
PUBLISHED VERSION

Daniel Smit, Kyle Millar, Clinton Page, Adriel Cheng, Hong-Gunn Chew and Cheng-Chew
Lim
Looking deeper: Using deep learning to identify internet communications traf
Proceedings of the 2017 Australasian Conference of Undergraduate Research, as
published in Macquarie Matrix: Special edition, ACUR 2017, 2017 / vol.6.1, pp.124-144

© the author(s). Open Access. All works published are under an attribution, non-
commercial, and share-alike Creative Commons licence. Attribution-NonCommercial-
ShareAlike 1.0 Generic (CC BY-NC-SA 1.0)

Published version: https://students.mq.edu.au/study/my-study-program/undergraduate-
research-journal/acur2017

http://hdl.handle.net/2440/128170

PERMISSIONS

https://creativecommons.org/licenses/by-nc-sa/1.0/

21 September 2020

https://students.mq.edu.au/study/my-study-program/undergraduate-research-journal/acur2017
https://students.mq.edu.au/study/my-study-program/undergraduate-research-journal/acur2017
http://hdl.handle.net/2440/128170
https://creativecommons.org/licenses/by-nc-sa/1.0/

Macquarie Matrix: Special edition, ACUR 2017

124

Looking deeper: Using deep learning to identify internet communications traffic

Daniel Smit1, Kyle Millar1, Clinton Page1, Adriel Cheng1,2, Hong-Gunn Chew1 and

Cheng-Chew Lim1

1. The University of Adelaide

2. Defence Science and Technology Group

Abstract

Recent years have shown an unprecedented reliance on the internet to provide services essential for

business, education, and personal use. Due to this reliance, coupled with the exponential growth of

the internet traffic being generated, there has never been a greater necessity for effective network

management techniques. Network traffic classification is one key component of this network

management which aims to identify the types and quantity of traffic flowing through a network.

Previous traffic classification techniques are limited by the use of non-standardised port numbers

and the encryption of traffic contents. To tackle these challenges, we propose using deep learning

techniques for network traffic classification. This paper investigates the viability of using deep

learning for traffic classification with a focus on both network management applications and

detecting malicious traffic. Our preliminary results thus far show that a highly accurate classifier can

be created using the first 50 bytes of a traffic flow.

Keywords: deep learning, internet traffic classification, artificial neural networks, network security

Looking deeper: Using deep learning to identify internet communications traffic D Smit et al.

125

1. Introduction

The Internet has become a key facilitator of large-scale global communications and is vital

for providing an immeasurable number of services. With the ever-expanding growth of

Internet use, it is critical for the underpinning networks to be managed effectively. Network

traffic classification is one such technique that allows the forecasting of traffic on a network

to improve the Quality of Service (QoS) and identification of potential security threats. It is

for this reason network traffic classification has become a crucial component of network

management for Internet Service Providers (ISPs), large enterprise companies and

government agencies. Deep learning is a subfield of machine learning which enables

classification models to be trained without explicit programming. Deep learning models

generally consist of a large number of processing units which can be used to classify data.

This research investigates the viability of using deep learning techniques to provide this

network traffic classification.

Previously used methods of network traffic classification include port based and

signature based methods. Port based classification operates by classifying network traffic

based on port numbers contained in the header section of each datagram sent over a

network. This simplistic method has become less effective in recent years as it has become

easier to circumvent by applications changing their port number. Signature based methods

involve matching a sequence of bytes or properties to a known signature, but is limited to

identifying only signatures for known application protocols.

Deep learning addresses the issues faced by other methods by automating the

adaptation process of new signatures. With the recent rise of deep learning, there has been

limited documented approaches to utilising these deep learning methods for the purpose of

network traffic classification. In this paper, we aim to (1) establish the viability of using deep

Macquarie Matrix: Special edition, ACUR 2017

126

learning for classifying network traffic flows, (2) devise strategies to optimise neural-

network parameters for traffic classification, and (3) to expand and investigate the potential

of using deep learning for identifying malicious network traffic flows for Cyber Security. The

contributions of this paper are as follows:

 Extending from prior work by Wang (2015), we devised a deep neural network

classifier achieving classification accuracy of over 90% for application protocols in

the UNSW-NB15 dataset (Nour & Slay, 2015).

 Passing the first 50 bytes of a network flow rather than the first 1000 bytes to a deep

neural network can result in higher classification accuracies.

 We have expanded on the experiments conducted by Wang to investigate its ability

to classify malicious traffic.

 Through experimentation, we have determined an optimal set of network

parameters for use in these experiments.

2. Relevant work

Machine learning techniques can be applied to classify network traffic flows and has been

the target of several recent studies. These methods generally differ in the representations of

network traffic flow data, and the machine learning algorithms used.

2.1 Network application protocol identification

Wang (2015) used deep learning to identify common network traffic within a self-generated

data set. Wang’s method used the first 1000 bytes of each Transmission Control Protocol

(TCP) flow as input data, with results indicating the most important bytes for classification

were early in the flow. Results showed that 55% of flows were correctly classified using a

Looking deeper: Using deep learning to identify internet communications traffic D Smit et al.

127

90% probability cut-off point, but this could potentially be improved by ignoring the least

significant input bytes.

Trivedi, Chow, Nilsson, & Trussell (2002) used a neural network with statistical

information and IP layer packet attributes to classify TCP flows into different application

protocols. Using this method, they achieved an overall accuracy above 98%.

Auld, Moore, & Gull (2007) used Bayesian neural networks and features of TCP flows

to classify network traffic flows to a high accuracy. An accuracy of 99% was achieved when

using a testing and training dataset from the same day, while 95% accuracy was achieved

with a testing set eight months after the training set.

Singh, Agrawal, & Sohi (2013) used five machine learning methods, (including

Multilayer Perception (MLP), Radial Basis Function (RBF), C4.5, Bayes Net and Naïve Bayes)

to classify IP traffic in real time. They concluded that Bayes Net gave the highest

classification accuracy of 91.875%, potentially lower than the other papers discussed due to

their focus on real time classification and necessity for fast classification results.

This research paper uses deep learning methods similar to Wang (2015), but also

investigates the effect of fine tuning the various deep learning parameters. Investigation is

expanded over these studies by classifying UDP traffic in addition to TCP traffic. Our method

does not use any statistical information or features of the network traffic flows while these

are used for Trivedi et al. (2002) and Auld et al. (2007) as their input data. Auld et al. (2007)

used two datasets (training and testing) generated eight months apart, while two datasets

generated one month apart are used in our method. Additionally, our method only focuses

on using neural networks and deep learning while Singh et al. (2013) also investigate a range

of traditional machine learning methods.

Macquarie Matrix: Special edition, ACUR 2017

128

2.2 Malicious traffic identification

Accurate classification of different malicious network traffic types generally proved to be

more challenging than standard application protocols. Dong & Wang (2016) used methods

including Support Vector Machine (SVM), Support Vector Machine Restricted Boltzmann

Machines (SVM-RBMs), Naïve Bayes and C4.5 to classify various malicious traffic. SVM-RBMs

were found to give the best results, however classification of different malicious types did

not reach precision values above 90%.

This research paper focuses on the effectiveness of deep learning rather than the

traditional machine learning methods used in Dong & Wang (2016). The optimal model

parameters and deep learning approach are also determined for the model.

3 Background knowledge

3.1 Neural networks and deep learning

Deep learning was the focus of this research paper due to its potential ability in producing

an accurate network traffic flow classifier. Deep learning is a machine learning method

which uses neural networks containing multiple hidden layers, known as a deep neural

network. As shown in Figure 1, a neural network takes in a number of input features, and

through a variable number of hidden layers and nodes, connects through weighted values to

the output nodes. This method allows the computer to learn a representation of a complex

system, by considering basic concepts. Multiple hidden layers also achieve automatic

feature discovery in which a higher-level set of input features can find lower level features.

Through this method, a combination of weights between layers are trained and a suitable

combination of input features can be used to calculate an appropriate output.

Looking deeper: Using deep learning to identify internet communications traffic D Smit et al.

129

3.2 Network traffic flows

A network traffic flow is a sequence of packets forming a conversation between two end-

points of a network, and defined by various properties. The definition of flow used in this

research was selected as the bi-directional five-tuple set of properties: source IP address,

destination IP address, source port, destination port, and protocol type. The protocol types

used were TCP and User Datagram Protocol (UDP).

4. Dataset

Deep learning benefits from a large and extensive dataset. The UNSW-NB15 dataset (Nour &

Slay, 2016), released in 2015, contains raw packet level data and some extracted flow level

features. The network traffic flows in this dataset contain a range of application and

malicious labels. Through deep learning, we intend to generate a deep learning model to

classify these flows accurately against the labels. While only 51% of the dataset has

predefined application labels, it contains 1.29 million network application entries and 0.32

million malicious entries, making the dataset suitable for general network traffic

Figure 1: Example of a deep neural network (Yang, 2015)

Macquarie Matrix: Special edition, ACUR 2017

130

identification and detecting malicious traffic. A process of adding additional application

labels to the dataset was performed using nDPI, which were used for entries which did not

originally contain labels. The application and malicious classes chosen can be seen in

Table 1. The application protocols and malicious classes shown in Table 1 represent several

prominent types of traffic or malicious traffic that can be found in a given network.

Unlabelled application and malicious samples have been classified as either Other or Other

Malicious respectfully.

Table 1: Chosen classifications

Application Protocols Malicious Classes

DNS Exploits

FTP Fuzzers

FTP-DATA Generic

Mail DOS

SSH Reconnaissance

P2P Other Malicious

NFS Non-Malicious

HTTP

BGP

OSCAR

Other

5. Data representation

The format of the input data directly affects the results achievable from a neural network.

Wang (2015) conducted similar research in which the first 1000 bytes of each bi-directional

Looking deeper: Using deep learning to identify internet communications traffic D Smit et al.

131

flow were collected from a different network traffic dataset and bi-directional flows were

classified. The first 1000 bytes were therefore also inserted as input values into our neural

network model and output classifications were produced, through a method outlined in

Figure 2. Wang showed however that the most influential bytes were generally within the

first 300 bytes, and as such, varying input data sizes below 1000 bytes was also investigated.

Figure 2: Presentation of network flows to the neural network. The input to the neural
network is the start of a HTTP GET flow and the model’s output prediction is HTTP.

6. Choosing a deep neural network architecture

This research aims to provide an extensive analysis of deep learning performance on traffic

classification using a multitude of feedforward reverse-propagation neural networks. To

achieve these comparisons, four model parameters were adjusted sequentially in order to

find an optimal architecture (refer to Table 2). TensorFlow was utilised to build and evaluate

Macquarie Matrix: Special edition, ACUR 2017

132

the different model architectures (Abadi et al., 2016). It should be noted that parameters

associated with the classification model are referred to in this paper as hyperparameters to

avoid confusion with parameters associated with the underlying system.

Table 2: Neural network hyperparameters

Hyperparameter Description and Significance

Number of hidden layers Each hidden layer transforms its input data into a reduced set of
features that contain more relevant information from the input
data. Figure 1 shows a deep neural network consisting of three
hidden layers.

Number of nodes in the
hidden layer(s)

Hidden nodes are responsible for feature discovery. Figure 1
shows a deep neural network consisting of a combined 27 nodes
in its hidden layers.

Input Length The number of bytes used from each bi-directional flow. As each
input byte maps to a respective node in the input layer, the
number of bytes used also determines how many nodes are
present in the input layer. For example, Figure 1 would be trained
on the first eight bytes of a bi-directional flow.

Padding Style Padding a flow with either zeros or random values such that each
flow meets the required input length.

6.1 Number of hidden layers

In a fully connected neural network, the output of every node in one layer is connected to

the input of every node in the next. As features propagate through each layer their

complexity is increased, which allows for deeper networks to make predictions based upon

higher order analysis than their shallower counterparts. As stated by Sontag (1992), neural

networks with a non-linear threshold function can always achieve full generality with just

two hidden layers, although increasing the number of hidden layers further can also

increase the learning rate in specific applications (LeCun et al., 1989).

Looking deeper: Using deep learning to identify internet communications traffic D Smit et al.

133

To investigate the effect in which the depth of the model had on its ability to classify

network traffic, 10 models were constructed each with the same total number of nodes in

their hidden layers but spread across varying depths. These depths ranged from one to ten

hidden layers. This experiment was then repeated, varying the number of total nodes seen

in the model.

The results from this experiment have been shown in Figure 3. From this, it can be

seen that the addition of more layers does not have a conclusive effect on the testing

accuracy achieved and in many cases, reduces the testing accuracy. This result shows that

the addition of more nodes to the network has a greater effect on the model’s accuracy

than the addition of hidden layers. To explore this result, the testing accuracy was then

compared against model complexity. For a fully connected feedforward model, model

complexity is simply defined as the number of connections made within the model and is

directly affected by the depth of the model and the number of nodes in the model.

Figure 3: Testing accuracy against network depth

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

1 3 5 7 9

Te
st

in
g

A
cc

u
ra

cy

Model Depth

4000 Nodes

3000 Nodes

1000 Nodes

500 Nodes

Macquarie Matrix: Special edition, ACUR 2017

134

It may be observed that there exists a rough logarithmic correlation between the model

complexity and testing accuracy (Figure 4). This result seems to suggest that there exists a

cut-off point in which the complexity of the model isn’t sufficient enough to encapsulate all

of the important input features.

To examine the effect in which model complexity had upon its training time, a series

of models were created up to a depth of three hidden layers and ran for 10 epochs. Figure 5

indicates that for increasingly complex networks, deeper networks become more efficient to

train. Due to the fully connected structure, deeper networks can contain more connections

within the model with a smaller number of nodes. As each node acts as a small processor,

using less nodes greatly affects the training time. For this reason and the outcomes stated

by Sontag (1992), a two-layered model has been chosen for the subsequent

experimentation.

Figure 4: Testing accuracy against model complexity

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0 2000000 4000000 6000000 8000000

Te
st

in
g

A
cc

u
ra

cy

Complexity

4000 Nodes
3000 Nodes
1000 Nodes
500 Nodes

Log

Looking deeper: Using deep learning to identify internet communications traffic D Smit et al.

135

6.2 Nodes in the hidden layer(s)

Increasing the number of nodes in the hidden layers can result in overfitting (modelling the

noise instead of the underlying relationship) while not having enough nodes can lead to

underfitting (when the model cannot capture the underlying relationship). This is due to the

number of connections inside the model increasing as the number of nodes increase. Each

connection has a corresponding weight that can be adjusted by the neural network’s

training algorithm. The total number of variables that can be adjusted by the training

algorithm is called the degrees of freedom. For any given feedforward reverse-propagation

neural network the degrees of freedom can be expressed as:

 (1)

where is the number of nodes in node layer , and N is the total number of layers in the

neural network (N = input layer + hidden layers + output layer).

“In most situations, there is no way to determine the best number of hidden units

without training several networks and estimating the generalization error of each.”

(Swingler, 1996). For this reason, the neural networks defined in the Appendix each had

varying number of nodes in their hidden layers. Each model was trained and then evaluated

with the testing dataset, with preliminary results showing models with higher degree of

freedom having 0.7% increase in testing accuracy.

Macquarie Matrix: Special edition, ACUR 2017

136

Figure 5: Training time against model complexity

6.3 Input Length

The number of inputs to the neural network is determined by how many bytes from each bi-

directional flow is passed into the neural network. If the input length is too small then the

model will be unable to detect patterns in the input, resulting in poor training and testing

accuracies. As the input length is increased so does the degrees of freedom in the model.

However, increasing the input length too much can result in the neural network detecting

patterns in the redundant data that do not reflect the output categories.

The lower boundary for input length was determined by visually inspecting samples

from the dataset to ensure each output category was visually distinguishable from one

another. Figure 6 shows value of the first 1000 bytes across two different application

categories. This figure indicates that different applications have noticeably distinct patterns

in the first 1000 bytes.

0

20

40

60

80

100

120

140

160

180

200

0 1,000,000 2,000,000 3,000,000 4,000,000

Tr
a

in
in

g
Ti

m
e

(m
in

)

Complexity

3 Hidden Layers

2 Hidden Layers

1 Hidden Layer

Looking deeper: Using deep learning to identify internet communications traffic D Smit et al.

137

Figure 6: Flow composition: first 1000 bytes

Another one of our preliminary studies investigated how the testing accuracy of models

changes as the input length increases. The result is shown in Figure 7. It shows that models

with low degrees of freedom are affected more heavily as the input length is increased,

while models with a higher degree of freedom remain fairly constant.

Figure 7: Testing accuracy against input length

0.95

0.955

0.96

0.965

0.97

0.975

0.98

50 250 450 650 850

Te
st

in
g

A
cc

u
ra

cy

Input Length (bytes)

low degrees of freedom

medium degreees of freedom

high degrees of freedom

Macquarie Matrix: Special edition, ACUR 2017

138

6.4 Padding style

For flows that did not meet the 1000-byte input length, zero and random padding were

investigated. The two methods fill the remaining positions with either a 0, or a

pseudorandom value between the ranges of 0 to 255, respectively. Neural networks look for

patterns in the input data to help the classification prediction, therefore random padding is

used to reduce the chance that the model will learn from a pattern it finds in the padded

region of a flow.

Twenty models of various complexities were then tested with both zero and random

padding. The findings, shown in Figure 8, indicate that for all models zero padding achieves

a much greater classification accuracy than random padding. As it is clear where zero

padding starts, a part of this result is speculated to come from the added feature of flow

length which the model could be learning from.

Figure 8: Zero Vs Random Padding

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Te
st

in
g

A
cc

u
ra

cy

Model Zero Padding Random Padding

Looking deeper: Using deep learning to identify internet communications traffic D Smit et al.

139

7. Results

From the previous experiments, a set of optimal hyperparameters was found for the

specified classification task. Of note:

 It was seen that there exists a threshold for the complexity of the model for which

the accuracy will sharply decline if not met.

 Accurate classification can be made using just the first 50 bytes of a flow.

 Zero padding results in consistently greater accuracy than random padding.

Table 3 shows the chosen model’s hyperparameters selected based of the preliminary

experiments. The classification performance of this model was then investigated.

Application and malicious classification was considered separately.

Table 3: Chosen model’s hyperparameters

Hyperparameter Chosen

Number of hidden layers 2

Number of nodes in each

hidden layer

1600

Input Length 50 bytes

Padding Style Zero Padding

Category Encoding 1-of-C

Training/Optimization

algorithm

Adam

Threshold functions ReLU and Softmax at output layer

Macquarie Matrix: Special edition, ACUR 2017

140

7.1 Application results

Figure 9 shows the individual class classification accuracy achieved by the model. The model

achieved a high accuracy classification for each of the chosen protocols. As FTP-DATA was

the least represented protocol within the dataset it is speculated that the lower accuracy

seen could be improved if more samples were present within the dataset.

Figure 9: Confusion matrix application classes

7.2 Malicious results.

In a similar fashion to the application results, the classification accuracy of the malicious

classes can be seen in the confusion matrix in Figure 10. Four malicious classes, Shellcode,

Analysis, Backdoor and Worm, were combined in this analysis as they were heavily under

represented within the dataset. It is seen that this method of traffic classification produces a

subpar class classification accuracy. As malicious content often tries to obscure its intent, it

is speculated that statistical data about the flow would achieve a greater classification

accuracy when used as inputs to a similarly designed neural network. The major limitations

with deep learning stem from access to a large and compressive dataset. It is speculated

that with access to such a dataset these accuracies could be greatly improved upon.

Looking deeper: Using deep learning to identify internet communications traffic D Smit et al.

141

Figure 10: Confusion matrix malicious classes

While this method did not prove favourable for detecting the specific malicious flows, it did

show promising results for detecting whether a flow was malicious or not. This result is

shown in Figure 11.

Figure 11: Binary classifier

8. Conclusions and future work

Achieving classification accuracies of over 90% for applications protocols and a malicious

detection of rate of 87%, our results signify that deep learning can provide an effective and

efficient method for the classification of general network traffic and shows promise for

82%

84%

86%

88%

90%

92%

94%

96%

Recall Precision

Malicious

Non-Malicious

Macquarie Matrix: Special edition, ACUR 2017

142

detecting malicious traffic. In this paper, several hyperparameters were analysed to acquire

an optimal deep learning architecture, specifically:

 Two hidden layers were used to decrease training time while still meeting the

complexity threshold.

 Padding flows that did not meet the required input length with zeros rather than

random values resulted in a consistently higher classification accuracy.

 An input length of 50 bytes, instead of the 1000 used in Wang (2015), granted an

increased classification accuracy and a reduction in the training time for the used

dataset.

 It is speculated that given a more extensive dataset, the classification accuracies

could be improved on and extrapolated onto a wider range of network traffic

protocols.

In the future, supplementary network statistical data shall be utilised to improve the

classification accuracy for malicious flows. Another avenue of research involves using

convolutional neural network (CNN) to further enhance deep neural network traffic

classifiers. With additional research, the authors of this paper believe that deep learning

will become the pinnacle of network traffic classification in the future.

Looking deeper: Using deep learning to identify internet communications traffic D Smit et al.

143

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . Isard, M. (2016). TensorFlow: A

System for Large-Scale Machine Learning. Paper presented at the OSDI.

Auld, T., Moore, A. W., & Gull, S. F. (2007). Bayesian neural networks for internet traffic

classification. IEEE Trans Neural Networks, 18(1), 223-239. doi:10.1109/TNN.2006.883010

Dong, B., & Wang, X. (2016). Comparison deep learning method to traditional methods using for

network intrusion detection. Paper presented at the 2016 8th IEEE International Conference

on Communication Software and Networks (ICCSN).

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989).

Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4),

541-551. doi:10.1162/neco.1989.1.4.541

Nour, M., & Slay, J. (2015). UNSW-NB15: a comprehensive data set for network intrusion detection

systems (UNSW-NB15 network data set). Military Communications and Information Systems

Conference (MilCIS).

Nour, M., & Slay, J. (2016). The evaluation of Network Anomaly Detection Systems: Statistical

analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Information

Security Journal: A Global Perspective, 1-14.

Singh, K., Agrawal, S., & Sohi, B. S. (2013). A Near Real-time IP Traffic Classification Using Machine

Learning. International Journal of Intelligent Systems and Applications, 5(3), 83-93.

doi:10.5815/ijisa.2013.03.09

Sontag, E. D. (1992). Feedback stabilization using two-hidden-layer nets. IEEE Transactions on Neural

Networks, 3(6), 981-990. doi:10.1109/72.165599

Swingler, K. (1996). Applying neural networks: a practical guide: Morgan Kaufmann.

Trivedi, C., Chow, M.-Y., Nilsson, A. A., & Trussell, H. J. (2002). Classification of Internet Traffic using

Artificial Neural Networks

Wang, Z. (2015). The Applications of Deep Learning on Traffic Identification. Black Hat USA.

Yang, F. (2015, 27-29 May 2015). The tale of deep packet inspection in China: Mind the gap. Paper

presented at the 2015 3rd International Conference on Information and Communication

Technology (ICoICT).

Macquarie Matrix: Special edition, ACUR 2017

144

Appendix: Number of hidden nodes across the 25 different models

