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ABSTRACT  
 

Global warming and ocean acidification are forecast to exert significant impacts on marine 

ecosystems, while intensive exploitation of commercial marine species has already caused large-

scale reorganizations of biological communities in many of the world’s marine ecosystems. Whilst 

our understanding on the impact of warming and acidification in isolation on individual species has 

steadily increased, we still know little on the combined effect of these two global stressors on 

marine food webs, especially under realistic experimental settings or real-world systems. We 

particularly lack evidence of how the top of the food web (piscivores and apex predators) will 

respond to future climate change (ocean warming and acidification) because responses of ecological 

communities could vary with increasing trophic level. The picture is further complicated by the 

interaction of global and local stressors that affect our oceans, such as fishing pressure. Accurate 

predictions of the potential effects of these global and local stressors at ecosystem-levels require a 

comprehensive understanding of how entire communities of species respond to climate change. 

Mechanistic insights revealed by a combination of different approaches such as experimental 

manipulation of food webs, and integrated with ecosystem modelling approaches provide a way 

forward to improve our understanding of the functioning of future food webs. In this thesis, I show 

how the combined effect of such global and local stressors could affect a three trophic level 

temperate marine mesocosm food web and how these outcomes could be translated to predict the 

response of ecological communities in a four trophic level natural food web. Using a sophisticated 

mesocosm experiment (elevated pCO2 of approximately 900 ppm and warming of +2.8°C), I first 

modelled how energy fluxes are likely to change in marine food webs in response to future climate. I 

experimentally show that the combined stress of acidification and warming could reduce energy 

flows from the first trophic level (primary producers and detritus) to the second (herbivores) and 

from the second to the third trophic level (carnivores). Although warming and acidification jointly 

boosted primary producer biomass, most of it was constrained to the base of the food web as 

consumers were unable to transfer unpalatable cyanobacterial production up the food web. In 

contrast, ocean acidification affected the food web positively by increasing the biomass from 

producers to carnivores. I then developed a unique approach that combines the empirical data on 

species response to climate change from our mesocosms experiments with historical population 

data (fisheries biomass and catch data) to predict future changes in a natural food web. I 

incorporated physiological and behavioural responses (complex species-interactions) of species from 

primary producers to top predators such as sharks within a time-dynamic integrated ecosystem 

modelling approach (Ecosim). I show that under continuation of the present-day fishing regime, 
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warming and ocean acidification will benefit most of the higher trophic level community groups (e.g. 

mammals, birds, demersal finfish). The positive effects of warming and acidification in isolation will 

likely be reduced under their combined effect (antagonistic interaction) which is likely to be further 

negated under increased fishing pressure, decreasing the individual biomass of consumers. The total 

future fisheries biomass, however, will likely still remain high compared to the present-day scenario. 

This is because unharvested species in present day fishery will likely benefit from decreased 

competition and an increase in biomass. Nevertheless, ecological indicator such as the Shannon 

diversity index suggests a trade-off between biomass gain and loss of functional diversity within food 

webs. The mechanisms behind the increase in biomass at higher trophic level consumers and a 

decrease in the biomass of lower trophic levels is mostly driven by the increasing top down control 

by consumers on their prey through increasing trophic interaction strength and a positive response 

of some of the prey groups under warming irrespective of acidification. I show that in a future food 

web, temperature-driven changes in direct trophic interactions strength (feeding and competition) 

will largely determine the direction of biomass change (increase or decrease) of consumers due to 

higher mean interaction strength (magnitude of change). In contrast, although acidification induces 

a relatively small increase in trophic interaction strength it shows a much larger change in the 

percent interactions altered for indirect interactions. Hence, ocean acidification is likely to propagate 

boosted primary consumer biomass to higher trophic levels. The findings of this thesis reveal that 

warming in combination with acidification can increase trophic interaction strengths (top down 

control), resulting in a reorganization of community biomass structure by reducing or increasing the 

biomass of resources and consumers and a loss of functional diversity within the food web. Also, the 

degree to which warming and acidification will be beneficial or detrimental to functional groups in 

future food webs will largely depend on how interaction strengths affects individual consumers or 

resource groups due to multi-trophic species interaction, the availability of prey resources and the 

complexity of the food web considered (e.g. three or four trophic level and more diverse ecological 

communities).
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CHAPTER I 
 

GENERAL INTRODUCTION 
 

1. Global Ocean in the Anthropocene 

The global ocean covers 71% of Earth’s surface and makes up 97% of the Earth's water, making Earth 

unique and unusual among planets (Bounama et al., 2007) Global oceans have an important role in 

regulating climate and life on our planet (Hoegh-Guldberg &  Bruno, 2010). However, growing 

human pressures are having profound and diverse consequences for the global ocean. Starting with 

the Industrial Revolution (c.1750), atmospheric carbon dioxide (CO₂) has been increasing at an 

unprecedented rate, predominantly driven by fossil fuel combustion and deforestation (Doney et al., 

2009). Anthropogenic greenhouse gas emissions have resulted in significant changes in the physical 

and chemical properties of the ocean (Barros et al., 2014, Hartmann et al., 2013). By absorbing 

approximately 93% of the extra energy arising from anthropogenic greenhouse gas emissions, global 

oceans to some extent temper global warming. However, global oceans have experienced an 

average increase of approximately 1 °C (0.89 °C from 1901–2012) in global sea surface temperatures 

(Stocker, 2014). While atmospheric CO₂ levels have risen by approximately 40% within the last two 

centuries (reaching 400 ppm in 2014) (Blunden &  Arndt, 2016), global oceans have absorbed 

approximately 30% of this, resulting in decreasing ocean pH and fundamental changes in ocean 

carbonate chemistry (Stocker, 2014). Thus, rising atmospheric CO₂ has been considered one of the 

most critical problems that humanity faces today because of its pervasive and irreversible effects 

globally on ecological timescales (Council, 2011). While other chemical and physical changes occur in 

the oceans due to anthropogenic forcing, such as decrease in dissolved oxygen concentrations 

(Andrews et al., 2012) and alteration of ocean circulation, the primary direct consequence of rising 

atmospheric CO₂ is ocean warming (Bindoff et al., 2007) and ocean acidification (Doney et al., 2009). 

Here after climate change refers both ocean warming and ocean acidification.  The widespread 

ecological impacts of these two global stressors, from polar terrestrial to tropical marine 

environments, present increasing risks to marine life and ecosystems (Gattuso et al., 2015, 

Nagelkerken &  Connell, 2015, Poloczanska et al., 2013). 

 



3 
 

1.2 Ocean warming  

The consequences of ocean warming are diverse and include changes in physical, chemical, and 

biological aspects of the ocean. Some of the physical and chemical changes in ocean condition 

include sea ice melting, sea level rise, decreased solubility of oxygen, and changes in the frequency 

of regional climate anomalies (Kim et al., 2009). Growing evidence undoubtedly indicates that 

warming causes diverse biological effects on ocean ecosystems and its life from microorganisms to 

algae to top predators (Brierley &  Kingsford, 2009). 

Ocean warming influences the ecophysiology (Pörtner, 2010), distribution (Perry et al., 2005), 

phenology (Edwards &  Richardson, 2004), productivity (Cheung et al., 2011, Cheung et al., 2010, 

Cheung et al., 2013, Fernandes et al., 2013), and diversity across many marine taxa (Beaugrand et 

al., 2015, Harley, 2011, Tittensor et al., 2010). While many of the above studies conducted to date 

help improve our understanding of how climate change can influence marine organisms in the global 

ocean, we are still deepening our understanding of how ocean warming will affect top predators, 

such as certain species of fish. Detecting similarities among fish populations in response to climate 

change is difficult as individual species tend to differ widely in their response (Rijnsdorp et al., 2009). 

 

Most fish are ectotherms and thus fishes have relatively low energetic expenditures. The low 

energetic demand, however, comes at the expense of temperature-dependent metabolic and 

physiological performance (Angilletta et al., 2004, Griffen, 2017). Temperature has a strong and 

direct influence on metabolic processes by changing digestion and physical performance of marine 

ectotherms. Thus, metabolic rate is expected to increase with increasing temperature (Clarke &  

Fraser, 2004, Ege &  Krogh, 1914, Hans O. Pörtner et al., 2006). Since the biological performance of 

species is extremely sensitive to temperature, most of the species cannot perform well outside their 

natural thermal window (Angilletta Jr &  Angilletta, 2009, Kearney &  Porter, 2009). This may result 

in reduced somatic growth and reproduction (Pörtner et al., 2001), and considerably influences their 

biology and geographical distribution depending on their realized thermal niches (Bozinovic et al., 

2011, Hans O. Pörtner et al., 2006, Stuart-Smith et al., 2017). 

 

1.3 Ocean acidification  

The study of how ocean acidification affects marine biota has attracted considerable attention in the 

last decade. There have been tremendous efforts during this period to increase our understanding of 

how ocean acidification may affect individual organisms and communities. It is widely recognised 

that ocean acidification lowers pH levels, potentially exerting significant impacts on many calcifying 
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organisms (Hofmann et al., 2010). On the other hand, although recent progress on the potential 

effect of acidification on other taxa, such as fishes is promising; we are still unable to make any 

generalization out of it due to the fact that the effects of acidification are not consistent among fish 

species (Kroeker et al., 2013). Ocean acidification can raise the energetic costs involved with 

calcification and acid-base regulation (Kroeker et al., 2013, Pörtner, 2008). Acidification lowers the 

saturation state of calcium carbonate which makes the production of hard calcified parts difficult for 

species like corals and shellfish, thus affecting their growth and survival (Hoegh-Guldberg et al., 

2007, Orr et al., 2005). Therefore, it is not surprising that most of the earlier studies of ocean 

acidification have focused on calcifiers. However, recent efforts suggest that ocean acidification can 

exert significant negative effects on other organisms as well, including fishes, by affecting embryonic 

development (Tseng et al., 2013), tissue/organ health (Frommel et al., 2011), larval and juvenile 

growth (Baumann et al., 2011), metabolism (Franke &  Clemmesen, 2011, Miller et al., 2012), fitness 

(Franke &  Clemmesen, 2011), behaviour (Devine et al., 2012, Dixson et al., 2010, Domenici et al., 

2012, Ferrari et al., 2012, Munday et al., 2009, Simpson et al., 2011), capability of successful 

settlement of larval fish (Rossi et al., 2015), and reducing the ability of food search efficiency for 

predatory sharks (Pistevos et al., 2015). Many of the changes driven by ocean acidification are 

related to alterations of species behavior, as organisms fail to respond appropriately to homing cues 

(Munday et al., 2009, Rossi et al., 2018) and predatory and alarm cues (Dixson et al., 2010, Ferrari et 

al., 2017). While there is ample evidence that ocean acidification can negatively affect the growth of 

calcifying taxa, the growth of opportunistic species such as diatoms and fleshy algae can be boosted 

(Kroeker et al., 2013). These studies highlight a pressing need for a greater understanding on the 

effect of acidification at the population (across different life history stages) and the community level.  

 

1.4 Influence of combined climate stressors on marine organisms 

While there is evidence that ocean warming and ocean acidification in isolation can greatly influence 

marine biota, we are yet to develop a comprehensive understanding on the combined effect of 

these two co-occurring global stressors. Studies suggested that the impact on organisms varies in 

direction and magnitude depending on whether stressors were tested in isolation or in combination 

(Ferrari et al., 2015, Kroeker et al., 2013, Nowicki et al., 2012). In the natural environment, 

organisms are subjected to the multi-stressor effect of human-induced global change. The response 

of species to these effects may be synergistic, additive or even antagonistic depending on species-

specific sensitivities and related ecological processes (Fulton, 2011, Seabra et al., 2015).  
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Therefore, it is increasingly important to account for warming and acidification on the future of 

marine biota. In fact, an increasing number of studies indicate that warming and acidification 

together can influence a diverse range of marine organisms by affecting their survival, calcification, 

growth and abundance (Byrne &  Przeslawski, 2013, Crain et al., 2008, Garzke et al., 2016, Paul et al., 

2015, Przeslawski et al., 2015), body size, and fatty acid composition (Garzke et al., 2016). Warming 

and acidification together can also influence metabolic and foraging rate, and thus primary and 

secondary production (Nagelkerken &  Connell, 2015). Warming and acidification also interactively 

affect marine organisms by changing their energy budgets (Bozinovic &  Pörtner, 2015). 

 

In spite of all these efforts, our understanding of the combined effects of warming and acidification 

has been largely hindered by a lack of experiments that are conducted at the food-web level and 

incorporating higher-trophic level species. This is important because experiments on the level of 

food webs with representative ecological complexity has the potential to capture both direct and 

indirect effects of altered consumer–resource interactions  which could play a pivotal role in 

influencing species response and shaping the overall community structure. Most of the studies on 

the combined effect of warming and acidification have targeted invertebrates, or the egg and larval 

stages of fishes, but have not considered food web that comprised several trophic levels and a 

diversified food web community. Therefore, experiments that include multiple stressors, multi-

trophic levels, and diversified communities should be at the frontline of future research to test the 

response of organisms and communities to climate change in the 21st century. 

 

1.5 Food-webs in the context of climate change 

 

1.5.1 Direct negative effect of ocean warming  

The responses of species to global change are not individual-based; they are connected through a 

network of trophic relationships within and across trophic levels (Van der Putten et al., 2010, 

Walther, 2010). The flow of energy in a food web from lower trophic level to higher trophic levels is 

determined by various biological interactions (e.g., predator-prey relationships, competition, 

facilitation, and mutualism) of species that are directly or indirectly linked to adjacent trophic levels 

(Doney et al., 2012, Woodward et al., 2010). The sensitivity and response of individual species under 

climate change could be influenced by these biological interactions and could have cascading effects 

on other species at the same trophic level or the next trophic levels above or below. Thus, the 
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response of individual organisms or functional groups could differ significantly when considered at a 

food web level.  

Climate change can have a diverse and contrasting impact on the different trophic levels of a food 

web. For example, one of the prevailing concepts of our understanding of the effects of increasing 

temperature on food webs is that consumer production is predominantly controlled indirectly by 

temperature effects on primary production through boosted productivity that propagates up the 

food web (Cushing, 1982). However, metabolic theory of ecology (Brown et al., 2004) suggests 

that strong top-down control by consumers could be more important under warming, as 

heterotrophic (respiration-limited) metabolism is more sensitive to warming than autotrophic 

(photosynthesis-limited) metabolism and production. This metabolism driven difference can 

induce mismatches between resource supply and consumer demand between two successive 

trophic levels (López-Urrutia et al., 2006). This may have far-reaching consequences when we 

consider three- or more trophic-level food chains because food chain length can alter the 

response of organisms at different trophic levels (Hansson et al., 2013).  

 

Climate change can independently affect, or synergistically amplify, the effect of other disturbances 

such as habitat modification and decouple, alter, or concentrate energy flows towards a smaller 

number of species, removing alternative feeding pathways in the food web (Brook et al., 2008, 

Tylianakis et al., 2008). Although, studies suggest that synergies among the multiple ecosystem 

stressors are not the most common, and other interaction types such as antagonistic and additive 

effects should also be considered in ecosystem studies (Côté et al., 2016). The different types of 

interactions between multiple ecosystem stressors could result in a modified food web through 

major structural changes such as shifts in the number of trophic groups and links within a food web 

or a major change in the energy flow and shifts in the biomass of functional groups, affecting 

ecosystem functioning (Yvon-Durocher et al., 2015). 

 

Besides reducing the net energy flow to the next trophic level within a food web, climate change can 

also weaken the energy transfer efficiency between primary producers and consumers by weakening 

or decoupling trophic linkages (Sommer &  Lengfellner, 2008). Climate change driven boosts in 

productivity may therefore not necessarily transfer to higher trophic levels or be converted to an 

increase in productivity for the species at the next trophic level (Goldenberg et al., 2017). An 

increase in dominance of herbivory-resistant primary producers, such as some species of the 

cyanobacteria, can also potentially divert productivity into alternate food web pathways, which are 

unavailable to higher trophic levels (Davis et al., 2010, Diaz &  Rosenberg, 2008). Cyanobacteria, and 
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other less desirable weedy species such as turf algae, have been forecast to increase in dominance 

due to global warming (Hansson et al., 2013, Paul, 2008). This increase in the dominance of 

undesirable weedy species at the bottom of the food web combined with the higher energetic 

demand of the predators (metabolism driven) can jeopardise intermediate trophic levels, with 

unknown consequences for the higher order trophic levels of the food web. Alternatively, collapse in 

the biomass of important food web species at intermediate or higher trophic levels could also open 

a window of opportunity for highly voracious, short-lived predatory species at higher trophic levels 

(e.g. cephalopods), which can reshuffle overall community structure of the food web.  

 

1.5.2 Accounting for species interactions within food webs 

Ecological communities consist of many species that frequently interact with each other. These 

consumer-resource interactions are particularly important in food web dynamics since they 

determine the majority of energy fluxes between individuals, and through ecological communities 

and ecosystems (Dell et al., 2014). Climate change can profoundly affect species interactions 

(Tylianakis et al., 2008) and can strengthen top down control within food web (Marino et al., 2018). 

However, most of the predictive models ignore important biotic interactions when forecasting 

climate change effects on biota. 

 

The effect of direct and indirect biotic interactions is further exemplified via its potential upward or 

downward cascading effect within the food webs. For example, a prey which is directly linked to its 

predator through feeding interactions may also be involved in direct interference as a competitor if 

it shares a prey species with its predator. Species at different trophic levels also vary in their 

sensitivity to warming due to differences in metabolic rates (Allen et al., 2005). Therefore 

considering ecological complexity in addition to species physiological response to external 

perturbation is important to predict the consequences of climate change (warming and acidification) 

induced cascading effects on future food webs. For example, the direct negative effect of a global 

stressor (e.g. acidification) could be dampened by an indirect positive effect (e.g. mediated by 

changes in food availability), meaning it is important to consider complex ecological responses 

across the food web (Goldenberg et al., 2018, Sswat et al., 2018). 

 

Even though direct negative effects of global stressors are predicted for organisms, including fish, 

crustaceans, and calcifying herbivores, some species have been observed to increase in density at 

natural analogs of ocean acidification representing near-future CO2 levels (Connell et al., 2017, 

Nagelkerken et al., 2017).  A similarly positive response, such as an increase in growth in some 
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species, has been observed under warming when food (prey resources) is not a limiting factor 

(Pistevos et al., 2015).  

 

Crustaceans can serve as an important link (as prey) between benthic primary production, benthic 

predators as well as for pelagic environments, and are often less sensitive than many other 

invertebrates to acidification (Wittmann &  Pörtner, 2013). Such resilience in lower-trophic-level 

prey species could be important for food webs facing external perturbations. Prey species which can 

maintain their abundance (e.g. via a high reproductive rate) in the face of increased predation due to 

warming, can positively affect community structure by sustaining the densities of predators.  

 

1.5.3 Adaptation and plasticity in species  
 

Species are always not uniform in their entities, but are composed of different populations that vary 

in phenotypic plasticity and their thermal niches, and thus can be adapted to local conditions 

(Valladares et al., 2014). The plasticity and potential adaptation may affect species production and 

distributions in a warming climate. Particularly actively foraging animals such as fish could pose 

greater plasticity because of their diversified diet (Duffy et al., 2007), capability of reacting quickly to 

external perturbation through their mobility, and complex behaviour (Goldenberg et al., 2018, 

Tuomainen &  Candolin, 2011), and have remarkable capacity in using the complexity of their 

environment to adjust to abiotic stress (Schmidt et al., 2010). Therefore, understanding the response 

of species community characterized by such capacity (plasticity) to global change is particularly 

challenging. Additionally, some species such as those living in shallow coastal areas could experience 

a wide range of environmental variability that overlap in their thermal tolerance and thus may be 

more adapted to local conditions. For example, recent study (Goldenberg et al., 2018) showed that 

the realised thermal niche of many shallow-water coastal species in temperate South Australia is 

warmer than the mean average summer temperature of the coast. This suggests that higher thermal 

tolerances would not be unexpected for some of the temperate fish species. On the contrary, 

several earlier studies indicated that tropical species have narrower thermal niches than temperate 

species (Araújo et al., 2013, Pörtner &  Farrell, 2008, Sunday et al., 2011). 

 

The potentially diverse response of species to global stressors implicates that predicting the impact 

of climate change on future food webs is not straightforward. The response of organisms and 

communities to ocean warming is likely to be largely influenced by the trophic structure, availability 

of prey resources, predator behaviour, species interaction, trophic strengthening, diversity, 

plasticity, local adaptation the emergence of alien species and geographical distribution. The picture 
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is further complicated by the interaction of global and local stressors that affect our oceans, such 

as fishing pressure, eutrophication, and habitat modification (Halpern et al., 2008). Fishing can 

also induce greater variability in the ecosystem by cascading effects where top predators are 

selectively removed from the system and short-lived opportunistic groups flourish. Thus, the 

interactive effects of global and local stressors make it more difficult for fisheries managers to 

formulate fixed management guidelines.  

 

1.6 Thesis aim and approach 

Whilst our understanding of the impact of warming and acidification in isolation on species has 

steadily increased, we still know little of the combined effect of these two global stressors on marine 

food webs, studied in ecologically more realistic experimental setting or real-world systems (field 

experiments). Since warming and acidification co-occur and will be doing so in the future it is 

important to investigate their potential combined role in shaping future marine communities and 

ecosystem function. Although meta-analysis reveals some potential impact of these two stressors on 

various organisms, the effects at ecosystem level can only be inferred from this. Most studies have 

been conducted either on a single species, with stressors in isolation, over short time scales 

(typically days to weeks), or in microcosm studies, and are therefore unable to capture the 

complexity of whole food webs.  

 

A range of modelling approach have been developed to project future changes in populations of 

fisheries and food web under ongoing climate change (Brown et al., 2010, Fulton, 2011, Griffith et 

al., 2012, Griffith et al., 2011, Olsen et al., 2018, Ortega-Cisneros et al., 2018, Weijerman et al., 

2015). Most of these projections, however, are based on species thermal niches, ignoring the 

potentially large role of indirect (e.g. shifting predator-prey relationships) and interactive stressor 

effects (e.g., with ocean acidification) on model outcomes. Although a few studies have been taken a 

step forward to improve our understanding of how multiple stressors such as warming, acidification, 

and fishing interact and affect marine community (Griffith et al., 2012, Koenigstein et al., 2016), they 

lack incorporation of realistic, opposite of theoretical,  biotic interaction in response to future 

climate change. 

 

Food webs can provide complex yet tractable descriptions of species interactions, biodiversity and 

ecosystem structure (Dunne et al., 2002). A recent study, using a representative food web 

experiments, showed that ecological complexity can buffer many of the impacts of future climate 
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change (warming and acidification) on marine consumers (Goldenberg et al., 2018).  We particularly 

lack evidence of how the top of the food web (piscivores and apex predators) will respond to future 

climate change.  This is challenging because piscivores and apex predators are difficult to study in 

experimental approaches within a food web context and therefore it is challenging to gather these 

data experimentally. Mechanistic insights into the responses of future food webs to global and 

local stressors requires a combination of different approaches such as experimental manipulation 

of food webs, integrated with ecosystem modeling approaches (Stewart et al., 2013). 

 

By combining large-scale multi-level mesocosm food web experiments and food web modelling 

tools, both static as well as dynamic (Ecopath with Ecosim), my thesis provides a better 

understanding of the response of future marine food webs to the combined effects of ocean 

warming and ocean acidification. Additionally, this study to the best of my knowledge, for the first 

time models marine food webs under two global stressors in conjunction with local stressors such as 

fishing.   

This thesis assessed the following specific aims: 

1. Examine whether global warming and ocean acidification enhance energy fluxes through 

bottom-up effects that stimulate primary productivity (Chapter 2). 

2. Determine whether biomass of lower trophic levels will dominate the future structure of 

marine food webs or allow opportunistic groups to divert productivity to alternative 

pathways (Chapter 2). 

3. Show how the interaction between two global stressors (ocean acidification and warming) 

potentially affects future food webs and fisheries stocks of a temperate coastal ecosystem 

(Chapter 3). 

4. Verify whether fishing effort as an additional local stressor amplifies or lessen the response 

of these two global stressors (ocean acidification and warming) (Chapter 3). 

5. Predict how the change in relative trophic interactions strength (change in magnitude) of 

direct and indirect interactions alter (increase or reduce) the direction of biomass change for 

different food web groups under future global change (Chapter 4). 

 

1.7 Thesis outline 

Each thesis chapter is outlined below. 

Chapter 1 
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In chapter 1, I provide a general introduction to climate change research in marine ecosystems and 

identify existing knowledge gaps that need to be addressed to improve our understanding of the 

response of future food webs to global change. 

Chapter 2 

Marine ecosystem functioning is maintained by the flow of energy from primary producers to 

predators which could be seriously hampered by perturbations. Disturbances can decouple, alter, or 

concentrate energy flows towards a smaller number of species or remove alternative feeding 

pathways in the food web. This can open the window for opportunistic species to flourish and shift 

ecosystems to a different state. In chapter 2, I examine the combined effect of global warming and 

ocean acidification on the energy fluxes through a marine food web. Using a sophisticated 

mesocosm experiment that mimics temperate rocky reefs, I model energy flows through a species-

rich multi-level food web, with live habitats and natural abiotic variability. I show how future climate 

change can potentially weaken marine food webs through reduced energy flow to higher trophic 

levels and a shift towards a more detritus-based system, leading to food web simplification. 

Chapter 3 

Marine ecosystems and fisheries stocks are facing significant challenges due to the cumulative (and 

potentially synergistic) effects of multiple global and local stressors such as overfishing. Past 

attempts to project future changes in communities and food webs under climate change 

incorporated the direct impact of temperature on species physiology but largely ignored in-situ 

responses of species interaction to climate change. Species interactions have the potential to affect 

predator-prey relationships and thus shape future marine communities. In chapter 3, I examine how 

the combinations of two global stressors (ocean acidification and warming) affect future food webs 

and fisheries stocks. This was achieved through an integration of experimental data that includes 

species physiology and species interactions to global warming within an ecosystem modelling 

approach. I used a time dynamic Ecosim model simulation approach to predict the future state of 

fisheries and food web of a temperate marine food web at 2100. The climate models were 

manipulated based on the experimental data compared to the base model (no change scenario at 

2100) Additionally, I examined how fishing effort as an additional local stressor affect the response 

of these two global stressors. 

Chapter 4 

Consumer-resource interactions are of particular importance in food web dynamics since they 

determine the majority of energy fluxes between individuals and communities within the food web. 



12 
 

Quantifying the strength of consumer-resource interactions, both direct and indirect, is essential for 

understanding how ecological communities are organized and how they respond to any internal or 

external perturbations. In the previous chapter (chapter 3), I showed the potential future state for 

fisheries and food web in response to 21st century climate change. In this chapter (chapter 4), I 

explain the underlying mechanisms that drive such changes in the future food web. Specifically, I 

examine and show how changes in relative trophic interaction strength (change in magnitude) of 

direct and indirect species interactions are likely to alter (increase or reduce) the direction of 

biomass change for different food web groups under future global change. 

Chapter 5 

In chapter 5, I discuss the overall significance of this study and the advances it has made to the field 

of climate change research. Whilst our understanding on the impact of warming and acidification in 

isolation on species has steadily increased, we still know little on the combined effect of these two 

global stressors on marine food webs, studied in an ecologically more realistic experimental setting 

or real-world systems. However, even the more complex and realistic experimental setting is not 

good enough to directly simulate the potential future state of a natural food web and fisheries due 

to its scale limitation. Therefore, a holistic approach that considers a combination of different 

approaches such as experimental manipulation of food webs, and integrated with ecosystem 

modelling approaches could be a way forward to improve our understanding of the functioning of 

future food webs. In the first chapter, I show the potential future state of a marine mesocosm food 

web and then used the information from mesocosm experiment to build dynamic food web models 

and predict the future state of a four trophic level natural food web. I also describe the mechanism 

behind the dynamic response of the food web at different scale and trophic levels. Finally, I outline 

the strengths and weaknesses of the approaches used in this thesis with possible directions for 

future research. 

 

Thesis 

Each data chapter (2 - 4) has been written in the form of an individual scientific paper and therefore 

uses article formatting. A list of co-authors and their contributions to the paper has been highlighted 

in the statement of authorship for each data chapter. A comprehensive reference list is included at 

the end of each chapter. Chapter 2 has already been published in a peer-reviewed journal.  
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Climate change could drive marine food web collapse through altered trophic flows and 

cyanobacterial proliferation 

 

SUPPLEMENTARY METHODS  

 

A. Data collection and parameter estimation 

 

Each of the twelve mesocosms had a surface area of 6.02 m2 with a water depth of 0.74 m. For the 

model parameterization, the vertical wall of our mesocosm was considered as an extended 

horizontal habitat since the mesocosm walls acted as rich habitat for benthic producers and served 

as a feeding ground for many of the mesocosms prey and predator communities. The total surface 

area considered per mesocosm, therefore, covered a true benthic habitat surface of 2.14 m2 (rocky 

reef = 0.60 m2; seagrass = 0.60 m2; sand = 0.92 m2) and a wall habitat of 3.89 m2.  

 

Twelve food web models were built to represent the response of our mesocosms under different 

climate scenarios. Each climate treatment comprised three independent mesocosm food web 

models (see Table in S8,S9, S10 and S11 Tables for individual model descriptions). We used 

mesocosm-specific biomass data of each functional group for individual model inputs, whereas other 

input parameters (such as P/B, Q/B and diet data) were averaged across treatments. The food web 

models simulated a southern hemisphere summer period equivalent to 4 months (mid-March to 

mid-July 2015; maintained at treatment level. See S5 Fig for details). All parameters were 

standardized per unit surface area using wet weight (WW) for biomass (g WW.m-2), while energy 

flows are expressed per month. There are indeed various ways of expressing units of energy, one of 

which is carbon. However, in studies of marine ecosystems, energy flows are most often 

represented as wet weights. Furthermore, in our study, a substantial part of our data to quantify 

energy transfer rates was directly measured as wet weight. Therefore it is logical to use wet weight 

as the measure of unit for this experiment because it avoids uncertainty associated with converting 

the data to other measures.   

 

The output (energy flow and transfer efficiency) of these food web models are presented in Fig 1. A 

schematic diagram shows the different phases of model building and execution (S7 Fig).  
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The food web models consisted of 17 functional groups (ranging from primary producers to 

herbivores to carnivores across three trophic levels). Functional groups were categorized and 

grouped according to their similarities in ecological traits, such as feeding habits, size, habitat use, 

predator and life cycle [1].  

 

We considered FishBase [2] and stomach content analysis (bio-volume) of the fishes in this study to 

allocate them to the different feeding guilds within the model. Two herbivorous fish species Girella 

zebra and Acanthaluteres vittige [2] partly consumed animal material which is not unusual for the 

juvenile life phase. However, they predominantly preyed on plant matter (~ 94%) in this experiment 

and therefore we considered them as herbivores. Each model included four functional groups of 

fish, two groups of invertebrates, one group of filter feeders, two groups of crustaceans, two groups 

of zooplankton, one group of benthic organisms, four groups of primary producers, and one detrital 

group.  

 

We mostly used data from the mesocosms for estimating food web model parameters and creating 

the diet matrix for the different functional groups (Table in S12, S13, S14 and S15 Tables). In case of 

missing data for model parametrization, parameters were derived from empirical equations and the 

scientific literature (S16 Table).  

 

Fish identification and grouping: At the beginning of the mesocosm experiment, fishes were placed 

onto a small tray with a ruler and then photographed with a camera (Canon EOS 60D). Every 

individual fish was measured for total length from the photographs using ImageJ software [3]. 

 

At the end of the experiment, individual fish length (total and standard length, cm) and wet weight 

were measured after carefully removing excess water by blotting with a paper towel. The weight of 

individual species for each mesocosm was summed, and biomass estimates were calculated as 

weight/area (g WW.m-2) for each mesocosm food web. Production/biomass (P/B) ratios are difficult 

to estimate directly. Therefore the P/B was considered to be equivalent to the instantaneous rate of 

total mortality (Z) [4], calculated as the negative natural logarithm of survival rate from the 

following equation,  

 

                                                                        )ln(SZ                                                             (4) 
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where S (total survival rate) = the number (N) of animals alive at the end of the experiment at time 

t+1 divided by the number alive at the start of the experiment at time t and expressed as,  

 

                                                                        )/( 1 tt NNS                                                        (5) 

Since our mesocosms are an unexploited (no fishing mortality) system, and there was no natural 

mortality for benthic carnivorous fish groups, initial P/B ratio was estimated as 0.001 (and not 0) for 

compatibility with Ecopath.   

 

The food consumption per unit of biomass (Q/B) was estimated by dividing the average food 

consumption over the entire experimental period by average biomass gained by species/functional 

groups. Food consumption by fish species was calculated using feeding trials and based on 12 hours 

of feeding per day. The average biomass gained was calculated by deducting the average initial 

weight from the average final weight per species per mesocosm. The initial weight for each species 

was calculated using the length at the start of the experiment, based on an exponential growth 

model because it provided a better fit to the data compared to linear and non-linear growth models 

[5]. Therefore, the initial fish length was converted to wet weight using an exponential linear 

regression model derived from final length-weight data, 

 

                                                                                                                           (6) 

 

where   = weight at length “x”,   = the constant with a value of x+1,   = rate of growth (when > 0) 

or decay (when < 0) and, x = length.  

 

Herbivorous macroinvertebrates: Biomass of large herbivorous macroinvertebrates (e.g. Bulla 

quoyii, Phasianella australis, and Thalotia conica) was measured directly as wet weight (g WW.m-2) 

for each mesocosm at the end of the experiment. These macroinvertebrate species were considered 

for this model group due to their relatively large size (>1g).  P/B ratios were calculated following 

Equation 4. The Q/B ratio was calculated by dividing the total food consumption over the entire 

experimental period by total species biomass. We assumed that the consumption rate was similar 

throughout time. Feeding trials were conducted to determine the food consumption rate of 

herbivorous macroinvertebrates. Ten quadrats were randomly placed per mesocosm (20 × 20 cm) 

and allowed to grow turf for a week without herbivorous snails. Then snails were allowed to feed on 

five quadrats for 24 hours. Quadrats with and without grazing were then collected and scraped off 

algal turf. Freshly collected turf hold a lot of water and create large variability in biomass 
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measurements. Therefore, turf samples were first dried in an oven for 48 h at 65 °C and 

subsequently converted to wet weight using a standardised factor of 10 [6]. We converted dry 

weight back to wet weight as the latter was the parameter used for all other groups too. Feeding 

rate was calculated from the average turf weight of both grazed and non-grazed quadrats and used 

to calculate Q/B ratio for herbivorous macroinvertebrates in each mesocosm. The Q/B ratio 

calculated from the feeding trials for “acidification and temperature” treatments was not reliable 

due to the very low standing biomass of herbivorous macroinvertebrates (due to high treatment-

related mortality), so we used the average of acidification and temperature treatment as a model 

input for “acidification and temperature”.  

 

Small epifaunal invertebrates: Small epifaunal invertebrates comprise several groups of species 

such as small-sized herbivorous gastropods (average range 0.16-0.92 g; e.g., Turbo undulates, 

Clanculus sp.) occupying the open sandy habitat, and other small invertebrate herbivores (chitons, 

limpets, amphipods, juvenile abalone, juvenile sea urchins), detritivores (polychaetes, brittle stars), 

and predators (small sea stars and crabs) from the rocky reefs. Small-sized herbivores were counted, 

and their biomass was measured directly as wet weight to the nearest 0.1 g at the end of the 

experiment. Where individual animals were difficult to weigh due to their small size, individuals 

were pooled and weighed together as a group. The biomass of small epifaunal invertebrates was 

measured as wet weight (g WW.m-2).   

 

It was difficult to directly estimate P/B and Q/B ratios for the small epifaunal invertebrates in our 

mesocosms. We therefore used data from a similar ecosystem [7] to assign a P/B value of 3.67 and 

Q/B value of 18 for small epifaunal invertebrates group in control conditions. The estimates come 

from the Te Tapuwae o Rongokako (TTMR) ecosystem model [8], which has a similar ecological and 

biological setting to our system, comprising a temperate coastal intertidal and subtidal ecosystem 

with both rocky reef and soft sediments. The predation pressure on small epifaunal invertebrates 

varied among the treatments. Since predation can cause an increase in population turnover rate [9] 

we adjusted P/B ratios for each treatment according to the predation pressure on small epifaunal 

invertebrates by consumers (fish) relative to the control tank. Accordingly, P/B ratio of the control 

treatment tank was multiplied by a factor of 1.94, 1.85, and 1.44 to calculate P/B ratio for 

acidification, temperature and acidification and temperature treatments, respectively. Since 

approximately 89% of small epifaunal invertebrate biomass comprised herbivorous species, we 

opted to use the same relative factors derived from macroinvertebrate consumption data to adjust 

Q/B ratio for small epifaunal invertebrates.  
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Filter feeders: Filter feeders (e.g. sponges, ascidians, tunicates, bivalves) were collected from rocky 

reefs (see above) and biomass was estimated as wet weight (g WW.m-2) for each mesocosm food 

web. We estimated the P/B and Q/B ratio using data from closely-related temperate marine systems 

[10-12]. We applied the same value across treatments because filter feeder biomass collapsed under 

the temperature and the combined temperature and acidification treatments.  

 

Shrimps: Biomass of shrimps was estimated directly as final wet weight (g WW.m-2) for each 

mesocosm. The production over biomass (P/B) ratio and consumption over biomass (Q/B) ratio were 

obtained from empirical relationships following [13] and published sources for non-fish groups 

[8,14]. 

 

Tanaids, copepods, and meiobenthos: We collected tanaids, copepods, and meiobenthos samples 

twice from each mesocosm during the experimental period, using three types of benthic samplers 

(small cages), specifically designed to estimate 1) biomass (entirely open and accessible to predators 

for measurement of standing biomass), 2) production (covered with ~ 5 mm mesh size to exclude 

herbivores for measurement of production), and 3) as procedural controls (covered with mesh, but 

open at the sides, allowing predators to enter). Two replicate samplers of each of the three types 

were placed in each mesocosm and replicated over two time periods. The six samplers within each 

mesocosm at any one time were placed randomly keeping an equal distance from each other to 

reduce the likelihood of confounding factors. After extraction with Ludox TM colloidal solution, all 

tanaids, copepods, and meiobenthos from each sampler were counted under a stereomicroscope. 

Large tanaids shrimps (~ 2-5 mm in length) were weighed on a microscale (± 0.1 mg). For smaller-

sized copepods (~ 0.2-1 mm long) and meiobenthos (~ 0.6-5.3 mm), a subsample (7.5% for each 

sample by randomly selecting 30 out of the 400 cells on a counting tray) was photographed to 

determine average individual mass (biovolume) using ImageJ. In total, 368 individuals from 3 groups 

were measured using ImageJ (copepods n=159, polychaetes and oligochaetes n=65, and nematodes 

n=138) to determine their biovolume. Only for copepods, the treatment-specific average individual 

mass was used to calculate total biomass since biovolume of copepods differed between climate 

treatments (ANOVA: F(1,155)=4.13, p=0.0438). Data were pooled for the two periods to get a 

representative biomass value for each of these functional groups.  

 

The turnover rate (P/B) for tanaids and meiobenthos was calculated by dividing production over the 

experimental period by the standing biomass. We did not include data from one mesocosm (of the 
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control treatment) to calculate biomass and production of meiobenthos due to a malfunction of the 

sampler. We used the same consumption rate per unit of biomass (Q/B) for tanaids and 

meiobenthos across treatments, based on [10]. The sampling method used to estimate copepod 

production did not work well due to the large mesh size used relative to copepod body sizes, and 

probably also due to the presence of carnivorous copepods inside the cage. Copepods are 

considered as one of the major prey items for shallow benthic carnivores as well as shallow water 

species [15]. We therefore used estimates of P/B and Q/B ratio for copepods from a closely related 

shallow, rocky reef dominated temperate marine ecosystem [8,16-18]. We assigned an average P/B 

value of 108.70 and Q/B value of 336.98 to parameterize the control model. We then adjusted the 

P/B ratio for other models based on the relative predation pressure on copepods by fishes compared 

to control treatments. Since production and consumption rate of functional groups is positively 

correlated, based on data provided in [18], Q/B ratio was further adjusted based on the 

corresponding P/B ratio through simple linear regression (Y = 3.5739X – 51.536; R2=0.98). We used 

the same P/B and Q/B ratio across all treatments.  

 

Microzooplankton biomass was measured by filtering 400 L of water from each mesocosm through a 

plankton sampler at the end of the experiment. Initially, all samples were checked under a 

stereomicroscope to visually confirm the presence of a significant proportion of microzooplankton in 

the samples. Samples were rinsed through a 38 µm mesh sieve and then poured into a 100 ml 

measuring cylinder and allowed to settle for 24 hours, after which settling volume (ml) was 

recorded. Settling volumes were converted into displacement volumes using a factor of 0.35 for 

samples without gelatinous zooplankton [19]. Displacement volumes were converted to biomass 

(mg wet-weight) using a factor of 800 [20]. The P/B and Q/B ratio for microzooplankton was based 

on [8,11,12,17,21]. 

  

Primary producer groups (phytoplankton, phytobenthos, mat-forming algae, macrophytes): Four 

litres of water was filtered from each mesocosm with Whatman GF/C glass fiber filters of 4.7 cm 

diameter to estimate phytoplankton biomass. Phytobenthos samples were collected using the 

benthic samplers described earlier. The biomass (measured via Chlorophyll a) of both phytoplankton 

and phytobenthos was measured following [22]. The phytoplankton biomass value was converted 

into square meter units by multiplying by the euphotic depth (0.74 m). Both the phytoplankton and 

phytobenthos values were then converted to wet weight using two successive conversion factors 

[23]. The first was to change Chlorophyll a to carbon using a 
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40:1 – carbon to Chlorophyll a ratio 

 

The second conversion factor was used to convert carbon to wet weight using 

 

 Wet weight = Carbon × 10 

Macrophytes and mat-forming algal biomass were sampled from all habitats (rock, seagrass, and 

open sand) at the end of the experiment. All samples were dried in an oven at 65 °C for 24-48 hrs. 

Then, a conversion factor of 10 was applied to convert dry weight (g C.m-2) to wet weight (g WW.m-2) 

[6]. 

 

P/B ratios for primary producer groups were estimated by measuring the community photosynthesis 

of each mesocosm. First, we used published P/B ratios for phytoplankton [8,18,24], phytobenthos 

[8,24], mat-forming algae [25,26] and macrophytes [8,27] from closely related shallow temperate 

marine ecosystems to calculate a standard average P/B ratio for primary producer groups. We then 

used these ratios to estimate a relative production rate for each functional group and their 

corresponding P/B ratios from in situ community photosynthesis using the following equation 

(separately for each mesocosm),  

   

 
  ⁄  {

(  
  ⁄    )     

∑  
  ⁄    

 
  

   
}   ⁄  

 

where    ⁄  is turnover rate calculated for group i as model input,     
  ⁄  is the standard average 

turnover rate assigned for group i,    is the biomass of group i sampled from each mesocosm, 

∑  
  ⁄     is the total theoretical production for all functional groups, CM is the community 

photosynthesis measured in situ from the mesocosm, {
(  

  ⁄    )    

∑  
  ⁄    

 
  

   
} is the calculated 

production of functional group i to total community production measured in each mesocosm. 

 

The average P/B value across treatments was used as the final model input. The assumption made 

here is that the variability in P/B ratio is only biomass driven. Thus the sum of all relative production 

(for the four producer groups) equals total community production.  
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Community photosynthesis (primary production) was measured as gross oxygen production (mg 

O2.m
-3.min-1) based on production rates measured during daytime (net production) and consumption 

rate during night time (respiration):  

 

Gross production = Net production + Respiration. 

 

Each mesocosm had 14 hours of daytime and 10 hours of night time. The community photosynthesis 

was measured once per mesocosm at the end of the experiment. Mesocosms were sealed off from 

the atmosphere with a transparent plastic cover and seawater O2 concentration was measured at 1-

min intervals over a 30 min period (HQ40d Portable Meter, sensor LDO101, HachTM). Both net 

community production and respiration values were transformed using following equation, 

 

(mg O2.m
-2.day-1) × 0 .375×2×10 = mg WW.m-2.day-1 

 

where 0.375 is used to converts mass of oxygen to the mass of carbon and is a ratio of moles of 

carbon to moles of oxygen (12 mg C / 32 mg O2 = 0.375); 2 is multiplied to convert carbon to dry 

weight and then multiplied by 10 again for dry weight to wet weight. Finally, the gross production 

was calculated as g WW.m-2 per 4 months   for initial model input.  

 

Detritus: First, the benthic detritus layer was carefully separated from phytobenthos and 

zoobenthos (if any) from the top of the experimental samplers with a micro-spatula. Then the 

sediment samples were filtered through pre-combusted and pre-weighed Whatman GF/C glass fiber 

filters. Both the layer and extract were then oven-dried at 65 °C for 24-48 hrs. Finally, the dry weight 

was converted to wet weight (g WW.m-2) using a factor of 5 [28]. Detritus was considered to be 

particulate organic matter (POM) only.   

 

Diet composition of functional groups: A diet matrix was constructed based on feeding rates 

measured in the final month of the experiment. Prior to measurement, all fishes were starved for 20 

hrs and then released into their respective mesocosm for 4 hrs of free feeding before they were 

caught again and frozen immediately using a  liquid nitrogen Dewar (-196 0C) and placed in a cold 

freezer (-20 0C) afterwards. Fish stomach contents were then analyzed under a stereo microscope 

by counting individual taxa (such as tanaids shrimp, copepods, bivalve shell and annelids) and 

weighing the total fish stomach content. The weight of different prey (g) was then calculated by 

multiplying the average individual body mass of corresponding prey to the count of each sample. 
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Finally, the relative weight of different prey groups was calculated based on their relative 

contribution to the total prey weight and assigned for individual fish species. Diet composition of 

some functional groups was supplemented by local studies and relevant literature [8,10-

12,17,27,29].  

 

Seagrass: Previous lab studies found that maintaining seagrasses in indoor mesocosms is extremely 

difficult. We therefore had no other option than to use artificial seagrass to provide species with an 

important habitat for sheltering. This decision was made because habitat heterogeneity can have 

important implications for predator–prey interactions or heterospecific interactions [30,31] that are 

not captured by the model which is based on a homogenous environment. The predator–prey 

interactions are crucial to incorporate, to deliver a more realistic outcome at the food web level that 

can be strongly mediated by factors like habitat type and presence. We observed that these artificial 

seagrasses were frequently used by fish, shrimp and snails to obtain food and for sheltering 

purposes [32,33] and as such created a similar habitat to live seagrass beds that some of the species 

associate with in nature. The use of artificial seagrasses in itself is not expected to have major direct 

effects on the magnitude of energy flow or growth or turf algae and cyanobacteria. 

 

B. Mass-balance modelling in Ecopath 

 

Ecopath is a mass-balanced trophic model, which is grounded in general ecological theory [34-36]. 

Tests of Ecopath have proved the model capable of capturing real ecosystem dynamics in a variety 

of different ecosystem, ranging from temperate to tropical systems [37]. We used Ecopath to model 

the food webs in our mesocosms using linear equations for 17 functional groups. The 

parameterization of an Ecopath model is based on satisfying two ‘master’ equations: one for 

production (equation 1) and the other for the energy balance (equation 4)  

 

The production of each group was calculated as (1):  

 

Production = predation mortality + biomass accumulation + net migration + other mortality (1) 

 

and, written as: 

 

 )1(2 iiiiiii EEPBAEMBP                                    (2) 
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where Pi is the total production rate of group (i), Bi is the biomass of a group (i), M2i is the 

instantaneous predation rate for group (i), E
i 
is the net migration rate (emigration - immigration), 

BA
i 

is the biomass accumulation rate for (i), EEi is the ecotrophic efficiency of (i) describing the 

proportion of the production utilized in the system, and (1 − EEi) represents mortality other than 

predation. 

 

This formula incorporates all the production (or mortality) except gonadal products which are 

assumed to be ending up being eaten by other groups, hence here considered under other 

mortality. Therefore Equation 2 can be expressed as:  

 

0)/()/(
1

 


ii

n

j

jijjiii BAEDCBQBEEBPB                   (3) 

 

where P/Bi is the production/biomass ratio for (i), Q/Bj is the consumption/biomass ratio of the 

predator ( j) and DCji is the fraction of prey (i) in the average diet of predator (j). All other variables 

are the same as those described for Equation 2. 

 

The energy input and output of all living groups is balanced using equation (4):  

 

Consumption = production + respiration + unassimilated food                                                  (4) 

 

and, written as: 

  

UAiRiPiQi                                                                                                                         (5) 

         

where Qi is consumption by a group (i), Pi is total production of group (i), Ri is respiration of a group 

(i) and UAi is the unassimilated food of group (i). 

 

C. Model balancing and validation 

 

Prior to model balancing, a set of pre-balancing (PREBAL) analyses was used to assess whether data 

abide by the general rules/principles of ecosystem ecology [38]: (i) biomass of functional groups 

should span 5–7 orders of magnitude when arranged against their trophic levels; (ii) the slope of 



54 
 

biomass (on a logarithmic scale) by functional groups should decline by 5–10% across all the taxa 

when arranged against trophic levels; (iii) there  is a general decline of vital rates (P/B; Q/B) across 

taxa/trophic levels with increasing trophic level [7,38]. Our tests showed that these general 

ecological rules were met by our model (S8 andS9 Figs). 

  

We applied a manual mass-balanced procedure, using a ‘top-down’ approach (starting with the top 

predator groups and moving down the food web to balance inconsistencies) adjusting the input 

parameters of those groups ‘out of balance’ (EE > 1). The ecological models were considered 

balanced when the following thermodynamic and ecological rules were met [7,39]. 

 

1. Ecotrophic efficiency (EE) < 1. EE is a measure of the proportion of production that is utilized 

by the next trophic level through direct predation. The value for EE can never exceed 1.0 as 

it is not possible for more production to be passed on to the next trophic level than was 

originally produced. 

2. Gross food conversion efficiency (GE) between 0.1 and 0.35. 

3. Net efficiency > GE. Net efficiency is the value for food conversion after accounting for 

unassimilated food. GE can never exceed Net efficiency. 

4. Respiration/assimilation biomass (RA/A) ratio < 1.0. The proportion of biomass lost through 

respiration cannot exceed the biomass of food assimilated. 

5. Production/respiration (P/RA) ratio < 1.0. This ratio expresses the fate of assimilated food. 

 

To achieve mass balance, we modified parameters with the highest levels of uncertainty, such as the 

diet matrix. Since biomass estimates were based on high-precision sampling, they were not 

modified. To obtain mass balance, we adjusted the diet matrix of non-fish groups such as filter 

feeders for the control and temperature models and small epifaunal cryptic invertebrates, filter 

feeders, tanaids and copepods for acidification and combined acidification and temperature models. 

We also had to manually adjust the diet data for omnivorous fishes in the temperature and 

combined acidification and temperature models. This is because diets of omnivorous fish are difficult 

to estimate by using gut content data alone [40]. We had to adjust P/B or Q/B ratio for tanaids to 

lower down the expected range for temperature and acidification and temperature models [1]. A 

model default value of 0.2 (dimensionless) was set for unassimilated consumption rate for all 

groups, except zooplankton where 0.3 was used [8]. Once balanced, EE values were < 1 for all 

functional groups confirming that the model fulfilled the first basic requirement of thermodynamic 

and ecological rules. The net efficiency was also lower than the gross food conversion efficiency. The 
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gross food conversion efficiency (P/Q), production/respiration (P/RA) and the respiration over 

assimilation (RA/A) were within the expected ranges [1]. The resulting output parameters and the 

final diet matrix are shown for each model (S8, S9, S10, S11, S12, S13, S14 and S15 Tables). 

 

Pedigree index and quality of the model: The robustness of our Ecopath models was assessed 

through a ‘Pedigree index.' The pedigree of a model addresses the problem of propagating 

uncertainty, providing an index of model confidence. Pedigree values were assigned to each 

parameter for each group and then an overall model ‘Pedigree index,' P, was calculated: 

 

  ∑
    

 

 

   

 

 

where Ii,p is the pedigree index value for group i and input parameter j for each of the n living groups 

in the ecosystem; j can represent either B, P/B, Q/B, Y or the diet composition [1].  

 

The P scales between 0 and 1 (inclusive). Models with a pedigree value ≥ 0.6 are considered robust 

[41]. The pedigree index P is, however, a function of the number of groups in the system. We 

therefore also calculated an overall measure of fit, t* 

  

     
√   

√    
 

 

where n is the number of living groups in the given model. 

 

The pedigree index for each of our mesocosm models was 0.71 (a measure of fit t=3.819), indicating 

that our models are robust [1,42].  
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SUPPLEMENTARY FIGURES 
 
 
 

 
 

 

 

S1 Fig. Absolute flows (gWW/m2/month) produced by the different functional group at 

trophic level 2. Mean ± SE values per mesocosm are given (n=3). Significant interactions or 

main effects (p<0.05) within functional groups are based on two-way ANOVAs (df=1, 8) and 

are indicated with asterisks. Means with different lower case letters indicate significant 

difference among treatments based on post-hoc tests corrected for false discovery rate and 

done separately for different functional group. No Sig = no significance. See S4 Table for 

statistical test outcomes. 
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S2 Fig. Absolute flows (gWW/m2/month) produced by the different functional group at 
trophic level 3. Mean ± SE values per mesocosm are given (n=3). Significant interactions or 
main effects (p<0.05) within functional groups are based on two-way ANOVAs (df=1,8) and 
are indicated with asterisks. Means with different lower case letters indicate significant 
difference among treatments based on post-hoc tests corrected for false discovery rate and 
done separately for different functional group. No Sig = no significance. See S5 Table for 
statistical test outcomes. 
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S3 Fig. The Finn’s cycling index, expresses the amount of detritus that is recycled relative to 
the total throughput of the system. Mean ± SE values per mesocosm are given (n=3). 
Significant effects (p<0.05) are based on two-way ANOVAs with ocean acidification (OA) and 
warming (T) (df=1, 8) and are indicated with asterisks. Means with different lower case 
letters indicate significant difference among treatments. See S3 Table for statistical test 
outcomes. 
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S4 Fig. The different structural components of the mesocosm used for this experiment. Each 
mesocosm comprises four ‘rocky reef’ patches (A) and four ‘artificial seagrass’ patches 
(B).The space in between and around these patches was considered ‘open sand’ habitat (C). 
The incoming seawater was led into two header tanks (800 L) at the beginning of the flow-
through facilities, and from there gravity fed into each mesocosm (D). The header tank was 
pre-conditioned to future pCO2 levels with pure CO2 (control system ACQ110 Aquatronica, 
Italy) prior to supplying the water to the 6 acidified mesocosms. In addition, continuous 
water circulation (~ 1,800 L per h) was maintained between each mesocosm and a 60 L 
supporting bin positioned next to each mesocosm that was bubbled heavily with enriched 
air at 1,000 ppm pCO2 (PEGAS 4000 MF Gas Mixer, Columbus Instruments, Columbus, Ohio) 
or ambient air at 400 ppm pCO2, depending on the acidification treatment. These bins also 
contained the submersible titanium heaters for the elevated temperature treatments. A 
diffuser pipe was used to generate a mild circular current inside the mesocosms using the 
water exchange between supporting bin and mesocosm and alternating direction every 6 
hrs (E). A filter column (~ 20 µm) allowed water to flow back into the 60 L bin by gravity (F), 
and ensured that larger organisms were always retained within the mesocosms. In 
summery, this technically complex set-up ensured a mesocosm environment without 
unnatural disturbances such as pump noise, air bubbles or electrical currents. A 250W metal 
halide lamp (Osram Powerstar HQI-T 250/D/PRO) mounted just above the mesocosm (G) 
ensured an irradiance that corresponded to approx. 6-7 m water depth in Gulf St. Vincent 
(Phillips et al. 1981). 
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S5 Fig. Variability in pH and temperature over the 6-month study period. This includes three 

phases: 1) the first week of the acclimation period 2) the progressive elevation to treatment 

levels, and 3) at maintained treatment levels. Mean ± SD are shown based on three 

mesocosms for each treatment. pH and temperature were both measured once daily in 

each mesocosm around midday.  
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S6 Fig. Diurnal variability in pH measured over a 5-day period in the middle of the study 

period. This analysis was only done for 1 mesocosm per treatment combination, serving as 

an example. For these 4 mesocosms in parallel, pH was recorded at 30-min intervals with an 

automated pH logger (control system ACQ110 Aquatronica, Italy). 

 
  



62 
 

 

 

 

 

 

S7 Fig. Schematic diagram showing the different phases of model building and execution: A) 

Data collection from the mesocosms and parameter estimation, B) Mass-balance modelling 

in Ecopath, and C) Model balancing and validation. 
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S8 Fig.  PREBAL of the control and acidification models plotting (a) biomass estimates (g 
WW/m2), (b) production/biomass ratio (per 4 months), and (c) consumption/biomass (per 4 
months) on a log scale vs functional groups ranked by their trophic level, from lowest to 
highest trophic level. A constant of 1 was added to all response variables to avoid some 
negative values (Log10 (X+1) prior to PREBAL plotting. For specific functional group name 
refer to the legend. Herb. = herbivorous. PREBAL is shown only for base models that are 
built on the average of all the input parameters (B, P/B, Q/B) across mesocosms within each 
climate treatment.   
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S9 Fig.  PREBAL of the temperature  and temperature+ acidification models plotting (a) 

biomass estimates (gWW/m2), (b) production/biomass ratio (per 4 months), and (c) 

consumption/biomass (per 4 months) on a log scale vs functional groups ranked by their 

trophic level, from lowest to highest trophic level. A constant of 1 was added to all response 

variables to avoid some negative values (Log10 (X+1) prior to PREBAL plotting. For specific 

functional group name refer to the legend. Herb. = herbivorous. PREBAL is shown only for 

base models that are built on the average of all the input parameters (B, P/B, Q/B) across 

mesocosms within each climate treatment.   
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SUPPLEMENTARY TABLES 
 
S1 Table. Analysis of variance of the effects of ocean acidification (OA) and warming (T) and their 
interaction on absolute flows and transfer efficiency between successive trophic levels of the food 
web. Significant differences are indicated with asterisks, with *: p < 0.05, **: p < 0.01 and ***: p < 
0.001.  
 

Response variable [transformation] Source of variation df MS F P 

a) Absolute flow (Trophic level 1) OA 1 20432 0.34 0.574 

 
T 1 244178 4.09 0.077 

 
OA × T 1 119 0.00 0.965 

 
Residuals 8 59686 

  
b) Absolute flow (log10)  (Trophic level 
1 to 2) 

OA 1 
<0.001   0.00 0.943    

 

T 1 0.81 25.81 0.001 ** 

 

OA × T 1 0.46 14.74 0.005 ** 

  Residuals 8 0.03     

c) Absolute flow (Trophic level 2 to 3) OA 1 0.21 0.03 0.857 

 

T 1 264.78 43.06 <0.001*** 

 

OA × T 1 14.20 2.30 0.167 

  Residuals 8 6.15     

d) Transfer efficiency  (Trophic level 1 
to 2) 

OA 1 
1.1 0.01 0.931 

 

T 1 1586.1 11.22 0.010** 

 

OA × T  1 416.1 2.94 0.124 

  Residuals 8 141.4     

e) Transfer efficiency (Trophic level 2 
to 3) 

OA 1 
0.6 0.31 0.594 

 

T 1 4.3 2.39 0.160 

 

OA × T  1 8.0 4.44 0.068 

  Residuals 8 1.8     

 
Degrees of freedom (df), mean squares (MS), F-ratio (F), P-value (P). 
  



66 
 

S2 Table. Analysis of variance of the effects of ocean acidification (OA) and warming (T) and their 
interaction on living biomass by trophic levels of the food web. Significant differences are indicated 
with asterisks, with *: p < 0.05, **: p < 0.01 and ***: p < 0.001.  
 

Response variable [transformation] Source of variation df MS F P 

a) Living biomass (log10) (Trophic level 1) OA 1 0.117 10.62 0.012** 

 
T 1 0.161 15.33 0.004** 

 
OA × T 1 0.068 6.46 0.035* 

 
Residuals 8 0.011 

  
b) Living biomass (log10)  (Trophic level 
2) 

OA 1 
0.003  0.254 0.627     

 

T 1 0.569 44.91 0.000 *** 

 

OA × T 1 0.061 4.84 0.059  

  Residuals 8 0.013     

c) Living biomass (log10) (Trophic level 3) OA 1 0.002 0.36 0.564 

 

T 1 0.552 94.87 0.000*** 

 

OA × T 1 0.058 10.01 0.013** 

  Residuals 8 0.006     

 
Degrees of freedom (df), mean squares (MS), F-ratio (F). 
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S3 Table. Analysis of variance of the effects of ocean acidification (OA) and warming (T) and their 
interaction on cyanobacteria (% cover), flow (%) to detritus, and Finn’s cycling index in the food web. 
Significant differences are indicated with asterisks, with *: p < 0.05, **: p < 0.01 and ***: p < 0.001.  
 

Response variable  
Source of 
variation 

df MS F P 

a) Cyanobacteria (% cover) OA 1 216.10 0.89 0.372 

 
T 1 4815.20 19.89 0.002** 

 
OA × T 1 1158.40 4.79 0.060 

 
Residuals 8 242.00 

  b) Flow to detritus (%) OA 1 4.50 0.01 0.912 

 

T 1 3164.90 9.12 0.017* 

 

OA × T 1 981.70 2.83 0.131 

  Residuals 8 347.10     

c) Finn’s cycling index  OA 1 0.14 0.10 0.758 

 
T 1 12.98 9.31 0.016* 

 
OA × T 1 1.83 1.31 0.285 

  Residuals 8 1.39     

 
Degrees of freedom (df), mean squares (MS), F-ratio (F), P-value (P). 
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S4 Table. Analysis of variance of the effects of ocean acidification (OA) and warming (T) and their 
interaction on the absolute flows of contributing functional groups from trophic level 1 to 2. 
Functional groups were ordered in terms of their contribution to total energy flows. Significant 
differences indicated with asterisks, with *: p < 0.05, **: p < 0.01 and ***: p < 0.001. 
 

Response variable (transformation) 
Source of 
variation 

df MS F P 

a) Herbivorous macroinvertebrates 
(log10) OA 1 0.60 2.85 0.130 

 
T 1 0.85 4.00 0.081 

 
OA × T 1 1.14 5.39 0.049* 

 
Residuals 8 0.21 

  b) Meiobenthos         OA 1 44.37 0.50 0.500 

 
T 1 1096.82 12.30 0.008** 

 
OA × T 1 279.13 3.13 0.115 

 
Residuals 8 89.20 

  c) Copepods OA 1 430.6 1.31 0.285 

 
T 1 4687.5 14.26 0.005** 

 
OA × T 1 1214.4 3.70 0.090 

 
Residuals 8 328.6 

  d) Small epifaunal invertebrates         OA  1 426.94 3.29 0.107 

 
T 1 740.92 5.70 0.044* 

 
OA × T 1 287.70 2.21 0.175 

 
Residuals  8 129.97 

  e) Herbivorous fishes     OA 1 20.619 0.95 0.358 

 
T 1 11.213 0.52 0.493 

 
OA × T 1 2.604 0.12 0.738 

 
Residuals 8 21.755 

  f) Filter feeders         OA 1 0.10 0.02 0.903 

 
T 1 142.50 22.10 0.001** 

 
OA × T 1 2.21 0.34 0.574 

 
Residuals 8 6.44 

  g) Tanaids (log10)       OA 1 1.20 4.41 0.069 

 
T 1 1.21 4.47 0.068 

 
OA × T 1 0.11 0.42 0.534 

 
Residuals 8 0.27 

  h) Macro-crustaceans   OA 1 1.16 0.42 0.537 

 
T 1 0.86 0.31 0.594 

 
OA × T 1 1.88 0.67 0.435 

 
Residuals 8 2.79 

  i) Microzooplankton         OA 1 0.21 1.88 0.207 

 
T 1 0.47 4.08 0.078 

 
OA × T 1 0.01 0.05 0.823 

 
Residuals 8 0.12 

  j) Carnivorous fishes (benthic) OA 1 0.05 8.47 0.020* 

 
T 1 0.10 17.58 0.003** 

 
OA × T 1 0.05 7.93 0.023* 
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Residuals 8 0.01 

  k) Omnivorous fishes  OA 1 0.01 3.84 0.085 

 
T 1 0.02 7.98 0.022* 

 
OA × T 1 <0.00 0.05 0.817 

 
Residuals 8 <0.00 

  l) Carnivorous fishes (log10)    OA 1 0.01 618.02 <0.001*** 

 
T 1 0.03 1306.41 <0.001*** 

 
OA × T 1 0.02 902.34 <0.001*** 

  Residuals 8 0.00     
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S5 Table. Analysis of variance of the effects of ocean acidification (OA) and warming (T) and their 
interaction on the absolute flows of contributing functional groups from trophic levels 2 to 3. 
Functional groups were ordered in terms of their contribution to total energy flows. Significant 
differences are indicated with asterisks, with *: p < 0.05, **: p < 0.01 and ***: p < 0.001. 
 

Response variable 
(transformation) 

Source of 
variation 

DF MS F   P 

a) Omnivorous fishes (log10)  OA 1 0.15 7.06 0.029* 

 
T 1 0.39 18.59 0.003** 

 
OA × T 1 0.04 1.72 0.226 

 
Residuals 8 0.02 

  b) Filter feeders         OA 1 1.39 0.55 0.479 

 
T 1 78.21 30.97 0.001*** 

 
OA × T 1 11.91 4.72 0.062 

 
Residuals 8 2.53 

  c) Carnivorous fishes (benthic) OA 1 0.81 6.29 0.037* 

 
T 1 0.95 7.45 0.026* 

 
OA × T 1 0.06 0.48 0.506 

 
Residuals 8 0.12 

  d) Small epifaunal invertebrates         OA 1 0.35 0.81 0.393 

 
T 1 2.12 4.90 0.057 

 
OA × T 1 1.46 3.38 0.103 

 
Residuals 8 0.43 

  e) Herbivorous fishes (log10)       OA 1 0.00 0.03 0.865 

 
T 1 0.01 0.37 0.561 

 
OA × T 1 0.08 2.51 0.152 

 
Residuals 8 0.03 

  f) Carnivorous fishes   OA 1 0.13 8.13 0.021* 

 
T 1 0.01 0.65 0.443 

 
OA × T 1 0.23 14.86 0.005** 

 
Residuals 8 0.02 

  g) Tanaids (log10)       OA 1 0.23 4.41 0.069 

 
T 1 0.23 4.47 0.067 

 
OA × T 1 0.02 0.42 0.534 

 
Residuals 8 0.05 

  h) Macro-crustaceans   OA 1 0.01 0.42 0.536 

 
T 1 0.01 0.31 0.594 

 
OA × T 1 0.02 0.68 0.435 

  Residuals 8 0.03     
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S6 Table. List of species/taxa and their respective functional group considered in the mesocosm food 
webs.  
 
 

Functional 
group 

Common name Species/taxon Stocking density 
/mesocosm 

Initial 
size 

 Status 

Carnivorous 
fishes 

Small-mouthed 
hardyhead 

Atherinosoma 
microstoma 

10 24 ± 5* 
randomly 
distributed 

Omnivorous 
fishes 

Little weed 
whiting 

Neoodax 
balteatus 

7 30 ± 8* 
randomly 
distributed 

  
Blue weedy 
whiting 

Haletta 
semifasciata 

7 31 ± 4* 
randomly 
distributed 

Carnivorous 
fishes (benthic) 

Longfin goby 
Favonigobius 
lateralis 

7 22 ± 4* 
randomly 
distributed 

Herbivorous 
fishes 

Zebrafish Girella zebra 7 17 ± 2* 
randomly 
distributed 

  
Toothbrush 
leatherjacket 

Acanthaluteres 
vittige 

7 30 ± 8* 
randomly 
distributed 

Herbivorous 
macro-
invertebrates 

Brown bubble 
snail 

Bulla quoyii 10 
400 ± 
42** 

randomly 
distributed 

 
Conical top 
shell 

Thalotia conica 12 
385 ± 
218** 

randomly 
distributed 

 
Australian 
pheasant 

Phasianella 
australis 

20 
252 ± 
770** 

randomly 
distributed 

  Small sea snails 
Cantharidus 
spp. 

10 
150 ± 
89** 

randomly 
distributed 

Macro-
crustaceans 

Rock-pool 
prawns 

Palaemon 
serenus 

10 (including 
both spp.) 

  
randomly 
distributed 

  
Striped shrimp 

Palaemon 
intermedius 

   
randomly 
distributed 

Small epifaunal 
invertebrates 

Smaller snails, Abalone, Sea urchin, Polychaete, Leach worms, 
Slug worms, Amphipods, Brittle stars, Seastars, Crabs 

introduced with 
habitat or 
seawater 

Filter feeders 
Sponges, Ascidians, Corals, 
Tunicates, Bivalves, Barnacles 

  
  

introduced with 
habitat or 
seawater 

Tanaids Tanaids 
      

introduced with 
habitat or 
seawater 

Copepods Copepods 
      

introduced with 
habitat or 
seawater 

Microzooplankt
on 

Mostly heterotrophic nanoflagellates, ciliates and  
copepod nauplii   

introduced with 
habitat or 
seawater 

Meiobenthos Meiobenthos       changed  

Macrophytes Macrophytes       
introduced with 
habitat  

Mat-forming 
algae 

Turf and 
cyanobacteria       

introduced with 
habitat or 
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seawater 

Phytobenthos Phytobenthos 
      

introduced with 
habitat or 
seawater 

Phytoplankton Phytoplankton 
      

introduced with 
habitat or 
seawater 

Detritus 
       

System 
generated 

The asterisks represents length in mm* and weight as mg** while ± represents standard deviation. 
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S7 Table. Mean (± SD) seawater parameters in the experimental mesocosoms with two crossed 
factors of warming (T) and acidification (OA). Standard deviations represent the variability between 
individual mesocosm. 
 

Parameter C OA T OAT 

Temperature (°C) 21.0 ± 0.14 20.9 ± 0.04 23.7 ± 0.19 23.7 ± 0.08 

pHNBS 8.14 ± 0.004 7.89 ± 0.009 8.12 ± 0.002 7.89 ±0.009 

Salinity (ppt) 36.3 ± 0 36.3 ± 0 36.3 ± 0 36.3 ± 0 

Total Alkalinity (µmol kg-1) 2482 ± 4 2485 ± 5 2486 ± 6 2493 ± 3 

pCO2 (ppm) 465 ± 5 905 ± 6 500 ± 8 915 ± 25 

HCO3 (µmol kg-1) 1995 ± 6 2186 ± 3 1985 ± 2 2166 ± 9 

CO3 (µmol kg-1) 200 ± 2 123 ± 1 206 ± 2 135 ± 3 

Ω Calcite 4.74 ± 0.05 2.91 ± 0.02 4.90 ± 0.05 3.20 ± 0.07 

Ω Aragonite 3.09 ± 0.04 1.90 ± 0.01 3.22 ± 0.03 2.10 ± 0.05 
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S8 Table. Input (non-italic) and output (italic) parameters for the ecosystem components used in control (C) models. TL: trophic level, B: biomass (g WWm-

2), P/B: production/biomass ratio (per 4 months), Q/B: consumption/biomass ratio (per 4 months), EE: ecotrophic efficiency, P/Q: gross food conversion 
efficiency of each functional group. CM1 represents control model 1, CM2 represents control model 2 and CM3 represent control model 3. The value in 
bold indicates that particular parameter varied among the models and mentioned below the table. 
 

  Functional groups All models   CM1 CM2 CM3   All models   CM1 CM2 CM3   All models 

     TL   B    P/B   Q/B    EE   P/Q  

 1 Carnivorous fishes 3.02 

 

0.14 0.13 0.11 

 

0.56 19.53 

 

0.00 0.00 0.00 

 

0.03 

 2 Omnivorous fishes 2.99 

 

0.26 0.24 0.18 

 

1.17 111.75 

 

0.00 0.00 0.00 

 

0.01 

 3 Herbivorous fishes 2.07 

 

0.66 0.28 0.36 

 

1.37 94.06 

 

0.00 0.00 0.00 

 

0.01 

 4 Carnivorous fishes (benthic) 2.82 

 

0.50 0.40 0.40 

 

0.00 28.99 

 

0.00 0.00 0.00 

 

0.00 

 5 Herbivorous macroinvertebrates 2.00 

 

36.47 18.02 16.14 

 

0.50 8.46 
 

0.00 0.00 0.00 

 

0.06 

 6 Small epifaunal invertebrates 2.07 

 

5.27 5.10 7.12 

 

3.67 18.00 

 

0.73 0.58 0.38 

 

0.20 

 7 Filter feeders 2.4* 

 

5.42 8.06 9.09 

 

2.05 7.60 

 

0.43 0.28 0.34 

 

0.27 

 8 Macro-crustaceans 2.10 

 

2.34 1.10 0.79 

 

0.80 10.72 
 

0.00 0.00 0.00 

 

0.07 

 9 Tanaids 2.05 

 

0.68 1.14 0.71 

 

11.51 40.15 

 

0.97 0.59 0.81 

 

0.29 

 10 Copepods 2 

 

0.57 0.86 0.35 

 

108.71 336.98 

 

0.65 0.45 0.96 

 

0.32 

 11 Microzooplankton 2 

 

0.25 0.23 0.29 

 

23.11 63.49 

 

0.60 0.82 0.69 

 

0.36 

 12 Meiobenthos 2 

 

3.43 4.37 2.80 

 

8.88 58.40 

 

0.05 0.06 0.06 

 

0.15 

 13 Macrophytes 1 

 

40.72 39.79 38.17 

 

2.07 

  

0.51 0.36 0.50 

   14 Mat-forming algae 1 

 

23.87 27.93 40.45 

 

28.87 

  

0.74 0.46 0.26 
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15 Phytobenthos 1 

 

1.25 1.89 1.57 

 

36.69 

  

0.66 0.68 0.40 

   16 Phytoplankton 1 

 

0.55 0.59 0.63 

 

299.29 

  

0.69 0.91 0.55 

   17 Detritus 1   3.43 2.46 3.33         0.40 0.36 0.16     

   
* Trophic level of filter feeders within control model 3 was 2.35 
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S9 Table. Input (non-italic) and output (italic) parameters for the ecosystem components used in the acidification (OA) models. TL: trophic level, B: biomass 
(g WWm-2), P/B: production/biomass ratio (per 4 months), Q/B: consumption/biomass ratio (per 4 months), EE: ecotrophic efficiency, P/Q: gross food 
conversion efficiency of each functional group. OAM1 represents acidification model 1, OAM2 represents acidification model 2 and OAM3 represents 
acidification model 3. The value in bold indicates that particular parameter varies among the models as mentioned below the table. 
 

  Functional groups All models   OAM1 OAM2 OAM3   All models   OAM1 OAM2 OAM3   

All 

models 

    TL   B    P/B   Q/B    EE   P/Q  

1 Carnivorous fishes 3.00   0.12 0.11 0.14   0.97 35.66   0.00 0.00 0.00   0.03 

2 Omnivorous fishes 2.96 

 

0.39 0.26 0.16 

 

1.10 47.15 

 

0.00 0.00 0.00 

 

0.02 

3 Herbivorous fishes 2.08 

 

1.16 0.81 0.56 

 

0.88 57.49 

 

0.00 0.00 0.00 

 

0.02 

4 Carnivorous fishes (benthic) 2.9* 

 

0.69 0.56 0.65 

 

0.00 20.60 

 

0.00 0.00 0.00 

 

0.00 

5 Herbivorous macroinvertebrates 2.00 

 

29.34 25.82 27.28 

 

0.30 9.97 
 

0.00 0.00 0.00 

 

0.03 

6 Small epifaunal invertebrates 2.07 

 

9.61 12.74 7.24 

 

6.84 19.87 

 

0.11 0.06 0.08 

 

0.34 

7 Filter feeders 2.45 

 

12.78 7.02 8.64 

 

2.05 7.60 

 

0.36 0.80 0.41 

 

0.27 

8 Macro-crustaceans 2.10 

 

1.00 2.69 2.30 

 

0.78 10.72 
 

0.00 0.00 0.00 

 

0.07 

9 Tanaids 2.05 

 

1.12 0.90 2.13 

 

18.07 58.40 

 

0.37 0.36 0.16 

 

0.31 

10 Copepods 2 

 

0.89 0.78 0.46 

 

143.81 462.43 

 

0.49 0.34 0.63 

 

0.31 

11 Microzooplankton 2 

 

0.29 0.26 0.28 

 

23.11 63.49 

 

0.80 0.92 0.78 

 

0.36 

12 Meiobenthos 2 

 

4.83 4.03 4.51 

 

10.06 58.40 

 

0.09 0.09 0.16 

 

0.17 

13 Macrophytes 1 

 

47.52 49.10 45.11 

 

2.22 0.00 

 

0.53 0.86 0.38 
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14 Mat forming algae 1 

 

49.41 18.32 24.34 

 

30.85 0.00 

 

0.44 0.99 0.69 

  15 Phytobenthos 1 

 

2.75 1.61 1.46 

 

39.21 0.00 

 

0.62 0.91 0.95 

  16 Phytoplankton 1 

 

1.01 0.88 0.86 

 

319.85 0.00 

 

0.71 0.86 0.51 

  17 Detritus 1   2.84 2.94 2.42         0.23 0.53 0.42     

   
* Trophic level of carnivorous fishes (benthic) within the acidification model 2 was 2.80 
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S10 Table. Input (non-italic) and output (Italic) parameters for the ecosystem components used in the temperature (T) models. TL: trophic level, B: biomass 

(g WWm-2), P/B: production/biomass ratio (per 4 months), Q/B: consumption/biomass ratio (per 4 months), EE: ecotrophic efficiency, P/Q: gross food 

conversion efficiency of each functional group. TM1 represents temperature  model 1, TM2 represents temperature  model 2 and TM3 represents 

temperature  model 3. The values in bold indicate that particular parameters vary among the models as mentioned below the table. 

 

  Functional groups 

All 

models   TM1 TM2 TM3   All models   TM1 TM2 TM3   

All 

models 

    TL   B    P/B   Q/B    EE   P/Q  

1 Carnivorous fishes 3.04 

 

0.12 0.09 0.15 

 

0.48 28.32 

 

0.00 0.00 0.00 

 

0.02 

2 Omnivorous fishes 2.97 

 

0.30 0.13 0.20 

 

1.34 44.28 

 

0.00 0.00 0.00 

 

0.03 

3 Herbivorous fishes 2.11* 

 

0.96 0.39 0.49 

 

1.22 76.40 

 

0.00 0.00 0.00 

 

0.02 

4 Carnivorous fishes (benthic) 2.87 

 

0.30 0.44 0.53 

 

0.15 20.20 

 

0.00 0.00 0.00 

 

0.01 

5 Herbivorous macroinvertebrates 2.00 

 

13.90 15.64 3.78 

 

0.95 24.15 
 

0.00 0.00 0.00 

 

0.04 

6 Small epifaunal invertebrates 2.13* 

 

6.10 2.30 1.07 

 

6.78 25.55 

 

0.45 0.58 0.84 

 

0.27 

7 Filter feeders 2.45 

 

2.97 1.75 1.76 

 

2.05 * 7.6 * 

 

0.73 0.82 0.76 

 

0.30 

8 Macro-crustaceans 2.10 

 

1.42 2.62 1.84 

 

1.04 10.72 
 

0.00 0.00 0.00 

 

0.10 

9 Tanaids 2.05 

 

0.22 0.31 0.71 

 

19.50 58.40 

 

0.69 0.69 0.52 

 

0.33 

10 Copepods 2 

 

0.29 0.31 0.43 

 

114.10 356.24 

 

0.85 0.41 0.33 

 

0.32 

11 Microzooplankton 2 

 

0.26 0.23 0.21 

 

23.11 63.49 

 

0.59 0.38 0.59 

 

0.36 

12 Meiobenthos 2 

 

2.21 3.23 3.21 

 

8.80 58.40 

 

0.03 0.03 0.07 

 

0.15 
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13 Macrophytes 1 

 

29.80 21.14 20.60 

 

1.59 0.00 

 

0.96 0.70 0.65 

  14 Mat-forming algae 1 

 

69.41 32.58 89.04 

 

22.08 0.00 

 

0.35 0.69 0.11 

  15 Phytobenthos 1 

 

2.54 2.54 2.46 

 

28.07 0.00 

 

0.22 0.26 0.46 

  16 Phytoplankton 1 

 

0.71 0.82 0.76 

 

228.95 0.00 

 

0.51 0.35 0.46 

  17 Detritus 1   2.81 2.79 4.75         0.11 0.31 0.11     

  

Herbivorous fishes and small epifaunal invertebrates occupied a tropic level of 2.10 and 2.15, respectively, within TM3 
P/B ratio of filter feeders was modified to 3.6 for TM2 and TM3 models 
Q/B ratio of filter feeders was modified to 11.8 for TM2 and TM3 models 
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S11 Table. Input (non-italic) and output (italic) parameters for the ecosystem components used in the temperature and acidification (OAT) models. TL: 
trophic level, B: biomass (g WWm-2), P/B: production/biomass ratio (per 4 months), Q/B: consumption/biomass ratio (per 4 months), EE: ecotrophic 
efficiency, P/Q: gross food conversion efficiency of each functional group. OATM1 represents temperature and acidification model 1, OATM2 represents 
temperature and acidification model 2 and OATM3 represents temperature and acidification model 3. The value in bold indicates that particular parameter 
varies among the models as mentioned below the table. 
 

  Functional groups 

All 

models   OAT M1 OATM2 OATM3   All models   OATM1 OATM2 OATM3   All models 

    TL   B    P/B   Q/B    EE   P/Q  

1 Carnivorous fishes 2.89 

 

0.13 0.13 0.14 

 

0.74 26.56 

 

0.00 0.00 0.00 

 

0.03 

2 Omnivorous fishes 2.98 

 

0.31 0.39 0.28 

 

1.54 20.52 

 

0.00 0.00 0.00 

 

0.08 

3 Herbivorous fishes 2.05 

 

0.52 0.93 0.54 

 

1.02 89.21 

 

0.00 0.00 0.00 

 

0.01 

4 Carnivorous fishes (benthic) 2.90 

 

0.39 0.49 0.49 

 

0.10 24.35 

 

0.00 0.00 0.00 

 

0.00 

5 Herbivorous macroinvertebrates 2.00 

 

1.35 7.30 0.16 

 

2.63 16.74 
 

0.00 0.00 0.00 

 

0.16 

6 Small epifaunal invertebrates 2.08 

 

5.75 2.37 4.35 

 

5.28 21.13 

 

0.18 0.62 0.32 

 

0.25 

7 Filter feeders 2.25 

 

2.33 0.72 0.42 

 

2.05* 7.6* 

 

0.88 0.68 0.91 

 

0.30 

8 Macro-crustaceans 2.10 

 

1.63 2.23 1.81 

 

1.05 10.72 
 

0.00 0.00 0.00 

 

0.10 

9 Tanaids 2.05 

 

0.59 0.20 1.06 

 

21.36* 58.40* 

 

0.52 0.99 0.33 

 

0.33 

10 Copepods 2 

 

0.11 0.25 0.36 

 

119.05 373.95 

 

0.95 0.51 0.27 

 

0.32 

11 Microzooplankton 2 

 

0.23 0.25 0.26 

 

23.11 63.49 

 

0.80 0.32 0.32 

 

0.36 

12 Meiobenthos 2 

 

1.77 2.44 3.25 

 

8.50 58.40 

 

0.11 0.04 0.11 

 

0.15 
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13 Macrophytes 1 

 

28.48 34.89 18.87 

 

0.71 0.00 

 

0.98 0.84 0.96 

  14 Mat-forming algae 1 

 

135.96 198.29 154.90 

 

9.93 0.00 

 

0.13 0.14 0.13 

  15 Phytobenthos 1 

 

2.79 3.99 2.62 

 

12.62 0.00 

 

0.86 0.32 0.97 

  16 Phytoplankton 1 

 

0.95 0.66 0.65 

 

102.95 0.00 

 

0.52 0.82 0.98 

  17 Detritus 1   3.99 3.86 4.25         0.10 0.09 0.16     

 
P/B ratio and Q/B ratio of filter feeder was modified to 3.6 and 11.8, respectively, for OATM1 and OATM3 models 
P/B ratio of tanaids was modified to 19.5 for OATM1 and OATM3 models and to 27.04 for OATM2 models 
Q/B ratio of tanaids was modified to 85 for OATM2 models 
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S12 Table. Predator/prey matrix (column/row) for control (C) models. The fraction of one compartment consumed by another is expressed as the fraction 
of the total diet, the sum of each column being equal to one. Values with mean ± SD represent the adjustment of different prey groups in predators diet 
across models.  
 

 

Functional groups 1 2 3 4 5 6 7 8 9 10 11 12 

 

Carnivorous fishes 

            

 

Omnivorous fishes 

            

 

Herbivorous fishes 

            

 

Carnivorous fishes (benthic) 

            

 

Herbivorous macroinvertebrates 

            

 

Small epifaunal invertebrates 0.47 0.14 0.05 0.39 

        

 

Filter feeders 

     

0.05 

      

 

Macro-crustaceans 

            

 

Tanaids 0.01 0.17 0.00 0.26 

        

 

Copepods 

 

0.65 0.01 0.13 

  

0.35 0.10 

    

 

Microzooplankton 0.51 

     

0.05 

     

 

Meiobenthos 

 

0.00 0.00 0.00 

    

0.05 

   

 

Macrophytes 

 

0.00 0.35 0.15 

 

0.20 

      

 

Mat-forming algae 0.01 0.03 0.59 

 

1.00 0.70 

 

0.40 0.05 0.45 

  

 

Phytobenthos 

        

0.40 0.10 

  

 

Phytoplankton 

      

0.50 

  

0.40 1.00 
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Detritus 

   

0.07 

 

0.05 0.10 0.50 0.50 0.05 

 

1.00 

  

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  Tanaids   0.15±0.03                     

 

Copepods 

 

0.67±0.03 

    

0.33±0.30 

       Phytoplankton             0.52±0.03           
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S13 Table. Predator/prey matrix (column/raw) for acidification (OA) models. The fraction of one compartment consumed by another is expressed as the 
fraction of the total diet, the sum of each column being equal to one. Values with mean ± SD represent the adjustment of different prey groups in predator 
diets across models.  
  

 Functional groups 1 2 3 4 5 6 7 8 9 10 11 12 

 

Carnivorous fishes 

            

 

Omnivorous fishes 

            

 

Herbivorous fishes 

            

 

Carnivorous fishes (benthic) 

            

 

Herbivorous macroinvertebrates 

            

 

Small epifaunal cryptic invertebrates 

 

0.11 0.05 0.11 

        

 

Filter feeders 

     

0.05 

      

 

Macro-crustaceans 

            

 

Tanaids 0.02 0.04 0.01 0.41 

        

 

Copepods 

 

0.81 0.01 0.34 

  

0.40 0.10 

    

 

Microzooplankton 0.75 

     

0.05 

     

 

Meiobenthos 0.24 

  

0.00 

    

0.05 

   

 

Macrophytes 

 

0.05 0.24 0.08 

 

0.20 

      

 

Mat-forming algae 

  

0.68 

 

1.00 0.70 

 

0.40 0.05 0.45 

  

 

Phytobenthos 

        

0.40 0.10 

  

 

Phytoplankton 

      

0.50 

  

0.40 1.00 
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Detritus 

   

0.06 

 

0.05 0.05 0.50 0.50 0.05 

 

1.00 

  

1.00 1.00 1.00 1.00 1.00 1.00 

 

1.00 1.00 1.00 1.00 1.00 

  Copepods 

      

0.42±0.02 

     

 

Microzooplankton 

      

0.03±0.02 

     

 

Macrophytes 

     

0.25±0.09 

     

 

Mat-forming algae 

     

0.68±0.03 

 

0.08±0.04 0.40±0.09 

  

 

Phytobenthos 

        

0.37±0.04 0.09±0.00 

    Phytoplankton 

         

0.46±0.08 
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S14 Table. Predator/prey matrix (column/raw) for temperature (T) models. The fraction of one compartment consumed by another is expressed as the 
fraction of the total diet, the sum of each column being equal to one. Values with mean ± SD represent the adjustment of different prey groups in predator 
diets across models.  
 

Functional groups 1 2 3 4 5 6 7 8 9 10 11 12 

Carnivorous fishes                         

Omnivorous fishes 

           Herbivorous fishes 

            Carnivorous fishes (benthic) 

            Herbivorous macroinvertebrates 

            Small epifaunal cryptic invertebrates 0.44 0.17 0.08 0.17 

        Filter feeders 

     

0.10 

      Macro-crustaceans 

            Tanaids 0.02 0.00 0.00 0.46 

        Copepods 

 

0.78 0.01 0.18 

  

0.40 0.10 

    Microzooplankton 0.52 

     

0.05 

     Meiobenthos 

   

0.00 

    

0.05 

   Macrophytes 0.02 0.05 0.38 0.15 

 

0.18 

      Mat-forming algae 

  

0.52 

 

1.00 0.70 

 

0.40 0.05 0.45 

  Phytobenthos 

        

0.40 0.10 

  Phytoplankton 

      

0.50 

  

0.40 1.00 
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Detritus 

   

0.03 

 

0.02 0.05 0.50 0.50 0.05 

 

1.00 

  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Small epifaunal cryptic invertebrates 0.16±0.01 0.07±0.02 0.16±0.01 

 

0.03±0.03 

      Filter feeders 

     

0.07±0.03 

      Tanaids 

 

0.02±0.02 0.01±0.02 0.47±0.01 

        Macrophytes 

     

0.15±0.04 

      Mat-forming algae 

     

0.71±0.02 

      Phytoplankton           0.02±0.03             
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S15 Table. Predator/prey matrix (column/raw) for temperature and acidification (OAT) models. The fraction of one compartment consumed by another is 
expressed as the fraction of the total diet, the sum of each column being equal to one. Values with mean ± SD represent the adjustment of different prey 
groups in predator diets across models.  
 

 

Functional groups 1 2 3 4 5 6 7 8 9 10 11 12 

 

Carnivorous fishes                         

 

Omnivorous fishes 

          

 

Herbivorous fishes 

            

 

Carnivorous fishse (benthic) 

            

 

Herbivorous macroinvertebrates 

           

 

Small epifaunal cryptic invertebrates 0.41 0.18 0.03 0.16 

        

 

Filter feeders 

     

0.07 

      

 

Macro-crustaceans 

            

 

Tanaids 0.00 0.05 

 

0.54 

        

 

Copepods 

 

0.73 0.02 0.16 

  

0.40 0.10 

    

 

Microzooplankton 0.45 

     

0.05 

     

 

Meiobenthos 

   

0.00 

    

0.05 

   

 

Macrophytes 0.14 0.04 0.08 0.08 

 

0.25 

      

 

Mat-forming algae 

  

0.87 

 

1.00 0.62 

 

0.40 0.05 0.45 

  

 

Phytobenthos 

        

0.40 0.10 
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Phytoplankton 

      

0.50 

  

0.40 1.00 

 

 

Detritus 

   

0.06 

 

0.06 0.05 0.50 0.50 0.05 

 

1.00 

 

  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  Small epifaunal cryptic invertebrates 

 

0.18±0.02 

        

 

Filter feeders 

     

0.03±0.02 

      

 

Tanaids 

 

0.07±0.04 

 

0.50±0.08 

        

 

Copepods 

 

0.70±0.04 

 

0.19±0.05 

  

0.35±.18 

     

 

Microzooplankton 

      

0.06±0.03 

     

 

Macrophytes 

     

0.15±0.09 

      

 

Mat-forming algae 

     

0.72±0.10 

  

0.08±0.05 0.47±0.03 

  

 

Phytobenthos 

        

0.37±0.05 

     Phytoplankton             0.53±0.15     0.38±0.03     
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S16 Table. Source of additional information used (√) to parameterize base (control model) models 
for different functional groups. Where similar values used across treatments were specified in the 
supplementary text.   
 

Group Functional groups P/B Q/B References 

Consumers Small epifaunal cryptic invertebrates √ √ [93] 

 
Filter feeders √ √ [95-97] 

 
Macro-crustaceans √ √ [93,98,99] 

 
Tanaids 

 
√ [95] 

 
Copepods 

 
√ [93,101-103] 

 
Microzooplankton √ √ [96,97,106,125] 

 
Meiobenthos 

 
√ [95] 

 
Macrophytes √ 

 
[93,111] 

Producers Mat-forming algae  √ 
 

[109,110] 

 
Phytobenthos √ 

 
[93,108] 

  Phytoplankton √   [93,103,108] 
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ecosystems at a cost to biodiversity 
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ABSTRACT 
 

Global warming, in combination with the intensive exploitation of commercial marine species, has 

caused large-scale reorganizations of biological communities in many of the world’s marine 

ecosystems. Accurate predictions of the potential effects of global warming (and fishing) at 

ecosystem-levels require a comprehensive understanding of how entire communities of species 

respond to global change (namely warming and acidification). We used a time-dynamic integrated 

ecosystem modelling approach (Ecosim) to investigate the independent and combined effects of 

global warming and ocean acidification in conjunction with local fishing on a coastal ecosystem. To 

quantify the effects of ocean acidification and increasing temperature at the community level, we 

incorporated physiological and behavioural responses of species to these stressors from our two 

large-scale mesocosm experiments, which included multiple trophic levels from primary producers 

to top predators such as sharks. Our ecosystem models accounted for complex species interactions 

such as predation and competition, and represent the likely future food web structure and fisheries 

productivity under climate change and different fishing regimes. We show that under continuation 

of the present-day fishing regime, warming and ocean acidification will benefit most of the higher 

trophic level community groups (e.g. mammals, birds, demersal finfish), except small pelagic fish 

which will be subject to increased top-down control under warming. Under increased fishing, 

however, the positive effects of warming and acidification are negated, decreasing the individual 

biomass of marine mammal, bird, chondrichthyans and demersal finfish taxa. Nevertheless, total 

future potential fisheries biomass will likely still remain high, particularly under acidification, 

compared to the present-day scenario because unharvested opportunistic species will likely benefit 

from decreased competition and an increase in biomass. However, ecological indicator such as the 

Shannon diversity index showed a significant decrease under all climate change scenarios, 

suggesting a trade-off between biomass gain and functional diversity. We conclude that sustainably-

managed temperate marine ecosystems could benefit in terms of fisheries productivity from ocean 
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warming and ocean acidification due to boosting of generalist species, albeit to the detriment of 

functional species diversity.  
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3.1 INTRODUCTION 
 

Marine ecosystems and fisheries stocks are facing significant challenges due to the cumulative 

effects of multiple global and local stressors such as overfishing, eutrophication, pollution, habitat 

destruction, climate change, and ocean acidification (Cheung, 2018, Cheung et al., 2013, Gattuso et 

al., 2015, Halpern et al., 2015, Halpern et al., 2012, Urban et al., 2016). Yet, global demand for wild-

caught fishes has only been increasing (Cheung, 2018, Delgado et al., 2003). Hence, significant effort 

is needed to generate reliable predictions of future changes in marine food webs and fisheries 

productivity.  

Past attempts to project future changes in populations of fisheries species under ongoing climate 

change, have incorporated the direct impact of temperature on species physiology using 

deterministic food web models (Brown et al., 2010), end-to-end climate models (Fulton, 2011, 

Griffith et al., 2012, Griffith et al., 2011, Olsen et al., 2018, Ortega-Cisneros et al., 2018, Weijerman 

et al., 2015), and species distribution models (Cheung et al., 2011, Cheung et al., 2009, Fernandes et 

al., 2013, Peterson et al., 2002). Most of these projections, however, are based on species’ thermal 

niches, ignoring the potentially large role of indirect (e.g. shifting predator-prey relationships) and 

interactive stressor effects (e.g., with ocean acidification) on model outcomes. Although thermal 

niches play an important role in species distributions and their population sizes, the occurrence and 

abundance of species is also heavily regulated by life history traits, metapopulation processes and 

biotic interactions (Fordham et al., 2013, Mellin et al., 2016). Recent attempts to model the effects 

of acidification on a whole food web context based on pH sensitivity of functional groups also 

showed the importance of considering acidification on future ecosystem studies (Cornwall &  Eddy, 

2015, Marshall et al., 2017). Although, crucial step has been made to improve our understanding of 

how multiple stressors such as warming, acidification and fishing interact and affect marine 

community (Griffith et al., 2012, Koenigstein et al., 2016); they lack incorporation of important biotic 

interaction in response to future climate change. 

 

The role of indirect effects of climate change (e.g. shifting predator-prey relationships) on marine 

communities has received much less attention than direct effects, even though they can shape 

future marine communities (Lord et al., 2017, Nagelkerken et al., 2017). More reliable forecasts of 

the likely effects of future climate change on marine communities will be achieved if species 

interactions are accounted for in model projections (Brown et al., 2010, Daufresne et al., 2009, 
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Zhang et al., 2017). The importance of direct and indirect interactions in shaping community 

structure and species diversity is known (O'Connor et al., 2013). However, uncertainty remains 

about the interactive effects of direct and indirect interaction, especially under climate change since 

they are the net result of multiple species responding to multiple changes in their environment 

(Tylianakis et al., 2008). Empirical data on species interactions under near-future climate change 

scenarios is needed to address this key challenge. Large-scale mesocosm experiments can potentially 

provide suitable empirical data on the effect of global warming on the strength of biotic interactions, 

species turnover rate and their composition along with many other key ecological processes that 

drive population- and community-level responses to climate change (Fordham, 2015, Goldenberg et 

al., 2018). Although scale, closed boundaries, simplified ecological communities, and replication can 

impose challenges for mesocosm research, they hold potential to quantify reliable data to 

parameterize computational ecological models (Sagarin et al., 2016).  

The large uncertainty related to current projections of future marine food webs and their 

subsequent effects on fisheries is primarily due to the variable response of ocean primary 

production to climate change and the dynamic nature of energy transfer through food webs 

(Brander, 2007, Stock et al., 2017). To date, most simulation models reveal a general pattern of 

increased primary production in response to projections of future temperature or acidification 

(modelled in isolation), benefitting or affecting future fisheries (Brown et al., 2010, Cheung et al., 

2010, Griffith et al., 2011, Marshall et al., 2017). Importantly, the cumulative effect of these two 

stressors in natural food webs integrating complex species interaction remains largely unexplored 

despite both of them occurring due to human greenhouse gas emissions. Furthermore, the 

parameterization of these models has predominantly been based on using data from single species 

experiments or the known range of population parameters under natural condition, which is 

problematic, since the ecological complexity of food webs can dampen the effect of climate change 

on individuals and communities (Goldenberg et al., 2018). Also, parameterization of food web model 

should consider species response to perturbation from multilevel food web experiments since 

community response to global change could vary with food chain length (Hansson et al., 2012). 

Here, we build dynamic food web simulation models to test whether: (1) the combination of two 

global stressors (ocean acidification and warming) exerts synergistic, additive or antagonistic effect 

on the future food webs and fisheries stocks of a temperate coastal ecosystem, and (2) whether 

fishing effort as an additional local stressor amplifies or lessen the response of these two global 

stressors. To predict how ocean acidification and warming individually drive ecosystem change, we 

also modelled these stressors separately. We accomplished this by using climate-driven change in 

physiological and behavioral parameters (species interactions) of species as well as primary 
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productivity obtained from two of our own large-scale mesocosm experiments that included food 

webs composed of primary producers to top predators such as sharks. Our results show some 

surprising ecological consequences of climate change on future food web and fish production 

capacity that is an increase in productivity of some fisheries species, albeit at the detriment of 

species diversity. 

 

3.2 RESULTS 

 

Biomass changes under future climate change 

Our model simulations show that the total biomass of most of the higher-order community groups 

(mammals, cephalopods, chondrichthyes, and demersal finfish) is likely to benefit from ocean 

warming and acidification, when modelled separately as well as together, although the combined 

stressors have an antagonistic effect on biomass increase (Fig. 1). When considered at the levels of 

individual species or functional groups the positive effects on biomass are more disparate (Figs. S1, 

S2). Our models predict an average increase in marine mammal biomass of 71% under the combined 

effect of acidification and warming compared to no climate change and current level of fishing effort 

(‘no change’ scenario). Modelling acidification and warming separately resulted in even higher 

average increases in marine mammal biomass: 195% and 261%, respectively. Likewise, cephalopod 

biomass was predicted to increase by 75% under the combination of warming and acidification, 

while warming and acidification in isolation likely boost biomass by 302% and 118%, respectively. 

Demersal finfish and seabirds showed their largest biomass increase under ocean acidification (209% 

and 129 %, respectively), with a smaller increase under both warming scenarios. Pelagic finfish 

showed a negative response to the warming, irrespective of acidification (Fig. 1A): a decline under 

warming alone (23%), with groups such as small pelagics (mostly planktivores) showing severe 

depletions (>70%) under warming (Fig. S1). 

Unlike higher trophic groups, ocean warming – either alone or in combination with ocean 

acidification – is predicted to exert a negative effect on two lower trophic-level faunal groups (Fig. 

1A). These are (i) invertebrates (predominantly molluscs, and other invertebrates do not posses 

chitinous exoskeleton; Table S3), which are likely to experience biomass declines of 9-74%; and (ii)  

small pelagic crustaceans, which are likely to decline by 45-70% (Fig. 1). In contrast, benthic 

crustaceans (predominantly decapoda) are likely to experience a moderate increase in biomass (~30-

49%) under elevated temperature scenarios, whilst all above three groups experience biomass 

increases under acidification alone (Fig. 1). Mixed-trophic impact analysis (Fig. S3) and keystone 
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group analysis (Fig. S4) also suggested a likely increase in the biomass of benthic crustaceans and 

their relative influence as a major prey groups on the other community groups of the food web.  

 

 

 

Figure 1: A) Change in biomass (∆ %) of different food web community groups under future climate 

change scenarios (RCP 8.5) relative to the biomass in 2100 under a scenario of no change in climate 

(NC), assuming the current level of fishing effort to continue at 2100. OA = ocean acidification, T= 

ocean warming, and OAT = combined ocean acidification and warming. Functional groups of food 

web models are aggregated to community groups (CGs) for better representation and clarity. The 

order of CGs are based on the mean trophic level (shown in blue) obtained for each CG from 

corresponding Ecopath model functional groups. B) The future standing biomass (kg/km2; ln 

transformed) estimates for each CG. The bubble size is proportional to its biomass. Biomass 

estimates were converted from t/km2 to kg/km2 to avoid negative (transformed) values.  

 

The standing biomass of primary producers decreased by ~ 22%, due to an antagonistic effect of 

warming and acidification (Fig. 1A), largely driven by a reduction of phytoplankton, micro-

phytobenthos and macro-algal biomass (Fig. S2). Turf algae, in contrast, will likely experience a large 

biomass expansion. 
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The combined effect of warming, acidification and fishing  

Individual effects of fishing 

In the absence of ocean warming and ocean acidification, fishing as an individual stressor is 

predicted to reduce the projected magnitude of biomass of most of the higher order community 

groups (mammals, birds, chondrichthyans, and cephalopods) by 9-21% in the year 2100 under a 1.5 

and 2-fold increase in fishing effort (Fig. 2). Further increases in the effort (up to 5-fold) exacerbate 

this declining trend for the former three top predator groups (25-48%). For demersal finfish, 

however, this negative effect was not observed until a 5-fold increase in fishing effort was modelled, 

causing severe biomass declines of up to 81%. Under a 5-fold increase in fishing effort, the decline in 

biomass of top predators allowed an increase in biomass of opportunistic taxa such as cephalopods 

(52%) and pelagic finfish (18%) which were previously subjected to significant predation pressure.  

Impact of multiple stressors  

Under a 1.5–2-fold increase in fishing combined with ocean warming and acidification, the negative 

effects of fishing alone were overturned into positive effects for all higher trophic levels (except for 

pelagic finfish) (Fig. 2). Pelagic finfish were one of the major ecosystem prey groups that declined in 

biomass due to greater top down predation pressure which was intensified under warming. With a 

5-fold increase in fishing combined with warming, biomass of mammals and birds collapsed except 

under acidification alone. This allowed generalist species like cephalopods to thrive and increase in 

biomass under warming (178%) and the combination of warming and acidification (144%). At 

functional group level, global stressors and increasing fishing effort however acted synergistically for 

some groups (e.g. cephalopods, rock flathead, spinney gurnard and silver trevally) and increased 

their biomass by releasing them from predation pressure and interspecific competition (Fig. S5).  

Whilst both global stressors positively affected higher trophic level community groups, their largely 

negative effects on lower trophic levels (primary producers, small pelagic crustaceans and 

invertebrates) remained almost unchanged under increased fishing. For the latter two, the reduction 

in their predation pressure by removal of predator biomass through increased fishing could not 

compensate for their biomass losses due to global stressors alone (Fig. 2; Fig. S6). 
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Figure 2: Change in biomass (∆ %) of different food web community groups under the combination 

of different climate and fishing effort scenarios relative to the biomass in 2100 under a scenario of 

no change in climate and fishing from present day levels (NC). OA = ocean acidification, T= ocean 

warming, and OAT = combined ocean acidification and warming. Functional groups of food web 

models are aggregated to community groups (CGs) for better representation and clarity. The order 

of CGs is based on the mean trophic level obtained for each CG from the corresponding Ecopath 

model functional group. Here the number with ‘folds’ refers to the magnitude of fishing increase 

that starts in year 2015 and is held constant up to 2100 compared to the NC scenario. 

 

Ecological indicators  

Under the no climate change scenario, the Shannon diversity index remained relatively stable in the 

future at a 1.5-2 fold increase in fishing, whilst it decreased by ~ 4% under a 5-fold increase in fishing 

(Fig. 3A). In contrast, diversity declined under all climate change scenarios with the greatest impact 

under the combination of warming and acidification, and this was only exacerbated at a 5-fold 

increase in fishing (Fig. 3A). Although acidification is predicted to show the largest positive effects on 

the biomass of most functional groups, it is predicted to show an immediate negative effect on 

diversity (especially for years 2020-2080). 
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Figure 3: Ecological indicators of change in community composition of a temperate coastal 
ecosystem, including (A) Shannon diversity index (H’), (B) Kempton Q index (KQ), and (C) Marine 
trophic index (MTI), all estimated from the Ecosim models for the period 1990–2100. The grey 
shadows represent the 95% percentile and 5% percentile obtained through the Monte Carlo routine. 
NC denotes no change in climate from present-day levels (but fishing effort varies). OA = ocean 
acidification, T = ocean warming, and OAT = combined ocean acidification and warming. CL= current 
level of fishing effort. Here the number with ‘folds’ refers to the magnitude of fishing increase that 
starts in year 2015 and is held constant up to 2100 compared to the NC scenario. 
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The Kempton Q index, which is indicative of evenness in biomass of functional groups occupying 

trophic levels 3 or higher, showed a stronger decline (after 2070) under the combination of warming 

and acidification compared to the other scenarios (Fig. 3B). Under a fivefold increase in fishing alone 

or with other stressors, the Kempton Q index is likely to show an extreme decline suggesting an 

impact of extreme fishing on the top predators.  

The Marine Trophic Index (i.e., the mean trophic level of the catch for all groups at trophic level 3.25 

and higher) calculated based on the present day catch composition data was not influenced much by 

climate effects or by fishing effort at a ≤ 2-fold increase, but increased sharply at a 5-fold increase in 

fishing effort  (Fig. 3C). The latter suggests that although future catches can comprise higher trophic 

level species in a no change scenario, warming and acidification together or in isolation with fishing 

could reduce the likelihood of such potential by reducing the biomass of major target fishery today. 

 

Model validation  

Historical projections of biomass from models parameterized using field data showed strong 

agreement with models parameterized using mesocosm data for carnivorous, herbivorous and 

omnivorous fish, and Port Jackson sharks (Fig. 4).  

Predictions of carnivorous and omnivorous fish biomass were synchronous with independent 

biomass (survey) data, regardless of whether the models were parameterized using field (Correlation 

coefficient R = 0.73, RMSE = ≤ 0.0001; R = 0.82, RMSE = 0.007, respectively) or mesocosm (R = 0.69, 

RMSE ≤ 0.0001; R = 0.82, RMSE = 0.007, respectively) data. In contrast, models parameterized with 

either field or mesocosm data did worse at predicting the trends in temporal variability of 

independent biomass data for Port Jackson shark (R = 0.12, RSME = 0.011, R = 0.29, RSME = 0.011, 

respectively) and herbivorous fish (R = 0.25, RSME = 0.007; R = 0.25, RSME = 0.008, respectively). 

Importantly, bias in model projections remained low for all functional groups either model-

calibrated with field data (carnivorous fish: ≤ 0.0001 ± 0.0001; omnivorous fish: -0.0027 ± 0.0077; 

Port Jackson shark: -0.0003 ± 0.0123; herbivorous fish: 0.0014 ± 0.0014) or mesocosm data 

(carnivorous fish: ≤ 0.0001 ± 0.0001; omnivorous fish: -0.0001 ± 0.0079; Port Jackson shark: 0.0009 ± 

0.0121; herbivorous fish: 0.0046 ± 0.0069). 

  



106 
 

 

Figure 4: Retrospective tests of mesocosm transferability. Comparison of the Port Phillip Bay (PPB) 

model (pink), calibrated using data from our mesocosm experiments (green) and observed standing 

biomass (tonnes per km2) for four major functional groups between years 1993 and 2011. The PPB 

model was built with similar functional groups that comprise the mesocosm model. Black dots 

represent observed standing biomass in different years. Root-mean-square error (RMSE) indicates 

the differences (errors are measured in the same units as the response; here biomass (tonnes per 

km2) between observed and predicted values by a model; in this case both PPB and mesocosm 

models. 

 

3.3 DISCUSSION 
 

We combine empirical data on species physiological and behavioural performance from large-scale 

mesocosm experiments with that of two decades of fisheries catches to show that global warming 

and ocean acidification could benefit marine animals at higher trophic-levels including fisheries 

species in future temperate marine food webs, albeit at a potential cost to biodiversity. This increase 

in biomass results from a strengthened top-down control of consumers occupying higher trophic-

levels in conjunction with a positive response of some of their prey groups to global warming. The 

structure of future temperate marine food webs under global warming will likely be controlled by 

top-down effects (reshuffling of predatory and prey species abundances leading to altered predator-

prey dynamics) rather than a continuous fuelling of the food web from the bottom up.  
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Organisms at higher trophic levels are likely to increase their top down control on their prey, and 

therefore increase in biomass, in response to an enhanced metabolic rate due to warming (Brown et 

al., 2010). Although an increase in top-down control by consumers has been predicted under 

elevated temperature in temperate regions for a three trophic level food chain (Marino et al., 2018), 

we lack understanding of how higher trophic levels (i.e. higher-order consumers or apex predators) 

will respond to global warming and how this will affect all connected lower-order trophic levels 

when species interaction is considered in natural food webs. This is particularly important because 

the length of food chains can alter the response of ecological communities to global change 

(Hansson et al., 2012). Our model predicted that under future scenarios of global warming, the 

biomass of all higher-order consumers and apex predators such as mammals, birds, cephalopods, 

chondrichthyes, and demersal finfish is likely increase compared to a no-warming scenario. Earlier 

studies focussing on maximum catch potential of exploited marine animals based on the preference 

of species environmental niche suggest that warming could benefit fisheries at the high latitudes 

regions (Barange et al., 2014, Cheung et al., 2010). Here using physiological response of species to 

warming and altered species interaction, we show that the increased biomass of top-consumers 

under elevated temperature is enabled by overconsumption of their prey (pelagic finfish, 

invertebrates and small crustaceans). This suggests that warming in general is likely to benefit higher 

trophic levels and negatively affect their prey at lower trophic levels in future temperate coastal 

food webs. 

Ocean acidification can boost food webs from the bottom up due to the enrichment effect of 

elevated CO2. Acidification alone is not expected to enhance top-down control by consumers as is 

the case for warming, because elevated CO2 does not have positive effects on metabolism of 

consumes in most cases (Carter et al., 2013, Kroeker et al., 2013). Enhanced primary production can 

enlarge available prey resources, which can boost the growth of consumers under acidification. This 

has been confirmed by several recent food-web studies, both experimentally (Sswat et al., 2018, 

Ullah et al., 2018) and in the wild (Goldenberg et al., 2018, Nagelkerken et al., 2017). In our study, 

this was the case for all higher-order predators, although chondrichthyans showed the weakest 

increase. Elevated CO2 is known to affect the foraging behaviour (e.g reduced prey search efficiency 

and impaired odor tracking) of chondrichthyans which might explain the reduced increase in 

biomass for this group (Dixson et al., 2015, Pistevos et al., 2015). Because of their different 

physiology, non-bony highly active fish predators such as marine mammals, birds, and cephalopods 

are appear to be tolerant of more acidic environmental condition (Melzner et al., 2009) and hence 

such top-predators will only benefit from increased resource availability at the bottom of the food 

web that is transferred up the food web under future ocean acidification. 
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Although warming and acidification in isolation showed positive effects on biomass of predators, 

their combined effects acted antagonistically on the degree of biomass increase of many of the top 

consumers in the food web and had a negative effect on many of the lower-order consumers. 

Although not tested in a multi-trophic level food web, previous studies have shown that warming 

and acidification can antagonistically affect the growth of carnivores such as sharks by affecting prey 

search time (Pistevos et al., 2015) and of herbivores by increasing the degree of unpalatable or poor 

quality food (Poore et al., 2013, Ullah et al., 2018). Two of the major prey groups in our model (small 

pelagic crustaceans and invertebrates) collapsed in their biomass under the combined effect of 

warming and acidification, and thus reduced the availability of resources for higher level consumers, 

explaining why the latter showed a reduced biomass increase under this scenario. In contrast to 

other invertebrates, some groups such as benthic crustaceans sustained a biomass increase under all 

climate scenarios, and enabled a biomass increase of their consumers (e.g. demersal finish, and 

consecutively some higher-order predator). The highest KSI (keystonnes) index and mixed trophic 

impact analysis also suggested the positive role of benthic crustaceans as a prey in the food web 

both under no change and different climate change scenarios. Benthic crustaceans (e.g. lobsters, 

crabs, and shrimp) are generally considered to have a higher tolerance level to acidification than 

other invertebrates (Kroeker et al., 2013, Whiteley, 2011) which may explain the reason behind their 

successful propagation under global warming. In short, the benefit of increased biomass in the top of 

the future food web may come through a trade-off between overall biomass gains and losses at 

higher and lower trophic levels respectively under global warming.  

 

Fishing as a local human stressor negatively affected the biomass of all higher order community 

groups, except pelagic and demersal finfish. However, warming and acidification overruled these 

effects and boosted the biomass of top predators as long as fishing intensity did not increase up to 

five-fold. Global-scale studies, without considering the potential impacts of overfishing, suggest that 

some commercial fisheries (crustaceans to sharks) around high-latitude regions could experience an 

increase in the catch under future climate change (Cheung et al., 2010). A recent model by (Merino 

et al., 2012) predicts a 6 % increase in the yield of commercially valuable fish stocks by 2050 under 

future warming but only if fish resources are managed sustainably. The results of these models, 

however, provided in course resolution masking important regional differences, focused on 

exploited fisheries only and did not capture the potential decline in forage fish biomass or changes in 

the non-exploited consumers. We show here, however, that the magnitude of potential fisheries 

benefits under future warming as suggested by previous studies will be significantly dampened when 
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ocean warming co-occurs with ocean acidification. Overall, it is clear that the greatest stressor 

effects on future food web arise due to the combined effect of warming and acidification, which is 

further exacerbated by fishing at the top of the food web.  

 

Ocean warming and acidification have a much greater negative effect on functional diversity in food 

webs than overfishing. The Shannon diversity index showed that future global warming and 

acidification will significantly reduce diversity within food webs even under fishing effort at present-

day levels. A significant decline in the biomass of community groups such as primary producers, 

small pelagic crustaceans, invertebrates, and pelagic fish species under global warming reflect such 

changes. The Kempton Q index which shows a loss of evenness for higher order groups in the food 

web reflects the strong decline of several fish and shark species under warming alone and in 

conjunction with acidification, respectively. This disproportionate distribution (decrease or increase) 

in functional group biomass allows ecological opportunistic species to flourish (Woodruff, 2001), 

such as “weedy” cephalopods at the top and turf algae at the bottom of our food web model. The 

loss in functional diversity and thus a relative reduction in functional redundancy under future 

climate change may also increase the vulnerability of some groups to a secondary extinction that is 

triggered by the primary extinction of a species in the ecosystem (Sanders et al., 2018). This could 

then lead to a further simplification of community structure (Nagelkerken &  Connell, 2015). 

Together, global warming and fishing will likely to reduce the biomass of many functional groups 

thus leading to a disproportional distribution of biomass within community and reduced diversity of 

the future food web.  

 

Here, we attempted a unique approach by combining empirical data on species response to climate 

change from large mesocosms with historical population data (from scientific survey and fisheries 

landings) to predict future changes in food webs. This approach has been questioned earlier on the 

grounds that it is unlikely to build a realistic bridge between simplified experimental conditions and 

the real world (Carpenter, 1996). However, by independently validating our model predictions 

against historical biomass (survey) data, we not only show our model does a very good job at 

reconstructing historical trends in fish biomass (for selected functional groups), but that empirical 

parameters estimated in mesocosm experiments provide a close representation of ‘real world’ food 

web. In doing so, we show that mesocosm experiments with a  realistic multifactorial experimental 

design that capture food web complexity can provide ecologically realistic outputs that can be used 

to parameterize end-to-end ecosystem models and help to bridge the gap between simplified 

experimental conditions and the real world. 
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Our modelling approach, like other modelling techniques, has its own caveats. The modelling 

approach in our analysis assumed a linear increase or decrease in all the forcing function 

parameters. Linear interpolation between two climate snapshots is a common practice in climate 

change ecology (Fordham et al., 2012) and successfully used before in a food web context 

(Ainsworth &  Mumby, 2015, Brown et al., 2010, Griffith et al., 2011, Marshall et al., 2017). We 

acknowledge that the response of species and food web properties could vary in some instances if 

the relationship between forcing function and vulnerability was non-linear. This may weaken our 

ability to predict variability at the decadal scale. The scope of this study was, however, to forecast 

food web response at the end of the 21st century because a representative response data for 

different functional groups and trophic level to future climate change scenarios was only possible to 

collect and measure between the initial and end points of the experiments.  

 

An important assumption in our model was to assign fish species into two major categories such as 

carnivorous and omnivorous based on their trophic function (feeding guilds) while calculating their 

vulnerability to predators. This is because we did not include any herbivorous fish as single 

functional group in our model due to the lack of important herbivory fish in terms of biomass and 

other biological parameters available for the PPB ecosystem. A relatively least fit observed for Port 

Jackson shark is not unexpected as we used relatively simple food web structure to validate PPB and 

mesocosm models that lacks apex predator. Abundance of meso-predator could also largely 

response to predator release in the food web (Baum &  Worm, 2009). Hence, simple predator and 

prey dynamics may not be sufficient to explain the variability between predicted and observed 

pattern for some higher trophic level species (Weijerman et al., 2017). A relatively poor fit in the 

herbivorous fish in our model calibration does not affect the outcome of our results as the model did 

not include herbivorous (fish) functional group.  

 

Additionally, our modeling approach lacks scope to capture the spatial heterogeneity of species in 

response to global warming. Although we have included both juvenile stages and adult fish groups in 

our model, this only applied to four of the food web functional groups due to the lack of reliable 

data. Inclusion of more juvenile groups in the model could improve model performance. As we 

modeled a relatively shallow-water ecosystem, the role of top-predators could be underestimated or 

overestimated due to their high mobility.  
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We had to use commercial catch and effort time series data for pelagic functional to hindcast initial 

model since pelagic species lack biomass (survey) data. Pelagic species are important prey groups in 

the food web, more dynamic in their nature and characterized by large fluctuation overtime which is 

complex to model and may have important implication in the model outcome. For example, many of 

the higher trophic level predators (e.g. seabirds, marine mammals and piscivorous fish species) are 

strongly dependent on pelagic species (forage fish) due to their specialized diet and limited feeding 

areas (Engelhard et al., 2014). Therefore, any large fluctuations in forage fish abundance can impact 

their predators, and if not well tracked, could mislead management decision for certain fishery. We 

also lack time series data for lower trophic level groups (<3 TL) which is important for model 

structure. Despite these limitations, our study included the best available historical data and 

parameterized functional groups to global warming up to a four trophic level food chain. 

 

Here, we modelled the effects of global warming, ocean acidification, and fishing using empirical 

data on species interaction and physiology and historical fisheries data on their population 

dynamics. This allowed us to successfully quantify the potential magnitude and direction of the 

biomass changes of various functional groups in future marine food webs and fisheries under global 

change. Our findings suggest that the structure of future temperate marine food webs under global 

warming will be characterized by an altered predator-prey dynamics at the top of the food web 

rather than changes from the bottom up. We show that consumers at higher trophic level in future 

food webs might benefit from global warming but this will come at a potential cost to biodiversity. 

 

3.4 MATERIALS AND METHODS 
 

We integrated empirical data from two food web level mesocosm studies (and other sources) into a 

regional food web model to calculate community-level responses to future global and local stressors. 

We updated an existing food web model of the Port Philip bay (PPB) ecosystem (Koopman, 2005) 

with contemporary information, adding higher taxonomic resolution using the Ecopath mass-

balance approach (Christensen et al., 2008). Ecopath is a food-web modelling approach used to 

create a baseline snapshot of the ecosystem and quantify the flow of energy between food web 

functional nodes through feeding relationships in a given year. The model requires four key input 

variables: biomass (B), production/biomass ratio (P/B), consumption/biomass ratio (Q/B), and diet 

composition. We calibrated the Ecopath model to a historical time series of biomass and fishing 

effort data through temporal hind-casting (1990–2015) analyses within Ecosim (Fig. S7 and Fig. S8).  
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Dynamic food web models such as Ecosim that incorporate realistic ecological interactions (e.g. as 

predation and competition) can be successfully used to estimate the ecological consequences of 

climate change on future food web and fish production capacity (Cury et al., 2008). Differential 

equations are used in Ecosim to estimate biomass fluxes for each species and/or functional group 

within the food web using foraging arena theory (Ahrens et al., 2012, Walters et al., 1997). This 

theory defines each predator/prey interaction by vulnerability parameters that affect the predator 

consumption rate (Qij) (Equation 1). The quantification of consumption rates (Qij) is a nonlinear 

relationship between prey and predator which assumes that only a portion of their biomass can be 

vulnerable to a predator. This means that the biomass of prey i is divided between a vulnerable and 

a non-vulnerable state. The vulnerability concept incorporates density-dependency and expresses 

how far a group is from its carrying capacity (Christensen et al., 2008, Christensen &  Walters, 2004). 

The vulnerability rate can be presented both as top-down and bottom-up controls of the 

predator/prey interactions. For example, vulnerabilities greater than 2 describe top-down control of 

the predator-prey relationship, where the predator biomass drives the prey mortalities, whilst 

vulnerabilities below 2 define bottom-up control, where the biomass of the predator has little effect 

on the predation mortality of that prey. For details on modeling approach please see supplementary 

text. 

 

For each predator-prey interaction, we calculated the consumption rates Qij at time t as, 

 

   ( )  
             ( )    ( )  ( ) 

            ( )
                                                                                                (Eq. 1)               

 

Where, aij is the effective search rate of predator j feeding on prey i, Bi is the biomass of the prey, Bj 

is the predator biomass, and vij is the vulnerability of prey i to predator j. See (Christensen et al., 

2008) for more detail. The forcing function f (t) can be used to account for any external drivers 

changing over time that effect food web dynamics. 

 

Exploring the effect of climate change on future food web requires projecting the effects of global 

warming on a “baseline scenario” of no climate change. We developed four 75-year simulations 

(2015-2100), these included a no climate change scenario (baseline) and three climate change 

scenarios: warming (T) ocean acidification (OA) and their combination (OAT). The climate change 
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scenarios assumed a 2.8 C increase in warming by 2100, representing a high representative 

concentration pathway scenario (RCP8.5) (Bopp et al., 2013). The no climate change scenario (NC) 

assumes that model parameters do not change in the future, with model drivers such as fishing 

effort set to that of the last year of the historical observed data (2015). For the three climate change 

scenarios (T, OA, and OAT), we incorporated direct and indirect climate-driven changes in species 

interactions and mortality of trophic functional groups in the food web. Fishing effort was initially 

held constant at 2015 levels, because little is known about how fishing effort is likely to change by 

the end of the century. The effect of climate change was then assessed by comparing biomasses and 

ecological indicators of the NC scenario with that of climate change scenarios for the 21st century. 

Consecutively, to test the response of future food webs against combined global and local stressors, 

we ran some additional scenarios where we increased fishing effort by 1.5, 2 and 5-fold compared to 

present day fishing pressure. 

 

We incorporated the effect of climate change in our modelling approach using forcing functions that 

affect the consumption and production of functional groups at a temporal scale (Ainsworth et al., 

2011, Alva-Basurto &  Arias-González, 2014, Cornwall &  Eddy, 2015, Guénette et al., 2014). We used 

the calculated effects of warming, acidification and their combination on the vulnerability, search 

activity, mortality and productivity (primary producers) of trophic groups to alter their consumption 

(Q/Bi) and production (P/Bi) rate in the model. We used information from two large-scale mesocosm 

experiments (Pistevos et al., 2015, Ullah et al., 2018) to overcome the challenge of integrating 

species interactions in ecosystem models under future climate change scenarios  and calculated 

relative effect size of different forcing function parameters (vulnerability, effective search rate, 

mortality, productivity). The relative effect size for different forcing functions (input) under future 

scenarios (OA, T, and OAT) and increased fishing effort was obtained by comparing the NC scenarios 

in 2100 with climate change scenarios (Table S6). The forcing function (input) and responses 

(biomass) were standardized to the base scenario by dividing the response value by the base values 

under a particular scenario. We used linear interpolation to construct a time series for all the forcing 

function parameters between 2015 and 2100. It is common practice in climate change ecology to 

interpolate temporally between climate snap shots (Fordham et al., 2012). The forcing functions 

were applied to appropriate functional groups in the model (Table S6). We report details on the 

estimation of different forcing function parameters in the Supporting Information. 
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We quantified the relative impact of biomass change of any group either directly or indirectly 

through trophic cascades on the biomass of other groups in the food web using Mixed Trophic 

Impact (MTI) analysis (Ulanowicz &  Puccia, 1990). We calculated a number of ecosystem-scale 

biodiversity indicators such as the Shannon index (Shannon &  Weaver, 1963) and Kempton’s Q 

index (Ainsworth &  Pitcher, 2006) and trophic indices such as the Marine trophic index (MTI). The 

Shannon diversity index primarily reflects changes in evenness, whereas the Kempton’s Q index 

tracks changes in both evenness and richness at the level of a functional group level. We calculated   

MTI as the average product of the weight of different functional group in the landings and their 

trophic level (TL ≥ 3.25) and demonstrate the effect of commercial fishing pressure on top predators 

and other large consumer fishes in the food web (see Supplementary text for details on the equation 

used for calculation). 

 

We show simulation output for food web functional groups pooled into 10 community levels, 

including pelagic groups (mammals, birds, cephalopods, pelagic finfish), demersal groups 

(Chondrichthyans and demersal finfish) and their prey (benthic crustaceans, invertebrates, small 

pelagic crustaceans, primary producers) (Table S3). We used community-level groups because 

indicators at the community level of organization proved as most reliable in detecting effects of 

perturbations on marine ecosystems (Fulton et al., 2005). Most of the future projections to date 

focused on exploited ecosystems. Here, we considered a temperate coastal marine system (Port 

Philip Bay, Victoria, Australia) which is designated as a sustainably managed ecosystem in terms of 

its fisheries exploitation (Flood et al., 2014). Fishing pressure decreased by approximately fivefold 

between 1990 and 2016 in the Port Philip Bay (Fig. S9).  

 

Scaling up mesocosm results to real-world conditions has long been a challenge (Fordham, 2015). 

We did a retrospective test to explore the ability to transfer model parameters from a mesocosm to 

the real world (mesocosm transferability) by building and comparing two simplified food web 

models with higher taxonomic resolution (Table S8; Also see Approach used for retrospective test 

and sensitivity analyses in the Supplementary text). 

 

We further addressed the uncertainty in our model output by using the Monte Carlo (MC) simulation 

based on the coefficient of variation obtained from the model pedigree (Fig. S10) (Coll &  Steenbeek, 

2017, Heymans et al., 2016). Prior to simulation, we also assessed the quality of input data and 

model validation following food web diagnostics approach (Link, 2010). Details of the data quality, 
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model validation, sensitivity analysis and retrospective tests of mesocosm transferability are 

provided in the Supplementary text. 
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Global warming likely to benefit fisheries in temperate marine ecosystems at a cost to 

biodiversity 

 

3.6 SUPPLEMENTARY METHODS 

 

3. 6.1 Modelling approach/Core concepts of EwE modelling 

 

We used the Ecopath with Ecosim (EwE) approach to simulate the effect of future climate change 

and fishing effort on the biomass of different functional groups of the food web. This involves 

modelling the system in two steps. 

First, we developed a static food web (Ecopath) model based on the trophic mass-balance principle 

where removals from the system (e.g. predation, fishing, emigration etc.) equal total production. 

Within this framework, we create a baseline snapshot of the ecosystem at the year 1990. The 

parameterization of an Ecopath model is based on satisfying two ‘master’ equations: one for 

production (equation 1) and the other for the energy balance (equation 2). The first equation 

ensures energy-balance among groups by distributing total production of a group into the catch, 

predators' diet, other mortality (death caused by other than predation and catch) (Eq. 1). 

   (   )      ∑     (   )          (   )  (     )                             (Eq. 

1) 

where Bi is the biomass of a group (i), P/Bi is the production/biomass ratio for (i), Y for fishery catch 

of a group (i), Bj is the biomass of a group (j), Q/Bj is the consumption/biomass ratio of the predator 

( j) and DCji is the fraction of prey (i) in the average diet of predator (j), EEi is the ecotrophic 

efficiency of (i) describing the proportion of the production utilized in the system, BAi is the biomass 

accumulation rate for (i), Ei is the net migration rate (emigration-immigration) for (i) and (1 − EEi) 

represents mortality other than predation. 

 

The second equation explains the energy balance within a functional group such as, 

Consumption = Production + Respiration+ Unassimilated food and written as (Eq. 2) 

                                                                                                                                         (Eq. 2) 

Where Qi is consumption by a group (i), Pi is the total production of the group (i), Ri is respiration of 

the group (i) and UAi is the unassimilated food of the group (i). 
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In the second step, we use Ecosim module to simulate the dynamics of each functional group over 

time using Ecopath inputs as starting information and incorporating different forcing function or 

parameters that represent climate change effects on the future food web. Ecosim is the dynamic 

component of the EwE suite which keeps track of changes in the biomass of species (functional 

groups) as a function of temporal changes in their catch patterns, food-web complexity (predator-

prey interaction), and environmental conditions. We modelled changes in biomass for each trophic 

group (i) over time through a series of differential equations (equation 3) which are derived from the 

first master equation of Ecopath: 

   

  
 (

 

 
)
 
∑      ( )  ∑     ( )        (        )                                                           (Eq. 3) 

Where 
   

  
 is the biomass growth rate of group i in the time 𝑑 , 

 

  
 is its production/consumption 

ratio, Qji is the consumption of group j (predator) on prey group(s) i, Qij is the consumption for 

predation by all predators j on group i (prey), Ii is the immigration rate, Bi is the starting biomass, Mi 

and Fi are the natural and fishing mortality rates of group i, respectively, and ei is the density 

dependent emigration rate. In our case, ei and Ii were set as zero. 

 

The quantification of consumption rates is based on the “foraging arena” theory (Ahrens et al., 2012, 

Walters et al., 1997). 

 

3.6.2 Food web model 

 

Preliminary model 

We used a previous Ecopath model in the region (Koopman, 2005) to update and develop a 

comprehensive food web model on the Port Philip Bay (PPB). The preliminary model of PPB by 

(Koopman, 2005) is primarily developed emphasizing the benthic-demersal system of the bay with a 

particular interest on sand flathead fishery. The preliminary PPB model composed of 30 different 

components or groups (that include single species, groups of species and developmental phases of 

one species) represents the PPB ecosystem at 1990 (Table S1). The input data of preliminary PPB 

model was obtained from a wide variety of sources (Table S2). This included both direct (from 

empirical studies carried out on PPB) and indirect estimates of parameters such as from the 

literature for either the same species from different systems, for similar species (preferably from the 

same genus) or, calculated empirically. Biomass for most species was estimated using swept area 

method from the four trawl surveys conducted in 1990 (Hobday et al., 1999) to obtain a yearly 
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average. Diet data (Table S3) were all obtained from the literature available on the bay, and when 

quantitative information was not available, proportions were estimated. A thorough technical 

description of the model, including all the data, basic input parameters, relevant assumptions, 

diagnostic features is available in (Koopman, 2005), located at 

http://dro.deakin.edu.au/view/DU:30026826. 

 

Updated PPB model 

We have updated the preliminary PPB model (Koopman, 2005) with recent and more reliable data 

that include single species, groups of species and developmental phases of species (spanning the 

main trophic components of the ecosystem) focusing on both pelagic and demersal component of 

the ecosystem. The updated PPB model comprises 23 additional species or functional groups to the 

preliminary PPB model including 3 multi-stanza functional groups (Table S1, S4). These includes 

species or groups in the top of the food web such as large sharks, large pelagic, bird, mammals, 

southern calamari, demersal finfish group such as silver trevally, yellow eye mullet, leatherjacket, 

rock flathead; pelagic finfish groups such as Australian sardine, southern anchovy, Australian salmon, 

pike (Longfin), southern garfish, invertebrate trophic groups such as filter feeding molluscs, other 

grazing molluscs, predatory molluscs, abalone, southern rock lobster, sea urchin, exotic sea star and 

one primary producer group algal turf. The inclusion of these functional groups in our new food web 

model was done to accommodate apex predators, species with a reasonable contribution in landings 

at recent times, the introduction of invasive species and to highlight the appearance of opportunistic 

producer group in the future. The model considered as the final model for PPB and represents PPB 

ecosystem at 1990. All these modification represent PPB model as a comprehensive food web model 

that includes a total of 53 functional groups, with 17 groups of demersal finfish, 7 groups of pelagic 

finfish, 7 groups of chondrichthyans, 11 groups of invertebrates, 2 groups of cephalopods, 5 groups 

of primary producer, one bird and mammal group, and a non-living group detritus (Table S4). The 

definition of the functional groups for the PPB model was based on the proxy of different biological 

and ecological characteristics of the species such as feeding habit, growth rates, size, consumption 

rates, diets, predators, and habitat distribution of the species.  

Apex predators such as mammals are ecologically important because they can constrain the 

parameters of other consumers and influence ecosystem structure and function through strong 

predation-driven consumptive effects or fear-driven non-consumptive effects with relatively few 

individuals (Roemer et al., 2009). We have therefore included marine mammals as a functional 

group in our PPB model. The inclusion of seabirds as a separate functional group in our model 

confirm that we account for the potential link between birds and vertebrate predators in the food 

http://dro.deakin.edu.au/view/DU:30026826
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web which also serves as a bioindicator of the health of marine ecosystems (Parsons et al., 2008). 

Migratory patterns of seabirds were also taken into account by modelling a proportion of the diet 

composition of this group as imports to the system. 

We have added rock flathead in the updated PPB model since rock flathead showed an increasing 

contribution in the landings of major species caught at PPB recent decades while other two major 

flatheads such as sand flathead species and yank flathead showed a decline. Cephalopod fishery in 

PPB consisted of southern calamari, octopus, and other squids; however, southern calamari is by far 

the most important target species both in the recreational and commercial fishery. We therefore 

modelled southern calamari as a separate functional group. 

We have modelled complex trophic ontogeny and patterns in potential exploitation of juveniles for 

some key fish species (e.g. sand flathead) representing their life history stages (referred to as 

‘stanzas’ here). We modelled juvenile sand flathead as a stanza group for sand flathead fishery which 

makes their dynamics more realistic and provides insights on stock-recruitment relationships. 

Juvenile sand flathead was a separate functional group in the preliminary model. In addition to sand 

flathead, we have added three more multi-stanza groups. This was done for the three species of 

highest commercial interest in recent times in the bay such as King George whiting, red mullet, and 

snapper. To represent multi-stanza groups, we used baseline estimates of total mortality rate (Z) and 

diet composition for each stanza and biomass and QB (consumption over biomass) for one “leading” 

stanza such as an adult. We also incorporated information on the estimates on age (in months) 

between stanzas (e.g. adult and juvenile) (Bani &  Moltschaniwskyj, 2008, Froese R, 2018, Smallwood 

et al., 2013), the von Bertalanffy K parameter (Froese R, 2018), and the estimate of weight at 

maturity as a fraction of weight at infinity (Wmat/Winf) (relative weight at maturity) (Froese R, 2018, 

Heymans et al., 2016). Mortality rates and diet composition are assumed to be similar for individuals 

within each stanza. 

We have added several trophic groups of small pelagic species such as Australian sardine, southern 

anchovy, southern garfish, Australian salmon, pike which were all pooled under small pelagic to the 

preliminary model. Small pelagic species are ecologically important forage fishes (Pikitch et al., 2014) 

and could serve as target species in certain ecosystems such as PPB (e.g. sardine, anchovy). 

Additionally, including forage fishes with higher taxonomic resolution enables us to explore if any 

predators had high diet dependencies on individual forage fish species (Koehn et al., 2016) and thus 

may become more vulnerable under disturbance. This was also done for small demersal fish given 

the importance of the benthic compartment of the shallow coastal ecosystem of PPB. However, 

there are several other small pelagic and demersal species which are modelled as an aggregated 
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group due to their low individual biomass and importance in the model or due to their insufficient 

and unreliable taxonomic resolution. We have included an invasive species in our updated model. 

The exotic seastar (Asterias amurensis) is one of Australia’s most serious invasive marine pests which 

was introduced into Port Phillip Bay in 1995 and by 2000 its biomass peaked at 56% of the resident 

fish biomass in the deeper region of the bay (Parry &  Hirst, 2016). This species was found 

responsible for the decline of shovelnose stingaree, eagle ray, and globefish biomass and may 

potentially lead to the local extinction of its prey altering benthic community structure (Parry &  

Hirst, 2016). Functional groups such as abalone, rock lobster, and sea urchin were included in the 

model to fill the vacant link in the trophic flow in the ecosystem of the early 90s and also to track 

potential cascading effects in that may be overlooked in the absence of these groups.  

Notably, we split molluscs into three functional groups given their importance for trophic flows 

(Covich et al., 1999) and to ensure that competitive effects among ecological equivalents are 

considered. Among them, filter-feeding molluscs (bivalves) are one of the major prey groups in the 

PPB ecosystem. Algal turfs were incorporated as an additional functional group as they can 

dominate ecosystems prone to disturbances due to their fast-turnover rate (Hatcher &  Larkum, 

1983).  

The basic model input parameters such as biomass (B); production per unit of biomass (P/B), 

consumption per unit of biomass (Q/B) and diet matrix were obtained for PPB taxa when available. 

We largely use diet, production, and consumption parameters in our model from two 

comprehensive reports on PPB based on extensive surveys and sampling (Officer &  Parry, 1995, 

Parry et al., 1995).We also obtained different parameters of several other species or model 

functional groups of the Bay from various sources (Table S2, S3). In case specific information was not 

available for PPB, we used the most appropriate estimates based on other ecosystems from the 

literature (Table S2)  

 

Model balancing 

 

Before balancing the model, underlying assumptions based on ecological and fisheries principles 

have to be checked. We used the pre-balancing (PREBAL) approach to ensure that model parameter 

is in line with energetic laws for ecosystem structure (Link, 2010). The PREBAL diagnostic criteria 

take account of few assumptions such as biomass estimates in an ecologically meaningful food web 

models should span 5–7 orders of magnitude. Additionally, the slope of the biomass (on a log scale) 

should decline by 5–10% across all taxa ordered by trophic level (Link, 2010). The initial diagnostics 

suggest that our model satisfies these underlying assumptions. 
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We then balance the model following the general ecological rules and the laws of thermodynamics 

(Jørgensen &  Fath, 2004). We considered the model balanced when estimated ecotrophic efficiency 

(EE) values of all functional groups were lower than 1 and were high (≥ 0.95) for exploited species 

and more predated ones (such as small pelagic fish species) and low (< 0.5) for unexploited top 

predators (such as mammals and yank flathead). We assumed an EE value of 0.95 for some heavily 

predated species in the ecosystems such as those with forage fish (Christensen &  Pauly, 1998, 

Christensen &  Walters, 2004, Polovina, 1984). For groups with the little systematic study of 

catchability and gear selectivity and which are also exploited heavily (e.g. cephalopods and 

calamari), biomass was estimated by Ecopath, using an EE of 0.95 (Lassalle et al., 2011). We also 

made sure that the values of production/consumption (P/Q) for functional groups of the model were 

between 0.1 and 0.35, with the exception of spinney gurnards (Christensen et al., 2008). This was 

achieved through incremental changes of the diet matrix of functional groups of the model which 

are the most uncertain parameters in an ecological model. Updating the diet matrix with stomach 

content analysis based on local study is a powerful but often underused way of improving Ecopath 

models (Ainsworth &  Mumby, 2015). Since we largely updated the preliminary model with 

additional functional groups in the model and with higher taxonomic resolution, it was essential to 

revisit the previous diet matrix and search for new and updated information, most of which came 

from the local ecosystem or similar species from a similar system. It was necessary to adjust the diet 

of a few functional groups such as birds and banjo ray from their original input data (< 5%). Adjusting 

predator diet data for some groups such as small pelagics and small demersal was also required as 

these groups were split into specific functional groups in the new model. These adjustments were 

crosschecked with FishBase (http://www.fishbase.org) to ensure confidence intervals of the 

estimation of trophic levels are reasonably close to the values published literature (Froese R, 2018). 

We recorded the origin of the data used to create the model and computed the quality of the model 

through the pedigree routine.  Pedigree values for input data range from 0 (when it is not based on 

local data) up to 1 (fully rooted in local data). The pedigree routine describes the precision of the 

input data and sets confidence intervals which can be further used while undertaking Monte-Carlo 

simulations for uncertainty analysis (Christensen &  Walters, 2004, Morissette, 2007). The pedigree 

index of our model was computed as 0.52 which suggests that results derived from it are reasonably 

robust. 

Food web model calibration 

 

The updated Ecopath model needed to be fitted with historical time series data to assess model 

performance and to perform simulations for climate change effects on food web. We applied the 

Ecosim approach to fit the model to observed time-series data using the sum of squares (SS) ratio 
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between predicted and observed data for model evaluation (Christensen et al., 2008). In this study, 

we used a total of 52 time series that included observed biomass, landed catch, fishing effort as well 

as environmental driving factors. The biomass time-series data were obtained from Marine 

Ecological Solutions Pty. Ltd (Gregory Parry, pers. com.) which mostly comprises the demersal and 

benthic groups. The surveys of demersal fish assemblages were carried out annually using demersal 

trawl nets at 20 stations stratified by depth in Port Phillip Bay from 1990 to 2011. These surveys 

cover about 78% (1506 km2) of the whole PPB area (317 km2-shallow, 155 km2-west, 403 km2- 

intermediate and 631 km2-deep). The shallowest trawl of the bay was at 7 m while the deepest was 

in 20 m. There was no trawling in 1998 and 2001. We used average biomass across depth as our 

biomass time series input for specific functional group. We also used this data to update the initial 

biomass in the preliminary PPB model for 1990. This was done as the biomass estimates in the 

preliminary PPB model was mostly based on using a prawn net (13 headline length) and towed for 5 

min, but there were no sweeps (Hobday et al., 1999). There may have been some biomass estimates 

based on the swept area of this net, but they would not be very representative of the bay as a whole 

as the sampling was concentrated at ~15 m depth. Furthermore, a number of sophisticated 

assumptions/corrections were made in the present data used for different depths and for different 

species, depending upon whether they were thought likely to be herded or not by the sweeps (Parry, 

2011, Parry &  Hirst, 2016). Such as trawl net efficiencies in front of net was assumed to be 90% (min 

80%, max 100%) and between doors and net 40% (min 20%, max 60%). All of these changes greatly 

improved the accuracy of the biomass time series that we applied. The time series for the 

commercial fisheries landings and fishing effort were obtained from the Department of Primary 

Industries (VFA, 2016). The estimates of annual recreational catch in Port Phillip Bay for new 

functional groups were taken from (Fulton &  Smith, 2004). Recreational bycatch fisheries were 

supplied by Conron (pers. com.). The chlorophyll data on the PPB was taken from (EPA, 2002), while 

the water temperature data was obtained from the Bureau of Meteorology of Australian 

Government (BOM, 2018). 

The base Ecopath model was calibrated within time dynamic Ecosim approach using historic time-

series data from 1990 to 2015 in order to reconstruct the historical trends. The hindcast approach 

was performed using the automated stepwise fitting procedure (Scott et al., 2016). The fitting 

process identifies highly influenced and critical vulnerability interactions in the model and calibrates 

those to improve the statistical fit using the weighted sum of squared deviations (SS). The SS was 

calculated using the disparity between the log of observed and predicted catches (Christensen et al., 

2008). Then the Akaike Information Criterion (AIC) (Akaike, 1974) and the corrected AICc (Burnham 

&  Anderson, 2004) were calculated as follows, 
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where n is the number of observations, minSS is the minimum sum of squares resulting from the 

comparison between predicted and observed time series, and k is the number of parameters. Thus, 

AIC can be used to test statistical hypotheses that aaccount changes in predator-prey dynamics (also 

called vulnerabilities: Vs); changes in primary production (PP anomaly, considering the number of PP 

spline points (sPP) for smoothing the time series); impact of fishing and possible combinations of all 

of the above-mentioned factors (Table S5). AIC penalizes for fitting too many parameters, and comes 

up with a “best” model (the one yielding the lowest AIC) considering a good fit and the least number 

of estimated parameters. For our model selection, we used the second-order Akaike Information 

Criterion (AICc) since it accounts for small sample sizes (n of observations) and calculated as follow: 

Finally, the AICc values were used to compare the quality of the baseline model without any 

ecosystem drivers, environmental forcing function or trophic vulnerabilities and models with their 

combination. During the model fitting, we accounted for data quality of the available time series by 

weighing them using a factor of either 0.9 or 1. The value 0 denotes that the time series are not 

considered in the calculation of SS while 1 indicates that they are given full consideration 

(Christensen et al., 2008). For the survey biomass time series, we used a weight of 1, while the time 

series constructed from catch and effort data were assigned a weight of 0.9. This was done to 

consider the relatively higher uncertainty of catch data and the inclusion of small pelagic/forage fish 

groups in the model which are highly variable in PPB. 

The fitting process accounts for any changes in the associated parameter such as P/B or Q/B during 

vulnerability parameters estimation according to the corresponding value for the forcing function in 

the time series. Use of environmental forcing functions as a major driver in Ecosim fitting exercise is 

a common approach. We first fitted the model with chlorophyll as a sole environmental driver along 

with other parameters. This, however, did not show a good fit for some demersal groups in the 

model, particularly for chondrichthyans. We, therefore, added mean maximum annual temperature 

to account for its effect on the effective search rate on zooplankton by their predators. Temperature 

trends can affect the search rate and feeding area of a predator and at the same time change the 

vulnerability rate of a prey (Heymans et al., 2016). Adding the effects of temperature as an 

additional environmental driver improved the performance of our model fitting (Table S5). During 

the model calibration, the stepwise fitting procedure tested a total of 752 different model 
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interactions with a total of 501 observations (observed data points). The maximum number of 

parameters that could be estimated (k-1) during the model fitting was 51 (there were 52 time series 

of biomass, catch, environmental and effort data). The degrees of freedom accounted in the final 

model was 15 (the difference in number of parameters calibrated in the final model than baseline 

model) with 501 number of observations. We performed the fitting procedure choosing vulnerability 

parameters as to be “by predator” for all iterations assuming the same top-down or bottom-up 

control in the predator-prey relationship. The best model from the fitting exercise was obtained 

when trophic interactions and fishing were included together in the model run (Step 6 in Table S5). 

The fitted vulnerability values of all the model functional groups are shown in Supplementary Table 

S6. 

 

3.6.3 Representing global warming and ocean acidification 

 

Estimation of predator-prey interactions is challenging due to their dynamic nature and the complex 

trophic structure of an aquatic ecosystem, making a direct integration into ecosystem models 

difficult. The major challenge lies in parameterizing species interaction at higher trophic levels since 

they are neither straightforward to observe in nature nor easy to replicate in an experimental 

context. 

We address this challenge by using output of species interaction obtained from mesocosm 

experiments which includes both direct (Ullah et al., 2018) and indirect estimates of the vulnerability 

of a prey to its predator (Goldenberg et al., 2018), effective search rate of a predator for its prey 

(Pistevos et al., 2015) and mortality of some lower trophic prey groups accounted in the food web 

model (Ullah et al., 2018). The strength of our modelling approach lies in the input data that were 

obtained from two community-level mesocosm experiments (Pistevos et al., 2015, Ullah et al., 

2018). In both experiments, the mesocosm had the same crossed design of elevated CO2 and 

temperature with 3 replicate mesocosms per treatment combination. Both mesocosm systems I) 

approximately simulate an RCP8.5 scenario, II) were multi-trophic (producer to predator) capturing 

the complexity of a food web, III) include a total habitat volume of ~2,000 L, IV) were supplied by a 

flow-through of seawater from the same source ensuring comparable nutrient levels. The similarity 

between the two systems is critical as geographical variation and experimental contexts can alter the 

effect of climate change on consumer-resource interactions and lead to additional sources of 

variability (Marino et al., 2018). 
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The biomass of future ecosystems within the Ecosim approach is represented by the ‘‘foraging arena 

concept’’, where prey biomass is divided into vulnerable and non-vulnerable components. The 

transfer rate between these two components is the vulnerability rate, which determines whether 

the flow control is top-down (predator-driven), bottom-up (prey-driven) or both. 

We used predation pressure which is the consumption rate (mg/4hr/individual) of species relative to 

control condition to estimate the vulnerability (direct estimate) of lower trophic level (trophic level ≤ 

2) species/ functional groups to its predator. This is done using data from stomach content analysis 

and in situ feeding trials that incorporated different treatment effects (e.g. temperature, 

acidification or their combination) (Ullah et al., 2018). The relative weight of different prey groups in 

the stomach was calculated based on their average individual body mass and relative contribution to 

the total prey weight. Thus, the predation pressure exerted by the predators (in our case fish) on 

their prey groups is directly accounted for as the vulnerability of the representative prey groups in 

our Ecosim model. The estimation of prey vulnerability through in situ feeding trials is a robust 

representation since successful feeding at the community level incorporate the complex interplay 

between morphology, physiology, behavior, population dynamics, and predator-prey interactions 

(Brodeur et al., 2017). For details about the experimental design and stomach content analysis, see 

(Goldenberg et al. 2007) and (Ullah et al., 2018), respectively. 

We applied a combination of direct and indirect approaches to estimate the vulnerability of prey 

groups for higher order trophic groups (trophic level ≥ 2). The indirect approach of vulnerability 

estimation was based on a behavioral experiment on traits related to foraging and predation of 

consumers. A detailed description of the experimental setup is given in (Goldenberg et al., 2018). 

Here we will only provide a brief summary of the behavioral experiment and information particularly 

relevant to our model. After 2.5 months of exposure to the climate treatments, a total of 3 

behavioral trials lasting 7 min were conducted in each mesocosm in the presence of a predator. The 

scorpionfish Gymnapistes marmoratus was used as predator and presented to the prey in a cage for 

the duration of the trial to simulate an environment with high predation risk. Five prey species – 

little weed whiting (Neoodax balteatus), blue weedy whiting (Haletta semifasciata), longfin goby 

(Favonigobius lateralis), zebrafish (Girella zebra) and toothbrush leatherjacket (Acanthaluteres 

vittiger) – were included in our analysis. A small container placed in front of the predator cage 

emitted food cues to attract the prey species to the general area and encourage foraging related 

behaviours. Based on video recordings, the position of each prey individual throughout the trial was 

afterwards assessed through manual tracking using the software Solomon Coder. To be able to 

quantify foraging and risk-taking behaviours, the field of view of the camera was subdivided into an 

area distant to the food cue, which also provided shelter habitat, and the area close to the food cue, 
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which was unsheltered and faced the predator cage. The area close to the food cue was further 

subdivided into the side directly in front of the predator cage, where predation risk was highest, and 

the side further away. 

 

Three response variables were derived and combined to estimate prey vulnerability. I) “Prey 

attraction” was calculated as the percentage of time spent in the area close of the food cue relative 

to the time spent in the entire field of view (Goldenberg et al., 2018). II) ‘Food search activity’ was 

given as the number of position changes in the area close to the food cue relative to the time spent 

in this area (Goldenberg et al.). III) ‘Boldness’ was measured as the percentage of time spent on the 

side directly in front of the predator within the area close to the food cue relative to the time spent 

in the entire area close to the food cue (this chapter). Prey fishes may approach a predator to 

inspect it – a characteristic behavior termed predator inspection (Pitcher et al., 1986) – reducing 

their vulnerability to the predator. While searching for food, the prey individuals also displayed 

potentially risky competitive interactions (i.e. attacks, fights, and chases) amongst themselves. We 

excluded the data obtained during any predator inspection behavior for the calculation of the three 

response variables to obtain the vulnerable component of the prey isolated from its non-vulnerable 

components. Finally, we averaged across the three response variables, weighting each variable 

equally, to obtain a composite vulnerability index of prey to its predator. 

 

Besides species vulnerability, each predator-prey interaction in Ecosim can be presented by the 

effective search rate of predators (on their prey), which also determines the flow of energy through 

the food web. We calculated effective search rates for chondrichthyans on their prey using data 

presented in (Pistevos et al., 2015). In their mesocosm experiment, (Pistevos et al., 2015) estimated 

the total time (s) taken by a Port Jackson shark to successfully locate (1st successful hit) prey hidden 

in the sand based on olfactory cues (see Methods in (Pistevos et al., 2015) for details).  

 

The direct mortality, vulnerability rate, and effective search rate were used as a forcing function to 

drive the Ecosim models. These functions are applied to appropriate species in the model (Table S7). 

We calculated the relative effect size of these rates under different climate scenarios compared to 

control conditions using the absolute values (Table S7). In all cases, the value for baseline model was 

considered 1. Finally, linear time series were constructed for all the forcing functions from 2015 to 

2100 based on the relative effect size to drive the respective parameters in the model simulations. 

3.6.4 Calculation of MTI and diversity indexes 
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The mixed trophic impact analysis (MTI) used to explore the relative impact of slight increase or 

decrease of the biomass of any group on the other groups of the food web is expressed as, 

                

where DCij is the diet composition term expressing how much j contributes to the diet of i, and FCji is 

the proportion of predation on j that is due to i as a predator, allows the quantification of the 

impacts that a theoretical change of a unit in the biomass of a group (including fishing effort) would 

have on other groups in the ecosystem (Christensen et al., 2008). 

We examined indices of diversity and evenness at broad taxonomic scales (functional group). The 

indices were estimated using the final mass-balance biomass estimates from Ecopath. We expressed 

diversity within general functional pools by using a form of the Shannon diversity index (Shannon &  

Weaver, 1963), 

   ∑  
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Where diversity (H') is a function of the proportion (p) of each functional group i that makes up the 

total biomass of the s pools that make up a general functional pool which in our case either 

individual species or a functional group such as zooplankton. As H' increases, species diversity 

increases. 

The diversity index Kempton’s Q (Kempton &  Taylor, 1976) describes the slope of the cumulative 

species log abundance curve. This is adapted in our modeling approach in a way where taxonomic 

species are also grouped into aggregate biomass pools of functionally similar organisms, species are 

replaced by the species groups of the model, and the biomasses of these groups serves as a proxy 

for the number of individuals in that species or groups (Ainsworth &  Pitcher, 2006). This modified 

Kempton’s Q species diversity index was calculated considering organisms with trophic levels 3 or 

higher and defined as, 

   
      

   (     )
 

Where Fg is the total number of functional groups in the model; R1 and R2 are the representative 

biomass values of the 10th and 90th percentiles in the cumulative abundance distribution. 

Within the Ecopath modeling approach, a functional group cannot be absolute extinct, but should 

rather be represented by a very low but non-zero biomass value. This means each simulation at its 

conclusion will contain the same number of functional groups as the base model. The Kempton’s Q 
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index is reasonably invariant to model structure since each functional group potentially can affect 

only one point on the log-abundance curve. Thus this may induce a change in the overall slope only 

marginally (Ainsworth &  Pitcher, 2006). In contrast, the Shannon index is considered more sensitive 

to the aggregation style used by the mass balanced model. Aggregation style of functional groups in 

food web models can also influence the behavior of models (Fulton &  Smith, 2004). 

The calculation of the Marine trophic index (MTI) considered species caught and retained from a 

fishing operation with trophic level≥3.25. The retained fish may not necessarily target by a fishery 

and could be also retained as because they are of commercial interest (i.e. not discarded). MTI is 

calculated as follows (Shannon et al., 2014): 

        ∑  

 

   

        

Where YL is total landings, Yi is the landing of species i and TLi is the trophic level of species i (note: 

YL, Yi and TLi vary in time). 

3.6.5 Approach used for retrospective test and sensitivity analyses  

 

Environmental models including those which are deterministic should consider accounting 

uncertainty of their outcomes to use in the decision support system. In our modelling approach, we 

have accounted for the uncertainty of our model output in two steps. 

In the first step, we built two simplified Ecopath models, one for each of the mesocosm and Port 

Philip Bay, using species-specific (predominantly higher order) taxonomic data. The mesocosm 

model was based on (Ullah et al., 2018) and further parameterized and updated (included Port 

Jackson as a model group) using data from (Pistevos et al., 2015) while the PPB model was 

parameterized based on existing data of the Bay (Table S8). Both of the models comprise an equal 

number of functional nodes and similar food web functional groups which allowed us to conduct a 

retrospective test of mesocosm transferability. The mesocosm transferability test specifically 

address the applicability of mesocosm data used to parameterize the updated (full) Port Philip Bay 

model to different climate scenarios. To do this, we consider that the food web parameters of 

control condition (mesocosm) resemble the condition of Port Philip Bay between the model period 

1990 and 2015. Models were fitted with time-series data using automated stepwise fitting 

procedure (Scott et al., 2016) and the best model was chosen based on the corrected AICc to derive 

the vulnerability parameters. The output showed that the mesocosm model fitted the biomass 

trends for carnivorous fish (benthic) and omnivorous fish reasonably well (Fig. 4) but not for the Port 

Jackson shark and herbivorous fish, given the large fluctuation of biomass data for herbivorous 
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species and the absence of true predators for Port Jackson shark in the simplified model. The two 

best fitted models for both the mesocosm (AICc 17.55; Total SS 59.85) and PPB model (AICc 7.33, 

Total model SS 47.95) produced AICc values closer to each other. Overall, we show that our 

modelling approach through the amalgamation of empirical results and contemporary secondary 

field data used within a computational model was successfully able to track ecologically realistic 

trends of a real-world ecosystem. 

 

In a second step, we used the Monte Carlo (MC) routine to examine the uncertainty in the basic 

Ecopath input parameters (B, P/B, Q/B, EE) on the outputs of model simulation (biomass and 

ecological indicators). Within this approach, each MC simulation randomly selected a set of 

parameters within a 10% coefficient of variation (CV=0.1) for the B, P/B, Q/B, and EE based on their 

defined “Pedigree” (Coll &  Steenbeek, 2017, Heymans et al., 2016). We ran 100 MC simulations 

(each involving up to several thousand iterations to find a balanced model) and the results were 

used to plot the 5th and 95th percentile confidence intervals for the fitted biomass (Fig. S10). This 

approach was used for both the simplified Ecopath models (mesocosm and PPB) and updated PPB 

model. 
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3.7 SUPPLEMENTARY FIGURES  

 

 

Figure S1: Change in biomass (∆ %) of different ecosystem functional groups (TL>3) groups under a 

future climate change scenario (RCP 8.5) with current level of fishing effort continuing at 2100, 

relative to the biomass in 2100 under a scenario of no change in climate or fishing effort from 

present day levels. OA = ocean acidification, T= ocean warming, and OAT = combined ocean 

acidification and warming. 
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Figure S2: Change in biomass (∆ %) of different ecosystem functional groups (TL<3) groups under a 

future climate change scenario (RCP 8.5) with current level of fishing effort continuing at 2100, 

relative to the biomass in 2100 under a scenario of no change in climate or fishing effort from 

present day levels. OA = ocean acidification, T= ocean warming, and OAT = combined ocean 

acidification and warming. 
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Figure S3: Mixed Trophic Impact (MTI) index for different community groups derived for NC, OAT, T 

and OA scenario. The MTI index, scaled from -1 to 1, was first calculated for every group of the 

model. The values of individual functional groups were then pooled under corresponding community 

groups and presented as a total net cumulative effect (positive plus negative) across all functional 

groups within a community. Therefore, the total effect could be >±1. The colours should not be 

interpreted in an absolute sense: the impacts are relative, but comparable between groups. NC 

denotes no change in climate and fishing effort from present-day levels. OA = ocean acidification, T= 

ocean warming, and OAT = combined ocean acidification and warming. The colour boxes show 

negative (red) or positive (green) impacts of a community group on others and the intensity is 

proportional to the degree of the impacts. 
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Figure S4: Keystoneness index for the different functional groups (only with a relative impact >0.50) 

of the food webs in four different climate scenarios. For each functional group, the keystoneness 

index (y axis) is reported against overall effect (x axis). Overall effects are relative to the maximum 

effect measured in each trophic web, thus for the x axis the scale is always between 0 and 1. Within 

each trophic web the species are ordered by decreasing keystoneness, therefore the keystone 

functional groups are those ranking between the first groups (values close or greater than zero). The 

circle sizes are relative to their standing stock biomass. NC refers to the biomass of PPB ecosystem, 

under no climate change and current level of fishing effort at 2100. OA = ocean acidification, T= 

ocean warming, and OAT = combined ocean acidification and warming.  
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Figure S5: Change in biomass (∆ %) of different functional groups (TL>3) under the combination of 

different climate and fishing effort scenarios relative to the biomass in 2100 under a scenario of no 

change in climate from present day levels (NC). OA = ocean acidification, T= ocean warming, and 

OAT = combined ocean acidification and warming. Here the number with ‘folds’ refers to the 

magnitude of fishing increase that starts in year 2015 and is held constant up to 2100 compared to 

the NC scenario. 
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Figure S6: Change in biomass (∆ %)  of different functional groups (TL<3) under the combination of 

different climate and fishing effort scenarios relative to the biomass in 2100 under a scenario of no 

change in climate from present day levels (NC). OA = ocean acidification, T= ocean warming, and 

OAT = combined ocean acidification and warming. Here the number with ‘folds’ refers to the 

magnitude of fishing increase that starts in year 2015 and is held constant up to 2100 compared to 

the NC scenario.  
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Figure S7: Predicted (solid lines) versus observed (dots) biomass (tonnes km−2) for some of the 

groups with available data in the Port Philip Bay ecosystem model during the period 1990−2015. 
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Figure S8: Predicted (solid lines) versus observed (dots) CPUE (tonnes km−2) for some of the groups 

with available data in the Port Philip bay ecosystem model during the period 1990−2015. CPUE 

denotes catch per unit effort. 
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Figure S9: Historical trends of fishing efforts (Fishing events) obtained for commercial fishery in the 

Port Philip Bay ecosystem calculated by multiplying the number of fishing days and number of 

fishers.  
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Figure S10: The results of Monte Carlo simulations (100 simulations run) of some higher trophic level 

food web functional groups of Port Philip Bay are plotted. Thick blue line represents the mean value 

of the fitted model.  The 95% percentile and 5% percentile using 10% fixed variability of the model 

inputs (shaded areas) derived from model pedigree index are also shown. Results are only plotted 

for the most pervasive future scenario OAT (warming and acidification together) relative to no 

change scenario at 2100 under present day fishing effort.  
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3.8 SUPPLEMENTARY TABLES 
Table S1. Biomass estimates (t km−2 total weight) and other functional group parameters of the updated Port Philip Bay (PPB) Ecopath model. Values of 

trophic level (TL), biomass, production/biomass (P/B) ratio, consumption/biomass (Q/B) ratio,  ecotrophic efficiency (EE), and production/consumption 

(P/C) ratio were shown. Fg. denotes functional group and Fg. No. denotes functional group number. 

 

Fg. 
No. Group name TL Biomass (t/km²) 

PB 
(/year) 

QB 
(/year) EE P/C 

Functional groups in  PPB 
Model  

1 Large sharks 4.33 0.01 0.18 1.75 0.60 0.10 Included 
2 Large pelagics 4.02 0.72 0.40 3.92 0.62 0.10 Koopman, 2005 
3 Bird 3.82 1.02 0.07 1.69 0.15 0.04 Included 
4 Mammals 4.02 0.02 0.09 19.88 0.00 0.00 Included 
5 Yank flathead 3.58 0.09 0.40 3.80 0.18 0.11 Koopman, 2005 
6 Rock flathead 3.33 0.07 0.38 2.45 0.95 0.16 Included 
7 Other cephalopods 3.48 0.18 1.70 6.00 0.95 0.28 Koopman, 2005 
8 Southern calamari 3.47 0.25 1.83 8.00 0.95 0.23 Included 
9 Smooth ray 3.33 0.14 0.32 2.72 0.47 0.12 Koopman, 2005 

10 Adult sand flathead 3.46 1.84 0.40 2.31 0.43 0.17 Koopman, 2005 
11 Juvenile sand flathead 2.40 0.42 0.40 4.20 0.95 0.10 Koopman, 2005 
12 Banjo ray 3.45 0.33 0.23 2.37 0.22 0.10 Koopman, 2005 
13 Eastern shovelnose stingaree 3.28 0.84 0.49 2.41 0.08 0.20 Koopman, 2005 
14 Adult King George whiting 3.18 0.12 1.10 4.40 0.97 0.25 Koopman, 2005 
15 Juvenile King George whiting 3.29 0.21 1.10 8.12 0.53 0.14 Included 
16 Large demersal fish 3.40 0.05 0.92 4.33 0.79 0.21 Koopman, 2005 
17 Adult Red mullet 3.13 0.05 0.92 5.19 0.92 0.18 Koopman, 2005 
18 Juvenile Red mullet 2.02 0.01 1.84 13.04 0.69 0.14 Included 
19 Eagle ray 3.14 0.41 0.20 3.37 0.02 0.06 Koopman, 2005 
20 Other sharks/rays/skates 3.11 0.07 0.22 2.20 0.86 0.10 Koopman, 2005 
21 Sparsley spotted stingaree 3.11 0.57 0.41 4.16 0.03 0.10 Koopman, 2005 
22 Australian sardine 3.06 2.89 1.12 6.00 0.95 0.19 Included 
23 Southern anchovy  3.04 2.54 0.70 5.04 0.95 0.14 Included 
24 Australian salmon 3.96 0.41 0.44 4.20 0.95 0.10 Included 
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Table 5.1: Cont. 

       25 Pike 4.04 0.21 0.30 3.00 0.95 0.10 Included 
26 Southern garfish  2.61 0.23 1.55 10.40 0.95 0.15 Included 
27 Small pelagics 3.01 3.53 0.82 10.02 0.95 0.08 Koopman, 2005 
28 Silver trevally 3.28 0.31 0.57 2.20 0.95 0.26 Included 
29 Yelloweye mullet  3.02 0.15 1.32 10.60 0.95 0.12 Included 
30 Leatherjacket 2.68 0.12 0.92 9.65 0.99 0.10 Included 
31 Small demersal fish 3.10 0.72 1.42 12.31 0.95 0.12 Koopman, 2005 
32 Globefish 3.11 1.17 0.68 3.04 0.14 0.22 Koopman, 2005 
33 Spiny gurnards 3.05 0.04 0.87 2.40 0.95 0.36 Koopman, 2005 
34 Adult snapper 3.31 0.26 0.49 2.20 0.98 0.22 Koopman, 2005 
35 Juvenile snapper 3.05 0.20 0.55 3.71 0.77 0.15 Included 
36 Other invertebrates 2.39 24.02 3.26 16.28 0.13 0.20 Koopman, 2005 
37 Polychaetes 2.29 24.22 2.93 11.53 0.91 0.25 Koopman, 2005 
38 Filter feeding molluscs 2.07 24.97 2.72 13.59 0.95 0.20 Included 
39 Grazing molluscs 2.00 4.02 2.09 10.49 0.95 0.20 Included 
40 Predatory molluscs 3.32 0.94 2.72 13.59 0.57 0.20 Included 
41 Echinoderms 2.05 51.28 0.80 9.41 0.33 0.08 Koopman, 2005 
42 Zooplankton 2.04 4.66 54.75 153.36 0.55 0.36 Koopman, 2005 
43 Benthic crustaceans 2.05 25.97 4.50 22.48 0.95 0.20 Koopman, 2005 
44 Abalone 2.00 0.26 0.73 12.41 0.70 0.06 Included 
45 Southern rock lobster 3.23 0.03 0.73 12.41 0.53 0.06 Included 
46 Sea urchin 2.00 4.72 0.88 11.68 0.71 0.08 Included 
47 Exotic seastar 3.05 0.00 0.52 2.60 0.00 0.20 Included 
48 Macroalgae 1 18.13 20.00 0.00 0.23 

 
Koopman, 2005 

49 Algal turf 1 0.71 30.85 0.00 0.97 
 

Included 
50 Phytoplankton 1 6.41 259.30 0.00 0.82 

 
Koopman, 2005 

51 Microphytobenthos 1 26.88 45.00 0.00 0.11 
 

Koopman, 2005 
52 Seagrass 1 58.21 11.13 0.00 0.07 

 
Koopman, 2005 

53 Detritus 1 12573.00     0.29   Koopman, 2005 
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Table S2: The source of basic input parameters for the Port Phillip Bay ECOPATH model. Juvenile fish groups represent those <3 years old. 

Production/biomass= P/B and consumption/biomass= Q/B, Natural mortality= M, total mortality=Z. Fg. No. denotes functional group number. 

Fg. 

No. 
Group name 

Biomass 

(t/km²) 

                             PB 

(/year) 

QB 

(/year) 

Ecotrophic efficiency 

(EE) 

1 Large sharks Model estimation Average of M for bronze whalers 

 and 7-gilled sharks (Froese and  

Pauly, 2017) 

Calculated empirically 

 (Palomares and Pauly,1998) 

Assumed EE = 0.60 

2 Large pelagics Trawl survey Annala et al. 1999 and Tilzey 1994  

(Weighted by relative abundance 

 of component species) 

Calculated empirically 

 (Palomares and Pauly,1998) 

  

3 Bird Briggs et al. 1987; PICES, 

1998 

Briggs et al. 1987; PICES, 1998 Briggs et al. 1987; PICES, 

1998 

  

4 Mammals Fulton and Smith, 2004 Fulton and Smith, 2004 Fulton and Smith, 2004   

5 Yank flathead Trawl survey As for sand flathead Calculated from Officer and 

 Parry (1996) 

  

6 Rock flathead Model estimation Koopman, 2004 Averaged from sand and  

yank flathead 

Assumed EE  

= 0.95 (Polovina,1984) 

7 Other 

cephalopods 

Model estimation Manickchand-Heileman et al. 1998 O'Sullivan and Cullen 1983; 

 Arreguin-Sanchez et al. 1993 

Assumed EE  

= 0.95 (Polovina,1984) 

8 Southern calamari Model estimation Fulton and Smith, 2004 Watson et al. 2013 Assumed EE  

= 0.95 (Polovina,1984) 

9 Smooth ray Trawl survey Used Tmax from similar species  

(Dasyatis C. chrysonota (Cowley, 

1997)) 

 to estimate M 

Calculated from data in 

Officer  and Parry (1996) 

  

10 Adult sand 

flathead 

Trawl survey Z (Calculated from catch curve) Calculated from data in 

Officer and Parry (1996) 

  

11 Juvenile sand 

flathead 

Trawl survey Z (Calculated from catch curve) Model estimation   
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12 Banjo ray Trawl survey-2 M (Froese and Pauly, 2017) Calculated from Officer and 

 Parry (1996) 

  

13 Eastern S. 

stingaree 

Trawl survey-2 M (Froese and Pauly, 2017) Calculated from Officer and 

 Parry (1996) 

  

14 Adult king george 

whiting 

Trawl survey-2 M  doubled to get Z (Fowler and  

McGarvey 2000) 

Calculated empirically 

(Palomares and Pauly,1998) 

  

15 Juvenile King 

George whiting 

Model estimation M (Fowler and McGarvey 2000) Model estimation   

16 Large demersal 

fish 

Trawl survey-2 M (Froese and Pauly, 2017),  then  

added F. F from catch rate/biomass 

=0.1552/0.357=0.4347 

Q/B, average of related demersal 

 fish (Froese and Pauly, 2017) 

17 Adult red mullet Trawl survey-2 M, average of other species of  

goatfish (Froese and Pauly, 2017) 

Q/B, average of other species of 

 goatfish  (Froese and Pauly, 2017) 

18 Juvenile red 

mullet 

Model estimation As for adult red mullet (Froese  

and Pauly, 2017) 

Model derived   

19 Eagle ray Trawl survey-2 Used Tmax from similar species 

 (Myliobatis californica) (Martin  

and Cailliet 1988) to estimate M 

Calculated from data in 

Officer  and Parry (1996) 

  

20 Other sharks 

/rays/skates 

Trawls survey Froese and Pauly, 2017 Q/B, average of similar species 

 (Froese and Pauly, 2017) 

21 Sparsely spotted 

stingaree 

Trawl survey Froese and Pauly, 2017 Calculated from data in 

Officer  and Parry (1996) 

  

22 Australian sardine Model estimation Z value for similar species Sardinella 

 lemuru (Gaughan  and Mitchell, 

2000) 

Goldsworthy et al. 2013   

23 Southern anchovy  Model estimation Goldsworthy et al. 2013 Goldsworthy et al. 2013 Assumed EE  

= 0.95 (Polovina,1984) 

24 Australian salmon Model estimation Goldsworthy et al. 2013 Hughes et al. 2014 Assumed EE  

= 0.95 (Polovina,1984) 

25 Pike Model estimation Froese and Pauly, 2017 Froese and Pauly, 2017 Assumed EE  
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= 0.95 (Polovina,1984) 

26 Southern garfish  Model estimation Jones et al. 2002 Froese and Pauly, 2017 Assumed EE  

= 0.95 (Polovina,1984) 

27 Small pelagics Model estimation M, average of all species of small  

pelagic (Froese and Pauly, 2017) 

Calculated empirically 

(Palomares  and Pauly,1998) 

Assumed EE  

= 0.95 (Polovina,1984) 

28 Silver trevally Model estimation Farmer et al. 2005  Calculated empirically 

(Palomares and Pauly,1998) 

Assumed EE  

= 0.95 (Polovina,1984) 

29 Yelloweye mullet  Model estimation M  doubled to get Z (Froese and  

Pauly, 2017) 

Calculated empirically 

(Palomares  and Pauly,1998) 

Assumed EE  

= 0.95 (Polovina,1984) 

30 Leatherjacket Trawl survey-2 M, average of all species of the  

group  (Froese and Pauly, 2017) 

Calculated empirically 

(Palomares and  Pauly,1998) 

  

31 Small demersal 

fish 

Model estimation Average for unvegetated sites in 

 (Edgar and Shaw 1995a) 

P/B divided by average P/Q 

for unvegetated sites in 

(Edgar and  Shaw 1995b) 

Assumed EE  

=0.95 (Polovina,1984) 

32 Globefish Trawl survey-2 Froese and Pauly, 2017 Calculated from data in 

Officer  and Parry (1996) 

  

33 Spiny gurnards Trawls survey Used M from similar species within 

  family (Booth 1997)  

Calculated from data in 

Officer  and Parry (1996) 

  

34 Adult snapper Calculated empirically 

(Annala et al. 1999; 

Christensen et al. 2000.) 

Fulton and Smith, 2004 Calculated empirically 

(Palomares  and Pauly,1998) 

  

35 Juvenile snapper Model estimation Fulton and Smith, 2004 Model estimation   

36 Other 

invertebrates 

Calculated from Wilson et 

al. 1993 

Average of values for all species from 

 literature presented in Edgar (1990)  

and Wilson et al. (1993) 

Calculated assuming P/Q ratio of  

0.2 (Arreguin-Sanchez et al. 1993) 

37 Polychaetes Calculated from Wilson et 

al. 1993 

Average  values for Polychaetes from 

 literature presented in Edgar (1990)  

and Wilson et al. (1993) 

Poore, 1992; Wilson et al. 

1993 

  

38 Filter feeding 

molluscs 

Calculated from Wilson et 

al. 1993 

Average values for molluscs from 

 literature presented in (Edgar 1990) 

Calculated assuming P/Q ratio of  

0.2 (Arreguin-Sanchez et al. 1993) 
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 and (Wilson et al. 1993) 

39 Grazing molluscs Calculated from Wilson et 

al. 1993 

Average  values for molluscs from 

 literature presented in Edgar (1990)  

and Wilson et al. (1993) 

Calculated assuming P/Q ratio of  

0.2 (Arreguin-Sanchez et al. 1993) 

40 Predatory 

molluscs 

Calculated from Wilson et 

al. 1993 

Average values for molluscs from 

 literature presented in Edgar (1990) 

 and Wilson et al. (1993) 

Calculated assuming P/Q ratio of  

0.2 (Arreguin-Sanchez et al. 1993) 

41 Echinoderms Calculated from Wilson et 

al. 1993 

Miller and Mann, 1973 Miller and Mann, 1973   

42 Zooplankton Holloway  and Jenkins, 1993 Holloway  and Jenkins, 1993 Holloway  and Jenkins, 1993   

43 Crustaceans Model estimation Average  values for Crustaceans from 

 literature presented in Edgar (1990) 

 and Wilson et al. (1993) 

Calculated assuming P/Q 

ratio of  0.2 (Arreguin-

Sanchez et al. 1993) 

Assumed EE  

=0.95(Polovina,1984) 

44 Abalone Fulton and Smith, 2004 Fulton and Smith, 2004 Fulton and Smith, 2004   

45 Southern rock 

lobster 

Fulton and Smith, 2004 Fulton and Smith, 2004 Fulton and Smith, 2004   

46 Sea Urchin Worthington and Blount, 

2003 

Fulton and Smith, 2004 Fulton and Smith, 2004   

47 Exotic seastar Calculated from Parry et al. 

2004 

Harvey et al. 2012 Harvey et al. 2012   

48 Macroalgae Murray and Parlsow, 1997 Murray and Parlsow, 1997     

49 Algal turf Murray and Parlsow, 1997; 

Edmunds et al. 2004 

Bozec et al. 2004     

50 Phytoplankton Beardall et al. 1996 Beardall et al. 1996     

51 Micro-

phytobenthos 

Beardall and Light 1994 Beardall and Light 1994     

52 Seagrass Bulthuis et al. 1992 Bulthuis and Woelkerling 1983     

53 Detritus Calculated from Longmore et al. 1996  and Nicholson et al. 1996     
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Table S3: The source of diet data for the Port Phillip Bay ECOPATH model. Juvenile fish groups represent those <3 years old. 
 

Functional groups 
number 

Group name Diet 

1 Large sharks Ebert 1991, Last and Stevens 1994 

2 Large pelagics Officer and Parry 2000 

3 Bird Briggs et al. 1987; PICES, 1998 

4 Mammals Fulton and Smith, 2004 

5 Yank flathead Officer and Parry 2000 

6 Rock flathead Froese and Pauly, 2017 

7 Other cephalopods O'Sullivan and Cullen 1983; Arreguin-Sanchez et al. 1993 

8 Southern calamari Officer and Parry 1996, Parry et al. 1995, Gunthorpe et al. 1997 

9 Smooth ray Officer and Parry 2000 

10 Adult sand flathead Officer and Parry 2000 

11 Juvenile sand flathead Officer and Parry 2000 

12 Banjo ray Officer and Parry 2000 

13 Eastern shovelnose stingaree Officer and Parry 2000 

14 Adult king george whiting Officer and Parry 2000 

15 Juvenile king george whiting Officer and Parry 2000 

16 Large demersal fish Officer and Parry 2000 

17 Adult red mullet Officer and Parry 2000 

18 Juvenile red mullet Officer and Parry 2000 

19 Eagle ray Officer and Parry 2000 

20 Other sharks/rays/skates Officer and Parry 2000 

21 Sparsely spotted stingaree Officer and Parry 2000 

22 Australian sardine  

23 Southern anchovy  Froese and Pauly, 2017 
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24 Australian Salmon Hughes et al. 2014 

25 Pike Froese and Pauly, 2017 

26 Southern garfish  Robertson and  Klumpp, 1983 
27 Small pelagics Assumed to be 100% zooplankton 

28 Silver trevally French et al. 2012 

29 Yelloweye mullet  Platell, 2006  

30 Leatherjacket Hallett, 2016 

31 Small demersal fish Officer and Parry 2000 

32 Globefish Officer and Parry 2000 

33 Spiney gurnards Officer and Parry 2000 

34 Adult snapper Officer and Parry 2000 

35 Juvenile snapper Officer and Parry 2000 

36 Other invertebrates See crustaceans 

37 Polychaetes See crustaceans 

38 Filter feeding molluscs See crustaceans 

39 Grazing molluscs See crustaceans 

40 Predatory molluscs See crustaceans 

41 Echinoderms See crustaceans 

42 Zooplankton Holloway  and Jenkins, 1993 

43 Crustaceans Breakdown of feeding groups in (Wilson et al. 1993).  
Feeding groups allocated the following diet: Deposit feeder eat detritus;  
Predators eat inverts-distributed according to biomass; Scavengers eat detritus; 
Suspension feeders eat 7.5% zooplankton and 92.5% phytoplankton;  
Grazers eat micro-phytobenthos and seagrass 

44 Abalone Fulton and Smith 2004; Palomares and  Pauly, 2018 

45 Southern rock lobster Fulton and Smith 2004; Palomares and  Pauly, 2018 

46 Sea Urchin Fulton and Smith 2004; Palomares and  Pauly, 2018 

47 Exotic seastar Ross et al.2003; Lockhart and Ritz, 2001 
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Table S4: Community groups considered for the representative model functional groups. Habitats and feeding guilds of the relevant groups were also 

presented. Feeding guild was only presented for finfish group because model input data on species interaction was based on omnivorous and carnivorous 

finfish group.  Fg. No. denotes functional group number. 

 

Fg.  
No. 

Functional group 
name 

Community 
group 

Major species/common name Habitat (Water 
column) 

Feeding 
guild 

1 Large sharks Chondrichthyans Notorynchus cepedianus Pelagic NA 

2 Large pelagics Pelagic finfish Thyrsites atun,Pomatomus saltatrix, Seriolella brama, Seriolella 
punctata,Trachurus declivis 

Pelagic Carnivorous 

3 Bird Bird Australasian Gannet Morus serrator Bentho-pelagic NA 

4 Mammals Mammals Dolphins and seals Bentho-pelagic NA 

5 Yank flathead Demersal finfish Platycephalus speculator Demersal Carnivorous 

6 Rock flathead Demersal finfish Platycephalus laevigatus Demersal Carnivorous 

7 Other cephalopods Cephalopods Nototodarus gouldi Pelagic NA 

8 Southern calamari Cephalopods Sepioteuthis australis Pelagic NA 

9 Smooth ray Chondrichthyans Dasyatis brevicaudata Demersal NA 

10 Adult sand flathead Demersal finfish Platycephalus bassensis Demersal Carnivorous 

11 Juvenile sand 
flathead 

Demersal finfish Platycephalus bassensis Demersal Carnivorous 

12 Banjo ray Chondrichthyans Trygonorrhina fasciata Demersal NA 

13 Eastern shovelnose 
stingaree 

Chondrichthyans Trygonoptera imitata Demersal NA 

14 Adult king george 
whiting 

Demersal finfish Sillaginodes punctata Demersal Carnivorous 

15 Juvenile king george 
whiting 

Demersal finfish Sillaginodes punctata Demersal Carnivorous 

16 Large demersal fish Demersal finfish Rhombosolea tapirina, Nemadactylus macropterus,Pentaceropsis 
recurvirostris,Eubalichthys mosaicus,Genypterus tigerinus,Gonorynchus 
greyi,Meuschenia freycineti,Platycephalus richardsoni 

Demersal Omnivorous 

17 Adult red mullet Demersal finfish Upeneichthys vlamingii Demersal Carnivorous 
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18 Juvenile red mullet Demersal finfish Upeneichthys vlamingii Demersal Carnivorous 

19 Eagle ray Chondrichthyes Myliobatis australis Demersal NA 

20 Other 
sharks/rays/skates 

Chondrichthyans Squatina australis, Callorhynchus milii,Mustelus antarcticus,Dipturus 
whitleyi,Heterodontus portusjacksoni,Galeorhinus galeus,Urolophus 
gigas,Dentiraja lemprieri 

Demersal NA 

21 Sparsely spotted 
stingaree 

Chondrichthyans Urolophus paucimaculatus Demersal NA 

22 Australian sardine Pelagic finfish Sardinops sagax Pelagic Carnivorous 

23 Southern anchovy  Pelagic finfish Engraulis australis Pelagic Carnivorous 

24 Australian Salmon Pelagic finfish Arripis trutta Pelagic Carnivorous 

25 Pike Pelagic finfish Dinolestes lewini Pelagic Carnivorous 

26 Southern garfish  Pelagic finfish Hyporhamphus melanochir Pelagic Omnivorous 

27 Small pelagics Pelagic finfish Hyperlophus vittatus, Cristiceps australis,Arripis georgianus Pelagic Carnivorous 

28 Silver trevally Demersal finfish Pseudocaranx georgianus Demersal Carnivorous 

29 Yelloweye mullet  Demersal finfish Aldrichetta forsteri Demersal Omnivorous 

30 Leatherjacket Demersal finfish Scobinichthys granulatus, Acanthaluteres vittiger,Acanthaluteres 
spilomelanurus,Thamnaconus degeni 

Demersal Omnivorous 

31 Small demersal fish Demersal finfish Contusus brevicaudus,Ammotretis rostratus,Pseudophycis 
bachus,Neosebastes scorpaenoides,Neosebastes scorpaenoides,Neoodax 
balteatus,Contusus richei,Gymnapistes marmoratus, Kathetostoma 
laeve,Parequula melbournensis,Sillago flindersi, Vincentia conspersa, 
Lepidotrigla Vanessa, Tetractenos glaber, Chelidonichthys kumu, Aracana 
ornate, Scorpaena papillosa, Aracana aurita, Favonigobius lateralis 

Demersal Omnivorous 

32 Globefish Demersal finfish Diodon nicthemerus Demersal Carnivorous 

33 Spiney gurnards Demersal finfish Lepidotrigla papilio Demersal Carnivorous 

34 Adult snapper Demersal finfish Pagrus auratus Demersal Carnivorous 

35 Juvenile snapper Demersal finfish Pagrus auratus Demersal Carnivorous 

36 Other invertebrates Invertebrates  Acidian, tunicate,sponge, coral NA NA 

37 Polychaetes Invertebrates  Phyllochaetopterus socialis and other annelida NA NA 

38 Filter feeding 
molluscs 

Invertebrates  Mostly bivalves such as Notospisula trigonella, Chioneryx cardiodes,Fulvia 
tenuicostata, Mytilus edulis 

NA NA 
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39 Grazing molluscs Invertebrates  Gastropods such as Actinoleuca calamus,Micrastraea aurea, Rhyssoplax 
tricostalis , Phasianella australis ,Bulla quoyii, Tunicate 

NA NA 

40 Predatory molluscs Invertebrates  Ectosinum zonale, Austroginella johnstoni, E. zonale, Sigaretotrema 
umbilicata  

NA NA 

41 Echinoderms Invertebrates  mostly echinoids such as  Echinocardium cordatum and other ophiuroids NA NA 

42 Zooplankton Small pelagic 
crustacean 

Copepod, small copepods mostly Paracalanus indicus (Caldocera and  
larvaceans) and Acartia tranteri, 

NA NA 

43 Benthic crustaceans Benthic 
crustacean 

Small decapoda such as Neocallichirus limosa, Dimorphostylis cottoni, 
amphipods, crab 

NA NA 

44 Abalone Invertebrates  Blacklip abalone and greenlip abalone NA NA 

45 Southern rock 
lobster 

Benthic 
crustacean 

Jasus edwardsii NA NA 

46 Sea Urchin Invertebrates  Black urchin (Centrostephanus rodgersii) and white urchin (Heliocidaris 
erythrogramma) 

NA NA 

47 Exotic seastar Invertebrates  Asterias amurensis NA NA 

48 Macroalgae Primary producer NA NA 

49 Algal turf Primary producer NA NA 

50 Phytoplankton Primary producer NA NA 

51 Microphytobenthos Primary producer NA NA 

52 Seagrass Primary producer NA NA 

53 Detritus Detritus   NA NA 
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Table S5. Results of the temporally dynamic fitting procedure of the Port Phillip Bay Ecopath model from 1990s to 2015. NVs are the number of 

vulnerabilities included in each iteration, sPP the number of primary production spline points (for smoothing of the time series), k is the number of 

parameters included in the each model run and T is temperature. SS is the weighted sum of squared deviations. NVs and sPP are shown only for those 

models with the lowest Akaike Information Criterion (AICc). The “best” model (shown in bold) is the one yielding the lowest AICc and used to fit the Port 

Philip bay model.   

T Sl Steps Description K NVs sPP SS AIC AICc 

Yes 

1 Baseline 

Trophic interactions with default prey-predator 

0 0 0 462.99 -39.53 -39.53 
Vulnerabilities (vij =2; mixed effect). No 

environmental or fishery data are used to 

drive the model. 

2 Baseline and trophic interaction 

Trophic interactions with different vulnerabilities. 

24 24 0 262.95 -272.45 -270.13 No environmental or fishery changes are used 

to drive the model. 

3 Baseline and environment 
The “PP anomaly” is used to drive the model. No 

3 0 3 439.10 -59.60 -59.60 
fishery data are used to drive the model. 

4 
Baseline, trophic interactions and  

No fishery data are used. 27 25 2 270.00 -253.00 -250.00 
environment 

5 Fishery 

Fishing effort is included as model driver. Trophic 

0 0 0 456.51 -46.59 -46.59 interactions are set as default and no environmental 

data are used. 

6 Trophic interaction and fishery No environmental data are used. 15 15 0 253.74 -309.83 -308.97 

7 Fishing and PP anomaly Trophic interactions are set as default 8 0 8 425.16 -65.94 -65.71 

8 
Trophic interactions, environment  All the components are jointly included in the 

21 18 3 246.58 -311.00 -309.00 
and fishery model as drivers. 

No 1 
Baseline, trophic interactions and  

No fishery data are used. 21 14 7 328.3 -167.9 -166.2 
environment 
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Table S6: Model estimated vulnerability parameters for different functional groups of the Port Phillip Bay Ecopath model. 

 

Sl. Functional groups Vulnerability  S. Functional groups Vulnerability  

1 Large sharks 2 27 Small pelagics 2 
2 Large pelagics 2 28 Silver Trevally >1000 
3 Bird 2 29 Yelloweye Mullet  2 
4 Mammals 2 30 Leatherjacket 1 
5 Yank flathead 1 31 Small demersal fish 2 
6 Rock flathead 52 32 Globefish >1000 
7 Other cephalopods 2 33 Spiny gurnards 2 
8 Southern calamari 2 34 Adult snapper 2 
9 Smooth ray >1000 35 Juvenile snapper 2 

10 Adult sand flathead 2 36 Other invertebrates 28 
11 Juvenile sand flathead 2 37 Polychaetes 2 
12 Banjo ray 2 38 Filter feeding molluscs >1000 
13 Eastern shovelnose stingaree 2 39 Grazing molluscs 2 
14 Adult King George whiting 2 40 Predatory molluscs 2 
15 Juvenile King George whiting 2 41 Echinoderms 2 
16 Large demersal fish 1 42 Zooplankton 1 
17 Adult Red mullet 2 43 Crustaceans 2 
18 Juvenile Red mullet 2 44 Abalone 2 
19 Eagle ray 2 45 Southern Rock Lobster 2 
20 Other sharks/rays/skates 2 46 Sea urchin 2 
21 Sparsely spotted stingaree 2 47 Exotic seastar 2 
22 Australian Sardine 2 

   23 Southern Anchovy  2 
   24 Australian Salmon 2 
   25 Pike 5 
   26 Southern Garfish  2       
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Table S7. Index (forcing function) used to drive the vulnerability parameters of future food web simulations (OAT, T, and OA). The effect size between no 

change scenario (NC) and climate scenarios were presented. OA = ocean acidification, T= ocean warming, and OAT = combined ocean acidification and 

warming. Source groups refer consumers whose consumption depends on the vulnerability (parameters) of their prey groups. Forcing function as direct 

mortality for some of the model functional groups was also applied.  For model functional groups or species number please see Table S1.  

    

Index used to drive 
vulnerability parameters 

   

Baseline value Effect size Applied on the following functional 
groups or species 

  

   Source group 
  

NC  OA  T OAT 

Vulnerability index of carnivorous fish  1 0.99 1.08 0.82 
2 ,5, 6,10,11,14,15,17,18,22,23,24, 
25,27,28,32,33,34,35 Relevant consumers/predators 

Vulnerability index of omnivorous fish 1 1.07 1.16 0.85 16,26,29,30,31 Relevant consumer/predator 

Vulnerability index of zooplankton  1 1.97 0.87 1.15 42 Carnivorous consumers 

Vulnerability index of polychaetes 1 1.11 0.63 1.70 37 Carnivorous consumers 

Vulnerability index of epifauna  1 0.99 1.24 1.79 36, 37 Carnivorous consumers 

Vulnerability index of bivalves 1 0.78 1.43 2.15 38 Carnivorous consumers 

Vulnerability index of gastropods 1 10.56 6.17 1.90 39 Carnivorous consumers 

Vulnerability index of copepod  1 2.97 1.66 1.91 42 Omnivorous consumers 

Vulnerability index of polychaetes 1 5.36 1.29      <0.00 37 Omnivorous consumers 

Vulnerability index of epifauna  1 3.10 2.88 0.88 36, 37 Omnivorous consumers 

Vulnerability index of bivalves  1 1.65 3.18 0.91 38 Omnivorous consumers 

Vulnerability index of gastropods 1 14.60 1.81 0.60 39 Omnivorous consumers 

Search efficiency of chondrichthyans 1 0.21 1.07 0.32 
2,5-8,10,11,14,16,17,21,22,24,27, 
28, 30, 33,34,36-41,43, Chondrichthyans 

Algal turf productivity 1 1.07 1.82 1.58 49 Relevant consumers 

Macrophytes productivity 1 1.28 0.24 0.46 48 Relevant consumers 

Phytobenthos productivity 1 1.32 0.69 1.23 51 Relevant consumers 

Phytoplankton productivity  1 1.66 0.44 0.99 50 Relevant consumers 



158 
 

Forcing function NC  OA  T OAT  Type 

Biomass grazing molluscs  1 1.17 0.47 0.12 39 Mortality (as a function of biomass) 

Biomass of filter feeders 1 1.24 0.28 0.15 38 Mortality (as a function of biomass) 

Biomass of crustaceans 1 1.38 1.25 1.44 43 Mortality (as a function of biomass) 

Biomass of polychaetes 1 1.74 0.50 0.68 37 Mortality (as a function of biomass) 

Biomass of zooplankton 1 1.16 0.57 0.68 42 Mortality (as a function of biomass) 
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Table S8. Basic input parameters for simplified Port Phillip Bay (PPB) and mesocosm models built for the retrospective test of mesocosm transferability. 

Values of trophic level (TL), biomass, production/biomass (P/B), consumption/biomass (Q/B), ecotrophic efficiency (EE), and production/consumption (P/C) 

ratios are shown. Fg. No. denotes functional group number.  

 

Fg. 
No. Group name TL Biomass (t/km²) PB (/year)   QB (/year)   EE   P/C 

   PPB Meso PPB Meso   PPB Meso   PPB Meso   PPB Meso 

1 Port Jackson shark 3.04 3.09 0.01 0.20 0.40 
 

2.60 2.60 
 

0.00 0.00 
 

0.08 0.15 

2 Herbivore fish 2.07 2.17 0.01 0.72 1.37 
 

14.10 94.06 
 

0.08 0.04 
 

0.05 0.01 

3 Omnivorous fish 2.99 2.99 0.04 1.09 1.17 
 

12.55 111.75 
 

0.00 0.00 
 

0.09 0.01 

4 Carnivorous fish (benthic) 2.82 2.91 0.00 1.27 1.00 
 

17.30 28.99 
 

0.14 0.00 
 

0.07 0.03 

5 Echinoderms 2.06 2.06 51.28 0.80 0.80 
 

9.41 9.41 
 

0.00 0.00 
 

0.08 0.08 

6 Herbivorous macroinvertebrates 2.00 2.00 4.02 2.09 0.50 
 

10.49 8.46 
 

0.00 0.00 
 

0.20 0.06 

7 Small epifaunal invertebrates 2.07 2.07 0.32 2.72 3.67 
 

13.59 18.00 
 

0.54 0.54 
 

0.20 0.20 

8 Filter Feeder 2.40 2.40 24.02 2.80 2.05 
 

11.80 7.60 
 

0.11 0.15 
 

0.24 0.27 

9 Macro-crustaceans 2.41 2.26 25.97 4.50 0.80 
 

22.48 10.72 
 

0.07 0.37 
 

0.20 0.07 

10 Tanaids 2.05 2.05 2.61 11.51 11.51 
 

40.15 40.15 
 

0.81 0.95 
 

0.29 0.29 

11 Copepod 2.00 2.00 1.38 23.80 108.71 
 

38.61 336.98 
 

0.67 0.63 
 

0.62 0.32 

12 Microzooplankton 2.00 2.00 0.90 36.80 23.11 
 

59.78 63.49 
 

0.08 0.67 
 

0.62 0.36 

13 Meiobenthos 2.00 2.00 9.12 8.88 8.88 
 

58.40 58.40 
 

0.80 0.80 
 

0.15 0.15 

14 Macrophytes 1.00 1.00 25.91 20.00 2.07 
  

0 
 

0.02 0.17 
   15 Algal turf 1.00 1.00 0.71 30.85 28.87 

  
0 

 
0.39 0.40 

   16 Phytobenthos 1.00 1.00 26.88 45.00 36.69 
  

0 
 

0.24 0.20 
   17 Phytoplankton 1.00 1.00 6.41 259.30 299.29 

  
0 

 
0.53 0.29 

   18 Detritus 1.00 1.00 12573.00             0.39 0.41       
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ABSTRACT 

 

One of the biggest challenges in forecasting the effects of climate change on future food web 

dynamics relates to how climate change affects multi-trophic species interactions, particularly when 

multiple interacting stressors are considered. Using a dynamic food web model, we investigate the 

individual and combined effect of future climate change stressors (warming and acidification) on 

changes in trophic interaction strengths (both direct and indirect) and the consequent effects on 

biomass structure of the food web. We incorporated empirical data on climate-driven species 

interactions obtained from two large mesocosm experiments. Our results show that although 

climate change is likely to reshuffle community biomass structure by reducing or increasing the 

biomass of many resource and consumer groups within the food web, overall vertebrate biomass 

and productivity will likely increase due to an increase in trophic interaction strength. We show that 

temperature-driven changes in direct trophic interaction strengths (feeding and competition) will 

largely determine the magnitude of biomass change (either increase or decrease) of consumers. An 

increase in biomass at higher trophic levels under global warming, however, suppresses the biomass 

of lower trophic levels (herbivorous invertebrates and lower trophic level omnivores). Ocean 

acidification, in contrast, showed a much larger change in the number of indirect interactions (e.g. 

cascading effects of increased or decreased abundance of other groups) altered than warming, but 

induced a relatively small change in trophic interaction strength. Nevertheless, this small change in 

interaction strength enabled a much larger increase in biomass of consumers (vertebrates and 

invertebrates) under acidification than warming, due boosted primary productivity that increased 

invertebrate prey biomass and consequently also the biomass of carnivores. We argue that warming 

is a much stronger driver of positive as well as negative biomass changes than ocean acidification, 
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even though it affects a much smaller number of existing trophic interactions, with direct consumer-

resource effects being more important than indirect effects. The way in which consumers will 

perform in future food webs and how this has negative cascading effects on the biomass of their 

resources is largely driven by alterations in direct trophic interaction strengths that act in synergy 

when ocean warming co-occurs with ocean acidification.  
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4.1 INTRODUCTION 

The structure, functioning, and stability of ecological communities depend overwhelmingly on the 

strength of trophic interactions between consumers and their resources (Bascompte et al., 2005, 

Schaum et al., 2018). Ecological communities consist of many species that frequently interact with 

each other, although this usually results in many weak trophic interactions and only a few strong 

interactions (Paine, 1992, Wootton &  Stouffer, 2016). These consumer-resource interactions are 

particularly important in food web dynamics since they determine the majority of energy fluxes 

between individuals, and through ecological communities and ecosystems (Dell et al., 2014). 

Quantifying the strength of consumer-resource interactions is essential for understanding how 

ecological communities are organized and how they respond to any internal or external 

perturbations (Bascompte et al., 2005). 

 

Global climate change can induce changes in species distributions (Parmesan, 2006) and abundances 

(Van der Putten et al., 2010), profoundly affecting species interactions (Tylianakis et al., 2008). 

However, most models of species abundances and distributions ignore important biotic interactions 

when predicting climate change effects. This is not surprising, because understanding directly how 

climate change is likely to alter existing interactions, or create novel species interactions, is hindered 

by the difficulty of doing multi-trophic level experiments or appropriate field studies that 

incorporate this natural complexity (Nagelkerken &  Connell, 2015). Consequently, forecast 

responses of species or communities to future climate conditions are predominantly based on 

correlative associations between present-day climate and species distributions (Pollock et al., 2014). 

 

Climate change could affect many trophic interactions (David A. Vasseur &  Kevin S. McCann, 2005, 

Petchey et al., 1999, Voigt et al., 2003). Studies suggest that changes in biotic interactions such as 

alterations in foraging activity (Peacor &  Werner, 1997), modifications of predator refuge and prey 

availability through habitat alterations (Lönnstedt et al., 2014), altered behaviours (foraging-

predation risk trade-offs) (Schmitz et al., 2004) and changing abundances (Menge, 1995) could shape 

future distributions and realised assemblages of species. However, most studies so far have focused 

on either the direct effects of ocean warming on individual species, or if performed at the food-web 

scale only consider temperature to explore changes in biotic mechanism. Thus, earlier studies have 

failed to consider alterations of biotic interactions due to the combined effect of climate warming 

and ocean acidification. There is a need, therefore, to quantify and subsequently model the effect of 

ocean warming and ocean acidification on biotic interaction. Furthermore, the success of species in a 

community is determined not only by direct interaction (feeding and competition) between species 
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but also by indirect interaction (e.g. cascading effects of increased or decreased abundance of other 

groups). Although, ecological communities are shown to shape by a complex array of both direct and 

indirect interactions (Miller, 1994, Walsh &  Reznick, 2008), the effects of indirect species interaction 

could be more important than direct effects in structuring species communities (Ockendon et al., 

2014, Preisser et al., 2005). This is further complicated by the fact that individual species may 

respond in opposite directions to climate change, with no net changes in the overall effect at the 

community level (Alsterberg et al., 2013). This occurs when mean changes in direct and indirect 

effects cancel each other’s influence among interacting species, since predator-prey relationship 

could be influenced by both positive and negative feedbacks (Suttle et al., 2007, Tylianakis et al., 

2008).  

 

The importance of indirect effects is further exemplified via its potential upward or downward 

cascading effect within food webs. For example, a prey which is directly linked to its predator 

through feeding interactions may also be involved in direct interference as a competitor if it shares a 

prey species with its predator. Species at different trophic levels vary in their sensitivity to warming 

due to differences in metabolic rates, thermal tolerance range as well as for thermal optima which 

can then induce mismatches between resource supply and demand (Allen et al., 2005, López-Urrutia 

et al., 2006, Nagelkerken &  Connell, 2015). Such mismatches between two consecutive trophic 

levels can affect the next trophic level through cascading effects. Hence, studying multi-trophic level 

food webs such as those observed in nature is critical, since food chain length can alter community 

responses to global change (Hansson et al., 2013, Preisser et al., 2005). 

 

Importantly, while there has been progress in understanding how direct effects of climate change 

could influence individual species (Gilman et al., 2010), understanding how climate change is likely 

to indirectly as well as directly influence species interactions and its consequences in a food web 

context remains largely unexplored. Combining experimental studies with multi-species process-

based models provides opportunities to study the effect of multiple stressors at the community level 

(Moe et al., 2013). Whilst field-based experimental approaches have practical limitations (expensive, 

time-consuming and restricted in scope both spatially and temporally), mesocosm studies allow 

manipulating climatic condition to quantify species response to climate change (Goldenberg et al., 

2018, Ullah et al., 2018). The experimental data from mesocosm studies provide strong empirical 

data that can be integrated into food web models (Fordham, 2015). Models that incorporate species 

interactions have the potential to generate improved predictions of future change (Heikkinen et al., 

2007, Memmott et al., 2007).  
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Here we analyze a complete temperate coastal marine food web, developed and described in 

chapter 3, to quantify the changes in direct as well as indirect trophic interaction strengths under 

future ocean warming and ocean acidification, focussing on the direction of change (positive, 

negative, no change) as well as the magnitude of change (strength) in all species interactions. 

Trophic interaction strength was measured as the relative impact of biomass change of any group on 

the biomass of other groups (modifier). Using data on population parameters and species 

interactions from two large-scale mesocosm studies, we modeled the response of multiple food web 

functional groups to the individual and combined effects of future warming and acidification 

assuming a +2.8 0C increase in temperature and a 500 ppm pCO2 increase. We used a time-dynamic 

Ecosim model to study the consequence of global climate change on species and food web 

dynamics. We tested how the change in relative strength (change in magnitude) of direct and 

indirect trophic interactions altered (increased or reduced) the direction of biomass change for 

different food web groups under future global change. 

 

4.2 RESULTS 
 

Our model predicted an overall increase in vertebrate biomass and productivity under 21st century 

climate change compared to a no climate change scenario (‘no change’ scenario) (Fig. 1). Whilst 

acidification led to the greatest increase in vertebrate biomass and production (105% and 128%, 

respectively), warming caused a much lower increase (47% and 54%), and the increase was lowest 

under a combined warming and acidification scenario (21% and 17%). The lower increase in the 

biomass and production of vertebrates under both temperature scenarios (compared to acidification 

in isolation) was linked to a decline in the biomass (4-57%) and production of invertebrates (11-

50%). In contrast, a boost in the biomass and production of invertebrates (103% and 64%, 

respectively) under acidification suggested the successful propagation of lower trophic level biomass 

towards higher trophic level vertebrate consumers. 
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Figure 1: Percent change in total biomass and production of vertebrate and invertebrate under a 
future ocean warming (∆ 2.8°C) and acidification (∆500 ppm pCO2) scenario, relative to the biomass 
in 2100 under a scenario of no change in climate from present-day levels. OA = ocean acidification, 
T= ocean warming, and OAT = combined ocean acidification and warming. The 47 distinguished food 
web functional groups (animals) are aggregated here and presented across two animal groups.  
 

The contrasting changes to the biomass and productivity of vertebrates versus invertebrates, 

particularly under both warming scenarios, were primarily driven by a change in trophic interaction 

strength. Warming, either in isolation or combined with acidification, is predicted to alter (either 

negatively or positively) ~ 53-54% of all trophic interactions (direct plus indirect), while acidification 

in isolation is likely to alter ~ 84% of all interactions (Fig. S1A). For all climate scenarios, the percent 

change in positive interactions was very similar to that of the negative interactions. 

 

Out of the 2,809 pairwise species interactions in the entire food web matrix, 86% of the trophic 

interactions were indirect while 14% were direct (predator-prey) trophic interactions (Fig. S1B). The 

magnitude of change (interaction strength) was much larger for both warming scenarios than for 

acidification alone, and this was true for direct as well as indirect interactions (Fig. 2). Moreover, 

warming in combination with acidification acted synergistically and induced a greater magnitude of 

change in direct interaction strength than both stressors separately.  
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Figure 2: Change in the interaction strength (ΔIS; magnitude of change) across trophic interactions 
among all the functional groups of the food web under a future ocean warming (∆ 2.8°C) and 
acidification (∆500 ppm pCO2) scenario, relative to the interaction strength in 2100 under a scenario 
of no change in climate from present-day levels. OA = ocean acidification, T= ocean warming, and 
OAT = combined ocean acidification and warming. The X-axis represents the change in the number 
of direct and indirect interactions (% interactions modified) grouped by the direction of change 
(positive, no change and negative), which collectively sum to 100% for each scenario. Here only 
positive and negative changes in interactions are plotted for simplicity (‘no-change’ omitted). The Y-
axis represents the strength of the interaction change (∆IS = magnitude of change) under different 
combinations of interaction types and directions for each scenario. 
 

 

The increase in strength of direct as well as indirect trophic interactions under global warming is 

predicted to result in disparate effects on biomass of the 53 different functional groups considered 

(Fig. 3, Figs. S3-S6). Warming combined with acidification increased the biomass of 42% of the 

carnivorous functional groups by ≥ 80% (Fig. 3, Fig. S4).  
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Figure 3: Distribution of biomass of different functional food web groups in 2100 under a future 
climate change scenario (∆ 2.8°C). NC= under a scenario of no change in climate from present-day 
levels, OA = ocean acidification, T= ocean warming, and OAT = combined ocean acidification and 
warming. The colour of nodes (pure red, soft red, strong orange, yellow, lime green, soft blue, and 
ash) represents different trophic groups (piscivores, carnivores, omnivores (higher trophic level), 
omnivores (lower trophic level), herbivores, primary producers and detritus). Red and green lines 
indicate negative and positive effects, respectively. Colour tone of the line scales with the magnitude 
of the effects. The functional node sizes are relative to the standing biomass (log transformed). 
Functional groups experiencing a decline in biomass of ≥ 80% compared to a NC scenario are 
represented as a small circle and empty inside. The colours of the lines in each food web should not 
be interpreted in an absolute sense: the impacts are relative.  For details on species and their code 
numbers see Supplementary Figures S3-S6. 
 

 

Lower trophic level omnivores (decline of 40% of the functional groups) and herbivores (decline of 

38% of groups) showed the strongest negative responses to the combination of warming and 
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acidification, while none of the groups of higher trophic level omnivores (fish) experienced a 

decrease (Fig. 3). Under temperature alone, omnivores (25% of functional groups declined but 50% 

increased) and carnivores (19% declined but 58% increased) showed the strongest responses among 

all groups (Fig. 3, Fig. S5). In contrast, under acidification alone, only carnivores (8%) are predicted to 

experience a decline in their biomass (of ≥ 80%) (Fig. 3, Fig. S6). Higher-trophic level omnivores 

(100%) showed the strongest positive response, following lower-trophic level omnivores (60%) and 

carnivores (53%) increasing in their biomass ≥80%. 

 

Sensitivity analysis indicated that the model functional groups was relatively insensitive to changes 

in the different input parameters in response to future climate change scenarios (warming and 

acidification) except some lower trophic levels groups (e.g. Australian sardine, small pelagic, 

southern garfish and yellow eye mullet) and few of their predators (Birds and mammals). We only 

show results for the most pervasive future scenario OAT (warming and acidification together) 

relative to no change scenario at 2100 (Fig S7). 

 

4.3 DISCUSSION 
 

Our model simulations show how climate-driven changes in trophic interaction strengths alter the 

biomass and productivity of consumers and resources when direct and indirect species interactions 

are embedded in complex food-web networks. We find that direct and indirect trophic interaction 

strengths are strongly modified by global warming and this affects the biomass of consumers and 

resources within the food web. More specifically, we show that in a complex food web network, 

warming-driven changes in direct trophic interactions (feeding and competition), although fewer in 

number, would have large effects on the interaction strength between consumers and resources 

(increase or decrease), overruling the many weaker alterations to indirect effects under ocean 

acidification.  

 

Weak versus strong interactions (magnitude of change) under warming 

Our modelling results show that future food webs will likely experience alterations to most of their 

existing trophic interactions. This change will be driven by alterations to a low number of strong 

interactions distributed within a matrix of many weak interactions. This is observation is 

fundamental to ecological food web networks (Paine, 1992, Wootton &  Stouffer, 2016), promoting 

community persistence and stability (May, 1973, McMeans et al.). We show that biomass change is 

largely driven by increases in the strength of direct (as opposed to indirect) trophic interactions, 
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particularly under elevated temperature. Because warming is predicted to strengthen top-down 

control in temperate marine food webs (Marino et al., 2018) and a greater negative impact on food 

web structure is expected under future warming compared to ocean acidification. Nevertheless, our 

model predicted increased vertebrate biomass under warming alone. This increase in consumer 

biomass at higher trophic levels appears to occur at the detriment of invertebrate prey, which are 

likely to suffer from overconsumption by their predators (Goldenberg et al., Griffith et al., 2012). We 

argue that future food webs under warming will still be structured by a few but strong direct trophic 

interactions, but that this effect is amplified under temperature increase and therefore can alter the 

biomass structure of future food webs, where positive effects on consumer biomass will occur to the 

detriment of their prey species.  

 

Interactive effect of OAT 

We show that warming and acidification will act synergistically to intensify the strength of direct 

trophic interactions but acted antagonistically in terms of biomass increase. Warming combined with 

acidification is likely to only enable a slight increase in biomass of vertebrate consumers at higher 

trophic levels compared to a much larger increase under temperature and acidification in isolation, 

while causing a strong decline in the biomass of invertebrate prey, particularly herbivorous 

invertebrates and lower trophic level omnivores. Although previous studies showed that 

temperature-driven increases in metabolic rates are likely to increase the strength of direct trophic 

interactions (Barton, 2011, Brose et al., 2012, Kratina et al., 2012, Sanford, 1999), these studies did 

not explore the interactive effects of warming and acidification. Consumer-resource interaction 

strength tends to be stronger when consumption exceeds resource production (Ruesink, 1998). 

Hence, we propose that higher interaction strength under warming and acidification in our study is 

related to a reduced (herbivore) prey availability combined with higher consumption rates of 

carnivores due to increased metabolic demands. Moreover, these combined stressors can also 

reduce the quality of algae (Poore et al., 2013, Sampaio et al., 2017) and/or increase the proportion 

of unpalatable algal species (Ullah et al., 2018). A reduced quality of primary producers combined 

with increased direct trophic interaction strength of consumers under warming and acidification 

may jeopardize herbivore-plant interactions (Poore et al., 2013), which can cascade up the food web 

due to reduced prey availability for carnivores (Goldenberg et al.). Thus, in contrast to individual 

stressors, synergistic effects of warming and acidification strengthen trophic interactions and 

weaken resource productivity, leading to more detrimental effects on the biomass and productivity 

of functional groups within future food web. 
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Role of acidification: 

Ocean acidification mainly altered indirect trophic interactions and in such a way that it had positive 

overall effect on species biomass. Indirect interactions could play a more pervasive role than direct 

interactions in shaping marine communities under future acidification and warming (combination or 

in isolation) (Garrard et al., 2014, Kamya et al., 2017, Poore et al., 2013). Even though acidification 

did alter the majority of indirect trophic links in our study, the magnitude of this effect was 

characterized by relatively lower trophic interaction strength. The weak trophic interaction strength, 

both direct and indirect, under acidification allowed available herbivorous prey resources to sustain 

themselves, in contrast to a collapse as seen under warming, and to support consumers at higher 

trophic levels. In contrast, a meta-analysis for terrestrial plants suggested that elevated CO2 could 

significantly increase the biomass of plants but decrease herbivore abundance and growth in spite of 

their increased consumption rate (Stiling &  Cornelissen, 2007). This discrepancy between the 

terrestrial and marine environment in biomass growth of herbivores could be explained by the poor 

quality of terrestrial plant grown under elevated CO2 (Lincoln et al., 1993) which is not seen in the 

coastal marine environment (Poore et al., 2013). In fact, acidification is likely boost the nutritional 

quality of turf algae by increasing the relative nitrogen content (reduced C:N ratio) (Leung et al., 

2018) and likely to increase the feeding rate of herbivores enabling them to sustain or even boost in 

their biomass (Connell et al., 2017, Goldenberg et al., Vizzini et al., 2017). A recent study suggested 

that direct negative effects of elevated CO2 can be dampened and even reversed by indirect effects 

with increasing ecological complexity (Goldenberg et al., 2018). Therefore, organisms living within a 

more natural setting with representative ecological complexity (such as our mesocosms) may 

overcome the direct negative effect of acidification, maintain their consumer-resource relationship, 

and could thus benefit from surplus resources even with lower trophic interaction strengths. Our 

results suggest that consumers under acidification are not food limited and have access to a wide 

range of prey resources, avoiding significant predation pressure on particular prey groups, which 

might otherwise drive their populations towards collapse. Thus, under trophic networks, increased 

primary production and herbivore biomass prevent biomass collapse of invertebrates and enables 

significant biomass increase of vertebrates under ocean acidification in isolation.  

 

We have carried out a simple sensitivity analysis to evaluate how the model behaves to changes in 

the modified input parameters in response to climate change scenarios. Sensitivity analysis indicated 

that pelagic functional groups such as Australian sardine, small pelagic species groups and their 

predators such as birds and mammals are the most sensitive food web functional groups to changes 

in any model parameters under OAT. Small demersal such as southern garfish and yellow eye mullet 
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are also found to be sensitive to the warming and acidification driven changes in the model 

parameters. Small pelagic are important prey groups in the food web, more dynamic in their nature 

and characterized by large fluctuation overtime which is complex to model. Many of the higher 

trophic level predators (e.g. seabirds, marine mammals) are strongly dependent on pelagic species 

(forage fish) due to their specialized diet and limited feeding areas (Cury et al., 2011, Engelhard et 

al., 2014). Thus, large fluctuations in forage fish abundance can impact their predators. Therefore, 

caution should be exercised for small pelagic and top predator groups before translating this output 

to any management decision. Other than this, the overall sensitivity analysis suggests that the food 

web functional groups is relatively insensitivity to changes in the parameters in response to the 

combined effect of ocean warming and acidification. 

 

We conclude that ocean warming could negate positive effects of CO2 enrichment on food webs 

through altering direct and indirect trophic interaction strengths. Particularly, warming-driven 

increase in direct trophic interaction strengths (feeding and competition) will largely determine the 

change in the magnitude of interaction strength (either increase or decrease) of consumers. This 

could result in a food web with excessively high biomass at the top, potentially driving a depletion of 

many resources (prey groups). Therefore, the degree to which consumers will benefit from future 

food webs affected by anthropogenic climate change depends on how direct versus indirect effects 

are altered in trophic interaction strength and the degree to which prey resources are sustained.  

 

4.4 MATERIALS AND METHODS  
 

We used a food web model developed for the Port Philip bay (PPB) ecosystem (Koopman, 2005) and 

updated with concurrent information by adding higher taxonomic resolution using the EwE (Ecopath 

mass-balance approach) (Christensen et al., 2008). Ecopath with Ecosim (EwE) is based on a food-

web approach which represents snapshot of the ecosystem and is used to quantify the flow of 

energy between functional groups within an ecosystem. Ecosim- a time dynamic version of Ecopath 

model representing PPB ecosystem during the 1995−2015 period was fitted to historical time series 

of biomass and fishing effort data (see Fig S7 and S8; Chapter- 3). The biomass of future ecosystem 

within the Ecosim approach is represented by the ‘‘foraging arena concept’’, where prey biomass is 

divided into vulnerable and non-vulnerable components. The transfer rate between these two 

components is the vulnerability rate, which determines whether the flow control is top-down 

(predator-driven), bottom-up (prey-driven) or both. A thorough technical description of the Ecosim 
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model, including all input data to the model, assumptions, model validation and sensitivity analysis is 

presented in the Supplementary text of Chapter 3, so we will present only the information most 

relevant to this study (Chapter 4). 

 

We developed four 75-year simulations (2015-2100) to explore the effect of climate change on 

future food web that included a no climate change scenario (baseline) and three climate change 

scenarios: warming (T) ocean acidification (OA) and their combination (OAT). We assumed a +2.8 0C 

of warming by 2100, representing a high representative concentration pathway scenario (RCP8.5) 

(Bopp et al., 2013). The no climate change scenario (NC) assumes that model parameters do not 

change in the future. Fishing effort was held constant at 2015 levels as it is not evident that how 

future fishing effort likely be changed. We incorporated direct and indirect climate-driven changes in 

species interactions and mortality of trophic functional groups in the food web for all climate change 

scenarios (T, OA, and OAT).  

 

We obtained data on species interaction from mesocosm experiments that includes both direct 

(Ullah et al., 2018) and indirect estimates of vulnerability of prey to their predators (Goldenberg et 

al., 2018). We included effective search rates of predators (e.g., sharks) on their prey (Pistevos et al., 

2015) and direct mortality of some lower trophic prey groups as well as productivity of primary 

producers (Ullah et al., 2018). The strength of our modelling approach lies in the input data that 

were obtained from two community-level mesocosm experiments of the modelled food web 

(Pistevos et al., 2015, Ullah et al., 2018).  

 

We used predation pressure to estimate the vulnerability (direct estimate) of lower trophic level 

(Trophic level ≤2) functional groups to its predator. This was done using stomach content analysis 

and in situ feeding trials that incorporated different treatment effects (e.g. temperature, 

acidification or their combination). Thus, the predation pressure exerted by the predators (in our 

case fish) on their prey groups is directly accounted for as the vulnerability of the representative 

prey groups in our Ecosim model.  

 

We applied a combination of direct and indirect approaches to estimating the vulnerability of prey 

groups to higher order trophic groups (Trophic level ≥2). The indirect approach of vulnerability 

estimation was based on behavioral experiment on traits related to foraging and predation 

behaviour of consumers. Three response variables were derived and combined to estimate prey 

vulnerability. I) “Prey attraction” was calculated as the percentage of time spent in the area close of 
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the food cue relative to the time spent in the entire field of view (Goldenberg et al., 2018). II) ‘Food 

search activity’ was given as the number of position changes in the area close to the food cue 

relative to the time spent in this area (Goldenberg et al., 2017).  III) ‘Boldness’ was measured as the 

percentage of time spent on the side directly in front of the predator within the area close to the 

food cue relative to the time spent in the entire area close to the food cue (this study). Prey fishes 

may approach a predator to inspect it – a characteristic behavior termed predator inspection 

(Pitcher et al., 1986)– reducing their vulnerability to the predator. We excluded the data obtained 

during any predator inspection behavior for the calculation of the three response variables to obtain 

the vulnerable component of the prey isolated from its non-vulnerable components. Finally, we 

averaged across the three response variables, weighing each variable equally, to obtain a composite 

vulnerability index of prey to its predator. A detailed description of the experimental setup, diet 

analysis and behavioural trial can be found in the supplementary text. We have calculated effective 

search rates for Chondrichthyans on their prey based on the estimated total time (s) taken by Port 

Jackson shark to successfully locate (1st successful hit) prey hidden in the sand based on olfactory 

cues (see Methods in (Pistevos et al., 2015) for details).  

 

We incorporated the effect of climate change (changes in direct mortality, vulnerability rate, and 

effective search rate) in our modelling approach using forcing functions that affect the consumption 

and production of functional groups at a temporal scale (Ainsworth et al., 2011, Alva-Basurto &  

Arias-González, 2014, Cornwall &  Eddy, 2015, Guénette et al., 2014). We calculated the relative 

effect size of these rates under different climate scenarios compared to control condition (using the 

absolute values (Table S2). The climate scenarios were assumed to focus on the year 2100 and the 

control conditions on 2015. We used   bi-linear interpolation to generate separate annual time series 

for forcing functions for the period 2015 to 2100. It is common practice in climate change ecology to 

interpolate temporally between climate snap shots (Fordham et al., 2012). The forcing functions 

were applied to appropriate functional groups in the model (Table S2). For details on the estimation 

of different forcing function parameters under future climate change scenarios please see 

Supplementary information in Chapter-3. 

 

The effect of climate change was then assessed by comparing changes in trophic interaction strength 

and biomasses with that of climate change scenarios compare to NC scenario for the 21st century. 

We quantified the changes in the trophic interaction strength between pairwise species interaction 

based on the relative impact of biomass change of any group on the biomass of other groups either 
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directly (direct trophic interaction) or indirectly through trophic cascade on the food web using 

Mixed Trophic Impact (MTI) analysis (Ulanowicz &  Puccia, 1990) and  expressed as, 

 

                

 

where DCij is the diet composition term expressing how much j contributes to the diet of i, and FCji is 

the proportion of predation on j that is due to i as a predator, allows the quantification of the 

impacts that a theoretical change of a unit in the biomass of a group (including fishing effort) would 

have on other groups in the ecosystem (Christensen et al., 2008). We consider MTI values as direct 

trophic interaction where there is a direct feeding relationship exists between consumer and prey 

through predation and competition (two organisms compete for the same resource such as food and 

space by physically interfere and both individuals are negatively impacted by competition). Whilst 

indirect trophic interactions are mainly cascading effects of increased or decreased abundance of a 

group on other groups. 

 

We show simulation output for animal groups at ecosystem scale (vertebrates and invertebrates) as 

well as into guild levels, including piscivorous, carnivorous, omnivorous-HTL (HTL; Higher trophic 

levels mostly fish), omnivorous-LTL (LTL; Lower trophic levels mostly small invertebrates), 

herbivorous, primary producer, and detritus (Table S1).  

 

We assessed the quality of input data and tested the validity of the model using the diagnostics 

approach proposed by (Link, 2010). We also carried out an uncertainty analysis on estimating model 

parameters related to model output by using the Monte Carlo (MC) simulation. MC simulation is 

performed as sensitivity analysis which is based on the coefficient of variation obtained from the 

model pedigree index for production/biomass, consumption biomass and biomass where former 

two parameters directly linked and strongly influence the model vulnerability parameters (Heymans 

et al., 2016).  
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4.6 SUPPLEMENTARY FIGURES 
 

 
 
Figure S1. A. Directions of relative change in trophic interactions (n=2809) within food web under a 
future ocean warming (∆ 2.8°C) and acidification (∆500 ppm pCO2) scenario relative to the 
interactions in 2100 under a no climate change scenario (NC). B. Same as S1A but split for direct vs 
indirect effects. OA = ocean acidification, T= ocean warming, and OAT = combined ocean 
acidification and warming. 
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Figure S2. Change in the net interaction strength (ΔIS; magnitude of change) for direct (positive plus 
negative) and indirect (positive plus negative) interactions for each of the functional groups of the 
food web under a future ocean warming (∆ 2.8°C) and acidification (∆500 ppm pCO2) scenario, 
relative to the 2100 under a scenario of no change in climate from present-day levels. Data are 
shown as Box-and-whisker plots (boxplots) with the horizontal black line inside the box representing 
the median value, the lower and upper  limits of the box being the 25th and 75th percentile and the 
whiskers indicating the minimum and maximum value and outliers are also shown as individual data 
points. The default setting of 1.5 interquartile range (IQR) was used to identify outliers. OA = ocean 
acidification, T= ocean warming, and OAT = combined ocean acidification and warming. The net 
change in the trophic interaction could be both positive and negative for each functional group and 
are plotted separately in the graph. 
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Figure S3: Distribution of biomass of different food web groups (numbered) in 2100 under a scenario 
of no change in climate from present-day levels NC-scenario. The colour of nodes (pure red, soft red, 
strong orange, yellow, lime green, soft blue, and ash) represents different trophic groups (piscivores, 
carnivores, omnivores (higher trophic level), omnivores (lower trophic level), herbivores, primary 
producers and detritus). Red and green lines indicate negative and positive effects, respectively. 
Colour tone of the line scales with the magnitude of the effects. The functional node sizes are 
relative to the standing biomass (log transformed). The colours of the lines in each food web should 
not be interpreted in an absolute sense: the impacts are relative. Different food web groups in the in 
the model are species or groups of species in the form of functional groups. 
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Figure S4: Distribution of biomass of different food web groups (numbered) in 2100 under OAT-
scenario represents a combined ocean acidification (∆ pCO2 500) and warming (∆ 2.8°C) scenario. 
The colour of nodes (pure red, soft red, strong orange, yellow, lime green, soft blue, and ash) 
represents different trophic groups (piscivores, carnivores, omnivores (higher trophic level), 
omnivores (lower trophic level), herbivores, primary producers and detritus). Red and green lines 
indicate negative and positive effects, respectively. Colour tone of the line scales with the magnitude 
of the effects. The functional node sizes are relative to the standing biomass (log transformed). 
Functional groups experiencing a decline in biomass ≥80% compared to a NC scenario are 
represented as a small circle and empty inside. The colours of the lines in each food web should not 
be interpreted in an absolute sense: the impacts are relative. Different food web groups in the in the 
model are species or groups of species in the form of functional groups. 
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Figure S5: Distribution of biomass of different food web groups (numbered) in 2100 under T-scenario 
represents ocean warming (∆ 2.8°C) scenario. The colour of nodes (pure red, soft red, strong orange, 
yellow, lime green, soft blue, and ash) represents different trophic groups (piscivores, carnivores, 
omnivores (higher trophic level), omnivores (lower trophic level), herbivores, primary producers and 
detritus). Red and green lines indicate negative and positive effects, respectively. Colour tone of the 
line scales with the magnitude of the effects. The functional node sizes are relative to the standing 
biomass (log transformed). Functional groups experiencing a decline in biomass ≥80% compared to a 
NC scenario are represented as a small circle and empty inside. The colours of the lines in each food 
web should not be interpreted in an absolute sense: the impacts are relative. Different food web 
groups in the in the model are species or groups of species in the form of functional groups. 
  
  



191 
 

 
 
 
Figure S6: Distribution of biomass of different food web groups (numbered) in 2100 under OA-
scenario represents ocean acidification (∆ pCO2 500) scenario. The colour of nodes (pure red, soft 
red, strong orange, yellow, lime green, soft blue, and ash) represents different trophic groups 
(piscivores, carnivores, omnivores (higher trophic level), omnivores (lower trophic level), herbivores, 
primary producers and detritus). Red and green lines indicate negative and positive effects, 
respectively. Colour tone of the line scales with the magnitude of the effects. The functional node 
sizes are relative to the standing biomass (log transformed). Functional groups experiencing a 
decline in biomass ≥80% compared to a NC scenario are represented as a small circle and empty 
inside. The colours of the lines in each food web should not be interpreted in an absolute sense: the 
impacts are relative. Different food web groups in the in the model are species or groups of species 
in the form of functional groups.     
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Figure S7: The results of Monte Carlo simulations (100 simulations run) of some higher trophic level 

food web functional groups of Port Philip Bay are plotted. Thick blue line represents the mean value 

of the fitted model.  The 95% percentile and 5% percentile using 10% fixed variability of the model 

inputs (shaded areas) derived from model pedigree index are also shown. Results are only plotted 

for the most pervasive future scenario OAT (warming and acidification together) relative to no 

change scenario at 2100.  
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4.7 SUPPLEMENTARY TABLES 
Table S1: Basic Ecopath input parameters for the baseline Ecopath model 1990. P/B= production/Biomass ratio; Q/B=consumption/biomass ratio, EE= 

ecotrophic efficiency and P/Q=consumption biomass ratio. FGs refer functional groups. 

 

FGs 
number Functional group name Feeding guild 

Trophic 
level 

Biomass 
(t/km²) 

Total 
mortality 

Year-1 
P / B 

(Year-1) 
Q / B 

(year-1) EE P / Q 

1 Large sharks Carnivorous 2.61 0.23   1.55 10.4 0.95 0.15 

2 Large pelagics Piscivorous 4.04 0.21 
 

0.3 3 0.95 0.1 

3 Birds Carnivorous 3.46 1.84 0.4 
 

2.31 0.43 0.17 

4 Mammals Piscivorous 3.02 0.15 
 

1.32 10.6 0.95 0.12 

5 Yank flathead Carnivorous 1 26.88 
 

45 0 0.11 
 6 Rock flathead Carnivorous 3.32 0.94 

 
2.72 13.59 0.57 0.2 

7 Other cephalopods Carnivorous 3.1 0.72 
 

1.42 12.31 0.95 0.12 

8 Southern calamari Carnivorous 2 4.72 
 

0.88 11.68 0.71 0.08 

9 Smooth ray Carnivorous 2 0.26 
 

0.73 12.41 0.7 0.06 

10 Adult sand flathead Carnivorous 4.02 0.02 
 

0.09 19.88 0 0 

11 Juvenile sand flathead Omnivorous 3.06 2.89 
 

1.12 6 0.95 0.19 

12 Banjo ray Carnivorous 3.33 0.14 
 

0.32 2.72 0.47 0.12 

13 Eastern shovelnose stingaree Carnivorous 3.18 0.12 1.1 
 

4.4 0.97 0.25 

14 Adult King George whiting Carnivorous 4.02 0.72 
 

0.4 3.92 0.62 0.1 

15 Juvenile King George whiting Carnivorous 3.11 0.07 
 

0.22 2.2 0.86 0.1 

16 Large demersal fish Carnivorous 3.96 0.41 
 

0.44 4.2 0.95 0.1 

17 Adult red mullet Carnivorous 3.82 1.02 
 

0.07 1.69 0.15 0.04 

18 Juvenile red mullet Herbivorous  3.11 0.57 
 

0.41 4.16 0.03 0.1 

19 Eagle ray Carnivorous 3.28 0.84 
 

0.49 2.41 0.08 0.2 

20 Other SRS Carnivorous 3.05 0.04 
 

0.87 2.4 0.95 0.36 

21 Sparsley spotted stingaree Carnivorous 1 0.71 
 

30.85 0 0.97 
 22 Australian sardine Carnivorous 3.47 0.25 

 
1.83 8 0.95 0.23 

23 Southern anchovy  Carnivorous 3.23 0.03 
 

0.73 12.41 0.53 0.06 
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24 Australian salmon Piscivorous 3.48 0.18 
 

1.7 6 0.95 0.28 

25 Pike Piscivorous 2.29 24.22 
 

2.93 11.53 0.91 0.25 

26 Southern garfish  Carnivorous 3.05 0 
 

0.52 2.6 0 0.2 

27 Other small pelagics Carnivorous 3.05 0.2 0.55 
 

3.71 0.77 0.15 

28 Silver trevally Carnivorous 2.05 25.97 
 

4.5 22.48 0.95 0.2 

29 Yelloweye mullet  Omnivorous 1 58.21 
 

11.13 0 0.07 
 30 Leatherjacket Omnivorous 3.01 3.53 

 
0.82 10.02 0.95 0.08 

31 Other small demersal fish Omnivorous 3.31 0.26 0.49 
 

2.2 0.98 0.22 

32 Globefish Carnivorous 2.02 0.01 1.84 
 

13.04 0.69 0.14 

33 Spiny gurnards Carnivorous 1 6.41 
 

259.3 0 0.82 
 34 Adult snapper Carnivorous 3.58 0.09 

 
0.4 3.8 0.18 0.11 

35 Juvenile snapper Carnivorous 3.04 2.54 
 

0.7 5.04 0.95 0.14 

36 Other invertebratess Omnivorous (LTL) 3.11 1.17 
 

0.68 3.04 0.14 0.22 

37 Polycheates Omnivorous (LTL) 2.07 24.97 
 

2.72 13.59 0.95 0.2 

38 Filter feeding molluscs Herbivorous 3.13 0.05 0.92 
 

5.19 0.92 0.18 

39 Grazing molluscs Herbivorous 3.14 0.41 
 

0.2 3.37 0.02 0.06 

40 Predatory molluscs Omnivorous (LTL) 2 4.02 
 

2.09 10.49 0.95 0.2 

41 Echinoderms Herbivorous 3.29 0.21 1.1 
 

8.12 0.53 0.14 

42 Zooplankton Herbivorous 1 12573 
   

0.29 
 43 Crustaceans Herbivorous 2.4 0.42 0.4 

 
4.2 0.95 0.1 

44 Abalone Herbivorous 4.33 0.01 
 

0.18 1.75 0.6 0.1 

45 Southern rock lobster Omnivorous (LTL) 1 18.13 
 

20 0 0.23 
 46 Sea urchin Herbivorous 2.05 51.28 

 
0.8 9.41 0.33 0.08 

47 Exotic seastar Omnivorous (LTL) 3.4 0.05 
 

0.92 4.33 0.79 0.21 

48 Macroalgae Primary producer 3.28 0.31 
 

0.57 2.2 0.95 0.26 

49 Algal turf Primary producer 3.33 0.07 
 

0.38 2.45 0.95 0.16 

50 Phytoplankton Primary producer 2.39 24.02 
 

3.26 16.28 0.13 0.2 

51 Microphytobenthos Primary producer 2.68 0.12 
 

0.92 9.65 0.99 0.1 

52 Seagrass Primary producer 2.04 4.66 
 

54.75 153.36 0.55 0.36 

53 Detritus Detritus 3.45 0.33   0.23 2.37 0.22 0.1 
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Table S2. Index (forcing function) used to drive the vulnerability parameters of future food web simulations (OAT, T, and OA). The effect size between no 

change scenario (NC) and climate scenarios were presented. OA = ocean acidification, T= ocean warming, and OAT = combined ocean acidification and 

warming. Source groups refer consumers whose consumption depends on the vulnerability (parameters) of their prey groups. Forcing function as direct 

mortality for some of the model functional groups was also applied.  For model functional groups or species with different feeding guilds please see Table 

S1.  

    

Index used to drive 
vulnerability parameters 

   

Baseline value Effect size Applied on the following functional 
groups or species 

  

   Source group 
  

NC  OA  T OAT 

Vulnerability index of carnivorous fish  1 0.99 1.08 0.82 
2 ,5, 6,10,11,14,15,17,18,22,23,24, 
25,27,28,32,33,34,35 Relevant consumers/predators 

Vulnerability index of omnivorous fish 1 1.07 1.16 0.85 16,26,29,30,31 Relevant consumer/predator 

Vulnerability index of zooplankton  1 1.97 0.87 1.15 42 Carnivorous consumers 

Vulnerability index of polychaetes 1 1.11 0.63 1.70 37 Carnivorous consumers 

Vulnerability index of epifauna  1 0.99 1.24 1.79 36, 37 Carnivorous consumers 

Vulnerability index of bivalves 1 0.78 1.43 2.15 38 Carnivorous consumers 

Vulnerability index of gastropods 1 10.56 6.17 1.90 39 Carnivorous consumers 

Vulnerability index of copepod  1 2.97 1.66 1.91 42 Omnivorous consumers 

Vulnerability index of polychaetes 1 5.36 1.29      <0.00 37 Omnivorous consumers 

Vulnerability index of epifauna  1 3.10 2.88 0.88 36, 37 Omnivorous consumers 

Vulnerability index of bivalves  1 1.65 3.18 0.91 38 Omnivorous consumers 

Vulnerability index of gastropods 1 14.60 1.81 0.60 39 Omnivorous consumers 

Search efficiency of chondrichthyans 1 0.21 1.07 0.32 
2,5-8,10,11,14,16,17,21,22,24,27, 
28, 30, 33,34,36-41,43, Chondrichthyans 

Algal turf productivity 1 1.07 1.82 1.58 49 Relevant consumers 

Macrophytes productivity 1 1.28 0.24 0.46 48 Relevant consumers 

Phytobenthos productivity 1 1.32 0.69 1.23 51 Relevant consumers 

Phytoplankton productivity  1 1.66 0.44 0.99 50 Relevant consumers 
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Forcing function NC  OA  T OAT  Type 

Biomass grazing molluscs  1 1.17 0.47 0.12 39 Mortality (as a function of biomass) 

Biomass of filter feeders 1 1.24 0.28 0.15 38 Mortality (as a function of biomass) 

Biomass of crustaceans 1 1.38 1.25 1.44 43 Mortality (as a function of biomass) 

Biomass of polychaetes 1 1.74 0.50 0.68 37 Mortality (as a function of biomass) 

Biomass of zooplankton 1 1.16 0.57 0.68 42 Mortality (as a function of biomass) 
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CHAPTER V 

 GENERAL DISCUSSION 

 

5.1 SYNTHESIS OF THIS THESIS 

 

If we evaluate the ecological response of marine ecosystems in the face of climate change, the most 

common patterns to emerge are as follows; I) ocean warming although produce divergent responses 

across marine organisms, many of the species is affected negatively, declining their abundances, 

biomass and productivity, and II) ocean acidification threatens numerous calcifiers in marine 

ecosystems (Kroeker et al., 2013). What is important to note is that these patterns have tended to 

emerge from a synthesis of single-species studies, with stressors often modelled in isolation, over 

short time scales (typically days to weeks), or in microcosm studies, and are therefore unable to 

capture the complexity of whole food webs. Research studying the impacts of climate change on 

food web dynamics is usually based on either a component of the food web (i.e. one or two trophic 

levels) or the response of species solely against elevated temperature (Hoegh-Guldberg &  Bruno, 

2010). Recently, the importance of considering the combined effects of warming and acidification 

was illustrated by a quantitative meta-analysis that demonstrated these two global stressors 

together can disrupt ecosystem function (Nagelkerken &  Connell, 2015). Attempts to model the 

food web level response of real-world ecosystem under future climate change have included 

species’ physiological response to climate change, but only for lower trophic level species, such as 

primary producers or invertebrates, or using data from single species or single stressor studies. The 

key gap in this approach is that responses of species to global change are not individual-based; they 

are connected through a network of trophic relationships within and across trophic levels.  

 

Food webs are chains of networks where energy flow and growth of species is determined and 

mediated by various biological interactions (e.g., predator-prey relationships, competition, 

facilitation, and mutualism) among species that are directly or indirectly linked to adjacent trophic 

levels (Nagelkerken &  Munday, 2016, Woodward et al., 2012, Woodward et al., 2010). The 

sensitivity and response of individual species under climate change could be influenced by these 

biological interactions and could, directly and indirectly, impact species in the same trophic level or 

next trophic level. Thus, the response of individual organisms or functional groups could differ 

significantly when considered at a food web level.  Furthermore, increasing food chain length can 

alter the response of community levels which is not evident in food webs with a lower number of 
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trophic levels (Hansson et al., 2013). Including the entire food web, from producers to top predators 

and species interactions, in global change studies can considerably advance our understanding of 

future climate change and its associated losses and gains.  

 

Although conducting experiments with multilevel food webs comprised of diverse communities and 

increasing ecological complexity is challenging, but important to include in ecological models to 

ensure more ecologically realistic forecast of future food webs. This will also allow us to produce 

robust evidence that could suggest how this translates to the higher trophic level in a real-world 

food web. This thesis attempted to fill the above-mentioned gaps by combining multi-level 

experimental food web with an integrated food web modelling approach. 

 

Synthesis of the key findings  
 

 

To address the knowledge gap described above, we need to develop a holistic understanding of food 

web responses to global climate change, where the important first step is setting up an experiment 

that comprises all elementary biological components of a food web.  In chapter 2, I describe and 

show the importance of building such mesocosm experiments and explain how it improves our 

understanding of ecosystem response against global change. In particular, how energy fluxes are 

likely to change in marine food webs in response to future climate remains unclear, hampering 

forecasts of ecosystem functioning. This study provides strong empirical evidence that global 

warming has the capacity to drive a collapse in some marine food webs by altering energy flows 

between successive trophic levels.  

 

I show that in an ecologically complex mesocosm food web, the combination of warming and 

acidification can decouple increased basal productivity from herbivore production, while warming in 

isolation can reduce predator production. However, the metabolic theory of ecology (Brown et al., 

2004) suggest that temperature driven increased primary production is likely to propagate through 

food webs via strong top-down control (Carr &  Bruno, 2013, O'Connor, 2009), resulting in greater 

levels of heterotrophic biomass, relative to autotrophic biomass (O'Connor et al., 2009). The 

decoupling of energy between basal productivity and herbivore showed in this study is related to the 

proliferation of cyanobacteria, less preferred or unpalatable food, that completely dominates 

assemblages of mat-forming algae under warming. Herbivores like macroinvertebrates and small 

epifaunal invertebrates predominantly feed on mat-forming turf algae rather than cyanobacteria. 

Some cyanobacteria are known to be toxic produce potent allelochemicals that deter feeding by 
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grazers (Nagle &  Paul, 1998) and could also cause localized anoxia and mortality in marine 

organisms (O’Neil et al., 2012).  

 

In this study, it was not possible to identify the specific species of cyanobacteria. However feeding 

trial and later stable isotope analysis that was done for another project confirm that herbivorous 

macroinvertebrates did not feed on cyanobacteria grown under warming. Several studies have 

reported an apparent increase in the occurrence of cyanobacteria in marine waters globally (Paerl &  

Paul, 2012), and regionally in temperate (Wiedner et al., 2007), tropical (Bif &  Yunes, 2017, HW et 

al., 2008), and subtropical (Albert et al., 2005, Glibert et al., 2004) areas. Thus, I conclude that 

reduced food availability, brought about by palatable types of turf algae being replaced by 

unpalatable cyanobacteria, caused food limitation, preventing increased metabolic rates for 

macroinvertebrates at higher temperatures, suppressing the flow of energy to the second trophic 

level (Dillon et al., 2010, Johansen et al., 2015). This was further exacerbated by a collapse of their 

biomass of other primary consumers such as copepods, small epifaunal invertebrates, and filter 

feeders mostly due to increased predation pressure by species at the third trophic level (i.e., 

predators) due to their higher energetic demand (Goldenberg et al., 2017). These, in turn, make 

most of the primary production unavailable further up the food chain, reduce the transfer efficiency 

between primary producer and herbivores and thus converted surplus primary production to 

detritus to the base of the food web.  Thus, the results from this study (Chapter 2) suggest that 

energy from enhanced primary producer biomass under future climate conditions may not always 

transfer through to successive trophic levels. This decoupling between food demand and supply in 

successive trophic levels may alter dietary preferences of consumers, modifying consumer-prey 

relationships and induce trophic mismatch within food webs. 

 

On the other hand, this chapter shows that ocean acidification could affect the food web positively 

by bottom-up effects on energy flow towards secondary producers and by increasing the biomass of 

carnivores. This is not surprising because the direct negative effects of elevated CO2 could be 

dampened by the strong indirect positive effects i.e., through increased habitat and food, as well as 

reduced predator abundance (Connell et al., 2017, Nagelkerken et al., 2016). 

 

I conclude that ocean warming can potentially weaken some marine food webs through reduced 

energy flow to higher trophic levels and a shift towards a more detritus-based system, leading to 

food web simplification and altered producer-consumer dynamics both of which have important 

implications for the structuring of benthic communities. I then use the findings of this chapter 
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(Chapter 2) to parameterize and build models for different climate change scenarios for a 

representative temperate natural food web system.    

Here, I tried to address one of the most difficult challenges that ecosystem modelers have faced in 

the recent years:  determining how entire food webs (natural food web) respond to external 

perturbations (Chapter-3). To date, our ability to directly investigate food web response to major 

global threats such as warming and acidification is limited to simultaneous experimental 

manipulation of three trophic levels only. However, computer simulations can improve our 

understanding of future global threats on entire food webs. The accurate prediction of these 

models, however, largely depends on the input parameters, which relate to system-wide 

information of the food-web structure and biological details of species-interactions and cascading 

effects. Exclusion of information on particular groups or trophic levels can have potential large 

consequences for understanding the functioning of entire food webs. While significant effort has 

been made in recent years to explore the impact of climate change on food webs, our ability to 

produce reliable forecasts of the likely effects of future climate change on marine communities is 

hindered due to a failure of incorporating climate-driven change in species interactions 

(experimental output or in situ measurements) in model projections (Brown et al., 2010, Daufresne 

et al., 2009, Zhang et al., 2017). Additionally, simulating fishing effort within laboratory experiments 

is very challenging. Furthermore, natural food webs in general comprise four trophic levels. 

However, in some cases natural food webs comprise five trophic levels, when they contain 

carnivorous apex predators such as killer whales and sharks (Pauly et al., 1998). 

 

Thus, we need novel approaches that allow us to model food webs with up to 5 trophic levels 

(primary producers to apex predators). Modeling an entire food web is exceedingly important as 

food-chain length can alter community responses to global change (Alsterberg et al., 2013, Hansson 

et al., 2013). In this chapter, using a time-dynamic integrated ecosystem modeling approach I show 

how the independent and combined stressors such as global warming and ocean acidification in 

conjunction with local fishing affects a temperate coastal ecosystem. To quantify the effects of 

ocean acidification and increasing temperature at the species community level, this chapter included 

physiological and behavioral responses of species to these stressors from two of our own large-scale 

mesocosm experiments, which included multiple trophic levels from primary producers to top 

predators such as sharks. 

 

The results of this chapter elucidate that under a continuation of the present-day fishing regime, 

warming and ocean acidification will benefit most of the higher trophic level community groups (e.g. 
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mammals, birds, demersal finfish), except small pelagic fish. Small pelagic fish are one of the major 

forage fish groups in the food web which is subject to increased predation pressure under warming 

and likely decline in their biomass. The increase in biomass of consumers is predominantly driven by 

strong top-down control combined with a few prey groups responding positively to global warming. 

In line with metabolic theory, such increase in top-down control by consumers has been predicted in 

colder regions in response to increased temperature (Marino et al., 2018) and could benefit fisheries 

in some temperate or high latitude marine ecosystems (Barange et al., 2014, Brown et al., 2010, 

Cheung, 2018, Cheung et al., 2010).  

In contrast, acidification is likely to boost food-webs from the bottom up enhancing the availability 

of prey resources due to the enrichment effect of elevated CO2. Enhanced primary production can 

boost the growth of consumers under acidification as confirmed by several recent food-web studies, 

both experimentally (Sswat et al., 2018, Ullah et al., 2018) and in the wild (Goldenberg et al., 2018, 

Nagelkerken et al., 2017).  

While warming and acidification in isolation positively affect the biomass of predators, a smaller 

increase is predicted under their combination. This is because warming and acidification acted 

antagonistically. Such antagonistic effect between warming and acidification have been shown to 

affect prey search time of predators (Pistevos et al., 2017) or reduce prey resources to herbivores 

(Clements &  Darrow, 2018, Poore et al., 2013, Sampaio et al., 2017) and thus lead to a failure in the 

capacity of consumers to allocate resources towards maximal somatic growth (Nagelkerken &  

Connell, 2015).  

As global per capita consumption of seafood is expected to increase, many coastal ecosystems 

around the world are likely to face increasing fishing pressure. Therefore, I explored the likely 

consequences of increasing fishing effort together with warming and acidification on a marine food 

web and show that fishing and global warming would likely act antagonistically. Under increased 

fishing, the positive effects of warming and acidification are negated, decreasing the individual 

biomass of marine mammals, birds, chondrichthyans and demersal finfish taxa. Nevertheless, total 

future potential fisheries biomass will likely still remain high, particularly under acidification, 

compared to the present-day scenario because unharvested opportunistic species will likely benefit 

from decreased competition and increase in biomass. 

While many consumers benefited from the global warming, primary consumers such as 

invertebrates (e.g., grazing mollusc, filter-feeding mollusc, predatory mollusc and other 

invertebrates) and small pelagic crustaceans drastically collapsed in their biomass. Invertebrates and 

small pelagic crustaceans could not sustain themselves under increasing top-down control by their 
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predators. The collapse of these prey groups is evident through ecological indicators such as the 

Shannon diversity index which showed a significant decrease under all climate change scenarios, 

suggesting a trade-off between biomass gain and functional diversity in the future food web. In 

short, it is clear that the greatest stressor effect on future food webs will arise under the combined 

effect of global and local stressors where warming is mostly predicted to negatively affect the 

bottom while fishing  the top of the food web. 

Here I uniquely modeled the effects of global warming, ocean acidification, and fishing using 

empirical data on species interaction and physiology and historical fisheries data on their population 

dynamics. This study thus showed a novel approach to quantify the potential magnitude and 

direction of the biomass changes of various functional groups in future marine food webs and 

fisheries under global change. Ecosystem models considered in this study accounted for complex 

species interactions such as predation and competition, and represent the likely future food web 

structure and fisheries productivity under ocean warming, acidification and different fishing regimes. 

While I describe the potential end state of future temperate food web and fisheries is that a 

reshuffling of predatory and prey species biomass in this chapter (Chapter 3), the mechanism behind 

such changes is not illustrated in details.  Understanding the mechanism behind such alteration in 

the predator-prey dynamics is important, and therefore, I aim to explore that in the following 

chapter. 

 

In chapter 4, I studied the alterations to trophic interaction strengths that drive many of the changes 

in food webs (e.g. as observed in the previous chapters) under present day and future climate 

conditions. The structure, functioning, and stability of ecological communities depend 

overwhelmingly on the strength of trophic interactions between consumer and resources 

(Bascompte et al., 2005, Schaum et al., 2018). These consumer-resource interactions are of 

particular importance in food web dynamics since they determine the majority of energy fluxes 

between individuals and throughout ecological communities and ecosystems (Dell et al., 2014). 

Quantifying the strength of consumer-resource interactions is essential for understanding how 

ecological communities are organized and how they respond to any internal or external 

perturbations such as future global climate change (Bascompte et al., 2005).  

 

I investigated the individual and cumulative effect of future climate change stressors (temperature 

and acidification) on the modification of trophic interaction strength and its likely effects on the 

biomass and productivity of consumers and their resources in a temperate marine food web. This 
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was done by incorporating empirical data on climate-driven change in species interactions from 

large experimental manipulations (mesocosms).  

 

I show that although climate change is likely to reshuffle community biomass structure by reducing 

or increasing the biomass of resources and consumers within the food web, overall vertebrate 

biomass and productivity in the future food web will likely increase due to an increase in trophic 

interaction strength. This change in trophic interaction strength is driven by elevated temperature 

where an increase in both direct and indirect trophic interaction strength is likely to be observed in 

future food webs. Although both direct and indirect trophic interactions increase in their strength, 

direct trophic interactions (feeding and competition) will largely determine the direction of biomass 

change (increase or decrease) of consumers due to higher mean interaction strengths (magnitude of 

change). Thus increased biomass at the higher trophic levels under global warming, due to increased 

trophic interaction strengths, will result in a decrease in the biomass at the lower trophic levels that 

comprised many functional groups of invertebrates.  

 

In contrast, although acidification induced a relatively small increase in trophic interaction strength it 

showed a much larger change in percent interactions altered by indirect interactions and is still likely 

to propagate boosted primary consumer biomass to higher trophic levels.  

I conclude that warming in combination with acidification can amplify trophic interaction strengths 

(both direct and indirectly) and the degree to which the consumers will benefit in the future food 

web will largely depend on the direct trophic interaction strengths and availability of prey resources.  

 

Strength, weakness of the modelling approach and mesocosm transferability  
 

Large mesocosms are a close experimental representation of nature since they can maintain a 

natural community in a relatively self-sustaining condition and can incorporate mechanisms such as 

indirect effects, biological compensation and recovery, and ecosystem resilience (Stewart et al., 

2013). The outputs of such an experimental approach, however, can strongly depend on community 

structure, the level of ecological complexity included in the mesocosm and the number of trophic 

levels considered. In chapter 2, with a 3-trophic level food web, I showed how warming, irrespective 

of acidification, reduces the flow of energy to carnivores whilst in chapter 4 an increase in the 

biomass at the top of the trophic level (top carnivorous or apex predator) is predicted for natural 

food web.  
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Studies suggest that the top trophic level and every second level below in a food web could benefit 

from climate change, whereas the levels in between will suffer (Hansson et al., 2013). The increase 

in the biomass of carnivores and apex predators in a four trophic level natural food web (chapter 4) 

is mostly driven by strong top down control and partly the ability of some of the food web prey 

groups to respond positively to climate stressors.  For example, whilst benthic crustaceans at the 

bottom of the food web responded positively under all climate scenarios, small pelagic fish 

occupying the mid-trophic level of the food web (forage fish) significantly declined in their biomass 

but other functionally similar pelagic groups such as sardines and anchovies maintained their 

positive biomass and continued their role as prey species. It is observed that while some of the 

functional groups declined under different climate scenarios, many others increased in biomass, 

occupying vacant ecological niches and benefitting from less competition.  

 

In this study, the two models (mesocosm and Port Philip Bay) is nothing but an illustration of a 

similar shallow marine rocky reef ecosystem built with simple (small number of functional groups) 

and more comprehensive food web models (most of the major functional groups). The results 

suggests that the modelled natural food web, comprised of 53 functional groups and multiple 

species with similar ecological roles at the same  trophic level (Chapter 3), likely to have higher 

functional redundancy compared to the mesocosm food web (comprised of only twelve functional 

groups) that was modelled in Chapter 2. More complex food web communities with higher 

functional redundancy and diversified trophic links are likely to be less vulnerable and more stable 

than simple food webs (Sanders et al., 2018), showing greater adaptive capacity to sustain desirable 

states in the face of disturbances (Elmqvist et al., 2003) such as climate change (Hoppe et al., 2017). 

Therefore, even though I observed a similar level of proliferation of cyanobacteria (algal turf) in the 

natural food web (Chapter 3) as in the mesocosm food web (Chapter 2) the overall impact on species 

biomass in the natural food web was lower than in the mesocosms. This is mostly because of the 

strong role played by the alternative prey groups for carnivores in the natural food web, such as 

benthic crustaceans which had minimal contribution in the trophic flow up the food web in the 

mesocosm food web due the absence of appropriate predator. However, I acknowledge that this 

mechanism could be better explained if the mesocosm experiments could be conducted on a range 

of food webs with increasing complexity/number of species. Benthic crustaceans (with the highest 

trophic impact value) were a major prey resource (trophic link) for higher order consumers in the 

natural food web. The natural food web model (Chapter 3) was further able to capture the 

significant loss of herbivorous biomass as also observed in mesocosm model (Chapter 2). 
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In summary, increasing top-down control due to higher trophic interaction strength and inclusion of 

predator-prey dynamics through species interactions at higher trophic levels combined with greater 

diversity in prey resources and less influence of less desirable basal resources in the diet of 

consumers of the natural food web than mesocosm food web explain the outcome (disparity and 

comparability) of a 3-trophic level mesocosm food web and a 4- trophic level natural food web. 

 

It is important to note that all research suffers from some general limitations. The experimental 

manipulation and modelling approach used in this study are not devoid of such pitfalls either. I used 

Port Philip Bay as a model ecosystem to project the changes in the future food web and fisheries in 

response to increases in temperature and decreasing pH level both of which are based on global 

averages. I assume that ecological setting of mesocosm experiment reasonably mimics the shallow 

coastal ecosystem of Port Philip Bay. However, I acknowledge that there is substantial variation in 

the dynamics of climate change processes among regions. For example, the South East coast of 

Australia is warming considerably faster than the global average. Therefore, the output of the model 

(Chapter 3) may not necessarily reflect the potential future changes of Port Philip Bay ecosystem at 

2100. Therefore, to elucidate when exactly we may observe the likely consequences of such changes 

in the ocean warming and acidification in Port Philip Bay and their consequences on the food web 

further work is necessary such as using the regional climate models to forecast trends in future 

temperature and acidification of Port Philip Bay. 

 

Also, the simulation of the future food web is solely based on two scenarios–present-day conditions 

and projected global averages for temperature and acidification at 2100 following RCP 8.5. I also 

assume a linear increase or decrease in all the forcing function parameters since realistic model 

parameters were only possible to collect at the beginning and end of the mesocosm experiments.  In 

reality, many studies show that the performance of individual species in relation to climate change is 

not linear. I acknowledge that the response of species and food web properties could vary in some 

instances if the relationship between forcing function and vulnerability was non-linear. This may 

weaken our ability to predict variability at the decadal scale. However, linear interpolation between 

two climate snapshots is a common practice in climate change ecology (Fordham et al., 2012) and 

successfully used before in a food web context (Ainsworth &  Mumby, 2015, Brown et al., 2010, 

Griffith et al., 2011, Marshall et al., 2017). 

 

I used artificial, as opposed to natural, seagrass in the mesocosm experiment, and hence the 

ecosystem models. Seagrass could be an important source of primary production for shallow coastal 
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ecosystems, such as PPB and thus can have important implications in the model outcome. For 

example, seagrass can store more carbon than forests and work as an important source of carbon 

dioxide sinks (Fourqurean et al., 2012). However, previous lab studies found that maintaining 

seagrasses in indoor mesocosm for long-term is extremely difficult. I, therefore, had no other option 

than to use artificial seagrass by which this study at least able to capture the importance of seagrass 

as sheltering habitat for species. This decision was made because habitat heterogeneity can have 

important implications for predator-prey interactions or heterospecific interactions (Ljungberg et al., 

2013, Oksanen, 1990) that are not captured by the model which is based on a homogenous 

environment. I observed that these artificial seagrasses were frequently used by fish, shrimp, and 

snails to obtain food and for sheltering purposes (Adams et al., 2004, Bell et al., 1985) and as such 

created a similar habitat to live seagrass beds that some of the species associated with in nature. 

However, I admit that we need to find a way to include natural seagrass to the model future 

ecosystem which will certainly improve our model forecast. 

 

Ecopath with Ecosim which is a data-driven modelling approach has some of its own shortcomings 

too. The performance of the model largely relies on the quality and availability of good 

representative data. One of the weaknesses of earlier applications of the Ecopath model were 

assumptions of ‘steady-state’ or equilibrium conditions, meaning that the model outputs should only 

be considered for the period across which the model input parameters are deemed valid 

(Christensen &  Pauly, 1992). Ecopath modelling approaches now no longer assume steady-state 

conditions but instead, the model parameterizations are based on a mass-balance assumption over a 

chosen arbitrary period. An important assumption in the foraging arena formulation in Ecosim 

simulation is that predators are usually hungry and seek food is open to debate and therefore it is 

important to explore the likely consequences of alternative feeding interactions. The Ecopath 

modelling approach also assumes that mortality for a prey equals consumption of a predator and 

that all prey are equal in terms of energetic content. Thus the absence of a distinct energetic content 

parameter could be problematic in scenarios where there are substantial differences in the energy 

density of prey (Plagányi &  Butterworth, 2004). This could mislead the true food requirements of a 

predator when prey abundances change. Further development and implementation of statistical 

procedures for estimating model parameters and sensitivity analysis which is computationally 

efficient are recommended to be useful in the fisheries resource management context for highly 

dynamic ecosystems that lacks in the present approach (Plagányi &  Butterworth, 2004).  
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An important limitation of Ecopath and Ecosim approach is that it does not consider changes in the 

species size structure. Earlier studies reported that warming can shift the body-size distributions of 

species (Brose et al., 2012, Jochum et al., 2012), leading to a dominance of more small over large-

bodied species such as cyanobacteria in this study. This change in size structure can influence the 

top-down and bottom-up process and may ultimately lead trophic cascades and yield novel 

communities (Brose et al., 2012, Jochum et al., 2012). 

  

Another important aspect which is needed to be taken into account is that I simulated the future 

state of a shallow temperate marine ecosystem. The applicability of the model output from this 

study should be exercised with caution for deep sea ecosystem or for ecosystems at tropics. More 

experiments in different geographical locations with this kind of highly sophisticated food web 

experimental approach are necessary to better forecast the future ecosystem state.  Additionally, I 

have to acknowledge that although this study includes one of the most complex mesocosm 

experiments to date, someone may argue about the mismatch between the scale of mesocosm and 

naturals systems.    

 

However, by independently validating the model predictions (Chapter 3) against historical biomass 

and catch data, I not only show that the model does a very good job at reconstructing historical 

trends in fish biomass (for selected functional groups), but also show that the empirical parameters 

estimated in mesocosm experiments (Chapter 2) provide a close representations of natural food 

webs (Chapter 3). In doing so, I show that mesocosm experiments with a realistic multifactorial 

experimental design that capture food web complexity and can provide ecologically realistic outputs 

can be used to parameterize end-to-end ecosystem models and help bridge the gap between 

simplified experimental conditions and the real world .  

 

Future research directions 
 

I used one of the most near-natural coastal marine food web experiments to date to predict the 

response of ecological communities to global change at the end of the 21st century (Chapter 2). 

However, there is room for further improvement and extension of such experimental approaches. 

This thesis considered an extended summer season to mimic future climate conditions. However, we 

have little knowledge of how future communities with novel species compositions due to range 

extensions will respond to winter temperatures. Future studies should consider this as well as other 

seasons to model future response of ecological communities. A particular emphasis could be given 

to collect samples from multiple time points (experimental approach) for diverse community group 



209 
 

including higher trophic levels with appropriate approaches which will allow us to predict decadal 

patterns in community response more accurately. In addition, future models and mesocosm 

experiments should also consider how species range shifts (both expansions and retractions) will 

impact food webs into the future.  

 

Integrating data from other emerging and relevant fields such as genomics will allow developing 

more comprehensive understanding of the adaptive capacity of marine communities to future 

climate change (Bernatchez et al., 2017). When integrating mesocosm data with ecosystem 

modelling tools, one of areas of improvement could be to build food web models with more species 

functional groups. For example, homogeneity in taxonomic resolutions (representing functional 

groups at the species level equally at higher and lower trophic levels) could be improved of 

ecological groups in higher and lower trophic levels of the food web. In addition, time series data 

(biomass of fisheries and other ecological groups) collected through well designed long term survey 

programs would improve model performance.  

 

With increasing human populations, many coastal ecosystems will face the problem of increasing 

anthropogenic nutrient inputs into the sea resulting in toxic algal blooms and thus deoxygenating 

the water column (Davidson et al., 2014). An increase in the hypoxic zone in the global ocean is 

reported and is a ubiquitous characteristic of many of the coastal ecosystems around the world (Diaz 

&  Rosenberg, 2008). The metabolically mediated co-occurrence of acidification and hypoxia has also 

been well established especially in the in coastal environments over a range of spatial and temporal 

scales (Baumann et al., 2015, Wallace et al., 2014). Future studies should consider these multiple 

stressors in a modelling framework to improve our understanding on how communities respond to 

several external perturbations. Finally, the next big challenge is to incorporate the response (e.g. 

physiological and species interactions) of future communities using a spatially-explicit food web 

modelling approach. Effort has been made to explore this within the framework of Atlantis food web 

models (Marshall et al., 2017, Olsen et al., 2018, Ortega-Cisneros et al., 2018); but these lack 

incorporating realistic biotic interactions such as those can be obtained from large  scale mesocosm 

or in situ experiments that captures novel species interaction in response to ocean warming and 

acidification.  This will allow us to include other important attributes such as habitat use of species 

and life-history trait such as dispersal rate both of which can greatly influence population dynamics 

of species. 
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5.2 CONCLUSIONS 
 

This thesis has provided evidence that the effect of future global warming and ocean acidification on 

food web communities will vary depending on the complexity and structure of the food web. In 

general, warming is likely to increase the top down control of consumers on their prey resources and 

will likely determine the community biomass structure of the food web. The greatest negative effect 

is likely to be on lower trophic level groups such as invertebrates (collapse). In contrast, we may see 

an emergence of opportunistic species such as algal turf which potentially can weaken the trophic 

link between producer and herbivorous consumers. However, this mechanism might not be seen in a 

more complex natural food web characterized by higher functional redundancy (alternative available 

prey species) compared to more simple food webs (e.g. a mesocosm food web). In a more diversified 

and functionally rich natural food web, most of the consumers at the higher trophic level could be 

benefited, albeit to a cost of biodiversity. More specifically, the increase in the biomass of higher 

trophic level consumers could put lower trophic level species under tremendous pressure through 

increased predation owing to the higher metabolic demand from increased temperatures. On the 

other hand, fishing will more likely negatively affect higher order consumers in the food web. While 

warming irrespective of acidification is likely to jeopardize some of the functional groups of the food 

web, acidification in isolation is likely to benefit most of the functional groups that include producers 

to top predators. In summary, the findings of my thesis suggest that the degree to which warming 

and acidification will be beneficial or detrimental to a particular functional group in future food webs 

will largely be depend on how interaction strengths affects individual consumers or resource groups 

and could be mediated by the availability of prey resources and the complexity of food web 

considered (e.g. three or four trophic level and more diverse ecological communities). 
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On Tue, Sep 18, 2018 at 6:00 AM, Md. Hadayet Ullah <mdhadayet.ullah@adelaide.edu.au> wrote: 

Hi Rob, 
This is Hadayet. I am doing my PhD at the University of Adelaide. Today, I have come across the 
beautiful mesocosm infographic (below link). 
I am wondering whether I can use this in my PhD thesis, probably on the cover page 
I would gratefully acknowledge the source if the permission is given. 
 https://www.the-scientist.com/modus-operandi/climate-change-research-gets-closer-to-nature-
64346 
 
Thank you so much. 
Regards 
Hadayet Ullah 
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