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Abstract 

Recent years have shown an unprecedented reliance on the internet to provide services essential for 

business, education, and personal use. Due to this reliance, coupled with the exponential growth of 

the internet traffic being generated, there has never been a greater necessity for effective network 

management techniques. Network traffic classification is one key component of this network 

management which aims to identify the types and quantity of traffic flowing through a network. 

Previous traffic classification techniques are limited by the use of non-standardised port numbers 

and the encryption of traffic contents. To tackle these challenges, we propose using deep learning 

techniques for network traffic classification. This paper investigates the viability of using deep 

learning for traffic classification with a focus on both network management applications and 

detecting malicious traffic. Our preliminary results thus far show that a highly accurate classifier can 

be created using the first 50 bytes of a traffic flow. 
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1. Introduction 

The Internet has become a key facilitator of large-scale global communications and is vital 

for providing an immeasurable number of services. With the ever-expanding growth of 

Internet use, it is critical for the underpinning networks to be managed effectively. Network 

traffic classification is one such technique that allows the forecasting of traffic on a network 

to improve the Quality of Service (QoS) and identification of potential security threats. It is 

for this reason network traffic classification has become a crucial component of network 

management for Internet Service Providers (ISPs), large enterprise companies and 

government agencies. Deep learning is a subfield of machine learning which enables 

classification models to be trained without explicit programming. Deep learning models 

generally consist of a large number of processing units which can be used to classify data. 

This research investigates the viability of using deep learning techniques to provide this 

network traffic classification. 

Previously used methods of network traffic classification include port based and 

signature based methods. Port based classification operates by classifying network traffic 

based on port numbers contained in the header section of each datagram sent over a 

network. This simplistic method has become less effective in recent years as it has become 

easier to circumvent by applications changing their port number. Signature based methods 

involve matching a sequence of bytes or properties to a known signature, but is limited to 

identifying only signatures for known application protocols.  

Deep learning addresses the issues faced by other methods by automating the 

adaptation process of new signatures. With the recent rise of deep learning, there has been 

limited documented approaches to utilising these deep learning methods for the purpose of 

network traffic classification. In this paper, we aim to (1) establish the viability of using deep 
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learning for classifying network traffic flows, (2) devise strategies to optimise neural-

network parameters for traffic classification, and (3) to expand and investigate the potential 

of using deep learning for identifying malicious network traffic flows for Cyber Security. The 

contributions of this paper are as follows: 

 Extending from prior work by Wang (2015), we devised a deep neural network 

classifier achieving classification accuracy of over 90% for application protocols in 

the UNSW-NB15 dataset (Nour & Slay, 2015). 

 Passing the first 50 bytes of a network flow rather than the first 1000 bytes to a deep 

neural network can result in higher classification accuracies. 

 We have expanded on the experiments conducted by Wang to investigate its ability 

to classify malicious traffic. 

 Through experimentation, we have determined an optimal set of network 

parameters for use in these experiments. 

 

2. Relevant work 

Machine learning techniques can be applied to classify network traffic flows and has been 

the target of several recent studies. These methods generally differ in the representations of 

network traffic flow data, and the machine learning algorithms used.  

 

2.1 Network application protocol identification 

Wang (2015) used deep learning to identify common network traffic within a self-generated 

data set. Wang’s method used the first 1000 bytes of each Transmission Control Protocol 

(TCP) flow as input data, with results indicating the most important bytes for classification 

were early in the flow. Results showed that 55% of flows were correctly classified using a 
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90% probability cut-off point, but this could potentially be improved by ignoring the least 

significant input bytes. 

Trivedi, Chow, Nilsson, & Trussell (2002) used a neural network with statistical 

information and IP layer packet attributes to classify TCP flows into different application 

protocols. Using this method, they achieved an overall accuracy above 98%.  

Auld, Moore, & Gull (2007) used Bayesian neural networks and features of TCP flows 

to classify network traffic flows to a high accuracy. An accuracy of 99% was achieved when 

using a testing and training dataset from the same day, while 95% accuracy was achieved 

with a testing set eight months after the training set. 

Singh, Agrawal, & Sohi (2013) used five machine learning methods, (including 

Multilayer Perception (MLP), Radial Basis Function (RBF), C4.5, Bayes Net and Naïve Bayes) 

to classify IP traffic in real time. They concluded that Bayes Net gave the highest 

classification accuracy of 91.875%, potentially lower than the other papers discussed due to 

their focus on real time classification and necessity for fast classification results. 

This research paper uses deep learning methods similar to Wang (2015), but also 

investigates the effect of fine tuning the various deep learning parameters. Investigation is 

expanded over these studies by classifying UDP traffic in addition to TCP traffic. Our method 

does not use any statistical information or features of the network traffic flows while these 

are used for Trivedi et al. (2002) and Auld et al. (2007) as their input data. Auld et al. (2007) 

used two datasets (training and testing) generated eight months apart, while two datasets 

generated one month apart are used in our method. Additionally, our method only focuses 

on using neural networks and deep learning while Singh et al. (2013) also investigate a range 

of traditional machine learning methods. 
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2.2 Malicious traffic identification 

Accurate classification of different malicious network traffic types generally proved to be 

more challenging than standard application protocols. Dong & Wang (2016) used methods 

including Support Vector Machine (SVM), Support Vector Machine Restricted Boltzmann 

Machines (SVM-RBMs), Naïve Bayes and C4.5 to classify various malicious traffic. SVM-RBMs 

were found to give the best results, however classification of different malicious types did 

not reach precision values above 90%. 

This research paper focuses on the effectiveness of deep learning rather than the 

traditional machine learning methods used in Dong & Wang (2016). The optimal model 

parameters and deep learning approach are also determined for the model. 

 

3 Background knowledge 

3.1 Neural networks and deep learning 

Deep learning was the focus of this research paper due to its potential ability in producing 

an accurate network traffic flow classifier. Deep learning is a machine learning method 

which uses neural networks containing multiple hidden layers, known as a deep neural 

network. As shown in Figure 1, a neural network takes in a number of input features, and 

through a variable number of hidden layers and nodes, connects through weighted values to 

the output nodes. This method allows the computer to learn a representation of a complex 

system, by considering basic concepts. Multiple hidden layers also achieve automatic 

feature discovery in which a higher-level set of input features can find lower level features. 

Through this method, a combination of weights between layers are trained and a suitable 

combination of input features can be used to calculate an appropriate output.  
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3.2 Network traffic flows 

A network traffic flow is a sequence of packets forming a conversation between two end-

points of a network, and defined by various properties. The definition of flow used in this 

research was selected as the bi-directional five-tuple set of properties: source IP address, 

destination IP address, source port, destination port, and protocol type. The protocol types 

used were TCP and User Datagram Protocol (UDP).  

 

4. Dataset 

Deep learning benefits from a large and extensive dataset. The UNSW-NB15 dataset (Nour & 

Slay, 2016), released in 2015, contains raw packet level data and some extracted flow level 

features. The network traffic flows in this dataset contain a range of application and 

malicious labels. Through deep learning, we intend to generate a deep learning model to 

classify these flows accurately against the labels. While only 51% of the dataset has 

predefined application labels, it contains 1.29 million network application entries and 0.32 

million malicious entries, making the dataset suitable for general network traffic 

Figure 1: Example of a deep neural network (Yang, 2015)  
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identification and detecting malicious traffic. A process of adding additional application 

labels to the dataset was performed using nDPI, which were used for entries which did not 

originally contain labels. The application and malicious classes chosen can be seen in 

Table 1. The application protocols and malicious classes shown in Table 1 represent several 

prominent types of traffic or malicious traffic that can be found in a given network. 

Unlabelled application and malicious samples have been classified as either Other or Other 

Malicious respectfully. 

 

Table 1: Chosen classifications 

Application Protocols Malicious Classes 

DNS Exploits 

FTP Fuzzers 

FTP-DATA Generic 

Mail DOS 

SSH Reconnaissance 

P2P Other Malicious 

NFS Non-Malicious 

HTTP  

BGP  

OSCAR  

Other  

 

5. Data representation 

The format of the input data directly affects the results achievable from a neural network. 

Wang (2015) conducted similar research in which the first 1000 bytes of each bi-directional 
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flow were collected from a different network traffic dataset and bi-directional flows were 

classified. The first 1000 bytes were therefore also inserted as input values into our neural 

network model and output classifications were produced, through a method outlined in 

Figure 2. Wang showed however that the most influential bytes were generally within the 

first 300 bytes, and as such, varying input data sizes below 1000 bytes was also investigated. 

 

 

Figure 2: Presentation of network flows to the neural network. The input to the neural 
network is the start of a HTTP GET flow and the model’s output prediction is HTTP. 
 

6. Choosing a deep neural network architecture 

This research aims to provide an extensive analysis of deep learning performance on traffic 

classification using a multitude of feedforward reverse-propagation neural networks. To 

achieve these comparisons, four model parameters were adjusted sequentially in order to 

find an optimal architecture (refer to Table 2). TensorFlow was utilised to build and evaluate 
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the different model architectures (Abadi et al., 2016). It should be noted that parameters 

associated with the classification model are referred to in this paper as hyperparameters to 

avoid confusion with parameters associated with the underlying system.  

 

Table 2: Neural network hyperparameters 

Hyperparameter Description and Significance 

Number of hidden layers Each hidden layer transforms its input data into a reduced set of 
features that contain more relevant information from the input 
data. Figure 1 shows a deep neural network consisting of three 
hidden layers. 

Number of nodes in the 
hidden layer(s) 

Hidden nodes are responsible for feature discovery. Figure 1 
shows a deep neural network consisting of a combined 27 nodes 
in its hidden layers. 

Input Length The number of bytes used from each bi-directional flow. As each 
input byte maps to a respective node in the input layer, the 
number of bytes used also determines how many nodes are 
present in the input layer. For example, Figure 1 would be trained 
on the first eight bytes of a bi-directional flow. 

Padding Style Padding a flow with either zeros or random values such that each 
flow meets the required input length. 

 

6.1 Number of hidden layers 

In a fully connected neural network, the output of every node in one layer is connected to 

the input of every node in the next. As features propagate through each layer their 

complexity is increased, which allows for deeper networks to make predictions based upon 

higher order analysis than their shallower counterparts. As stated by Sontag (1992), neural 

networks with a non-linear threshold function can always achieve full generality with just 

two hidden layers, although increasing the number of hidden layers further can also 

increase the learning rate in specific applications (LeCun et al., 1989). 
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To investigate the effect in which the depth of the model had on its ability to classify 

network traffic, 10 models were constructed each with the same total number of nodes in 

their hidden layers but spread across varying depths. These depths ranged from one to ten 

hidden layers. This experiment was then repeated, varying the number of total nodes seen 

in the model. 

The results from this experiment have been shown in Figure 3. From this, it can be 

seen that the addition of more layers does not have a conclusive effect on the testing 

accuracy achieved and in many cases, reduces the testing accuracy. This result shows that 

the addition of more nodes to the network has a greater effect on the model’s accuracy 

than the addition of hidden layers. To explore this result, the testing accuracy was then 

compared against model complexity. For a fully connected feedforward model, model 

complexity is simply defined as the number of connections made within the model and is 

directly affected by the depth of the model and the number of nodes in the model. 

Figure 3: Testing accuracy against network depth 
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It may be observed that there exists a rough logarithmic correlation between the model 

complexity and testing accuracy (Figure 4). This result seems to suggest that there exists a 

cut-off point in which the complexity of the model isn’t sufficient enough to encapsulate all 

of the important input features.  

To examine the effect in which model complexity had upon its training time, a series 

of models were created up to a depth of three hidden layers and ran for 10 epochs. Figure 5 

indicates that for increasingly complex networks, deeper networks become more efficient to 

train. Due to the fully connected structure, deeper networks can contain more connections 

within the model with a smaller number of nodes. As each node acts as a small processor, 

using less nodes greatly affects the training time. For this reason and the outcomes stated 

by Sontag (1992), a two-layered model has been chosen for the subsequent 

experimentation.  

 

Figure 4: Testing accuracy against model complexity 
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6.2 Nodes in the hidden layer(s) 

Increasing the number of nodes in the hidden layers can result in overfitting (modelling the 

noise instead of the underlying relationship) while not having enough nodes can lead to 

underfitting (when the model cannot capture the underlying relationship). This is due to the 

number of connections inside the model increasing as the number of nodes increase. Each 

connection has a corresponding weight that can be adjusted by the neural network’s 

training algorithm. The total number of variables that can be adjusted by the training 

algorithm is called the degrees of freedom. For any given feedforward reverse-propagation 

neural network the degrees of freedom can be expressed as: 

 

   (1) 

 

where is the number of nodes in node layer , and N is the total number of layers in the 

neural network (N = input layer + hidden layers + output layer). 

“In most situations, there is no way to determine the best number of hidden units 

without training several networks and estimating the generalization error of each.” 

(Swingler, 1996). For this reason, the neural networks defined in the Appendix each had 

varying number of nodes in their hidden layers. Each model was trained and then evaluated 

with the testing dataset, with preliminary results showing models with higher degree of 

freedom having 0.7% increase in testing accuracy. 
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Figure 5: Training time against model complexity 
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Figure 6: Flow composition: first 1000 bytes 

 

Another one of our preliminary studies investigated how the testing accuracy of models 
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with low degrees of freedom are affected more heavily as the input length is increased, 
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Figure 7: Testing accuracy against input length  
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6.4 Padding style 

For flows that did not meet the 1000-byte input length, zero and random padding were 

investigated. The two methods fill the remaining positions with either a 0, or a 

pseudorandom value between the ranges of 0 to 255, respectively. Neural networks look for 

patterns in the input data to help the classification prediction, therefore random padding is 

used to reduce the chance that the model will learn from a pattern it finds in the padded 

region of a flow. 

Twenty models of various complexities were then tested with both zero and random 

padding. The findings, shown in Figure 8, indicate that for all models zero padding achieves 

a much greater classification accuracy than random padding. As it is clear where zero 

padding starts, a part of this result is speculated to come from the added feature of flow 

length which the model could be learning from. 

 

Figure 8: Zero Vs Random Padding 
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7. Results 

From the previous experiments, a set of optimal hyperparameters was found for the 

specified classification task. Of note: 

 It was seen that there exists a threshold for the complexity of the model for which 

the accuracy will sharply decline if not met.  

 Accurate classification can be made using just the first 50 bytes of a flow. 

 Zero padding results in consistently greater accuracy than random padding. 

Table 3 shows the chosen model’s hyperparameters selected based of the preliminary 

experiments. The classification performance of this model was then investigated. 

Application and malicious classification was considered separately. 

 

Table 3: Chosen model’s hyperparameters 

Hyperparameter Chosen  

Number of hidden layers 2 

Number of nodes in each 

hidden layer 

1600 

Input Length 50 bytes 

Padding Style Zero Padding  

Category Encoding 1-of-C 

Training/Optimization 

algorithm 

Adam  

Threshold functions ReLU and Softmax at output layer 
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7.1 Application results 

Figure 9 shows the individual class classification accuracy achieved by the model. The model 

achieved a high accuracy classification for each of the chosen protocols. As FTP-DATA was 

the least represented protocol within the dataset it is speculated that the lower accuracy 

seen could be improved if more samples were present within the dataset. 

 

Figure 9: Confusion matrix application classes 

 

7.2 Malicious results. 

In a similar fashion to the application results, the classification accuracy of the malicious 

classes can be seen in the confusion matrix in Figure 10. Four malicious classes, Shellcode, 

Analysis, Backdoor and Worm, were combined in this analysis as they were heavily under 

represented within the dataset. It is seen that this method of traffic classification produces a 

subpar class classification accuracy. As malicious content often tries to obscure its intent, it 

is speculated that statistical data about the flow would achieve a greater classification 

accuracy when used as inputs to a similarly designed neural network. The major limitations 

with deep learning stem from access to a large and compressive dataset. It is speculated 

that with access to such a dataset these accuracies could be greatly improved upon.  
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Figure 10: Confusion matrix malicious classes 
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shown in Figure 11. 

 

Figure 11: Binary classifier  
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detecting malicious traffic. In this paper, several hyperparameters were analysed to acquire 

an optimal deep learning architecture, specifically: 

 Two hidden layers were used to decrease training time while still meeting the 

complexity threshold. 

 Padding flows that did not meet the required input length with zeros rather than 

random values resulted in a consistently higher classification accuracy.  

 An input length of 50 bytes, instead of the 1000 used in Wang (2015), granted an 

increased classification accuracy and a reduction in the training time for the used 

dataset. 

 It is speculated that given a more extensive dataset, the classification accuracies 

could be improved on and extrapolated onto a wider range of network traffic 

protocols.  

In the future, supplementary network statistical data shall be utilised to improve the 

classification accuracy for malicious flows. Another avenue of research involves using 

convolutional neural network (CNN) to further enhance deep neural network traffic 

classifiers.   With additional research, the authors of this paper believe that deep learning 

will become the pinnacle of network traffic classification in the future. 
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Appendix: Number of hidden nodes across the 25 different models 

 

 

 


