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Abstract

Purpose of Review Although many signalling pathways have been discovered to be essential in mesenchymal stem/stromal
(MSC) differentiation, it has become increasingly clear in recent years that epigenetic regulation of gene transcription is a vital
component of lineage determination, encompassing diet, lifestyle and parental influences on bone, fat and cartilage development.
Recent Findings This review discusses how specific enzymes that modify histone methylation and acetylation or DNA methyl-
ation orchestrate the differentiation programs in lineage determination of MSC and the epigenetic changes that facilitate devel-
opment of bone related diseases such as osteoporosis. The review also describes how environmental factors such as mechanical
loading influence the epigenetic signatures of MSC, and how the use of chemical agents or small peptides can regulate epigenetic
drift in MSC populations during ageing and disease.

Summary Epigenetic regulation of MSC lineage commitment is controlled through changes in enzyme activity, which modifies
DNA and histone residues leading to alterations in chromatin structure. The co-ordinated epigenetic regulation of transcriptional
activation and repression act to mediate skeletal tissue homeostasis, where deregulation of this process can lead to bone loss
during ageing or osteoporosis.

Keywords Mesenchymal stem/stromal cells - MSC - Epigenetics - Skeletal stem cells - DNA methylation - Histone methylation -
Histone acetylation

Introduction

The stromal component within bone marrow is a hierarchical
continuum of mature functional stromal populations and com-
mitted progenitor cells. This is sustained by a minor popula-
tion of long-lived, self-renewing and multipotential skeletal
stem cells or bone marrow-derived mesenchymal stem/
stromal cells (BMSC) [1]. Purified preparation of human
BMSC exhibit the potential to form osteoblasts, adipocytes,
chondrocytes, smooth muscle cells and myelosupportive
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fibroblasts under inductive conditions in vitro or when
transplanted in vivo [2—4]. It is well known that the master
regulatory transcription factors Runt-related transcription fac-
tor 2 (RUNX2), peroxisome proliferator-activated receptor
gamma 2 (PPARY2), myogenic differentiation (MOYD) and
sex-determining region Y-box 9 (SOX9) are critical mediators
of BMSC differentiation towards the osteogenic, adipogenic,
myogenic and chondrogenic lineages, respectively [5—7]. The
co-ordinated expression of RUNX2, PPARy2, MYOD or
SOX9 depends on the regulation of chromatin, allowing the
activation of these genes and their targets. Therefore, it is
critically important to understand the epigenetic modifications
regulating BMSC cell fate and lineage-specification.
Epigenetics is the cellular modification of reversible and
heritable changes in gene expression that occur without
changes in the DNA code [8]. Epigenetic modifications such
as DNA methylation and histone modifications regulate the
structure of chromatin, which determines the accessibility of
genes to transcription factors and other modulators involved in
gene regulation. Chromatin is formed through the compaction
of DNA strands wrapped around nucleosomes [9], which are
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linked by histone proteins. The functional state of chromatin,
whether open or compact, can be modified through methyla-
tion of DNA at cytosines within CpG dinucleotides and on
amino acid residues within the histone proteins. DNA meth-
ylation is often associated with gene silencing, whereas his-
tone modifications can be mediators of either gene activation
or repression. This review will summarise our current under-
standing of the association and role of epigenetic modifica-
tions in BMSC lineage commitment.

Enzymes Regulating Histone
Methylation/Acetylation in BMSC
Differentiation

The histone 3 lysine 27 (H3K27) methyltransferase, EZH2, is
essential for embryogenesis and postnatal tissue development
[10-12]. We have recently reported an essential function of
EZH2 as an epigenetic switch mediating the function of hu-
man BMSC. In human BMSC, EZH2 is a promoter of adipo-
genesis and inhibitor of osteogenesis via tri-methylation of
H3K27 (H3K27me3) of Runx2 and osteopontin genes
[13e¢]. In contrast, the H3K27me3 demethylase, KDMO6A,
was found to inhibit BMSC adipogenesis and promote
osteo/chondrogenesis [13¢¢]. Similarly, another H3K27me3
demethylase, KDM6B, was also discovered to be essential
in osteogenic differentiation of MSC [14-17]. We and others
have recently expanded these studies in conditional knockout
mice where EZH?2 is specifically deleted in BMSC leading to
increased bone formation with disrupted bone patterning, in-
creased trabecular bone, and increase bone marrow fat [18,
19]. The role of EZH2 in murine adipogenesis acts by binding
to (3-catenin associated genes, Wntl, 6, 10a, 10b, 2b, 3a, 8a, 2
and 11 in peripheral pre-adipocytes and their repression pro-
motes adipogenesis [20]. In a mouse model of osteoporosis
induced by oestrogen deficiency following bilateral ovariec-
tomy, EZH2 protein and RNA levels were found to be elevat-
ed in BMSC isolated from osteoporotic bone samples, with
EZH2 and H3K27me3 being highly enriched on promoters of
Wntl, Wnt6 and Wntl0a leading to repression of these bone
promoting genes [21] and promoting adipogenesis. Therefore,
EZH2/KDMO6A/B represent a novel epigenetic switch for con-
trolling BMSC cell fate decisions, part of a complex circuitry
network of epigenetic regulators (Fig. 1).

Methylation of histone 3 on lysine 4 (H3K4me3) is asso-
ciated with transcriptional activation and pivotal for differen-
tiation [22, 23]. Absent, small or homeotic discl like (Ashll)
is a member of the Trx family that methylates H3K4. Both
Ashll and H3K4me3 were upregulated in multipotent mouse
C3H10T1/2 cells or human BMSC cells undergoing osteo-
genic, adipogenic or chondrogenic differentiation [24].
Depletion of Ashll impaired osteo/chondrogenic differentia-
tion but increased adipogenesis, due to a decrease in Hoxal0,

@ Springer

Sox9 gene expression and an activation of PPARy2 expres-
sion [24]. Of note, Ashll and H3K4me3 were found to be
downregulated in murine and human osteoporotic bone sam-
ples. Ashll cooperates with other H3K4 methyltransferases
such as MLL1 [25, 26], which activate Hox genes [27] in-
volved in osteogenesis. The H3K4 demethylase, RBP2, oc-
cupies the osteoblast-specific transcription factor Osterix tran-
scription start site to remove H3K4me3 [28]. Conversely, the
H3K4 methyltransferase Setl, part of the COMPASS complex
(consisting of MLL, KDM6A, Setl, WDRS), deposits
H3K4me3 on the Osterix promoter during osteogenesis [29].
Similarly, the co-factor WDRS can induce H3K4me3 on the
Runx2 promoter, whereas KDM6A removes H3K27me3 dur-
ing osteogenesis [30]. The balance between competing epige-
netic factors is further illustrated by the demethylase,
KDMS5A, which removes H3K4me3 and inhibits osteogenesis
by repressing Runx2 expression [31]. In contrast, KDM7C
was shown to promote osteogenesis by enhancing Runx2
binding to osteogenic promoters via demethylation of the
Runx2 gene [32].

Another important epigenetic modification is methylation
of histone 3 lysine 9 (H3K9me), a marker for gene repression.
The H3K9me demethylase, KDM4A, was found to promote
adipogenesis and conversely inhibit osteogenesis in primary
cultures of BMSC [33]. Subsequent investigations revealed
that the Wnt pathway was directly inhibited by KDM4A.
However, KDM4A can also act indirectly on bone by reduc-
ing DNA methylation on the promoters of the adipogenic
associated factors, C/EBPx and SFRP4, leading to activation
of adipocyte differentiation. In other investigations, knockout
of the H3K9 methyltransferase, SETDB1, was found to cause
bone defects in mice [34], implying that SETDBI is a pro-
moter of osteogenesis. In contrast, knockdown of SETDBI1
expression resulted in increased adipogenesis in vitro [35],
indicative of another epigenetic mediator of BMSC lineage
commitment via H3K9 modification of osteogenic and
adipogenic associated gene sets.

Some epigenetic enzymes exhibit different functional roles
targeting more than one epigenetic mark such as NO66, a
H3K4 and H3K36 demethylase, which has been shown to
bind to the Osterix promoter and inhibit transcription [36].
NO66 conditional knockout mice, in the MSC lineage, exhibit
increased length and body weight, which is associated in-
creased intramembranous and endochondral ossification
[37]. Similarly, the demethylase, KDM7A, was reported to
promote adipogenesis but inhibit osteogenesis [38] through
demethylation of both H3K9me2 and H3K27me2. KDM7A
action resulted in an activation of gene expression levels for
the adipogenic associated factors, C/EBPx and SFRP1 a
known Wnt inhibitor.

Histone acetylation is an epigenetic modification associat-
ed with transcriptional activation, where histone deacetylation
causes chromatin to compact, leading to transcriptional
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repression [39, 40]. Members of the histone deacetylases
(HDAC), HDAC 3, 4, 5 and 7 are critical for endochondral
bone formation [41, 42]. HDAC3 deletion in chondrocytes
leads to embryonic lethality, whereas postnatal deletion of
HDACS3 delays ossification, growth plate maturation with in-
creased osteoclast activity [43]. The phenotype was associated
with increased cytokine and matrix-degrading genes due to
increased NF-kB acetylation and decreased bone develop-
ment genes [43]. An epigenetic library screen identified
Abexinostat, which increased H3K9Ac levels on osteogenic/
adipogenic genes and promoted both osteogenic and
adipogenic differentiation [44<¢]. This study highlights the
utility of screening chemical and small peptide libraries
in order to develop new-generation agents to modify
histone acetylation patterns controlling MSC cell fate
determination (Fig. 2).

Investigations into mechanical bone stimulation demon-
strated enhanced Notch signalling and downregulated
HDACI, in human osteoporotic BMSC [45¢¢]. HDAC1 was
found to inhibit bone formation and Notch signalling via
deacetylating JAG1 and inhibiting HDACI attenuated hind
limb unloading induced osteoporosis [45¢¢]. Aged BMSC
are characterised by reduced differentiation and proliferation,
processes which are known to be mediated by HDAC and
longevity genes, such as the sirtuins. The mitochondrial
deacetylase, Sirt3, was found to be downregulated during cul-
ture expansion but was a promoter of both osteogenic and
adipogenic differentiation, and attenuated oxidative stress
and senescence [46]. Knockout studies of another deacetylase,
Sirt7, found that mice developed osteopenia as Sirt7 interacted
with Osterix, deacetylating K368, increasing its
transactivation and function [47]. A recent study reported that

Fig. 2 Histone deacetylases

HDAC4 deficient mice display premature ossification due to
early-onset chondrocyte hypertrophy [48]. Similarly, HDAC3
deletion specifically in chondrocytes caused delayed angio-
genesis, increased bone resorption and severely reduced bone
median density [43]. HDAC3 was found to be essential for
Collagen type 2 gene expression, while repressing NF-kB and
STAT signalling [43].

To date, the gene promoter of the osteogenic master regu-
latory factor, Runx2, has been reported to undergo specific
changes in epigenetic modifications including, enrichment of
histone 3 acetylation (H3Ac), H3K4me3 and reduced
H3K4mel, H3K27me3 and H4R3me2 [49]. Chromatin im-
munoprecipitation (ChIP) analysis showed increased binding
of WDRS and KDM6A on the Runx2 promoter during oste-
ogenesis. The enzymes MLL2, MLL3 and Menin, part of the
MLL2/MLL3/COMPASS complex, were also found to be
present and acted to promote H3K4me3 to activate Runx2
transcription. Amongst the H3K4 demethylases, LSD1, a
flavin-containing amino oxidase that removes H3K4mel
and K4me2 was shown to be an inhibitor of osteogenesis in
human adipose-derived stem cells. Furthermore, conditional
deletion of LSD1 in MSC resulted in a phenotype of short
stature, lower body weight, delayed cartilage development
and endochondral bone formation, with bones showing in-
creased trabecular and cortical bone volume with increased
osteoblast activity. ChIPseq analysis of calvarial cells showed
increased H3K4me2 levels with Gene Ontogeny pathway
analysis indicating many genes as being involved in bone
differentiation including Wnt7b and Bmp2 [50¢¢]. The
H3K36me3 mark is a modification orchestrated by SETD2,
which is positively correlated with transcription, prevalent on
gene bodies and associated with longevity. SETD2 and
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H3K36me3 levels have been shown to decrease during adipo-
genesis but increase during osteogenesis [51]. MSC specific
conditional knockouts found that SETD2 inhibits adipogene-
sis and PPARYy1/2, C/EBPx and Fabp4 gene expression and
promotes osteogenesis. Moreover, SETD2 knockout mice
showed increased marrow fat and reduced bone mass (both
trabecular and cortical) in distal femurs indicative of age-
associated osteoporosis.

Collectively, these studies demonstrate that the interplay
between different epigenetic factors targeting histones is del-
icately balanced in order to orchestrate correct developmental
pathways by targeting lineage-specific gene sets that mediate
BMSC cell fate determination.

Enzymes Regulating DNA
Methylation/Hydroxylation in BMSC
Differentiation

There is overwhelming evidence implicating DNA methyla-
tion as an inhibitor of BMSC osteogenic and adipogenic dif-
ferentiation in vitro [52¢, 53, 54]. DNA methylation has also
been shown to affect mechanical bone loading, acting to main-
tain bone density in vivo, with unloading leading to increased
DNA methylation, bone loss and disuse osteoporosis [55, 56].
Biomechanical force has been found to induce important
BMSC lineage pathways such as Wnt and Bmp signalling
[57, 58] and more recently the Sonic hedgehog pathway
(SHH) [59]. The DNA methyltransferase, DNMT3B, is re-
ported to be upregulated at the initial stage of fracture repair
and mainly expressed in chondrogenic progenitors, where
chondroblast specific deletion of DNMT3B results in dimin-
ished fracture repair. Whilst the promoter of SHH was found
to be hypermethylated, methylation levels decreased follow-
ing mechanical stimulation. Moreover, DNMT3B was discov-
ered to methylate the SHH gene promoter, and was
dissociated from the promoter following mechanical
stimulation, leading to a reduction of methylation levels and
gene activation [59].

In more recent years, the hydroxylases, Ten-eleven-
translocases (Tetl, Tet2 and Tet3) have emerged as key regu-
lators of stem cell renewal. They catalyse the conversion of 5-
methylcytosine (SmC) into 5-hydroxymethylcytosine (ShmC)
where it opposes the function of SmC and leads to DNA
demethylation [60—62]. In human BMSC, Tetl was found to
be repressed during osteogenesis and adipogenesis, whereas
Tet2 was found to promote both osteogenesis and adipogene-
sis [52¢¢]. It should be noted that both Tetl and Tet2 were
found to be downregulated in human and murine BMSC de-
rived from osteoporotic bone samples, correlating to reduced
ShmC levels in situ [52¢, 63¢¢]. Mechanistically, Tet2 was
found to hydroxymethylate Runx2 and Bmp2, resulting in
activation of transcription. In other studies, however, both
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Tetl and Tet2 were found to promote both osteogenesis and
chondrogenesis in murine mesenchymal cells [64] and murine
BMSC. This occurred via demethylation of P2rX7, which was
found to act as an activator of Runx2 gene expression [63¢¢].
In vivo analyses showed deletion of both Tetl and Tet2 result-
ed in impaired self-renewal of murine BMSC, and was asso-
ciated with a severe osteopenic phenotype. Studies of chon-
drogenesis revealed that global ShmC levels increased over
time correlating to increased expression levels of Tetl, Tet2
and Tet3 [65]. Knockdown of Tetl had the greatest effect on
5hmC levels. Highest levels of ShmC were observed in gene
bodies and in promoters preceding transcription start sites on
chondrogenic genes such as Sox5, Sox6 and Sox9. Meta-
analysis of genes acquiring ShmC identified pathways essen-
tial to cartilage development such as the WNT pathway and
combining expression data with ShmC data showed a close
correlation between ShmC and transcription.

The complexity of BMSC cell fate determination is
dependent on interacting epigenetic modifications that con-
trol key lineage-specific transcription factors. Osterix is
one of the most important lineage determinants for bone
formation and is expressed specifically by pre-osteoblasts
and chondrocytes [1, 66]. Examination of epigenetic mod-
ifications on the Osterix promoter showed that MSC dif-
ferentiation into osteoblasts, correlated to enriched levels
of H3Ac/H3K4me3 accompanied by a decrease in
H3K9me3/H3K27me3 [29]. In non-mesenchymal cells,
the Osterix promoter was found to be enriched in
SUV39H1 and EZH2, which deposit H3K9me3 and
H3K27me3 modifications, respectively. Moreover, the
analysis of MSC identified several epigenetic modifiers,
RNAPII, HDAC1/2/4, Setdbl, JMID2a, EZH2, JMJD3
and KDAG6A bound on the Osterix promoter [29].
Osteogenic differentiation caused enrichment of RNAPII,
JMID2a and JMJD3 and reduced HDAC1/2/4, Setdbl and
EZH2 and DNA methylation due to the activity of
DNMT1 and DNMT3A. Higher 5ShmC levels were also
detected on the Osterix promoter when SmC was reduced.
Overall, there was an observed reduction in histone H3
levels indicative of chromatin remodelling during osteo-
genesis. Chromatin remodelers, Brgl and Brm, were found
at high levels on the Osterix promoter in MSC and oste-
oblasts but not in non-MSC cells, suggesting chromatin
remodelling allows transcription to occur in permissive
cells. Of note, both Tetl and Tet2 levels were also en-
hanced during osteogenesis and were associated with in-
creased binding to the Osterix promoter. Moreover, knock-
down of Tetl and Tet2 revealed elevated H3 on the pro-
moter, while Brgl, Brm, Jmjd2a, H3Ac and H3K4me3
levels were reduced, and repressive marks such as
H3K9me3 and H3K27me3 were enhanced. The binding
of COMPASS complex, WDRS and SETDI, MLL2 and
MLLA4, was also dependent on Tetl and 2 indicating that
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the Tet molecules act as scaffolding proteins recruiting
epigenetic modulators to the promoter sites to facilitate
BMSC lineage determination [29].

Genome-Wide Epigenetic Changes
During MSC Lineage Determination

Identifying genome-wide epigenetic signature changes and
chromatin remodelling regions during BMSC multi-
differentiation enables the identification of essential genes,
promoters and enhancers that function in lineage determina-
tion. Studies of histone modifications have been examined
using C3H10T1/2 cells and BMSC following osteogenic dif-
ferentiation in vitro [67]. Interestingly, these studies reported
that global histone modification levels remained largely un-
changed. Examination of osteogenic genes by ChIP analysis
upstream of the transcription start site, promoter and exon
regions found Runx2 to exhibit no observable changes in oc-
cupancy of histones. However, Osterix, alkaline phosphatase,
bone sialoprotein and osteocalcin all showed decreases in his-
tone 3 upstream of and including the promoters [67].
Furthermore, H3K9 and H3K14 acetylation increased up-
stream of the transcription start site and promoter region for
all genes. Whilst no differences were seen in H3K4mel and
H3K4me3 levels, H3K4me?2 increased upstream of transcrip-
tion start site for Runx2 and Osterix. In contrast, H3K9me2
and H3K27me3 levels decreased for both Runx2 and Osterix.
When examining BMSC derived from osteoporotic samples,
there were low levels of H3K9 and H3K14 acetylation and
H3K4me?2, and higher levels of H3K27me3 on Runx2 and
Osterix promoters and upstream regions correlating with re-
duced transcription.

Whole-genome histone modifications and DNA methyla-
tion have been mapped during chondrogenic differentiation of
human BMSC [68]. The transcriptional permissive marks
H3K4me3, H3K9Ac and H3K36me3 showed similarity be-
tween donors. While H3K4me3 and H3K9Ac levels were
upregulated in activated genes, H3K36me3 showed the stron-
gest correlation, whereas H3K27me3 was increased in re-
pressed genes. H3K27me3 appeared to decrease in
chondrogenic associated genes. Downregulated genes showed
a decrease in H3K4me3, H3K9Ac and H3K36me3, with the
majority of activated genes showing increased H3K4me3
levels. Gene ontology analysis of H3K4me3 genes showed
enrichment for skeletal development, extracellular matrix
molecules and chondrocyte differentiation. Genes with down-
regulated H3K4me3 were enriched for apoptosis, develop-
ment and metabolism pathways. Genes that were not upregu-
lated but had H3K4me3 did not exhibit increased levels of
H3K9Ac or H3K36me3. Based on the enhancer marks
H3K4mel and H3K27Ac, the majority of upregulated genes
were in the vicinity of enhancers. Chondrogenic signature

genes were found to be hypomethylated before and after dif-
ferentiation illustrating that DNA methylation has no signifi-
cant role in chondrogenesis. A similar study examining chon-
drogenesis in vitro employed a gene stratification analysis into
low, middle and high expression. Histone methylation marks
H3K4me3, H3K27Ac, H3K4mel and H3K36me3 were asso-
ciated with high expressing genes [69]. Conversely,
H3K27me3 was associated with low expressing genes. In dif-
ferentiated chondrocytes, the H3K4mel and H3K27Ac en-
hancer marks correlated with chondrogenesis and cartilage
function. When compared to the NIH road map, which entails
chromatin states of over a hundred different cell types, there
was no significant clustering when excluding enhancer marks.
When enhancer marks were examined, they clustered with
similar cell types such as chondrocytes derived from BMSC.
In addition, the Human Methylation 450k bead ChIP array
was used to examine DNA methylation showing demethyla-
tion predominantly on genes related to chondrogenesis. This
is in contrast to other studies that showed limited DNA meth-
ylation changes, which were biased towards promoters.

Genome-wide epigenetic map analysis during adipogene-
sis, using human adipose-derived MSC and embryonic de-
rived 3T3L1 cells, found increased H3K4me3 levels along
with gene promoters during adipogenesis, while H3K4mel
and H3K27Ac marks were found mainly in promoters, introns
and intergenic regions [70]. H3K36me3 levels were found
across transcribed bodies that increased during adipogenesis.
The repressive mark, H3K27me3, was distributed broadly as-
sociated with inactive genes. Moreover, H3K4mel and
H3K27Ac levels changed dramatically during differentiation
in adipogenic regulated genes, correlating to increased adipo-
cytes, and H3K27Ac levels in all regions. In a study examin-
ing the adipogenic/osteogenic potential of murine BMSC, the
ability of the cells to transdifferentiate from adipocytes to os-
teoblasts was evident at the epigenetic level, implying a plas-
ticity property following lineage maturation [71].

Gene ontology analyses investigating changes in epigenet-
ic profiles of murine BMSC during osteogenic differentiation
revealed genes associated with cell cycle, DNA replication
and non-bone lineage transcription factors were downregulat-
ed, whereas bone differentiation genes were upregulated [72].
Highly upregulated genes showed some changes in H3K4me3
but more so with H3K9Ac. The H3K27Ac and H3K36me3
marks showed a closer relationship, which increased for up-
regulated genes and decreased for downregulated genes. In
addition, most upregulated genes showed a decrease in
H3K27me3 levels, whereas downregulated genes exhibited
no overall changes in H3K27me3 levels. Genome-wide
DNA methylation profiles during osteogenic differentiation
of human BMSC indicate that the UTR region of genes
showed no change in methylation whereas the promoter, exon,
intron and intergenic regions showed significant changes [73].
Binding sites for transcription factors involved in maintaining
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the immature phenotype were hypermethylated, in contrast to
differentiation inducing transcription factors, which were
largely hypomethylated. Therefore, initiation of MSC com-
mitment requires a co-ordinated suppression of genes associ-
ated with MSC stemness, whilst at the same time allowing the
opening of chromatin containing differentiation-associated
genes for transcription to occur. This process appears to be
dependent on epigenetic modification patterns at specific sites
along with whole genes.

Therapeutic Targeting of Epigenetic
Regulators in Osteoporosis

The use of EZH2 inhibitor GSKJ126 reduces H3K27me3
around transcription start sites, enhancing expression of osteo-
genic initiating factors, PTH, BMPs, Wnt genes and extracellular
matrix genes in murine MC3T3 cells [74¢¢], resulting in en-
hanced mineral formation. Micro-computed tomography and
histomorphological analyses showed that GSKJ126 treatment
of mice increased cortical bone thickness in 2-month-old femora
as well as osteoblast numbers. This was also seen in an ovariec-
tomy mouse model as GSKJ126 mitigated bone loss, increased
cortical and trabecular bone in femurs of ovariectomised mice.
Furthermore, studies of BMSC isolated from bone samples of
osteoporotic mice following bilateral ovariectomy demonstrated
that EZH2 was overexpressed in BMSC resulting in increased
levels of the repressive mark H3K27me3 on Wntl, 6 and 10a
[21]. Treating osteoporotic bone-derived MSC with the EZH2
chemical inhibitor, DZnep, increased Wnt expression and en-
hanced osteogenesis whilst reducing adipogenesis [21].

An osteoporotic model based on injecting dexamethasone
into the tibia of mice showed an increase in adipogenesis and
expression of adipogenic genes, PPARY2, C/EBPx and GLUT4,
and a reduction in osteogenic genes Runx2, alkaline phospha-
tase, bone sialoprotein and Osteocalcin [75]. Increased DNA

demethylation was observed on the PPARy2 promoter along
with increases in H3K9, H3K14 and H3K12 acetylation in
MSC derived from osteoporotic bone samples. H3K9me2 levels
also decreased corresponding to a decrease in HDAC1, SETDBI1
and an increase in the H3K9 demethylase, LSD1. Other studies
examining induced bone loss in the femora of rats, due to the lack
of mechanical loading, reported a decrease in the long coding
RNA HI19 coinciding with increased CpG methylation along
with its promoter [76] due to an increase in DNMT1 activity.
H19 activates the Wnt and ERK pathways hence its decrease
leads to decreased osteogenesis. Studies of siRNA mediated
knockdown of DNMT1 gene expression in the femora of rats
were also found to enhance osteogenesis and trabecular number
and bone volume.

The H3K36me3 demethylase, SETD2, has been shown to be
downregulated during adipogenesis, whereas SETD2 levels in-
crease during osteogenesis [51]. Analysis of SETD2 deficiency
in the mesenchymal lineage showed enhanced adipogenesis and
reduced osteogenesis, where SETD2 knockout mice exhibited
reduced cortical bone, trabecular bone number and bone volume,
akin to an osteoporotic-like phenotype. Purified BMSC from
these mice showed differential changes in gene expression pat-
terns, correlating to a dramatic reduction in H3K36me3 levels
mainly occurring in gene bodies, promoters, 3'UTR, and
intergenic regions [51]. Furthermore, SETD2 was found to be
decreased in aged murine BMSC (20-60 weeks), supporting
other findings that H3K36me3 promotes longevity [51].

The H3K4 methylation mark is associated with gene activa-
tion, where the H3K4 demethylase, KDM5A, was found to be
specifically upregulated in both human and mouse BMSC de-
rived from osteoporotic bone samples [31]. Functional studies
demonstrated that overexpression of KDMS5A causes inhibition
of BMP-2 induced BMSC osteogenesis. ChIP analysis of chro-
matin isolated from KDMS5A overexpressing BMSC found low-
er levels of H3K4me3 on the Runx2 promoter. The KDMSA
mediated inhibition of BMSC osteogenic differentiation was

EZH2 ASH1L
HDAC1 TET1
DNMT1 TET2
KDMSA SETD2

— 0

Skeletal
Stem Cell

WNT signaling
HOX genes
NOTCH signaling
BMP2 signaling

Osteoblasts

Fig. 3 Epigenetic enzymes deregulated during osteoporosis. Epigenetic
enzymes deregulated in skeletal stem cells during the onset of
osteoporosis leading to reduced osteoblast numbers and function.
Upregulation of EZH2 and upregulation of DNMT1 inhibits WNT

signalling; downregulation of ASHIL 1| suppresses HOX genes;
upregulation of HDACT inhibits Notch signalling; downregulation of
TET1/2 suppresses Runx2; downregulation of SETD2 and upregulation
of KDMS5A inhibits BMP2 signalling
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restored by the addition of specific KDMS5A short hairpin RNA
or inhibitor. Moreover, bone loss in osteoporotic mice, was partly
rescued following pre-treatment with a chemical inhibitor to
KDMSA activity, demonstrating the regulatory role of
KDMS5A in osteoporosis in mice [31].

Collectively, these preclinical studies highlight the revers-
ible nature of the epigenetic landscape under pathological set-
tings, which is amenable to drug targeting (Fig. 3). However,
it remains to be determined whether chemical inhibitors
targeting epigenetic factors are indeed specific to the appro-
priate enzymes, where many of these are currently being
assessed in human cancer trials. The issue of targeting skeletal
tissue using bone-specific carrier vehicles is also currently
under investigation using various approaches. Finally, the ac-
tivity of epigenetic inhibitors to prevent bone loss in diseases
such as osteoporosis must be considered with caution due to
unexpected consequences such as the potential to diminish the
function or pool of skeletal stem cells over time.

Conclusions

Epigenetic regulation of MSC differentiation is an area that
has progressed rapidly in the last decade with the use of tech-
nologies such as ATAC-seq, ChIP seq, bisulphite sequencing
and 3C-chromatin capture. With more than 20 known histone
modifications and two key DNA modifications, the potential
for unique epigenetic combinations is staggering, illustrating
the field is still in its infancy. The literature up to now shows
that during differentiation, activating histone modifications
consisting of combinations of H3K4me1/2/3, H3K36me3,
H3R17, H3K9Ac and H3K27Ac prevail along with lineage-
specific genes related to osteogenesis, adipogenesis and chon-
drogenesis, depending on the differentiation path. The most
tightly associated mark with lineage transcription is
H3K36me3/H3K4me3 along with gene bodies and transcrip-
tion start sites together with H3K4mel and H3K27Ac that
mark enhancers. The enhancer modifications closely correlate
with active lineage-associated transcription and are sites of
active chromatin remodelling. Commonly seen is the appear-
ance of repressive marks (H3K27me2/3, H3K9me2) on line-
ages not activated to ensure their repression. Although DNA
methylation on promoters is not entirely consistent with
BMSC differentiation, DNA methylation along with gene
bodies and enhancers is closely linked with transcription as
removal of DNA methylation marks is associated with activa-
tion. Epigenetic deregulation in osteoporotic BMSC implies
loss of cell identity with representation of non-bone markers,
compensatory mechanisms cause an increase in early osteo-
genic gene expression to synthesise more bone and changes in
the active and repressive histone marks and DNA methylation
on lineage-associated genes lead to decreased osteogenesis
and enhanced adipogenesis. Further investigations into the

identification of novel epigenetic factors and target genes reg-
ulating MSC differentiation will help progress the develop-
ment of epigenetic drug-specific targeting of skeletal tissues
for a range of orthopaedic-related indications, by coupling
with new drug screening and drug delivery approaches.
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