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Abstract  

Cell death in the mesocarp of berries occurs late in the ripening process, and may influence 

berry sensory attributes and water retention. There are cultivar-dependent correlations 

between mesocarp cell death and berry shrivel. Cell death is likely to be associated with yield 

losses of up to 30% for Shiraz due to berry shrivel, which concentrates sugars and potentially 

leads to high alcohol content in wine. The main objective of this thesis was to investigate the 

association between berry internal oxygen concentrations and berry cell death. 

Experiments were carried out at the Waite vineyards and at the SARDI research vineyard in 

Nuriootpa. Firstly, in Chapter 2, internal oxygen concentration ([O2]) across the mesocarp 

was measured in berries from Chardonnay and Shiraz, both seeded, and Ruby Seedless, from 

the Waite vineyards, using an oxygen micro-sensor. Change of berry and seed respiration was 

investigated in Chardonnay. The lenticel density of Chardonnay and Shiraz berry pedicels 

(stem and receptacle) was assessed. We then tested the long-term effect of blocking pedicel 

lenticels on berry internal [O2] profiles and cell death. Air spaces within the Chardonnay 

berries at different developmental stages were visualized using x-ray micro-CT. Second, in 

Chapter 3, a factorial trial of two irrigation regimes was applied in season 2014/2015 and a 

factorial trial of two irrigation regimes and two temperatures was applied in season 

2015/2016, in Nuriootpa. Midday stem water potential, stomatal conductance and 

photosynthetic rate were measured to examine the efficiency of drought and canopy heating 

treatments. The oxygen micro-sensor was used to measure oxygen concentration in grapes 

and their respiration rate. Lastly, in Chapter 4, we tested the effects of overhead shading 

(2014/2015), rootstocks and kaolin application (both in 2016/2017), on Shiraz berry cell 

death and berry shrivel.  

In Chardonnay, Shiraz and Ruby Seedless grapes, steep [O2] gradients were observed across 

the skin and [O2] decreased toward the middle of the mesocarp. As ripening progressed, the 
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minimum [O2] approached zero in the seeded cultivars and correlated to the profile of cell 

death across the mesocarp. Seed respiration declined during ripening, from a large proportion 

of total berry respiration early to negligible at latter stages. [O2] increased towards the central 

axis corresponding to the presence of air spaces visualised using x-ray micro-CT. These air 

spaces connect to the pedicel where lenticels are located that are critical for berry O2 uptake 

as a function of temperature, and when blocked caused hypoxia in Chardonnay berries, 

ethanol accumulation and cell death. This work has been published in the Journal of 

Experimental Botany in February 2018.  

In Chapter 3, the results of a factorial field experiment comprising two thermal regimes 

(ambient and heated) and two irrigation regimes (irrigated and non-irrigated) are reported. 

Non-irrigation, in the first season, increased the rate of cell death relative to control irrigated 

Shiraz vines. In the second season, non-irrigation advanced the onset of cell death relative to 

the irrigated treatments independent of temperature. Non-irrigation treatments in the second 

season also decreased [O2] within the berry mesocarp relative to the irrigated treatments. An 

association was established between mesocarp [O2] and berry cell death. Berry respiration 

and total berry porosity were also found to decrease during berry ripening. This work has 

been submitted to the Australian Journal of Grape and Wine Research in February 2018. 

In Chapter 4, three preliminary trials were undertaken to investigate possible mitigation 

strategies for berry cell death and dehydration. Trial 1 tested the effect of overhead shading 

on berry dehydration, cell death and internal oxygen concentrations [O2]. Trial 2 tested the 

effect of rootstocks having different drought tolerance on berry dehydration and cell death. 

Trial 3 tested the effect of kaolin spray, which has been proposed to reduce leaf and cluster 

temperature and transpiration. Overhead shading reduced the rate of increase in cell death and 

berry dehydration in Shiraz. This treatment also affected the progression of hypoxia in the 

berry. Shiraz on the drought tolerant 140 Ruggeri had significantly less cell death and berry 



6 
 

dehydration than the less drought tolerant rootstocks (420 A and Schwarzmann). Kaolin 

spray application reduced berry shrinkage independently of either mesocarp cell death or 

cluster and leaf temperature. 

In summary, grape internal [O2] declined during fruit development and was correlated with 

the profile of mesocarp cell death. Lenticels on the pedicel provided a pathway for O2 

diffusion into the berry and when covered to restrict O2 diffusion into the berry caused a large 

reduction in [O2] in the centre of the berry, an increase in ethanol concentration and cell 

death. Differences in internal O2 availability of berries between cultivars could be associated 

with seed development and differences in lenticel surface area. Higher rates of mesocarp cell 

death caused by water stress was also associated with hypoxia within grape berries. 

Rootstocks with different drought resistance properties can affect Shiraz berry dehydration 

and cell death. Kaolin can effectively reduce Shiraz dehydration after the peak berry mass 

was reached.  

The data generated in this study provides the basis for further research into the role of berry 

gas exchange on berry quality and cultivar selection for adapting viticulture to a warming 

climate. Understanding the association between berry internal oxygen status and berry shrivel 

and cell death, as well as the effect of strategies to mitigate cell death and berry shrivel, will 

provide researchers and growers with new insights in berry ripening and is the basis for 

future research on berry flavour development and yield optimization. 
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Chapter 1 Literature review 

Overview 

Global warming is increasing the frequencies of heatwaves and drought events (Alexander 

and Arblaster, 2009; Perkins et al., 2012). This challenges the wine grape industry 

particularly in warm climates (Webb et al., 2007a), since temperature and water are important 

factors affecting the growth and physiology of grapevines, and in warm climates these factors 

may already be close to the upper limit for good quality grape production (Caravia et al., 

2016; Petrie and Sadras, 2008). Berries that ripen under stressful conditions can undergo 

substantial weight loss due to late-ripening berry shrivel, which ultimately affects the quality 

and potentially increases ethanol content in the final wine. This chapter reviews grape berry 

development, especially in later stages, with a focus on the changes in vascular delivery of 

water and sugar and the changes associated with the occurrence of cell death within the berry 

pericarp related to the structure of grape berries. How drought and heat stress affect the vine 

and how this may increase the severity of cell death in grape berries is also discussed. This is 

related to the role of molecular oxygen (O2) in maintaining active cell metabolism and how 

reduced O2 concentration ([O2]) could affect plant tissues in general, and the grape berry. To 

test the hypothesis that reduced [O2] within the berry may be a cause of reduced cell vitality 

in the berry, measurements of [O2] across the berry pericarp were undertaken during normal 

berry development in different cultivars, after vines were drought and heat stressed in the 

field or otherwise treated in growth room conditions to investigate berry gas exchange. The 

aim was to enable a better understanding of the role of berry cell death in berry water 

relations and ripening. 
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Grape berry development 

Grape berry development follows a double-sigmoid growth pattern, which can be divided 

into three main phases, berry formation, berry ripening and berry shrinkage, although the last 

phase is cultivar dependent (Coombe and McCarthy, 2000; Sadras and McCarthy, 2007). In 

the first phase (berry formation), berry size increases rapidly with cell division and 

enlargement. During this time, the accumulation and storage of organic acids, malate and 

tartrate, in the mesocarp occurs (Possner and Kliewer, 1985). The first phase is followed by 

the onset of ripening, veraison, marked by softening of the berries and colour change in 

pigmented varieties (Coombe, 1976; Coombe, 1992). Softening results from the reduction in 

apoplastic solute potential and turgor pressure (Thomas et al., 2008; Wada et al., 2009). 

Berry mass and size continues to increase and key compounds including sugars, pigments and 

important wine aroma precursors accumulate during the second phase (Castellarin et al., 

2016). The third phase is characterized by mass loss of the berries and is, depending on 

cultivar, correlated with loss of cell vitality within the berries (Fuentes et al., 2010; McCarthy 

and Coombe, 1999; Tilbrook and Tyerman, 2008).  

Sugar accumulation 

The sugar concentration of berry juice is one of the major criteria for viticulture and 

winemaking decisions (Sadras et al., 2008). The hexoses, glucose and fructose, are the major 

solutes that accumulate in berry flesh and skin (Coombe, 1992). Sucrose transported from the 

leaves is converted to glucose and fructose and accumulated in berry vacuoles. Hexoses 

generally start to accumulate 8 weeks after flowering and have been associated with a peak in 

invertase (Davies and Robinson, 1996). It is sometimes challenging to reach a desirable level 

of sugar with balanced water retention (Sadras et al., 2008) and acidity, and the accumulation 

of phenolic and other aroma compounds (Dai et al., 2010). Sugars are unloading into grape 

berries from the phloem primarily via the apoplastic pathway (Patrick, 1997). The phloem 
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unloading was shifted from symplastic to apoplastic at the beginning of berry ripening 

(Zhang et al., 2006). Sugar accumulation can be affected by environmental factors, such as 

water status (Santesteban and Royo, 2006), but also by management practices such as cluster 

thinning (Keller et al., 2005). Cultivar-dependent variations were found in the rate of change 

in concentration of soluble solids during berry ripening, which contributed to the differences 

in sugar maturity of each cultivar (Sadras et al., 2008). The rate of sugar accumulation was 

also positively correlated with vine physiology such as stomatal conductance (Sadras et al., 

2008). 

Berry cell vitality 

Cell death can occur during late ripening in normally developing grape berries (Clarke et al., 

2010; Fuentes et al., 2010; Krasnow et al., 2008; Tilbrook and Tyerman, 2008). This process 

is hypothesised to contribute to flavour development due to enzymatic reactions leading to 

the breakdown of membranes and mixing of cell compartments, which are typical processes 

in plant cell death (Reape and McCabe, 2008; Tilbrook and Tyerman, 2008). Plant 

programmed cell death (PCD) can generally be categorized as developmental, abiotic stress 

triggered, or in response to pathogens (Van Doorn and Woltering, 2005). Late ripening cell 

death in the grape berry could be a developmental PCD and/or a response following abiotic 

stress, as no invading pathogenic microorganism has so far been reported to be associated 

with this phenomenon. 

Several techniques have been used to measure the level of cell vitality in grape berries. The 

most common is the use of fluorescein diacetate (FDA) staining (Fuentes et al., 2010; 

Krasnow et al., 2008; Tilbrook and Tyerman, 2008). When using this method, berries were 

cut in halves, the clean-cut surface was submerged and incubated in staining solution 

containing FDA with sucrose used to adjust osmolality to match that of the cell sap. 

Permeable FDA enters living cells across the plasma membrane, then esterases in the 
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cytoplasm cleave the compound, producing fluorescein, which is membrane impermeable and 

fluorescent under UV light (Jones and Senft, 1985). Stained areas of the tissue indicate vital 

cells while non-stained areas indicate loss of enzymatic activity in cytoplasm or reduced 

membrane integrity, both indicating cell death (Krasnow et al., 2008). Other staining agents 

have been reported to indicate grape berry cell vitality. Clarke et al. (2010) used nitroblue 

tetrazolium to indicate oxidative metabolism of living cells. Propidium iodide has also been 

used, since this only stains DNA of damaged cells and indicates the loss of membrane 

integrity (Krasnow et al., 2008; Tilbrook and Tyerman, 2008). Impedance spectroscopy was 

also shown to detect loss of cell vitality in grape berries correlated against FDA staining, by 

reporting ion leakage into the apoplast and changed membrane integrity (Caravia et al., 

2015). 

Berry shrivel 

The occurrence of berry shrivel, most often observed for fully mature Shiraz berries on vines 

grown in warm climates (Coombe and McCarthy, 2000; McCarthy and Coombe, 1999), is 

likely due to a combination of several factors. First, based on the correlation between cell 

death and berry shrivel, membrane semi-permeability of the mesocarp cells may be lost 

causing loss of water from the cells (Clarke et al., 2010; Tilbrook and Tyerman, 2008). 

Second, berry transpiration may continue but with decreased vascular inflow (Rogiers et al., 

2004b). This may be combined with backflow to the vine (Keller et al., 2006; Keller et al., 

2015; Tilbrook and Tyerman, 2009; Tyerman et al., 2004) through functional xylem, which is 

only partially blocked in the pedicel (Knipfer et al., 2015). Berry shrivelling is cultivar 

dependent and may be linked to very different behaviours of berry hydraulic conductance in 

different cultivars late into ripening (Scharwies and Tyerman, 2017; Tilbrook and Tyerman, 

2009). 
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Stress conditions and climate change 

Berry shrivel and cell death is affected by abiotic stress. Elevated canopy temperature by 

1.5 °C during the growing season can increase the rate of cell death in grapes (Bonada et al., 

2013a). Overhead shade can reduce berry cell death and loss of mass in Shiraz grapes due to 

the reduced impact of heat stress (Caravia et al., 2016). There are increasing frequencies and 

intensities of heat waves and drought events in Australia (Alexander and Arblaster, 2009). 

The warming trend is predicted to have adverse effects on grapevine physiology (Webb et al., 

2007b). Grapevine phenology has shifted such that berry ripening occurs earlier and 

coinciding with higher seasonal temperatures (Petrie and Sadras, 2008). Consequently, berry 

quality can be affected (Bonada and Sadras, 2015; Caravia et al., 2016; Fuentes et al., 2010). 

The irrigation regime influences maximum and final berry size in various varieties and 

growing conditions (McCarthy, 1997; Reynolds and Naylor, 1994; Rogiers and Holzapfel, 

2015). This is because water deficit shortly after fruit set reduces cell division rate in the 

pericarp (Coombe, 1976; Harris et al., 1968). However, the rate of mass loss during late 

ripening in Shiraz berries was not linked to the degree of water deficit (McCarthy, 1997). 

Increased alternative oxidase (AOX) expression was found in water stressed grapevines 

(Cramer et al., 2007). AOX synthesis is also induced by reactive oxygen species (ROS) and 

the protein suppresses further accumulation of ROS to harmful levels in plants (Pitzschke et 

al., 2006) 

Rootstock and vine water relations 

Rootstocks are derivatives (generally hybrids) from American Vitis species used for their 

phylloxera (Granett et al., 2001) and nematode (Anwar et al., 2002) resistance properties. 

Rootstocks are also used for their ability to resist diseases (Wallis et al., 2013), tolerate 

drought and salt stress (Serra et al., 2014), and to control vigour of the scion according to soil 

fertility, water availability and climate conditions (Gambetta et al., 2012; Walker et al., 
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2002). Drought resistant rootstocks can maintain yield and dry matter production of the scion 

when under water stress (McCarthy et al., 1997). Further, the use of rootstocks under water 

stress conditions can affect reproductive performance (Kidman et al., 2014). Rootstock can 

affect sensory and composition of the fruit and wine, possibility due to the effect on vine 

vigour and cluster exposure (Olarte Mantilla et al., 2017). Importantly, rootstocks were 

shown to delay the onset of Shiraz berry loss of mass during late ripening under deficit 

irrigation (Rogiers et al., 2004a), while berry mass loss of own-rooted Shiraz was not 

affected by deficit irrigation (McCarthy, 1997; Rogiers et al., 2004a). Common rootstocks 

considered to be drought tolerant are Ramsey, 110 Richter, 140 Ruggeri, 1103 Paulsen, SO4 

and 99 Richter (Carbonneau, 1985; Williams, 2010), whereas 101-14 Mgt, 420 A and 

Schwarzmann are reported to be susceptible to drought (Carbonneau, 1985; Nicholas, 1997). 

Structure of the grape berry 

Pericarp  

The grape pericarp (Figure 1), contains three anatomically distinct tissues: exocarp, mesocarp 

and endocarp, all developed from the ovary after flowering (Hardie et al., 1996). These 

different tissue types are made of different cell types: The exocarp consists of cuticle covered 

epidermis, layers of thick-walled collenchyma-like cells, and cells that contain raphides. The 

mesocarp consists of thin-walled large parenchyma. The endocarp consists of druse-rich cells 

and an inner epidermis (Hardie et al., 1996). The distribution of vascular bundles is thought 

to contribute to the spatial variations in solute concentrations within the berry, since higher 

sucrose and inorganic anion concentrations have been discovered in central and peripheral 

flesh, respectively, during late ripening stages (Coombe, 1987). Coombe (1987) also 

suggested these differences could be associated with phloem unloading as the berry senesces. 

Sugar unloading starts in the distal end of the berry (Castellarin et al., 2011; Zhang and 

Keller, 2017).  
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The onset of berry ripening (veraison) is indicated by soluble solids accumulation and is 

concurrent with an increase in berry deformability (Nunan et al., 1998). The softening of the 

berries after veraison is also associated with compositional changes of cell wall 

polysaccharide, protein and amino acids (Nunan et al., 1998). Central mesocarp cells greatly 

increase in size during berry growth, compared to those cells closer towards the skin 

(Considine and Knox, 1979; Nunan et al., 1998).  

 

Figure 1. Basic grape berry structure (Iland et al. 2011). 

Seeds 

The growth of berry seeds, such as in Shiraz, can be allocated to three stages, each 

corresponding to certain stages in berry development (Ristic and Iland, 2005). During these 

stages, seeds undergo distinct morphological and chemical changes (Kennedy et al., 2000; 
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Ristic and Iland, 2005). The growth of seeds is also highly correlated with increasing berry 

mass due to their positive effect on pericarp cell division (Coombe, 1960; Ojeda et al., 1999). 

The biosynthesis of procyanidins coincide with the initial rapid period of berry growth 

(Coombe, 1973). These polyphenol compounds are highly concentrated in Vitis vinifera seeds 

and peak in accumulation at veraison, after which there is a steady decline (De Freitas et al., 

2000). After seeds reach their maximum fresh mass and size, development enters a transition 

where the seed coat changes colour and dehydration is initiated (Ristic and Iland, 2005). 

Although lignification of seeds is completed before berries begin to ripen (Cadot et al., 

2006), in Shiraz a sustained oxidation of tannins occurs (Ristic and Iland, 2005) and is 

concurrent with the oxidation of phenolic compounds such as flavan-3-ol monomers and 

procyanidins (Cadot et al., 2006). Lignin polymerisation also requires the consumption of O2 

and generation of H2O2 for the final peroxidase reaction (Lee et al., 2013), and this with 

oxidation of tannins could add additional stress to the mesocarp in seeded cultivars. 

Phenolics can also act as ROS-scavengers (Blokhina et al., 2003).  

Skin 

Grape berries are covered by a cuticular membrane that plays an important role in controlling 

water movement between the epidermal cells and ambient atmosphere (Rogiers et al., 

2004b). Sun exposed berries have been recorded to reach 15°C above ambient temperature, 

whereas shaded berries are close to ambient temperature (Smart and Sinclair, 1976; Spayd et 

al., 2002). The substantially higher temperature for sun-facing berries changed the 

morphology of the wax layer of the berries (Rogiers et al., 2004b). Water stress increased 

anthocyanins and decreased flavonoids during berry ripening (Kennedy et al., 2002). 

Cuticular conductance as well as surface area, air temperature and relative humidity 

determine the rate of berry ripening (Zhang and Keller, 2015). These factors also contribute 

to berry mass loss late in ripening (Rogiers et al., 2004b). 
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Pedicel 

Berry pedicels (Figure 2a) do not show accumulation of solutes during ripening (Coombe, 

1992). Pedicel vessel functional efficiency changes over ripening and may have important 

implications for fruit development. It was earlier proposed that emboli occurred in the xylem 

of the pedicel and that this contributed to reduced hydraulic conductivity as ripening 

progressed (Coombe, 1992). In Chardonnay berries, there was a substantial reduction in 

hydraulic conductivity of the receptacle late in ripening associated with deposition of gels or 

solutes in xylem of the receptacle (Choat et al., 2009). More recent measurements have 

shown that approximately 50% of vessel elements in the pedicel remain functional during late 

ripening (Knipfer et al., 2015). This also appears to be cultivar dependent (Scharwies and 

Tyerman, 2017). The reduction in xylem conductance in the pedicel as well as within the fruit 

(brush region in grapes) could be a preventative mechanism for loss of solutes via xylem 

back-flow (Patrick, 1997) though a large proportion of phloem water appears to be recycled 

back to the vine by the xylem and is required for normal sugar accumulation (Zhang and 

Keller, 2017).  

Lenticels  

Lenticels occur on the mature grape berry skin as well as being particularly prominent on the 

pedicel (Figure 2). Lenticels develop from stomata during secondary growth of plant cuticles. 

They are multicellular structures with analogous functions to stomata as pathways for 

exchange of water vapour and gases (Lendzian, 2006). Lenticels are less regulated and have 

less gas exchange capacity than stomata, but provide “static pores” as a low-resistance 

pathway for oxygen and other gas exchange (Beikircher and Mayr, 2013; Groh et al., 2002; 

Taiz and Zeiger, 2010). Less than ten stomata exist on the surface of an actively 

photosynthesizing young berry (Palliotti and Cartechini, 2001). Wax-occluded lenticels are 

formed below these stomata as the berry develops (Rogiers et al., 2004b; Swift et al., 1973). 
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Transpiration from grape berries is small due to the low frequency of stomata and lenticels on 

the berry surface, and transpiration is further hindered as the fruit matures (Mullins et al., 

1992). Lenticels on the surfaces of Riesling berries, receptacle and pedicels also appear to be 

involved in free water uptake (when berries are submerged) (Becker et al., 2012). In their 

experiment, fluorescent dye movement indicated that lenticels on the pedicel were one of the 

primary entries points for liquid water. Lenticels on the berry skin and pedicels are pervious 

to excessive sulphur dioxide, which can result in localized skin bleaching of table grapes 

(Nelson, 1979; Nelson and Ahmedullah, 1973). Yet, there are still uncertainties about how 

efficient these structures are in facilitating gas exchange in grape berries. In tomato, less 

lenticels and smaller surface area of stem scar were correlated to lower loss of mass, fruit 

respiration and slower ripening under hypoxia (Paul and Srivastava, 2006). The diffusion of 

volatile compounds of pear into the air was found to be related to skin lenticel density (Ho et 

al., 2016). Lenticels become obstructed by epicuticular wax on the grape berry skin as the 

fruit ages (Rogiers et al., 2004b). Since lenticels on the pedicels are able to take up liquid 

water (Becker et al., 2012), it is likely that they are not significantly obstructed by wax. Also 

gas permeability of lenticels could be affected by environmental conditions (Groh et al., 

2002; Lendzian, 2006; Mullins et al., 1992). Previous research on potato showed lenticels on 

the skin are the main pathway for respiratory O2 uptake (Wigginton, 1973). 



21 
 

l

l

l

x p h c

(a )

(b )

p e

 

Figure 2. (a) Lenticels on Shiraz berry pedicel. (b) Cross-section of a grape pedicel. Scale bar 

is 0.1 mm. pe, pedicel; l, lenticel; x, xylem; ph, phloem; c, cortex. 

Oxygen and reactive oxygen species in grape berries 

Molecular O2 is essential for efficient ATP production through oxidative phosphorylation as 

the terminal electron acceptor in mitochondria. In grape berries, O2 is essential for berry 

respiration and metabolism and would need to be available within the pericarp to support the 

energy requirements of sugar accumulation and flavour development. Grape berries are non-

climacteric fruit that do not exhibit a large rise in respiration rate or ethylene at the onset of 

ripening though ethylene may still play a role (Bottcher et al., 2013). Rather, the onset of 

ripening is associated with the accumulation of hydrogen peroxide (H2O2) in the skin of Pinot 
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Noir berries, and there is increased catalase activity and peroxidation of galactolipids (Pilati 

et al., 2014). Hypoxia also elevates hydrogen peroxide levels in plants (Vergara et al., 2012). 

Reactive oxygen species (ROS) in plants occur as the by-products of aerobic metabolism and 

have been shown to regulate growth, development, stress defence (Considine et al., 2017; 

Pilati et al., 2007), and notably as modulators of PCD in plants (Gadjev et al., 2008). 

Although H2O2 was considered to be a harmless signal in the case of Pinot Noir ripening, this 

cultivar also shows up to 50% cell death later in ripening (Fuentes et al., 2010). The 

accumulation of H2O2, apart from a potential signal for ripening (Pilati et al., 2014), is also 

characteristic for hypoxia and anoxia treated plant tissues (Blokhina et al., 2001; Fukao and 

Bailey-Serres, 2004), suggesting that grape berries could also be under hypoxia stress during 

ripening. Plant tissues experience wide O2 fluctuations under abiotic stress conditions 

(Bailey-Serres and Voesenek, 2008). Further, ROS induced decrease in cytosolic K+ has been 

linked to the activation of PCD in plants due to sustained low K+ levels within the cytosol 

(Shabala, 2017). Potassium accumulation in the apoplast was observed in Merlot berries 

(Keller and Shrestha, 2014), a cultivar that also shows substantial cell death during late 

ripening (Fuentes et al., 2010). Linking these observations would suggest an association 

between ROS production induced by hypoxia/anoxia within berries, plasma membrane 

leakage (of K+) and PCD. ROS production is kept tightly controlled in an anti-oxidative 

system by alternative oxidase (Pilati et al., 2014; Pitzschke et al., 2006), non-enzymatic low 

molecular weight compounds, such as ascorbic acid, glutathione (Ikbal et al., 2014), 

carotenoid, tocopherols (DellaPenna and Pogson, 2006) and phenolic compounds (Blokhina 

et al., 2003).  

Metabolism and implications on water relations in an O2 limited environment 

The respiratory quotient increases in grape berries during ripening (Harris et al., 1971), most 

probably due to increased ethanol fermentation (Famiani et al., 2014; Terrier and Romieu, 
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2001) indicating a major change in berry metabolism. Other fruit also show evidence for 

restriction of aerobic respiration, for example in apple, tomato and chicory fruit, a clear effect 

of O2 concentration on the level of respiration and on the occurrence of fermentation was 

found (Hertog et al., 1998). Ethanol production is associated with normal fruit ripening, since 

alcohol dehydrogenase (ADH) activity increases and the ADH genes expression are up-

regulate during normal fruit ripening in grapes and tomatoes (Longhurst et al., 1990; 

Sweetman et al., 2009). Fermentation is also one strategy that plant cells may invoke to allow 

some energy production and to maintain cell function under O2-limiting conditions provided 

sugars are available, and interestingly both H2O2 and ethylene have been implicated in its 

regulation (Fukao and Bailey-Serres, 2004). Root tissue can lose reserves of sucrose quickly 

under anoxia due to fermentation but also due to reduced phloem unloading (Saglio, 1985). 

Gas permeability of fruit skin plays an important role in affecting ADH activity and the 

accumulation of ethanol (Shi et al., 2007). Lactate fermentation can also occur under 

anaerobic stress (Davis, 1980), which can contribute to cytoplasm acidification (Roberts et 

al., 1984). Alanine synthesis increases, when excessive pyruvate failed to be metabolized and 

accumulated under anoxia, to control supply of pyruvate for lactate and ethanol production 

(Good and Crosby, 1989; Good and Muench, 1992; Streeter and Thompson, 1972). Under 

anoxia stress, H+ pumping ATPase was blocked which inhibits H+ extrusion and this also 

initiates a cytosolic pH drop (Gout et al., 2001). The induced more acidic cytosolic pH then 

results in reduction of membrane water transport capacity due to pH sensitivity of the water 

transport plasma membrane intrinsic proteins (Tournaire-Roux et al., 2003; Zhang and 

Tyerman, 1999), which are highly expressed in grape berries during ripening (Choat et al., 

2009). We suspect the reduced membrane water permeation under hypoxia is accountable for 

the decrease in whole berry hydraulic conductance that is consistently observed for 

Chardonnay and Shiraz (Scharwies and Tyerman, 2017; Tilbrook and Tyerman, 2009) and 
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the decreased propensity of berries to split due to swelling in wet conditions (Clarke et al., 

2010). 

Diffusion of O2 in fruit 

Fruit parenchyma can be regarded as a porous medium with air spaces distributed in between 

the elliptically tessellated cells (Gray et al., 1999; Herremans et al., 2015; Mebatsion et al., 

2006). The internal O2 concentration of fruit depends on the respiratory demand, and the O2 

diffusion properties of the skin and internal tissues. These can show genotypic differences as 

is the case for apple fruit (Ho et al., 2010). In pear fruit differences in porosity of tissue, the 

connectivity of intercellular spaces and cell distribution may account for variation between 

fruit (Ho et al., 2009). For pear it was possible to reconcile the observed variation in gas 

diffusion with the irregular microstructure of the tissue using a microscale model of gas 

diffusion. This also appears to be the case for different cultivars of apple as assessed by X-ray 

micro computed tomography (Mendoza et al., 2007). Apple skin also showed a very low O2 

diffusivity and likewise a steep concentration gradient across the skin (Ho et al., 2010).  

Porosity of fruit is considered to be an important factor in dry fruit and vegetable production 

(Mayor et al., 2011). O2 diffusion is significantly reduced in a porous matrix upon collapse of 

the system (White and Bell, 1999). Structural collapse reduces sugar degradation in a low-

moisture matrix (White and Bell, 1999) and affects the rate of lipid oxidation (Shimada et al., 

1991). Shrinkage during the drying processes in food production and the porosity of the 

material together also determine rehydration capability in potatoes (McMinn and Magee, 

1997). By investigating the morphological changes in air spaces and porosity in the grape 

berry, we might be able to further understand biological processes associated with berry 

shrivel and cell death. 
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Research questions 

What is the profile of O2 concentration across the berry from the surface to the interior 

regions? 

Are there changes in berry internal O2 profiles during berry development? 

Are there differences in berry internal O2 concentration between cultivars? 

Is hypoxia in wine grape berries linked to cell death? 

Does elevated temperature and water stress affect berry internal O2 concentrations during 

ripening? 

How do seeds affect O2 demand in the berry mesocarp? 

What is the potential pathway for O2 uptake in grape berries? 

How is berry respiration dependent on temperature at different ripening stages? 

What mitigation strategies can be used to reduce berry shrivel? 

Research objectives 

1. Measure O2 concentrations in difference grape cultivars 

Hypotheses: 

• Mesocarp becomes hypoxic during late ripening.  

• Seed respiration is a significant demand on O2 supply. 

• There is a spatial difference in O2 concentration within berries that is linked to the 

patterns of mesocarp cell death. 

• Differences in the degree of cell death in different cultivars are linked to 

morphological differences that affect O2 diffusion pathways. 
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2. Test whether stressful conditions (heat and water stress) is linked to berry internal 

oxygen concentration. 

Hypotheses:  

• Elevated temperature and water stress will affect berry internal oxygen profiles. 

Grapes grown in stressful conditions in the field will show a greater degree of hypoxia that 

correlates to the advanced and exacerbated rate of cell death.  

3. Test mitigation strategies that could reduce cell death and weight loss. 

Hypotheses:  

• Shade decreases canopy temperature and respiratory demand, and therefore affect 

berry internal oxygen concentration. 

• Rootstock will influence vine/berry water relations of Shriaz scion and affect the level 

of berry shrivel. 

• Kaolin spray will reduce berry water loss. 

• Kaolin spray will delay and decrease berry cell death. 

Significance/contribution to the discipline  

Understanding the triggers of cell death in grape berries will help growers to better monitor 

the berry ripening process in order to produce fruit with balanced flavour development and 

water retention. Understanding the effect of rootstock on berry cell death will add valuable 

information to rootstock selection. Kaolin spray was tested to provide useful information on 

the effectiveness of this mitigation tool for reducing adverse effects caused by heatwaves and 

excessive sun exposure. 
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Chapter 2 Hypoxia in grape berries: the role of seed respiration 

and lenticels on the berry pedicel and the possible link to cell 

death 

Published, Journal of Experimental Botany, ery039, https://doi.org/10.1093/jxb/ery039 
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Abstract 

Mesocarp cell death (CD) during ripening is common in berries of seeded Vitis vinifera L. 

wine cultivars. We examined if hypoxia within berries is linked to CD. Internal oxygen 

concentration ([O2]) across the mesocarp was measured in berries from Chardonnay and 

Shiraz, both seeded, and Ruby Seedless, using an oxygen micro-sensor. Steep [O2] gradients 

were observed across the skin and [O2] decreased toward the middle of the mesocarp. As 

ripening progressed the minimum [O2] approached zero in the seeded cultivars and correlated 

to the profile of CD across the mesocarp. Seed respiration declined during ripening, from a 

large proportion of total berry respiration early to negligible at latter stages. [O2] increased 

towards the central axis corresponding to the presence of air spaces visualised using x-ray 

micro-CT. These air spaces connect to the pedicel where lenticels are located that are critical 

for berry O2 uptake as a function of temperature, and when blocked caused hypoxia in 

Chardonnay berries, ethanol accumulation and CD. The implications of hypoxia in grape 

berries are discussed in terms of its role in CD, ripening and berry water relations. 

Keywords: grape berry, lenticels, micro-CT, oxygen sensor, pedicel, programmed cell death, 

respiration, seed respiration, temperature, Vitis vinifera 
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Introduction 

Onset and rate of cell death (CD) in berry mesocarp of Vitis vinifera L are genotype-

dependent, and modulated by temperature and drought (Bonada et al., 2013a; Bonada et al., 

2013b; Fuentes et al., 2010; Krasnow et al., 2008; Tilbrook and Tyerman, 2008). 

Evolutionarily, CD may have been selected as a trait favouring seed dispersal (Hardie et al., 

1996). It correlates with berry dehydration (Bonada et al., 2013b; Fuentes et al., 2010), a 

common phenomenon in warm wine growing regions, and is partially distinct from other 

forms of “berry shrivel” (Bondada and Keller, 2012; Keller et al., 2016). Berry dehydration 

associated with CD is common in Shiraz (Syrah), resulting in increased sugar concentration 

(Caravia et al., 2016; Rogiers et al., 2004; Sadras and McCarthy, 2007). It is also associated 

with altered chemical composition (Šuklje et al., 2016), and sensory characteristics (Bonada 

et al., 2013a). 

Grape berries are non-climacteric, though ethylene may still play a role (Bottcher et al., 

2013). However, the onset of ripening is associated with the accumulation of hydrogen 

peroxide (H2O2) in skin of Pinot Noir berries (Pilati et al., 2014). Although H2O2 was 

considered a harmless signal, Pinot Noir berries also show up to 50% CD (Fuentes et al., 

2010). Accumulation of H2O2 is also characteristic of plant tissues exposed to hypoxia or 

anoxia (Blokhina et al., 2001; Fukao and Bailey-Serres, 2004). Grape berry respiratory 

quotient increased during ripening (Harris et al., 1971) associated with increased ethanolic 

fermentation (Famiani et al., 2014; Terrier and Romieu, 2001). Other fruit also show 

restricted aerobic respiration and fermentation (Hertog et al., 1998). Ethanolic fermentation 

contributes to maintain cell function under O2-limiting conditions provided sugars are 

available. Interestingly, both H2O2 and ethylene have been implicated in its regulation (Fukao 

and Bailey-Serres, 2004).  
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Hypoxia-induced oxidative stress decreases lipid and membrane integrity (Blokhina et al., 

2001), the latter being clearly evident in most wine grape berries by vitality stains (Tilbrook 

and Tyerman, 2008). Increased CD in Shiraz grapes is reflected by decreased extracellular 

electrical resistance indicating electrolyte leakage (Caravia et al., 2015). This leakage 

corresponds to the accumulation of potassium in the extracellular space of Merlot berries 

(Keller and Shrestha, 2014), a cultivar that also displayed CD (Fuentes et al., 2010). O2 

deprivation diminishes intracellular energy status that reduces cell vitality in non-

photosynthetic organs, as exemplified by roots under flooding or waterlogging (Voesenek et 

al., 2006). Although grape berries show some photosynthesis in early stages of development 

(Ollat and Gaudillère, 1997), during ripening photosynthetic pigments and nitrogen content 

are reduced and atmospheric CO2 is not fixed while re-fixation of respiratory CO2 declines 

(Palliotti and Cartechini, 2001).  

Shiraz berry CD can be accelerated by water stress and elevated temperature (Bonada et al., 

2013a). There are increasing frequencies and intensities of heat waves and drought events 

globally and in Australia (Alexander and Arblaster, 2009; Perkins et al., 2012), and the 

warming trend is predicted to have adverse effects on grapevines (Webb et al., 2007) and 

berry quality (Bonada and Sadras, 2015; Caravia et al., 2016; Fuentes et al., 2010). Higher 

temperature increases demand for O2 to support increased oxidative respiration 

(Kriedemann, 1968). Meanwhile, O2 diffusion into the berry may be limited by decreased gas 

exchange across the berry skin during ripening, as judged by declining transpiration (Rogiers 

et al., 2004; Scharwies and Tyerman, 2017) and/or changes in berry internal porosity during 

ripening. Lenticels on the skin of potato tubers are the main channel for O2 uptake for 

respiration (Wigginton, 1973) and phellem-lenticel complex of woody roots and trunks 

regulates O2 exchange (Lendzian, 2006). In the grape berry, the small number of stomata on 
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skin develop into non-functional lenticels occluded with wax (Rogiers et al., 2004), but 

lenticels are very prominent on the pedicel (Becker et al., 2012). 

Wine-grape cultivars are seeded, and have been selected for wine-related attributes, whereas 

table-grape cultivars have been selected for turgor maintenance, and markets increasingly 

demand seedless fruit; these differences in selective pressures between wine and table grape 

cultivars have led to differences in the dynamics of water during berry ripening (Sadras et al., 

2008). Table grape seedless cultivars show little or no CD well into ripening (Fuentes et al., 

2010; Tilbrook and Tyerman, 2008). Although lignification of seeds is complete before 

berries begin to ripen (Cadot et al., 2006), oxidation of seed tannins is sustained (Ristic and 

Iland, 2005) and is concurrent with oxidation of phenolic compounds such as flavan-3-ol 

monomers and procyanidins (Cadot et al., 2006). Lignin polymerisation requires 

consumption of O2 and generation of H2O2 for the final peroxidase reaction (Lee et al., 2013), 

and this, with oxidation of tannins, could add additional stress to the mesocarp in seeded 

cultivars. Phenolic compounds can also act as ROS-scavengers (Blokhina et al., 2003). In 

grape, biosynthesis of procyanidins coincide with the initial rapid period of growth (Coombe, 

1973) and flavan-3-ol accumulated during early ripening (Cadot et al., 2006). Taken together, 

seed respiration and maturation deserves consideration in understanding mesocarp CD. 

In this study we test the hypothesis that hypoxia (i.e. below normoxia as 20.95% air [O2] 

(Sasidharan et al., 2017)) occurs within the grape berry during ripening and that this may be 

correlated with CD in the pericarp. We compared the patterns of CD and [O2] profiles across 

the berry flesh of two wine, seeded cultivars, Chardonnay and Shiraz, and a seedless table 

grape cultivar, Ruby Seedless.  Respiratory demand of seeds and berry were measured for 

different ripening stages and different temperatures. The diffusion pathway of O2 supply was 

assessed through examination of the role of lenticels on the berry pedicel and air space 

estimates using X-ray micro-computed tomography (micro-CT) of single berries.   
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Materials and methods 

Details of sources of berries, vine age, sampling times and corresponding measurements are 

listed in Table 1. Berries from the Waite Campus (34°58'04.8"S 138°38'07.9"E) vineyards 

were sampled over the 2014-2015, 2015-2016 and 2016-2017 seasons. Mature Shiraz, 

Chardonnay and Ruby Seedless vines on own roots were grown under standard vineyard 

management with vertical shoot positioning, spur pruned (two buds), and drip irrigation, on 

dark brown clay soils with shale fragments, grading into red-brown mottled clay; overlying 

olive-brown mottled cracking clay (Du Toit, 2005). Rows (3m spacing) were north-south 

oriented. Three replicates each consisted of 2 vines per replicate for Shiraz and 3 vines per 

replicate for Chardonnay. Ten random clusters (combination of proximal and distal) were 

labelled within each replicate and 20 berries (2 from each cluster, randomly located within 

the cluster) per replicate were excised at the pedicel-rachis junction with sharp scissors at 

each sampling date. Ruby Seedless grapes were sampled from three vines with 5 clusters 

labelled for sampling on each vine and 20 berries were sampled from each vine. Timing of 

sampling during berry development was measured as days after anthesis (DAA, 50% of caps 

fallen from flowers). Berries were placed in sealed plastic bags into a cooled container, and 

taken to the laboratory, stored at 4 °C in the dark, and tested within 48 hours of sampling. 

Berries from pot-grown vines 

Shiraz and Chardonnay cuttings were taken from the Waite vineyards in April 2015 and 

propagated after storage at 4 °C in the dark for approximately two weeks. Propagation 

method and vine nutrition management were based on Baby et al. (2014). Briefly, after roots 

were initiated in a heated sand bed in a 4 °C cold room for 8 weeks, and after the root length 

reached approximately 6 cm, cuttings were transferred into vermiculite: perlite (1:1) mixture 

in 12 cm pots. Pots were placed in a growth chamber with a 16 h photo-period, 400 μmol 

photons/(m2·s) at the plant level, 27 °C day/ 22 °C night, and 50% humidity. Pots were 
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irrigated with half strength Hoagland solution (Baby et al., 2014). Fruitful vines at stage EL-

12 (Coombe, 1995) were then transferred into a University of California (UC) soil mix: 61.5 

L sand, 38.5 L peat moss, 50 g calcium hydroxide, 90 g calcium carbonate and 100 g 

Nitrophoska® (12:5:1, N : P : K plus trace elements; Incitec Pivot Fertilisers, Southbank, 

Vic., Australia), per 100 L at pH 6.8, in 20 cm diameter (4 L) pots irrigated with water 

thereafter. Five berries (each from 3 different vines) of each cultivar were used for light 

stereomicroscopy. 

Chardonnay rootlings were obtained from Yalumba Nursery in April 2017 and planted with 

UC mix soil and in the same growth chamber with the same growth conditions as above. 

Seven vines, each with one cluster, were used for O2 diffusion experiments.  

[O2] profiles in berries 

Berry [O2] was measured using a Clark-type O2 microelectrode with a tip diameter of 25 µm 

(OX-25; Unisense A/S, Aarhus, Denmark). The microelectrodes were calibrated in a zero O2 

solution (0.1M NaOH, 0.1M C6H7NaO6) and an aerated Milli-Q water (272 µmol/L at 22 °C), 

as 100% O2 solution. Individual berries (equilibrated to room temperature) were secured on 

the motorized micromanipulator stage. To aid the penetration of the microelectrode into the 

berry skin, the skin was pierced gently with a stainless-steel syringe needle (19G), to a depth 

of 0.2 mm, at the equator of the berry. The microsensor was positioned in the berry through 

this opening and [O2] profiles were taken with depth towards the centre of the berry. For 

Shiraz, measurements were taken from 0.2 mm to 1.5 mm under the skin at 0.1 mm 

increments. The electrode was not moved beyond this point to avoid damaging the tip against 

a seed. For Ruby Seedless where seeds were not present and Chardonnay grapes, where the 

position of the seeds could be determined through the semi-transparent skin, measurements 

were taken at 0.5 mm intervals from 0.2 mm under the skin to the berry centre. Each 

measurement was applied for a 10s duration at each depth. Between each position, a 20s 
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waiting time was applied to ensure stable signals. To test whether puncturing of the skin by 

the needle and insertion of the microelectrode contaminated the berry internal O2 by the 

surrounding air, a plastic ring was placed around the insertion site and a gentle stream (250 

mL/min) of nitrogen gas was applied to the insertion point while obtaining the O2 readings 

(Fig 1A). These readings were compared to those where no nitrogen gas was applied.   

The O2 readings were recorded using the Unisense Suite software (Unisense A/S, Aarhus, 

Denmark). Three berries were measured for each biological replicate. Means and SE of each 

step (n = 3) were calculated and [O2] profiles were compiled using GraphPad Prism 7 

(GraphPad Software Inc., La Jolla, CA, USA). Following the O2 measurements, berry 

temperature was recorded using an IR thermometer (Fluke 568, Fluke Australia Pty Ltd, 

NSW, Australia) with a type-K thermocouple bead probe (Fluke 80PK-1). Berry diameters at 

the equator were measured with a digital calliper. [O2] and respiration (see below) were 

measured under dim room lighting, less than 1 μmol photon/(m2·s). Berry vitality was 

determined (see below) and total soluble solids (TSS) of the juice from individual berries was 

determined using a digital refractometer (Atago, Tokyo, Japan) as an indicator of berry 

maturity. 

Testing the role of pedicel lenticels 

[O2] was measured as above but with the probe stationary at approximately 2 mm from the 

pedicel along the berry central axis. After a stable reading was obtained N2 gas (250 mL/min) 

was then applied over the pedicel in order to test the contribution of pedicel lenticels to O2 

diffusion into the berry.  

Berry and seed respiratory O2 consumption  

A Clark-type oxygen microsensor OX-MR and the MicroRespiration System (Unisense A/S, 

Aarhus, Denmark) were used for berry and seed respiration measurements. A replicate 
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consisted of 9 berries. The measuring chamber was filled with aerated MilliQ water, 

constantly stirred and was maintained at 25°C in a water bath. After the measurement of 

whole berry respiration, seeds of the 9 berries were extracted and the seed respiration rate 

measured using the same apparatus. Changes in the chamber’s water [O2] were monitored for 

at least 15 mins, with readings taken every 5 seconds in order to determine a steady 

respiration rate from the slope of the decline in [O2].  

Respiration was also measured for Shiraz and Chardonnay berries before and after the 

pedicels were covered with silicone grease (SGM494 silicone grease, ACC Silicones 

Limited, Bridgewater, England), which was known to restrict berry pedicel water uptake 

(Becker et al., 2012), at 20 and 40 °C. Another batch of 9 Chardonnay berries was used to 

determine the respiratory contribution of excised pedicels.  

The temperature dependence of berry respiration was determined with a water bath held at 

10 °C, 20 °C, 30 °C and 40 °C.  

Pedicel lenticel density 

The lenticel density of Chardonnay and Shiraz berry pedicels (stem and receptacle) was 

assessed using a Nikon SMZ 25 stereo microscope with CCD camera (Nikon Instruments 

Inc., Melville, NY, USA). Lenticel area (%) was estimated using ImageJ (Schneider et al., 

2012) by first adjusting the colour threshold of the image to separate the pedicel from the 

background and then the lenticels from the pedicel. Subsequently the ROI managing tool was 

used to estimate the relative area of the pedicels and the lenticels. 

Long term effect of blocking pedicel lenticels 

The pedicel of approximately half of the berries on each cluster of growth chamber grown 

Chardonnay were covered with silicone grease at the onset of ripening (first signs of berry 

softening). Two or three pairs of berries, each pair containing one covered and one uncovered 
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(control) pedicel from one plant, were randomly sampled throughout the course of the 

experiment at 3, 5, 7, 10, 12, 14 and 18 days after application. Profiles of berry O2 

concentration were measured as above, and berries were subsequently assessed for cell 

vitality (see below). Three pairs of berries were sampled 12 and 20 days after silicone 

application and assessed for internal ethanol concentration (see below). 

Berry ethanol concentration 

Individual berries were ground to a fine powder under liquid nitrogen. Ethanol was quantified 

using an Ethanol Assay kit following the manufacturer’s instructions (Megazyme 

International Ireland Ltd., Wicklow, Ireland). Briefly, alcohol dehydrogenase (ADH) 

catalysed the oxidation of ethanol to acetaldehyde. Acetaldehyde was then further oxidized to 

acetic acid and NADH in the presence of aldehyde dehydrogenase (AL-DH) and NAD+. 

NADH formation was measured in a FLUOstar Omega plate reader (BMG LABTECH 

GmbH, Ortenbery, Germany) at 340 nm.  

Pericarp cell vitality estimation 

Cell vitality was estimated using a fluorescein diacetate (FDA) staining procedure on the cut 

medial longitudinal surface of berries as detailed in (Fuentes et al., 2010; Tilbrook and 

Tyerman, 2008). Images were analyzed with a MATLAB (Mathworks Inc., Natick, MA, 

USA) code for determining berry cell vitality (Fuentes et al., 2010). Using ImageJ, the FDA 

fluorescence signal, across the radius at the equator were analysed. The correlation between 

[O2] and fluorescence signal at corresponding distances within Chardonnay and Ruby 

Seedless berries were examined. The fluorescence signal of growth chamber grown 

Chardonnay berries with/without pedicel covered was also analysed in this way. 
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Air spaces within the berry 

Chardonnay berries were sampled during season 2015-2016 for micro-CT, where three 

berries, each from a different replicate, were used for each sampling time. Grapes were 

imaged with a Skyscan 1076 (Bruker micro-CT, Kontich, Belgium) at the micro-CT facility 

at Adelaide Microscopy, where whole berries (pedicel attached) had 2D projections acquired 

with 59 kV, 149 uA, Al 0.5 mm filter, 2356 ms exposure, 0.4-degree rotation step and 8.5 µm 

pixel size (equivalent to 15 µm spatial resolution or 3 × 10-6 mm3 voxel size). NRecon 

(bruker-microct.com) was used for greyscale image reconstruction. Using CT-Analyer 

(bruker-microct.com), Otsu thresholding was applied to the volume and despeckle was 

applied to accept only continuous volume over 500 voxels as connected air spaces. 3D 

images of the internal air spaces were generated using CTVox (bruker-microct.com), colour 

rendering modules were used to distinguish the internal air volume from the berry volume. 

3D models were then longitudinally sectioned to reveal the internal air space distribution. 

Quantitative analysis of internal porosity between the berry proximal region and the top 

(hilum) of the seed(s) was performed by manually selecting the volume of interest and 

accepting 500 voxels as air spaces. 

Statistical analysis  

All data are presented as mean ± SEM. Two-way ANOVA was used for: effect of O2 sensor 

depth and applying N2 gas at the point of sensor entry on [O2], effect of O2 sensor depth and 

ripening stage on [O2], effect of temperature and covering lenticels on respiration, effect of 

temperature and grape maturity on respiratory Q10, effect of covering lenticels and the 

duration of coverage on [O2], TSS, sugar per berry, ethanol and living tissue profiles. Deming 

regression was used to determine the association between fluorescent intensity of FDA stain 

and [O2]; this type of regression takes account of error in both x and y (Strike, 1991). T-test 

was used for differences in: respiration of berry and seed of Chardonnay at two ripening 
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stages, lenticel area on pedicels between Chardonnay and Shiraz, activation energy of O2 

uptake of Chardonnay and Shiraz berries, porosity and connectivity index in Chardonnay at 

two ripening stages. Rates of CD in lenticel covered berries and control berries were 

determined using linear regression. 

Results 

Internal oxygen profiles of grape berries 

In Chardonnay, [O2] decreased from the skin towards the interior of the mesocarp to reach 

low concentration at depths of 2.2 mm to 4 mm (Fig. 1). The minimum [O2] over this depth 

range was 5.5 ± 5.5 µmol/L. However, with further penetration towards the central axis of the 

berry, [O2] increased and reached a maximum at 7 mm depth (Fig. 1). To test if the [O2] 

profiles were affected by introduced O2 via the penetration site, N2 gas was gently applied on 

to the entry point of the sensor during the measurements. The [O2] profiles were similar for 

control and nitrogen-treated berries (Fig. 1) indicating that leakage through the site of 

penetration did not affect the recorded profiles.  

Changes in internal oxygen profiles and progression of cell death during ripening 

To determine if there was a link between the progression of CD and hypoxia within the berry, 

we determined CD using FDA staining and recorded [O2] profiles on berries sampled on the 

same days. Similar [O2] profiles were observed for Chardonnay and Ruby Seedless (Fig. 2A, 

C), and for Shiraz over the first 1.5 mm (Fig. 2E), but the [O2] dropped more steeply across 

the skins as ripening progressed in all cultivars resulting in overall lower [O2] across the 

berry. This was manifest as much lower minimum [O2] at the last ripening stage sampled: 

Chardonnay 0 µmol/L, Ruby Seedless 14.9 ± 8.86 µmol/L, Shiraz 0 µmol/L. Because seeds 

could not be visualised in Shiraz berries the micro oxygen sensor could not be moved further 
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into the berry than about 1.6 mm without risking the integrity of the sensor (Fig. 2E). 

Nevertheless, it was clear that [O2] dropped precipitously towards 1 mm (Fig. 2E).  

Vitality staining (Fig. 2B, F) indicated that, for both Chardonnay and Shiraz, CD increased 

over time as TSS accumulated and occurred predominately in the middle of the mesocarp 

corresponding to the minimum in [O2]. Further, the change in fluorescent signal intensity 

across the radius at the equator of Chardonnay berries showed a similar trend as for berry 

internal [O2] (Fig. 3A), indicating a correlation between cell vitality and internal [O2] (Fig. 

3B). On the other hand, Ruby Seedless berries maintained cell vitality close to 100% up to 

132 DAA, when TSS was 20.7 °Brix (Fig. 2D). While a similar shape of [O2] profile was 

observed within the mesocarp of Ruby Seedless berries when compared with that of 

Chardonnay berries (Fig. 2C), [O2] did not reach zero. 

Despite the decrease in [O2] across the mesocarp during ripening, for Chardonnay and Ruby 

Seedless berries, [O2] started to increase with depth from about 4.2 mm and reached a 

maximum at around 6.2 mm in Chardonnay and 8.2 mm in the larger Ruby Seedless berries 

(Fig. 2A, C). Standardising the position of the sensor relative to the diameter of each berry 

replicate (Fig. 4), showed that [O2] peaked at the central vascular bundle region at all 

sampling times for both Chardonnay (Fig. 4A) and Ruby Seedless (Fig. 4B). 

Consumption and supply pathways of oxygen within grape berries 

Considering the link between CD and [O2] (Fig. 3), and the lack of CD in well-developed 

berries of Ruby Seedless (Fig. 2D), we investigated the contribution of seeds to the 

respiratory demand of the berry in Chardonnay. Seed fresh weight peaks at the beginning of 

sugar accumulation and skin coloration; this stage is termed veraison (Ristic and Iland, 2005) 

and was reached around 63 DAA for Chardonnay here. Seed respiration at this stage was 5-

fold higher than whole berry respiration on a per gram fresh weight basis. Berry respiration 



42 
 

reduced by about a third at 122 DAA compared to 63 DAA (Fig. 5A), however seed 

respiration decreased by 40-fold (Fig. 5B). Berry mass nearly doubled from 7.2 ± 0.5 g at 63 

DAA to 13.9 ± 1.4 g at 122 DAA, thus on a per berry basis, respiration rate increased by 

about 18% from 63 DAA to 122 DAA (Fig. 5C). The contribution from the total number of 

seeds in the berry accounted for more than half of the respiratory demand in berries at 

veraison. This dropped to an insignificant proportion at 122 DAA (Fig. 5C).  

Differences in resistance to diffusion into the berry may influence the [O2] profiles. The 

pedicel lenticels may offer a pathway for O2 entry that could account for the higher 

concentration towards the central axis of the berry. There were obvious differences in lenticel 

morphology between Chardonnay (Fig. 6A) and Shiraz berries (Fig. 6B). Individual lenticels 

on Chardonnay pedicels were larger, and also had 10-fold larger total surface area as a 

proportion of pedicel surface area compared to that of Shiraz berries (Fig. 6C). 

To determine whether lenticels on the pedicel could be sites for berry gas exchange, 

respiration was measured on the same batches of berries with or without pedicels covered 

with silicone grease to impede gas exchange. This was examined at 20 and 40 °C as 

respiratory demand for O2 increases with temperature (Hertog et al., 1998). Fig. 7A shows 

that covering the berry pedicel (and lenticels) with silicone grease decreased berry respiration 

at 40 ºC for both Shiraz and Chardonnay berries, but had no effect on respiration at 20 ºC. 

The temperature dependence of respiration was examined in more detail for Chardonnay and 

Shiraz with both yielding similar activation energies and Q10 (Supplementary Fig. S1, S2) 

that did not differ between berries sampled on the two days for each cultivar. The decreased 

apparent respiration of berries with the covered pedicel was not due to the elimination of 

pedicel respiration, because pedicel respiration rate at 40°C was a small fraction of the total 

berry respiration (Fig. 7B) and did not account for the decrease observed when pedicels were 
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covered (Fig. 7A), where the decrease in respiration of pedicel-covered Shiraz and 

Chardonnay at 40 °C was 839.7 ± 101.8 and 1233.9 ± 229.4 nmol/h per berry. 

A rapid decrease in [O2] was observed at approximately 2 mm away from pedicel and close 

to the centre axis in the Ruby Seedless berries, when a N2 stream was activated over the 

pedicel (Fig. 8).  

An experiment was subsequently conducted using growth chamber grown Chardonnay vines 

to test whether covering the pedicel lenticels of berries attached to the vine would affect 

internal [O2] profiles. Three days after covering the berry pedicel with silicone grease, a 

reduction in [O2] at the central vascular region occurred and remained near 0 µmol/L over the 

subsequent 15 days (Fig. 9A). For control berries, a maximum of [O2] was evident at the 

central axis across all days of measurement. Concentration of total soluble solids increased 

with time during the course of this experiment, and was higher for lenticel covered berries 

(Fig. 9B). Sugar/berry was not affected by covering the lenticels (Fig. 9C). Ethanol 

concentration of berries was measured at 12 and 20 days after covering the pedicel lenticels. 

These berries, showed higher ethanol content compared to control berries (Fig. 9D), 

consistent with more fermentation within the hypoxic berries. Cell death was significantly 

increased by limiting oxygen diffusion after 10 days of covering the lenticels (Fig. 9E) and 

this was also evident from examination of transects across the berry (Fig. 9F).  

Air spaces within the grape berry shown by micro computed tomography (micro-CT)  

Using micro-CT, the internal air spaces of Chardonnay berries at two time points during 

ripening, where air spaces within the berry greater in total volume than 500 voxels (1.5 × 10-3 

mm3), are shown in Figure 10. Colour rendering highlighted air space within the berries for 

both post-veraison (98 DAA, Fig. 10A) and post-harvest (154 DAA, Fig. 10B) berries. Air 

spaces were connected to the pedicel in the post-veraison berry, but not obviously in the post-
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harvest berry. It was evident that there were larger air spaces within the locule. Porosity, 

pores and channels, between berry proximal region to seed(s) hilum, did not differ between 

berries sampled on the two days (Supplementary Fig. S3). 

Discussion 

The mesocarp of seeded wine grape berries typically shows a type of programmed cell death 

associated with dehydration and flavour development late in ripening (Fuentes et al., 2010; 

Bonada et al., 2013a; Tilbrook and Tyerman, 2008). Here we show a close similarity between 

the pattern of CD across the berry mesocarp and [O2] profiles where the central regions of the 

mesocarp had both the highest CD and the lowest [O2].  In both Shiraz and Chardonnay the 

oxygen deficit in the centre of the mesocarp increased as ripening and cell death progressed, 

essentially becoming anoxic after about 100 days from anthesis under our experimental 

conditions. This contrasted to the seedless, table-grape cultivar where O2 concentrations 

remained above about 15 µmol L-1 (1.1 kPa) in the mid region of the mesocarp, still 

considered to be hypoxic (Saglio et al., 1988), where CD was less apparent. In our 

experimental system, however, only three cultivars were tested and there is a confounded 

effect between cultivar types (wine vs table) with different water and sugar dynamics (Sadras 

et al., 2008) and between seeded and seedless types. Separating these effects would require 

the comparison of seeded and seedless isogenic lines. Nonetheless, the strong correlation 

between CD and [O2] profiles, the role of lenticels, seed respiration, ethanol fermentation and 

CT-images all converge to support our working hypothesis that hypoxia in the mesocarp 

contributes to CD in the grape berry. 

The minimum [O2] we measured in the pericarp for both Chardonnay and Shiraz berries 

(close to zero) may be at or below the Km for cytochrome C oxidase (0.14 μM) (Millar et al., 

1994), and very likely resulted in restricted oxidative phosphorylation and a shift to 

fermentation as evidenced by the detection of ethanol in Chardonnay berries; testing other 
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cultivars for ethanol production would be of interest. All aerobic organisms require O2 for 

efficient ATP production through oxidative phosphorylation. Lower ATP production occurs 

under hypoxia when cells shift from oxidative phosphorylation to fermentation (Drew, 1997; 

Geigenberger, 2003; Ricard et al., 1994). The depletion of ATP has profound consequences 

on cell physiology, including a change in energy consumption and cellular metabolism 

(Bailey-Serres and Chang, 2005; Drew, 1997). Loss of membrane integrity responsible for 

browning disorder in pears is also linked to internal hypoxia and low ATP levels (Franck et 

al., 2007; Saquet et al., 2003).   

Survival of grape berry mitochondria after imposed anaerobiosis (based on succinate 

oxidation rates) is cultivar dependent with survival ranging from 1 to 10 days (Romieu et al., 

1992). This work was based on the process of carbonic maceration, a wine making procedure 

where whole berries ferment in an anaerobic atmosphere prior to crushing.  Ethanol alters the 

respiratory quotient of grape mitochondria and uncouples oxidative phosphorylation (Romieu 

et al., 1992). These effects occurred above 1% (vol) ethanol and well above the 

concentrations we measured in Chardonnay berries (0.015%); however, it is possible that 

there are locally high concentrations of ethanol within the berry in our case. In a later paper, 

alcohol dehydrogenase (ADH) activity and ADH RNA were found to be already high in field 

grown Chardonnay berries before anaerobiosis treatment, suggesting a hypoxic situation 

already existed in the grapes as a result of some stressful conditions in the field (Tesnière et 

al., 1993).  Our results show that this may be the norm for certain regions within the berry 

mesocarp and likely exacerbated by high temperature (see below).  

The internal [O2] of fruit depends on the respiratory demand, and the O2 diffusion properties 

of the skin and internal tissues. These can show genotypic differences as is the case for apple 

fruit (Ho et al., 2010). In pear fruit, differences in porosity of the cortex, the connectivity of 

intercellular spaces and cell distribution may account for variation between cultivars (Ho et 
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al., 2009). For pear it was possible to reconcile the observed variation in gas diffusion with 

the irregular microstructure of the tissue using a microscale model of gas diffusion. This also 

appears to be the case for different cultivars of apple as assessed by micro-CT (Mendoza et 

al., 2007). For grape berries the [O2] profiles in our study would suggest a very low O2 

diffusivity for the skin since a steep gradient occurred across the skin. Apple skin also 

showed a very low O2 diffusivity and likewise a steep concentration gradient across the skin 

(Ho et al., 2010).  Since sub-skin [O2] of grape berries declined dramatically during ripening 

for all three grape cultivars it would suggest a decline in O2 diffusivity during ripening that 

may result from the same epidermal and cuticle structural changes that cause a decline in 

berry transpiration (Rogiers et al., 2004).  

Changing properties of the skin, berry porosity and lenticels in the pedicel may all contribute 

to the reduced internal [O2] in grape berries during ripening. Fruit parenchyma can be 

regarded as a porous medium with air spaces distributed in between the elliptically tessellated 

cells (Gray et al., 1999; Herremans et al., 2015; Mebatsion et al., 2006). A maximum [O2] at 

the central axis region of both seeded and seedless berries throughout berry development, 

indicates a channel connecting the source of O2 intake and the central vascular bundles. 

Using different approaches, including blockage of pedicel lenticels with silicone grease or 

applying of N2 over pedicels, our experiments demonstrated that the pedicel lenticels are a 

major pathway for O2 diffusion into the grape berry. This corresponds to the predominant air 

canals observed in micro-CT from the receptacle into the central axis of the berry. Micro-CT 

to study air space distributions in fruit can reveal important properties that affect gas 

diffusion (Herremans et al., 2015; Mendoza et al., 2010) as well as internal disorders 

(Lammertyn et al., 2003). In our work the visualisation of air space connecting the pedicel 

with the locular cavity around seeds provides the structural link to the measured peaks in [O2] 

around the central vascular region in the berries. This also confirmed the potential O2 uptake 
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pathway through the pedicel lenticels, and distribution through the vascular networks. The 

relatively higher [O2] around both central and peripheral vascular bundles may be important 

for maintaining phloem unloading in the berry, and it is interesting to note that even with 

severe CD in berries the vascular bundles generally remain vital (Fuentes et al., 2010). 

Despite this we observed higher sugar concentrations in hypoxic berries that had their 

lenticels covered while still on the vine. This anomaly may be accounted for by decreased 

water influx because of hypoxia, thereby causing an increase in sugar concentration. Hypoxia 

is associated with reduced plasma membrane water permeability (Zhang and Tyerman, 1991) 

caused by closing of water channels of the plasma membrane intrinsic protein (PIP) family 

(Tournaire-Roux et al., 2003). This is due to sensitivity to lowered cytosolic pH under 

hypoxia. A PIP aquaporin (VvPIP2;1) that is highly expressed in the ripening berry (Choat et 

al., 2009) would be predicted to have reduced water permeation under hypoxia (Tournaire-

Roux et al., 2003) perhaps accounting for the decrease in whole berry hydraulic conductance 

that is consistently observed for Chardonnay and Shiraz (Scharwies and Tyerman, 2017; 

Tilbrook and Tyerman, 2009). 

Lenticels are multicellular structures produced from phellogen that replace stomata after 

secondary growth (Lendzian, 2006). The impact of lenticels on gas and water permeance 

compared to periderm of stems has been measured for some species. For Betula pendula, the 

presence of lenticels substantially increased the water permeability of the periderm by 

between 26 and 53-fold (Schönherr and Ziegler, 1980). Lenticels on the berry pedicel are a 

preferential site for water uptake for submerged detached berries (Becker et al., 2012).  Water 

vapour and O2 permeance of tree phellem with and without lenticels showed that lenticels 

increased O2 permeance much more than that for water, over 1000-fold for one species, yet 

the permeance for water vapour was higher than that for O2 (Groh et al., 2002). Interestingly, 

Schönherr and Ziegler (1980) showed that as the water vapour activity declined (increased 
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vapour pressure deficit), water permeability was strongly reduced.  If declining water vapour 

activity also reduced O2 permeability in grape berry lenticels this could restrict O2 diffusion 

under the very conditions where respiratory demand is increased, i.e. under water stress and 

with high temperature and vapour pressure deficit.  

The decrease in [O2] at the approximate central axis in the seeded Chardonnay berry during 

development suggests there could be either an increase in respiratory demand, a decrease in 

the intake of O2 via the pedicel lenticels or decreased porosity through the central proximal 

axis. Ruby Seedless berries on the other hand did not show this reduction. This indicates 

there could be structural differences in lenticels between the seeded wine grape cultivar and 

the seedless table grape, or that the seeds themselves become a significant O2 sink (unlikely 

based on the arguments presented below). The lower lenticel surface area in Shiraz could be 

indicative of a greater restriction to O2 diffusion compared to Chardonnay.  Shiraz is well 

known for its earlier and more rapid increase in CD under warm conditions (Bonada et al., 

2013b; Fuentes et al., 2010). Unfortunately, it was not possible for us to probe for [O2] in the 

central region of the Shiraz berry to compare with Chardonnay due to not being able to 

visualise seed position relative to the sensor in Shiraz berries. The role of the pedicel lenticels 

in allowing grape berries to “breathe” and their variation between cultivars seems to have 

been overlooked and appears to be unique amongst fruit. Cluster compactness and pedicel 

length could also affect the gas diffusion via this passage, ultimately resulting in differences 

in berry internal oxygen availability throughout ripening. 

Another possible explanation for the difference in oxygen profiles between the seeded and 

seedless cultivars is that seeds are a significant O2 sink late in ripening. Oxygen supply to 

seeds is essential for seed growth, and deposition of protein and oil (Borisjuk and 

Rolletschek, 2009). On the other hand, low [O2] within seeds favours low levels of ROS thus 

preventing cellular damage (Simontacchi et al., 1995). The seeded wine grape cultivars 
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Riesling and Bastardo, increased O2 uptake from less than 0.45 µmol/h per berry to 

approximately 3 µmol/h per berry during early ripening, contrasting to seedless Sultana 

where the maximum O2 uptake was 1.5 µmol/h per berry (Harris et al., 1971). We observed 

that total seed respiration was more than half of whole berry respiration at around the 

beginning of ripening. This high O2 demand from seeds, prior to the lignification of the outer 

layer (Cadot et al., 2006), may create a significant O2 demand within the berry that could 

lower O2 concentrations in the locule, and potentially lowering the [O2] in the mesocarp. 

However, seed respiration in Chardonnay dramatically declined later in ripening, accounting 

for the decrease in berry respiration on a per gram basis. During late ripening, [O2] in the 

mesocarp of the seeded cultivar dropped to almost zero. Therefore, it is unlikely that the 

lower [O2] in the mesocarp was caused by a respiratory demand from seeds directly.   

Increased temperature advances the onset and increases the rate of CD in Chardonnay and 

Shiraz berries (Bonada et al., 2013b). Using a modelling approach for pear fruit it was shown 

that increasing temperature should strongly increase respiration rate but not to affect the gas 

diffusion properties resulting in predicted very low core [O2] (Ho et al., 2009). Our direct 

measures of berry mesocarp [O2] profiles concur with this prediction. We also observed 

typical Q10 and activation energy for respiration of 2.47 and 2.27 for whole berry respiration 

rates between 10 and 40 oC for Chardonnay and Shiraz berries respectively, and it was only at 

40 oC that blocking the pedicel lenticels reduced respiration. The activation energies were 

similar to those reported by Hertog et al. (1998) for apple (52875 J/mol), chicory (67139 

J/mol) and tomato (67338 J/mol). Unlike pear fruit, wine-grape berries ripen on the plant and 

can become considerably hotter than the surrounding air (Caravia et al., 2016; Smart and 

Sinclair, 1976; Tarara et al., 2008).  Transient high temperatures would create a large 

respiratory demand and low [O2] in the centre of the mesocarp as we observed. However, 

subsequent cooling during the night or during milder weather will reduce the respiratory 
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demand and increase internal [O2] if the diffusivity for O2 remains the same.  This could then 

result in production of damaging ROS that may cause unrecoverable cell damage (Pfister-

Sieber and Braendle, 1994; Rawyler et al., 2002). 

Conclusion 

Grape internal [O2] declines during fruit development and is correlated with the profile of 

mesocarp cell death. Lenticels on the pedicel provide a pathway for O2 diffusion into the 

berry and when covered to restrict O2 diffusion into the berry cause a large reduction in [O2] 

in the centre of the berry, an increase in ethanol concentration and cell death. Differences in 

internal O2 availability of berries between cultivars could be associated with seed 

development and differences in lenticel surface area. The data presented here provides the 

basis for further research into the role of berry gas exchange on berry quality and cultivar 

selection for adapting viticulture to a warming climate. 
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Figures 

Table 1. Summary of berry source and traits measured 

Source of 
berries 

Cultivar Plant 
date 

Season Traits Sampling time  Replication  

Waite 
vineyards 

Chardonnay 1995 2015-
2016; 

 
 
 

2016-
2017 

O2 profile 
Berry and seed respiration 
 
Micro-CT 
 
O2 profile when N2 applied 
Respiration (lenticel blockage) 
Respiration (temperature 
change) 
 

87, 104, 136 DAA 
63, 122 DAA 
 
98, 154 DAA 
 
90 DAA 
86 DAA 
76, 120 DAA 

3 reps, 3 
berries per 
rep  
3 reps, 1 
berry per rep 

 
Shiraz  1993 2014-

2015; 
 

2016-
2017 

O2 profile 
 
 
Respiration (lenticel blocked) 
Respiration (temperature 
change) 
 

85, 114 DAA 
 
 
77 DAA 
71, 113 DAA 

3 reps, 3 
berries per 
rep 
 

Ruby 
seedless 

1992 2016-
2017 

O2 profile 
O2 logging 

91, 132 DAA 
132 DAA 

3 reps, 3 
berries per 
rep 

Growth 
chamber, 
cuttings 
from 
Waite 
vineyard 
 

Chardonnay 2015 2015 Lenticel At veraison 5 berries  

Shiraz  2015 2015 Lenticel At veraison 5 berries 

Growth 
chamber, 
rootlings 
from 
Yalumba 
  

Chardonnay 2017 2017 Lenticel blockage on vines 
(O2, cell vitality, ethanol) 

3, 5, 7, 10, 12, 14 
18 and 20 days after 
blockage 

2 or 3 
berries 
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Fig. 1. [O2] profiles of Chardonnay berries (90 DAA in season 2016-2017, Waite vineyards) 

measured with and without N2 gas applied at the entry point during measurement. Inset: 

experimental set-up for measuring berry [O2] profiles (not to scale). The O2 sensor (tip 

diameter 25 µm) was inserted at the equator of the berry and moved inwards to the centre 

approximately across the radius. Around the entry of the sensor, a plastic ring was sealed and 

glued to the berry, to contain nitrogen gas gently flowing on to the entry point of the sensor. 

Data are means ± SEM, n=3. Two-way ANOVA (repeated measures) showed depth accounted 

for 68.73% of total variation (P<0.0001), treatments accounted for 0.55% of total variation 

(P=0.26) and interaction accounted for 3.72% of total variation (P=0.87).   



53 
 

 

Fig. 2. [O2] profiles of Chardonnay, Ruby Seedless and Shiraz berries (A,C,E) at various 

ripening stages and corresponding examples of living tissue (LT) in the pericarp for each 

variety (B,D,F). (A) Chardonnay berries were sampled at 87, 104 and 136 DAA in 2015-2016 

season. Two-way ANOVA (repeated) showed depth accounted for 46.7% of total variation 

(P<0.0001), time accounted for 29.9% of total variation (P<0.0001) and interaction accounted 

for 8.0% of total variation (P=0.058). Horizontal dashed line indicates the approximate O2 

saturation value for Millipore water at room temperature, same as berries at the time of 

measurement. (B) Medial longitudinal sections (Chardonnay) stained with FDA hi-lighting LT 

differences at different stages of ripening (corresponding to A). (C) [O2] profiles of Ruby 

Seedless berries sampled at 91 and 132 DAA in 2016-2017 season. Two-way ANOVA (repeated) 
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showed depth accounted for 85.2% of total variation (P<0.0001), time accounted for 1.2% of 

total variation (P=0.0025) and interaction accounted for 3.7% of total variation (P=0.048). (D) 

LT of Ruby Seedless was close to 100% for the two respective sampling days.  (E) [O2] profiles 

of Shiraz berries sampled on 85 and 114 DAA in 2014-2015 season. Inset shows detail of 

profile to 1.5 mm. Two-way ANOVA (repeated) showed depth accounted for 40.9% of total 

variation (P=0.0005), time accounted for 19.6% of total variation (P<0.0001) and interaction 

accounted for 6.4% of total variation (P=0.43). (F) LT of Shiraz. Data as means ± SEM, n=3 

for A, C and E. 
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Fig. 3. Correlation between living tissue fluorescence signal and [O2] profiles. Fluorescence 

signal (relative grey scale (% maximum)) from FDA stain (high value = higher living tissue) 

across radius at equator of Chardonnay (A) and Ruby Seedless (C). Correlation (Deming 

regression) between fluorescence signal intensity and [O2] at corresponding depths (log scale) 

in Chardonnay on 87 and 104 DAA (B) and Ruby Seedless on 91 and 132 DAA (D) ([O2] 

profiles shown in Fig. 1). Data are means ± SEM, n=3. 
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Fig. 4. Individual berry [O2] profiles normalized to the berry radii. (A) [O2] profiles of 

Chardonnay berries sampled at 87, 104 and 136 DAA in 2015-2016 season (Mean data shown 

in Fig. 2). (B) [O2] profiles of individual Ruby Seedless berries sampled at 91 and 132 DAA 

in 2016-2017 season. 
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Fig. 5. Chardonnay berry and seed respiration (25 °C) at 63 and 122 DAA in 2015-2016 season. 

Respiration on a per gram fresh weight basis for berries (A) and seeds (B). (C) Comparison of 

respiration rates on a per berry basis (including seeds), total seeds basis, and single seed basis. 

Data are means ± SEM, n=3. All rates are different between 63 and 122 DAA (t-test, P<0.05). 
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Fig. 6. Differences in lenticel morphology and relative lenticel area between Chardonnay (A) 

and Shiraz (B) berry pedicels. (C) Lenticel area relative to pedicel surface area of Chardonnay 

and Shiraz berries (chamber grown, 2015) estimated using ImageJ. Scale bars in A and B = 

1mm.  Data in C are means ± SEM, n=5, *=significantly different (t-test, P< 0.05). 
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Fig. 7. Role of the pedicel in oxygen diffusion as a function of temperature. (A) Respiration 

of Chardonnay (86 DAA) and Shiraz (77 DAA) berries (per berry basis) at 20 and 40 °C with 

pedicels attached (2016-2017 season). Silicone grease covered the lenticels on the pedicel 

(covered berries). At 20°C no significant difference in apparent berry respiration was found 

between control and pedicel covered berries for both cultivars. Different lower-case letters 

indicate significant difference between treatments at 40°C within each cultivar (two-way 

ANOVA, P<0.0001). Shiraz and Chardonnay each showed a decrease of 839.7 ± 101.8 and 

1377.3 ± 161.3 nmol/hour per berry in respiration at 40°C (26 and 39% decrease) 

respectively. (B) Respiration rate of whole berry including attached pedicel and respiration of 

separated pedicels for Chardonnay at 40°C. The pedicel accounted for 9% of the whole berry 

respiration rate. Data are means ± SEM, n=3. 
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Fig. 8. The role of the pedicel in gas diffusion into Ruby Seedless grapes (132 DAA in 2016-

2017 season). [O2] of three individual berries as a function of time with the sensor inserted 

approximately at the central axis of Ruby Seedless around 2 mm from pedicel. Dashed lines 

indicate the start of external N2 gas delivery over the pedicel. Different symbols indicate 

different berries. Inset: experimental set-up for applying N2 gas over the berry pedicel while 

measuring [O2]. 
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Fig. 9. The effect of covering berry pedicels with silicone grease on intact Chardonnay 

clusters during ripening (chamber grown 2017, black symbols=control, red 

symbols=covered). (A) [O2] at the approximate centre axis of berries as a function of time 

after covering pedicels. Two-way ANOVA showed covering pedicels reduced [O2] 

(P<0.0001). (B) Total soluble solids (TSS) concentration of berries as a function of time after 

covering pedicels. Pedicel covered berries showed significantly higher TSS during the course 

of the experiment compared to control berries (Two-way ANOVA P=0.003, fits are second 

order polynomials). (C) Sugar per berry as a function of time after covering pedicels. No 

significant difference was found between treatments in sugar/berry (combined fit is second 

order polynomial). (D) Ethanol concentration of berries after 12 and 20 days with (red) and 

without (black) silicone grease covering the pedicels. Two-way ANOVA (Tukey’s multiple 
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comparisons test) showed significant difference at 20 days after covering (P=0.036). (E) 

Percentage living tissue as a function of time. Slope of fitted line for covered berries is non-

zero (P=0.008) and different from slope of fitted line for uncovered berries (P=0.006). (F) 

Fluorescence signal (FDA stain, relative to maximum, high value = higher living tissue) 

across radius at equator normalised for variation in berry diameter at 14 and 18 days after 

covering. Locally weighted scatterplot smoothing fits (LOWESS) are shown for each. 

Covered versus control are significantly different at both times (Two-way ANOVA, 

P<0.001). Data are means ± SEM, n=3 except F where SEMs are not shown. 
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Fig. 10. Air spaces in Chardonnay berries as determined by X-ray micro-CT.  (A) 98 DAA 

(19.3 °Brix), (B) 154 DAA (24.5 °Brix) in 2015-2016 season. Images have been manipulated 

to indicate berry outline. Minimum voxel cut-off was 500. White dots on box outline are at 1 

mm intervals. 
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Supplementary Figure 1. Temperature dependence of berry respiration rate. Arrhenius plot 

of Chardonnay berries sampled on 76 and 120 DAA (11.2 ± 0.9 and 25.5 ± 0.1 °Brix), Shiraz 

berries sampled on 71 and 113 DAA (11.1 ± 0.4 and 26.2 ± 0.1 °Brix) in 2016-2017 season 

(A). Slopes (P=0.98) and intercepts (P=0.86) were similar between berries sampled, at the 

two times, within each cultivar. Activation energy of O2 uptake by the berries (B). Error bars 

SEM (n=3). 
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Supplementary Figure 2. Respiratory Q10 of Chardonnay (A) and Shiraz (B) in response to 

short-term measurement temperature and each at two maturity stages (2016-2017 season, 

Waite vineyards). No difference in the Q10 at different temperature classes for Chardonnay 

berries sampled within the two times were apparent. Q10 of Chardonnay berries, sampled at 

76 and 120 DAA, at the same temperature classes did not differ from each other. For Shiraz 

berries sampled at 113 DAA, Q10 at 20-30 °C class was higher than the other two temperature 

classes, difference lower case letters indicate difference (Tukey’s multiple comparisons test, 

P<0.05). At both temperature classes of 10-20 and 20-30 °C, Q10 were different between 

Shiraz berries sampled between 71 and 113 DAA, difference indicated by * (Sidak’s multiple 

comparisons test, P<0.05). Error bars SEM (n=3). 
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Supplementary Figure 3. Micro CT analysis of porosity, from berry proximal region to the 

top of seed(s) (hilum), of Chardonnay berries at two development stages (98 DAA, TSS = 18.7 

± 0.7 °Brix; 154 DAA, TSS = 26.8 ± 1.2 °Brix). Error bars SEM (n=3).   
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Abstract 

Background and aim: Berry shrivel during ripening is cultivar dependent and is correlated 

with berry cell death (CD). We hypothesized that under heat stress and water stress, regions of 

the pericarp in Shiraz berries would become hypoxic depending on berry porosity, and that this 

would induce CD.  

Methods and Results: We measured CD and [O2] across the pericarp in berries developed 

under the factorial combination of two thermal regimes (ambient and heated) and two 

irrigation regimes (irrigated and non-irrigated) in the Barossa Valley, South Australia. 

Heating increased ambient temperature by 0.6 °C for irrigated and 1 °C for non-irrigated 

vines but had no effect on water relations, while non-irrigation decreased stomatal 

conductance and stem water potential. Non-irrigation decreased berry [O2] and increased both 

cell death and ethanol concentration relative to irrigation. An association was established 

between mesocarp [O2] and CD. Berry respiration and total berry porosity decreased during 

berry ripening, but relative locule air-space measured by X-ray micro computed tomography 

increased late in ripening. Heating had little or no effect on CD or [O2] but decreased berry 

porosity, which was not affected by irrigation. 

Conclusion: Water stress increased berry CD, which was associated with increased hypoxia.  

Significance of the Study: The association between berry [O2] and CD provides insights in 

to berry ripening with implications for yield and berry flavour. 

 

Keywords: berry ripening, cell death, hypoxia, Vitis vinifera, water stress, heat 
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Introduction 

Vitis vinifera berry ripening in warm climates is sometimes associated with berry dehydration 

or shrivel. Increasing frequencies and intensities of heat waves and drought events with 

climate change (Alexander and Arblaster 2009, Perkins et al. 2012) are predicted to have 

adverse effects on grapevines (Bonada and Sadras 2015, Caravia et al. 2016, Webb et al. 

2007) and frequency of shrivel is likely to increase (Bonada et al. 2013a, Fuentes et al. 

2010a). Berry shrivel is particularly prevalent in Shiraz, where yield can be reduced by up to 

30% (McCarthy 1997) and sensory and chemical composition of grapes and wine are altered 

(Bonada et al. 2013b, Šuklje et al. 2016). The phenomenon results from an imbalance 

between phloem influx to the berry (Rogiers et al. 2006), water back flow to the vine 

(Bondada et al. 2005, Keller et al. 2006, Tilbrook and Tyerman 2009,Tyerman et al. 2004) 

and berry transpiration (Greer and Rogiers 2009, Scharwies and Tyerman 2017). Dehydration 

and shrivelling can increase berry sugar concentration (Caravia et al. 2016, Rogiers et al. 

2004b) leading to higher alcohol in the wine.  

The onset of berry dehydration coincides with the occurrence of mesocarp cell death (CD) 

(Tilbrook and Tyerman 2008), which is modulated by water and temperature (Bonada et al. 

2013b). The association between CD and berry shrinkage is evident in several wine grape 

cultivars (Fuentes et al. 2010b). The increase in CD indicates reduced lipid and membrane 

integrity and leakage of electrolytes from cells.  This is evident as a decrease in extracellular 

electrical resistance of Shiraz berries during ripening (Caravia et al. 2015) that may be due to 

potassium leakage into the extracellular space as occurs in Merlot (Keller and Shrestha 2014). 

More importantly, CD involves breakdown of membranes and mixing of cellular components 

that are normally separated, thereby potentially influencing flavour development of wine 

grapes (Bonada et al. 2013b, Tilbrook and Tyerman 2008). Anecdotally, a small amount of 

late ripening dehydration sometimes favours flavour development in red wine berries. Berry 
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shrivel and CD are also correlated with ripe fruit sensory characteristics (Bonada et al. 

2013b). 

High temperature and water stress accelerate CD in Shiraz berries (Bonada et al. 2013b). 

Higher antioxidant activities are common in water stressed leaves indicative of oxidative 

stress (Flexas et al. 2006) and elevated temperature increases respiration in grapevine leaves 

(Zufferey 2016) and berries (Xiao et al. 2018). The increased demand for oxygen at high 

temperature or under water stress may induce hypoxic regions in the pericarp of berries 

depending on the diffusion resistance through the skin and air spaces (porosity) that connect 

to lenticels in the berry pedicel (Xiao et al. 2018).  Xiao et al. (2018) showed that the pattern 

of mesocarp cell death correlated with hypoxic regions in Chardonnay and hypoxia was 

associated with CD late in ripening. Therefore, we hypothesized that under heat stress and 

water stress, regions of the pericarp in Shiraz grape berries would become hypoxic depending 

on berry porosity, and that this would induce CD. Hypoxic regions should lead to 

fermentation that will be reflected by elevated ethanol concentrations in the berry (Xiao et al. 

2018). Here we examined the oxygen concentration profiles and CD across the pericarp of 

Shiraz berries during ripening under field conditions with treatments that induced water stress 

and elevated ambient temperature over two seasons. Berry porosity during ripening was 

measured using pycnometry and X-ray micro computed tomography (CT) to examine the 

potential for treatment induced changes in gas diffusion resistance within the berry.  The goal 

of this study was to better characterize the physiological cause of CD late in ripening and its 

response to water and heat stress. 

Materials and methods 

Experimental site, vines and treatments 

Shiraz vines (clone 1654) on own roots planted in 2004 were studied over two seasons 

(season 1, 2014-2015; season 2, 2015-2016) at the South Australian Research and 
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Development Institute, Nuriootpa Research Station in the Barossa Valley of South Australia 

(34°28'32.9"S 139°00'27.4"E). Vines were spur pruned to 40-50 buds per vine and trained to 

a single-wire trellis. Rows were oriented northwest to southeast. Row spacing was 3.0 m and 

vine spacing was 2.25 m. 

This study was set up in an experiment established in 2010. It combined two water regimes 

(irrigated, I; non-irrigated, NI), and two thermal regimes (ambient, A; heated, H). An open-

top chamber was used to passively heat vines, as described in Sadras et al. (2012). A split-

plot design with three replicates was established where thermal regime was assigned to main 

plot, and water regime to subplots. Each replicate contained nine vines and seven centrally 

located vines were used for berry sampling. A guard row was also left on each side of the 

treated vines to minimise treatment interference. 

Figure 1c,d summarises water inputs. In season 1, irrigated vines received 71 mm of water 

via dripper irrigation plus 10 mm effective rainfall (where effective rainfall is any event 

above 10 mm) between December 2014 and February 2015, and their non-irrigated 

counterparts received 10 mm in effective rainfall (Figure 1c). In season 2, irrigated vines 

received 74 mm through dripper irrigation and 31 mm effective rainfall between December 

2015 and February 2016 (Figure 1d).  

Ambient temperature and relative humidity were recorded at 15 min intervals using TinyTag 

Ultra2 loggers (Hastings Dataloggers, Port Macquarie, NSW, Australia) shielded in 

Stevenson-type screens and placed within canopy at bunch zone. Vapour pressure deficit was 

calculated based on canopy ambient temperature and relative humidity (Allan et al. 1998). 

Sampling 

In season 1, we sampled berries in control irrigated and control non-irrigated vines only, and 

in season 2 we sampled all four treatments from the factorial. Twenty bunches were 
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individually tagged in each season for each replicate. Bunches were chosen from the central 

part of the canopy when possible. Timing of berry development was recorded as days after 

anthesis (DAA) or growing degree days (GDD) from anthesis. Anthesis was taken as the date 

when an estimated 50% of the flower caps had dehisced. Growing degree days (GDD) was 

calculated for each replicate using actual temperature and 10°C base temperature (Amerine 

and Winkler 1944, Williams et al. 1985). During each growing season, 60 Shiraz berries per 

replicate were sampled weekly starting around veraison. Three berries, from top, middle, and 

proximal of each of the tagged bunches were carefully cut with the whole pedicel attached. 

Thirty berries were snap frozen in liquid nitrogen and stored in dry-ice during transport to the 

laboratory, and then stored in a -80 °C freezer. Zip-lock plastic bags with the remaining 

berries were placed into an ice-cooled container during transport and stored in 4 °C cold 

room in the laboratory for not more than 48 hours before cell vitality and oxygen 

measurements were made. 

Berry cell vitality, total soluble solids (TSS) and fresh weight 

A subsample of three berries of each replicate was used to determine cell vitality using a 

fluorescein diacetate (FDA) staining procedure on the cut medial longitudinal surface 

(Fuentes et al. 2010a, Tilbrook and Tyerman 2008). Each berry was weighed and cut in two 

halves. One half was used to measure TSS and osmolality, the other half was incubated in 

dark for 15 min, with 4.8 µM FDA solution on the cut surface with solution osmolality 

similar (to within 10%) of the grape juice (adjusted with sucrose). The stained berries were 

viewed under a Nikon SMZ 800 (Nikon Co., Toyko, Japan) dissecting microscope under 

ultraviolet light with a green fluorescent protein filter in place. Images were taken by a Nikon 

DS-5Mc digital camera (Tochigi Nikon Precision Co., Ltd, Otawara, Japan) and NIS-

Elements F2.30 software with the same gain and exposure settings for all images. Images 
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were analysed with a MATLAB (Mathworks Inc., Natick, MA, USA) code for determining 

berry cell vitality (Fuentes et al. 2010a).  

Stomatal conductance and leaf gas exchange 

Stomatal conductance (gs) and leaf gas exchange was measured on one occasion during both 

season 1 and season 2. In season 1, stomatal conductance was measured using a porometer 

(Model AP4 DeltaT Devices, Cambridge, UK) at 91 DAA. In season 2, we measured net CO2 

assimilation at light saturation Asat (photon flux density = 919 µmol m-2 s-1 (Caravia et al. 

2016)), leaf evaporation E and gs, using an infrared gas analyser (LCpro-SD Portable 

Photosynthesis System, ADC BioScientific Ltd., UK) at 97 DAA. IRGA measurement was 

recorded after 2 min of enclosing the leaf. Measurements were performed between 12:00 to 

14:00 (ACDT), at ambient temperature, CO2 and humidity. Measurements were made on the 

southwestern side of the canopy on three mid-shoot, fully exposed and expanded leaves. 

Measurements on replicates of each treatment were taken in random order, to reduce the 

effect of changing environmental conditions associated with the order of measurement.  

Stem water potential 

Stem water potential (ψs) was measured at 49 and 119 DAA during season 2 using a pressure 

chamber (PMS Instrument Company, model 1005, Albany, OR, USA). For each replicate, 

two mid-shoot, fully exposed and expanded leaves were selected on the southwestern side of 

the canopy, and enclosed in foil covered plastic bags for 1 h before measurement. 

Measurements were carried out between 12:00 and 14:00 (ACDT). Each leaf with foil bag 

was placed in the chamber within 3s after excision of the petiole from the vines.  

Berry internal O2 concentration profiles 

A subsample of three berries of each replicate was used to determine internal berry O2 

concentrations using a Clark-type oxygen microelectrode with a tip diameter of 25 µm (OX-



81 
 

25; Unisense A/S, Aarhus, Denmark). The microelectrodes were calibrated in a zero O2 

solution (0.1M NaOH, 0.1M C6H7NaO6) and an aerated Milli-Q water (272 µmol/L at 22 °C), 

as 100% O2 solution. Individual berries (equilibrated to room temperature) were secured on 

the motorized manipulator stage. To aid the penetration of the microelectrode into the berry 

skin, a hole was initially punctured through the skin at the berry equator with a stainless-steel 

syringe needle (19G), to a depth of 200 µm. The microsensor was positioned through this 

narrow hole and profiles of oxygen were taken with depth towards the centre of the berry. 

Previous work had established that O2 leakage around the site of skin penetration was 

insignificant (Xiao et al. 2018). O2 measurements were conducted from 0.2 to 1.5 mm under 

the skin progressing at 0.1 mm steps. The electrode was not moved beyond this point to avoid 

damaging the tip against a seed. Each measurement at each position lasted 10s. Between each 

position, stable signals were recorded within 20s. Measurements were carried out and 

recorded using the Unisense Suite software. Means and SE of each step (n = 3) were 

calculated and O2 profiles were compiled using GraphPad Prism 7. After the oxygen 

measurements, berry temperature was measured using an IR thermometer (Fluke 568) with a 

type-K thermocouple bead probe (Fluke 80PK-1). Berry diameters at the equator were 

determined using a digital calliper. 

Berry O2 uptake  

A Clark-type oxygen microsensor OX-MR and the MicroRespiration System (Unisense A/S, 

Aarhus, Denmark) were used for berry O2 uptake measurements. Each replicate consisted of 

nine berries. The measuring chamber containing 9 berries was filled with aerated MilliQ 

water, constantly stirred and was maintained at 25°C in a water bath. The measurement of O2 

concentration in the water inside the measuring chamber lasted at least 15 mins, with 

readings taken every 5 seconds to determine a steady respiration rate from the slope of the 

decline in O2 concentration.  
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Berry ethanol concentration 

A subsample of ten frozen berries from each replicate were ground to a fine powder in a 

liquid nitrogen-cooled A11 basic mill (IKA, Germany). Ethanol was quantified using an 

ethanol assay kit following the manufacturer’s instructions (Megazyme International Ireland 

Ltd., Wicklow, Ireland). Briefly, alcohol dehydrogenase (ADH) catalysed the oxidation of 

ethanol to acetaldehyde. Acetaldehyde was then further oxidized to acetic acid and NADH in 

the presence of aldehyde dehydrogenase (AL-DH) and NAD+. NADH formation was 

measured in a FLUOstar Omega plate reader (BMG LABTECH GmbH, Ortenbery, 

Germany) at 340 nm. 

Berry porosity using pycnometry 

A subsample of three fresh berries from each replicate of all treatments in season 2 were used 

in this experiment. Berries, with pedicels carefully cut off, were submerged in de-gassed 

Milli-Q water and vacuum infiltrated at -740 mmHg using a vacuum pump (Sparmax TC-

502V, Ding Hwa Co., Ltd, Taipei, Taiwan) and a desiccator (Art. 550, Kartell LABWARE, 

Noviglio, Italy). For every 270s of vacuum applied, the desiccator was depressurized for 30s. 

The total application time was 50 min. Individual berry weight was obtained before and after 

the vacuum application. Individual berry volume was estimated using a Hubbard-Carmick 

specific gravity bottle (25 mL, KIMAX, Kimble Chase, Vineland, NJ, USA). Berry volume 

(𝑣𝑣1) was calculated: 

𝑣𝑣1 = 𝑚𝑚0+𝑚𝑚𝑓𝑓1−𝑚𝑚𝑓𝑓2

𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
      (1) 

where 𝑚𝑚0 is berry weight before vacuum, 𝑚𝑚𝑓𝑓1 is weight of pycnometer filled only with 

water, 𝑚𝑚𝑓𝑓2 is weight of pycnometer with one berry inside and filled with water. Density of 

water (𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) = 1 g/cm3. Volume of air space within berries was estimated assuming that 

after 50 min of vacuum infiltration, all air spaces were filled with water. No visible bubble 
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stream from berries could be observed under vacuum after 50 min. Volume of internal air 

space (𝑣𝑣2) was calculated as: 

𝑣𝑣2 = 𝑚𝑚50−𝑚𝑚0
𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

         (2) 

where 𝑚𝑚50 is the weight of berries after 50 min of vacuuming application. Porosity of berries 

was then calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (%) = 𝑣𝑣2
𝑣𝑣1

× 100      (3) 

X-ray microCT to determine internal air space volumes of intact berries 

To confirm berry porosity measurements using pycnometry and to image the structure of 

internal air space of the berries, x-ray micro computed tomography (microCT) was used to 

estimate the changes in the volume and distribution of air space within berries during berry 

ripening. One berry from each replicate of A+NI and A+I treatments in season 2 was imaged, 

using a Skyscan 1076 (Bruker microCT, Kontich, Belgium), at Adelaide Microscopy, the 

University of Adelaide. Imaging procedures and settings were the same as described by Xiao 

et al. (2018). Whole berry (pedicel attached) 2D projections were acquired with 59 kV, 149 

uA, Al 0.5 mm filter, 2356 ms exposure, 0.4-degree rotation step. Transverse greyscale 

images of berries were obtained, using NRecon (bruker-microct.com), at 8.5 μm image pixel 

size (equivalent to 15 µm spatial resolution or 3 × 10-6 mm3 voxel size). For 3D visualisation 

of air spaces in berries from the A+I treatment, Otsu thresholding was applied to the volume 

and the despeckle function was applied to accept only continuous volume over 500 or 1000 

voxels as connected air spaces using CT-Analyser (bruker-microct.com). Inverted images 

only containing air space were reconstructed into 3D berry images using CTvox (bruker-

microct.com). For locule volume calculation of berries from both I and NI vines, manual 

thresholding was applied by referring to the greyscale images and the despeckle setting was 
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applied to accept only continuous volume over 1000 voxels as locule volume using the CT-

Analyser. Locule volumes were calculated using CT-Analyser. 

Statistical analysis 

All data are presented as mean ± SEM. In the first season only two treatments were compared 

(A+I vs A+NI), hence a t-test was used. In the second season, ANOVA was used to assess 

the effect of water regime, thermal regime and their interaction.   

Segmental linear regressions were fitted to the change of percentage in berry living tissue 

over time as in Bonada et al. (2013a). Third order polynomials were fit to the [O2] profile 

data for each treatment. For sugar accumulation and berry mass as a function of time either 

one of two equations were used to model the data as a function of time(t) depending on the 

presence of a stable plateau or a peak then decline in the variable with time: 

𝑌𝑌 = 𝑌𝑌0 + (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑌𝑌0) × (1 − 𝑒𝑒−𝐾𝐾×(𝑡𝑡−𝑡𝑡0))  (4) 

𝑌𝑌 = 𝐵𝐵0 + 𝐵𝐵1 × 𝑡𝑡 + 𝐵𝐵2 × 𝑡𝑡2     (5) 

Where Y0 is the initial value, Plateau is the final value, K is the rate constant and t0 is the first 

sampling time, and B0, B1, B2 are the intercept and coefficients respectively of the quadratic 

equation. The better of these two models that fit to the data was determined by Akaike’s 

Information Criteria. For the quadratic equation (5) the peak value was determined when the 

first derivative of the fitted line equalled zero. The Michaelis–Menten equation was fit to the 

relationship between percentages of berry living tissue and mean [O2]. Linear regressions 

were fit to the changes in berry respiration or ethanol concentration of different treatments 

over time in season 2. Quadratic equations were fit to the data of berry and locule porosity as 

a function of TSS. Third order polynomial equations were fit to [O2] as a function of depth in 

to the berry. The Extra Sum-of-Squares F-test was applied to test the differences of the fits 
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between treatments. All analyses were performed in Graphpad Prism 7 (Graphpad Software, 

La Jolla, CA, USA). A difference was taken as being significant when P<0.05. 

Results 

Growing conditions and phenology 

Figure 1c,d summarises water inputs. In season 1, irrigated vines received 71 mm of water 

via dripper irrigation plus 10 mm effective rainfall between December 2014 and February 

2015, and their non-irrigated counterparts received 10 mm in effective rainfall (Figure 1c).  

Frequent rain events were recorded around 70 DAA (Figure 1c). In season 2, irrigated vines 

received 74 mm through dripper irrigation and 31 mm effective rainfall between December 

2015 and February 2016 (Figure 1d). There was a series of large rain events between 87 and 

91 DAA (Figure 1d).  

Between 40 and 125 DAA in season 2, daily maximum ambient temperature ranged from 

21.2 to 44.5 °C in unheated irrigated treatments while daily minimum ranged from 6.3 to 

22.8 °C. Over the same period, heating increased daily maximum temperature on average by 

0.6 in I-H and 1.0 °C for NI-H (Figure 1a) and had no effect on minimum temperature. 

Larger canopies in irrigated vines diminished the effectiveness of passive heating. The VPD 

was elevated in proportion to the increase in maximum temperature (Figure 1b).   

Full anthesis (stage EL 23) (Coombe 1995) occurred in season 1 on the 7th of November 2014 

and in season 2 on the 3rd of November 2015 with no treatment differences evident. Veraison 

occurred on 63 and 70 DAA for season 1 and season 2 respectively again with no treatment 

differences.   

Stem water potential, stomatal conductance and gas exchange 

Lack of irrigation resulted in clear physiological indicators of water stress (Table 1). In the 

first season, we measured stomatal conductance on a bright sunny at day 91 DAA (average 
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PAR = 2852 ± 98 μmol/(m2·s)) where gs in non-irrigated vines was half of that in irrigated 

vines, and near a 50 mmol/(m2·s) threshold proposed as an indicator of water stress by Flexas 

et al. (2002). 

In the second season, midday stem water potential (ψs) reflected the water stress imposed on 

non-irrigated vines. Heated vines showed no indication of water stress and there was no 

interaction with irrigation in either gas exchange traits or ψs (Table 1). A similar depression 

of gs for NI vines was observed on two occasions in season 2 and Asat was significantly 

reduced relative to A+I vines (Table 1).   

Berry ripening  

The dynamics of berry total soluble solids (TSS), berry fresh mass and sugar per berry are 

compared between treatments for season 1 and season 2 in Figure 2. TSS as a function of 

time was best fit by EQN 4 and one curve adequately fit all the data sets rather than 

individual curves for each treatment (P=0.18). For berry mass EQN 5 best described the data 

returning peak biomass at 87 DAA and 89 DAA for ambient irrigated (A+I) and non-irrigated 

(A+NI) vines in season 1.  In season 2 peaks in mass occurred at 99 DAA (A+I), 83 DAA 

(A+NI), 97 DAA (H+I) and 100 DAA (H+NI) (Figure 2c,d). Sugar per berry as a function of 

time was best fit by EQN 4 (Figure 2e,f). There was no significant difference between 

treatments in the rate constant for sugar accumulation (Extra Sum-of-Squares F-test, season 

1, P = 0.287; season 2, P = 0.879) and one rate constant of 0.082/DAA (season 1) and 

0.066/DAA (season 2) could fit all treatments, however fits were significantly different 

because of different final plateaus.   

Berry living tissue 

Figure 3 shows the effects of treatments on the dynamics of cell death during two seasons. 

Segmental linear regression identified a slow cell death stage (slope 1), and a fast cell death 
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stage (slope 2) after a developmental threshold (Bonada et al. 2013b). The onset of the fast 

cell death stage in both A+I and A+NI berries in season 1 was the same at 90-91 DAA, but 

separated in season 2 where A+NI vines had earlier onset but lower rate of cell death in the 

fast stage (Table 2). The earlier onset of the threshold for fast cell death corresponded to the 

peak in berry mass. There was no effect of heating on the onset of fast cell death or the rate of 

its development when examined over chronological time (Figure 3c,d) but there was a 

significant interaction with irrigation for both parameters (Table 2).  

Plotting cell death against thermal time from anthesis in season 2 (Figure 3e) showed that 

A+NI vines had earlier onset of the rapid decline in living tissue (Figure 3f) and had reduced 

fast stage (slope 2) relative to A+I  vines (Figure 3h). Heating increased the thermal time of 

onset of the fast stage of CD, and there was a significant interaction with irrigation (Figure 3f, 

Table 2). Water deficit slowed the rapid decline in living tissue for unheated vines (slope 2) 

with a significant interaction with temperature (Figure 3h, Table 2).  There was no effect of 

treatment or interaction on the slope of the slow stage of CD before the onset of fast stage 

(Figure 3g, Table 2). 

O2 concentration profiles in berries 

Oxygen concentration ([O2]) as a function of depth into the berry is shown for season 1 and 

season 2 at different sampling dates (Figure 4). Irrespective of water regime and sampling 

time, [O2] decreased steeply with depth in to the berry (note log scale in Figure 4). In season 

1 berries were sampled four times from veraison (63 DAA) to pre-harvest (106 DAA) (Figure 

4a,b,c,d) and this revealed a reduction in [O2] with berry ripeness where [O2] at 0.2 mm depth 

at the last sampling date in season 1 was 22.90 ± 6.25 µmol/L for I berries and 6.71 ± 3.13 

µmol/L for NI (Figure 4d). Differences between treatments were only found at 77 DAA [O2], 

when NI berries decreased to 3.10 ± 1.28 µmol/L at 1.5 mm depth, while for I berries [O2] 

was 25.93 ± 14.09 µmol/L at 1.5 mm (Figure 4b). At 106 DAA, both I and NI berries were 
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severely hypoxic at 1.5 mm (Figure 4d). Third order polynomial functions were fit to the 

profiles and comparison of fitted curves by Extra Sum-of-Squares F-test indicated berries 

from I showed a different evolution of [O2] profiles where [O2] was on average higher in I 

than NI for berries at 77 and 91 DAA.  

In season 2 similar patterns of [O2] profiles were observed with depth in the berry and with 

berry ripeness (Figure 4e,f,g,h).  In contrast to season 1, ambient irrigated (A+I) berries did 

not become severely hypoxic at 1.5 mm at the last sample date (112 DAA), but all other 

treatments had extremely low [O2] between 1.0 and 1.5 mm (Figure 4h). Comparison of third 

order polynomials showed berries from A+I and H+I at 105 DAA (Figure 4g) had 

significantly higher [O2] than the NI treatments (P < 0.0001). Berries from I and H+I had 

similar parameters for their fitted functions, while the models for NI and H+NI were different 

(P < 0.0001). At 112 DAA, H+NI berries showed lower [O2] compared to the other 

treatments (Figure 4h).  

Associations between cell death and oxygen concentration 

The relationships between berry living tissue and mean [O2] (0.2 to 1.5 mm) are shown in 

Figure 5. In season 1 a strong global association fit by the Michaelis–Menten equation was 

found regardless of water regime (𝑅𝑅2 = 0.91, 𝑃𝑃 = 0.023) (Figure 5a). At the same 

concentration of oxygen, berries in season 2 maintained higher proportion of living tissue 

than in season 1 (solid vs dashed lines in Fig. 5b). A similar association between proportion 

of living tissue and oxygen concentration was found for A+I, A+NI and H+I berries (𝑅𝑅2 =

0.74, 𝑃𝑃 = 0.0035), but H+NI required a different fit to the data (Figure 5b).   

Berry respiration  

Berry respiration measured as O2 uptake at 25 °C declined during ripening both on a per 

berry basis and on a fresh mass basis (Figure 6). On a per berry basis respiration rates in both 
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season 1 and season 2 differed between treatments (Figure 6 a,c). For season 2 berries from 

irrigated vines had higher respiration rates on a per berry basis compared to non-irrigated 

irrespective of thermal treatment. On a berry fresh mass basis, there was a difference in 

respiration rate only between I and NI in season 1 at 84 DAA, but no difference amongst all 

treatments in season 2 (Figure 6d).  

Berry ethanol concentrations 

Berry ethanol concentration was measured three times during ripening in season 1 and four 

times in season 2 (Figure 7). There was a significant trend in both seasons for ethanol to 

increase with time. In season 1 the increase was larger for berries from non-irrigated vines 

compared to their irrigated counterparts. This was not evident in season 2 where there was no 

difference between the linear regression lines for the treatments by Extra Sum-of-Squares F-

test. The overall ethanol concentrations in berries were similar in both seasons. 

Berry porosity and relative locular volume from X-ray microCT 

3D models of total air space within the berries (Figure 8a-d) showed berries with lower TSS 

had a small proportion of locule volume (Figure 8a) and a large proportion of small-sized air 

spaces in the pericarp (Figure 8c). The small-sized air spaces diminished later in ripening 

compared to earlier while the locule air space became more dominant (Figure 8b,d).  There 

are continuous air space connections from the locule area to the pedicel. Total berry porosity 

measured from pycnometry declined as ripening progressed (Figure 8e).  In contrast to other 

measured traits there was no effect of water regime on porosity (Figure 8e). Heating 

decreased porosity for the same TSS particularly early in ripening irrespective of water 

regime (dashed line in Figure 8e).  

X-ray microCT was used to measure the locule relative volume for A+I and A+NI grapes. 

Contrary to the total porosity the locule volume increased with increasing TSS. Locule 
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volumes as a function of TSS were similar across water regimes (solid red line, Figure 8e). 

The curves of locule volume and porosity intersected at a TSS of about 25-27 °Brix.  

Discussion  

This study connects two parallel streams of previous research. First, it was shown that 

restricted O2 diffusion into Chardonnay berries may cause severe hypoxia, ethanol 

accumulation, presumed to result from fermentation, and earlier cell death (Xiao et al. 2018). 

Profiles of low [O2] across the pericarp correlated with regions of cell death in both 

Chardonnay and Shiraz (Xiao et al. 2018). Second, it was shown that elevated temperature 

and water stress increased the rate of fast cell death in Shiraz berries (Bonada et al. 2013a,b). 

Here we thus explored the connection between stress-modulated cell death and berry internal 

[O2]. Decreased berry porosity (air spaces), perhaps induced by stress could potentially 

restrict the diffusion of O2 and lead to hypoxia and CD, thus we also examined how porosity 

and internal air space structure, defined by X-ray micro CT, changed during development 

under the imposed treatments.  

Our results for Shiraz berry cell death during development confirm those of Bonada et al. 

(2013b), with stress modulating both onset and rate of cell death in the second stage. Our 

measurements showed correspondingly higher degree of hypoxia, and higher ethanol 

production in berries from non-irrigated vines in season 1 and CD correlated with mean [O2] 

in berries during development. In contrast to Bonada et al. (2013b), however, heating did not 

shift the onset of fast cell death in chronological time under our experimental conditions. 

Consistently, heating did not alter the degree of hypoxia in berries, despite the decrease in 

berry porosity (proportion of volume as air space) earlier in ripening that would be expected 

to increase the diffusion resistance to O2 (see below). Heating increased berry mass after 

veraison compared to control vines with or without irrigation and this was reflected in 

increased sugar per berry since TSS was not affected. Water deficit (Table 1) reduced berry 
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mass, reflecting the sensitivity of both cell division and expansion (Hardie and Considine 

1976, Ojeda et al. 2001, Rogiers et al. 2004a).   

Water deficit and elevated temperature modulate mesocarp CD and berry shrivel in Shiraz 

(Bonada et al. 2013a,b, Caravia et al. 2015,2016). Under our experimental conditions the 

effect of water stress was dominant, where the rate of cell death was accelerated in season 1 

and the onset of cell death was advanced in season 2 in water stressed vines. In contrast to 

Bonada et al. (2013b) we found no thermal effects on the dynamics of cell death. There are 

three non-mutually exclusive reasons for this disagreement. First, the intensity of heat stress 

was larger in the experiment of Bonada et al. (2013b). Second, there were differences in the 

background conditions of rainfall, radiation and other relevant environmental factors (Sadras 

et al. 2017). Third, we measured berry responses in vines that where continuously exposed to 

the warmer temperature during 4-5 years, hence the potential for acclimation (Kozlowski and 

Pallardy 2002, Wang and Li 2006). Notwithstanding these reasons, it is interesting to note the 

very large difference in the onset of cell death in thermal time between the two studies, but 

the similarity in time after anthesis, which is consistent across many previous studies on 

Shiraz berry cell death.  

Internal [O2] decreased dramatically across skin and mesocarp region up to 1.5 mm from the 

skin surface (note log scale in Figure 4), for all treatments in both seasons. It was not possible 

to probe the Shiraz berries greater than 1.5 mm from the surface due to the possibility of 

impacting the seeds with the expensive O2 probe (Xiao et al. 2018). The mean berry internal 

[O2] to 1.5 mm of all treatments also decreased during ripening in both seasons. This 

decrease in mean [O2] correlated well with the progression of cell death during berry ripening 

(Figure 5). The association between cell vitality and mean [O2] was generally independent of 

seasonal and stress conditions (Figure 5). The Michaelis–Menten equation that fitted the data 

for CD as a function of mean [O2] may be related to the relationship between respiration rate 
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and [O2] observed in other plant tissues (Armstrong et al. 2009, Thomson and Greenway 

1991). At very low [O2] cytochrome oxidase would be inhibited and potentially the reduced 

energy production and increase in fermentation (increase in ethanol production, discussed 

below) may lead to increased leakiness of berry cell membranes and ultimately CD (Pfister-

Sieber and Braendle 1994); this has been observed in other plant tissues under severely and 

prolonged hypoxic situations (Rawyler et al. 1999). The spatio-temporal change of internal 

berry [O2] reported here is consistent with previous research on Shiraz, Chardonnay and 

Ruby Seedless grapes (Xiao et al. 2018). In other fruits such as pear, limited O2 availability in 

the core of the fruit can lead to the physiological disorder of core breakdown, which is related 

to severe hypoxia in the tissue (Franck et al. 2007).  

Berries from non-irrigated vines showed lower internal [O2] during ripening in both seasons. 

In grapevine, transcript abundance of genes involved in ROS scavenging increased under 

water stress (Cramer et al. 2007). ROS accumulation at veraison was regarded as a harmless 

and normal berry ripening phenomenon (Pilati et al. 2014). ROS production is enhanced 

under stress and may function as a signal that triggers defence responses. On the other hand, 

prolonged drought stress can break the balance of ROS generation and scavenging and result 

in oxidative stress and cell death (Cruz de Carvalho 2008). 

Hypoxia in large tissues can result from gas diffusion limitation and high O2 demand from 

respiration (Sasidharan et al. 2017). Respiration is highly correlated with internal [O2] of 

plant tissues (Zabalza et al. 2009) and in the grape berry is affected by the developmental 

stage (Harris et al. 1971). On a per berry basis, lower respiration rate was found in water 

stressed berries in both seasons very likely due to the smaller berry size, since on a per gram 

basis there was little or no difference in respiration rates between treatments. On a per gram 

basis berries under water stress showed a significantly higher respiration prior to the onset of 

CD in the first season. This is possibly associated with the lower mean [O2] around the same 
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time during ripening (Figure 4b) that could result in more cell death under water stress. An 

overall decrease in respiration rate was observed in all treatments from veraison to late 

ripening (Figure 6). This is probably an indication of decreased O2 availability combined with 

decreased proportion of living tissue within the berry. 

Ethanol is the major end product of fermentation (Noctor and Foyer 1998) favoured by 

hypoxia or anoxia (e.g. in Arabidopsis (Zabalza et al. 2009)). Plants can adapt to severe 

hypoxia by utilising fermentation instead of oxidative respiration thereby maintaining some 

cell function (Geigenberger 2003). The increase in ethanol in berries indicates this metabolic 

change and confirms that the high respiration, possibly drought induced, first results in faster 

depletion of internal [O2] ultimately leading to severe hypoxia.  

Oxygen uptake and the diffusion properties within grape berries change during berry ripening 

(Xiao et al. 2018). Differences in volume of air spaces and density of pores in fruit 

parenchyma contribute to the differences in internal O2 availability between apple and pear 

(Verboven et al. 2008). Interestingly, the berries grown under elevated temperature showed 

lower proportion of airspace particularly earlier in ripening. Since berries were larger under 

heating treatments this may indicate that the actual air space volume was approximately the 

same. However, the proportional increase in mass for the heated treatments early in ripening 

(i.e. at 10 oBrix) was small while the relative difference in porosity between heated and 

control treatments was greatest at this stage (compare Figure 2d and Figure 8).  Porosity of 

the berries decreased throughout development for all treatments in season 2 (Figure 8e) with 

the heated and control treatments converging as locular air space volume increased as 

measured by microCT. Previous research showed that intracellular air spaces existed in the 

brush region throughout berry development (Findlay et al. 1987). Using microCT 3D 

visualization, we found that Shiraz berry internal air space occurs as fine pores in the 

pericarp. Later in ripening, these fine pores became less dense corresponding to the decrease 
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in porosity measured using pycnometry. These air channels connect to the pedicel where 

lenticels occur at high density. This is essentially similar to the situation in Chardonnay 

berries (Xiao et al. 2018). An interesting observation made by microCT was that the locule 

air space relative volume became larger later in ripening.  Comparing this with the 

pycnometry measurements it would suggest that the total berry air space was mostly 

accounted for by the locule air space when berries become ripe at 25-27 oBrix. The relative 

locule volume increased thereafter, probably indicative of berry shrivel. The reduction of fine 

air-filled pores in the pericarp could be due to sap leaking from non-vital cells and this would 

reduce oxygen diffusion to any cells that were still vital and respiring in the pericarp.  

Conclusions 

Berry internal [O2] decreased with both depth in Shiraz berry tissues and berry ripeness 

irrespective of growing conditions. The progression of CD during berry ripening correlated 

with mean berry internal [O2] across growing conditions. Water stress decreased Shiraz berry 

internal [O2] and increased ethanol accumulation and CD. Elevated temperature did not affect 

berry [O2] and CD under our experimental conditions. Porosity of the berries decreased 

throughout development for all treatments. Relative volume of locule air space became larger 

later in ripening which could be an indicator of berry shrivel. The increase in berry mass of 

heated berries, resulting in lower porosity compared to smaller sized controls, was likely due 

to similar air volume within the berries irrespective of treatment. The reduced berry internal 

[O2] was related to the reduction in porosity and percentage of living tissue. Cell death, and 

by implication berry shrivel, are strongly linked to oxygen supply and demand. Potentially 

any biotic or abiotic stress that may influence oxidative processes, berry respiration or berry 

anatomy will likely impact on cell death, with implications for oenologically relevant berry 

traits. 
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Figures 

Table 1 Physiological indicators of water stress under the treatments imposed over the two 

seasons of this study and the results of 2-way ANOVA. 

Season DAA Variable Treatment P value 
  

 
Ambient 
irrigated 

(A+I) 

Ambient 
non-irrigated 

(A+NI) 

Heated 
irrigated 

(H+I) 

Heated 
non-irrigated 

(H+NI) 

Temperature Water Interaction 

1 91 gs 162 ± 7 72 ± 21    0.015  
2 49 ΨS -1.21 ± 0.04 -1.63 ± 0.01 -1.27 ± 0.04 -1.67 ± 0.02 0.164 0.000 0.798 
 97 Asat 7.6 ± 0.4 4.9 ± 0.4 8.7 ± 0.9 5.4 ± 0.2 0.190 0.001 0.593 
  gs 88 ± 3 37 ± 9 116 ± 18 44 ± 5 0.138 0.000 0.382 
 119 ΨS -1.63 ± 0.02 -1.81 ± 0.06 -1.62 ± 0.04 -1.90 ± 0.05 0.406 0.001 0.331 

Units for variables: gs (mmol/(m2·s)), Asat (μmol/(m2·s)), ΨS (MPa). 
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Table 2. Rates of cell death before (slope 1) and after (slope 2) the onset of rapid cell death in 

chronological (DAA) and thermal (°Cd) scales for Shiraz for season 2, and the results of 2-

way ANOVA. 

Scale Variable Treatment 
 

P value 
 

  
Ambient 
irrigated 

(A+I) 

Ambient 
non-irrigated 

(A+NI) 

Heated 
irrigated 

(H+I) 

Heated 
non-irrigated 

(H+NI) 

Temperature Water Interaction 

DAA Slope 1 -0.25±0.095 -0.15±0.132 -0.26±0.063 -0.55±0.232 0.205 0.533 0.211 
 Onset 111±2 96±3 108±2 108±3 0.117 0.013 0.011 
 Slope 2 -5.17±0.868 -2.35±0.190 -3.56±0.445 -3.89±0.489 0.925 0.050 0.022 

°Cd Slope 1 -0.01±0.005 -0.01±0.009 -0.02±0.004 -0.04±0.016 0.190 0.540 0.320  
Onset 1411±7 1213±33 1428±23 1390±22 0.003 0.001 0.009  

Slope 2 -0.30±0.020 -0.17±0.012 -0.24±0.025 -0.24±0.014 0.933 0.007 0.007 
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Figure 1. (a) Canopy ambient temperature difference of heated irrigated (H+I) and heated 

non-irrigated (H+NI) vines to ambient irrigated (A+I) vines 40 DAA to harvest in S2. Data 

are means ± SE, n=3. Temperature differences are greater than zero in both cases (P<0.0001). 

(b) Comparison of H+I canopy vapour pressure deficit to that of the A+I vines, solid line is y 

= x. Fitted line (Deming regression) (dashed): VPDheated = 1.13 × VPDirrigated + 0.09.  Daily 

rainfall from 40 DAA to harvest in S1 (c) and S2 (d). 
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Figure 2. Berry ripening during season 1 (2014-2015. a,c,e) and season 2 (2015-2016, b,d,f) 

showing TSS (a,b), berry fresh mass (c,d) and sugar per berry (e,f). Treatments are: ambient 

irrigated (A+I, open circle), ambient non-irrigated (A+NI, black closed circle), heated & 

irrigated (H+I, open cyan square), heated & non-irrigated (H+NI, orange closed square). Data 
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are means ± SE, n=3. Where separate lines are shown this indicates that there were significant 

differences between the fitted lines (Extra Sum-of-Squares F-test, P<0.05). 
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Figure 3. Proportion of berry living tissue over time from anthesis (DAA) for season 1 (a) and 

season 2 (b,c,d,e) over time and thermal time (oCd) from anthesis comparing the treatments 

indicated as: ambient irrigated (A+I, open circle), ambient non-irrigated (A+NI, black closed 

circle), heated irrigated (H+I, open cyan square), heated non-irrigated (H+NI, orange closed 

square). In each case a segmented linear regression has been fit to the data for each treatment 

and for clarity, ambient irrigated have been duplicated in (c) to compare with heated irrigated, 

and ambient non-irrigated has be duplicated in (d) to compare with heated non-irrigated. All 

data for season 2 is shown in (e) against thermal time. Data are means ± SEM, n=3. 
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Figure 4. Oxygen concentration profiles (log scale) from 0.2 mm beneath the skin to 1.5 mm 

towards the centre of the berry at different stages of development for the two seasons (S1: 

a,b,c,d; S2: e,f,g,h) under the treatments: ambient irrigated (A+I, open circle) and non-irrigated 

(A+NI, black closed circle), heated irrigated (H+I, open cyan square), heated non-irrigated 

(H+NI, orange closed square). The sampling times were different for S1 and S2.  S1: (a) 63 

DAA, (b) 77 DAA, (c) 91 DAA, (d) 106 DAA. S2: (e) 70 DAA, (f) 84 DAA, (g) 105 DAA, (h) 

112 DAA. Dashed lines indicate the approximate O2 saturation value for water at 25 °C. Data 

are means ± SE, n=3. Third order polynomial functions were fit to the data for each treatment. 

Where separate curves are shown on each panel the fitted lines were significantly different by 

F-test (P<0.05).  
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Figure 5. Dependence of berry living tissue on mean [O2] from 0.2 mm to 1.5 mm depth 

from the surface of the berry. Data are means ± SE, n=3. Fitted curves are the Michaelis–

Menten equation: Living Tissue (LT) = LTmax × [O2]/(Kd + [O2]). (a) There was no significant 

difference in the fits for A+I (open circles) and A+NI (filled circles) in S1 (combined 

R2=0.91). LTmax = 97.2 ± 2.7 (SE) %, Kd = 6.2 ± 0.03 (SE) µmol/L. (b) For S2, A+I (open 

circles), A+NI (filled black circles) and H+I (cyan open squares) were not significantly 

different (fit=solid black line, R2=0.66), LTmax = 99.9 ± 2.9 (SE) %, Kd = 2.9 ± 0.53 (SE) 

µmol/L.  The fit for H+NI (orange filled squares) was significantly different from the other 

treatments (fit = solid orange line, R2 = 0.59) LTmax = 90.1 ± 3.5 (SE) %, Kd = 0.50 ± 0.17 

(SE) µmol/L. The fit for season 1 in (a) is shown for comparison with data for season 2 in (b) 

(dashed line).  
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Figure 6 Respiration rate of Shiraz berries at 25°C as a function of days after anthesis (DAA), 

per berry (a, c) or per gram of berry fresh mass (b, d) for season 1 (a,b) and season 2 (c,d). For 

season 1 there were two treatments, A+I (black) and A+NI (grey). Data are means ± SE, n=3. 

From two-way repeated ANOVA: (a) treatment, time and interaction were significant P<0.05; 

(b) treatment and time were significant, *, ** = significantly different from control (P<0.05, 

P<0.01, Fisher’s LSD).  For Season 2 (c,d) there was a significant reduction in respiration with 

time. For (c) Irrigated treatments (A+I, open black circles, H+I, open cyan squares) had 

significantly higher respiration rates per berry than for non-irrigated treatments (A+NI, closed 

black circle, H+NI, closed orange square) and separate regressions are shown (solid line = I 

treatments, respiration rate = -10.22 × DAA + 1683; dashed line = NI treatments, respiration 

rate = -4.56 × DAA + 933). For (d) there was no significant difference between the linear 

regression lines for the treatments (Extra Sum-of-Squares F-test) and one regression line is 

shown for all the data [respiration rate = -9.71 × DAA + 1662 nmol/(h g), R2=0.45]. 
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Figure 7 Ethanol concentration in berries as a function of days after anthesis (DAA) for: (a) 

S1 comparing I (black) and NI (grey) treatments. Data are means ± SE, n=3. Two-way 

repeated ANOVA showed treatment and time were significant (P<0.002), ***, * indicate 

significant difference (P < 0.001, P < 0.05, Fisher’s LSD). (b) Increase in ethanol with time 

was also found in season 2. There was no difference between the linear regression lines for 

the treatments (A+I, open black circles, A+NI, closed black circle, H+I, open cyan squares 

and H+NI, closed orange square) by Extra Sum-of-Squares F-test and one regression line is 

shown for all the data ([Ethanol] = 0.0026 × DAA - 0.18, R2 =0.52).  
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Figure 8.  Air spaces in Shiraz berries determined by X-ray micro-CT and pycnometry. 3D 

images represent four Shiraz berries (control irrigated) of (a) 17.5 °Brix, (b) 29.2 °Brix, 

(c)19.8 °Brix and (d) 29.1 °Brix (also shown as vertical red dotted lines in (e)). In (a) and (b), 

minimum voxel cut-off was 1000. In (c) and (d), minimum voxel cut-off was 500, 

longitudinally sectioned 3D berries were shown for easy visualisation of locule. White dots 

on box outline are at 1 mm intervals. Blue to white colour indicates increasing volume of 

connected space. (e) Total berry porosity measured in S2 using pycnometry and relative 

volume of the locule using microCT, as a function of TSS. There was no significant 
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difference in total porosity (pycnometry) between ambient irrigated (A+I) and non-irrigated 

(A+NI) berries so one fitted line is shown (quadratic equation, solid black line). There was 

also no significant difference between the two heated treatments and one fitted line is shown 

(quadratic equation, dashed black line). There was a significant difference between heated 

and ambient treatments F-test, P < 0.05). Locule relative volume is shown measured by 

microCT for ambient irrigated (A+I) (open red circles) and non-irrigated (A+NI) (solid red 

circles) berries.  There was no significant difference between locule relative volume for the 

two treatments so one fitted line shown (quadratic, red solid line). Treatments indicated as: 

ambient irrigated (A+I) (open circle), ambient non-irrigated (A+NI) (black or red closed 

circle), heated irrigated (H+I) (open cyan square), heated non-irrigated (H+NI) (orange 

closed square). 
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Abstract 

Background and Aim: Berry cell death and dehydration (shrivel) in Shiraz during late 

ripening can be accelerated by drought and high temperature. In order to provide possible 

mitigation strategies to the industry for berry cell death and dehydration three preliminary 

trials were undertaken: Trial 1 (T1) tested the effect of overhead shading on berry 

dehydration, cell death and internal oxygen concentrations [O2], since previously it had been 

shown that shading could reduce cell death, and in a separate study, that cell death could be 

correlated to hypoxia in the berry. Trial 2 (T2) tested the effect of rootstocks having different 

drought tolerance on berry dehydration and cell death. Trial 3 (T3) tested the effect of kaolin 

spray, which has been proposed to reduce leaf and cluster temperature and transpiration. 

Methods and Results: For T1 berries were sampled from an overhead shade treatment (62% 

absorption, from veraison) since this had the most consistent high temperature mitigation 

according to a previous study. For T2 berries were sampled from Shiraz scions on three 

rootstocks differing in drought tolerance (Schwartzman, Ruggeri 140 and 420 A). For T3, 

Shiraz vines were treated with a kaolin spray (and mock control). For T2 and T3, vine water 

status, leaf gas exchange, and berry ripening evolution were measured from veraison to 

harvest. For T1 previous research had reported vine water relations. For all experiments the 

progression of mesocarp cell vitality was determined and correlated with loss of berry mass. 

Additionally [O2] profiles were examined for T1.  

Both kaolin treatments resulted in a significant increase in berry mass compared with control 

vines, while only T2 showed a significant decrease in photosynthesis (light saturation) at a 

given stomatal conductance corresponding to a trend of lower TSS accumulation over time. 

Cell vitality measured with a vital stain decreased linearly with time after peak berry mass 

was reached for all treatments. No significant difference in leaf and berry temperature, leaf 

gas exchange, water status, TSS and berry vitality were detected between treatments.” 



113 
 

Conclusion: Overhead shading can reduce the rate of increase in cell death and berry 

dehydration in Shiraz. This treatment also affects the progression of hypoxia in the berry. 

Shiraz on the drought tolerant 140 Ruggeri had significantly less cell death and berry 

dehydration than the less tolerant rootstocks. Kaolin spray application can reduce berry 

shrinkage independently of mesocarp cell death, and independently of berry and leaf 

temperature. 

Significance of Study: There are potential mitigation strategies for reducing mesocarp cell 

death and berry dehydration in Shiraz. Use of drought tolerant rootstocks and kaolin 

application from veraison to harvest show promise but further research is required across 

multiple seasons on both rootstocks and kaolin treatments and their effects on berry oxygen 

concentration. 

Keywords: Vitis vinifera, berry, cell death, rootstock, shading, kaolin 
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Introduction 

Because of global warming, the ripening process of grapes grown in warmer regions has been 

advancing (earlier onset) and shortened into warmer months that have also increased 

frequencies of heatwaves (Jones 2007,Petrie and Sadras 2008,Rahmstorf and Coumou 

2011,Sadras and Petrie 2012,Webb, et al. 2011). This can increase the rate of cell death in 

Shiraz berries and exacerbate berry dehydration (shrivel), since berry shrivel and cell death 

are correlated and are highly sensitive to increased temperature and drought stress (Bonada, 

et al. 2013). Shrivel can result in up to 30% yield loss during the late ripening stage of Shiraz 

(McCarthy 1999). Berry shrivel and cell death in Shiraz are also correlated with other berry 

quality parameters and ultimately can affect wine quality (Bonada, et al. 2013,Šuklje, et al. 

2016).  

Cell death has been suggested to be one cause for berry dehydration late in ripening, and this 

has been linked to hypoxia in the berry in response to water stress (Xiao, et al. 2018) (paper 

2).  Despite these advances in our knowledge of the phenomena, the wine industry has yet to 

receive clear mitigation strategies or even prediction methods for the occurrence of cell death 

and berry dehydration. Here we investigate three strategies that could impact on the 

occurrence of cell death and dehydration: shading to reduce temperature and water stress, 

root stocks to improve drought tolerance, and kaolin spray to reduce leaf and cluster 

temperature.  

Shading of grapevines has been studied as a mitigation strategy for heat and solar radiation 

stress. Artificial shading using shade cloth can reduce canopy temperatures (Caravia, et al. 

2016,Greer, et al. 2011,Greer, et al. 2010,Rojas-Lara and Morrison 1989) and also positively 

influence vine water status, however, the timing /duration and orientation of shading are 

important (Caravia et al., 2016). Carbon fixation of the vines can be reduced if shading is 

applied to whole canopy prior to the establishment of the canopy (Greer, et al. 2010). Cluster 
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shading can reduce skin tannins and flavonoid synthesis (Downey, et al. 2004,Oliveira, et al. 

2014,Ristic, et al. 2007). Lower temperature caused by shading pre-flowering might also 

affect cell division during berry formation (Ebadi, et al. 1996). Nevertheless, overhead shade 

applied to Shiraz vines from veraison to harvest was found to delay berry cell death and 

dehydration so that resultant wines had lower alcohol but limited effects on other wine 

characteristics compared to unshaded controls (Caravia, et al. 2016). Given that cell death has 

been recently linked to hypoxia in the berry and that water stress can exacerbate this, we 

investigated berry internal [O2] status and the link to berry cell death of overhead shaded 

berries compared to unshaded controls. 

Grapevine rootstocks play important roles in increasing tolerance to both biotic and abiotic 

stress (Ferris, et al. 2012,Rosa, et al. 2011,Walker, et al. 2004,Wallis, et al. 2013). Rootstocks 

have been used in grapevine cultivation to increase drought tolerance (Serra, et al. 2014). Due 

to differences in root growth and physiological characteristics and root hydraulic 

conductance, rootstocks can affect the water retention of the scion (Gambetta, et al. 2012). 

Rootstock interaction with irrigation can affect yield (McCarthy, et al. 1997) and berry 

shrivel in Shiraz (Rogiers, et al. 2004). Here we investigated whether different rootstocks 

(Schwarzmann, Ruggeri 140 and 420 A) that have been reported to impart different drought 

tolerance to the scion (Soar, et al. 2006) can affect Shiraz berry dehydration and cell death. 

Kaolin particle film has been applied to crops to mitigate biotic and abiotic stress including: 

protection from insect pests, limiting radiation and sunburn, reducing canopy temperature, 

and to increase photosynthesis (Glenn 2012,Glenn and Puterka 2005,Rosati, et al. 

2007,Steiman, et al. 2007). In grapevines, kaolin was found to reduce canopy temperature by 

increasing reflection of solar radiation, and also to increase water use efficiency, but with 

variations between cultivars (Glenn, et al. 2010). Kaolin application was also found to 

improve berry anthocyanin accumulation in vines grown under water stressed and warm 
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conditions (Shellie and King 2013,Song, et al. 2012). Here we investigated the effectiveness 

of kaolin application on reducing Shiraz berry cell death and dehydration. 

Materials and methods 

Experimental site and vines 

Shading trial  

Shiraz (Vitis vinifera L.) vines (clone BVRC12) on own roots, planted in 1992, were studied 

in season 2014-2015, for the overhead shading experiment, at Coombe vineyard, Waite 

Campus, The University of Adelaide (34°58’03.12” S and 138°38’00.21”E). Vines were 

trained to a vertical shoot positioned trellis with north-south row orientation and vine and row 

spacing of 2.7 by 3 m respectively. The application of overhead shading treatment was as 

described in Caravia, et al. (2016) and the experiments reported herein were obtained from 

the season 3 Coombe vineyard trial as reported in Caravia et al. (2016). Briefly, overhead 

shading using shade cloth (Premium Hortshade, medium grade, Pacific, Braeside, Victoria, 

Australia), was imposed from veraison, 71 days after anthesis (DAA), to harvest. Standard 

irrigation and viticulture practices typical for the region were applied. Three replicates each 

containing one panel (two vines), located in different rows, with adjacent panels as controls 

without overhead shading, were used in this study.  

Rootstocks and kaolin trial 

Two studies were conducted in season 2016-2017 at Coombe vineyard, in the same vineyard 

block as above, examining the effects of different rootstocks and application of kaolin spray. 

Standard irrigation was applied to all vines. A total of 0.426 kilolitre/vine or 63.4 mm of 

water through dripper irrigation was applied during the growing season from December 2016 

to March 2017. During this time the vineyard also received 119.4 mm of effective rainfall 

(sum of any event > 10 mm).  
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For the rootstock trial: Shiraz (clone BVCR12), planted in 1993, on Schwarzmann, 140 

Ruggeri and 420 A rootstocks were used. For each rootstock, four replicates each comprising 

of two panels (4 vines in total), located in difference rows were used.  

For the kaolin trial, Shiraz scion on Schwarzmann rootstock was used. Four replicates, 

located in different rows, each consisting of two vines were used for each treatment. Within 

each replicate, two kaolin treatments were imposed in two adjacent vines from the same 

panel and control (mock sprayed on canopy or cluster zone) were located in adjacent panels 

from the other four different rows. Treatments were: control (canopy), mock sprayed whole 

canopy with tap water only, control (cluster), mock sprayed cluster zone with tap water, 

cluster zone only sprayed with kaolin (cluster), and whole canopy sprayed with kaolin 

(canopy). A non-sprayed control corresponded to the Schwarzmann rootstock trial.  Kaolin 

(Surround® WP, Phoenix, Arizona, USA) [Al4Si4O10(OH)8] has been described as “a white, 

non-porous, non-swelling, low-abrasive, fine-grained, plate-shaped, aluminosilicate mineral” 

(Glenn 2005). Following the manufacturers’ recommendation, approximately 0.5 L of 5% 

(w/v) kaolin dissolved in tap water was applied every week to each vine in the appropriate 

treatment class and after each rainfall event during the entire experimental period. It was 

applied evenly to both west and east sides of the vines using a backpack power sprayer. For 

cluster treatment, all clusters including those labelled for sampling were fully and evenly 

covered by kaolin film. For canopy treatment, kaolin was evenly applied to the whole canopy 

providing kaolin coverage over leaves and clusters.  

Berry sampling 

For the overhead shading trial, berries were taken from 5 labelled clusters (exposed exterior 

facing) within each replicate. Two berries were sampled from the proximal, middle and distal 

parts of a cluster on the exterior exposed side of the pre-labelled clusters. This was done by 

cutting the pedicel at the rachis junction with fine sharp scissors.  
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For the rootstock trial, berry samples were taken from the centre 2 vines for each replicate. 

Four clusters were labelled on each vine, and 3 berries were collected on each cluster 

(proximal, middle and distal, exposed exterior facing) for cell vitality estimation. Another 50 

berries (25 from each vine) were collected randomly from each replicate for berry mass and 

total soluble solids estimation.  

For the kaolin trial, three clusters on one vine of each replicate were labelled. Three berries 

were collected on each cluster (proximal, middle and distal, exposed exterior facing) for cell 

vitality estimation. Another 25 berries from the other vine within each replicate were 

collected randomly from the vines for berry mass and total soluble solids estimation.  

For all trials, sampling took place between 9:00 and 11:00 am (Australian Central Daylight 

Time, ACDT). Berries were stored in labelled sealable plastic bags, placed in an ice-cooled 

container in the field and for transfer to the laboratory. Once in the laboratory, berries were 

stored in the dark at 4 °C until measurements were made within 24 hours of sampling. 

Solar radiation 

A quantum sensor (SKP 216, Skye Instruments Ltd., Wales, UK) was used to determine the 

photosynthetically active radiation under or outside the overhead shading.   

Leaf gas exchange 

For the overhead shading trial, stomatal conductance was measured using a porometer 

(Model AP4, DeltaT Devices, Cambridge, England). For rootstock and kaolin trials, leaf gas 

exchange measurements, including net CO2 assimilation at light saturation Asat (photo flux 

density = 919 µmol/(m2s) and stomatal conductance gs, were carried out using an infrared gas 

analyser (IRGA) (LCpro-SD Portable Photosynthesis System, ADC BioScientific, 

Hoddesdon, England). All measurements were made between 11:00 and 14:00 (ACDT). For 

each replicate, one fully exposed and expanded leaf was measured. Measurements were takin 
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in random order regarding replicate and treatment, IRGA readings were taken 3 mins after 

enclosing the leaf in the measuring chamber.  

Leaf and cluster temperatures  

Leaf and cluster temperatures were measured using an infrared thermometer (Fluke 568). For 

each replicate, three random west-facing leaves and clusters, fully exposed to sunlight, were 

selected for temperature measurement at around 3 pm.  

Grapevine water status 

For both rootstock and kaolin trials, leaf (ψl) and stem (ψs) mid-day water potential were 

measured using a pressure chamber (PMS Instrument Company, model 1005, Albany, OR, 

USA) between 11:00 and 14:00 (ACDT). For each replicate, two mid-shoot, fully exposed 

and expanded leaves were selected. One leaf was enclosed in a foil covered plastic bag for 1 

h before measurement for ψs. The non-bagged leaf was used for ψl measurement. Leaves were 

placed in the chamber within 5s after excision at the stem end of the petiole, and with foil 

bags for ψs.  

Berry mass and total soluble solids 

Fifty berries and 25 berries sampled from each replicate for the rootstocks and kaolin trials 

respectively, were weighed and crushed together to obtain average berry weight and TSS. 

Berry cell vitality: electrical impedance and vital staining  

On each sampling day, a total of 9, 16 and 12 berries, sampled from labelled clusters in each 

treatment from the overhead shading, rootstock and kaolin trials respectively were used to 

determine cell vitality using vital staining. Additionally, impedance of berries was measured 

in rootstock and kaolin trials on the same batches of berries. Individual berry mass was first 

recorded. Impedance spectroscopy was performed on each berry as described in Caravia, et 

al. (2015). Briefly, a thin slice of berry skin on opposite sides of the berry equator was 
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removed using a fresh razor blade. Two cut surfaces of the berry were clamped between two 

sliver chloride coated electrodes, connecting the berry to the circuit. A 0.1 M KCl solution 

was used between the contacting surfaces of berry and electrodes. Thickness of the berry 

tissue between the electrodes was measured using a micrometre screw gauge. Impedance was 

measured between 1 Hz and 1 MHz using an impedance meter (Bode 100, Vector Network 

Analyzer, OMICRON LAB, Hong Kong). After the impedance measurement, berries were 

stained, using 4.8 μM fluorescein diacetate (FDA) solution with osmolality similar to the 

grape juice (adjusted with sucrose), on the cut medial longitudinal surface for vital staining 

procedures (Fuentes, et al. 2010,Tilbrook and Tyerman 2008). Berries were incubated in the 

dark for 15 min. The stained berries were viewed under a Nikon SMZ 800 (Nikon Co., 

Toyko, Japan) dissecting microscope under ultraviolet light with a green fluorescent protein 

filter in place. Images were taken by a Nikon DS-5Mc digital camera (Tochigi Nikon 

Precision Co., Ltd, Otawara, Japan) and NIS-Elements F2.30 software with the same gain and 

exposure settings for all images. Images were analysed with a MATLAB (Mathworks Inc., 

Natick, MA, USA) script for determining berry cell vitality (Fuentes, et al. 2010). 

Berry internal oxygen concentration 

For the overhead shading trial, a subsample of three berries of each replicate was used to 

determine internal berry O2 concentrations ([O2]), measured using a Clark-type oxygen 

microelectrode with a tip diameter of 25 µm (OX-25; Unisense A/S, Aarhus, Denmark). The 

microelectrodes were calibrated in a zero [O2] solution (0.1M NaOH, 0.1M C6H7NaO6) and 

an aerated Milli-Q water (272 µmol/L at 22 °C), as 100% [O2] solution. Individual berries 

(equilibrated to room temperature, 22 oC) were secured on the motorized manipulator stage. 

To aid the penetration of the microelectrode into the berry skin, a hole was initially made 

through the skin at the berry equator with a stainless steel syringe needle (19G), to a depth of 

200 µm. The microsensor was positioned in the berry through this hole and profiles of [O2] 
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were taken with depth towards the centre of the berry. Previous work had established that O2 

leakage around the site of skin penetration was insignificant (Xiao, et al. 2018). Berry 

profiles began from 0.2 mm under the skin with 0.1 mm steps to 1.5 mm towards the centre. 

The electrode was not moved further to avoid damaging the tip against a seed. Each 

measurement lasted 10s at each position. Between each position, stable signals were recorded 

within 20s. Measurements were carried out and recorded using the Unisense Suite software. 

Means and SEM of each step (n = 3) were calculated and [O2] profiles were compiled using 

GraphPad Prism 7. After the [O2] measurements, berry temperature was measured using an 

IR thermometer (Fluke 568) with a type-K thermocouple bead probe (Fluke 80PK-1). Berry 

diameters at the equator were determined using a digital calliper. 

Statistical analysis 

All data are presented as mean ± SEM. For overhead shading trial, t-test was used for vine 

physiology measurements. One-way ANOVA was used to determine difference in pruning 

weight affected by rootstocks. Two-way repeated measures ANOVA and Tukey’s post-test 

were used for assessing treatment affects over time in the three trials. 

One phase associations or linear regression were fit to leaf carbon fixation at light saturation 

(Asat) as a function of stomatal conductance (gs). Exponential decays were fit to berry mass 

affected by rootstock and kaolin, and impedance affected by rootstocks. Exponential 

associations were fit to sugar accumulation affected by rootstock, kaolin and shading, and 

mass loss affected by kaolin. Linear regressions were fit to berry mass affected by shading, 

TSS affected in all three trials, mass loss affected by rootstock, and living tissue affected by 

rootstock (segmental) and kaolin. Quadratic equations were fit to mass loss as a function of 

living tissue affected by rootstocks. Third order polynomial functions were fit to [O2] as a 

function of depth in to the berry. The Michaelis–Menten equation was fit to the relationship 

between percentages of berry living tissue and mean [O2]. The Extra Sum-of-Squares F-test 
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was applied to test the differences of the fits between treatments. All analyses were 

performed in Graphpad Prism 7 (Graphpad Software, La Jolla, CA, USA). A difference was 

taken as being significant when P<0.05. 

 

Results 

Seasonal phenology and climate conditions 

Full anthesis (stage EL 23) (Coombe 1995) occurred on 27 October in 2014 (shade trial) and 

15 November in 2016 (rootstock/kaolin trial). Veraison occurred at around 67 DAA (shade 

trial) and 65 DAA (rootstock/kaolin trial). Total rainfall from flowering to 130 DAA was 

68.4 (shade trial) and 178.8 mm (rootstock/kaolin trial) (Figure S1). The number of days with 

maximum temperature above 40 °C during the ripening period was 4 days (shade trial) and 6 

days (rootstock/kaolin trial) (Figure S1). 

Vine physiology 

Rootstock resulted in some variations in water status and gas exchange of the Shiraz scion. 

Stomatal conductance (gs) measured at 80 DAA for Schwarzmann was lower than 140 

Ruggeri. 420 A showed lower ψs and lower Asat than 140 Ruggeri at 80 DAA (Table 1). No 

difference was observed on other tested days (62 and 104 DAA) amongst rootstocks in 

midday stem and leaf water potential, gs or Asat (Table 1). For gs (P<0.0001) and Asat 

(P<0.0001) across rootstocks there was a significant decline during the measurement period 

that corresponded to a decline in ψs (P<0.0001) and ψl (P<0.0001). There were variations in 

scion canopy development between rootstocks as determined by pruning weights with 140 

Ruggeri having higher pruning weights than the other two root stocks (Figure S2), but this 

was not statistically significant (P=0.215). 
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Kaolin treatment reduced Asat at 80 DAA by 2-fold for canopy treated vines compared to 

cluster zone treated vines (P=0.012, Tukey’s test), although no difference was found between 

the canopy treatment and the two control mock sprayed or the dry vines (Table 2). gs  of 

cluster zone treated vines was higher than that of the dry control vines on 80 DAA (Table 2). 

No difference was observed amongst kaolin treatments in ψs and ψl, gs or Asat on 62, 80 and 

104 DAA except that mentioned above (Table 2). As for the rootstock results there was a 

general decline gs, Asat, ψs and ψl during the measurement period.   

Cluster and leaf temperature measured at 86, 91 and 101 DAA did not differ amongst kaolin 

treatments (Table 2, Dry Control not measured)).  

Light saturated photosynthesis (Asat) as a function of gs could be fit by an exponential 

association equation that did not differ between rootstocks (Figure 1a). Linear regressions fit 

best to Asat versus gs for the different kaolin treatments (except dry control, see Schwarzmann 

Figure 1a) and did not differ (Figure 1b).  

Overhead shading treatment reduced photosynthetically active radiation by 66% from 1752.0 

± 19.7 to 587.3 ± 12.3 mmol m-2 s-1 (Table 3). This corresponded to a decrease in leaf 

temperature but gs was increased by the overhead shade treatment (Table 3). 

Berry ripening 

The development over time of berry mass, total soluble solids (TSS), and sugar per berry are 

compared between treatments for the three trials in Figure 2. There was no difference in the 

rate of increase in berry mass amongst rootstocks and the decline in mass after the peak in 

mass could be fit to an exponential decay that did not differ between rootstocks (Figure 2a). 

A similar decline in mass was observed for the kaolin trial, where kaolin treatment compared 

to mock-sprayed controls showed significant difference between the fitted equations and a 
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smaller decline in mass (Figure 2b). The overhead shade treatment showed no significant 

effect on berry mass.  

Berries from Schwarzmann rootstock had higher TSS over the ripening time-course 

compared to the other two rootstocks (2-way repeated measures ANOVA) and significant 

differences between the fitted linear regressions were observed (Figure 2d). No difference 

was found in TSS over time between kaolin or shading treatments (Figure 2e,f). The 

accumulation of sugar per berry was reduced in berries from 420 A compared to 

Scharwzmann and there was a significant difference between the fitted exponential 

associations (Figure 2g). No difference was found in the accumulation of sugar per berry 

between kaolin or shading treatments (Figure 2h, i). 

Berry relative loss of mass and cell death 

For the three trials, percentage loss of berry mass relative to the peak in mass, and the decline 

in living tissue during late ripening are compared in Figure 3. Berries from 420 A rootstock 

showed more percentage loss of mass compared to 140 Ruggeri (Figure 3a). Berries from 

kaolin sprayed vines showed less loss of mass compared to berries from control vines (Figure 

3b). There was no difference between control and shaded berries in the percentage loss of 

mass (Figure 3c).  

In the latter stages of ripening, living tissue was reduced in all three trials (Figure 3d,e,f). For 

the rootstock trial two clear phases of decline in living tissue could be delineated consisting 

of a slow and fast phase (Figure 3d). There were significant differences between the slope of 

the fast phase of decline in living tissue, with Scharzmann and 420 A showing a faster 

decline against time (DAA) compared to 140 Ruggeri. For the kaolin trial no significant 

difference was observed in the decline of living tissue between treatments. For the shading 
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trial there was a significantly smaller decline in living tissue for the shaded treatment 

compared to control.  

Detection of living tissue using electrical impedance (Caravia et al. 2015) showed similar 

results to the vital stain technique for the rootstock trial where lower impedance was found in 

Scharwzmann compared to 140 Ruggeri in latter stages of ripening (Figure 4a), however no 

clear reduction in impedance was observed in the kaolin trial that would indicate substantial 

cell membrane damage and solute leakage. A reduced decline in electrical impedance was 

previously reported for the shade treatment in Caravia et al (2016).  

The loss of mass relative to peak mass was correlated with berry living tissue for the 

rootstock trial (Figure 5). Significantly higher elevation of the fitted quadratic equations for 

loss of mass versus living tissue was found for 420 A compared to the other two rootstocks, 

indicating that for a given degree of cell death there was a greater degree of loss of mass for 

shiraz berries on the 420 A rootstock. Loss of berry mass was not correlated with living tissue 

in the kaolin trial as can be seen from inspection of Figure 3 b&e, however it is clear that for 

the same degree of cell death there was less loss of mass in the kaolin treatment. Insufficient 

data was obtained in the shading trial for this analysis. 

Berry oxygen profiles for the shading trial 

Oxygen concentration as a function of depth into the berry was only determined for the 

shading trial, and [O2] profiles are shown for this trial at different sampling dates in Figure 6. 

Berries were sampled four times from after veraison (72 DAA) to pre-harvest (114 DAA). At 

all sample times, in both control and shaded berries, [O2] decreased steeply with depth. On 85 

and 99 DAA, third order polynomial functions were fit to the profiles and comparison of 

fitted curves by Extra Sum-of-Squares F-test indicated berries from shaded vines showed a 

different evolution of [O2] profiles where [O2] was on average lower in shaded berries than 
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control berries (Figure 6b,c). However this difference diminished when berries reached 114 

DAA since one curve was found to adequately fit both [O2] profiles of shaded and control 

berries (Figure 6d). The associations between berry living tissue and mean [O2] (0.2 to 1.5 

mm depth) are shown in Figure 7. Michaelis-Menten curves best fit living tissue as a function 

of mean [O2] as was observed in an earlier experiment (Xiao et al. unpubl. data, 2018). 

Significantly different fits were obtained between shaded and control with shaded berries 

giving a low apparent Kd. This indicated that at intermediate mean [O2] concentrations within 

the berry there was greater cell death in the control (unshaded treatment) than the shaded 

treatment. 

Discussion 

Here we report on preliminary trials of possible mitigation strategies that may be used to alter 

the evolution of cell death and berry dehydration leading to shrivel in Shiraz berries. 

Although it is not yet clear what causes cell death, there is good evidence that hypoxia within 

the berry is strongly associated with it (Xiao, et al. 2018). This hypoxia and potentially other 

compounding phenomena such as unregulated ROS accumulation and high ethanol 

concentrations may cause cell death as detected by vital stains and electrical impedance. 

Hypoxia within the berry mesocarp can be the result of high respiration rates at high 

temperature, or as a result of water stress, but anatomical changes that influence the 

diffusivity of O2 within the berry are also important. In particular the lenticels on the berry 

pedicel were previously shown to be a major uptake pathway for O2 into the berry (Xiao, et 

al. 2018). Therefore treatments, such as spray formulations, that may affect O2 diffusion via 

lenticels and treatment effects on the development of internal airspaces in the berry may also 

impact on cell death. The link between cell death and berry dehydration is also correlative 

(Fuentes, et al. 2010), however, loss of membrane integrity and semi-permeability is very 

likely to reduce the ability of the large mesocarp cells to retain water via osmosis against the 
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negative tensions in the apoplast generated by the vine or berry transpiration (Scharwies and 

Tyerman 2017,Tilbrook and Tyerman 2008). Therefore we investigated treatments that could 

reduce temperature and water stress. These were: shading that reduces temperature and water 

stress; rootstocks that may reduce water stress or affect cluster shading, and kaolin spray 

formulation that may reduce leaf and cluster temperature.   

Overhead shading  

Overhead shading was previously reported to have the most consistent high temperature 

mitigation compared to other orientations of shade (Caravia, et al. 2016). In that study it was 

also shown that the rate of decline in berry cell vitality was reduced by overhead shade. Here 

we extended the Caravia, et al. (2016) study to investigate how berry [O2] may be involved in 

the response. Overhead shade reduced PAR by 66% in this study and subsequently decreased 

leaf temperature by an average of 4 °C. This substantial reduction in temperature, particularly 

if there is a heatwave event, could ameliorate the potential physiological and biochemical 

stress on the vine. Interestingly, stomatal conductance doubled (measured on one occasion) in 

the shaded and cooler leaves.  This is consistent with the more extensive and multiple season 

study of Caravia, et al. (2016). Despite the increase in gs overall evaporative demand might 

be reduced by shading, which could potentially improve water status of the vines (Caravia, et 

al. 2016). Here we found that cell death of berries was reduced by shading consistent with 

Caravia, et al. (2016), but this did not translate to a significant difference in loss of berry 

mass in contrast to the previous study.  

Contrary to expectations of the effect of reduced temperature under shade, we found that 

internal [O2] for shaded berries at intermediate stages of ripening were significantly lower 

(more hypoxic) relative to that of the unshaded control (Figure 6). Otherwise the progression 

to lower and more hypoxic conditions in the pericarp as ripening progressed is consistent 

with previous studies (Xiao, et al. 2018) (paper 2). The difference between shaded and 
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unshaded berries was greatest at 99 DAA, which is normally when the rapid onset of cell 

death occurs (Figure 3). Respiration is highly dependent on temperature and O2 availability. 

Higher temperature in the unshaded clusters should result in higher O2 demand due to higher 

respiration rates, assuming O2 diffusion and uptake were the same for control and shaded 

berries and that no acclimation occurred. One important pathway for berry O2 uptake is via 

the lenticels on the berry pedicels. These lignified woody structures act as pores and regulate 

gas and vapour exchange between the atmosphere and internal tissue (Xiao, et al. 2018), and 

their development may be affected by the shade treatment. That some acclimation had 

occurred is inferred by our observation that the Michaelis-Menten fits to cell death as a 

function of mean [O2] concentration within the berry were different between shaded and 

unshaded treatments. This indicated that shaded berries have a lower degree of cell death at 

the same [O2] concentration than the unshaded berries. Unexpectedly we found that the 

shaded treatment was more similar to the previously determined global fit for cell death 

versus mean [O2] in an unshaded experiment (Xiao et al., unpubl. data, 2018). This difference 

may result from different Shiraz clones used between the two studies or different seasonal 

conditions. 

Rootstocks 

Some rootstocks have been consistently reported to increase drought tolerance of the scion, 

though the mechanisms for the effect are complex and not fully understood (Serra, et al. 

2014). According to Serra, et al. (2014)the drought tolerance of Schwarzmann based on its 

origin as V. riparia x V. rupestris, would be poor-medium as is listed in online reports (e.g. 

UC Davis Rootstock selection: http://iv.ucdavis.edu/files/24347.pdf ). 140 Ruggeri on the 

other hand is listed as having medium to high drought tolerance by three separate 

classifications (Serra et al., 2014).  420 A was classified as weak/sensitive also from three 

separate classifications (ibid).  Thus the order of increasing drought tolerance of the 
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rootstocks used in our study is 420 A, Schwarzmann, 140 Ruggeri. Although we did not 

impose a drought treatment, a consistent seasonal drought effect was evident as indicated by 

declining gs and stem and leaf water potentials during the season (Table 1). The relative 

decline in stomatal conductance was greatest for Schwarzmann (73%), intermediate for 420A 

(52%) and least for 140 Ruggeri (33%).  

Some significant differences in vine water status and gas exchange were observed between 

rootstocks at 80 DAA. 420 A showed lower midday stem water potential than 140 Ruggeri 

indicating that the vines on 420 A might be under more stress. This is confirmed by the lower 

photosynthetic rate of 420 A compared to 140 Ruggeri. Despite some of these expected 

differences between root stock water relations, the responses of Asat to gs of the three 

rootstocks were similar (Figure 1a) perhaps indicating that leaf CO2 diffusion properties and 

CO2 fixation biochemistry were not greatly modified by rootstock.  

Schwarzmann showed higher TSS throughout the entire period, compared to both 140 

Ruggeri and 420 A, which did not differ from each other. 420 A also showed lower sugar per 

berry compared to Schwarzmann. Rootstock is known to affect sugar accumulation and rate 

of berry ripening of the same grafted variety (Corso, et al. 2016). However, the affected sugar 

accumulation by rootstock seemed to have limited correlation with vigour, since pruning 

mass did not differ amongst rootstocks (Supplementary Figure S2). Berry mass of the three 

rootstocks throughout the entire time was similar. However, 420 A showed an overall higher 

percentage of mass loss after peak mass was reached, compared to 140 Ruggeri. Although 

Shiraz vines on different rootstocks did not appear to have greatly different water stress 

towards the end of ripening, more water back-flow from 420 A berries might have occurred 

and 420 A showed higher mass loss compared to the other two rootstocks at similar level of 

living tissue (Figure 5). Rapid cell death was initiated around 94 DAA for the three 

rootstocks and then subsequently occurred at different rates (Figure 3d). Interestingly the rate 
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of decline in vitality (increase in cell death) was least in the most drought tolerant rootstock 

(140 Ruggeri) and this correlated with the least loss of mass. On individual sampling dates, 

140 Ruggeri had more living tissue than the other rootstocks on 110 DAA and Schwarzmann 

on 119 DAA. This is also possibly linked to differences in water stress between the 

rootstocks, since the rate of cell death can be increased by water stress after cell death is 

initiated (Bonada, et al. 2013). We cannot exclude however, the possibility that chemical 

signals from the rootstocks are also involved (Serra, et al. 2014). Impedance spectroscopy 

measurements showed on the last sampling day that Schwarzmann berries had the lowest 

impedance, which indicates a higher level of membrane leakage (Caravia, et al. 2015).  

Kaolin spray treatment 

Kaolin particle film has been reported to reduce leaf surface temperatures on a variety of 

horticultural crops (Cantore, et al. 2009,Denaxa, et al. 2012,Wand, et al. 2006), Sauvignon 

Blanc berry temperature (Coniberti, et al. 2013) and the occurrence of temperatures over 

30oC in Malbec berries under reduced irrigation, but this depended on berry orientation 

(Shellie and King 2013). In our trial we did not find a significant decrease in leaf or berry 

surface temperature in response to kaolin treatment (Table 2). This is inconsistent with work 

on grapevine or other crops, showing kaolin application decrease the temperature of leaves 

and canopies (Glenn, et al. 2010,Rosati 2007). However, the effectiveness of reducing leaf 

and canopy temperature may also depend on other factors, such as ambient maximum 

temperature. For example, Tworkoski, et al. (2002) showed kaolin successfully reduced 

canopy temperature when ambient temperature did not exceed 30 °C. Some differences in 

vine water status and gas exchange were found between control and treatments. Midday leaf 

water potential of the full canopy treatment was lower than mock sprayed control on 104 

DAA, indicating a higher stress level of canopy treated vines. There was a consistent 

reduction in both gs and Asat in response to kaolin treatment.  Reduced assimilation has been 
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found previously for Malbec grapevine (Shellie and King 2013), and reduced gs has been 

observed in grapevine depending on cultivar (Glenn, et al. 2010).  Kaolin forms a film on the 

grapevine leaves that increases reflection of photosynthetically active radiation (PAR) and 

reduces absorption of light (Rosati, et al. 2007). Kaolin film may reduce leaf photosynthesis 

by reflecting and blocking PAR, however if the light is already saturating photosynthesis then 

reduced absorption of PAR should not have a large effect depending on the degree of reduced 

absorption. The reflection effect of kaolin, may better distribute PAR within the canopy, 

which may compensate the reduced light absorption and lowered photosynthesis of the outer 

canopy (Rosati, et al. 2007). It is also possible that the kaolin film may physically block 

stomatal pores restricting CO2 diffusion. There was no effect of kaolin on sugar accumulation 

in the berries indicating that if assimilation was reduced this was not sufficient to affect 

carbon allocation. This is consistent with a previous report on kaolin effects on Malbec 

(Shellie and King 2013).  

Kaolin treatment had no effect on the increase in berry mass over the course of the sampling 

period, but there was a clear reduction in the percentage loss of mass relative to peak mass. 

This may be the result of reduced sunburn on the berries, which could lead to berry 

dehydration (Krasnow, et al. 2010). Similarly, kaolin application has been found to reduce 

the severity of sunburn in other fruits (Bell, et al. 2006,Cantore, et al. 2009) and grape berry 

dehydration (Lobos, et al. 2015). Despite reducing berry dehydration, kaolin showed no 

effect on the change of berry cell vitality throughout the sampling period, thereby uncoupling 

the normal correlation between cell death and berry dehydration (Fuentes, et al. 

2010,Tilbrook and Tyerman 2008). It is possible that kaolin application reduced berry 

transpiration thereby slowing the dehydration that would normally occur with increasing cell 

death. 
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Conclusions 

Overhead shading can reduce the rate of increase in cell death and berry dehydration in 

Shiraz.  This treatment also affects the progression of hypoxia in the berry, but it appears to 

be not directly linked to temperature, rather, higher order acclimation appears to be occurring 

that affects the response of cell death to hypoxia in the berry.  Rootstocks are a promising 

avenue for further research since they are becoming more common in combating abiotic 

stress in commercial viticulture. The more drought tolerant 140 Ruggeri has significantly less 

cell death and berry dehydration than the less tolerant rootstocks.  Treatment with kaolin 

reflective film, despite the unexpected lack of effect on berry surface temperature, did reduce 

the loss of berry mass independently of cell death. Further research is required across 

multiple seasons on both rootstocks and kaolin treatments and their effects on berry oxygen 

concentration. 
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Figures 

Table 1. Effect if rootstock on grapevine water potential and gas exchange properties during 
2016-2017 season.  

DAA Schwarzmann 140 Ruggeri  420 A 
Midday stem water potential (ψs) (MPa) 

62 -0.86 ± 0.03 -0.88 ± 0.04 -0.92 ± 0.03 
80 -1.07 ± 0.06ab -0.92 ± 0.05a -1.15 ± 0.08b 

104 -1.1 ± 0.05 -1.25 ± 0.08 -1.09 ± 0.03 
Midday leaf water potential (ψl) (MPa) 

62 -1.13 ± 0.07 -1.12 ± 0.04 -1.18 ± 0.05 
80 -1.31 ± 0.05 -1.26 ± 0.06 -1.44 ± 0.03 

104 -1.38 ± 0.06 -1.49 ± 0.05 -1.32 ± 0.07 
Stomatal conductance (gs) (mmol m-2 s-1) 

62 188 ± 27  116 ± 38  213 ± 47 
80 65 ± 19a 193 ± 30b 125 ± 47ab 

104 50 ± 12 78 ± 18 103 ± 20 
Photosynthetic rate (Asat) (μmol m-2 s-1) 

62 10.9 ± 0.5 10 ± 1 11.5 ± 1.3 
80 9.4 ± 0.9ab 13.4 ± 1a 9.2 ± 1.2b 

104 3.7 ± 0.9 6.9 ± 1.6 7.5 ± 1.5 
 

Values are (mean ± SEM) (n=4). Different letters are significantly difference between 

rootstocks on each sampling date (P<0.05) (Two-way repeated measures ANOVA, Tukey’s 

test). 
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Table 2. Effect of kaolin spray treatment on Shiraz scion (Schwarzmann rootstock) water 
status, gas exchange properties, and cluster and leaf temperature. 

DAA Control* 
(no spray) 

Control 
(canopy) 

Control 
(cluster) 

Cluster Canopy 

Midday stem water potential (ψs) (MPa) 
62 -0.86 ± 0.03 -1.01 ± 0.03 -0.96 ± 0.05 -0.88 ± 0.04 -0.94 ± 0.03 
80 -1.07 ± 0.06 -1.12 ± 0.05  -1.2 ± 0.07 -1.13 ± 0.04 -1.16 ± 0.09 

104 -1.1 ± 0.05 -1.13 ± 0.03 -1.16 ± 0.04 -1.27 ± 0.05 -1.23 ± 0.07 
Midday leaf water potential (ψl) (MPa) 

62 -1.13 ± 0.07 -1.18 ± 0.09 -1.16 ± 0.09 -1.17 ± 0.08 -1.1 ± 0.05 
80 -1.31 ± 0.05 -1.46 ± 0.04 -1.46 ± 0.07 -1.47 ± 0.04 -1.49 ± 0.05 

104 -1.38 ± 0.06 -1.36 ± 0.04 -1.41 ± 0.04 -1.57 ± 0.05 -1.6 ± 0.08 
Stomatal conductance (gs) (mmol m-2 s-1) 

62 188 ± 27  183 ± 17 178 ± 11 150 ± 18 153 ± 27 
80 65 ± 19a 108 ± 31ab  103 ± 13ab 153 ± 27b 85 ± 25ab 

104 50 ± 12 93 ± 17 50 ± 12 93 ± 13 77 ± 27 
Photosynthetic rate (Asat) (μmol m-2 s-1) 

62 10.9 ± 0.5 11.4 ± 0.9 10.6 ± 0.4 9.9 ± 1 10.4 ± 1.4 
80 9.4 ± 0.9ab 8.3 ± 1.7ab 8.8 ± 0.7ab 10.6 ± 1.4a 5.4 ± 0.3b 

104 3.7 ± 0.9 6 ± 1.7  3.7 ± 0.9 4.8 ± 1.1 4.8 ± 1.1 
Cluster temperature (Tc) (°C) 

86 NM 37.8 ± 0.5 38.1 ± 0.6 37.9 ± 0.7 37.8 ± 0.4 
91 NM 33.8 ± 1.8 34.3 ± 0.8 33.3 ± 1.5 32.9 ± 1.2 

101 NM 28.5 ± 0.6 26.9 ± 0.8 29.1 ± 0.9 27.9 ± 0.8 
Leaf temperature (Tl) (°C) 

86 NM 35.7 ± 0.4 33.0 ± 1.2 36.4 ± 0.2 35.5 ± 1.1 
91 NM 31.5 ± 1.1 31.7 ± 1.3  29.1 ± 0.6 29.6 ± 1.2 

101 NM 26.2 ± 1.0 27.3 ± 0.4 26.6 ± 0.2 27.6 ± 1.0 
 

Values (mean ± SEM) (n=4) followed by different letters are significantly different between 
treatments on each sampling date (P<0.05) (Two-way repeated measures ANOVA, Tukey’s 
test) 

*Same data as for Schwarzmann rootstock trial 

NM = not measured 
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Table 3. Effect of shading treatment on Shiraz stomatal conductance, leaf temperature and 
photosynthetically active radiation at top of canopy on 80 DAA. 
 

Control Shaded 
gs (mmol m-2 s-1) 537 ± 97a 1091 ± 122b 
Tl (°C) 31.6 ± 0.4a 27.9 ± 0.1b 
Photosynthetically active radiation (𝝁𝝁mol m-2 s-1) 1752.0 ± 19.7a 587.3 ± 12.3b 

 

Values (mean ± SEM) (n=3) followed by different letters are significantly different (P<0.05, 

t-test). 
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Figure 1. Shiraz leaf carbon fixation at light saturation (Asat) as a function of stomatal 

conductance (gs) as affected by rootstocks (a), and kaolin spray treatment (b). One regression 

line (Asat = 0.274 + (13.99-0.274) × (1-exp (-0.00961×gs))) is shown in (a), as the regressions 

for three rootstocks were not significantly different (Extra Sum-of-Squares F-Test, P=0.52). 

For the kaolin treatments linear regressions fit better to the data than exponential associations 

and there was no difference between the fitted equations for the kaolin spray treatments 

(Extra Sum-of-Squares F-Test, P=0.0507) (Asat = 2.881 + 0.0413 × gs).  The regression from 

the rootstock is reproduced in (b) (dashed line). Control (dry) in (b) and Schwarzmann (a) are 

the same data. 
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Figure 2. Shiraz berry ripening evolution showing the effect of rootstock (a,d,g), kaolin spray 

treatments (b,e,h), and overhead shading (c,f,i) on berry mass, TSS and sugar per berry. 

Rootstocks: Schwarzmann (●), 140 Ruggeri (■) and 420 A (▲). Kaolin spray: control 

(canopy) (○), whole canopy (△), control (cluster) (*) and cluster (□). Shading: control (◊) 

and overhead shading (◆). Each point is mean ± SEM (n=4 except in c,f and i n=3). 

Different letters indicate difference between rootstocks over the entire period (Two-way 

repeated measures ANOVA, P<0.05). Fitted lines are exponential decays in a,b; straight lines 

in d,e,f; exponential associations in g,h,f. Where more than one curve is shown there was a 

significant difference between the fits. For the loss of mass after peak mass observed for 
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rootstocks and kaolin treatments only kaolin treatments showed a difference (less decrease in 

mass) (Extra Sum-of-Squares F-test, P = 0.009). 
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Figure 3. Evolution of Shiraz berry percentage loss of mass relative to peak in mass and 

living tissue showing the effect of rootstock (a,d), kaolin spray treatments (b,e), and overhead 

shading (c,f). Rootstock: Schwarzmann (●), 140 Ruggeri (■) and 420 A (▲). Kaolin spray: 

control (canopy) (○), whole canopy (△), control (cluster) (*) and cluster (□). Overhead 

shade: control (◊) and overhead shaded (◆).Each point is mean ± SEM (n=4 except in c and f 

n=3). Lower case letters indicate differences between rootstocks or kaolin treatments over the 

entire period (2-way repeated measures ANOVA, P<0.05). Upper case letters and Greek 

letters indicate differences within rootstocks or between shading treatments at single 

sampling days (2-way repeated measures ANOVA, P<0.05, Tukey’s test). Fitted lines are 

linear regression (a,e), exponential associations (b) and segmental linear regression (d). 

Where more than one curve is shown there was a significant difference between the fits 

(Extra Sum-of-Squares F test, P<0.05). 
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Figure 4. Evolution of Shiraz berry impedance per unit diameter showing the effect of 

rootstock (a), kaolin spray treatments (b). (a) Rootstocks: Schwarzmann (●), 140 Ruggeri 

(■) and 420 A (▲). (b) Kaolin spray treatment: control (○), bunch zone (□) and whole 

canopy (△).  Each point is mean ± SEM (n=4). Different lower-case letters indicate 

difference between rootstocks at single sampling day (2-way repeated measures ANOVA, 

P<0.05). Regression in (a) is exponential decay fit to combined data. 
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Figure 5. Loss of mass of berries as a function of living tissue of rootstocks, Schwarzmann 

(●), 140 Ruggeri (■) and 420 A (▲). Regressions are quadratic equations where 

Schwarzman and 140 Ruggeri show no significant difference (one combined curve is shown), 

but 420A is significantly different from the other two rootstocks (Extra Sum-of-Squares F-

Test P<0.05). Each point is mean ± SEM (n=4). 
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Figure 6. [O2] profiles (log scale) from 0.2 mm beneath the skin to 1.5 mm (1.3 mm in (d)) 

towards the centre of the berry at different stages of development for control and overhead 

shaded Shiraz. Sampling times in season 2014-2015 were 72 (a), 85 (b), 99 (c), 114 (d) DAA. 

Dashed lines indicate the approximate O2 saturation value for water at 25 °C. Control (◊) and 

overhead shaded (◆). Third order polynomial functions were fit to the data for each 

treatment in (b,c,d). Each point is mean ± SEM (n=3). Where separate curves are shown 

(b,c), the fitted lines were significantly different by F-test (P<0.05). 
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Figure 7. Dependence of berry living tissue on mean [O2] from 0.2 mm to 1.5 mm depth 

from the surface of the berry. Control (◊) and overhead shaded (◆). Fitted curves are 

Michaelis-Menten equations: Living Tissue (LT)=LTmax*[O2]/(Kd + [O2]). Fits are different 

for control (unshaded, orange solid line) (R2 =0.81) and shaded (black solid line) (R2 =0.85) 

berries (P=0.02). LTmax = 100 for both treatments, Kd = 18.3 ± 9.7 (SE) for control and Kd = 

9.3 ± 3.0 (SE) for shaded. Dashed line is Shiraz from another site (Xiao et al. unpubl. data 

2018). 
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Figure S1. Maximum daily temperature and daily rainfall during season 2014-2015 and 2016-

2017 in Adelaide (Kent Town weather station). Dashed black lines indicates day after 

anthesis (DAA) for veraison in the two seasons for Shiraz grown in the Coombe vineyard. 
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Figure S2. Effect of rootstocks, Schwarzmann (Sch), 140 Ruggeri (140 Ru), 420 A, on shoot 

pruning weight. Mean ± SEM (n=4). No difference found amongst rootstocks (One-way 

ANOVA, Tukey’s test). 
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Chapter 5 General discussion  

The growth and development of grape (Vitis vinifera L.) berries follows a double sigmoid 

pattern that can be delineated into three main phases as outlined previously; the last phase, 

that of berry shrinkage, is marked by loss of water and concentration of sugars and is, 

depending on cultivar, correlated with loss of cell vitality within the pericarp (Coombe and 

McCarthy, 2000; Fuentes et al., 2010; McCarthy and Coombe, 1999; Sadras and McCarthy, 

2007; Tilbrook and Tyerman, 2008). This shrinkage (dehydration or shrivel), is particularly 

common in Shiraz growing in warm wine regions and is usually accompanied by cell death 

(Bonada et al., 2013b). Cell death is characterized by a breakdown in cell membrane integrity 

that has been hypothesised as a phenological stage during berry ripening aiding seed dispersal 

in some cultivars (Caravia et al., 2015; Clarke et al., 2010; Fuentes et al., 2010; Tilbrook and 

Tyerman, 2009). Cell death and late ripening berry shrivel can be modulated by temperature 

and drought (Bonada et al., 2013a; Bonada et al., 2013b). They are associated with altered 

chemical composition and sensory characteristics of the berries (Bonada et al., 2013a; Suklje 

et al., 2016). This thesis has provided new knowledge and understanding of the phenomenon 

of berry cell death during late ripening. Firstly, Chapter 2 described the possible 

physiological cause of cell death, the occurrence of hypoxia within the berries, during berry 

ripening of Chardonnay and Shiraz. Second, Chapter 3 showed how water stress and elevated 

temperature affect Shiraz berry cell death and internal oxygen status. Lastly, Chapter 4 

reported on some preliminary trials for the mitigation of cell death and berry shrivel in Shiraz 

by examination of the effect of overhead shading, rootstocks and kaolin application. 

Cell death during late ripening in berry mesocarp of Vitis vinifera L. is cultivar dependent and 

correlates with berry dehydration in some cultivars (Fuentes et al., 2010). Late ripening 

dehydration and cell death are also modulated by temperature and drought. This is a concern 

for viticulture practice in warm regions. Because of global warming, the changing climate 
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might result in berries ripening under warmer months with more frequent stressful events 

such as heatwaves (Jones, 2007; Petrie and Sadras, 2008; Webb et al., 2011). Cultivars such 

as Shiraz, that commonly show berry cell death can have up to 30% yield loss due to berry 

shrivel (McCarthy and Coombe, 1999). Oxygen is essential to normal cell function. However, 

oxygen availability in the parenchyma of the grape berry mesocarp might be limited by high 

internal respiration demand and low gas intake. In Chapter 2, berry internal [O2] of 

Chardonnay, Shiraz and Ruby Seedless during berry ripening, was correlated with changes in 

berry cell vitality during ripening. There was a close similarity between the pattern of cell 

death across the berry mesocarp and [O2] profiles where the central regions of the mesocarp 

had both the highest cell death and the lowest [O2] in both Shiraz and Chardonnay berries. 

The roles of seed respiration and O2 permeation through pedicel lenticels were examined. 

First, seeds contributed to berry respiration substantially around veraison but decreased to a 

negligible demand late in ripening. Both seeded cultivars showed substantial amounts of cell 

death during ripening, while Ruby Seedless grapes maintained higher levels of cell vitality as 

well as higher internal [O2]. Second, lower lenticel surface area in Shiraz could be indicative 

of a greater restriction on O2 uptake compared to Chardonnay. The increased ethanol 

concentration within Chardonnay berries after blocking pedicel lenticels confirmed that 

lenticels are indeed an important pathway for oxygen uptake, and that blocking these gas 

permeable structures can lead to increased hypoxia in the berry mesocarp. O2 concentration 

increased towards the central axis corresponding to the presence of central air spaces 

visualised using x-ray micro-CT. These air spaces connect to the pedicel where lenticels are 

located, further confirming the critical function of lenticels for berry O2 uptake especially at 

high temperatures when respiratory demand is high. The results provide a basis for explaining 

the cultivar differences in cell death due to the presence of seeds and differences in lenticel 

morphology and surface area.  
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Because cell death and berry shrivel are modulated by ambient temperature and water stress, 

as an extension of the findings in Chapter 2, the connection was explored between cell death 

and berry internal [O2] in Shiraz berries grown under water and heat stress conditions in the 

field. Using micro-oxygen electrodes and micro X-ray CT analysis, Shiraz berry cell death 

was shown to be correlated with hypoxia in the mesocarp and decreased berry porosity (air 

spaces within the berry pericarp), perhaps induced by stress, that could potentially restrict the 

diffusion of O2 and lead to hypoxia and cell death. Berry internal [O2] decreased with both 

depth in Shiraz berry tissues and berry ripeness irrespective of growing conditions. The 

progression of cell death during berry ripening correlated with mean berry internal [O2] 

across all growing conditions. Water stress decreased Shiraz berry internal [O2] and increased 

ethanol accumulation and cell death. Total berry porosity decreased across the ripening 

period independent of treatment while locule cavity space increased. This suggested that 

earlier in ripening, Shiraz berry internal air spaces occur as fine pores and that later in 

ripening, locule air space becomes larger relative to the total berry volume. Air channels 

connected the internal air space to the pedicels, where lenticels occur at high density, similar 

to that which was observed Chardonnay berries using micro-CT in Chapter 2. This further 

confirmed the physiological importance of pedicel lenticels in gas exchange and oxygen 

uptake. Overall, the reduced berry internal [O2] is related to the reduction in porosity and 

percentage of living tissue. Cell death, and by implication berry shrivel, are strongly linked to 

oxygen supply and demand. Potentially any biotic or abiotic stress that may influence 

oxidative processes, berry respiration or berry anatomy will likely impact on cell death, with 

implications for oenologically relevant berry traits. 

Increased temperature advances the onset and increases the rate of CD in Chardonnay and 

Shiraz berries (Bonada et al., 2013b). This could relate to the temperature dependence of 

respiration. In pear fruit it was shown that increasing temperature should strongly increase 
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respiration rate but not to affect the gas diffusion properties resulting in predicted very low 

core [O2] (Ho et al., 2009). In Chapter 2 the direct measures of berry mesocarp [O2] profiles 

concur with this prediction. We also observed typical Q10 and activation energy for 

respiration of 2.47 and 2.27 for whole berry respiration rates between 10 and 40 oC for 

Chardonnay and Shiraz berries respectively, and blocking the pedicel lenticels at 40 oC that 

reduced respiration. Wine-grape berries ripen on the plant and can become considerably 

hotter than the surrounding air (Caravia et al., 2016; Smart and Sinclair, 1976; Tarara et al., 

2008). Transient high temperatures would create a large respiratory demand and low [O2] in 

the centre of the mesocarp as we observed. However, subsequent cooling during the night or 

during milder weather will reduce the respiratory demand and increase internal [O2] if the 

diffusivity for O2 remained the same. Water deficit can also modulate mesocarp CD and 

berry shrivel in Shiraz (Bonada et al., 2013a). Under field conditions (Chapter 3), the effect 

of water stress was dominant in comparison to elevated canopy ambient temperature, causing 

the onset of cell death to be advanced. In contrast to Bonada et al. (2013a), elevated 

temperature did not affect berry cell death under the experimental conditions imposed. 

Notwithstanding differences in seasonal base temperatures and possible acclimation caused 

by long term heating, it is interesting to note the very large difference in the onset of cell 

death in thermal time between the Bonada et al. (2013a) and my study. In contrast, the onset 

of cell death in time after anthesis was the same for the two studies and consistent across 

many previous studies on Shiraz berry cell death (Tilbrook and Tyerman, 2008).  This may 

suggest that cell death, and probably the development of hypoxia in the berry, although 

modulated by temperature and water stress, are strongly dependent on phenological timing 

relative to anthesis. How this timing could be “measured” by the berry/vine is not clear, but 

candidates could be day length or sugar accumulation in the berry.   
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Further research 

Oxygen concentration increased towards the central axis in both Chardonnay and Ruby 

Seedless grapes. As ripening progressed, there was a reduction of [O2] in the central axis in 

Chardonnay, however, this was not evident in Ruby Seedless. Differences in lenticel 

morphology could account for this difference in O2 availability in the central axis region. 

Therefore, classification of cluster morphology (pedicel length and cluster compactness) 

could be integrated in to [O2] monitoring during berry ripening across cultivars. Berry 

transpiration contributes to late ripening dehydration and might associate with the change of 

berry internal oxygen concentration. Oxygen status monitoring on berries attached to the 

vines in field conditions warrants further investigation. Furthermore, the resistance to 

hypoxia in table grape cultivars could result from genetic differences in metabolic regulation 

under hypoxia. The expression patterns and function of an important programmed cell death 

inhibitor gene VvBAP1 during berry development under water stress have been reported by 

Cao et al. (unpublished 2018). VvBAP1 inhibits cell death induced by ROS and is found to 

over expression in water stress berries (Cao et al. unpublished 2018). Further research could 

address the signal transduction mechanism of the upregulation of the gene and whether the 

expression of the gene and/or the triggering mechanism could be phenotypically different. 

The regulation of hypoxia-responsive genes was found to contribute to bud burst in 

grapevines, a highly oxygen-dependent development process (Meitha et al., 2018). N-end 

rule of protein degradation is important in regulating expression of hypoxia related genes in 

plants, including grapevine (Gibbs et al., 2011; Meitha et al., 2018). Enhanced hypoxia-

responsive ethylene responsive factor (HRE2) stability improves survival under hypoxia of 

Arabidopsis (Gibbs et al., 2011). Haemoglobin is an important O2 binding protein. Under 

hypoxia, maize root haemoglobin may contribute to maintaining ATP supply and to delay the 

onset of cell death (Sowa et al., 1998). The increased level of haemoglobin enhances survival 
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under hypoxic stress in Arabidopsis (Hunt et al., 2002). Hypoxia responsive protein levels 

and gene expressions in grape berries across cultivars during berry development warrant 

further investigation.  

The function of key signalling molecules such as reactive oxygen species (ROS) and the role 

of potassium relating to grape berry cell death are yet to be defined. Plant tissue oxygen 

status plays important signalling roles in developmental regulation (Considine et al., 2017; 

Gibbs et al., 2011). Hydrogen peroxide accumulation and the modulation of reactive oxygen 

species (ROS) scavenging enzymes potentially play an important role in controlling 

grapevine development, notably during events such as budburst and berry veraison 

(Considine et al., 2017; Pilati et al., 2007; Sudawan et al., 2016). ROS generation can be a 

signal in biotic and abiotic stress responses but can also be harmful causing oxidative stress 

(Noctor and Foyer, 1998). ROS generation is also linked with hypoxia in cells (Blokhina et 

al., 2001). The oxidative burst during berry ripening has been associated with altered lipid 

metabolism (Pilati et al., 2007) and large increases in expression of lipoxygenase genes 

occurs during ripening that may be important for flavour development (Podolyan et al., 

2010). Hypoxia-induced oxidative stress decreases lipid and membrane integrity (Blokhina et 

al., 2001), the latter being clearly evident in most wine grape berries by vitality stains 

(Tilbrook and Tyerman, 2008). In the meantime, increased CD in Shiraz grapes can be 

reflected by decreased extracellular electrical resistance indicating electrolyte leakage 

(Caravia et al., 2015). This leakage corresponds to the accumulation of potassium in the 

extracellular space of Merlot berries (Keller and Shrestha, 2014), a cultivar that also 

displayed cell death (Fuentes et al., 2010). It has been speculated that potassium and ROS 

regulation might be strongly connected during berry development involving oxidative 

processes. Research in this direction will add to the understanding of berry ripening and 

senescence (Rogiers et al., 2017).  
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Further field studies on the effect of application of kaolin and the use of rootstocks on cell 

death and berry shrivel are warranted. These would allow a more thorough examination of 

effectiveness of the kaolin and the performance of rootstocks in relation to berry water 

retention under drought and heat stress. 
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