
Received September 14, 2021, accepted October 13, 2021, date of publication October 25, 2021, date of current version November 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3122451

Generating Name-Like Vectors for Testing
Large-Scale Entity Resolution
SAMUDRA HERATH 1,2, MATTHEW ROUGHAN 1,2, (Fellow, IEEE), AND GARY GLONEK1
1School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
2Australian Research Council (ARC) Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Parkville, VIC 3010, Australia

Corresponding author: Samudra Herath (samudra.herath@adelaide.edu.au)

This work was supported in part by the Data to Decisions (D2D) CRC, in part by the Cooperative Research Centres Programme, and in part
by the ARC Center of Excellence for Mathematical and Statistical Frontiers (ACEMS).

ABSTRACT Entity resolution (ER), the problem of identifying and linking records that belong to the same
real-world entities in structured and unstructured data, is a primary task in data integration. Accurate and
efficient ER has a major practical impact on various applications across commercial, security and scientific
domains. Recently, scalable ER techniques have received enormous attention with the increasing need to
combine large-scale datasets. The shortage of training and ground truth data impedes the development
and testing of ER algorithms. Good public datasets, especially those containing personal information, are
restricted in this area and usually small in size. Due to privacy and confidential issues, testing algorithms
or techniques with real datasets is challenging in ER research. Simulation is one technique for generating
synthetic datasets that have characteristics similar to those of real data for testing algorithms. Many existing
simulation tools in ER lack support for generating large-scale data and have problems in complexity,
scalability, and limitations of resampling. In our work, we propose a simple, inexpensive, and fast synthetic
data generation tool. Our tool only generates entity names in the first stage, but these are commonly used
as identification keys in ER algorithms. We avoid the detail-level simulation of entity names using a simple
vector representation that delivers simplicity and efficiency. In this paper, we discuss how to simulate simple
vectors that approximate the properties of entity names. We describe the overall construction of the tool
based on data analysis of a namespace that contains entity names collected from the actual environment.

INDEX TERMS Entity resolution, data integration, data linkage, data matching, information systems,
large-scale synthetic data, record linkage.

I. INTRODUCTION
Data integration plays a vital role in data analysis and mining
projects by combining data from different sources into mean-
ingful information. Entity resolution (ER), a core step in data
integration, detects entity records across multiple databases
that correspond to the same real-world entity. It applies to
various data types, from structured relational databases to
unstructured entities extracted from free text [1], [2]. ER has
also been known as the object identity problem, record
linkage, the merge/purge problem, deduplication, duplicate
record detection, and data matching in different domains.

ER has been widely recognised in academic and sta-
tistical research since research data are gathered from

The associate editor coordinating the review of this manuscript and

approving it for publication was Vijay Mago .

multiple data sources that store data in different formats. This
process is also of increasing importance in commercial and
government practice. ER appears as a problem in a range of
applications, e.g., medical or epidemiological research, crime
detection and national security, tax and other fraud detection,
education research, e-commerce applications, and customer
relationship management [1].

The problem of combining two or more separately
recorded pieces that belong to a particular individual dates
back to the early 1950s [3]. Despite extensive research stud-
ies over several decades, ER remains a challenging prob-
lem in practice, especially for applications in big data. Big
data create new challenges such as high scalability, com-
plex similarity metrics, and advanced data quality evalua-
tion requirements for ER. Hence, high-performing scalable
ER techniques are required to facilitate the integration of

145288 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-1837-3759
https://orcid.org/0000-0002-7882-7329
https://orcid.org/0000-0002-9741-3463

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

large-scale data collections. Simultaneously, big data ER
applications require large-scale testing data when developing
suitable ER solutions.

We explain a simple illustrative instance of the ER problem
through the contact tracing process in the novel coronavirus
(COVID-19) pandemic. Health and surveillance systems cur-
rently use contact tracing to determine where patients have
caught the virus and whom they might have infected. The
process tracks patient movements back to the potential person
from whom they caught the virus to identify people who may
have been in contact with the infected person. It requires
data matching between different databases, especially when
only partial information is available about a person. Most
countries have manual contact tracing systems that could
easily break with a few hundred cases during a massive out-
break. Contract tracing could involve comparing hundreds of
personal information items against a large population within
a day; it is impossible to accomplish this task with a manual
system. Hence, developing and applying suitable big data
ER techniques can be a promising strategy to accommodate
efficient and effective contact tracing.

Many ER applications have databases that contain records
of individual entities such as patients, customers, trav-
ellers, etc. Often, there are no unique identifiers for entities
that would make record matching easy in those databases.
Therefore, record matching relies on the entity attributes
that are common across databases. For instance, the above
example of contact tracing strongly depends on the informa-
tion available about a person. Examples of entity identifying
attributes based on personal information are name, address,
and date of birth. However, obtaining such real datasets is
difficult for research with growing concerns over data privacy
and identity theft. Even if we are allowed to use such datasets
for testing our algorithms, they cannot be published for repli-
cation studies. As a result, developing novel algorithms that
process and integrate data that contain personal identifying
information is often difficult. This lack of data is a funda-
mental problem of ER research.

There are several large-scale, real RDF (resource descrip-
tion framework) web datasets that could be used as ER
benchmarks [4]. However, only a few real datasets that are
available for research contain personal information, and these
are small in size [1], [5]. Even with the available real datasets,
the correct status of two records is unknown to many applica-
tions. The main reason is the lack of ground truth or ‘‘gold-
standard’’ data specifying whether two records correspond
to the same entity. Therefore, validating matched and linked
results in the testing of newly developed ER algorithms is
very difficult. Data simulation is an alternative approach in
the absence of suitable datasets. Our motivation is to mimic
the characteristics of large-scale data containing personal
information that are useful in deduplication, fraud detection,
cloud computing, and health informatics in our simulation
model to generate large-scale datasets [1].

There are many advantages in using simulations as part of
the development process, where algorithms will ultimately be

tested on real datasets [6]. A key benefit of simulated data is
that they contain ground truth data critical to evaluating ER
algorithms. We can also control the properties such as size,
linking rate, types of errors, and error rates in data simulation.
Moreover, simulated datasets can be published with their
source programs/tools, allowing others to adapt them in their
application domains.

However, generating synthetic data is a nontrivial process
since the data are expected to have similar characteristics
to real-world data, such as distributions of values, errors,
noise, and variations. Many researchers implement ad hoc
methods/tools to simulate data. These are often complex,
application-specific data generators with limited capabilities
to generate large-scale data. Similarly, many of the existing
personal data simulation tools do not support large-scale data
generation and have problems in complexity, scalability, and
limitations of resampling.

We propose a simple, inexpensive, and fast simulation
model that captures and approximates the most relevant prop-
erties of one common identification key, specifically names.
String comparison functions measure the distance or the dis-
similarity between string attributes such as names in record
matching. These values indicate how similar attribute values
are for the underlying pairs of records. The main property of
interest is the distance or the dissimilarity between attribute
values when deciding whether two entity records correspond
to the same entity. Therefore, our model simulates the level
of detail required to construct the distance between identifi-
cation keys. We use vectors of numbers to represent names
in a dataset, aiming at low-dimensional vectors. The model
outputs a set of vectors that can be used to evaluate the per-
formance of big data solutions, especially those that involve
name matching. We will refer to these vectors as name-like
vectors for the rest of the paper.
Our method holds several attractive properties compared to

traditional simulation tools. These simulation tools resample
from real databases or datasets that contain information about
entities. Thus, the size of the existing databases limits the
size of the datasets a particular tool can generate effectively.
In contrast, our solution relies on a vector representation that
defines records, where the capacity of resampling from vector
space is unlimited. A vector can be uniquely located in this
space, and the distance computations between them can be
done efficiently using Lp norms. Due to the availability of
operations such as vector addition and subtraction in this
space, new vectors can be constructed from prior vectors
equally easily [7].

Error modelling is an essential and complex component
of test data simulation in ER since errors are inherent in
real-world databases. The quality of entity identifying infor-
mation in real data can be low for incorrect, incomplete or
outdated details that could lead attribute values to be erro-
neous. Generating those errors in data simulation requires
decisions such as types of errors (e.g., spelling or phonetic
errors) and the probabilities of introducing and positioning
errors. However, the most common type of errors considered

VOLUME 9, 2021 145289

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

in many simulation tools is typographical errors. Our simu-
lation model generates typographical errors of names using
only one parameter: the variance of errors in name-like vec-
tors that approximates the underlying namespace. We intro-
duce small typographical errors with small distances away
from name-like vectors, and the same could be applied
to generate large errors to simplify the error simulation
process.

Record generation is often a complex and expensive pro-
cess in traditional simulation tools requiring user-defined
probabilities, tuning several parameters, and other modi-
fications to entity records. In contrast, our model gener-
ates entity names with a fixed O(p) time per record, given
that the dimension of a vector representation is p (which
is small). We can generate one million name-like vectors
that represent records in less than 2 minutes. The simplicity
of our simulation model allows inexpensive and fast data
generation.

Many modern ER applications require matching or link-
ing datasets that would contain 10 million or 100 million
names. Consider, as a motivating example, linking medical
records spread across different health databases. A person
can have many entries in those databases over several years.
Thousands of record comparisons may be needed to link
entries belonging to that person. For a country’s population,
this may mean millions or even billions of records. Our
interest is in generating datasets of 10 -100 million name-like
vectors.

One example where such datasets are needed in testing is
when developing matching or linking ER algorithms that use
global information rather than simplistic pairwise matching.
In that context, we need to understand how the global distri-
bution of names or other personal information and their errors
impact the algorithm.

We developed our simulation model following data analy-
sis of a namespace that contains entity names collected from
the actual environment. The main property of interest is the
dissimilarities or the distances between name strings. Hence,
our model attempts to simulate name-like vectors such that
these vectors preserve the distance between the names strings
we measured in the real namespace. We used a set of existing
methods and tools in statistics in the data analysis towards this
challenge. Based on the results of the data analysis, we pro-
pose a numerical simulation model that generates name-like
vectors.

Three surname datasets are used as inputs for the
experimental data analysis. The results closely mirrored
each other (details in Section V). The proposed numeri-
cal simulation model uses a normal distribution to generate
name-like vectors in a low-dimensional Euclidean space (6 to
8 dimensions).

The rest of the paper discusses the methods, experimental
analysis, and the resulting contributions toward answering
two key questions: (a) ‘‘Can we use vectors to approximate
the namespace?’’ and (b) ‘‘How do we simulate name-like
vectors including errors of a namespace?’’

The contributions of this paper are as follows:

• A name approximation method that maps actual names
into vectors of a Euclidean space approximating the
dissimilarities or distances between name stings. The
technique can be applied to any set of strings, not just
names.

• A numerical simulation model to generate name-like
vectors and their errors based on name dissimilarities of
an actual namespace. We avoid the detail-level simula-
tion of entity names using a simple vector representation
that delivers simplicity and efficiency.

• A workflow to construct, test and evaluate the proposed
simulation model following data analysis of a names-
pace. We provide a simple workflow of our simula-
tor that is easy to follow, where users can generate
data vectors using their input datasets. We recommend
using names or similar strings as input data. We also
explain how a user can easily extend this tool to different
features.

II. BACKGROUND AND RELATED WORK
The problem of entity resolution using computers started
in the early 50s when Newcombe et al. [3] proposed the
automation of ER. Fellegi and Sunter [8] described a frame-
work for probabilistic ER in their seminal paper in 1969.
Later, many practical applications followed this framework
instead of manual or ad hoc linking techniques. Christen [1],
in his book, provided an overview, one of the comprehensive
sources of entity matching.

Some of the top surveys found in the literature discuss
the pressing issues of ER, e.g., privacy concerns, big data,
and existing ER solutions. Vatsalan et al. [9] presented a
survey of techniques that match and link databases between
organisations considering the privacy aspects of the data.
Christophides et al. [2] reviewed ER techniques in the context
of big data, whereas Barlaug andGulla [10] provided a survey
of deep neural networks in entity matching. Several other
surveys discuss narrower aspects of ER, such as specific
techniques or subtasks. In this section, we survey only a few
relevant works that align with the focus of our work.

There are frequently used datasets in the ER literature:
a health data set containing midwife data records [11],
the North Carolina Voter database (NCVR) [12] and CORA,1

a citation network. Besides, only a few ‘real’ datasets that
contain personal information are available for research. How-
ever, each of these has a limited size, problems in resampling,
and limited control over errors.

Arehart and Miller [5] developed a ground truth dataset
that contains approximately 70,000 culturally diverse Roman
names. The dataset includes personal names that were drawn
from different sources and manually incorporated name vari-
ations.

Several simulation tools have been developed in ER
literature. These tools aim to simulate realistic records

1https://relational.fit.cvut.cz/dataset/CORA

145290 VOLUME 9, 2021

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

and common errors. Hernandez and Stolfo [13] presented
the first work on data generation with duplicate records
based on real-world error distributions. Bertolazzi et al. [14]
addressed some limitations of Hernandez’smethod, including
missing values and various corruption functions.

Christen and Vatsalan [6] presented a tool that gener-
ates records with entity attributes such as names, addresses,
and dates of birth, which has been widely used in ER
research. However, it does not support large-scale data gen-
eration. Talburt et al. [15] presented a tool for generating
records that represent people’s residential occupancy histo-
ries. Several other works on simulation studies were proposed
by Tromp et al. [16] and Bachteler and Reiher [17]. These
simulation tools are often application-specific, where the
researchers proposed various ad hoc methods that generate
datasets with specific characteristics.

Most of the above simulation tools contain two essential
components. First, the data are generated by repeatedly sam-
pling from an existing dataset or database. This limits the size
and controllability of the data simulation. Second, these tools
introduce errors using models of standard errors, e.g., typo-
graphical, phonetic, and OCR (optical character recognition)
errors. The differences lie in the way they simulate records
and errors using different structural models.

The frequency and look-up tables used in the record link-
age system, FEBRL (freely extensible biomedical record
linkage) [18], have been regularly used by other simulation
studies to generate records. Although this is a broadly used
open-source approach, it is not scalable enough to explore
ER algorithms that work with very large datasets.

Our work is motivated by the vector-based representation
of words, which has a thriving history in the applications of
information retrieval, computational semantics, and natural
language processing. The underlying property is that words
with similar contextual significance tend to have similar
embeddings when mapped to a continuous vector space [19].
Word2vec [20], in particular, has been used extensively in
natural language processing applications. However, it is less
useful in proper-noun databases since names do not have
semantic relationships [21].

Several methods that embed a set of strings in a
metric-space have been used to explore the problems in
ER [22], [23]. These methods focus on matching simi-
lar records efficiently using the properties of the metric-
space. However, to the best of our knowledge, none of them
addressed the data simulation using a metric-space, particu-
larly a vector space.

Entity alignment (EA) models represent entities as
low-dimensional vectors in knowledge graphs according to
semantic or structural information. While EA and ER have
similar goals to identify entity records of the same entity,
EA differs from ER as it operates on graph-structured data.

Several mapping algorithms, including StringMap [22],
FastMap [24], SparseMap [23], and MetricMap [25], are
proposed for embedding a set of objects in a metric-space.
We choose multidimensional scaling (MDS) because of its

ability to work with the nonlinear and nonmetric nature of our
data and because it includes a distance preservation capability
for large-scale data with a small amount of extra effort.

The outcome of a general MDS algorithm is a map that
conveys spatial relationships among input objects, which are
usually dissimilarities between objects. This map is expected
to preserve the original proximities such that similar items
are close by and dissimilar items are further apart by their
relative locations [26]. Different variations of the generic
MDS algorithm are found in the literature. For an overview,
see [27], [28]. We will discuss the technical details of the
MDS algorithms in Section IV.

III. PRELIMINARIES
This section introduces relevant definitions, concepts and
notations used throughout the paper. First, we present key def-
initions of the entity resolution (ER) problem. Next, we intro-
duce preliminary concepts of domain-specific distance met-
rics used in attribute-level ER matching.

An entity can be a person, place, product, organisation
or any object with a unique identity that distinguishes it
from all other entities of the same type. A collection of
name-value pairs that describe a particular entity is known
as an entity profile [2]. A pair of similar entity profiles are
called duplicates. A duplicate of an entity can be either an
exact copy of the original entity profile or an entity profile
that contains an error (e.g., typographical error). A database
representation of an entity profile is usually referred to as a
record.

A set of entity profiles (or simply, records) is called entity
collection, denoted by E . Given E , we say two records r1, r2
match if they refer to the same unique real-world object.
We denote this as r1 ≡ r2. The goal of ER is to link
different records that describe the same entity within an entity
collection or across two or more entity collections.

Matching records of an entity are determined by pairwise
comparisons between records in entity collections. Given a
pair of records (ri, rj) and a set of attributes a1, a2, . . . , ax
that describe them, similarities s1, . . . , sx between attribute
values are determined by applying a set of similarity functions
simk (ri.ak , rj.ak), with 1 ≤ k ≤ x. The total similarity
between the records is given by the similarity score S =∑x

i=1 s. The record pairs can be classified as a match or a
non-match using the similarity scores and a matching thresh-
old [23].

Several comparison methods such as edit distance, a.k.a.
Levenshtein distance, Jaro distance, and q-gram distance are
found in the domain of strings [29]. In this work, we mainly
used the Levenshtein distance to measure the similarity at
the attribute level. It calculates the minimum number of
character insertions, deletions, and replacements necessary to
transform a string s1 into a string s2.Minkowskimetrics based
on Lp norms, ‖ x ‖p = (

∑
|xi|p)1/p, with p > 1 are popular

in the metric domains. In metric-space calculations, we used
the most common Minkowski metric, Euclidean distances
dE (p = 2).

VOLUME 9, 2021 145291

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

IV. METHODOLOGY
Our methodology is organised into three main sections.
In each section, we answer the questions defined in Section I.

A. CONVERTING NAMES TO MULTIDIMENSIONAL
VECTORS
We first aim to find a simple representation for names
that allow quick simulations. In name matching, the main
property of interest is the similarities or dissimilarities
of names. We assume that names reside in a compli-
cated high-dimensional space (the namespace) where similar
names are closer than dissimilar names. The first key question
is: ‘‘Can we use lower-dimensional vectors to approximate
the namespace?’’ In other words, we seek to approximate a
high-dimensional space with a lower-dimensional Euclidean
space.

We cast the problem as an embedding problem, which
refers to constructing coordinates from distances. In domains
that use computationally expensive distance functions, signif-
icant speed-ups can be obtained by embedding objects into a
coordinate space and applying an efficient distance function,
such as the Lp norm [7].

Assume R is a collection of objects, δ measures the dis-
tances between R objects, X represents the coordinates matrix
for the R objects in the Euclidean space, and d measures
the distances between coordinates. Embedding of a metric
or non-metric space (R, δ) into a coordinate space (X , d) is
a mapping φ : R → X . In this work, (R, δ) will always be a
finite space (i.e., R is a finite set) and (X , d) will always be a
Euclidean space.

The most commonly used technique for embedding a set
of distances (or dissimilarities) into a coordinate space is
multidimensional scaling (MDS) [30]. MDS is a non-linear
optimisation problem for finding the best mapping of φ [30].
Using MDS, we can project names into a lower-dimensional
Euclidean space by approximating their dissimilarities. Then
the pairwise comparisons between names become Euclidean
distances between vectors. This lower-dimensional represen-
tation of namespace allows us to study the structure and
explain the relationships of the data mathematically.

An MDS algorithm takes the input of N points as a N ×N
matrix1, a distance or affinity matrix. An entry in the ith row
and jth column of 1 is the dissimilarity δij, between object i
and object j, where δii = 0, and δij > 0, i 6= j. Then it attempts
to construct a configuration of N data points x1, . . . , xN in p
dimensions, such that if dij denotes the Euclidean distance
between xi and xj and D is their distance matrix, then D is
similar to 1 [31].

One of the issues in some uses of MDS is that some
subsequent actions might not be invariant to orientation or
position, and MDS does not guarantee a particular orienta-
tion. However, we are mainly concerned about relative dis-
tances in entity matching; therefore, our tools are invariant to
orientation and position.

MDS is a standard embedding technique we used as the
basis of our simulation model. Unlike many embedding

techniques, MDS algorithms can handle both metric and
non-metric data. MDS has been used for non-metric data
embedding in the application areas of clinical psychology,
sociology, marketing, ecology, biology, and image process-
ing [26], [28], [32]. Most of our input data is not Euclidean.
For instance, string dissimilarities between names are not
always distances, i.e., metrics. Among the variants of MDS,
we use the least-squares multidimensional scaling (LSMDS)
approach, as it worked best with the nonlinear and non-metric
nature of our data.

1) LEAST-SQUARES MULTIDIMENSIONAL SCALING
The standard method in LSMDS is to minimize the raw
stress (σraw) of a configuration. The input is a dissimilarity
matrix 1 = [δij], where i and j are the indices of two data
points in a high-dimensional space and δij is the distance
between them. In the context of names, we refer to dis-
similarities because some measures are not strictly distance
metrics. For a given dissimilarity matrix 1, a configuration
matrix X = [x1, x2, .., xN], where xi ∈ Rp is constructed by
minimizing

σraw(X) =
N∑

i,j=1

wij
(
dij(X)− δij

)2
. (1)

The Euclidean distance between the ith and jth points in the
lower-dimensional space is given by dij, and wij denotes the
possible weights for each pair of points. These nonnegative
weights indicate the importance of the residuals dij(X)−δij of
object pair ij. Weights are useful in handling missing values,
and the default values are wij = 0 if δij is missing and wij = 1
otherwise [33]. We do not apply weights in this work; hence,
wij = 1 always.
One can use squared distances or a normalised raw stress

criterion as well. We prefer the normalised stress (σ) in our
experiments since it is popular and theoretically justified [34].
The normalized stress σ , is obtained by

σ =

√
σraw(X)/δ2ij. (2)

In general, LSMDS has been used to find a visual represen-
tation of high-dimensional data in 2-3 dimensions. However,
we use LSMDS to determine a simple vector representation
in a lower dimension for approximating the characteristics
of a namespace. We call this an approximated Euclidean
namespace that contains name-like vectors.
To that end, we need to define an appropriate dimen-

sion p, in which distances are maintained at a suitable level
of accuracy. We used two approaches to discover a rea-
sonable lower-dimension that fits our data. First, we anal-
ysed the rate of change of the normalised stress σ against
p-dimensions, where a lower σ value indicates a better
approximation. Second, we used a Shepard diagram [35] to
determine the goodness-of-fit of LSMDS results. A Shepard
diagram is a popular way of assessing the goodness of fit of
data reduction or embedding techniques such as MDS and
t-SNE (t-distributed stochastic neighbour embedding) [35].

145292 VOLUME 9, 2021

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

FIGURE 1. The basic workflow of our numerical simulation model. Names
come from a complicated high dimensional space, and we can represent
them in a lower-dimensional Euclidean space by applying LSMDS to
name dissimilarities. For instance, 1 represents the dissimilarity matrix
containing the Levenshtein distance between the given names. By getting
1 as the input, LSMDS project the names into a lower-dimensional space,
approximating their initial Levenshtein distances by Euclidean distances,
i.e., 1 ≈ D. Then, the names become vectors in p dimensional space,
where p must be chosen.

It compares how far apart our data points are before and after
the transformation using a scatter plot. We present the results
in Section V.

Fig 1. explains the basic workflow that creates the foun-
dation of the proposed simulation model using an example
of how textual similarities of strings relates to vector simi-
larities. For a given set of names, 1 represents the dissimi-
larity matrix of Levenshtein distances. By applying LSMDS,
we project the name strings into a lower-dimensional space
such that 1 ≈ D. We choose the dimension p of the
lower-dimensional space that provides the best compromise
for our data using the stress function (2).

In summary, our simulation model is designed based on
data analysis of an actual namespace that studies the math-
ematical relationship between names in a Euclidean space.
Then the model reconstructs these relationships, especially

distances between the names in generating large-scale name-
like vectors. Next, we discuss the name-like vector simulation
in detail.

B. SIMULATING NAME-LIKE VECTORS
If we can approximate a namespace in a p dimensional
Euclidean space, this leads us to our second question, ‘‘How
do we simulate name-like vectors using the approximated
namespace?’’ A simple approach is to determine the distri-
bution of the approximated lower-dimensional vectors and
simulate vectors with similar characteristics.

We start by checking the normality of the name-like vectors
since it is generally a good starting point. The normal dis-
tribution makes simulation easy, requiring only two param-
eters: mean and covariance. In our context, these parameter
values are vectors and matrices rather than single values due
to the multivariate nature of the data. Hence, we explore
the multivariate characteristic of the real namespace and the
approximated name-like vectors in the Euclidean space.

1) MULTIVARIATE NORMAL CHARACTERISTICS
Many parametric multivariate statistical methods, such as
linear discriminant analysis, require the data to hold the
multivariate normality (MVN) assumption. These methods
produce more reliable results if the data are exactly or even
approximately multivariate normal.

Many analytical and graphical methods test the goodness-
of-fit of a dataset to the multivariate normal distribution.
However, choosing which test in practice is difficult since
different approaches may give different conclusions about the
MVN of a dataset. Therefore, it is usually recommended to
perform several tests while examining the results produced
by graphical methods [36], [37].

We applied Mardia’s skewness and kurtosis statistical tests
to check the multivariate normality of our data. Addition-
ally, we used graphical approaches such as histograms, den-
sity plots, and quantile-quantile plots (Q-Q plots) to visually
assess the MVN characteristics of the data [37]. Moreover,
we applied a multivariate outlier detection method based
on the Mahalanobis distance. It demonstrates how far an
individual data point is from the centroid of all points for the
underlying variables. An observation is considered an outlier
when the distance is great [38].

In addition to MVN, we applied univariate normality tests
and plots to diagnose any deviation from normality. Inves-
tigating the univariate normality of the underlying variables
builds a foundation for a complete understanding of MVN.
In the univariate setting, normality tests such as Kolmogorov-
Smirnov (K-S) and Shapiro-Wilk are extensively applied in
practice [37]. Furthermore, we used histograms and Q-Q
plots to assess univariate normality visually.

Based on the MVN analysis, we found that the approx-
imated name-like vectors in the Euclidean space do not
strictly follow a normal distribution. However, the departures
from normality were relatively minor. Hence, the normal

VOLUME 9, 2021 145293

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

distribution is acceptable as an adequate approximation to
simulate name-like vectors.

2) PARAMETER SELECTION AND SIMULATION
Name-like vector simulation is a two-step procedure. The first
step is estimating the parameters (mean and variance) for the
normal distribution that we would choose as our simulation
model. Since our data are multivariate, we calculated the
sample covariance matrix (6) [39]. All these parameters are
estimated from an approximated namespace that contains the
name-like vectors.

The second step is the simulation of name-like vectors
using the estimated parameters of the normal distribution
N (x, 6), where x = 0. In this way, we can generate many
name-like vectors within seconds. Hence, our simulation
model is a normal distribution-based numerical vector gen-
erator that can produce large-scale data.

We evaluated the results of our simulator based on a com-
parison between different namespaces. Those are the real
namespace, the approximated namespace, and a simulated
namespace. Our interest is in the distributions of the distances
in each namespace since it is a key property in the real names-
pace approximation. The comparison explains how well a
normal distribution can reproduce the distances between vec-
tors mimicking the distances in an actual namespace. The
other characteristic of interest is the possible errors of an
actual namespace.

C. ERROR SIMULATION IN NAME-LIKE VECTORS
Real-world datasets have data quality issues, including
incompleteness, incompatible formats, and errors [1]. Hence,
a namespace can contain errors such as typographical, OCR,
and phonetic errors. We wish to include some of these
errors in our simulated namespace. Consequently, we come
to the subquestion: ‘‘How do we model errors in a simulated
namespace?’’

When simulating real name strings, the typical process
would be to build a complicated error generating model.
In contrast, we create errors of simulated name-like vectors
by adding some noise to the simulated namespace.

Errors are variations of original names. Distances between
a name and its variants are typically small compared to the
distances between distinct names. Similarly, the typical dis-
tance between a name-like vector and that containing an error
should be small. In our error model, we capture the variance
of vectors that represent original names and their errors. Then,
we use it to simulate errors of name-like vectors with a small
Euclidean distance away from their initially simulated name-
like vectors. Our prime interest is in edit distance errors such
as insertions, substitutions, deletions, and transpositions since
they are the most common errors in real datasets [40].

Similar to the name-like vector simulation, we started with
the approximated namespace that contains name-like vectors.
However, unlike the previous approximation, we selected a
real namespace containing names with edit distance errors.
Then, the original names and their errors are converted into

name-like vectors in the Euclidean space. In this way, we can
detect the distribution of errors with respect to their initial
name-like vectors in the Euclidean space.

1) MAXIMAL RATIO OF COVARIANCES
The maximal ratio of the covariance test is a useful way
to report the differences between two variance-covariance
structures [41]. The value of the ratio quantifies the two
covariances. We compare the covariance of the two groups:
approximated errors of name-like vectors and name-like
vectors.

Let 6s be the N × N covariance matrix of name-like
vectors and 6e be that of errors of name-like vectors, and
assume both matrices are invertible. Given that 6−1/2s is
the inverse square root matrix, the ratio can be written as a
product of one covariance matrix and the inverse of the other
covariance matrix (6−1/2s 6e6

−1/2
s). Relative eigen analysis

or relative principal component analysis determines the direc-
tion along which the ratio of variances between two groups
is a maximum [41]. This direction is the first eigenvector of
6
−1/2
s 6e6

−1/2
s , also known as the first relative eigenvector

of 6e with respect to 6s. The eigenvalues of 6
−1/2
s 6e6

−1/2
s

are called the relative eigenvalues of 6e with respect to 6s.
Thus, the first relative eigenvalue γ1 is equal to the maximal
ratio of variances. Small γ1 values indicate that even in the
worst-case scenario, the errors have small variances.

If we can find a small γ1 for approximated name-like
vectors and their errors, it implies that we can add Gaussian
noise to simulate random errors in a simulated namespace.
However, our experimental results supported this expecta-
tion. We calculated the Gaussian noise through a second
normal (Gaussian) distribution N (0, 6e), different from the
initially estimated normal distribution. We will discuss the
results in the next section.

V. EXPERIMENTAL RESULTS
We conducted a set of experiments on real datasets in order
to evaluate the potential benefits of the proposed solution. All
algorithms are implemented in R and executed on a desktop
with Intel Core 5 Quad 2.3 GHz, 16 GB RAM, and macOS
Catalina.

A. THE DATASETS
We used three datasets of surnames to explore namespaces
and their properties, e.g., simple relationships such as the dis-
tributions of names and the similarities between name strings.
In general, all datasets exhibit the same characteristics. For
instance, they follow a Zipf’s distribution [42].

The first dataset is fromAncestry.com [43], which contains
the 250k most commonly occurring surnames. It is the largest
unique surname repository we found for this study.

The second dataset is derived from the frequency files
included in the dataset generator program in FEBRL [18].
The frequency table contains 9000 unique surnames extracted
from telephone directories in Australia.

145294 VOLUME 9, 2021

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

The third data is from the US census [44] that contains all
surnames occurring 100 or more times in the 2010 census.
It includes 150,000 distinct surnames.

B. EXPERIMENTAL SETUP
This section presents the results of the ideas introduced in
the previous section to real data, particularly the results based
on the first dataset. Since our data analysis observations and
the simulation results were similar across the three datasets,
we will not discuss them separately.

In this paper, we used 5000 randomly selected surnames for
testing, which allowed us to perform resampling to evaluate
the results for consistency. The outcome of the proposed
simulation model does not depend on the individual obser-
vations of the selected random sample. Hence the sample
selection is flexible. Initially, we started with a distinct set of
names, as we first attempted to simulate name-like vectors
without errors. However, later on, the simulation of errors
for name-like vectors uses a dataset that contains real-world
errors.

We implemented LSMDS by applying iterative gradient
descent [45] on the stress function (2). Some MDS applica-
tions have used other implementations for LSMDS based on
the SMACOF (stress majorization of a complicated function)
algorithm. For MDS, majorization was introduced by De
Leeuw and Mair [46].

We compared the stochastic gradient-descent (SGD) algo-
rithm and the SMACOF algorithm. Both algorithms produced
similar results with the same σ values for different configu-
rations and input data sizes. However, we found SMACOF is
comparatively slow for our data. Hence, we use SGD-based
LSMDS in the rest of the experiments.

One can use a range of standard string distance measures
to calculate the pairwise dissimilarities between surnames.
We used the STRINGDIST R package [29] to calculate the
dissimilarities between name strings. Initially, we considered
five frequently used string dissimilarity measures [47], [48]:
Levenshtein distances (LV), longest common subsequent
(LCS), Jaccard dissimilarity, Q-grams, and Jaro-Winkler
distances.

The first step of the data analysis is to choose a dimen-
sion p that fits our data, where we would like to make p
as small as possible. Hence, the following stress analysis
determines a p that produces the smallest and the best approx-
imation that suits the given data. Note that there is ambigu-
ity in the definition of dissimilarity between names. Hence,
a certain degree of error can be tolerated, especially if it
is small compared to the differences between dissimilarity
measures.

C. STRESS ANALYSIS
Fig. 2 shows the stress-σ against dimension-p. The
stress σ (2) tends towards a small but nonzero asymptote for
most dissimilarities, reflecting the non-Euclidean nature of
the original data. The stress values of the LV and LCS dis-
tances are overlaid, and it is hard to visualise them separately.

FIGURE 2. A) The trade-off between stress and the dimension for
JaroWinkler (JW), Jaccard coefficient, Longest common subsequence
(LCS), Levenshtein (LV) and Qgrams. B) The distribution of JW distances.
Compared to the other distributions, JW distances exhibit a spike where
all the dissimilar surnames take one value.

The JW distances illustrated in the inset of Fig. 2 are different
because JW tends to rate all dissimilar names as being the
same distance apart, leading to large nonlinearity in LSMDS.
Hence, we argue that the approximation of a namespace in
the Euclidean space using LSMDS works for all but the JW
dissimilarities.

Ideally, we seek an elbow in the dimension vs stress plot.
In practice, however, such elbows are rarely visible. Since σ
is non-zero, we find a reasonably small p of approximately
6-8 dimensions considering the best trade-off between them.
We will test p = 6 in what follows.
However, when we have non-zero σ , we should keep in

mind that the distances among vectors are imperfect and
distorted representations of the relationships given by our
data. The LMDS transformation does not need to have zero σ
to be useful in our application since we are willing to tolerate
a certain degree of distortion. There are different standards
regarding the amount of σ to tolerate [30]. Our rule is that
any σ value under 0.1 is excellent, and anything over 0.2 is
unacceptable.

D. SHEPARD DIAGRAM ANALYSIS
An accurate dimension reduction or embedding technique
will produce a straight line that goes through the origin in
a Shepard diagram [35]. However, in practice, Shepard dia-
grams rarely look straight due to information loss during data
reduction.

Fig. 3 compares the Euclidean distances against the LV
distances in 6-p. There is a strong linear relationship between
the two distance distributions. Hence, we confirmed that
LSMDS successfully approximated the LV distances between
real names into the Euclidean distances among the name-
like vectors. Since the σ is not zero, there are some errors
in the approximation.

Considering the trade-off between the simplicity of
the model and the accuracy of the reproduced distances,
we selected the 6-pEuclidean space for our simulationmodel.

VOLUME 9, 2021 145295

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

FIGURE 3. The Shepard diagram [35] of the LV distances vs Euclidean
distances in 6-p. There is a strong linear relationship between the two
distance values as desired.

We preferred LV distances for further analysis, as they are
popular among string distance metrics and perform well with
the LSMDS approximation. However, the results with other
dissimilarity measures (except JW) mirror those presented.

E. MULTIVARIATE NORMAL ANALYSIS
We first evaluated the multivariate normality (MVN) of the
name-like vectors in Euclidean space. The combined test
results of themultivariate skewness and kurtosis tests failed to
indicate MVN for the name-like vectors. We used a Q-Q plot
(see Fig. 4) to understand the failures of the tests. It depicts
several largeMahalanobis distances (outliers) that imply pos-
sible departures from the MVN distribution, particularly in
the upper tail. However, the body of the distribution mainly
lies on the y = x line, suggesting that a normal distribution is
a reasonable model for most of the data.

To diagnose the reason for the deviation from MVN, one
can perform univariate tests on each variable distribution.
In addition, checking univariate plots is also very useful.
However, Kolmogorov–Smirnov (K-S) and Shapiro–Wilk
tests [37] rejected the normality assumptions for each of the
variables in the name-like vectors.

Fig. 5 shows the histograms corresponding to the distribu-
tion of each variable in the approximated name-like vectors.
The relevant Q-Q plots are not included due to space lim-
itations. However, the histograms and Q-Q plots suggested
that the normal distribution reasonably well approximates
variables 5 and 6. The other variables have slightly skewed
distributions where the body still follows a moderately nor-
mal distribution.

These results suggested that the problems with MVN seem
to be relatively minor for name-like numbers. Even though

FIGURE 4. The chi-square Q-Q plot for the distribution of all
6-dimensional vectors. There are some deviations from the straight line,
indicating possible departures from a multivariate normal distribution.

FIGURE 5. Histograms of the approximated coordinate vectors. The
variables V 5 and V 6 of the coordinates show an approximately normal
distribution, while the others have slightly skewed distributions.

we can consider other general distribution models for testing,
it is unlikely to improve the distance approximation signifi-
cantly. Therefore, we concluded that the normal distribution
is a sufficient approximation model for simulating name-like
vectors.

F. NAME-LIKE VECTOR SIMULATION
Given that the simulation model is based on the normal distri-
bution N (x, 6), we then estimated the parameters mean (x)
and the covariance (6). The unbiased estimator for 6 is
derived from the existing sample of approximated name-like
vectors in the 6-p space. The estimated x was close to zero.
Hence, we kept x = 0.
The calculated covariance matrix has values very near

zero on off-diagonals. We tested for independence between
each variable using a correlation test and Hoeffding’s D
statistics [49]. Both approaches verify that we can assume
independence between the 6-p variables.

145296 VOLUME 9, 2021

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

FIGURE 6. Q-Q plot comparing the distributions of LV distances with the
Euclidean distances of simulated vectors. Points along the straight line
indicate a similarity agreement between the two distributions.

One test for evaluating the simulator is to compare the dis-
tribution of distances created by the simulationmodel to those
of the original data. We generated 5000 simulated name-
like vectors using the estimated normal distribution. Then,
we compared the distances between simulated name-like vec-
tors and the initial sample of 5000 surnames.

Fig. 6 shows a Q-Q plot that compares distributions of
LV distances between surnames and Euclidean distances
between simulated name-like vectors. The Q-Q plot exhibits
a reasonable similarity between the distributions even if they
do not precisely fall along the y = x line. We can see
the discrete nature of the LV distances and the continuous
Euclidean distances along with the points of the small vertical
lines. There is a distortion created through the approximation
process, but apart from this, the simulated vectors behave very
similarly.

G. ERROR SIMULATION
We explored the nature of the errors in the real namespace
to simulate those in the Euclidean space. First, we looked at
the variance of errors once LSMDS approximated them in
a 6-p space. Then, we compared the two types of vectors,
approximated name-like vectors and their errors in Euclidean
space, using the ratios of covariances.

A random sample of 25 surnames was selected from the
initial dataset of surnames, and 100 variations of edit distance
errors were generated for each of them. The errors for the
original surnames are generated using FEBRL [18]. Then,
we applied LSMDS on a total of 5000 surnames. The dataset
includes 2500 distinct surnames along with 2500 errored
names. We used these approximated name-like vectors to
explain the variance of the errors in the Euclidean space.

We examined the variance of erroneous vectors relative to
their correct version. Fig. 7 illustrates a comparison between

FIGURE 7. The top histogram shows the spread for a single coordinate
(X6: the 6th coordinate of a name-like vector) in the whole sample (all
the surnames and their errors) in 6-p. The bottom row shows the spread
of the same coordinate that considers a single surname and its errors.
The spread of errors is much smaller compared to the spread of surnames
and their errors as desired.

the distribution of a whole sample of name-like vectors (all
the surnames and their errors) with a distribution of errors
that belong to a single name-like vector (errors of a single
surname). We have only shown results from one coordinate
since the other coordinates exhibited similar results. The top
histograms represent the distribution of a single variable (X6:
the 6th coordinate) in name-like vectors and their errors.
In contrast, the bottom histogram represents the distribution
of the same variable considering a single name-like vector
and its errors. The small spread of the histogram that contains
only the error distribution implies that we can add appropriate
noise by adding a small relative variance to a name-like vector
to simulate its errors in the Euclidean space.

Finally, we investigated the variance-covariance matri-
ces corresponding to each of the erroneous surnames and
their errors. These values were small compared to the
variance-covariance matrix of the whole sample, indicating
that these small edit distance errors are closer to their real
surname values than other names. By applying the rela-
tive eigenvalue analysis to the variance-covariance matrices,
we found the relevant eigenvalues and eigenvectors. The first
eigenvalue γ1 refers to the maximal covariance ratio between
the errors and the name-like vectors, obtained a value closer
to 0.1. Therefore, even in the worst-case scenario, the errors
have a small variance compared to the name-like vectors in
the Euclidean space.

Hence, our model can simulate simple edit distance
errors by adding Gaussian noise to an existing Euclidean
space. The noise is generated from a normal (Gaussian)

VOLUME 9, 2021 145297

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

FIGURE 8. The computational time to calculate pairwise distances
between name strings and name-like vectors. Calculating the Euclidean
distances is much faster than calculating LV distances.

distributionN (0, 6e).We estimated the unbiased estimator of
the covariance matrix (6e) using the pooled covariance esti-
mate 6̂p [41]. Therefore, we can simulate errors of simulated
name-like vectors such that they preserve small distances to
their initial name-like vectors.

H. COMPUTATIONAL COMPLEXITY
In this section, we discuss the practical use of our simulator
when developing big data ER algorithms. These algorithms
require large-scale test data and efficient pairwise calcula-
tions for testing. We mainly focused on the computational
time of generating large-scale name-like vectors and pairwise
comparisons between them to measure the performance.

Pairwise comparisons between records are challenging
when themajority of the entity records contain strings. In con-
trast, name-like vector comparisons of a complete dataset
would only take much lower computational time. Fig. 8 com-
pares the computational time of the pairwise comparisons
between a dataset containing real surnames and a simu-
lated set of name-like vectors. The surname comparisons are
based on the LV distances, whereas the name-like vector
comparisons are measured using Euclidean distances. The
time grows quadratically for both methods, but the results
of our approach are nearly ten times faster. This efficiency
is beneficial for the rapid testing of algorithms that apply to
large-scale data.

We also measured the computational time to simulate
datasets of different sizes. The results showed that the time
grew linearly, and it took less than a minute to generate
1 billion name-like vectors.

I. COMPARING DIFFERENT DATASETS
We used three datasets for the analysis (see Section V.A for
details). We tested all three of them as the input to our model
in the data analysis, and the results were substantially the
same.

We also used these data to understand the universality of
the results. Fig. 9 compares the distributions of pairwise LV
distances of the random samples of 5000 surnames for each
dataset and the distribution of pairwise Euclidean distances

FIGURE 9. The distributions of pairwise LV distances of three datasets
that contain unique surnames and the Euclidean distances of a simulated
namespace. The plots are quite similar in shape, sharing similar statistical
properties.

of a simulated dataset of 5000 name-like vectors. These
smoothed density plots have similar shapes and values for
standard deviations and means for the four distributions.
According to the results, we can produce a simulated distri-
bution similar to the last one by using any of the first three
distributions. The only input to our simulation method is the
pairwise distances between a set of strings, which we used to
estimate the parametermean and variance. These experiments
show that we can adapt our simulator to workwith any sample
dataset derived from a string space.

VI. DISCUSSION AND FUTURE WORK
We can synthesise large-scale datasets of name-like vectors
using our simulation model, but the model has limitations.
To obtain the full benefit of the proposed simulator, we still
need to model other variables required for linking, such as
addresses and gender. As a result, the dimensions of the
vectors need to be extended accordingly to facilitate complete
records. However, numerical or categorical data such as age
or gender are easier to simulate.

Surnames (or names) follow a Zipf distribution [42], where
few high-frequency names account for most of the popula-
tion with many low-frequency names. We can easily modify
our model to capture the frequencies of names in simulat-
ing name-like vectors by repeated sampling. Additionally,
the nature of the data allows an arbitrarily large number of
synthetic data points. For very large datasets, one can also
increase the dimension of the space to reduce the density in
which it is populated. The volume of such a space increases
exponentially with the dimension.

Traditional simulation tools are often biased. For instance,
existing entity identification keys such as names are typically
biased towards English, Welsh, Scottish and Irish for many

145298 VOLUME 9, 2021

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

datasets. Resampling from these datasets to simulate records
repeats those biases in the names. We attempt to avoid this
bias using a vector representation in our simulation model.

The results discussed in this paper based on the Ances-
try.com [43] dataset also include biased names towardsAmer-
icans and Europeans. We realized that this could distort the
results and include some bias in the simulation model. Hence,
we constructed the model using multiple datasets and com-
pared the results for consistency. However, these datasets
also have some biased names, which is unavoidable in many
publicly available real datasets of names.

We wanted to construct and test our model based
on a diverse set of names that are not biased towards
English names with Roman characters, e.g., Chinese, Indian,
or Arabic. However, there are extensive difficulties in Asian
or Arabic names. For instance, the character set differs for
these datasets; hence many string dissimilarity measures
become less meaningful or have no meaning. There is an
inherent problem of incorporating datasets that are not based
on Roman characters in ER. In future work, we expect to
investigate this problem to extend the model construction
based on culturally diverse data and possibly artificially cre-
ated unbiased datasets.

We are interested in extending this work to solve the global
matching problem for large datasets by mainly addressing the
limitations. The idea is to avoid comparisons of unnecessary
detail in the pairwise comparisons (global matching) and
make the ER process more scalable for big data. Hence,
simulation of the many details of identification keys is not
required for test data when considering the global matching
problem.

VII. CONCLUSION
Our goal here was to generate synthetic data to develop and
test ER algorithms appropriate for big data. We proposed
a simple, inexpensive, and fast simulation model that can
generate name-like vectors, including simple errors. In this
paper, we discussed how to simulate simple vectors in a space
that approximates the properties of names as one step towards
being able to generate large simulated datasets for large-scale
testing of global matching techniques.

The proposed simulation model is developed based on
a simple normal distribution. This model outputs a set of
abstract vectors that approximates a real namespace. Hence,
generating test data for name matching has become easy. The
Lp norm distance can quickly compute the similarity between
numerical values, unlike the similarity between string values.
Therefore, pairwise comparisons between name-like vectors
are efficient when testing large-scale algorithms.

REFERENCES
[1] P. Christen,Data Matching: Concepts and Techniques for Record Linkage,

Entity Resolution, and Duplicate Detection. Berlin, Germany: Springer,
2012, pp. 3–22, doi: 10.1007/978-3-642-31164-2_1.

[2] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and
K. Stefanidis, ‘‘An overview of end-to-end entity resolution for big
data,’’ ACM Comput. Surv., vol. 53, no. 6, pp. 1–42, Feb. 2021, doi:
10.1145/3418896.

[3] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James, ‘‘Auto-
matic linkage of vital records,’’ Science, vol. 130, pp. 954–959, Oct. 1959.

[4] J.-M. Herrera, A. Hogan, and T. Käfer, ‘‘BTC-2019: The 2019 bil-
lion triple challenge dataset,’’ in Proc. Int. Semantic Web Conf. Cham,
Switzerland: Springer, 2019, pp. 163–180.

[5] M.Arehart andK. J.Miller, ‘‘A ground truth dataset for matching culturally
diverse romanized person names,’’ in Proc. LREC, 2008, pp. 1–4.

[6] P. Christen and D. Vatsalan, ‘‘Flexible and extensible generation and
corruption of personal data,’’ in Proc. 22nd ACM Int. Conf. Inf. Knowl.
Manage. (CIKM), 2013, p. 1165.

[7] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Foundations of Metric
Space Searching. Boston, MA, USA: Springer, 2006, pp. 5–66.

[8] I. P. Fellegi and A. B. Sunter, ‘‘A theory for record linkage,’’ J. Amer. Stat.
Assoc., vol. 64, no. 328, pp. 1183–1210, 1969.

[9] D. Vatsalan, P. Christen, and V. S. Verykios, ‘‘A taxonomy of privacy-
preserving record linkage techniques,’’ Inf. Syst., vol. 38, no. 6,
pp. 946–969, 2013.

[10] N. Barlaug and J. A. Gulla, ‘‘Neural networks for entity matching: A sur-
vey,’’ ACM Trans. Knowl. Discovery From Data, vol. 15, no. 3, pp. 1–37,
Apr. 2021.

[11] NSW Department of Health. New South Wales Mothers and Babies 2002,
C Epidemiol. Res., NSW Public Health Bull, NSW, Australia, 2002, p. s-3,
vol. 14.

[12] P. Christen, ‘‘Preparation of a real temporal voter data set for record linkage
and duplicate detection research,’’ ANU, Tech. Rep., 2014. [Online]. Avail-
able: http://users.cecs.anu.edu.au/~Peter.Christen/publications/ncvoter-
report-29june2014.pdf

[13] M. A. Hernández and S. J. Stolfo, ‘‘The merge/purge problem for large
databases,’’ ACM SIGMOD Rec., vol. 24, no. 2, pp. 127–138, May 1995.

[14] P. Bertolazzi, L. Santis, and M. Scannapieco, ‘‘Automatic record matching
in cooperative information systems,’’ in Proc. ICDT Int. Workshop Data
Qual. Cooperat. Inf. Syst. (DQCIS), 2003, p. 9.

[15] J. R. Talburt, Y. Zhou, and S. Y. Shivaiah, ‘‘SOG: A synthetic occupancy
generator to support entity resolution instruction and research,’’ in Proc.
ICIQ, vol. 9, 2009, pp. 91–105.

[16] M. Tromp, A. C. Ravelli, G. J. Bonsel, A. Hasman, and J. B. Reitsma,
‘‘Results from simulated data sets: Probabilistic record linkage outper-
forms deterministic record linkage,’’ J. Clin. Epidemiol., vol. 64, no. 5,
pp. 565–572, May 2011.

[17] T. Bachteler and J. Reiher, ‘‘TDGen: A test data generator for
evaluating record linkage methods,’’ Univ. Duisburg-Essen, Duisburg,
Germany, Tech. Rep. WP-GRLC-2012-01, 2012. [Online]. Available:
https://ssrn.com/abstract=3549240

[18] P. Christen, ‘‘Febrl: An open source data cleaning, deduplication and
record linkage system with a graphical user interface,’’ in Proc. 14th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2008,
pp. 1065–1068.

[19] S. K. Sienčnik, ‘‘Adapting word2vec to named entity recognition,’’ inProc.
20th Nordic Conf. Comput. Linguistics (NODALIDA). Linköping, Sweden:
Linköping Univ. Electronic Press, May 2015, pp. 239–243.

[20] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ CoRR, vol. abs/1301.3781,
pp. 1–12, Sep. 2013.

[21] A. Mazeika and M. H. Böhlen, ‘‘Cleansing databases of misspelled proper
nouns,’’ in Proc. CleanDB Workshop, 2006, pp. 63–70.

[22] C. Li, L. Jin, and S. Mehrotra, ‘‘Supporting efficient record linkage for
large data sets using mapping techniques,’’ World Wide Web, vol. 9, no. 4,
pp. 557–584, Dec. 2006.

[23] N. Adly, ‘‘Efficient record linkage using a double embedding scheme,’’ in
Proc. DMIN, vol. 48, May 2009, pp. 274–281.

[24] C. Faloutsos and K.-I. Lin, ‘‘FastMap: A fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data (SIGMOD). NewYork, NY, USA:
Association for Computing Machinery, 1995, p. 163–174.

[25] J. T.-L.Wang, X.Wang, K.-I. Lin, D. Shasha, B. A. Shapiro, and K. Zhang,
‘‘Evaluating a class of distance-mapping algorithms for data mining and
clustering,’’ in Proc. 5th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining (KDD). New York, NY, USA: Association for Computing
Machinery, 1999, p. 307.

[26] M. C. Hout, M. H. Papesh, and S. D. Goldinger, ‘‘Multidimensional
scaling,’’WIREs Cognit. Sci., vol. 4, no. 1, pp. 93–103, 2013.

[27] T. Cox and M. Cox, Multidimensional Scaling (Chapman & Hall/CRC
Monographs on Statistics & Applied Probability). New York, NY, USA:
Taylor & Francis, 1994.

VOLUME 9, 2021 145299

http://dx.doi.org/10.1007/978-3-642-31164-2_1
http://dx.doi.org/10.1145/3418896

S. Herath et al.: Generating Name-Like Vectors for Testing Large-Scale Entity Resolution

[28] N. Saeed, H. Nam, M. I. U. Haq, and D. B. M. Saqib, ‘‘A survey on
multidimensional scaling,’’ ACM Comput. Surv., vol. 51, no. 3, pp. 1–25,
Jul. 2018, doi: 10.1145/3178155.

[29] M. P. J. Van der Loo, ‘‘The STRINGDIST package for approximate string
matching,’’ R J., vol. 6, no. 1, pp. 111–122, 2014.

[30] J. B. Kruskal, ‘‘Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis,’’Psychometrika, vol. 29, no. 1, pp. 1–27,Mar. 1964.

[31] A.Ghodsi, ‘‘Dimensionality reduction a short tutorial,’’ Dept. Statist. Actu-
arial Sci., Univ. Waterloo, Waterloo, ON, Canada, Tech. Rep., Jan. 2006,
p. 38.

[32] P. J. Groenen and I. Borg, ‘‘The past, present, and future of multidi-
mensional scaling,’’ Erasmus School Econ., Econometric Inst., Erasmus
Univ. Rotterdam, Rotterdam, The Netherlands, Econ. Inst. Res. Papers
EI 2013-07, 2013, pp. 1–25. [Online]. Available: https://ideas.repec.
org/p/ems/eureir/39177.html

[33] P. J. F. Groenen and M. van de Velden, ‘‘Multidimensional scaling by
majorization: A review,’’ J. Stat. Softw., vol. 73, no. 8, pp. 1–26, Sep. 2016.

[34] S.-H. Bae, J. Y. Choi, J. Qiu, and G. C. Fox, ‘‘Dimension reduction and
visualization of large high-dimensional data via interpolation,’’ in Proc.
19th ACM Int. Symp. High Perform. Distrib. Comput. (HPDC), New York,
NY, USA, 2010, pp. 203–214.

[35] L. van der Maaten and G. Hinton, ‘‘Visualizing data using t-SNE,’’
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008. [Online]. Avail-
able: http://jmlr.org/papers/v9/vandermaaten08a.html

[36] C. J. Mecklin and D. Mundfrom, ‘‘On using asymptotic critical values in
testing for multivariate normality,’’ InterStat, Dept. Math. Statist., Murray
State Univ., Murray, Kentucky, Tech. Rep., 2003.

[37] S. Korkmaz, D. Goksuluk, and G. Zararsiz, ‘‘MVN: An R package for
assessing multivariate normality,’’ R J., vol. 6, no. 2, pp. 151–162, 2014.

[38] T. Burdenski, ‘‘Evaluating univariate, bivariate, and multivariate normality
using graphical and statistical procedures,’’ Multiple Linear Regression
Viewpoints, vol. 26, pp. 15–28, Jan. 2000.

[39] C. Chatfield and A. Collins, Introduction to Multivariate Analysis.
Boca Raton, FL, USA: CRC Press, 1981.

[40] P. Christen, ‘‘Probabilistic data generation for deduplication and data link-
age,’’ in Intelligent Data Engineering and Automated Learning—IDEAL
2005. Berlin, Germany: Springer, 2005, pp. 109–116.

[41] F. Bookstein, ‘‘Comparing covariance matrices by relative eigenanalysis,
with applications to organismal biology,’’ Evol. Biol., vol. 41, no. 2,
pp. 336–350, 2014.

[42] M. Cristelli, M. Batty, and L. Pietronero, ‘‘There is more than a power law
in Zipf,’’ Sci. Rep., vol. 2, p. 812, Nov. 2012.

[43] J. Sukharev, L. Zhukov, and A. Popescul, ‘‘Parallel corpus approach for
name matching in record linkage,’’ in Proc. IEEE Int. Conf. Data Mining,
Dec. 2014, pp. 995–1000.

[44] J. Comenetz, ‘‘Frequently occurring surnames in the 2010 census,’’
Bureau Census, Suitland-Silver Hill, MD, USA, Tech. Rep., 2016.
[Online]. Available: https://www.census.gov/topics/population/genealogy/
data/2010_surnames.html, doi: 10.13140/RG.2.2.30041.83043.

[45] J. Melville. (2019). Mize: Unconstrained Numerical Optimization Algo-
rithms R Package Version 0.2. [Online]. Available: https://cran.r-
project.org/web/packages/mize/mize.pdf

[46] J. de Leeuw and P. Mair, ‘‘Multidimensional scaling using majorization:
SMACOF in R,’’ J. Stat. Softw., vol. 31, no. 3, pp. 1–30, Aug. 2009.

[47] W. W. Cohen, P. Ravikumar, and S. E. Fienberg, ‘‘A comparison of string
metrics for matching names and records,’’ in Proc. KDD Workshop Data
Cleaning Object Consolidation, vol. 3, 2003, pp. 73–78.

[48] P. Christen, ‘‘A comparison of personal name matching: Techniques and
practical issues,’’ in Proc. 6th IEEE Int. Conf. Data Mining-Workshops
(ICDMW), 2006, pp. 290–294.

[49] W. Hoeffding, A Non-Parametric Test of Independence. New York, NY,
USA: Springer, 1994, pp. 214–226.

SAMUDRA HERATH received the B.S. degree
(Hons.) in computer science from the University
of Colombo School of Computing, Sri Lanka,
in 2015. She is currently pursuing the Ph.D.
degree in mathematical and computer sciences
with The University of Adelaide, Australia. Her
research interests include the large-scale entity res-
olution, data integration, data mining, information
retrieval, and statistical modeling.

MATTHEW ROUGHAN (Fellow, IEEE) received
the Ph.D. degree in applied mathematics from The
University of Adelaide, in 1994. He is currently
a Professor with the School of Mathematical Sci-
ences, The University of Adelaide, and the Chief
Investigator with the Australian Research Coun-
cil (ARC) Centre of Excellence for Mathematical
and Statistical Frontiers (ACEMS). His research
interests include measurement/estimation, model-
ing and control of computer networks and social

networks, graph theory, stochastic modeling, statistics, abstract algebra,
formal methods, and signal processing. He is a fellow of ACM.

GARY GLONEK received the Ph.D. degree in
statistics from Flinders University, SA, Australia.
He is currently an Associate Professor and the For-
mer Head of the School of Mathematical Sciences,
The University of Adelaide. His research interests
include statistics, especially with applications in
bioinformatics. He is also interested in applied
statistics and has undertaken consultancies across
a wide range of areas, including road safety, wine
quality, and healthcare policy.

145300 VOLUME 9, 2021

http://dx.doi.org/10.1145/3178155
http://dx.doi.org/10.13140/RG.2.2.30041.83043

