduling was found to provide more flexible operation than trigger levels. as it was
able to cater to the variations in both cost and GHG parameters at the same time.
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Fig. 5. (a) Daily tank level variation and (b) daily pump flow variation for optimal one-pipe network operation

4. Conclusions

This research developed a GA model to optimize the pumping operation of WDSs for multiple objectives.
including cost. energy and GHG emissions. Three distinct optimization models were produced. each incorporating a
different operating regime: lower and upper trigger levels. an additional reduced upper trigger level and scheduling.
It was found that the use of scheduling improved both cost and GHG emission results compared to the two trigger
level regimes. VSP scheduling was more adaptable to varying cost and GHG parameters, and was able to cater to
both objectives at the same time. It was shown that GHG and energy objectives did not necessarily coincide when
the variation in energy source oufput was taken into account. The models developed in this research could be
applied to pump operation problems on any WDS. particularly through the use of the user-friendly Excel Interface.
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Abstract

As chimate change and population growth, among other factors. put pressure on traditional water supplies, alternative sources of
water are increasingly heing used to supplement demand. particularly tor non-potable applications. Stormwater from urban
catchments can be harvested and treated to supply irrigation demands of public green spaces such as parks, reserves and sporting
grounds. Operation of such systems often requires several pumping stages between multiple storage ponds, which can result in 2
significant amount of energy use and also inereases the complexity of the operations, In many water supply systems, demind rates
and patterns are determined by when consumers choose to use water and how much they use. thus the demands constrain the system
operation. For irrigation of public green spaces, however, the operators can prescribe when water should be used at each demand
pomnt, and thus the demand pattern is o choice rather than a constraint. This paper discusses how harvested stormwater systems
with multiple pumping stages can simulated as multiple “sub-systems’ m order to better understand the hydraulics and better
formulate the corresponding optimization problem. A case study site from Australia that utilizes harvested stormwater for non-
potable urigation demands is used to demonstrate the sumulation approach. Sumulating the case study m smaller “sub-systems” has
highlighted the need for better pump and tank sizing for the system, and has then informed the optimization problem formulation.
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1. Introduction

Genetic algorithms (GAs) have been used extensively to optimize the design and operation of water distribution
systems (WDSs) [1]. GAs were first applied to WDSs in 1994 to optimize the design of pipe networks [2] and then to
the optimization of WDS operations in the form of pump scheduling [3] and operational set points [4]. GAs, when
applied to WDS pump operation, have also shown the benefits of using variable speed pumps (VSPs) to reduce
pumping costs and greenhouse gas (GHG) emissions while complying with hydraulic constraints [5]. Multiple
objectives may be considered using GAs, and the trade-off between minimizing cost and minimizing GHG emissions
has been explored extensively, for example in [6]. GAs are often combined with hydraulic simulation software, such
as EPANET2, in order to determine the performance of selected WDS designs and operational strategies with regard
to the objectives. Recently. the capability of the EPANET2 Programmer’s Toolkit has been extended so that rule-
based controls can be optimized, greatly increasing the complexity and flexibility of operating rules that can be
considered in a GA optimization procedure [7].

Alternative sources of water, including harvested stormwater, are increasingly being used to supplement potable
demand, particularly for non-potable applications [8]. As such systems become more popular, simulation and
optimization methods should be adapted to allow consideration of alternative water sources. This introduces additional
complexity to the problem of simulation and optimization than has been previously considered for traditional water
systems [9]. Harvested stormwater systems often have multiple storage ponds, with pumps transferring water at each
stage: this requires significant energy use, and as the pumps may not operate at the same flow rate, can increase the
complexity of operations. These systems are also often combined with aquifer storage and recovery, which can also
contribute significantly to energy use due to high pumping heads when injecting into and extracting from aquifers.
Optimization of the pump operations of these system can therefore be used to provide significant savings in energy
costs. When used for irrigation applications, demand schedules may also be optimized to minimize pumping costs and
improve hydraulic performance. GAs have previously been applied to harvested stormwater systems, for example
[10], however not for the optimization of detailed hydraulic operations.

2. Case Study: Ridge Park Managed Aquifer Recharge System

The case study system, located in Adelaide, South Australia, collects stormwater from an urban creek to recharge
an aquifer, which then supplies water for irrigation of local reserves. The simulation and optimization of the system
can be split into two sections separated by the aquifer storage; winter operation (harvesting and aquifer injection) and
summer operation (aquifer extraction and irrigation). During winter operation, water is collected from Glen Osmond
Creek in the harvest pond, pumped to the bioretention basin, pumped through a small treatment plant (consisting of a
micro-filter and a UV disinfectant system) into the storage tank, and finally pumped into the aquifer (Fig. 1). During
summer, water is extracted from the aquifer, stored in the same tank used during winter, and then supplied to the
irrigation sites either by gravity or pumping (Fig. 2). Pump 3, shown in Fig. 1 and Fig. 2, is used for both injection
into the aquifer and irrigation and is a variable speed pump (VSP). In order to develop an accurate hydraulic model of
the system, it was first simulated as seven smaller ‘sub-systems’ in EPANET hydraulic simulation software:
Sub-System 1: Pump 1 from the harvest pond to bioretention basin
Sub-System 2: Pump 2 from the bioretention basin to storage tank
Sub-System 3: Pump 3 injection from the storage tank to the aquifer
Sub-System 4: Pumps 1, 2 and 3 from the harvest pond to aquifer injection
Sub-System 5: Bore pump extraction from the aquifer to the storage tank
Sub-System 6: Pump 3 irrigation from the storage tank to the pressure irrigation system
Sub-System 7: Irrigation from the storage tank to both the pressure and gravity systems

2.1. Simulation of non-typical components

The Ridge Park system includes several components that are not typically included in traditional water distribution
systems and therefore do not have a direct representation in EPANET, such as natural waterways, bioretention basins,
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small treatment plants and aquifer injection/extraction. Glen Osmond Creek was represented as a node connected to
the harvest pond by a frictionless pipe (short, large diameter and small roughness height), with the inflow series applied
as a demand pattern and a negative base demand. The harvest pond and bioretention basin were both simulated as
tanks, with a volume curve applied to the bioretention basin to take into account the porosity of the filter media.
Pressure sustaining valves were added before both the bioretention basin and storage tank to simulate the pipes
discharging over the top of these storages. A general purpose valve was used to represent the losses through the
treatment process, with a headloss curve applied to increase the headloss across the valve as the flow increased.

Harvest Pond Bioretention Basin /\ Storage Tank
1500 kL 196 kL g o 36 kL
I | ' | | ' Treatment Plant
’ F.: 13

T Pump | Pump 2 o

Pump 3
Glen Osmond

Creek
200 ML/year - Aquifer

Fig. 1. Ridge Park winter harvesting and injection schematic

Henry Codd w— = == Gravity System
Reserve
1.62 ML/, sssssnsss  Pressure System
Unley Oval 1 o )
16.5 ML/yr A Windsor st Ridge Palrk
O =4= =(Q Reserve 13.2 ML/yr
1 660 ML/yr Fraser Reserve ? Storage
f LS4 MLyT 4 Pump3  Tank
Fem Avé O'"""""""
Reserve b
2.20 ML/yr e == 4 —b Scammel Reserve [l e
2.42 ML/Ayr
Fullarton Park \ [ »
6.0MLyr ke O Bore Pum,
~ [ P

Ferguson Ave Reserve N d .
1.87 ML/yr S= o Aquifer -

Fig. 2. Ridge Park summer extraction and irrigation schematic

The most difficult component to represent in EPANET is the aquifer injection and extraction process. While the
aquifer itself can be easily represented as a reservoir, the variation in the aquifer head and headloss through the bore
with time are harder to model. When injecting, the standing water level of the aquifer increases by roughly 45 m over
| to 2 hours (at the maximum injection rate of 7 L/s). Once injection stops, the level will decrease approximately half
way back to the normal standing level over 1 to 2 hours, and then gradually decreases the rest of the way over 24
hours. When extracting, the standing water level drops down to just above the height of the pump (40 m below ground)
over seven days. Once extraction stops, it will recover most of the way within an hour, with the last 1 to 2 metres
recovered gradually over approximately 12 hours. The bore will start to clog during injection, and the rate that this
occurs will depend on the turbidity of the water. As the bore clogs, the pump speed will reduce, maintaining 45 m of
head while reducing the flow rate. Once the flow is reduced to around 4.5 L/s (which is half of the maximum injection
rate), a backwash will be initiated to unclog the bore. If a maximum turbidity of S NTU is applied (water that does not
meet this constraint is then recirculated), this backwashing should occur roughly once every week. In addition to this,
there will be some resistance during injection due to water having to pass by the bore pump (this head loss should be
in the order of 2-3 m). The aquifer is represented as a reservoir, with total head at 45 m above the standing water level
for injection, and a total head 5 m above the bore pump elevation for extraction. Just before the aquifer, a pressure
breaker valve (PBV) was added. to simulate both the minor loss due to the pump and losses due to clogging.

164



Appendix D: Final Published Version of WDSA 2016 ConferencePaper

(5]
(=4
wn

Lisa J. Blinco et al. / Procedia Engineering 186 (2017) 202 — 209

2.2. Important results from sub-systems analysis

The maximum permissible flow for aquifer injection (and therefore Pump 3 during winter operation) is 7 L/s, while
Pumps 1 and 2 operate at much higher flows. Analysis of the system curves (Fig. 3) shows that Pump | will operate
at around 22 L/s, and Pump 2 at around 26 L/s, and this was confirmed when Sub-Systems 1 and 2 were analyzed in
EPANET. This problem came about because the system was first designed with two injection bores, which would
have doubled the injection rate to 14 L/s. If there was a significant storage between Pumps 2 and 3, water could be
harvested when rainfall and runoff occurred, and stored before injecting during off-peak electricity times. The largest
storage in the system, however, is the harvest pond, which is at the start of the harvesting process, upstream of Pump
1. This means that the pumps turn on and off frequently, as it does not take long to fill and empty the storages between
the trigger levels (Fig. 4 shows an example for Pump 1). Also contributing to this is the fact that the storages are not
large, in particular the storage tank. The full volume of this tank is under-utilized; during commissioning pump
priming issues occurred when the tank level was below 60%, the cause of which was never properly resolved. The
current trigger levels in this tank. at 70% and 90% of the volume, restrict the operational range even further. Therefore
only 7.2 kL (out of 36 kL) is available; with Pump 2 operating at 26 L/s and Pump 3 at 7 L/s, it takes less than 10
minutes to fill this volume.

Efficiency
Efficiency

Flow (L/s) Flow (L/s)
e Pump Curve e Min System Curve e Pump Curve e Min System Curve
s Max System Curve s Efficiency Curve s Max System Curve s Efficiency Curve

(a) (b)
Fig. 3. Pump and system curves for (a) Pump 1 and (b) Pump 2

BB ([T

o
o

wn

)
]

Pump Flow (I/s)

w
]

0

S LSS

Q“Qw@u@b@%&Q Qb‘e S Q@@
R\ PP

Time (hr) v
Fig. 4. Example of Pump 1 operations over 24 hours in Sub-System |

Sub-System 3 was used to test VSP multipliers for Pump 3 and headloss values through the bore. Fig. 5 shows how
the EPANET model for Sub-System 3 was set up, with a PBV added upstream of the aquifer, allowing headloss due
to water being injected around the bore pump and clogging of the bore to be taken into account. The head of the
aquifer was specified at 45 m above its standing water level (which is the expected impressed level during injection).
The headloss caused by the bore pump is roughly 2-3 m, and therefore the minimum headloss applied over the PBV
is 2.5 m. The speed of the pump was adjusted to find a maximum operating flow of 7 L/s, this occurred with a speed
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of 0.78 providing 6.78 L/s. Assuming the turbidity of the water is kept below 5 NTU, it is expected the bore backwash
at a flow of 4.5 L/s will occur once a week (as discussed in Section 2.1). The headloss value of the PBV was altered
to produce a flow rate of around 4.5 L/s at the previously determined speed of 0.78. A flow rate of 4.94 L/s was
achieved with a PBV value of 4.3 m (an additional 1.8 m). The PBV value should therefore range from 2.5 m to 4.3
m over the course of one week (increase of 0.3 m each day). Head patterns can be applied to the aquifer for both
injection and extraction to consider the change in aquifer head over time (including seasonal variation).

125.25 m Storage Tank Aot
. 144.7m

Injection Main ._N_._- ]
and Bore

PBV

122.75m Pump 3

Fig. 5. Schematic of Sub-System 3 representation in EPANET

Poor efficiency of the pumps resulted in high electricity operating costs, for Pumps 2 and 3 in particular, when
analyzing Sub-Systems 1 to 4. Table | shows the flow, head, efficiency and cost of pumping at the operating points
determined from analysis of Sub-Systems 1 to 3, as well as the best efficiency for each pump. The power consumption
(P. in kW) of each pump is calculated based on Equation 1 (with specific weight y = 9810 N/m?, Q = flow [m%/s], H
= head [m] and n = efficiency). Assuming each pump is run for an hour (as an indicative example), the energy use (in
kWh) and volume pumped (in ML) can be calculated, which allows the calculation of the cost of pumping (in $/ML)
based on an average electricity price of 23.3 cents/kWh. Pump | operates close to its best efficiency point and at a
high flow rate, which results in a comparably small cost of pumping. The efficiency of Pump 2 is very low across all
flow rates, and therefore regardless of its operating point, it will have a low efficiency and a higher cost than Pump 1.
In addition, Pump 3 does not operate close to its best efficiency point, even with variable speed pumping (the data
shown in Table 1 is for a relative pump speed multiplier of 0.78). The low flow rates for this pump also contribute to

a much higher cost of pumping than Pumps 1 and 2. l
(1)

o _vod
1000 =17
Table 1. Operating point, efficiency and cost data for Pumps 1, 2 and 3 for | hour of operation only
Flow (L/s) Head (m) Efficiency (%) Efficiencymas (%) Cost ($/ML)
Pump1 229 6.55 54.4 55.0 7.63
Pump 2 26.0 8.98 215 33.9 26.5
Pump 3 —minimum head loss 6.78 45.4 56.7 718 50.8
Pump 3 —maximum head loss 4.94 46.7 45.9 718 64.5

3. Optimization Problem Formulation

Both rule-based controls and demand scheduling will be optimized for this case study. A new EPANET
programmer’s toolkit. ETTAR [7], will be incorporated to allow rule-based controls to be considered. An example of
rule-based controls in EPANET is shown below, combining trigger levels and scheduling. These rules require the
pump to be off during the peak electricity tariff period (7am-9pm), and allows the pump to operate during the off-
peak period if there is water available in an upstream tank. Using ETTAR, any part of these rules can be optimized:
the logical operator (if, and, or), the object (e.g. system, tank, pump), the variable (e.g. clocktime, level), the relational
operator (e.g. greater than, lower than), the status (open, closed) or the value of the variable. For more details on how
these rules can be formulated as decision variables in an optimization problem, see [7].
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RULE 1 RULE 2
IF SYSTEM CLOCKTIME >=7 AM [F SYSTEM CLOCKTIME <7 AM
AND SYSTEM CLOCKTIME < 9 PM OR SYSTEM CLOCKTIME >= 9PM
THEN PUMP 1 STATUS IS CLOSED AND TANK 1 LEVEL ABOVE 1.0

THEN PUMP 1 STATUS IS OPEN

The demand scheduling decision variables include the demand start day and demand start time, with other irrigation
scheduling variables to be specified in the optimization input file (Table 2). Values in the choice table for the potential
start days should be integers, with 0 being the first day of the EPANET simulation. For example, if the choice table
held values of 1 and 2, and the EPANET simulation started on Sunday, this would mean the first irrigation event could
occur on either Monday or Tuesday. With a gap of 1 day, and number of events of 2, this means that irrigation would
either occur on Monday and Wednesday, or Tuesday and Thursday. Values in the choice table for the potential start
time should be in decimal hours, for example, 21.00, 21.50, 22.00, 22.50 (9pm, 9:30pm, 10pm, 10:30pm), and so on.
An example decision variable string for a system with two pump/tank combinations and two irrigation demands to
optimize is shown in Fig. 6 (not related to the Ridge Park Case Study previously discussed), with respect to the
example choice tables shown in Table 3. The ‘0’ in the first gene for each pump/tank combination shows that a lower
trigger level value of 0.5 m has been selected (from Choice Table 1 in Table 3). For the second gene for the pump/tank
combinations. the “2” and the ‘3’ would represent values of 1.5 m and 2.0 m respectively for the upper trigger levels.
For the demand genes. the *0’ for the first demand start day represents the first irrigation day being Monday. and the
‘1" for the second demand start day being Tuesday (from Choice Table 2 in Table 3). The ‘0” for the first demand start
time represents the earliest possible start time of 21.00 (9pm). while the ‘3" for the second demand start time would
be 22.50 (10:30pm) (from Choice Table 3 in Table 3).

Table 2. Information needed to specify demand scheduling decision variables in optimization input file

Parameter Description

Pattern Index The EPANET index of the demand pattern that is to be changed

Duration The duration of the irrigation on each day that irrigation occurs (decimal hours)

Gap The gap between irrigation days (for example, for irrigation every second day, the gap would be 1)
Number of Days The number of days to irrigate per week

Day Choice Table The choice table for the day of the week that irrigation starts on

Time Choice Table The choice table for the time of day that irrigation starts

Pump/Tank 1 Pump/Tank 2 Demand | Demand 2
I T | 1
[el=]  Pel=]| [sio] fu]s]
‘ L} Upper Trigger Level l-> Demand Start Time
Lower Trigger Demand Start Day
Level

Fig. 6. Example string for optimizing trigger levels and irrigation schedules (with respect to choices in Table 3)

Table 3. Example choice tables for optimizing trigger level and irrigation schedule decision variables in Fig. 6

Integer Value  Choice Table 1 Choice Table 2 Choice Table 3
Trigger Level (m water depth in tank) Demand Start Day Demand Start Time (hr)
0 0.5 Monday 21.00
1 1.0 Tuesday 21.50
2 1.5 Wednesday 22.00
3 2.0 Thursday 22.50
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3.1. Decision variables for the Ridge Park Case Study

There are eight trigger level decision variables for the winter operations of the system as shown in Table 4. The
summer operations of the system has two trigger level decision variables and eleven irrigation demand decision
variables as shown in Table 5. Pump 3 does not have any associated decision variables relating to the aquifer in the
harvest system as it is run based on pressure at the injection point. It is also run based on a set pressure (that cannot
be changed) for the demands to Ridge Park and Fraser Reserve and therefore does not have associated decision
variables for the irrigation system. The gap between irrigation days for all reserves is 1 (irrigate every second day).

Table 4. Winter (harvest and injection system) operational decision variables

Decision Variable Pump Tank/Storage Trigger Level Type Choices

1 1 Harvest Pond Lower/Off 0.1-2.0m, 0.1m
2 1 Harvest Pond Upper/On increment

3 1 Bioretention Basin Upper/Off 0.1-1.3m, 0.1m
4 2 Bioretention Basin Lower/Off increment

5 2 Bioretention Basin Upper/On

6 2 Storage Tank Upper/Off 0.1-2.5m, 0.1m
7 3 Storage Tank Lower/Off increment

8 3 Storage Tank Upper/On

Table 5. Summer (extraction and irrigation system) operational decision variables

Decision Variable Pump Tank/Storage Trigger Level Type Choices

1 Bore Storage Tank Lower/On 0.1-2.5m, 0.1m

2 Bore Storage Tank Upper/Off increment

Decision Variable Reserve Duration (hrs) Number of Days Choices

3 Ridge Park (Stations 1-10) 8.33 2 Start Day: Monday or

4 Ridge Park (Stations 11-24) 11.67 2 Tuesday

5 Fraser Reserve 5.83 2 Startiime: Spme
11:30pm, 30min

6 Ferguson Ave Reserve 5.00 2 increment

74 Scammell Reserve 6.00 2

8 Windsor St Linear Reserve 8.00 2

9 Fullarton Park (Stations 5&12) 1.66 2

10 Fullarton Park (Stations 1-4,6-8)  6.66 2

11 Henry Codd Reserve 8.00 2

12 Fern Ave Reserve 3.33 2

13 Unley Oval 11.33 3 Start Day: Sunday

Start Time: as above

Several design decision variables are also to be considered. As identified in Section 2.2, the operation of the system
has issues with regard to pump sizing and efficiency, as well as frequent pump switches. Sizing of the pumps and the
storage tank will therefore also be considered in the optimization. Several pump curves that will operate around 7 L/s
at the required head will be specified as possible choices for Pumps 1 and 2. With these pumps operating at a lower
speed, the flow through the system will be more consistent, and hence they will not need to turn on and off as
frequently. There will also be a choice to either keep the storage tank at its current size, or to double its size. This,
along with considering trigger levels that utilize the full height of the tank (assuming the priming issues are resolved),
should allow the pumps to turn on and off less frequently. Sizing of Pump 3 will also be considered in the optimization.
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As it was originally designed to supply two bores, the best efficiency occurs closer to 14 L/s than 7 L/s. Both VSPs
and fixed speed pumps (FSPs) will be considered for Pump 3, with a lower flow range and best efficiency point closer
to the desired operating points. As the head and flow requirements for injection and irrigation are similar, a FSP may
be suitable for Pump 3. Sizing of the bore pump will not be considered, as while the head range is higher than needed
for extraction, this pump is also used to backwash the bore when injecting which may have a significantly higher head
requirement. A PSV is used downstream of the bore so that the bore pump runs at a reasonable operating point when
extracting. This PSV setting may be considered as a decision variable for the optimization. The primary objective for
this case study is to minimize the cost of pump energy use. It is also desirable to maximize the volume of water
harvested, which can either be considered as a second objective in a multi-objective optimization, or combined with
the cost objective by minimizing the pump energy cost per volume harvested (that is, minimize $/ML).

4. Conclusions

Alternative water source systems have increased complexity for hydraulic simulation and optimization of pump
operations compared to traditional WDSs. In order to obtain meaningful optimization results, the hydraulic simulation
model of a system should be as accurate as possible. Splitting the system into multiple ‘sub-systems’ and simulating
these individually can provide a better understanding of how the system works and help to formulate the optimization
problem. Unforeseen changes to the system, for example, halving the number of bores and therefore the injection rate,
or problems during commissioning, such as storage levels needing to be kept within restricted ranges, affect the
operation of the system and can mean that design decision variables should be considered as well as operational
decision variables. For the Ridge Park case study presented. and for other similar systems, irrigation demands can be
optimized as decision variables, rather than being a constraint or unknown variable in the problem.
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E1: Harvesting & Injection System

Harvest Pond Bioretention Basin Treatment/Storage Bore 1

Glen Osmond 8 , 1 1 2 4 S 2 4 5 6

Creek

Figure E.1: Schematic of the Harvest/Injection System

Pump 3 - required injection

pressure 450 kPa
|_ Approximate standing
‘artesian’ water level
Storage
tank approx. 5m
‘ \ Bore pit

40 m

@ Bore pump

Figure E.2: Schematic of the Aquifer Injection and Extraction System

Table E.1: Hydraulic Simulation Model Node Data for the Harvest/Injection System

Node ID Elevation (m) Height (m) Diameter (m) Capacity (kL)
Junction 2 117.82 - - -
Junction 4 120.68 - - -
Junction 6 122.75 - - -
Junction 8 116 - - -
Reservoir 7 (Aquifer) 170.25 - - -
Tank 1 (Harvest Pond) 115 2.0 30.9 1500
Tank 3 (Bioretention Basin) 118.3 1.3 18.88 364
Tank 5 (Storage Tank) 122.75 2.5 4.28 36

Table E.2: Hydraulic Simulation Model Pipe Data for the Harvest/Injection System

Pipe ID Length (m) Diameter (mm) Roughness (mm) Minor Loss Coefficient
4 101 110 0.0015 -
5 225 110 0.0015 20
6 315 90 0.0015 -
7 1 1000 0.000001 -

*Pipe 7 is a short, large diameter pipe with negligible roughness such that is essentially frictionless.
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Table E.3: Pump 1 - Pump and 20 1.0
Efficiency Curves
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Table E.4: Pump 2 - Pump and

Efficiency Curves
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Figure E.3: Pump 1 - Pump, System and Efficiency Curves
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Table E.5: Pump 3 - Pump and

Efficiency Curves
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Figure E.4: Pump 2 - Pump, System and Efficiency Curves

Pump Curve Max System Curve*
— — =Min System Curve* Efficiency Curve
Figure E.5: Pump 3 - Pump, System and Efficiency Curves
*Pump 3 is operated to achieve 45 m of head on the discharge side of the pump,
therefore the system head ranges between 42.5 m and 45 m depending on the water
level in the storage tank, with no friction losses considered.
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Table E.6: Pump Data at Expected Operating Points (for Average System Curve)

Efficiency (%)

Pump Fig. 11D V'SP Speed Flow (L/s)
Pump 1 1 N/A 18.8
Pump 2 2 N/A 22.7
Pump 3* 3 0.78 7.0
*Pump 3 is limited to 7 L/s for aquifer injection and is therefore operated at a reduced speed (see Figure E.Figure E.0)
50 = - v 1.0
| T~
E 3 ' 0.6
o |
£ |
20 | 04
|
10 | 0.2
|
0 I 0.0
0 5 10
Flow (L/s)
Pump Curve Efficiency Curve = — -Q=7L/s

Efficiency

Figure E.6: Pump 3 Reduced Speed (0.78) Pump and Efficiency Curves
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Figure E.7: Schematic of the Extraction/Irrigation System
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Appendix E: Ridge Park Managed Aquifer Recharge System Data

Table E.7: Hydraulic Simulation Model Node Data for the Extraction/Irrigation System

Node ID Elevation (m) Base Demand (L/s)
Junction 2 121.948 -
Junction 3 122.055 -
Junction 4 122.055 -
Junction 5 125.33 -
Junction 6 (Ridge Park Stations 1-10) 125.33 3.53
Junction 7 (Ridge Park Stations 11-24) 125.33 3.53
Junction 8 116.496 -
Junction 9 110.992 -
Junction 10 110.564 -
Junction 11 109.799 -
Junction 12 108.125 -
Junction 13 106.67 -
Junction 14 104.788 -
Junction 15 101.364 -
Junction 16 (Ferguson Ave Reserve) 97.846 2.00
Junction 17 95.563 -
Junction 18 92.258 -
Junction 19 89.209 -
Junction 20 85.612 -
Junction 21 (Scammell Reserve) 83.773 2.15
Junction 22 81.648 -
Junction 23 (Fullarton Park Stations 5&12) 70.045 3.85
Junction 24 (Fullarton Park Stations 1-8) 74.964 3.85
Junction 25 57.173 -
Junction 26 (Fern Ave Reserve) 56.228 3.53
Junction 27 (Windsor St Linear Reserve) 53.096 2.2
Junction 28 51.446 -
Junction 29 (Henry Codd Reserve) 51.273 1.1
Junction 30 (Unley Oval Boundary) 47.913 5.57
Junction 31 (Unley Oval) 47.8 5.57
Junction 33 119.69 -
Junction 34 121.948 -
Junction 35 116.496 -
Junction 36 110.992 -
Junction 37 110.564 -
Junction 38 109.799 -
Junction 39 (Fraser Reserve) 108.125 1.41
Reservoir 32 (Aquifer) 82.75 -
Tank 1 (Storage Tank)* 122.75 -

*Tank 1 dimensions are as shown in Table E.1 (Node ID 5).
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Appendix E: Ridge Park Managed Aquifer Recharge System Data

Table E.8: Hydraulic Simulation Model Pipe Data for the Extraction/Irrigation System

Pipe ID Length (m) Diameter (mm) Roughness (mm) Minor Loss Coefficient
2 5.5 180 0.0015 -
3 25 90 0.0015 -
4 124.5 90 0.0015 -
5 1 1000 0.0015 -
6 1 1000 0.0015 -
7 775 180 0.0015 -
8 270 180 0.0015 -
9 64.652 180 0.0015 -
10 53.3 180 0.0015 -
1 51.332 180 0.0015 -
12 44.724 180 0.0015 -
13 91.069 180 0.0015 -
14 92.725 180 0.0015 -
15 137.979 180 0.0015 -
16 65.853 180 0.0015 -
17 103.598 180 0.0015 -
18 109.702 180 0.0015 -
19 95 180 0.0015 -
20 108.829 180 0.0015 -
21 76.827 180 0.0015 -
22 276.094 180 0.0015 -
23 188.475 180 0.0015 -
24 624.775 180 0.0015 -
25 115.398 180 0.0015 -
26 559.602 180 0.0015 -
27 375 180 0.0015 -
28 100 90 0.0015 -
29 70.206 180 0.0015 -
30 60 180 0.0015 -
32 31.5 90 0.0015 60
33 5.5 90 0.0015 -
34 775 90 0.0015 -
35 270 90 0.0015 -
36 64.652 90 0.0015 -
37 53.3 90 0.0015 -
38 51.332 90 0.0015 -
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Appendix E: Ridge Park Managed Aquifer Recharge System Data

Table E.9: Pump 3 - Pump and 100 1.0
Efficiency Curves
0.8
Flow (L/s) Head (m) Eff. (%) 80 T——

0 80.0 - - ~_ 06 3
28 785 237 E 80 02
5.6 75 422 3 5
8.3 75.0 55.6 LT (O o 2 s e s —— 0.4 &
11.1 72.0 63.9 -
13.9 67.5 69.3 20 0.2
16.7 62.0 71.0
o4 B0 98 0 00
22.2 47.0 66.0 0 10 Flow (L/s) 20 30
23.6 42.5 62.4 Pump Curve Max System Curve

Table E.10: Bore Pump - Pump

— = = Min System Curve

and Efficiency Curves

Flow (L/s) Head (m) Eff. (%)

0
2.78
5.56
8.33
11.11
13.89
16.67
19.42
19.44
21.67

99.0
97.0
92.0
83.0
72.0
63.0
53.0
40.4
40.0
26.0

100 \
X 80
20.3 \\
36.3 —
48.4 E 80
56.0 B -7
. s >
61.2 T 40 )\
60.9 20 _- el
54.5 -
54.4 0 F=-" -
40.9
0 0 Flow (L/s) 20 30
Pump Curve — — = System Curve

Efficiency Curve
Figure E.8: Pump 3 — Pump, System and Efficiency Curves

1.0

0.8

0.6

0.4

Efficiency

0.2

0.0

Figure E.9: Bore Pump — Pump, System and Efficiency Curves

Table E.11: Pump Data at Expected Operating Points (at Average System Curve / Demand Scenario)

Pump Fig. 71D VSP Speed Flow (L/s) Head (m) Efficiency (%)
Pump 3* 1 0.77 4.86 45.6 458
Bore Pump 31 N/A 20.1 35.7 50.5

*Pump 3 supplies the irrigation demands directly so will operate at the flow required by the demands, a reduced speed is used
to reduce pumping head and therefore reduced energy use.

50 E———— 1.0
40 : \\\ 0.8
E30 : — \\\ 068
T 20 (. 0.4

|
10 | 0.2
|
0 ! 0.0
0 5 10 15 20
Pump Curve Flow (L/s) Efficiency Curve

- = -Q=4.15L/s Q=5.56L/s
Figure E.10: Pump 3 Reduced Speed (0.77) Pump and Efficiency Curves
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Appendix E: Ridge Park Managed Aquifer Recharge System Data

E3: Other Data

R : e : l Beaumont Bowls Club

Ridge Park 2

- g tisnbden v ‘ Park Ave

Figure E.11: Map of Locations of Rainfall and Streamflow Measuring Points for Ridge Park, located in Myrtle Bank, a
suburb of Adelaide, South Australia

Table E.12: Summary of Rainfall and Streamflow Data Available

Location Organisation Start Date End Date Data Type
Ridge Park, Myrtle Bank, Bureau of Meteorology, 26/03/98 15/01/01 Sub-daily Rainfall
South Australia Australia
Ridge Park, Myrtle Bank, Bureau of Meteorology, 29/10/06 11115 Sub-daily Rainfall
South Australia Australia
Ridge Park, Myrtle Bank, Bureau of Meteorology, 20/10/06 02/01/12 Watercourse level
South Australia Australia
Dept. of Environ, Water and
Park Ave, Urrbrae, Soulh  \tyral  Resour, South 09/08/98 06007101  Streamflow
Australia .
Australia
Beaumont Bowls Club, Linden Bureau of  Meteorology, . .
Bark, South Australia Australia 1883 Present Daily Rainfall
Table E.13: Electricity Tariff Data
Tariff Times Rate (c/kWh)
Peak 7am-9pm Weekdays 29.12
Off-peak 9pm-7am Weekdays, Weekends 15.07
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Appendix F: Orange Integrated Supply System Data

F1: Surface Water

Spring Creek Catchment

1

Spring Creek Dam
Suma Park

l / Catchment
Suma Park Dam -

Figure F.1: Schematic of the Natural Catchment

Table F.1: Catchment Data for the Surface Water System

Catchment Area (ha) Inflow
Spring Creek Catchment 65.57 MUSIC Generated Streamflow — see Section 5
Suma Park Catchment 112.92 MUSIC Generated Streamflow — see Section 5

Table F.2: Storage Data for the Surface Water System

Storage Elevation (m) Capacity (ML) Surface Area (ha)
Spring Creek Dam ~900 4449 97.5
Suma Park Dam 861.2 18 970 159.5

Table F.3: Spring Creek
Volume Curve

Depth  Capacity ~ Surface

(m) (ML) Area (ha) 5000 100

0 6.950 0

0.5 23.30 2.01

1.0 40.19 4.02 4000 80

15 80.07 6.03 . _
2.0 122.1 8.04 < &
25 1977 10.05 <. 3000 60 g
3.0 275.4 12.06 'S b
35 388.5 14.08 & 8
40 503.7 21.73 © 2000 40 s

45 651.7 28.01
5.0 802.0 33.53

55 987.0 38.56 1000 20
6.0 1175 38.56

6.5 1407 47.61

7.0 1642 51.76 0 0
75 1934 55792 0.0 2.0 4.0 6.0 8.0 10.0 12.0
8.0 2230 63.18 Water Depth (m)

8.5 2592 70.15 —\/olume Surface Area

9.0 2957 73.48

95 3396 82.98 Figure F.2: Spring Creek Volume Curve

10.0 3839 88.97

10.6 4449 97.52
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Appendix F: Orange Integrated Supply System Data

Table F.4: Suma Park Volume

Curve

Depth  Capacity ~ Surface
(m) (ML) Area (ha)
0.19 2500 49.15
1.19 3025 51.63
2.19 3590 55.15
3.19 4193 59.68
419 4842 65.21
5.19 5533 71.53
6.19 6270 78.70
7.19 7072 85.37
8.19 7938 96.19
9.19 8866 105.0
10.19 9857 114.7
11.19 10927 120.9
12.19 12084 134.5
13.19 13332 148.0
14.19 14667 158.3
15.19 16079 160.3
16.00 17293 165.0
17.00 18970 -

F2: Stormwater

Blackmans ! 7 ' o=

20000
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12000
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Capacity (ML)
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&
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Water Depth (m)
—\/olume Surface Area
Figure F.3: Suma Park Volume Curve
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Figure F.4: Schematic of the Stormwater System



Appendix F: Orange Integrated Supply System Data

Table F.5: Hydraulic Simulation Model Storage Data for the Stormwater System

Node ID Elevation (m) Height (m) Tank Diameter (m) Capacity (kL)
2 (Blackmans Pond) 832.0 1.0 61.80 3000

7 (Burrendong Wetland) 826.3 1.0 141.8 15800

10 (Somerset Wetland) 821.1 1.0 139.6 15300

13 (Escort Wetland) 921.0 1.0 159.6 20 000

14 (Cargo Wetland) 921.0 1.0 2111 35000
15 (Mitchell Wetland) 811.3 1.0 50.00 2000

20 (Holding Pond) 850.5 75 199.7 230000
22 (Batch Ponds) 854.8 4.6 97.01 34000
26 (Suma Park Dam) 861.2 - - -

Table F.6: Hydraulic Simulation Model Pipe Data for the Stormwater System

Pipe ID Length (m) Diameter (mm) Roughness Height (mm)
8 385 600 0.25
9 279 600 0.25
10 196 600 0.25
12 150 155.6 0.003
14 70 105.2 0.003
18 200 200 0.003
19 200 300 0.25
20 820 300 0.25
21 4887 300 0.25
22 110 301.6 0.003
23 330 3171 0.25
24 2650 250 0.25
25 556 375 0.25

Note: Pipes 7, 11, 13, 15, 16 and 17 are short, large diameter pipes such that they are essentially frictionless (Length = 1.0
m, Diameter = 1000 mm, Roughness = 0.003 mm).

Table F.7: Pump S1 - Pump and 70 1
Efficiency Curves T —
g L
Flow (L/s) Head (m) Eff. (% = 2
(Us) m i) g ===sss o0 5
0 65.0 < ~—_ ©
3] =
50 61.0 432 2 3 B=SSS o4 @
100 56.3 61.8 20 I~
150 50.0 69.3 L 0.2
200 425 70.1 10
250 35.8 68.4 0 0
300 28.3 61.4 0 50 100 150 200 250 300 350
332 200 46.5 Flow (L/s) .
2 in parallel; single curve given ——Pump Curve Efficiency Curve
Figure F.5: Pump S1 - Pump and Efficiency Curves
Table F.8: Pump S2 - Pump and
. 50 1
Efficiency Curves
40 0.8
Flow (L/s) Head (m) Eff. (%) — \\ =
0 384 . £ ~ 06 3
20 %0 505 g T 2
40 29.0 68.1 T 20 ™~ 04 W
60 22.5 75.3
80 10.0 46.2 10 0.2
3 in parallel; single curve given 0 0
0 20 40 60 80 100
Flow (L/s)
——Pump Curve Efficiency Curve

Figure F.6: Pump S2 — Pump and Efficiency Curves
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Appendix F: Orange Integrated Supply System Data

Table F.9: Pump S3 - Pump and

Efficiency Curves

Flow (LUis) Head (m) Eff. (%)
0 93.1 -
20 87.7 50.0
40 76.2 70.0
60 60.0 774
79 25.0 46.0

3 in parallel; single curve given

Table F.10: Pump S$4 - Pump
and Efficiency Curves

Flow (L/s) Head (m) Eff. (%)

0 83.8 -
10 84.5 49.7
15 83.7 61.7
20 82.2 69.7
25 79.2 74.5
30 76.1 771
35 72.0 78.0
40 67.0 77.3

44,93 61.0 74.0

2 in parallel; single curve given

Table F.11: Pump S5 - Pump
and Efficiency Curves

Flow (Lis) Head (m) Eff. (%)
0 68.9 -
1.97 69.4 30.0
2.96 69.1 40.0
3.94 69.0 47.1
4.93 68.1 53.2
5.92 67.2 58.4
6.90 65.9 61.0
7.89 64.3 63.4
8.88 62.4 65.0
9.86 60.4 65.0
10.85 58.1 65.0
12.23 54.3 65.0
13.61 50.5 63.0

2 in parallel; single curve given

Table F.12: Pump S6 - Pump
and Efficiency Curves

Flow (L/s) Head (m) Eff. (%)
0 98 -
1.67 97 225
3.33 93 40.0
5.0 89 52.5
6.67 83 62.5
8.33 76 69.0
10.0 70 725
11.67 64 75.0
13.33 57 75.0
15.00 47 73.0
16.67 38 70.0

2 in parallel; single curve given
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Figure F.7: Pump S3 - Pump and Efficiency Curves
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Figure F.8: Pump S4 - Pump and Efficiency Curves
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Figure F.9: Pump S5 - Pump and Efficiency Curves
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Figure F.10: Pump S6 - Pump and Efficiency Curves
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Appendix F: Orange Integrated Supply System Data

Table F.13: Pump Data at Target Operating Points for the Stormwater System

Pump ID Total Flow (L/s) No. of Parallel Pumps  Flow per Pump (L/s) Head (m) Efficiency (%)

1 450 2 225 39.1 69.2
2 150 3 50 258 .7
3 150 3 50 68.1 73.6
4 50 2 25 79.2 74.5
5 20 2 10 60.1 65.0
6 20 2 10 70.0 72.5

F3: Imported Water — Macquarie Pipeline

Suma Park Dam
13
Balancing Storage 2

10
11 113 12

Balancing Storage 1 Pump M3

Macquarie

River 7/

1,253 1 44 5
Pump M1

Figure F.11: Schematic Model of the Macquarie Pipeline System

Table F.14: Hydraulic Simulation Model Node Data for the Macquarie Pipeline System

Node ID Elevation (m) Height (m) Diameter (m) Capacity (kL)
1 (Macquarie River) 370.32 - - -
2 370.32 - -

3 370.32 - -

4 370.32 - .

5 370.32 - -

6 510.0 - - -
7 (Balancing Storage 1) 649.5 5.09 5.0 100
8 646.0 - - -
9 646.0 - - -
10 (Balancing Storage 2) 770.76 5.09 5.0 100
11 768.0 - - -
12 768.0 - -

13 (Suma Park Dam) 861.2 - -

Table F.15: Hydraulic Simulation Model Pipe Data for Macquarie Pipeline System

Pipe ID Length (m) Diameter (mm) Roughness Height (mm) Minor Loss Coefficient (k)

4 3 350 0.15 2.90
5 17 550 0.15 1.20
6 5 225 0.15 1.25
7 2622 421 0.15 16.79
8 4541 401 0.15 20.53
9 20 225 0.15 2.7

10 11787 401 0.15 36.56
11 20 225 0.15 2.7

12 19400 401 0.15 49.64
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Table F.16: Pump M1 — Pump

and Efficiency Curves 500 1
450
Flow (L/s) Head (m) Eff. (%) 400 —_— — L 08
0 404 - 350 e —
20 388 367 £ 300 === 06 3
40 379 62.5 > 250 N S
60 363 75.0 ;:-‘3 200 \ 04 %—’
80 329 80.0 \ :
90 304 81.0 150
100 279 80.0 100 0.2
120 213 73.3 50
136 150 61.7 0 0
2 in parallel; single curve given 0 50 Flow (LIS 100 150
W
Table F.17: Pumps M2 and M3 - ——Pump Curve Efficiency Curve
Pump and Efficiency Curves Figure F.12: Pump M1 — Pump and Efficiency Curves
Flow (L/s) Head (m) Eff. (%)
0 254 - 300 1
20 243 30.4
40 235 536 250 Pe— 08
60 222 67.9 200 \\
80 204 78.6 = T~ | -
93 189 810 = N 06 g
100 180 78.9 @ \ 2
120 143 714 100 - 04w
135 109 62.5
2 in parallel; single curve given 50 - 0.2
0 0
0 50 100 150
Flow (L/s)
——Pump Curve Efficiency Curve

Figure F.13: Pumps M2 and M3 - Pump and Efficiency Curves

Table F.18: Pump Data at Target Operating Points for the Macquarie Pipeline System

Pump ID Total Flow (L/s) No. of Parallel Pumps Flow per Pump (L/s) Head (m) Efficiency (%)

1 185 2 92.5 297.9 80.6
2 185 2 92.5 189.4 80.1
3 185 2 92.5 189.4 80.1

F4: Groundwater

Shearing Shed Bore

Pump G1B*

Pump G1T*

Showground Bore Clifton Grove Bore 5

3 3 6 6 9 1 12 10 8 5 '5 2 2
' ' ' 10 ° 11 - 9 ./ 8
Pump G3B  Pump G3T Suma Park Dam Pump G2T  Pump G2B

*B = Bore Pump, T = Transfer Pump
Figure F.14: Schematic of the Groundwater System
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Table F.19: Aquifer Data for the Groundwater System

Node ID Capacity (ML/year)

1 (Shearing Shed Aquifer) 182 (combined with node 2)
2 (Clifton Grove Aquifer) 182 (combined with node 1)
3 (Showground Aquifer) 280

Table F.20: Hydraulic Simulation Model Storage Data for the Groundwater System

Node ID Elevation (m) Height (m) Diameter (m)
4 (Shearing Shed Tank) 855 2.2 291.3

5 (Clifton Grove Tank) 825 2.2 1471

6 (Showground Tank) 849 22 403.3

10 (Suma Park Dam) 861.2 - -

Table F.21: Hydraulic Simulation Model Pipe Data for Groundwater System

Pipe ID Length (m) Diameter (mm) Roughness Height (mm)
7 3000 101 0.003
8 1000 101 0.003
9 1000 101 0.003
10 1700 101 0.003
11 2400 250 0.25

Each groundwater pumping station has two pumps; a bore pump (designated B) and a transfer pump
(designated T), with a storage tank in between.

Table F.22: Pump G1B - Pump 140
and Efficiency Curves

120
Flow (L/s) Head (m) Eff. (%)

0 122 - 100
1.11 120 15.0 E 80
2.78 117 35.0 °
5.56 108.5 55.0 £ 60
8.33 99.0 68.0 40
11.1 88.5 74.0
12.8 77.0 76.0 20
13.9 70.0 75.0 0
16.7 47.0 65.0

Table F.23: Pump G1T - Pump
and Efficiency Curves
Flow (L/s) Head (m) Eff. (%)

0 715 - 80

4 67.5 55.0 70

5 65.5 62.0 60

6 64.0 68.0 _

7 62.0 710 E %0

8 58.5 73.0 8 40

9 55.0 735 <

10 50.5 72.0
11.2 455 69.0 20

10
0

0 2

—

0 5 10 15 20

Flow (L/s)
——Pump Curve Efficiency Curve

Figure F.15: Pump G1B - Pump and Efficiency Curves
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= Pump Curve Efficiency Curve
Figure F.16: Pump G1T - Pump and Efficiency Curves
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Table F.24: Pump G2B

Tabulated Pump and Efficiency 80
Curves \
60
Flow (L/s) Head (m) Eff. (%) =
0 78 : £ \
0.56 76.5 245 S 40
1.11 74.0 40.0 -
1.67 72.0 52.5
2.22 68.0 60.0 20
2.78 64.0 65.0
3.33 60.0 69.0
3.89 54.0 71.0 0
4.44 470 700 0.0 10 2.0 3.0 4.0 5.0 6.0
5.00 375 66.0 Flow (Lfs)
= Pump Curve Efficiency Curve
Table F.25: Pump G2T Tabulated Figure F.17: Pump G2B - Pump and Efficiency Curves
Pump and Efficiency Curves
Flow (L/s) Head (m) Eff. (%)
0 43.4 - 50
2.0 41.0 52.0
2.4 39.7 58.0
28 390 602 40 \
3.2 38.0 65.0 .
3.6 37.0 68.0 £ 30
40 365 700 8
42 34.2 70.5 T 2
4.8 325 70.0
5.2 305 69.0 10
5.6 27.8 67.0
6.0 255 63.0 0
g:g %g ggg 0.0 2.0 4.0 6.0 8.0
Flow (L/s)
Table F.26: Pump G3B ——Pump Curve Efficiency Curve
Tabulated Pump and Efficiency Figure F.18: Pump G2T - Pump and Efficiency Curves
Curves
Flow (L/s) Head (m) Eff. (%)
0 118 - 120
6 115 62.0
7 114 680 100 \
8 112 71.0
9 110 74.0 — 80
10 105 76.0 £
11 101 77.6 8 60
12 96 77.6 T
13 89 76.0 40
14 83 74.0
15 75 70.0 20
16 67 64.0
17 57 58.0 0
0 5 10 15 20
Flow (L/s)

= Pump Curve

Efficiency Curve

Figure F.19: Pump G3B - Pump and Efficiency Curves
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Table F.27: Pump G3T - Pump 60
and Efficiency Curves

50 0.8
Flow (L/s) Head (m) Eff. (%) :
2.78 52 30.0 E 06 S
5.56 48 55.0 § 30 2
8.33 42 68.0 T 04 ™
11.1 37 75.0 20 '
13.9 30 75.0
16.7 20 60.0 10 02
0 0
0 5 10 15 20
Flow (L/s)
= Pump Curve Efficiency Curve
Figure F.20: Pump G3T - Pump and Efficiency Curves
Table F.28: Pump Data at Target Operating Points for the Groundwater System
Pump ID Flow (L/s) Head (m) Efficiency (%)
1(G1B) 10 92.7 716
4 (G1T) 10 50.5 72.0
2 (G2B) 2.5 66.0 62.5
5(G2T) 2.5 39.5 59.0
3(G3B) 12.5 92.5 76.8
6 (G3T) 12.5 33.5 75.0
F5: Other Data
Table F.29: Summary of Rainfall, Runoff and Demand Data Available
Location Organisation Start Date End Date Data Type
Orange, New Orange City Council, New Daily rainfall on Spring Creek and
South Wales South Wales, Australia 17171890 311212007 Suma Park
. . MUSIC generated daily runoff for
Orange, ~ New  Orange City Councl, New 4,19, 3111202007 stormwater and surface water
South Wales South Wales, Australia
catchments
Orange, New Orange City Council, New Predicted daily demand from Suma
South Wales South Wales Australia 17171890 311212007 Park

Table F.30: Electricity Tariff Data — Stormwater and Groundwater Systems

Tariff Times Energy Cost (c/kWh)

Peak 7am - 9am, 5pm — 8pm Weekdays 12.3964
Shoulder 9am - 5pm, 8pm — 10pm Weekdays 12.3964
Off-peak 12am — 7am, 10pm — 12pm Weekdays and all Weekend 6.1664

Table F.31: Electricity Tariff Data — Macquarie Pipeline System
. , Peak Demand Cost

Tariff Times Energy Cost (c/kWh) (SKVA)

Peak 7am - 9am, 5pm — 8pm Weekdays 4.4928 8.1296
Shoulder 9am - 5pm, 8pm — 10pm Weekdays 4.4928 8.1296
Off-peak 12am - 7am, 10pm — 12pm Weekdays and all 2 8655 18581

Weekend

An additional ‘market charge’ of 1.17 c/kWh applies to all systems
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