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Abstract

The insulin-like growth factor (IGF) axis is fundamental for mammalian growth and develop-

ment. However, no comprehensive reference data on gene expression across tissues and

pre- and postnatal developmental stages are available for any given species. Here we pro-

vide systematic promoter- and splice variant specific information on expression of IGF sys-

tem components in embryonic (Day 48), fetal (Day 153), term (Day 277, placenta) and

juvenile (Day 365–396) tissues of domestic cow, a major agricultural species and biomedical

model. Analysis of spatiotemporal changes in expression of IGF1, IGF2, IGF1R, IGF2R,

IGFBP1-8 and IR genes, as well as lncRNAs H19 and AIRN, by qPCR, indicated an overall

increase in expression from embryo to fetal stage, and decrease in expression from fetal to

juvenile stage. The stronger decrease in expression of lncRNAs (average ―16-fold) and

ligands (average ―12.1-fold) compared to receptors (average ―5.7-fold) and binding pro-

teins (average ―4.3-fold) is consistent with known functions of IGF peptides and supports

important roles of lncRNAs in prenatal development. Pronounced overall reduction in post-

natal expression of IGF system components in lung (―12.9-fold) and kidney (―13.2-fold)

are signatures of major changes in organ function while more similar hepatic expression lev-

els (―2.2-fold) are evidence of the endocrine rather than autocrine/paracrine role of IGFs in

postnatal growth regulation. Despite its rapid growth, placenta displayed a more stable

expression pattern than other organs during prenatal development. Quantitative analyses of

contributions of promoters P0-P4 to global IGF2 transcript in fetal tissues revealed that P4

accounted for the bulk of transcript in all tissues but skeletal muscle. Demonstration of IGF2

expression in fetal muscle and postnatal liver from a promoter orthologous to mouse and

human promoter P0 provides further evidence for an evolutionary and developmental shift
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from placenta-specific P0-expression in rodents and suggests that some aspects of bovine

IGF expression may be closer to human than mouse.

Introduction

The insulin-like growth factor (IGF) system is essential for pre- and postnatal growth and

development [1–4] and consists of two growth factors (IGF1, IGF2), type 1 and 2 receptors

(IGF1R, IGF2R), the insulin receptor (IR) with short and long isoforms (IR-A, IR-B), six

major IGF binding proteins (IGFBP1–6) and several lower-affinity binding proteins (IGFBP7

to IGFBP10) [1, 5, 6]. The IGF1 and IGF2 peptides have strong growth promoting endocrine

and paracrine/autocrine actions in a wide range of pre- and postnatal tissues and undergo pro-

nounced changes in expression during prenatal development and after birth [7–13]. Consis-

tently, the IGF1 and IGF2 genes have been identified as quantitative trait loci for growth and

development in several mammalian species, including mouse, pig, bovine and human [14–25].

Expression of IGF1 starts early with transcripts detected in preimplantation stage bovine

and human embryos and in midgestation rat embryos [26–28]. Transcription of IGF1 can be

initiated from exon 1 or 2, producing IGF1 class 1 and 2 mRNAs that yield identical mature

IGF1 proteins [29–32]. The IGF2 gene is subject to genomic imprinting and paternally

expressed in prenatal mammalian tissues, but switches to biallelic expression in a promoter-

and tissue specific manner postnatally [33–38]. Interestingly, in mouse, a sequence in Igf2
intron 2 encodes for an imprinted miRNA that targets non-imprinted Igf1 transcripts [39–41].

In sheep, pig, bovine and human, IGF2 transcripts are expressed from four promoters (IGF2-

P1-4) in a tissue- and developmental stage specific manner [16, 42–47]. The structure of

mouse Igf2 differs significantly from other mammals and transcripts originate from Igf2-

P1-P3, which are orthologous to IGF2-P2-P4 in species discussed above [48], and an additional

placenta-specific promoter (P0). Transcripts equivalent to mouse P0 transcripts have also been

identified in human fetal skeletal muscle and several postnatal tissues, including heart, lung,

liver, muscle and kidney [49, 50]. Furthermore, in mouse, a previously unknown promoter

(Pm) is activated preferentially in mesoderm derived tissues by the expression of antisense

H19 long non-coding RNA (91H). This 91H-mediated Igf2 activation is counteracted by a

large excess of H19 transcripts [51].

The reciprocally imprinted and maternally expressed long non-coding RNA H19 is located

immediately downstream of IGF2 and expression of both genes is intrinsically linked through

shared control elements such as CTCF binding sites [45, 52–56]. More recent analyses in

mouse have shown thatH19 harbors miRNAs, one of which regulates cell proliferation and

placental size, most likely by targeting IGF1R transcript [57]. Furthermore, correlations

between H19 transcript abundance and bovine fetal skeletal muscle and bone mass suggest

that development of other organs may be regulated by H19 [58, 59].

Both IGF ligands signal through combinations of IGF1R and IR homo- and heterodimers,

albeit with different affinities. In bovine and human, alternative splicing of the IR transcript

produces the two receptor isoforms, IR-A and IR-B, that exclude or include exon 11 [60]. Both

form heterodimers with each other and IGF1R [61, 62]. IR-A isoform displays higher affinity

for IGF2 than IGF1, while IR-B has a high specificity for insulin [63]. The IGF1 peptide signals

through homodimers of IGF1R and heterodimers of IGF1R and IR-A or IR-B, while IGF2 pep-

tide signals through homodimers of IGF1R and IR-A and heterodimers of IGF1R and IR-A or

IRA and IR-B [61, 63–65]. The IGF1R gene is expressed ubiquitously and has a major role in

maintenance of tissue growth and development [66, 67]. Mutation or ablation of IGF1R leads
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to growth retardation and/or growth failure more severe than IGF1 deletion [68]. In human,

but not mouse, lack of functional IR leads to severe intrauterine growth retardation [69, 70].

In contrast to IGF1R and IR receptors, multifunctional IGF2R is primarily a regulator of

IGF2 bioavailability and acts as a scavenger receptor that internalizes IGF2 and targets it for

lysosomal degradation [71]. However, studies on stimulation of human trophoblast cell inva-

sion by IGF2 suggest intrinsic signaling functions for IGF2R in placenta via the MAPK path-

way [72]. The IGF2R gene is imprinted and maternally expressed in all investigated species,

including bovine, with the exception of human, where imprinting appears to be polymorphic

[73–77]. Ablation of IGF2R in mouse results in severe fetal overgrowth [78] and association of

IGF2R alleles with postnatal growth parameters in cow suggests a general role for IGF2R in

growth regulation [79]. Imprinted expression of mouse Igf2r is controlled by a reciprocally

imprinted antisense of Igf2rnon-protein coding RNA Airn; orthologues of Airn are also

expressed in bovine and human [80–82]. However, data on tissue specific developmentally

regulated expression of this RNA is lacking.

The IGFBPs modulate bioavailability of IGFs with affinities up to 50-fold higher than

IGF1R [83]. Deletion and overexpression models demonstrated organ-specific and general

effects of IGFBPs on growth and development [84–87]. The discovery of low affinity IGFBP-

related proteins, including IGFBP7 and IGFBP8, has led to the proposal of an IGFBP super-

family [5, 83, 88]. Mice deficient in IGFBP8 die in the perinatal period due to respiratory fail-

ure and displayed generalized chondrodysplasia [89].

Expression patterns of genes in the IGF system are highly developmentally regulated [13,

90–100], but changes in tissue specific expression across pre- and postnatal stages by quantita-

tive PCR have not been systematically examined in any species. Here we comprehensively

characterize changes in transcript abundances of IGF system genes and associated regulatory

long non-coding RNAs in a range of tissues at key developmental time points, i.e., (i) transi-

tion from embryo to fetal stage, (ii) fetal stage entering accelerated growth phase and (iii) juve-

nile stage around puberty. The resulting atlas of tissue- and developmental stage specific

expression of the insulin-like growth factor system in bovine is a valuable resource that pro-

vides important reference data for future studies of the mammalian IGF system and yields

novel insights into similarities and differences between animal model and human.

Materials and methods

Animals and tissues

All animal experiments and procedures described in this study were approved by the University

of Adelaide, Adelaide, Australia, Animal Ethics Committee (No. S-094-2005 and S-094-2005A)

and the Department of Agriculture, Fisheries and Forestry (DAFF) Animal Ethics Committee,

Queensland, Australia (No. SA 2008/01/227 and SA 2010/12/339). We used dams and sires of

the two subspecies of domestic cow, Bos taurus taurus (Angus, A) and Bos taurus indicus (Brah-

man, B), to generate a large number of purebred and reciprocal cross Day 48 embryos (n = 60)

and Day 153 fetuses (n = 73) for samples of prenatal tissues. A set of Day 278 calves (term, Day

277–291, n = 17) was delivered by cesarean section for near term placental samples and later

used to obtain samples from juveniles at 12–14 months of age. Further information on samples

for RNA extraction and cDNA synthesis (see below) is provided in S1 Table.

To establish pregnancies for recovery of embryos, fetuses and calves, including placenta,

dams were subjected to standard commercial estrous cycle synchronization protocols using

Cidirol—Heat Detection and Timed Insemination (HTI) and Cidirol—Timed Insemination

(TI) procedures as described previously [101]. All pregnancies were confirmed by ultrasound

scanning and embryo, fetal and juvenile tissues obtained after sacrificing animals in an
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abattoir. All samples were fixed in RNA-later1 for 24 hours at 4˚C before freezing at -80˚C

until RNA extraction.

RNA isolation and reverse transcription

All fetal and juvenile tissue samples and cesarean section placental samples were homogenized

with ceramic beads (MoBio Laboratories, Carlsbad, CA, USA) using the Precellys124 tissue

homogenizer (Bertin Technologies, Saint Quentinen Yvelines Cedex, France). Total RNA was

extracted using TRI Reagent1 (Ambion, Life Technologies™, Inc., Carlsbad, CA, USA)

according to the manufacturer’s instructions. Embryonic tissues were homogenized with

ceramic beads (MoBio Laboratories, Carlsbad, CA, USA) and the PowerLyzer™ 24 homoge-

nizer (MoBio Laboratories, Carlsbad, CA, USA). Total RNA from embryonic liver and pla-

centa was isolated with TRI Reagent1. Due to small sample size for embryonic brain and

heart, AllPrep™ DNA/RNA Micro Kits (Qiagen GmbH, Inc., Hilden, Germany) were used for

extraction of nucleic acids. Quantity of RNA was determined by repeated measurements with

NanoDrop (ThermoFisher Scientific, Waltham, MA, USA). Quality of RNA was assessed

using the Agilent RNA 6000 Nano Kit with a Bioanalyzer 2100 (Agilent Technology Inc., Santa

Clara, CA, USA). The mean RNA integrity numbers (RIN) of extracted RNAs from different

tissues measured by Bioanalyzer System (Agilent Technologies Inc., Santa Clara, CA, USA) are

presented in S2 Table.

Complementary DNA (cDNA) was synthesized from 500 ng DNase I (RQ1-DNase, Pro-

mega, Madison, WI, USA) treated RNA of each individual tissue sample using SuperScript™
III First-Strand Synthesis System (Invitrogen, Life Technologies™, Inc., Carlsbad, CA, USA)

and random hexamer oligonucleotides following the manufacturer’s instructions.

Target transcript amplification strategy and quantitative real time PCR

Transcripts quantified included IGF1 global transcript and the splice variants IGF1 class 1 and

IGF1 class 2; IGF2 global transcript and promoter specific transcripts originating from P0, P1

(two transcripts, P1e2 and P1e3), P2 (two splice variants, P2e4 and P2e5), P3 and P4; IGF1R-
and IGF2R transcript, IR global transcript and splice variants IR-A and IR-B; IGFBP1–8, as well

asH19 and AIRN long noncoding RNA transcripts. Primers were designed to be isoform-spe-

cific and span two exons or an exon/intron junction to avoid amplification of genomic DNA

sequences. Primer information for all amplicons of target genes is detailed in S3 Table. Primer

design for promoter and splice variant specific IGF2 transcripts required extensive in silico anal-

yses in order to be able to assess the complex transcript structure of this gene. Sequences and

exon/intron structures for these analyses were retrieved from the literature [16, 43], National

Center for Biotechnology Information (NCBI) GenBank database (NCBI reference sequence:

AC_000186.1; Gene ID: 281240) and Ensembl project database (ENSBTAG00000013066.5).

Since transcripts from P0 promoter were not previously identified in bovine, we performed a

sequence similarity search using Basic Local Alignment Search Tool [102] of NCBI, and identi-

fied a highly conserved region upstream of bovine IGF2 exon 2 that corresponded to the human

P0 promoter showing (69% homology) [50]. Therefore we hypothesized the existence of a puta-

tive orthologous promoter in bovine. An overview of our identification and quantification strat-

egy for IGF2 transcripts in the context of the genomic structure of INS/IGF2 (GenBank

accession no. EU518675.1) is presented in Fig 1.

The first part of this study was designed to systematically measure expression of IGF system

components across a broad range of developmental stages and tissues. In light of the fundamen-

tal problem to identify stable reference genes across tissues of such rapidly changing develop-

mental stages we opted for a cDNA pooling strategy to assess spatial and temporal differences
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in expression level. An equal proportion of cDNA from each individual was combined and

pooled cDNA used as template in real-time qPCR reactions. The number and sex of individual

Fig 1. Bovine IGF2 gene and transcript structure with primer locations for amplification of promoter specific transcripts and splice variants. The exon-intron

structure of bovine insulin/insulin-like growth factor 2 (INS/IGF2, GenBank accession no. EU518675.1) with locations of five promoters (P0, P1, P2, P3 and P4) is shown

at the top with promoters (IGF2-P0 –P4) and splice variant specific transcripts indicated below. Red and green boxes depict untranslated and protein coding exons,

respectively. Forward (F) and reverse (R) primers are indicated with region spanned, including intron where applicable, symbolized by a black bar between primers above

the transcript. According to the transcription initiation site of human IGF2-P0 transcript, the putative orthologous bovine transcript is predicted to originate from a highly

conserved region located upstream of the splice donor site of transcript P1 exon 2. We could specifically amplify bovine IGF2-P0 using a strategically designed forward

primer within this unique 5’-UTR sequence and the reverse primer located within exon 2. The two splice variants of P1 promoter transcripts include leading exon 1 which

is alternatively spliced onto exons 2 and 3 (IGF2-P1e2) and exon 3 (IGF2-P1e3) plus the coding exons. In order to amplify the P1 promoter transcripts, two pairs of

primers located within exon 2 (for IGF2-P1e2) and exons 3 and 8 (for IGF2-P1e3) were used. This approach was necessary because specific amplification of transcripts

derived from P1 promoter failed due to lack of suitable PCR primer sequence in exon 1. Since IGF2-transcript P1 exon 2 is part of the first exonic region of transcript

IGF2-P0, and exon 3 is present in both IGF2-P0 and IGF2-P1 transcripts, the IGF2-P1e2 and -P1e3 amplicons could potentially derive from P0 and/or P1 promoters,

depending on tissue and developmental stage. We quantified transcript abundances for two splice variants derived from IGF2-P2 promoter which comprise leading exon 4

(IGF2-P2e4) or leading exons 4 and 5 (IGF2-P2e5) as well as the protein coding exons. The forward primer for IGF2-P2e4 was designed to span the junction of exons 4 and

8, and for IGF2-P2e5 was in exon 5 with the reverse primer for both splice variants in exon 8. To amplify IGF2-P3 and IGF2-P4 transcripts, forward primers were designed

within exons 6 and 7 with the reverse primer located within exon 8. All primers are detailed in S3 Table.

https://doi.org/10.1371/journal.pone.0200466.g001
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tissue cDNA samples from different developmental stages used in cDNA pools is summarized

in S1 Table. An equal proportion of cDNA from all tissue- and developmental stage specific

cDNA pools was again pooled to generate a cDNA template for standard curve analysis. The

standard curve included 3-fold serial dilutions of initial pooled cDNA template over eight data

points. Three replicates were used for each dilution of the cDNA template. Real-time qPCR

reactions were performed using Fast Start Universal SYBR Green Master (Roche Diagnostics

GmbH, Mannheim, Germany) in an Eppendorf Mastercycler1 ep realplex Real-time PCR Sys-

tem (Eppendorf Inc., Hamburg, Germany) following minimum information for publication of

quantitative real-time PCR experiments (MIQE) guidelines [103]. The CT (threshold cycle) val-

ues of the standards were used to derive a standard curve which shows the CT values as a linear

function of natural logarithm of the specified amounts of cDNA. All qPCR reactions were per-

formed in a total volume of 12 μl, containing 6 μl of SYBR master mix, 4 μl of cDNA (equivalent

to 12.5 ng of starting RNA), 0.8 μl of primers (5 pmol/μl) and 1.2 μl of double distilled nuclease-

free water. PCR was carried out with a 10 minute initial denaturation/activation step at 95˚C,

followed by 40 cycles of 95˚C for 20 seconds, 57–62˚C (annealing temperatures, S2 Table) for

30 seconds and 72˚C for 20 seconds. Tissue- and developmental stage specific qPCR reactions

were performed in triplicate and all investigated tissues and developmental stages were covered

in one 96 well plate for each target transcript. Target specificity and integrity was confirmed via

sequencing of selected amplicons on a 3730xlDNA Analyzer (Applied Biosystems, Inc., Foster

City, CA, USA), plots of the melting curve derived by Mastercycler1 ep Realplex software

(Eppendorf, Inc., Hamburg, Germany), and by electrophoresis of PCR products on a 2% aga-

rose gel (Agarose low EEO, AppliChem GmbH, Darmstadt, Germany) and visual inspection

under UV with Gel DocTM 1000 Single Wavelength Mini-Transilluminator, using Quantity

One image analyzing software (Bio-Rad Laboratories, Inc., Hercules, CA, USA) after staining

with GelRed™ Nucleic Acid Stain (Biotium, Inc., Hayward, CA, USA). Melt-curve dissociation

analyses were performed to ensure that amplifications were free of primer dimers; amplification

efficiencies were≧ 0.9.

The relative abundance of each target transcript was calculated by the relative standard

curve method, with determination of PCR amplification efficiency, and expressed in relative

units. Transcript abundances are presented in logarithmic scale due to the magnitude of differ-

ences between tissues and developmental stages. Since pooled cDNA was used in the quantita-

tive real time RT-PCR reactions for this part of the study, expression data was not normalized

using reference genes. We deemed it not appropriate to perform statistical significance tests on

technical replicates to compare the average transcript abundances between developmental

stages. Rather, we present means and their respective standard deviations from triplicate analy-

ses. Indeed, magnitudes of the vast majority of differences in transcript abundances are such

that any statistical testing would have added no meaningful additional information.

Contribution of IGF2 promoter specific transcripts to global IGF2
transcript

In the second part of this study we quantified transcript abundances of IGF2 global and pro-

moter specific transcripts in individual RNA samples of Day 153 fetuses for each of the studied

tissues and using Johnson’s Relative Weight procedure determined the contribution of the pro-

moter specific transcripts to global expression [104, 105]. This procedure is based on using indi-

vidual sample values. It requires normalization against reference genes and provides robust

estimates for relative promoter-specific contributions to global transcript, including confidence

intervals. Each qPCR experiment for this analysis was performed in duplicate and the mean of

both CTs used to calculate the amount of target transcript. An equal proportion of cDNA from
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all fetuses in each tissue was pooled to generate a cDNA template for standard curve analysis.

The standard curve included 2-fold serial dilutions of pooled cDNA template over eight data

points, analyzed in triplicate. The relative abundance of each target transcript was automatically

calculated by Mastercycler1 ep Realplex software (Eppendorf, Inc., Hamburg, Germany) using

the relative standard curve method.

We determined expression levels of seven putative reference genes identified by a literature

search, including actin beta (ACTB), ribosomal protein S9 (RPS9), ubiquitin B (UBB), H3 his-

tone family 3A (H3F3A), TATA box binding protein (TBP) and vacuolar protein sorting 4

homolog A (VPS4A), in each fetal tissue. In placenta, expression level of glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH) was determined instead ofH3F3A. Details of primers for ampli-

fication of reference genes are given in S4 Table. As the variation in expression of reference

genes frequently differs between tissues, we used NormFinder [106] to identify the most stably

expressed genes in each tissue for normalization following recommended procedures. Norm-

Finder uses a model-based approach which enables ranking of reference genes based on stability

values, suggesting the best combination of most stably expressed genes. Tissue-specific stability

values for all putative reference genes are summarized in S5 Table. Expression levels of IGF2
global and promoter specific transcripts in each tissue were normalized to the geometric mean

of the expression levels of identified reference genes [107].

The relative contribution of each promoter specific transcript to global IGF2 transcript

abundance was then calculated by Johnson’s Relative Weight procedure [104, 105] using an

SPSS program developed previously [108]. The following linear regression models were used

to analyze tissue-specific relative contributions of promoter specific transcripts (P0, P2, P3 and

P4) to global IGF2 expression:

IGF2 skeletal muscle = IGF2-P0 + IGF2-P2e4 + IGF2-P2e5 + IGF2-P3 + IGF2-P4

IGF2 liver = IGF2-P2e4 + IGF2-P2e5 + IGF2-P3 + IGF2-P4

IGF2 placenta,heart,lung,kidney = IGF2-P2e5 + IGF2-P3 + IGF2-P4

where IGF2 is the relative expression normalized to the reference genes of global IGF2, and

IGF2-P0, IGF2-P3 and IGF2-P4 are relative expression of the transcripts derived from P0, P3

and P4 promoters, respectively. IGF2-P2e4 (transcript with untranslated leader exon 4) and

IGF2-P2e5 (transcript with untranslated leader exons 4 and 5) are relative expression of the

splice variants derived from P2 promoter. Not every equation includes all promoters due to tis-

sue-specific expression.

Results

Tissue- and developmental stage specific expression of IGF system

components

Insulin-like growth factors 1 and 2. Across tissues and developmental stages juvenile

liver and fetal skeletal muscle displayed the highest levels of global IGF1 transcript. Expression

in brain and heart peaked at the fetal stage and was lower in most juvenile tissues, with a nota-

ble 60.7-fold reduction in lung (Fig 2 and S6 and S7 Tables). An exception was juvenile liver,

where IGF1 expression was 36.5-fold higher than in fetal liver (Fig 2 and S7 Table). Generally,

across tissues and developmental stages, the pattern of IGF1 class 1 expression was similar to

global IGF1 expression, while IGF1 class 2 showed a very different pattern. In addition, postna-

tal increase in liver IGF1 class 1 and class 2 transcript differed significantly at 13-fold and

165-fold, respectively (Fig 2). The highest level of IGF1 class 2 transcript amongst all prenatal

tissues was measured in embryonic placenta, from where it declined towards term (Fig 2).

Global IGF2 transcript levels were highest in embryonic and fetal liver, and fetal lung and

skeletal muscle, while liver was the major tissue expressing IGF2 in juveniles. Brain displayed
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Fig 2. Tissue-specific expression profiles of IGF system ligands in bovine pre- and postnatal developmental stages. Abundances of global IGF1 transcript and

splice variants IGF1 class 1 and 2, global IGF2 transcript and promoter and splice variant-specific IGF2-P0, IGF2-P1e2, IGF2-P1e3, IGF2-P2e4, IGF2-P2e5, IGF2-P3

and IGF2-P4 transcript were measured in tissues of Day 48 embryos, Day 153 fetuses and 12–14 month-old juveniles. Placental samples were obtained from Day 48

embryos, Day 153 fetuses and term calves born by Caesarean section (C-section) at Day 277/278 of gestation. Means and standard deviations of means for each

transcript and tissue were calculated based on triplicate measures of pooled cDNA comprising up to 60 embryonic cDNA samples, 73 fetal cDNA samples, 5

placental cDNA samples of C-section calves and 17 juvenile cDNA samples. Transcript abundances were calculated by the standard curve method and expressed in

relative units, and are presented in logarithmic scale. ‘m’ denotes missing tissue such as kidney that is not yet present in embryos, where transcript abundances

could not be determined.

https://doi.org/10.1371/journal.pone.0200466.g002
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the lowest expression levels of global IGF2 transcript across all tissues and developmental

stages but expression was still subject to substantial developmental change and 6-fold lower in

juveniles as compared to prenatal stages (Fig 2 and S6 and S7 Tables). A drastic decline in

global IGF2 expression was evident in juvenile lung where transcript abundance was 355-fold

lower as compared to the fetal stage. In contrast, IGF2 expression in juvenile liver was only

4-fold lower than in fetal liver (Fig 2 and S7 Table).

Prenatal expression of transcripts from IGF2-P0 promoter was confined to fetal skeletal

muscle and testis, with a 30-fold higher abundance in skeletal muscle. Postnatally, the IGF2-P0

transcript was only present in liver and at a level comparable to fetal skeletal muscle (Fig 2).

The IGF2-P1e2 amplicon was not detected in embryo tissues, but present in fetal skeletal mus-

cle, lung and liver. In juveniles, it was restricted to liver with 294-fold higher abundance than

in the fetus. In the embryo, IGF2-P1e3 amplicon was only detected in liver, but by the fetal

stage it was also present in heart, kidney and, at the highest level of all prenatal tissues, skeletal

muscle. In juveniles this amplicon was again restricted to liver at a level 218-fold higher than at

the fetal stage (Fig 2).

Comparison of expression patterns of IGF2-P2 splice variants revealed that IGF2-P2e4

expression was highest in embryonic and fetal liver and 68-fold lower in the juvenile organ.

Transcript abundances for IGF2-P2e5 followed a similar pattern as IGF2-P2e4 except for lung,

where it was also detected in juveniles, and for placenta, where it declined from embryo to

term (Fig 2).

Expression of IGF2-P3 promoter transcript was higher in embryonic heart and liver than at

the fetal stage. Apart from brain, where expression across developmental stages was very low,

this transcript was subject to striking developmental changes. In juveniles, compared to the

fetal stage, expression was reduced by 4639-fold in lung, 775-fold in kidney, 179-fold in skeletal

muscle, 113-fold in heart and 74-fold in liver. In placenta, expression of IGF2-P3 declined

throughout gestation with a 20-fold reduction from fetal stage to term (Fig 2). The develop-

mental and tissue specific expression pattern of IGF2-P4 was similar to IGF2-P3 except for

fetal lung, where IGF2-P4 transcript was expressed at the same level as fetal kidney; both IGF2-
P3 and IGF2-P4 expression patterns were more similar to that of global IGF2 transcript than

any other IGF2 promoter specific transcript (Fig 2).

Insulin-like growth factor receptors 1 and 2 and insulin receptor. In comparison to

other receptors, IR displayed less variation in expression across tissues and developmental

stages (Fig 3 and S6–S8 Tables). The highest global IR transcript levels of all embryonic and

postnatal tissues were measured in liver while expression at the fetal stage was highest in skele-

tal muscle and at similar high levels in heart, kidney, liver, lung and testis. Reduction in post-

natal IR expression was modest with 3.7-, 2.8- and 1.5-fold lower global transcript levels in

juvenile kidney, lung and skeletal muscle than in respective fetal tissues. In placenta, global IR
transcript abundance remained constant from embryo until term (Fig 3 and S6–S8 Tables).

The relative temporal-spatial expression pattern for IR-A transcript was strikingly similar to

global IR (Fig 3). As compared to the fetal stage, expression of IR-A was 2-fold lower in juve-

nile brain, heart and liver, and 4- and 3-fold lower in postnatal kidney and lung, respectively

(Fig 3). The IR-B transcript displayed a somewhat stronger postnatal decline with 2-, 4-, 6-

and 9-fold lower transcript levels in juvenile heart, brain, lung, and kidney, respectively than

in fetal tissues. In placenta, IR-A and IR-B transcript levels were remarkably stable throughout

gestation (Fig 3).

In brain and liver, IGF1Rwas expressed at similar levels and declined from embryo- to

fetal- and juvenile stage. Expression in heart peaked at the fetal stage. In juvenile lung and kid-

ney, transcript levels were 17- and 20-fold lower, respectively, as compared to fetal organs. The

highest transcript abundance of IGF1R for juveniles was measured in heart and skeletal muscle
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(Fig 3 and S7 Table). Compared to other prenatal tissues, IGF1R transcript was less abundant

in placenta, where it was lowest at the fetal stage and highest at term (Fig 3).

Expression of IGF2R transcript was highest in fetuses and lowest in juveniles in all investi-

gated tissues. The increase in expression from embryo to fetal stage ranged from 2.5-fold in

liver to 4.9-fold in heart with highest transcript levels observed in fetal heart, liver and lung

and lowest levels in brain (Fig 3 and S6 Table). In juveniles, IGF2R expression was highest in

liver followed by skeletal muscle. Lung revealed the most remarkable postnatal change with a

58.6-fold lower transcript level in juvenile compared to the fetal stage. In contrast, postnatal

expression of IGF2R in skeletal muscle was only 2.4-fold lower than at the fetal stage (Fig 3

and S7 Table). In placenta, IGF2R transcript abundance was 6.2-fold lower at term than at

mid-gestation (Fig 3 and S8 Table).

Insulin-like growth factor binding proteins. We analyzed expression patterns of high

affinity IGFBP1 to 6 as well as low affinity IGFBP7 and IGFBP8 (Fig 4). The IGFBP1 gene dis-

played a unique expression pattern among IGFBPs with almost exclusive expression in liver at

all studied developmental stages where transcript abundance in juvenile was 2-fold lower as

compared to prenatal stages (Fig 4, S6 and S7 Tables). At the embryo stage, IGFBP2 expression

was highest in brain with a 14-fold lower transcript abundance by the fetal stage and only a

slight further decline in juvenile (Fig 4, S6 and S7 Tables). By the fetal stage, and amongst all

sampled tissues, the highest amount of IGFBP2 transcript was measured in liver. High expres-

sion was also detected in kidney, while the lowest amounts of IGFBP2 transcript were observed

Fig 3. Tissue-specific expression profiles of IGF system receptors in bovine pre- and postnatal developmental stages. Abundances of global IR transcript and

splice variants IR-A and IR-B, IGF1R and IGF2Rwere measured in tissues of Day 48 embryos, Day 153 fetuses and 12–14 month-old juveniles. Placental samples

were obtained from Day 48 embryos, Day 153 fetuses and term calves born by Caesarean section (C-section) at Day 277/278 of gestation. Means and standard

deviations of means for each transcript and tissue were calculated based on triplicate measures of pooled cDNA comprising up to 60 embryonic cDNA samples, 73

fetal cDNA samples, 5 placental cDNA samples of C-section calves and 17 juvenile cDNA samples. Transcript abundances were calculated by the standard curve

method and expressed in relative units, and are presented in logarithmic scale. ‘m’ denotes missing tissue such as kidney that is not yet present in embryos, where

transcript abundances could not be determined.

https://doi.org/10.1371/journal.pone.0200466.g003
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in fetal lung and placenta. In juvenile, IGFBP2 expression was still highest in liver at a level simi-

lar to the embryo stage, while transcript abundance in kidney, heart and skeletal muscle were

3–16-, 67- and 106-fold lower than at the fetal stage (Fig 4 and S7 Table). Expression of IGFBP2
was comparatively low and constant in embryonic and fetal placenta, and further declined by

10-fold at term (Fig 4 and S7 Table). Expression of IGFBP3was highest in liver, where it

remained stable across developmental time points, and in placenta and testis. Expression was

lower in heart and brain, with a peak at the fetal stage. The 15-fold decline in postnatal expres-

sion of IGFBP3 in lung was higher than in any other tissue (Fig 4 and S7 Table). The high level

of embryonic placental IGFBP3 expression was also observed at late gestation (Fig 4). The

Fig 4. Tissue-specific expression profiles of IGF system binding proteins in bovine pre- and postnatal developmental stages. Abundances of transcripts for

IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, IGFBP6, IGFBP7 and IGFBP8were measured in tissues of Day 48 embryos, Day 153 fetuses and 12–14 month-old

juveniles. Placental samples were obtained from Day 48 embryos, Day 153 fetuses and term calves born by Caesarean section (C-section) at Day 277/278 of

gestation. Means and standard deviations of means for each transcript and tissue were calculated based on triplicate measures of pooled cDNA comprising up to 60

embryonic cDNA samples, 73 fetal cDNA samples, 5 placental cDNA samples of C-section calves and 17 juvenile cDNA samples. Transcript abundances were

calculated by the standard curve method and expressed in relative units, and are presented in logarithmic scale. ‘m’ denotes missing tissue such as kidney that is not

yet present in embryos, where transcript abundances could not be determined.

https://doi.org/10.1371/journal.pone.0200466.g004
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IGFBP4 gene was the only gene from the IGFBP family whose expression showed a postnatal

organ-specific increase in expression level. Here, transcript abundance in juvenile liver was 4.5–

fold higher than at the fetal stage. In other juvenile tissues, transcript abundances were lower

than at the fetal stage and at a similar level with a more pronounced 18-fold reduction in skeletal

muscle. Brain and placenta exhibited the lowest IGFBP4 transcript levels at all developmental

stages (Fig 4 and S7 Table). Expression of IGFBP5 peaked at the fetal stage in brain, heart and

liver and declined in juvenile tissues. The highest transcript levels of IGFBP5were measured in

fetal heart and kidney. Brain and lung showed the strongest postnatal decline by 16.4- and

13-fold, respectively. In juveniles, IGFBP5 transcript abundance was highest in heart and skele-

tal muscle and lowest in brain and liver (Fig 4 and S7 Table). Placenta displayed comparatively

low and stable expression levels of IGFBP5 from embryo to term (Fig 4). Abundance of IGFBP6
transcript increased from embryo to fetal stage and was highest in fetal testis and skeletal mus-

cle. Expression remained high in juvenile skeletal muscle and only kidney and lung displayed a

6-fold decline in transcript abundance compared to the fetal stage. Similar to IGFBP5, expres-

sion of IGFBP6was lowest in liver and placenta, but unlike IGFBP5, expression did not decline

markedly in postnatal brain and liver (Fig 4 and S7 Table).

We measured transcript abundances for two low affinity IGFBPs, IGFBP7 and 8. Expres-

sion of IGFBP7was highest in skeletal muscle and heart and lowest in placenta at all develop-

mental stages. At the fetal stage, transcript abundance in skeletal muscle was substantially

higher than in other tissues followed by a 12.7-fold decline in juvenile skeletal muscle. Postna-

tal expression of IGFBP7 in kidney also declined by 10-fold (Fig 4 and S7 Table). Abundance

of IGFBP8 transcripts was highest in heart and lowest in placenta at all developmental stages.

Fetal and juvenile skeletal muscle and fetal testis also showed high levels of IGFBP8 expression.

Expression of IGFBP8 in juvenile tissues was lower with an approximately 6-fold decline in

liver and kidney from the fetal stage (Fig 4 and S7 Table).

Tissue- and developmental stage specific expression of lncRNAs

We investigated expression of the two imprinted long non-coding RNA genes associated with

the IGF system,H19 and AIRN. Across all tissues, expression ofH19was highest in the embryo,

declined slightly by the fetal stage and was substantially lower in juvenile (Fig 5, S6 and S7

Tables). Embryonic and fetal liver displayed the highest, and brain the lowest,H19 transcript

levels of all prenatal tissues. Similar and comparatively high levels ofH19 transcript were found

in fetal kidney, lung and skeletal muscle with somewhat lower levels in heart and testis. Kidney

displayed the strongest decline in postnatalH19 expression with more than 100-fold lower tran-

script abundance as compared to the fetal stage. Amongst postnatal tissues,H19 transcript level

was highest in skeletal muscle which displayed a 9-fold reduction from fetal to juvenile stage.

Expression ofH19 in placenta declined 2-fold from embryo to fetal stage and was unchanged at

term (Fig 5, S7 and S8 Tables).

Expression of AIRN transcript increased from embryo to fetal stage and declined in juvenile

tissues (Fig 5, S6 and S7 Tables). Across developmental stages AIRN transcript was most

abundant in liver with 10-fold lower expression in juvenile. Expression was also high in fetal

kidney and lung, which showed the strongest decline in transcript abundance with 58- and

29-fold lower transcript levels in juvenile. Brain and heart displayed similar AIRN expression

levels at the embryo and juvenile stages and brain, heart and skeletal muscle had a similar,

milder reduction in expression level in juvenile as compared to fetal tissues (Fig 5, S7 Table).

Placental expression of AIRNwas similar at the embryo and fetal stage, but 6-fold lower at

term (Fig 5 and S8 Table).
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Contribution of promoter specific IGF2 transcripts to global IGF2
transcript abundance in fetal tissues

We determined for the first time the contribution of promoter-specific IGF2 transcripts (Figs

1 and 2) to global IGF2 transcript in fetal tissues including placenta by multiple regression

analysis (Fig 6). Estimated means with 95% confidence intervals are presented in S9 Table.

Contributions of 53%, 61%, 72% and 90% to global IGF2 transcript identified IGF2-P4 as the

predominant promoter in bovine fetal liver, lung, heart and kidney, respectively. This pro-

moter was also responsible for 64% of all IGF2 transcripts measured in placenta. Amongst all

tissues studied, IGF2-P4 was least active in skeletal muscle but it still contributed 28% of global

transcript. The second most abundant transcript in fetal lung, heart and placenta was IGF2-P2

derived IGF2-P2e5, accounting for 31%, 24%, and 24% of global transcript, respectively. How-

ever in fetal liver and skeletal muscle, the alternative splice variant derived from IGF2-P2 pro-

moter, IGF2-P2e4 transcript, dominated and accounted for 44% and 35% of global IGF2
expression, respectively. Although IGF2-P0 accounted for 30% of global IGF2 and was there-

fore one of the most common IGF2 transcripts in muscle, it did not contribute to IGF2 expres-

sion in any other fetal tissue or placenta. Promotor IGF2-P3 was active at low levels with

contributions of 1–8% in fetal tissues and 12% in placenta.

Discussion

We provide here an atlas of tissue- and developmental stage specific gene expression for the

bovine insulin-like growth factor (IGF) system, including imprinted long non-coding (lnc)

RNAs H19 and AIRN. This mammalian IGF expression catalogue informs basic and compara-

tive IGF research and provides reference data for an important agricultural species and bio-

medical model.

Our comprehensive profile of expression patterns and comparisons of pre- and postnatal

changes in expression of IGF ligands support established roles of IGF1 in growth and develop-

ment [109]. Across developmental stages and tissues, global IGF1 expression was highest in

juvenile liver, consistent with data from sheep [31, 110], mouse [111] and rat [112–114]. How-

ever, IGF1 expression in all other tissues peaked at the fetal stage, a clear indication of the

Fig 5. Tissue-specific expression profiles of long non-coding RNAs associated with the IGF system in bovine pre- and postnatal

developmental stages. Abundances of H19 and AIRN transcript were measured in tissues of Day 48 embryos, Day 153 fetuses and 12–14 month-

old juveniles. Placental samples were obtained from Day 48 embryos, Day 153 fetuses and term calves born by Caesarean section (C-section) at

Day 277/278 of gestation. Means and standard deviations of means for each transcript and tissue were calculated based on triplicate measures of

pooled cDNA comprising up to 60 embryonic cDNA samples, 73 fetal cDNA samples, 5 placental cDNA samples of C-section calves and 17

juvenile cDNA samples. Transcript abundances were calculated by the standard curve method and expressed in relative units, and are presented in

logarithmic scale. ‘m’ denotes missing tissue such as kidney that is not yet present in embryos, where transcript abundances could not be

determined.

https://doi.org/10.1371/journal.pone.0200466.g005
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significant role of IGF1 in mammalian prenatal growth [2, 97, 115, 116]. As reported previ-

ously [117], expression was highest in fetal muscle where IGF1 has protein anabolic effects

[118]. The expression pattern for IGF1 class 1 transcript was more similar to IGF1 global

Fig 6. Relative contribution of promoter and splice variant-specific IGF2 transcripts to global IGF2 transcript abundance in

fetal tissues and placenta. IGF2-P0, IGF2-P3 and IGF2-P4 are percent transcript abundance derived from P0, P3 and P4 promoters,

respectively. Splice variants of promoter P2 transcript are IGF2-P2e4 with untranslated leader exon 4 and IGF2-P2e5 with

untranslated leader exons 4 and 5. Estimated means are from 73 fetal cDNA samples per tissue and 95% confidence intervals are

detailed in S9 Table. Transcript abundances were calculated by the standard curve method, normalized with reference genes and

expressed in relative units. The relative contribution of each promoter-specific transcript to global IGF2 transcript abundance was

calculated by Johnson’s Relative Weight procedure.

https://doi.org/10.1371/journal.pone.0200466.g006
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transcript, suggesting that class 1 is the predominant transcript across tissues and developmen-

tal stages. In skeletal muscle and liver of the third trimester sheep fetus, IGF1 class 1 transcript

was also much more abundant than class 2 transcript [97]. Expression of IGF1 class 2 tran-

script displayed considerable developmental stage and tissue specificity, with strongest expres-

sion in postnatal liver. Stronger postnatal hepatic expression of IGF1 class 2 compared to class

1 transcript could be due to greater dependency of this transcript on growth hormone as

shown in sheep [110]. Our data thus extends previous limited information on IGF1 class 1 and

2 transcript expression in pre- and postnatal tissues of cattle [119, 120], sheep [97, 110, 121],

pig [122, 123], mouse [124] and rat [125] to earlier embryo-fetal stages.

We found that expression of IGF2was broadly similar in embryonic and fetal bovine tissues,

but much lower in juvenile tissues. Postnatal decline in expression of global IGF2 transcript was

considerably stronger than for IGF1, highlighting the special role of IGF2 in prenatal growth

and development described previously [126–128]. Significant downregulation of IGF2 after

birth has been reported for cattle, sheep and human [90–92, 98, 129]. In rat, IGF2 transcripts

were undetectable by Northern blot in all adult tissues except brain, spinal cord and striated

muscle [13, 130, 131]. Postnatal decline in IGF2 expression was least in liver, the major source

of circulating IGF2 in adults [8] and consistent with considerable IGF2 levels in adult cattle

[132]. The higher expression of IGF2 in postnatal liver compared to other tissues may be caused

by tissue-specific relaxation of IGF2 imprinting or a change from imprinted to non-imprinted

promoter use as previously demonstrated in human [37, 133]. The exclusive expression of

IGF2-P0 transcript in juvenile liver and high levels of IGF2-P1e2 and -P1e3 transcripts in this

tissue may reflect a combined imprinted/non-imprinted promoter scenario. In human, P0 tran-

script is expressed from the paternal allele while P1 transcripts show biallelic expression at all

developmental stages [37, 50].

Exclusive expression of IGF2-P0 transcript in bovine fetal skeletal muscle and testis, is in

agreement with reported IGF2-P0 expression in human fetal skeletal muscle [50]. To our

knowledge fetal testis has not yet been tested for expression of IGF2-P0 transcript in human or

any other species. Human and bovine thus indicate an evolutionary shift in IGF2 expression

from mouse, where Igf2-P0 transcript is confined to placenta [127]. We also demonstrate for

the first time a developmental shift in tissue-specificity of IGF2-P0, which is no longer active in

juvenile bovine skeletal muscle but active in juvenile liver. This contrasts with ubiquitous

IGF2-P0 expression in adult human tissues [50] although some of these differences may be

explained by the different developmental age of bovine tissues studied.

Splice variants of IGF2-P1 transcripts including exon 1, which is alternatively spliced onto

exons 2 and/or 3 as well as the coding exons, were previously observed in bovine [16], pig [44],

human [134, 135] and sheep [42]. Considering sequence based restrictions of our IGF2 pro-

moter 1-specific transcript amplification strategy described in Fig 1, and our finding that

IGF2-P0 transcript is the predominant transcript in bovine fetal skeletal muscle, IGF2-P1e2

and IGF2-P1e3 transcripts detected in this tissue could potentially originate from the IGF2-P0

promoter. However, we conclude that IGF2-P1e2 and IGF2-P1e3 transcripts in liver, whose

abundance increased in postnatal tissue, predominantly derive from IGF2-P1 promoter activ-

ity. This is based on an IGF2-P0 expression level in juvenile liver similar to that in fetal skeletal

muscle and the fact that relative transcript abundance of IGF2-P1e2 and IGF2-P1e3 in juvenile

liver was 130-fold and 15-fold higher than in fetal muscle. Our demonstration of increased

activity of IGF2-P1 promoter in postnatal liver where IGF2-P2, IGF2-P3 and IGF2-P4 activity

decreases, is consistent with the developmental shift in promoter activity reported for human

[46, 50], pig [44], sheep [42, 91] and bovine [92].

Temporal-spatial expression patterns of the two splice variants that originate from IGF2-P2

promoter, IGF2-P2e4 and P2e5, showed some similarities (Fig 2), but quantitative analyses of
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promoter-specific transcripts in fetal tissues revealed that only IGF2-P2e4 variant is a major

contributor to IGF2 transcript abundance in fetal liver and skeletal muscle (Fig 6). This sug-

gests that IGF2-P2e4 could be actively involved in the production of endocrine IGF2 in the

bovine fetus.

Analysis of contributions of promoter specific IGF2 transcripts to global IGF2 transcript

expression revealed that IGF2-P3 and IGF2-P4 are the least and most active promoters, respec-

tively, in all bovine fetal tissues except kidney. This is in agreement with data from fetal mouse

and rat, where IGF2-P3, which is orthologous to bovine IGF2-P4 promoter, was most active

[48], but differs somewhat from human where IGF2-P3 and IGF2-P4, both orthologues of the

respective bovine promoters, were active at high and moderate levels [136].

Amongst receptors studied, relative spatio-temporal expression patterns for global IR and

splice variant IR-A were more stable than those for IGF1R and IGF2R. This may be explained

by predominant involvement of insulin receptors in metabolic pathways, rather than in engen-

dering growth responses [137]. Mice without Insr display virtually unimpaired prenatal devel-

opment with only slight reduction in birth weight [70] and catastrophic loss of metabolic

control only after birth [7, 138]. The similarity in expression patterns of IR global transcript

and IR-A suggests that IR-A is the predominant isoform of insulin receptor expressed in tis-

sues. The most notable change, and consistent with other relative changes in expression pat-

terns in the IGF system, was the decline in postnatal IR-B transcript in kidney and lung.

The similarity in expression patterns of IGF2R and IGF2 is consistent with the crucial role

of IGF2R for normal development [139]. Observed concomitant downregulation of IGF2R and

IGF2 could be expected from the essential regulatory function of IGF2R for IGF2 bioavailabil-

ity [7, 61, 96, 140]. Evidence for active signaling of IGF2 through IGF2R has been reported and

several lines of evidence suggest that IGF2 stimulates trophoblast migration through IGF2R

[72, 141, 142]. This is consistent with the stable expression of IGF2 and IGF2R in placenta

from embryo to fetal stage and the decline in both transcripts at term in the present study.

Transcript abundances for IGFBPs revealed exclusive strong IGFBP1 expression in liver

across all developmental stages. A similar expression pattern has been reported for fetal liver in

mouse and human [143, 144] and fetal and adult liver in rat [145, 146] and reflects the endo-

crine role of IGFBP1 [147–150]. The postnatal decrease in expression of IGFBP2 in skeletal

muscle, heart and kidney suggests a significant role before birth. This is supported by higher

circulating IGFBP2 levels in the fetus as compared to adults in a number of species including

rat, human, pig and rhesus monkey [99, 151–154]. The relative expression pattern of IGFBP3
in postnatal tissues showed similarity to the pattern observed for postnatal IGF1 expression. In

the sheep fetus, circulating IGFBP3 levels are positively correlated with IGF1 [117, 155].

Expression of IGFBP3 in placenta remained high throughout gestation. In human and rhesus

monkey placenta IGFBP3 is co-expressed with IGF2 and has been proposed to modulate IGF2

effects in an autocrine/paracrine fashion [156, 157]. The IGFBP4 gene stands out as the only

binding protein gene that displayed an increase in transcript abundance in a juvenile tissue,

i.e., liver. This is consistent with increased IGFBP4 expression in neonatal pig liver [100] and

increased circulating IGFBP4 in sheep after birth [155]. It is possible that the postnatal increase

in hepatic IGFBP4 expression is associated with increased expression of IGF1. It has been dem-

onstrated that IGFBP4 enhances growth stimulatory effects of endocrine IGF1 by increasing

bioavailability of IGF1 via an IGFBP4 protease-dependent mechanism [158]. High levels of

IGFBP6 expression in fetal and juvenile bovine skeletal muscle may be explained by the

involvement of this gene in inhibiting IGF2-induced proliferation and differentiation of myo-

blasts [159]. Similarly, high level of IGFBP7 expression in bovine fetal skeletal muscle may also

be associated with a potential role in inhibiting myoblast differentiation [160, 161].

Atlas of bovine IGF system expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0200466 July 12, 2018 16 / 28

https://doi.org/10.1371/journal.pone.0200466


The most pronounced changes in transcript levels from pre- to postnatal stages were evident

in lncRNAs, consistent with the fundamental roles of this RNA class in growth and development

[162–165]. Substantially greater spatio-temporal changes in expression ofH19 as compared to

AIRN highlights the pivotal functions of H19 RNA as source of regulatory miRNA that impact

IGF1R and Smad transcription factors [57, 166] and thus contribute to its role as a major regula-

tor of an imprinted gene network [167] that controls growth [168]. Across tissues and for each

developmental stage, relative expression patterns forH19were highly similar to those for IGF2,

which is consistent with current models for coordinated regulation of both genes [169–171]. Cell

lineage dependentH19 expression has been described in sheep [172] and the human fetus [173]

where, as in the present study, transcript abundance was lowest in brain. We found that expres-

sion ofH19 in bovine fetal kidney, lung and liver was at similar high levels or higher than in fetal

skeletal muscle, where it was originally described as a major regulator of prenatal growth and dif-

ferentiation [168]; whetherH19 has a similar role in these tissues remains to be elucidated.

Expression ofH19 in juvenile tissues was much lower than at prenatal stages, except for skeletal

muscle, where significant transcription persists. This suggests that growth regulatory functions

of H19 in bovine prenatal muscle [168] may continue well into postnatal development. High lev-

els ofH19RNA have also been found in postnatal skeletal muscle of mouse, where H19 encoded

miRNAs promote differentiation and regeneration [166].

In light of observed similarities inH19/IGF2 expression patterns, the different spatio-tem-

poral patterns for AIRN and IGF2R transcript abundances are somewhat unexpected. Consid-

ering the antisense nature of AIRN/IGF2R transcripts and their mutually exclusive,

interdependent mode of expression in mouse, where AIRN RNA silences IGF2R [81, 174, 175]

an inverse relationship could have been expected. The seemingly unrelated expression patterns

may indicate species differences and/or further, possibly organ-specific, roles of AIRN in

silencing additional imprinted genes [175] or involvement in trans-regulatory processes simi-

lar to those identified for H19 [165].

Lung and kidney showed the highest and liver the lowest relative postnatal reduction in

expression of IGF system components. This may be explained by additional prenatal functions

of lung and kidney as the flow of fluid from the fetal lung and bladder are major contributors

to amniotic fluid [176, 177]. Interestingly, amniotic fluid is a significant source of IGFs [178]

as large amounts of fluid are swallowed by the fetus [179] and growth factors cross the gut to

enter systemic circulation [180]. The lesser changes in postnatal liver likely reflect the continu-

ing role of this organ as a major source of circulating IGF system components [8, 181–183].

To our knowledge, this is the first comprehensive study in any species to investigate

changes in expression of IGF system components and their major regulatory lncRNAs across

tissues and developmental stages using real time qPCR. Our expression atlas for the bovine

insulin-like growth factor system provides important reference data for future studies of the

mammalian IGF system. This includes dissection of prenatal effects on postnatal phenotype

where IGF system components and epigenetic mechanisms regulating them, including

imprinting and miRNAs, appear to be major programming components [181, 184–187].
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15. Vykoukalová Z, Knoll A, Dvořák J,Čepica S. New SNPs in the IGF2 gene and association between

this gene and backfat thickness and lean meat content in Large White pigs. J Anim Breed Genet.

2006; 123(3):204–7. https://doi.org/10.1111/j.1439-0388.2006.00580.x PMID: 16706926

16. Goodall JJ, Schmutz SM. IGF2 gene characterization and association with rib eye area in beef cattle.

Anim Genet. 2007; 38(2):154–61. https://doi.org/10.1111/j.1365-2052.2007.01576.x PubMed PMID:

ISI:000245311300010. PMID: 17403010

17. Heude B, Ong KK, Luben R, Wareham NJ, Sandhu MS. Study of association between common varia-

tion in the insulin-like growth factor 2 gene and indices of obesity and body size in middle-aged men

and women. J Clin Endocrinol Metab. 2007; 92(7):2734–8. https://doi.org/10.1210/jc.2006-1948

PMID: 17488802.

Atlas of bovine IGF system expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0200466 July 12, 2018 19 / 28

http://www.ncbi.nlm.nih.gov/pubmed/11425327
https://doi.org/10.1056/NEJM199610313351805
http://www.ncbi.nlm.nih.gov/pubmed/8857020
https://doi.org/10.1006/dbio.2000.9975
https://doi.org/10.1006/dbio.2000.9975
http://www.ncbi.nlm.nih.gov/pubmed/11133160
https://doi.org/10.1016/s0092-8674(05)80085-6
http://www.ncbi.nlm.nih.gov/pubmed/8402902
http://www.ncbi.nlm.nih.gov/pubmed/9371786
https://doi.org/10.1016/j.cytogfr.2005.04.004
https://doi.org/10.1210/edrv.22.6.0452
http://www.ncbi.nlm.nih.gov/pubmed/11739335
https://doi.org/10.1016/S1357-2725(98)00048-X
http://www.ncbi.nlm.nih.gov/pubmed/9722981
https://doi.org/10.1016/S1043-2760(00)00349-0
http://www.ncbi.nlm.nih.gov/pubmed/11167121
https://doi.org/10.1677/joe.0.1220611
http://www.ncbi.nlm.nih.gov/pubmed/2478648
https://doi.org/10.1210/en.2006-1431
http://www.ncbi.nlm.nih.gov/pubmed/17158201
https://doi.org/10.1016/S0303-7207(99)00045-3
https://doi.org/10.1016/S0303-7207(99)00045-3
http://www.ncbi.nlm.nih.gov/pubmed/10432230
http://www.ncbi.nlm.nih.gov/pubmed/3759952
https://doi.org/10.1038/5938
http://www.ncbi.nlm.nih.gov/pubmed/9988263
https://doi.org/10.1111/j.1439-0388.2006.00580.x
http://www.ncbi.nlm.nih.gov/pubmed/16706926
https://doi.org/10.1111/j.1365-2052.2007.01576.x
http://www.ncbi.nlm.nih.gov/pubmed/17403010
https://doi.org/10.1210/jc.2006-1948
http://www.ncbi.nlm.nih.gov/pubmed/17488802
https://doi.org/10.1371/journal.pone.0200466


18. Fan B, Onteru SK, Du Z-Q, Garrick DJ, Stalder KJ, Rothschild MF. Genome-wide association study

identifies loci for body composition and structural soundness traits in pigs. PLoS One. 2011; 6(2).

https://doi.org/10.1371/journal.pone.0014726 PubMed PMID: WOS:000287761700004. PMID:

21383979

19. Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, et al. A regulatory muta-

tion in IGF2 causes a major QTL effect on muscle growth in the pig. Nature. 2003; 425(6960):832–6.

https://doi.org/10.1038/nature02064 PubMed PMID: ISI:000186118500044. PMID: 14574411

20. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, et al. A single IGF1 allele is a major

determinant of small size in dogs. Science. 2007; 316(5821):112–5. https://doi.org/10.1126/science.

1137045 PMID: 17412960

21. Rosen CJ, Churchill GA, Donahue LR, Shultz KL, Burgess JK, Powell DR, et al. Mapping quantitative

trait loci for serum insulin-like growth factor-1 levels in mice. Bone. 2000; 27(4):521–8. https://doi.org/

10.1016/S8756-3282(00)00354-9. PMID: 11033447

22. Zhao Q, Davis ME, Hines HC. Associations of an AciI polymorphism in the IGF-II gene with growth

traits in beef cattle. 7th World Congress on Genetics Applied to Livestock Production; Montpellier,

France2002.

23. Zwierzchowski L, Siadkowska E, Oprzadek J, Flisikowski K, Dymnicki E. An association of C/T poly-

morphism in exon 2 of the bovine insulin-like growth factor 2 gene with meat production traits in Polish

Holstein-Friesian cattle. Czech J Anim Sci. 2010; 55(6):227–33. PubMed PMID:

WOS:000279340300002.

24. Sherman EL, Nkrumah JD, Murdoch BM, Li C, Wang Z, Fu A, et al. Polymorphisms and haplotypes in

the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupl-

ing proteins 2 and 3 genes and their associations with measures of growth, performance, feed effi-

ciency, and carcass merit in beef cattle. J Anim Sci. 2008; 86(1):1–16. https://doi.org/10.2527/jas.

2006-799 PubMed PMID: ISI:000251814600001. PMID: 17785604

25. Ouni M, Gunes Y, Belot M-P, Castell A-L, Fradin D, Bougnères P. The IGF1 P2 promoter is an epige-

netic QTL for circulating IGF1 and human growth. Clin Epigenetics. 2015; 7(1):1–12. https://doi.org/

10.1186/s13148-015-0062-8 PMID: 25789079

26. Lonergan P, Gutierrez-Adan A, Pintado B, Fair T, Ward F, De La Fuente J, et al. Relationship between

time of first cleavage and the expression of IGF-I growth factor, its receptor, and two housekeeping

genes in bovine two-cell embryos and blastocysts produced in vitro. Mol Reprod Dev. 2000; 57

(2):146–52. https://doi.org/10.1002/1098-2795(200010)57:2<146::AID-MRD5>3.0.CO;2-2 PubMed

PMID: WOS:000089086100005. PMID: 10984414

27. Lighten AD, Hardy K, Winston RML, Moore GE. Expression of mRNA for the insulin-like growth factors

and their receptors in human preimplantation embryos. Mol Reprod Dev. 1997; 47(2):134–9. https://

doi.org/10.1002/(SICI)1098-2795(199706)47:2<134::AID-MRD2>3.0.CO;2-N PubMed PMID: WOS:

A1997WW60700002. PMID: 9136113

28. Rotwein P, Pollock KM, Watson M, Milbrandt JD. Insulin-like growth factor gene expression during rat

embryonic development. Endocrinology. 1987; 121(6):2141–4. https://doi.org/10.1210/endo-121-6-

2141 PMID: 3678142

29. Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA. Epigenetics: intrauterine growth retardation

(IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J. 2009; 23(8):2438–49.

https://doi.org/10.1096/fj.08-124768 PMID: 19364764

30. Jansen E, Steenbergh PH, Vanschaik FMA, Sussenbach JS. The human IGF-I gene contains two cell

type-specifically regulated promoters. Biochem Biophys Res Commun. 1992; 187(3):1219–26. https://

doi.org/10.1016/0006-291x(92)90433-l PubMed PMID: WOS:A1992JQ81200003. PMID: 1417797

31. Dickson MC, Saunders JC, Gilmour RS. The ovine insulin-like growth factor-I gene: characterization,

expression and identification of a putative promoter. J Mol Endocrinol. 1991; 6(1):17–31. https://doi.

org/10.1677/jme.0.0060017 PMID: 2015053

32. LeRoith D, Roberts CT. Insulin-like growth factor I (IGF-I): A molecular basis for endocrine versus local

action? Mol Cell Endocrinol. 1991; 77(1):C57–C61. https://doi.org/10.1016/0303-7207(91)90054-V.

33. DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor

II gene. Cell. 1991; 64(4):849–59. PMID: 1997210

34. Giannoukakis N, Deal C, Paquette J, Goodyer CG, Polychronakos C. Parental genomic imprinting of

the human IGF2 gene. Nat Genet. 1993; 4(1):98–101. https://doi.org/10.1038/ng0593-98 PubMed

PMID: WOS:A1993LA33700022. PMID: 8099843

35. McLaren RJ, Montgomery GW. Genomic imprinting of the insulin-like growth factor 2 gene in sheep.

Mamm Genome. 1999; 10(6):588–91. PubMed PMID: ISI:000080383300012. PMID: 10341091

Atlas of bovine IGF system expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0200466 July 12, 2018 20 / 28

https://doi.org/10.1371/journal.pone.0014726
http://www.ncbi.nlm.nih.gov/pubmed/21383979
https://doi.org/10.1038/nature02064
http://www.ncbi.nlm.nih.gov/pubmed/14574411
https://doi.org/10.1126/science.1137045
https://doi.org/10.1126/science.1137045
http://www.ncbi.nlm.nih.gov/pubmed/17412960
https://doi.org/10.1016/S8756-3282(00)00354-9
https://doi.org/10.1016/S8756-3282(00)00354-9
http://www.ncbi.nlm.nih.gov/pubmed/11033447
https://doi.org/10.2527/jas.2006-799
https://doi.org/10.2527/jas.2006-799
http://www.ncbi.nlm.nih.gov/pubmed/17785604
https://doi.org/10.1186/s13148-015-0062-8
https://doi.org/10.1186/s13148-015-0062-8
http://www.ncbi.nlm.nih.gov/pubmed/25789079
https://doi.org/10.1002/1098-2795(200010)57:2<146::AID-MRD5>3.0.CO;2-2
http://www.ncbi.nlm.nih.gov/pubmed/10984414
https://doi.org/10.1002/(SICI)1098-2795(199706)47:2<134::AID-MRD2>3.0.CO;2-N
https://doi.org/10.1002/(SICI)1098-2795(199706)47:2<134::AID-MRD2>3.0.CO;2-N
http://www.ncbi.nlm.nih.gov/pubmed/9136113
https://doi.org/10.1210/endo-121-6-2141
https://doi.org/10.1210/endo-121-6-2141
http://www.ncbi.nlm.nih.gov/pubmed/3678142
https://doi.org/10.1096/fj.08-124768
http://www.ncbi.nlm.nih.gov/pubmed/19364764
https://doi.org/10.1016/0006-291x(92)90433-l
https://doi.org/10.1016/0006-291x(92)90433-l
http://www.ncbi.nlm.nih.gov/pubmed/1417797
https://doi.org/10.1677/jme.0.0060017
https://doi.org/10.1677/jme.0.0060017
http://www.ncbi.nlm.nih.gov/pubmed/2015053
https://doi.org/10.1016/0303-7207(91)90054-V
http://www.ncbi.nlm.nih.gov/pubmed/1997210
https://doi.org/10.1038/ng0593-98
http://www.ncbi.nlm.nih.gov/pubmed/8099843
http://www.ncbi.nlm.nih.gov/pubmed/10341091
https://doi.org/10.1371/journal.pone.0200466


36. Dindot SV, Kent KC, Evers B, Loskutoff N, Womack J, Piedrahita JA. Conservation of genomic imprint-

ing at the XIST, IGF2, and GTL2 loci in the bovine. Mamm Genome. 2004; 15(12):966–74. https://doi.

org/10.1007/s00335-004-2407-z PubMed PMID: ISI:000225371100004. PMID: 15599555

37. Vu TH, Hoffman AR. Promoter-specific imprinting of the human insulin-like growth factor-II gene.

Nature. 1994; 371(6499):714–7. https://doi.org/10.1038/371714a0 PMID: 7935819

38. Ekstrom TJ, Cui H, Li X, Ohlsson R. Promoter-specific IGF2 imprinting status and its plasticity during

human liver development. Development. 1995; 121(2):309–16. PMID: 7768174

39. Qi Y, Ma N, Yan F, Yu Z, Wu G, Qiao Y, et al. The expression of intronic miRNAs, miR-483 and miR-

483*, and their host gene, Igf2, in murine osteoarthritis cartilage. Int J Biol Macromol. 2013; 61:43–9.

https://doi.org/10.1016/j.ijbiomac.2013.06.006. PMID: 23791756

40. Ma N, Wang X, Qiao Y, Li F, Hui Y, Zou C, et al. Coexpression of an intronic microRNA and its host

gene reveals a potential role for miR-483-5p as an IGF2 partner. Mol Cell Endocrinol. 2011; 333

(1):96–101. https://doi.org/10.1016/j.mce.2010.11.027. PMID: 21146586

41. Qiao Y, Zhao Y, Liu Y, Ma N, Wang C, Zou J, et al. miR-483-3p regulates hyperglycaemia-induced car-

diomyocyte apoptosis in transgenic mice. Biochem Biophys Res Commun. 2016; 477(4):541–7.

https://doi.org/10.1016/j.bbrc.2016.06.051. PMID: 27346130

42. Ohlsen SM, Lugenbeel KA, Wong EA. Characterization of the linked ovine insulin-like growth factor-II

genes. DNA Cell Biol. 1994; 13(4):377–88. PubMed PMID: WOS:A1994NL87100006. https://doi.org/

10.1089/dna.1994.13.377 PMID: 8011164

43. Curchoe C, Zhang SQ, Bin YF, Zhang XQ, Yang L, Feng DY, et al. Promoter-specific expression of

the imprinted IGF2 gene in cattle (Bos taurus). Biol Reprod. 2005; 73(6):1275–81. https://doi.org/10.

1095/biolreprod.105.044727 PubMed PMID: WOS:000233580700024. PMID: 16120826

44. Amarger V, Nguyen M, Van Laere AS, Braunschweig M, Nezer C, Georges M, et al. Comparative

sequence analysis of the INS-IGF2-H19 gene cluster in pigs. Mamm Genome. 2002; 13(7):388–98.

https://doi.org/10.1007/s00335-001-3059-x PubMed PMID: ISI:000177236700009. PMID: 12140686

45. Ohlsson R, Hedborg F, Holmgren L, Walsh C, Ekstrom TJ. Overlapping patterns of IGF2 and H19

expression during human development: biallelic IGF2 expression correlates with a lack of H19 expres-

sion. Development. 1994; 120(2):361–8. PubMed PMID: WOS:A1994MW03600012. PMID: 8149914

46. Depagterholthuizen P, Jansen M, Vanschaik FMA, Vanderkammen R, Oosterwijk C, Vandenbrande

JL, et al. The human insulin-like growth factor-II gene cotains 2 development-specific promoters.

FEBS Lett. 1987; 214(2):259–64. PubMed PMID: WOS:A1987H130300007. PMID: 3569524

47. van Dijk MA, van Schaik FMA, Bootsma HJ, Holthuizen P, Sussenbach JS. Initial characterization of

the four promoters of the human insulin-like growth factor II gene. Mol Cell Endocrinol. 1991; 81

(1):81–94. https://doi.org/10.1016/0303-7207(91)90207-9.

48. Holthuizen PE, Cleutjens CBJM, Veenstra GJC, van der Lee FM, Koonen-Reemst AMCB, Sussen-

bach JS. Differential expression of the human, mouse and rat IGF-II genes. Regul Pept. 1993; 48(1–

2):77–89. PMID: 8265819

49. Moore T, Constancia M, Zubair M, Bailleul B, Feil R, Sasaki H, et al. Multiple imprinted sense and anti-

sense transcripts, differential methylation and tandem repeats in a putative imprinting control region

upstream of mouse Igf2. Proc Natl Acad Sci U S A. 1997; 94(23):12509–14. PubMed PMID: WOS:

A1997YF39300049. PMID: 9356480

50. Monk D, Sanches R, Arnaud P, Apostolidou S, Hills FA, Abu-Amero S, et al. Imprinting of IGF2 P0

transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and

human. Hum Mol Genet. 2006; 15(8):1259–69. https://doi.org/10.1093/hmg/ddl041 PubMed PMID:

WOS:000236613300002. PMID: 16531418
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