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Abstract: The in-situ monitoring of stresses provides a crucial input for residual life prognosis and 

is an integral part of structural health monitoring systems. Stress monitoring is generally achieved 

by utilising the acoustoelastic effect, which relates the speed of elastic waves in a solid, typically 

longitudinal and shear waves, to the stress state. A major shortcoming of methods based on the 

acoustoelastic effect is their poor sensitivity. Another shortcoming of acoustoelastic methods is 

associated with the rapid attenuation of bulk waves in the propagation medium, requiring the use of 

dense sensor networks. The purpose of this paper is twofold: to demonstrate the application of 

Rayleigh (guided) waves rather than bulk waves towards stress monitoring based on 

acoustoelasticity, and to propose a new method for stress monitoring based on the rate of 

accumulation of the second harmonic of large amplitude Rayleigh waves. An experimental study is 

conducted using the cross-correlation signal processing technique to increase the accuracy of 

determining Rayleigh wave speeds when compared with traditional methods. This demonstrates the 

feasibility of Rayleigh wave based acoustoelastic structural health monitoring systems, which could 

easily be integrated with existing sensor networks. Second harmonic generation is then investigated 

to demonstrate the sensitivity of higher-order harmonics to stress induced nonlinearities. The 

outcomes of this study demonstrate that the sensitivity of the new second harmonic generation 

method is several orders of magnitude greater than the acoustoelastic method, making the proposed 

method more suitable for development for online stress monitoring of in-service structures. 

Introduction 



Online stress monitoring has become an essential component of life prognosis and structural health 

monitoring (SHM) systems for high-value assets1. Stress monitoring can be accomplished by a 

number of methods which utilise various physical phenomena. One promising technique is based 

on acoustoelastic phenomena associated with the propagation of guided waves2. This technique 

could be easily integrated with the existing SHM systems, which have been developed recently for 

detecting and/or sizing of defects in metallic3,4 and composite structures5,6. In general, guided wave-

based measurement systems have many practical advantages over existing methods, being light-

weight, power efficient, and low cost7-9. 

Guided waves present several novel benefits over conventional bulk-wave inspection techniques10 

and traditional strain gauge methods. Firstly, guided waves are able to propagate longer distances 

than bulk waves without significant decay11, which expands the interrogation region and makes 

inspections more efficient12-14. Secondly, guided waves can be judiciously selected to probe for 

particular types of damage15. Guided waves can also be driven in propagation directions that may 

be inaccessible using conventional ultrasonic evaluation techniques16. The two types of guided 

waves commonly studied are Lamb waves and Rayleigh (surface) waves. The non-dispersive 

characteristics of Rayleigh waves makes them an attractive candidate for stress measurements 

relative to Lamb waves as part of an SHM system. 

Acoustoelastic effect 

The acoustoelastic effect, which describes the dependence of the speed of an elastic wave on the 

stress state of the medium, received significant attention in the mid 1950’s17,18. However, the focus 

has been on the change in bulk wave speeds, rather than guided waves due to difficulties in 

incorporating the free-surface boundary conditions of such waves into a mathematical model19. 

Dowaikh20 later expanded the acoustoelastic theory to Rayleigh waves, and derived a relationship 

describing the change in the velocity of propagating Rayleigh waves with applied stress. Recently, 

the acoustoelastic theory was extended to Lamb waves in plates21-23. However, accurate 

measurement of the acoustoelastic phenomena of Lamb wave has not been fully achieved 

experimentally.  

The accuracy of stress measurement using the acoustoelastic effect is limited by the resolution of 

measurement of the elastic wave arrival time19. One method of improving the accuracy of stress 

measurement is to maximise the distance between measurement points. Recent studies on the 



acoustoelastic effect have utilised  critically refracted longitudinal (LCR) waves to detect stresses 

in metals and composites at different depths24,25, with interrogation distances upto 250 mm24. This 

measurement interval is significantly greater than earlier studies, thereby improving the accuracy of 

stress measurements. Further improvement can be achieved by utilising Rayleigh waves for stress 

monitoring, which travel at roughly half the speed of longitudinal waves.  

Higher order harmonic generation due to material nonlinearity 

 Another phenomenon which can be used for stress measurement is the dependence of the rate of 

accumulation of second (and higher-order) harmonics upon the applied stress level26-28, as indicated 

schematically in Fig. 1. This is because the generation of higher-order harmonics can be attributed 

to material nonlinearities including nonlinearities caused by applied, residual, or thermal stresses. 

This approach has been utilised previously using both guided and bulk waves to detect weak changes 

in material properties caused by: material degradation29, fatigue damage in metallic structures30, 

plasticity-driven damage in metal plates 12, bonding defects in adhesive joints31, thermal fatigue in 

composites32, damage in concrete structures33, and radiation damage in reactor pressure vessel 

steels34.  Liu35 applied this approach towards the measurement of surface residual stresses in shot-

peened Aluminium specimens, however they could not distinguish the contributions of residual 

stress and plastic deformation upon the rate of accumulation of the second harmonic. To the best of 

our knowledge, no attempt has yet been made to show experimentally the effect of applied stresses 

on the rate of accumulation of the second harmonic.  

In general, cumulative generation of higher harmonics requires meeting three internal resonance 

conditions: (i) matching of the phase velocity; (ii) matching of the group velocity; and (iii) nonzero 

power flux from the fundamental amplitude to the higher-order harmonics36. Satisfying these 

conditions can only occur at certain values of frequency-thickness for Lamb waves37; however, they 

are automatically satisfied for Rayleigh waves because of their non-dispersive nature. This makes 

them an attractive candidate for conducting stress measurements. Moreover, the weak nonlinearity 

effect of metallic waveguides results in small amplitudes of higher-order harmonics that is often 

difficult to detect. Rayleigh waves maximise the observability of nonlinear effects, as their high-

power density near the surface of the waveguide results in significantly stronger nonlinear effects 

than that observed for bulk waves38. Finally, complications with dispersion and the multi-modal 

nature of Lamb waves can cause errant results12, which are avoided with Rayleigh waves due to 

their nondispersive characteristics. Detection of the Rayleigh wave is usually achieved using a non-



contact method, as coupling conditions directly influence the consistency and repeatability of 

second harmonic generation (SHG) experiments26. Hence, the scanning laser vibrometer utilised in 

the present work is a suitable tool for stress measurement using the second harmonic generation 

method. 

  

Fig. 1. Schematic showing the relative growth of the second harmonic relative to the fundamental 

with propagation distance. 

The current study provides a comparative evaluation the acoustoelastic effect and SHG for 

estimating applied stresses with nonlinear Rayleigh waves. The study first focuses on the 

acoustoelastic effect. A systemic and robust measurement approach is proposed to improve the 

accuracy and reliability in determining the wave speed by using cross-correlation of Rayleigh wave 

signals, which can ultimately be used to measure applied stresses. Second harmonic generation is 

then investigated to determine its suitability as an alternative stress monitoring method. The 

performance of both techniques in assessing the change of the applied stress is investigated. The 

findings of this study provide fundamental insights into the suitability and accuracy of using 

nonlinear Rayleigh wave techniques in stress monitoring.  
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The structure of the paper is as follows. The theoretical background for the acoustoelastic effect and 

SHG is presented in the following section. The experimental methodology is then discussed, which 

covers the generation, measurement, and signal processing associated with Rayleigh waves and the 

two measurement techniques. Experimental results are presented for both stress measurement 

methods (acoustoelasticity and SHG), and the methods are critically compared to evaluate their 

effectiveness. Suggestions for future research are then explored and the key findings are presented. 

Theoretical Background 

Acoustoelastic theory 

As mentioned in the previous section, the relationship between bulk wave velocities and applied 

stress was first presented by Hughes and Kelly17. In the notations of Rose39, the effect of an 

applied uniaxial stress on longitudinal and shear wave velocities can be expressed as: 

 𝜌 𝑉  3
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where 𝑉  3 𝑉 3   and 𝑉 33 are the longitudinal wave speed propagating perpendicular to the applied 

stress, the shear wave speed polarised perpendicularly and travelling perpendicular to the applied 

stress, and the shear wave speed polarised parallel and travelling perpendicular to the applied stress 

respectively, 𝜌  is the density in the stress-free state, 𝜆 and 𝜇 are the Lame constants, 𝜅  is the stress-

free bulk modulus,   is the value of the applied stress, and 𝑙 𝑚  and 𝑛 are the Murnaghan (third 

order) elastic constants10. Equations (1), (2), and (3) can be inverted to evaluate the elastic constants 

from wave velocity measurements and applied stresses. 

In the case of Rayleigh waves, the change of the wave velocity can be found from a characteristic 

equation presented by Dowaikh20, which can be written as:   
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where 𝛼  = 𝒥𝒜     , 𝛼  = 𝒥𝒜     , α  = 𝒥𝒜     , 𝛾 = 𝒥𝒜     , 𝛾 = 𝒥𝒜     , 𝜏  is the 

stress in the 𝑥  direction, 𝑐 is the wave speed, and 𝜌  is the stress-free density. A full description of 

the instantaneous elasticity tensor components 𝒥𝒜 ijkl can be found in Dowaikh20. The solution to 

this equation provides an approximately linear relationship between Rayleigh wave speed and the 

applied stress for stresses below the yield, as shown in Fig. 2. Experimental wave speed data can 

therefore be correlated to the stress applied to the wave guide using a linear trend line, and in this 

manner stress measurement can be achieved. 

 

Fig. 2. Solution to Eq. (4) between ± 00 M a for Aluminium 7075-T651, using material 

constants presented by Muir40. 

Second-harmonic generation theory 

The growth in amplitude of the second harmonic for nondispersive waves can be derived for one-

dimensional wave propagation governed by the equation22: 

 𝜌
𝜕𝑢 

𝜕𝑡 
=

𝜕 

𝜕𝑥
   (5) 

2860

2865

2870

2875

2880

-250 -200 -150 -100 -50 0 50 100 150 200 250

W
av

e 
S

p
ee

d
 (

m
/s

)

Compressive Stress (MPa)

𝑙 −         

𝑚 −3 4      

𝑛 −3        

𝜆  4      

𝜇         

𝜌   00    𝑚3



where 𝜌 is the density of the material through which the wave propagates, 𝑢 is the particle 

displacement, and   is the normal stress. Assuming weak quadratic nonlinearity, the nonlinear form 

of Hooke’s law can be written: 

  = 𝐸𝜀 + 𝐸 𝜀    (6) 

where 𝐸 is the modulus of elasticity, 𝜀 = 𝜕𝑢 𝜕𝑥 is the strain, and   is a measure of the quadratic 

nonlinearity of the material, called the nonlinearity parameter. Combining Eqs. (5) and (6) leads to: 

 𝜌
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A perturbation solution of the second order can be derived for Eq. (7) and takes the form22: 

 𝑢 = 𝐴 𝑐𝑜𝑠( 𝑥 − 𝜔𝑡) − 𝐴 𝑠𝑖𝑛 ( 𝑥 − 𝜔𝑡)  (8) 

where 𝐴  is the amplitude of the fundamental frequency and 𝐴  is the amplitude of the second 

harmonic generated due to material nonlinearity. The perturbation analysis then leads to the 

following relation41: 

 𝐴 =
 

 
𝐴 

 𝜅 𝑥   (9) 

where 𝜅 = 𝜔 𝑐 is the wavenumber and 𝑥 is the propagation distance. Equation (9) shows a 

dependence between the nonlinearity parameter ( ) and the normalised second harmonic (𝐴  𝐴 
 ), 

which also extends to Rayleigh waves26. 

The particle displacement normal to the surface for the fundamental and second harmonic 

components of a Rayleigh wave is presented in Thiele42, as follows: 
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 . Here, 𝜅𝑅, 𝜅𝐿, and 𝜅𝑇 represent the wavenumbers of the 

Rayleigh wave, longitudinal wave, and shear wave in the material. Hermann43 presented the 

nonlinearity parameter of a propagating Rayleigh wave in terms of the fundamental and second 

harmonic components at the surface (where 𝑧 = 0): 
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In practice, it is more common to measure the relative nonlinearity parameter (RNLP),  ′ which is 

proportional to the nonlinearity parameter10,27,28,35: 

    =
𝐴 

𝐴 
 𝑥

   (13) 

Hence,    can be determined by measuring the fundamental and second harmonic amplitudes at a 

number of distances along the direction of Rayleigh wave propagation and determining the gradient 

of the line of best fit, as indicated schematically in Fig. 1. As it is known that the rate of accumulation 

of the second harmonic is dependent on the nonlinearity of the waveguide26, it is possible to correlate 

the nonlinearity parameter to the stress applied to the waveguide by measuring    at various stress 

levels and comparing this to existing theoretical and experimental data. The aim of this paper is 

therefore to (i) investigate the feasibility of stress measurement using the acoustoelastic effect and 

SHG, and (ii) to compare the effectiveness of these methods. 

Experiment 

Generation of Rayleigh waves 

A Rayleigh wave is typically generated by using a wedge to refract a longitudinal wave generated 

by an ultrasonic transducer into a Rayleigh wave in the specimen44. The angle of the wedge must 

be calculated using Snell’s law (Eq. 14) to ensure that most of the energy is concentrated into the 

Rayleigh wave.  

 θ𝑤 =   n− (
𝑐𝐿 𝑤

𝑐𝑅
)   (14) 

where θw is the wedge angle, 𝑐𝐿 𝑤 is the longitudinal wave velocity in the wedge material, and 𝑐𝑅 

is the Rayleigh wave velocity in the specimen. 



It is important to minimise the generation of shear waves in the specimen, as the shear and Rayleigh 

wave speeds are usually similar and can interfere with TOF and SHG measurements. Many past 

experiments have utilised the wedge excitation method to generate Rayleigh waves in metallic 

specimens10,27,35,42,45. This work uses a high density polyethylene wedge of angle θ𝑤 =   ∘ to 

generate Rayleigh waves in an aluminium specimen, as shown in Fig. 3. The wedge, transducer, and 

specimen are acoustically coupled using ISO68 oil and a firm clamping pressure at both the wedge-

specimen and transducer-wedge interfaces. The wedge is not removed between tests to mimimise 

the measurement error26. 

 

Fig. 3. Wedge-transducer-specimen assembly. 

Specimen preparation and measurement methodology 

A schematic of the experimental setup is shown in Fig. 4. A Tektronix AFG 3021B arbitrary 

function generator is used to generate a 1 MHz, 12-cycle sine-windowed sinusoidal tone burst. The 

number of cycles in the tone burst is selected to provide a good compromise between frequency and 

time resolution. The tone burst is amplified to approximately 700 V peak-to-peak by a RITEC GA-

2500A gated amplifier – as used by Thiele42 to reduce nonlinear amplification effects on 

measurements – and is sent to a 1 MHz Olympus longitudinal transducer coupled to the wedge. The 

wavelength of the Rayleigh wave is 𝜆𝑅 =       , which is significantly smaller than the thickness 
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of the aluminium specimen (dimensions 𝑙 = 4        𝑤 =   3      𝑡 = 47     ) and 

ensures that the Rayleigh wave generation conditions are satisfied. The Rayleigh wave amplitude is 

measured at multiple positions on the Aluminium specimen using a Polytec PSV-400-M2-20 

scanning laser vibrometer, which uses a band pass filter between 200 kHz and 10 MHz to reject 

low- and high-frequency noise. The laser vibrometer detection is advantageous for a number of 

reasons: (i) it provides non-contact detection; (ii) it has a flat frequency response; and (iii) it has a 

high sampling frequency of  0  4 MHz. The compressive force (𝐹𝑐) is provided by an Avery 

Universal Testing Machine, and is far lower than the theoretical buckling load for the specimen. 

The specimen is prepared by polishing the surface with 1200-grit sandpaper to achieve a consistent, 

reflective finish, which has been shown to increase the accuracy of laser vibrometer 

measurements46. The experimental setup is shown in Fig. 5. 

 

Fig. 4. Schematic of the experimental setup, indicating the wave generation, applied stress and 

other instrumentation. 
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Fig. 5. Experimental setup showing the specimen and loading frame as well as the head of the 

scanning laser vibrometer. 

 

Measurement of the change in wave speed 

The out-of-plane Rayleigh wave amplitude is measured at nine locations along the surface of the 

Aluminium specimen, which are arranged in three groups of three, as shown in Fig. 6. The received 

signal is averaged 4000 times to improve the signal-to-noise ratio, as past experiments suggest 

increasing the number of averages will result in more reliable measurements46.  Cross-correlation is 

used to determine the time lag between point one and the other eight points, which gives the time 

of arrival of the Rayleigh wave along the specimen. Given the known distances between the points, 

a regression line can be fitted between the time lag vector and the distances vector, the slope of 

which is the Rayleigh wave speed. 
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Fig. 6. Rayleigh wave measurement locations 

A brief overview of cross-correlation is now presented as described by Allen and Mills47. Cross-

correlation is a technique that can be used to accurately determine the time lag between two separate 

signals with common features. Consider two discrete time domain signals of length 𝑛 which take 

the form 𝑋 =  (𝑥  𝑥  …  𝑥𝑛) and 𝑌 = (𝑦  𝑦  …  𝑦𝑛) where the common time vector is 𝑇 =

(𝑡  𝑡  …  𝑡𝑛). It is assumed that both 𝑋 and 𝑌 contain the same finite duration waveform 𝑊 =

(𝑊  𝑊  …  𝑊𝑖) for 𝑖 < 𝑛 separated by some time lag,  . It is then possible to write: 

 𝑊 = 𝑥𝑗 = 𝑦𝑗+𝑘   (15a) 

 
𝑊 = 𝑥𝑗+ = 𝑦𝑗+𝑘+    (15b) 

and so on. The cross-correlation function determines the time lag   between the two time domain 

signals by comparing all possible time lags and minimising the error. This is achieved by first 

defining the 𝑙  norm function as 𝑑(𝑋 𝑌) = ‖𝑋 − 𝑌‖ . The time lag   is then minimised when 

𝑑(𝑋 𝑌) is minimised, which leads to: 

 
‖𝑋 − 𝑌‖ 

 = ‖𝑋‖ + ‖𝑌‖ −  〈𝑋 𝑌〉   (16) 

where 〈𝑋 𝑌〉 is the inner product. It is clear that for finite signals 𝑋 and 𝑌, this minimisation occurs 

when the inner product is maximised. The inner product can be written as: 

 
𝑦( ) = 〈𝑋 𝑌〉 = ∑ 𝑋(𝑝 −  )𝑌(𝑝)  

𝑛

𝑝=𝑘

 (17) 

Hence, the maximum correlation between the two signals can be found when 𝑦( ) is maximised. 
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In this study, two methods for TOF determination are used: the cross-correlation method and a 

simpler method in which the average arrival time of the signal maxima and minima are used to 

determine the TOF. Eleven values of compressive force are applied to the Aluminium specimen 

between  00 kN and 300 kN in  0 kN increments, giving a compressive stress range between 

     M a and 34 4 M a. 

Measurement of the growth of the second harmonic 

The use of a wedge to generate Rayleigh waves greatly reduces the component of bulk waves present 

in the specimen, and the Rayleigh wave can therefore be identified as the largest amplitude wave-

packet. Confirmation of Rayleigh wave generation is also achieved by ensuring that the measured 

wave speed is similar to the theoretical wave speed. The frequency components of the signal at each 

of the measurement points are extracted by performing a fast Fourier transform (FFT) on the 

Rayleigh wave component of the measured signal. The latter is extracted by applying a rectangular 

window of width 12𝜇s centered at the Rayleigh wave arrival time to the measured signal. The 

amplitude of the FFT is determined using a root-mean-square (RMS) method between ±0   MHz 

for the fundamental frequency and ±0    MHz for the second harmonic. Figure 7 shows a typical 

time-domain signal for measurement location 4, and Fig. 8 shows the resulting FFT. 

 

Fig. 7. Received time domain signal at point 4 in Fig. 5, under 250 kN compressive load. 
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Fig. 8. Fast Fourier transform of received signal, showing the fundamental and second harmonic 

components of the nonlinear Rayleigh wave. 

Test Results and Discussion 

Change of velocity 

Figure 9 shows the arrival time at the nine measurement locations using cross-correlation at a 

compressive stress of    7 M a. This measurement is normalised to the first data point, and a least 

squares regression line is fitted to determine the speed of the Rayleigh wave. Figures 10 and 11 

demonstrate the drastic influence signal processing methods have on the results. It should be noted 

that the  4   M a measurement has been omitted due to an obvious error that may be attributed to 

a small misalignment of the specimen, and the      M a measurement was used to accurately 

determine the distances between measurement locations. The conventional approach to TOF data 

processing, as previously described, shows very poor correlation between the Rayleigh wave speed 

and the applied stress (𝑅 = 0 3 ). However, the trend between wave speed and applied stress is 

very evident when a cross-correlation approach is used. The 𝑅  value of 0    suggests that there is 

a strong correlation between the applied stress and the speed of the Rayleigh wave. The cross-

correlation method also produced a smaller average standard error (0    𝑚 𝑠) than the traditional 

method (0 3  𝑚 𝑠), indicating a significant improvement. Therefore, it is possible to use Rayleigh 

waves for practical in-situ stress monitoring with the acoustoelastic effect. 
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Fig. 9. Rayleigh wave speed against applied compressive stress using traditional signal processing 

methods. 

 

Fig. 10. Rayleigh wave speed against applied compressive stress using traditional signal 

processing methods. 
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Fig. 11. Rayleigh wave speed against applied compressive stress using cross-correlation to 

determine the time-of-flight. 

Growth of the second harmonic 

Figure 12 displays the relationship between the normalised second harmonic and propagation 

distance for an applied stress of    4 M a. It should be noted that no diffraction or attenuation 

corrections were performed on the signal as these can be considered negligible for small propagation 

distances14. It is known from Eq. 12 that the relationship between the normalised second harmonic 

(A2/A1
2) and propagation distance is linear, which is supported by the data gathered during this 

research and many other studies24,27,42,45, which have investigated the unstressed nonlinearity of 

aluminium specimens. Least squares regression lines for order one and two polynomials are fitted 

to the data to determine the relationship between the applied stress and β , which is shown for 

different applied stress levels in Fig. 13. It is clear that there is an increasing trend in material 

nonlinearity with applied compressive stress. 
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Fig. 12. Normalised second harmonic against propagation distance at a compressive stress of 

   4 M a. 

 

Fig. 13. Change in the β  against applied compressive stress. 

It can be seen that the SHG method experiences a larger scatter of the data than the acoustoelastic 

method. Two outliers in the data have also been identified, and can be distinguished in Fig. 10 as 

triangular points. The data gathered suggests that the sensitivity of the SHG method is far higher 
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than the acoustoelastic method. Using the linear fitted curves between    M a and 3  M a, the 

SHG method experiences a    % increase, while the change in wave speed is only 0 03 %, 

indicating the future potential of such a method for accurate stress monitoring. However, it is evident 

from this study that although the SHG method is vastly more sensitive than acoustoelastic methods, 

current measurement techniques are unable to measure the growth of the second harmonic 

accurately and consistently enough to use this method to determine applied stresses. Future 

experiments are required to further investigate more fully the relationship between applied stresses 

and the growth of higher-order harmonics in metallic specimens. 

Comparison with Recent Developments 

There have been significant advancements to stress evaluation techniques in recent years, many of 

which are focused on providing non-destructive, in-situ stress monitoring of structures. Notably, 

stress monitoring using critically refracted longitudinal (Lcr) waves and ultrasonic shear wave 

spectral analysis (SWSA) have received recent attention. One advantage of Lcr waves over Rayleigh 

waves (as used in this study) is their greater sensitivity to stress24,48,50. However, the higher speed 

of longitudinal waves makes TOF measurements difficult, whereas slower Rayleigh waves can be 

measured with greater relative accuracy. Some studies have found that this limits the usefulness of 

Lcr based methods to changes in stress of over 100 MPa49. Further investigation is required in 

regards to the accuracy of Rayleigh wave based acoustoelastic stress monitoring methods.  An 

advantage of Rayleigh waves over Lcr waves is the theoretically higher interrogation range. This 

occurs as the energy of a Rayleigh wave is concentrated at the surface, as well as the increased 

scattering of bulk waves48. Studies have found the stability and repeatability of Lcr wave 

measurements allows accurate determination of uniaxial stresses over lengths as small as 5mm24. 

Similar to Rayleigh waves, the frequency-depth dependence of Lcr waves allows stress interrogation 

at different depths below the surface of the structure24. 

 

Shear wave spectral analysis has recently been proposed as a method for stress evaluation of in-situ 

structures. Similar to the methods proposed in this study, SWSA allows for single sided 

interrogation, which is advantageous for real world applications. This technique does not require 

accurate TOF information to determine stresses – which is a major downfall of acoustoelastic based 

methods – rather it uses the birefringence of shear waves to determine stress51, which may provide 

more reliable stress information. Similar to acoustoelastic based methods, SWSA relies on extensive 



calibration before implementation, which is often difficult to achieve for in-situ structures51. 

Additionally, the SWSA method is affected by material fatigue, corrosion, and damage, which may 

limit its longevity for real world applications. 

 

Second harmonic generation presents an interesting opportunity for in-situ stress monitoring. Its 

major advantage over current methods is the higher sensitivity of SHG to applied stresses, as shown 

in this study. However, the large scatter associated with the results gained implies that although this 

method has the potential for use in stress monitoring, further work is required to increase the 

measurement accuracy. Additionally, the current work utilised a laser vibrometer measurement 

system, which is not practical for in-situ applications; further research is required to develop a 

reliable measurement system for in-situ applications. The benefits of SHG over the Lcr and SWSA 

methods invites further investigation into the possibility of using such a method for future stress 

monitoring applications. 

 

Conclusion 

The use of Rayleigh waves for stress monitoring applications is highly desirable due to their long 

propagation distance, sensitivity to stresses, and nondispersive nature. The current work has shown 

that the acoustoelastic effect may be utilised for measurement of stresses applied to an Aluminium 

specimen with Rayleigh waves. The experimental data shows high correlation between the speed of 

a Rayleigh wave and the applied stress, indicating that acoustoelasticity with Rayleigh waves may 

be used for online monitoring of stresses. The use of cross-correlation as a means of determining 

the time-of-flight of a Rayleigh wave was also shown to improve the accuracy of acoustoelastic 

techniques. The effect of stresses on second harmonic generation was also investigated, and a clear 

increasing trend between applied compressive stress and the    was shown. The results indicate that 

the sensitivity of the second harmonic generation method is far larger than the acoustoelastic effect, 

however, difficulties with measurement scatter must be improved before this method becomes 

viable for monitoring for stresses. Overall, the results obtained in this research demonstrate the 

feasibility of using Rayleigh waves and various phenomena for stress monitoring, which could be 

integrated with existing SHM systems. 
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