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Abstract

The Internet of Things (IoT) is here. Enabled by advances in the wireless networking and the

miniaturization of embedded computers, billions of physical things have been connecting

to the Internet and offering their ability to sense and react to the real-world phenomena.

These abilities form the content of IoT, which enable applications such as smart-city, smart-

building, assisted living, and supply chain automation. The Internet of Things Search Engines

(IoTSE) support human users and software systems to detect and retrieve IoT content for

realizing the stated applications. Due to the diversity and sensitivity of IoT content, the

literature has suggested that IoTSE will emerge as a large number of small instances, each

of which monitors a specific IoT infrastructure and specializes in querying a particular type

of IoT content. Various internal activities (i.e., components), as well as the logical and

physical arrangement of those activities (i.e., architectural patterns), will overlap between

IoTSE instances. The emergence of a large number of IoTSE instances, which possess

overlapping operations and architecture, highlights the need for leveraging prior components

and architectural patterns in engineering IoTSE instances. However, as an IoTSE reference

architecture and a software infrastructure to guide and support such reuse-centric IoTSE

engineering have not existed, a majority of IoTSE instances have been engineered from

scratch.

This thesis aims at proposing the reference architecture and the software infrastructure

to support leveraging prior components and architectural patterns in engineering IoTSE in-

stances. The key contributions of this thesis include a reference architecture that describes the
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constituting components and architectural patterns of an IoTSE instance, and software infras-

tructure that supports utilizing the reference architecture in developing reusable, composable

IoTSE components and engineering IoTSE instances from those components.

In order to propose the IoTSE reference architecture, we conducted a systematic and

extensive survey of over one decade of IoTSE research and development effort from both

an academic and an industrial perspective. We identified commonalities among diverse

classes of IoTSE instances and compiled this knowledge into a reference architecture, which

defines 18 components, 13 composition patterns, and 6 deployment patterns. We assessed

the reference architecture by mapping it onto two IoTSE prototypes that represent the most

common types of IoTSE in the literature and possess the more complicated architecture

compared to other types.

In order to develop the software infrastructure, we first proposed a kernel-based approach

to IoTSE engineering, which was inspired by the design of modern operating systems. In

this approach, IoTSE instances operate as a collection of independently developed IoTSE

components that are plugged into a shared kernel. This kernel provides essential utilities

to run IoTSE components and control their interactions to fulfill the functionality of an

IoTSE instance. The kernel also provides templates that simplify the development of IoTSE

components that are interoperable and compliant with the proposed reference architecture. In

a case study, which involves engineering an IoTSE prototype, the kernel managed to reduce

the amount of new source line of code to just 30%.

The kernel-based approach supports engineering a majority of prominent IoTSE types

detected in the literature. To enhance its support for emerging classes of IoTSE and prepare

for future features in the reuse-centric IoTSE engineering, we proposed a platform-based

approach to IoTSE engineering that extends the kernel-based approach. The platform-based

approach revolves around an Internet of Things Search Engine Platform – ISEP – that supports

developing interoperable IoTSE components, accumulating those components, and allowing
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search engine operators to engineer IoTSE instance from them using any valid architectural

pattern defined in the reference architecture, without modifying the implementation of the

components. In a case study, the platform-based approach enabled engineering complex

IoTSE instances entirely from the components of simpler ones. Both the ability to engineer

various IoTSE instances from a set of components and the engineering of new IoTSE

instances entirely from accumulated components are unprecedented in the IoTSE literature.

Future research can focus on devising mechanisms that leverage the architecture and

the infrastructure proposed in this thesis to accumulate the knowledge generated in the

process of engineering IoTSE instances and use it to introduce automation gradually to

IoTSE engineering. Eventually, when the automation is proven to be trustworthy and reliable,

machines might compose and deploy IoTSE instances in real-time to adapt to the incoming

queries and the state of the computing infrastructure. By achieving this degree of automation,

we will have realized a search engine for the Internet of Things.
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Chapter 1

Introduction

With the advent of the Internet of Things (IoT) [1, 2], the Internet has been rapidly becoming

a “library of everything” where humans and software systems can find not only digital

documents but also information, real-time states, and interactions of the physical world.

Emerging from the advances in embedded computing, wireless networking, telemetry, and

global supply chain management, the IoT brings computerization and connectivity to our

physical world. In the IoT systems, physical objects (“things”) can connect to each other

and software systems via the Internet. Things can share information about the surrounding

world and themselves (“sensing information”) to software systems and humans [3]. Things

can receive instructions from software systems. Things can make decisions. By bridging the

gap between the physical and digital worlds at the scale and simplicity of the Internet, the

IoT promises to make processes more efficient, resource consumption more optimal, and,

hopefully, life more secure and comfortable [4–8].

The content of the IoT comprises the ability to sense and interact with the real-world that

are offered by IoT-enabled things and the data that things generate. Among IoT content, we

can find everything from the temperature and humidity of a venue, the pollution level of the

river in our city, the origin of a drug bottle, to a service to the control lighting and heating of

our offices. The promises of the IoT – optimal processes, minimal resource consumption,
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comfort, safety, and security [9, 6, 7] – rely on the ability to locate and retrieve necessary

content in this library of everything. The librarians of this IoT library are the “Internet of

Things Search Engines (IoTSE)”.

The diversity of the solution space is a defining characteristic of IoTSE. While previous

classes of search engines such as Web Search Engines and Document Retrieval Systems work

primarily with text-based collections, which are relatively static and location-independent,

IoTSE instances work with various types of IoT content, such as sensing data, actuating

functionalities, digital representatives of things, and data records of things as they move across

supply chains. Each type of content possesses its own syntactic and semantic heterogeneity

and therefore requires specific mechanisms to discover and query.

The existing literature on the IoTSE reflects this diversity. Under the moniker of search

and discovery in IoT, we can find prototypes that query Internet-connected sensors based on

their static description (e.g., types of phenomenon that they observe, units of measurement

that they use) [10–12] or their dynamic sensing values [13–19]; we can find prototypes that

crawl and resolve queries for Internet-connected physical objects based on their real-time

state [20, 21]; we can also find prototypes that query actuating services of physical objects

[22–24]. Moreover, processing complex IoT queries might involve multiple types of content,

and the IoTSE instances addressing these complex queries can emerge as a new IoTSE

class with its own challenges and solutions. For instance, to find “a meeting room which

is reporting abnormal energy consumption” in a smart-building, an IoTSE instance must

process metadata of things (to answer “is this thing a meeting room?”) and sensing data

streams (to answer “is there abnormality in this stream”), and then it must aggregate two sets

of results to come up with the final results (Fig. 5.1).

Despite the diversity of the solution space, we have observed overlaps between IoTSE

instances regarding internal activities (i.e., components), as well as the logical and physical

arrangement of those activities (i.e., architectural patterns). For instance, an IoTSE instance
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Fig. 1.1 Involvement of multiple IoT content types in resolving a complex query, and overlaps
in terms of internal activities between two IoTSE instances.

that works with a smart-parking infrastructure can share the mechanisms for detecting IoT-

enabled things, collecting metadata and sensor readings, and processing queries on such

content, with the aforementioned IoTSE instance for a smart-building (Fig. 5.1). In order

to increase its sensitivity to changes in real-world phenomena, the smart-parking IoTSE

might also use a similar deployment pattern consisting of a hierarchy of edge-nodes and

cloud-nodes. The overlaps mentioned above suggest the potential, and the need, to leverage

prior components and architectural patterns in engineering new IoTSE instance.

The emerging trend of decentralizing IoTSE, which is driven by the diversity and sen-

sitivity of IoT content, also motivates leveraging prior components and patterns in IoTSE

engineering. The content collected by IoTSE instances is highly sensitive as it comes from

IoT infrastructure in smart-homes, smart-buildings, smart-cities, and supply-chains. There-

fore, the value offered by IoTSE might not be able to offset the risk associated with sending

IoT content out of the owner’s network and surrendering this data to an external party. Due

to the diversity and sensitivity of IoT content, the latest literature in IoTSE has suggested

that this system will emerge as a large number of small instances, each of which monitors
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a specific IoT infrastructure and specializes in querying a particular type of IoT content,

instead of a large centralized entity.

As the IoTSE might emerge as an extensive collection of small instances, and significant

overlaps regarding components and architectural patterns exist between these instances, it

would be possible and beneficial to leverage the implementation and architecture of prior

IoTSE instances in engineering new ones. The reuse-centric IoTSE engineering would enable

more effective and efficient IoTSE instances by allowing them to leverage state-of-the-art

implementations for their internal operations. It would encourage specialization by allowing

researchers and developers to focus on components of IoTSE that align with their interest

and expertise, knowing that their research and engineering efforts will be compatible with

most IoTSE instances. Finally, the reuse-centric IoTSE engineering would also reduce

the coupling between architecture and implementation of an IoTSE instance as it allows

IoTSE components to be used in instances with different architectural patterns. As a result,

researchers can assess the impact of architectural design decisions on the quality of an IoTSE

instance experimentally.

Despite the stated potential and benefits of the reuse-centric IoTSE engineering, a majority

of the IoTSE instances in the literature has been designed and developed from scratch. This

problem can be contributed to the lack of a reference architecture and software infrastructure

to guide and support the engineering of IoTSE instances.

1.1 Research Objectives

This thesis aims to propose an IoTSE reference architecture and software infrastructure to

support the engineering of IoTSE that allow leveraging prior components and architectural

patterns. The reference architecture provides a blueprint for IoTSE engineering, while the

infrastructure supports utilizing the reference architecture in developing IoTSE components

and engineering IoTSE instances (Fig. 1.2). The objective of this thesis is threefold:
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Fig. 1.2 A vision of the reuse-centric IoTSE Engineering based on a reference architecture
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• To provide a holistic insight into the current state of IoTSE research and devel-

opment. While over one decade has passed since the pioneering works on IoTSE a

holistic view of IoTSE has not been established, partially due to the diversity of its

solution space.

• To propose a reference architecture that captures the commonalities of IoTSE.

This architecture specifies the shared components and architectural patterns to provide

a blueprint for engineering IoTSE instances.

• To propose a software infrastructure to support the reuse-centric engineering of

IoTSE. It simplifies the development of reusable, composable IoTSE components, and

enables the engineering of IoTSE instances from those components.
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1.2 Contributions

The contributions of this thesis to the body of knowledge of the research and engineering of

the Internet of Things Search Engines are summarized as follows.

• We provide an extensive review of over one decade of IoTSE research and development,

taking into the consideration both academic and industrial efforts. We assessed the

growth and the focus of IoTSE research by analyzing the number of published works

and in-field citation count from over 200 relevant IoTSE works, spanning the period

between 2001 and 2016. We proposed a model for describing IoTSE instances and

used it to assess 36 representative IoTSE prototypes. We also conducted an assessment

of 6 industrial efforts and 4 standards related to IoTSE.

• We propose a reference architecture for IoTSE, which specifies 18 functional compo-

nents, 13 composition patterns, and 6 deployment patterns. This reference architecture

forms the basis for enabling the reuse-centric engineering of IoTSE instances.

• We propose a kernel-based approach to engineering IoTSE. This approach revolves

around a kernel that provides a skeleton to develop components of an IoTSE instance,

which help to reduce the development effort. The kernel also ensures the interop-

erability between IoTSE components as it defines the component interfaces and the

format of exchanged messages. In a reference implementation of an IoTSE instance

for smart-building management, the kernel managed to reduce the amount of newly

developed source lines of code to just 30%.

• We propose a platform-based approach to engineering IoTSE. This approach extends

the kernel-based approach by separating the composition and deployment decisions

from the implementation of IoTSE components. It allows accumulating IoTSE com-

ponents, and then composing and deploying them based on different architectural
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patterns to generate IoTSE instances. The conducted case studies showed that the

platform-based approach enabled engineering multiple IoTSE instances with different

architecture and quality from the same set of IoTSE components, without modifying

their implementation. Notably, this approach allowed engineering complex IoTSE in-

stances entirely from the components of simpler ones. This capability is unprecedented

in the IoTSE literature.

1.3 Publications Related to this Thesis

Ten published or submitted papers were produced during my Ph.D. candidature. Seven of

them are direct results of the research presented in this thesis and form the central part of its

chapters. These publications are listed below, and the chapter on which each publication is

based is presented in brackets.

1. Tran, Nguyen Khoi. “Searching the Web of Things: Resolving a Real Library of

Babel.” In International Conference on Service-Oriented Computing, pp. 127-132.

Springer, Cham, 2016. (Chapter 2)

2. Tran, Nguyen Khoi, Quan Z. Sheng, Muhammad Ali Babar, and Lina Yao. “Searching

the Web OF Things: state of the art, challenges, and solutions.” ACM Computing

Surveys (CSUR) 50, no. 4 (2017): 55. (Chapter 2)

3. Tran, Nguyen Khoi, Quan Z. Sheng, M. Ali Babar, and Lina Yao. “A Kernel-Based

Approach to Developing Adaptable and Reusable Sensor Retrieval Systems for the

Web of Things.” In International Conference on Web Information Systems Engineering,

pp. 315-329. Springer, Cham, 2017. (Chapter 4)
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4. (Accepted) Tran, Nguyen Khoi, Quan Z. Sheng, M. Ali Babar, Lina Yao, Wei Emma

Zhang, and Schahram Dustdar. “Internet of Things Search Engine: Concepts, Classifi-

cation, and Open Issues.” Communications of ACM (Chapter 2)

5. (Under review) Tran, Nguyen Khoi, M. Ali Babar, Quan Z. Sheng, and John Grundy.

“A Software Platform for Enabling Architecture Level Reuse in Engineering IoT

Search Engines” In 41st ACM/IEEE International Conference on Software Engineering

(ICSE), 2019. (Chapter 5)

6. (To be submitted) Tran, Nguyen Khoi, M. Ali Babar, and Quan Z. Sheng. “A Ref-

erence Architecture for Internet of Things Search Engines” ACM Transactions on

Software Engineering and Methodology (TOSEM). (Chapter 3)

7. (To be published) Tran, Nguyen Khoi, M. Ali Babar, and Quan Z. Sheng. “A Service-

oriented Architecture for Internet of Things Search Engines.” Technical Report. (Chap-

ter 5

1.4 Thesis Structure

This thesis comprises six chapters. Chapter 2 presents a comprehensive survey of over one

decade of IoTSE research and development from both an academic and industrial perspective.

It starts by presenting a background of IoTSE and then proposing a model for describing

IoTSE instances. Afterward, it introduces the framework for conducting the survey and then

presents the survey results. This chapter concludes with a discussion on open issues of IoTSE

research and engineering, including leveraging reuse in IoTSE engineering to address the

diversity of the solution space.

Chapter 3 presents an IoTSE reference architecture. It captures the commonalities of

IoTSE that have emerged from the survey. This chapter starts by presenting the method

that was utilized to derive the reference architecture. Then, it introduces 18 types of IoTSE
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components, which are arranged into 5 horizontal layers and 3 vertical layers. Then, it

specifies 13 composition patterns and 6 deployment patterns that have emerged from the

IoTSE literature. Afterward, it proposes a framework for utilizing the reference architecture

to instantiate IoTSE instances. Finally, this chapter presents the assessment of the reference

architecture by mapping it into two representative IoTSE prototypes.

Chapter 4 and 5 present our work on the software infrastructure for enabling the reuse-

centric IoTSE engineering. The kernel-based approach is proposed in Chapter 4. The

platform-based approach, which extends the kernel-based approach to separate the archi-

tectural design decisions from the implementation of components, is proposed in Chapter

5. This chapter concludes with three case studies which generate 16 IoTSE instances in

total from 8 IoTSE components. These case studies have demonstrated the feasibility of the

reuse-centric IoTSE engineering, based on the architecture and the software infrastructure

proposed in this thesis.

Chapter 6 concludes this thesis with final remarks and a discussion on future research

directions.





Chapter 2

Searching the Internet of Things:

State-of-the-art, Challenges, and

Solutions

This chapter presents a systematic and extensive survey of over one decade of IoTSE research

and development, taking into the consideration both academic and industrial efforts. It

covers over 200 research works on IoTSE, 6 representative industrial efforts, and 4 related

international standards. By analyzing the number of publication, the number of in-field

citations, and the number of works receiving in-field citations between 2001 and 2016, we

provide an insight into the growth of IoTSE research and a cluster of works published between

2010 and 2012 that have a significant influence on the field. By proposing a novel model

called meta-path for describing the functionality of an IoTSE instance, and a basic modular

decomposition of IoTSE, we analyze and provide insights into the internal operations of

representative IoTSE prototypes. Based on these results, we identify the open issues in

IoTSE research, including addressing the diversity of IoTSE solution space.
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2.1 Introduction

Our world is becoming a resource library for software applications. Advances in embedded

computing and low-power wireless communication bring Internet connectivity to physical

objects, forming the Internet of Things (IoT) [6]. An emerging trend is reusing technologies

and techniques of the World Wide Web (e.g., HTTP protocol, HTML documents, and REST

architectural style) to represent and serve IoT content. The so-called Web of Things (WoT)

[25, 26] has emerged from such integration of the IoT and the Web and has been becoming

increasingly prevalent. As the WoT is a subset of IoT, the survey presented in this chapter

covers and is relevant to the content discovery and search mechanism for both the IoT and the

WoT. Besides some intricacies, this chapter refers to the IoT and the WoT interchangeably,

unless indicated otherwise.

Internet of Things Search Engines (IoTSE) bridge users and applications with the resource

from IoT. For instance, consider a cyber-physical application in a smart home for seniors that

blinks the lamp closest to the house owner to notify that the meal in the oven is done (Fig.

2.1). This application requires control service of lamps and light bulbs in the house, a sensor

stream from the meat thermometer, a stream of results from the installed indoor localization

system, and a Web service showing the optimal temperature for the meal being cooked.

Assuming that these resources are available, the task of developers is finding and linking

them to the application logic. IoTSE decouples resource retrieval from the application. By

querying an appropriate IoTSE, the application can retrieve resources needed for its operation

without the manual configuration of developers. As long as the application has access to the

IoTSE managing its deployment area, it can configure itself to work. Also, as long as the

IoTSE continues to manage changes of objects in its scope, the application always has access

to the latest resources.

Research related to IoTSE begins from early 2000s and enjoys steady expansion ever since.

It branches into different directions including object search, sensor search and functionality



2.1 Introduction 13

Application

App Logic:
“Blinking the lamp nearest to the user when food in the oven 

is cooked”

Resource Queries:

Search Engines:

Web of Things:

Lamp control 
services?

Indoor localization 
results?

Temperature 
of food?

Optimal Temperature 
for the food

Functionality 
Search

Sensor Search Service Search

Physical World:

Lamp control 
service

Temperature 
Stream

Localization 
Stream

Cooking Instruction 
Service

Planned Meals

Fig. 2.1 Search engines as middle-ware to decouple application logic from resource retrieval
in the Internet of Things

search. Essentially, IoTSE comprises of different types of systems, including unseen ones

that will emerge when the adoption of WoT increases. This diversity complicates both the

development of new IoTSE and the assessment of its state of the art. Therefore, a survey on

IoTSE must focus on the whole field, not just only what happens within one type of IoTSE.

Existing surveys either focus on one form of IoTSE [27–29] or focus on potential technical

problems without considering the state of the whole field [30].
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In this chapter, we perform a systematic survey on over 200 works related to IoTSE, with

the focus on their diversity. Our contributions are fourfold:

• Proposing a conceptual model that describes IoTSE succinctly with resources involving

in their query resolution process.

• Proposing a modular architecture as a reference to evaluate representative IoTSE

prototypes.

• Reviewing the growth and state of the art of research and industrial efforts around

IoTSE.

• Identifying open issues and potential solutions for the diversity challenge.

The remaining of this chapter is organized as follow. Section 2.2 introduces WoT

and IoTSE concepts. Section 2.3 presents our proposed conceptual model and reference

architecture for IoTSE. In Section 2.4, we present the analytical framework of our survey,

which is built on our proposed models. We apply this framework on academic and industrial

efforts and present the results in Section 2.5 and 2.6, respectively. Finally, we discuss

prominent open research issues around IoTSE in Section 2.7.

2.2 Background

2.2.1 The Web of Things

The Web of Things (WoT) emerges from applying Web technologies to the Internet of Things

to access information and services of physical objects. As the IoT has been increasingly

accessible from the Web, techniques for discovering and searching for IoT content on the

Web have been becoming more prevalent. Therefore, we devote this section to present an

overview of the WoT.
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In the WoT, each physical object possesses a digital counterpart which is commonly

referred to as “Virtual Object” [31] or “Web Thing” [32]. These objects are built according

to Representational state transfer (REST) architecture and accessed with HTTP protocol

via RESTful API. A Web Thing can have an HTML or JSON representation, REST API to

access its properties and actions, and an OWL-based semantic description.

Web Things are integrated into the Web in three ways. They can be hosted directly by

Web Servers embedded into physical objects. With clever optimization, a Web Server can

operate on an embedded computer with only 200 bytes of RAM and 7 KB of code [33].

For objects that cannot be modified, their virtual objects can be hosted by the Web Server

embedded in a gateway device, or a cloud service. In these arrangements, the gateway device

translates traffics in HTTP into the proprietary communication of the physical object. These

three modes of integration are presented in Fig. 2.2. An overview of enabling technologies

for bridging physical objects to the Internet is provided in [34]

In WoT, applications interact with physical objects with the familiar HTTP prococol and

RESTful API. This simplifies the access to physical objects, allowing them to be used in

Web applications and merged with existing Web resources [33]. It enhances the creation

of value-added cyber-physical services by exposing sensing and actuating capabilities to a

global open market [25]. Essentially, WoT turns the real-world into a library of software

resources that is accessible via the Web.

2.2.2 Discovery and Search in the IoT

Internet of Things Search Engines (IoTSE) are “librarians” of IoT. They discover and gather

IoT resources in a specific scope and allow users to “search” on these resources. For brevity

and consistency, we use the term IoTSE for both systems designed specifically for WoT, and

IoT or telemetric solutions that can be adapted to IoT.
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Fig. 2.2 Comparison between Web of Things and Non-Web of Things solution for accessing
physical objects from an application

IoTSE appear in different usage scenarios with different forms and implementations in

the literature:

• Locating Physical Objects: In early projects, IoTSE are commonly used to locate

physical objects, which are tagged with passive RFID tags [35, 36] or sensor nodes

[37–39].

• Sensor Search: GSN [40], CASSARAM [10] demonstrate the use of IoTSE for

retrieving sensors based on their static meta-data and contexts, such as cost and

reliability.
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• Finding Entity with Dynamic State: Dyser [21] demonstrates an IoTSE that searches

for physical objects (e.g., meeting room) based on their real-time states (e.g., “empty”)

derived from their sensor readings.

• Finding Actuation Services: [22] demonstrates the use of IoTSE as a middle-ware for

retrieving services offered by physical objects (e.g., changing lamp intensity).

• Retrieving Data Records: Prototypes of EPC Discovery Services [29] illustrate the

use of IoTSE to retrieve data records relevant to an individual physical object. This

problem was also investigated in Cooltown project [41].

Each form of IoTSE in the literature has its own characteristics and technical challenges.

However, certain features are invariant between them. Therefore, we can build a common

model to present majority of different IoTSE. We present this model in Section 2.3.1.

IoT Search vs Web Search

As IoT content is increasingly accessible via the Web, IoT Search Engines are sometimes

considered a minor extension of Web Search Engines. However, this is not the case, due to

the unique features of IoT (Table 2.1). Existing Web Search Engines face following four

issues in IoT.

First, the IoT holds a vast amount of short, structured texts and non-text content (e.g.,

sensor streams, functionality) while Web Search Engines are optimized for long, unstructured

texts. Therefore, text processing alone is not adequate for the IoT. Second, the IoT lacks the

explicit links of the Web. Majority of relation between physical objects exists in the form of

latent correlation [42]. Therefore, both crawling and link analysis mechanisms (e.g., Page

Rank) are not directly applicable to the IoT. Third, the IoT has a varying but high dynamicity.

For instance, sensors in the IoT update their content from once every several seconds to

1,000,000 times per second [43]. Therefore, storage and indexing mechanisms of Web
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Table 2.1 Differences between the Web and the Web of Things

Web IoT

Content Type Long, unstructured texts (i.e., Web
Pages)

Numerical data; Short structured
texts

Link Structure Extensive, explicit link structure
between pages (i.e., URL)

Latent links

Dynamicity Stable; Long lifetime; Slow
changing

Volatile; High update rate (up to
1,000,000 per second)

Scale Over 1 billion Websites Over 50 billion devices.
Interactions happens in local areas

Search Engines that assume slow changing content cannot cope with the IoT. Finally, the

IoT is both larger and smaller than the Web. It is expected to contain over 50 billion devices

by 2020, while the Web currently holds only 1 billion Websites 1. Yet, WoT applications

interact with closely located resources for most of their life time. For instance, consider

cyber-physical applications that interact with smart homes. Current Web Search Engines

might not be able to scale up to serve over 50 billion devices. They are also not equipped to

retrieve resources in the immediate vicinity of search users [26].

The stated issues imply that new techniques and mechanisms are required to realize

IoTSE, despite the strong foundation laid by existing Web Search literature.

2.3 A Model for Internet of Things Search Engines

A model for IoTSE which provides succinct description of their operation and architecture is

required to analyze their diverse literature. This model must fit naturally with majority of

the existing projects and must be extensible to work with future, unseen types of IoTSE. We

build our model base on over 200 existing works related to IoTSE in the literature. Section

1http://www.internetlivestats.com/total-number-of-websites/
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2.3.1 presents “Meta-path” – our model for describing IoTSE. Section 2.3.2 presents our

modular architecture for IoTSE.

2.3.1 Meta-path: The Signature of an IoTSE

The operation, usage purpose and implementation of an IoTSE are decided by the type

of resources that it uses for assessing query (i.e., “Query Resource”), for deriving search

results (i.e., “Result Resource”) and the chain objects linking them. For instance, a search

engine working with sensor streams uses different indexing and query assessment schemes

comparing to a search engine working with physical functionalities. Therefore, they have

different technical challenges and usage purposes. Based on this observation, we decided to

model IoTSE with the types of resource that they use and the path between these resources.

We call this model “Meta-path”.

QueryResType[Feature]+ ...⇒ Ob j → ...→ Ob j ⇒ ResultResType+ ... (2.1)

Equation 2.1 presents the pattern of a meta-path, which consists of three parts. The

first part [QueryResType[Feature]+ ...] describes the types of resources utilized by a search

engine to assess queries. For clarity, a meta-path also presents features of resources that

involve in the query assessment. The part [⇒ ResultResType+ ...] describes the types of

resources used for building search results. The part [⇒ Ob j → ... → Ob j] describes the

chain of objects linking query resources and result resources. The first object in the chain

provides query resources, while the last object in the chain provides result resources. Links

between objects can be extracted via their correlation [42]. This path can be zero-length,

which denotes that a same set of resource is utilized for both assessing queries and building

results. For instance, Web Search and Document Search systems have zero-length paths.
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The actual query resolution of an IoTSE involves multiple concrete paths between

discovered resources that are instantiated from its meta-path. Consider the resolution process

for a query for available meeting room in a smart building (Fig. 2.3) (e.g., Dyser system

[21]). The result of this query is a set of digital representatives (e.g., Web page) of rooms in

the building, which are of the type “meeting room” and have the state “available” reported

by their sensors at the query time. The search engine has a set of sensor streams and digital

representatives of physical objects created by a prior discovery process. The relations between

sensor streams, digital representatives and objects are also recorded a priori. The first step of

query resolution is matching the given query with content of sensor streams to find the ones

reporting “available” state, and with metadata of representatives to find the ones belonging to

meeting rooms. The second step is finding objects that have both matching sensor streams

and digital representatives (i.e., “available meeting rooms”). Finally, representatives of these

objects are selected as result resources to build search results. In this case, the search engine

simply returns the list of Web pages. However, more complex processing such as aggregation

or projection onto a map can be performed. The meta-path of our example search engine

is [D(Content)+R(Metadata)⇒ Ob ject ⇒ R]. It is a common meta-path in the existing

literature.

It should be noted that searching is more challenging in real world scenarios. For instance,

sensor streams might not report the state “available” explicitly, and the metadata of a room

might not show its type as a meeting room. These problems must be countered by specific

mechanisms of the search engine. However, the whole process is invariant.

An IoT resource is a mapping from a reference to a specific content in IoT (e.g., sen-

sor stream, actuation service) at a specific instance of time. Formally, a resource is a

four-dimensional vector Res = (ID,Metadata,Representation,Content). ID denotes the

reference assigned to a WoT content, which is commonly a URI. Alternatives are Electronic

Product Code (EPC), Ubiquitous ID (uID) [44] and IPv6. Representation denotes forms that
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a resource can represent itself, such as an HTML or JSON document. Content denotes the

content encapsulated by the resource. Metadata describes this content with key-value pairs

[10] or textual tags [35]. Semantic description [31] is an emerging form of metadata.

We organize resources into eight types according to their origin and content. A resource

that is related to an individual object in the real world has physical origin. Otherwise, it has

digital origin. The encapsulated content has four types:

• Representative denotes the virtual representation of physical entities in the digital

world. Web pages are the most relevant for WoT. However, other forms of documents

(e.g., XML, JSON) and database records are also acceptable.

• Static Information denotes the rarely-changed data held by an object. It can be archived

sensor readings [45], files loaded by human users [46], or records of events related to

an object.

• Dynamic Information denotes the frequently-changed data held by an object. Sensor

readings are the most prominent form of dynamic information in WoT [43].

• Functionality denotes the actuation services provided by an object.

By relying on the type of resources and the link between them, which dominates the

operation and implementation of a search engine, our meta-path model provides a succinct

description for IoTSE. Our model is also extensible by introducing new relations between

objects. For instance, by giving IoTSE the ability to link room objects with human users,

it can be extended to resolve queries for staffs who are using meeting rooms in a specific

building. Because of these ability, Meta-path is used to model IoTSE in our survey.

2.3.2 An Modular Decomposition of IoTSE

The query resolution process that we introduced is common in existing IoTSE projects. Its

implementation changes depending on the meta-path of each search engine, but its activities
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and their arrangement are invariant. Therefore, we model these activities as standalone

modules for building an architecture for IoTSE. Figure 2.4 presents our modular architecture.

Modules in our architecture are organized into layers. Two lower layers handle discovery

activities. Two upper layers handle search activities. Storage modules for resource collections

and indexes link two set of layers. The whole system is protected by security, privacy and

trust assessment measures which are grouped into a vertical layer.

Discovery Layer interfaces IoTSE with resources in WoT. The Discoverer module detects

resources specified in the meta-path of the search engine, in a certain physical scope. It can

also be extended to discover relations between objects and resources. The Retriever module

collects the discovered resources and passes them to the upper layer.

Index layer stores and indexes resources with its Collection Manager and Indexer mod-

ules. This layer also possesses Query Independent (Q.I) Ranker to rank resources according

to their natural order, independent from user queries. For instance, Page Rank is a form of

Q.I Ranking. Depending on the timing between discovery and search activity, an IoTSE can

push resources directly to the query resolution process, skipping the index and storage layer.

For instance, the MAX search engine [35] discovers relevant objects in its vicinity during

query resolution process by broadcasting the query. The set of responded objects forms its

query resource collection, which is dropped after the query is resolved. We consider these

IoTSE having “virtual resource collection”. Majority of existing IoTSE actually have “real

resource collection”.

Search layer carries out the query resolution process. The Query Processor module

transforms raw user queries into the form processable by the system. The Query Dependent

(Q.D) Ranker scores discovered query resources with respect to the user query and utilizes the

recorded links between resources to find their corresponding result resources. A Meta-path

with multiple types of query resources can be implemented by multiple Q.D Rankers. The

Ranking Aggregator module is responsible for combining different Q.D and Q.I ranking
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results into a final score for each resource. Finally, the Result Processor extracts and

aggregates the information from matching result resources and produces search results.

User Interface (UI) layer interfaces IoTSE with users. It provides Query Interface and

Result Interface to receive queries and return search results, respectively. Their forms and

implementations vary depending on the meta-path of an IoTSE. It also depends on type of

users targeted by the IoTSE. Naturally, a system designed for software applications needs a

different interface than a system designed for human users.

The modular architecture provides a reference framework assessing the diverse imple-

mentation of existing IoTSE. It assesses the support that each module receives from the

existing works and how it is commonly implemented. Together with meta-path, the modular

architecture forms our IoTSE model.

2.4 Analytical Framework of the Survey

The framework of our survey consists of three parts (Fig. 2.5). The data for our survey is

collected from bibliographic data set of DBLP 2 (retrieved on Sep 14, 2016) and Scopus

3. Works included in our dataset are either directly related to search and discovery in WoT,

or highly referenced by directly related works. The preliminary selection is done by a tool

that we developed (Alg. 1). The final selection is done manually to remove highly cited

works that are not related to search engines, such as general surveys on WoT and the IoT.

The complete list of works is available at 4.

The second part of our analytical framework is building a model for IoTSE based on

the collected works. Results of this part are Meta-path and the modular architecture that we

discussed previously. From these models, we identify 24 dimensions, organized into seven

groups, to analyze existing works (Table 2.2). Dimensions from meta-path (1.1 and 1.2)

2http://dblp.uni-trier.de/xml/
3https://www.scopus.com/
4http://cs.adelaide.edu.au/~nguyen/publications.html

http://dblp.uni-trier.de/xml/
https://www.scopus.com/
http://cs.adelaide.edu.au/~nguyen/publications.html
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ALGORITHM 1: Prototype Selection Algorithm
input :DBLP: Bibliographic Dataset from DBLP

SKW = {Discover,Search,Query}: Keywords related to search and discovery activity
DKW = {WebofThings,WoT, InternetofThings, IoT}: Keywords to limit the domain of an
article

output :Candidates: Set of candidate papers for manual selection

initialize Candidates list;
initialize Re f erences = title : count dictionary;
foreach article in DBLP do

if article.name contains SKW and (article.name contains DKW or article.venue contains
DKM) then

append article to Candidates;
end

end
foreach candidate in Candidates do

extract the list of references re f s from candidate;
foreach re f in re f s do

increase Re f erences[re f ] by 1;
end

end
foreach re f erence in Re f erences do

if count of re f erence is larger than 2 then
append re f erence to Candidates;

end
end
return Candidates
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assess the general operation of an IoTSE prototype. The remaining dimensions describe the

way an IoTSE prototype implements modules in our architecture. We include additional

dimensions that reflect non-functional requirements such as scalability and adaptability. We

also include Experiment Type and Experiment Scale to assess the evaluation carried out by

the prototype.

Table 2.2 Comparison Dimensions

Dimension Description

1.1 Meta-path Meta-path utilized by the WoT Search Engine under
consideration.

1.2 Scope The spatial range in which the WoT Search Engine can detect
resources and interact with search users.

2.1 Discovery Scheme Overall class of the discovery scheme utilized by the WoT
Search Engine.

2.2 Mobility Support Mechanisms utilized by the WoT Search Engine to detect and
record the change in spatial locations of discovered entities.

2.3 Collector Type Mechanisms to detect and collect resources.

3.1 Collection Type The class of resource collections utilized by the WoT Search
Engine.

3.2 Index Type Mechanisms utilized by the WoT Search Engine to speed up the
lookup process on resource collections.

3.4 Storage Scalability Measures taken by the WoT Search Engine to ensure the
scalability of its resource collections.

4.2 Query Model The internal model of user queries utilized by the WoT Search
Engine.

4.3 Result Model The internal model of search results.

4.4 Q.D Ranking Mechanisms utilized by the WoT Search Engine to assess the
relevance of resources against a given query.

4.5 Adaptability The ability of the WoT Search Engine to adapt its operations to
different usage scenarios (e.g., different types of users).

4.6 Search Scalability Mechanisms of the WoT Search Engine to ensure the scalability
of its query processing.
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Continuation of Table 2.2

Dimension Description

5.1 User Type Type of search users for which the WoT Search Engine is
designed.

5.2 Interface Modal The channel (i.e., “mode”) on which the communication
between search users and the search engine takes place.

5.3 Query Interface The form of interface through which search users express their
queries.

5.4 Result Interface The form of interface through which search results are presented
to users.

6.1 Security The measures of the WoT Search Engines to protect itself
against being breached by malicious parties.

6.2 Privacy The measures of the WoT Search Engines to preserve the
privacy of search users, sensor owners and sensed persons.

6.3 Trust The measures taken by the WoT Search Engine to assess the
trustworthiness of the discovered resources.

7.1 Experiment Type The type of experiment carried out to evaluate the search engine
prototype.

7.2 Experiment Scale The scale of the carried out experiment, in term of the number
of data points or participants.

End of Table

The third part of our framework is the analyzing the growth of research around IoTSE

and its current state, reflected by classical and latest works in the field. We use the number of

publication and in-field citations (i.e., references among over 200 IoTSE works) each year to

assess the growth of the field. For the detailed analysis, we map a subset of works against the

dimensions that we built in the second part of the framework. This subset of work is selected

manually, with the attention on balancing the “classical” works with highest in-field citation

count and latest works.
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2.5 Research Prototypes

2.5.1 Overview of Major Research Prototypes

MAX: a Human-centric Search Engine for the Physical World:

MAX [35] is among the earliest works on building a search engine for the physical world. It

is a standalone system that allows human users to provide a set of descriptive keywords to

locate their tagged physical objects. To reflect its human-centric nature, MAX returns the

location of the matching objects as landmarks instead of coordinates. MAX is organized

into a three tier architecture which is closely mapped into the organization of the physical

locations in the real world. Located at the highest level are base stations, powered by the

power line. These computers host the search application, host the security agent and act as

gateways between the network of wireless tags and the backbone network (i.e., Internet).

The middle tier consists of battery-powered RFID readers that are tied to large, rarely moved

physical objects that represent landmarks. The bottom tier consists of passive RFID tags

attached to small, mobile objects such as books and mugs. Queries are propagated through

the network from the base stations, and the identity of the RFID readers detecting matching

objects are returned as landmarks. To protect privacy of object owners, MAX allows them

to specify their objects and physical spaces as private or off-limit to prevent unauthorized

discovery and searches.

Discovery mechanism of Global Sensor Network (GSN) system:

GSN [40] is actually a platform for integrating wireless sensor networks over the Internet, not

a search engine. However, it is highly referenced due to its sensor selection mechanism when

processing sensor streams. GSN models each sensor node as a virtual sensor. Each virtual

sensor is identified by a unique name and has a set of key-value pairs to represent its metadata.

In other word, these virtual sensors can be consider the digital representative resource in our
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model. When processing sensor streams according to the declarative deployment description

of users, GSN uses this information to retrieve sensors and perform the processing.

SenseWeb - an Infrastructure for Shared Sensing:

SenseWeb [47] is a system for building applications and services based on the shared sensor

data streams. Sensors in this system are connected to a centralized coordinator component

through sensor gateway devices, which map their proprietary communication scheme into a

standardized Web service API. An application requiring to use shared sensor data stream will

interact with the tasking module of the coordinator a Web service API to express its sensing

requests. The tasking module then searches on the static description of sensor streams to

assess their capability, sharing willingness and other characteristics and return the relevant

streams. This is a key distinction between the search service of SenseWeb and other search

engines that also work with sensor streams such as DIS [45] and Dyser [21].

Distributed Image Search in Camera Sensor Network:

DIS [45] is a system that performs general purpose image search on camera sensor network

to recognize different types of objects. Its main difference comparing to the similar system is

that it is for general purpose usage and can be used to recognize different types of objects

instead of application specific, which will lock the whole camera sensor network into one

task. It is one of the unique features of this search engine. To cope with the massive stream

of captured images, which are enormous in scale and fast in the generation rate, DIS employs

a distributed search scheme, in which the discovery and search activities are carried out

directly on each sensor nodes and results are combined into a single set of search result

instead of having each sensor to transmit their readings to a centralized server for processing.

Each image, either captured or supplied by search users are transformed into a set of 128

dimensional vectors using the Scale-Invariant Feature Transform (SIFT). These features are
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further clustered into Visual Words (i.e., “Visterms”) to further reduce the space to represent

these images. The matching between queried image and captured images are performed on

visterms with TF-IDF score similarly to the matching between documents. DIS supports

both adhoc and continuous query. It can search on the newly captured image, or the set of

images stored in the camera sensor node.

Microsearch:

Microsearch [46] is a scale-down information retrieval system that runs on sensor nodes

with very limited computing and storage resources. It indexes small textual documents

stored in the sensor node and returns the top-k documents that are most relevant to the query

terms given by a search user. Documents are scored and ranked with the traditional Term

Frequency (TF) and Inverse Document Frequency (IDF) metrics. While not being completely

comparable to other works on this list, the unique approach of Microsearch provides an

interesting alternative perspective on the problem. Therefore it is included in our analysis.

Object Calling Home (OCH) system:

OCH [37] system utilizes its participating mobile phones as a sensor network to locate

missing physical objects. Each physical object is attached with a battery-powered Bluetooth

transmitter, which is discovered by the phone’s built-in Bluetooth discovery mechanism. To

deal with the potential huge scale of the network, OCH utilizes a scoping mechanism which

utilizes the association between things, humans and physical locations to reduce the number

of sensors to pull during query resolution. The ideas proposed by OCH have been applied in

commercial products (e.g., TrackR tag 5, Tile 6)

5TrackR: https://www.thetrackr.com/
6Tile: https://www.thetileapp.com/
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Dyser - a Real-time Search Engine for Real-world Entities:

The Dyser search engine [21] assesses queries of users against the real-world state of Web-

enabled physical entities, which is reported by their attached sensors. The key challenge of

Dyser is the dynamic nature of real-world states, which greatly surpasses the existing Web

pages, rendering any indexes on these states outdated as soon as they are created. To solve

this problem, Dyser assumes that sensor readings have a periodic nature and utilizes Sensor

Rank algorithm [20] to predict sensor readings based on this assumption. The prediction

result is used to order and minimize the sensor pull activity.

Ubiquitous Knowledge Base (uKB):

uKB [48] is a distributed knowledge base whose assertion knowledge (i.e., knowledge

about individual objects) are distributed over RFID tags attached to physical entities. The

architecture of uKB consists of RFID readers that are inter-connected as a Mobile Ad-hoc

Network (MANET). In this survey, we focus on the discovery process in uKB which discovers

and gathers relevant pieces of assertion knowledge to a client to perform reasoning activities.

The first step of discovery process is syntactical matching, in which syntactically relevant tags

are detected based on their identity and the identity of the ontology that they use to describe

themselves. The second step is semantic matching in which relevant tags are downloaded for

further semantic-based assessment. Storing semantic description inside physical objects is an

interesting and relevant idea for WoT. Therefore, discovery process of uKB is included in

our analysis.

Snoogle - a Search Engine for Pervasive Environment:

This work [38] proposes that the pervasion of information stored in the networked sensors

attached to physical entities will soon turn the world into a physical database. Snoogle is a

search engine designed to look up information in such physical database. This search engine
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receives a set of keywords from a search user and returns a set of k objects having textually

relevant description. To resolve query on a large number of sensors with limited computing

and communication resources, Snoogle utilizes a distributed top-k query algorithm with

pruning based on the characteristic of flash memory and Bloom filter to further reduce the

transmission size. To preserve privacy of object owners, the textual content stored in private

objects are encrypted with Elliptic Curve Cryptography (ECC).

DiscoWoT - Extensible Discovery Service for Smart Things:

The heterogeneity of thing and service description is among the biggest challenges of WoT.

DiscoWoT [49] is a semantic discovery service that aims to return the common representation

form of any resource description given by a search user. DiscoWoT provides the common

representation form and relies on strategies contributed by the community to translate resource

description into this common form. The community effort lowers the entry-barrier for new

WoT companies and products, and ensures that DiscoWoT is always up-to-date. While

DiscoWoT appears to be very different from other WoT search engines, it is still mapped

naturally into our model. If we consider each translation strategy as a function from a set of

resource descriptions to the set of descriptions in the common representation form, then the

union of these domains represents the set of all resource descriptions that DiscoWoT knows

at a given point of time. In other word, this is the query resource collection of DiscoWoT.

This collection is virtual, as it is not explicitly stored in the memory of the search engine.

IteMinder:

IteMinder [36] is a search engine that allows users to locate their physical entities. Each

entity participating in the system is attached with a passive RFID tag that stores its unique

identity. Landmarks also attached with RFID tags for identification. IteMinder utilizes a

physical robot, equipped with a laser rangefinder for navigation and an RFID reader for
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detection, to crawl the physical environment and record the location of physical objects into

a database. Users are provided a Web interface mapping to look up in this database for their

objects.

Searching the Web of Thing:

This work [22, 50] develops a system for finding physical entities which have matching inputs

and outputs to compose new applications and services. This system acts as a component in

a larger WoT application framework instead of a standalone system. To describe physical

entities, this system utilize five different ontologies to describe their finite state machines, their

input and output structures, locations and owners. The entities are ranked by the similarity

between their input structure and the output structure of the queried entity. This system also

identifies the type of the interacting search user and adjusts its algorithm correspondingly.

Web of Things - Description, Discovery and Integration:

This work [51] proposes to describe Web-enabled smart things with a common ontology, and

register all smart things participating the network in a central Knowledge Base server for

discovery purpose. The ontology describes entities based on their four basic capabilities:

identity, processing, communication and storage. A user wishing to search for a smart thing

sends his request to an Ambient Space Manager system, which in turn utilizes a Knowledge

Base agent to query the Knowledge Base server for semantically matching entities.

Searching in a Web-based Infrastructure for Smart Things:

This work [39] presents a distributed management infrastructure for environments populated

with smart things, and a search engine prototype that allows users to perform look up

for things in this infrastructure. These systems are organized as hierarchies according to

logical identifiers of places that they cover to utilize the locality of smart things (i.e., things
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frequently interact with other things in their immediate environment). A user queries these

systems by sending an HTTP GET request to one of their querying interfaces and providing

the information for identifying a corresponding resource, along with spatial information to

specify the query scope. Each query is modeled as a Web resource and assigned a unique

URL. This URL is propagated through nodes in the infrastructure to build search results and

returned to the search user.

Context-aware Service Discovery for WoT:

This work [52] explores the use of contextual information collected from heterogeneous

sources, including information about the physical world provided by networked sensors, to

search for user-centric and situation-aware services to human and devices. This work models

contextual information and relations among contexts with an ontology model that is extended

to model uncertainty and temporal context. The contextual information is used to search

on a service repository that contains both traditional Web services and real-world services

provided by physical entities.

Context-aware Sensor Search:

CASSARAM [10] is a system that searches for connected-sensors using their contextual

information, such as availability, accuracy, reliability, response time, etc. It is motivated by

the increasing number of sensors with overlapping capabilities deployed around the world

and the lack of search functionality for these sensors. CASSARAM utilizes an extension of

the Semantic Sensor Network Ontology (SSNO) [53] to describe the contextual information.

A search user would query this ontology for sensors with a SPARQL query generated by the

graphical user interface of CASSARAM. This interface also captures the references of the

search user. The Euclidian distance between matched sensors and the user reference in a
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multidimensional space built from different types of sensor contextual information is used

for ranking purpose. Top ranking sensors are returned as search results.

Content-based Sensor Search for Web of Things:

[15] defines content-based sensor search as the search for sensors that produce measurements

within a certain range for a certain time period prior to the query. It is applied in WoT to

find WoT-enabled physical entities that are in the queried real-time state. This work utilizes

time-independent prediction models (TIPM) constructed for each individual sensor to rank

them on based on their probability of having the queried state. This ranking activity reduces

the communication overhead from validating the readings of matching sensors. TIPM is

constructed from the assumption that a sensor reading which is frequently and continuously

reported by a sensor in the past has a higher probability to be its current reading. To cope

with the dynamic of sensor measurements, TIPM are continuously rebuilt and integrated into

prior TIPM via a weighted sum. This method is evaluated by a combination of prototyping

and simulation on a dataset of 162 sensors.

Ambient Ocean:

Ambient Ocean [54] is a search engine that enables context-aware discovery of Web resources.

Ambient ocean operates on Web resources attached with a data structure called Ocean

Metadata that holds context metadata entities describing the current discoverability context

of the Web resource. Each context metadata is backed by a context handler that provides

mechanisms for comparison and indexing. Ambient Ocean relies on the community for

the construction of context handlers and for adding context metadata to Web resources. A

user interacts with Ambient Ocean server through a client application running on his mobile

device. This client application utilizes readings from the local sensors as query terms to

describe the current context of the user to the Ambient Ocean server. A list of URL pointing
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to Web resources having the relevant context is returned as the search result. Ambient Ocean

can learn the association between context metadata entities to expand the given query.

Semantic Discovery and Invocation of Functionalities for the Web of Things:

This work [23] describes a search and discovery mechanism for functionalities of physical

entities. It aims to discover and expose high-level functionalities of a physical entity that can

be realized by a combination of its low-level physical capabilities and functionalities exposed

by other entities in the immediate area. These functionalities and capabilities are described in

a shared ontology. Each physical entity queries this ontology with a set of SPARQL queries

encapsulated in Java functions. This work is a part of the avatar architecture from ASAWoO

project, which aims to build an infrastructure for enhancing appliance integration into the

Web and enable the collaboration between heterogeneous physical entities.

IoT-SVKSearch:

IoT-SVK [17] is a hybrid search engine for WoT which is capable of resolving queries for

WoT entities based on their textual description, their real-time sensor values, with respect to

spatial and temporal constraints. IoT-SVK utilizes a uniform format to model the sampling

data from WoT entities, which is distributed over multiple raw data storage for scalability.

IoT-SVK utilizes three set of indexes. The full-text search on the description of WoT entities

is handled by a B+ tree index. The spatial-temporal constraints of the queries are handled by

an R-tree index, which is modified to support mobile entities. The value-based queries on

sensor readings are handled a modified B+ tree index. Queries in IoT-SVK are processed

as boolean expressions. The filtered search results are ranked according to an unspecified

ranking mechanism. Evaluation of IoT-SVK is performed on a combination of real and

simulated data from 352,000 sensors.
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Gander:

Gander [55] is a middle-ware and a search engine for pervasive computing environment,

which is deployed directly on each node in the environment. It is designed for discovering

and retrieving “datum", produced by these nodes, by propagating queries between Gander

nodes in an ad-hoc communication manner. Its prototype, however, is designed to work with

virtual ad-hoc networks deployed over the Internet. Gander allows users to fuse raw data

into semantic, higher-level states in run-time with predefined rules in form of graphs. A

query in Gander is modeled as a composition of three partial functions for filtering reachable,

matching and constraint-satisfying nodes. Gander is evaluated with extensive case study and

simulation.

Meta-Heuristic Approach for Context-aware Sensor Search in the Web of Things:

This work [56] proposes a swarm intelligence method called AntClust to cluster sensors

based on their meta-data and contexts for improving the scalability and efficiency of the

search activity. The AntClust algorithm is inspired by the behavior of ants. It scatters all

available sensors randomly on a sparse, two dimensional matrix and utilizes a set of agents

to randomly pickup and drop sensors at different locations in the grid, biased by the relation

between the selected sensor and its potential neighbors at the drop-off location. Performed

experiments on a dataset of 100,000 sensors show that AntClust achieves notable gain in

efficiency at the expense of accuracy, comparing to CASARRAM [10].

DNS as a WoT Search Engine:

This work [24] assumes that every WoT entity exposes their content as RESTful Web Services

and proposes to use DNS to perform location-based search for these services. Each service is

assigned with a URL in form of “sensorid.service.location.env". A user searching for sensors

of a specific type at a specific location first queries the domain name “service.location.env"



2.5 Research Prototypes 37

to retrieve a list of sensor URL, and then utilizes DNS to translate the collected URLs into IP

addresses. Each service is assumed to return a self-description written in Web Application

Description Language (WADL). Two experiments were performed on simulated data to

assess the response time and storage requirement of this approach.

ForwarDS-IoT:

ForwarDS-IoT [57] resolves queries for sensors and actuators whose semantic description

stored on a federation of repositories. Each repository in ForwarDS-IoT has a domain-specific

ontology, which is extended from SSN ontology. Users interact with ForwarDS-IoT via

either its GUI or its RESTful API. Queries in ForwarDS-IoT specify conditions on metadata

of physical objects, which are translated into a SPARQL queries and assessed against the

stored semantic descriptions. ForwarDS-IoT supports both synchronous and asynchronous

queries.

Extract - Cluster - Select (ECS):

ECS [58] is a framework for producing relevant and diversified search results for the queries

on physical entities in the IoT. It utilizes the “Things Correlation Graph (TCG)”, which

represents a network of correlations between things, namely shared geographical locations

and entity type. ECS consists of three steps. First, correlation between things are extracted to

build TCG using l1-based graph construction method. Second, clusters of things are formed

from TCG with spectral clustering techniques. Finally, things are selected based on the user’s

query and specified trade off between coherence and diversity of search results.

Query Processing for the IoT:

This work [59] considers the process of searching for digital resources matching with real-

world information reported by connected sensors. It utilizes statistical models to optimize
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the energy consumption of sensors and billing costs of cloud servers hosting these search

applications analytically. The evaluation is carried out on a visual sensor network composed

of multiple BeagleBone Linux embedded platforms and an application running on Amazon

Web Service Elastic Compute Cloud (AWS EC2).

Context-aware Search System for the IoT:

This work [60] presents a system which utilizes the contextual information extracted from

the IoT sensor data, namely user’s identity, location, query time and current activity to search

for physical entities and their related information. The activity recognition is performed by

the combination of an online classifier based on Hidden Markov Model and pre-calculated

probability distributions of different activities with respect to different time slots and locations.

The detected user’s activity, along with other contextual information, is used as the query to

retrieve relevant entities and information from a pre-built context ontology.

ViSIoT:

The Visual Search for Internet of Things system (VisIoT) [61] bridges sensor applications

with public IoT cloud platforms by transforming the sensor information provided by public

IoT clouds into the format required by the applications and exposing this information as

virtual sensors via RESTful API. ViSIoT selects and ranks sensors on six “context properties”

(i.e., battery, price, drift, frequency, energy consumption and response time) using TOPSIS

technique. The presented case study on Open Weather Map dataset shows that ViSIoT is

capable of translating and deploying 100,000 sensors within two minutes.

ThinkSeek:

The ThinkSeek system [62] consists of a WoT crawler and a WoT search engine. The crawler

extracts data about the physical world from public IoT cloud repositories on the Web, with the



2.5 Research Prototypes 39

focus on live maps. Collected data is fed into a search engine and a Web-based visualization

system. The ThinkSeek search engine supports both human users and smart devices. Humans

utilize structured queries in form of (Location,{Keywords}) to interact with the system,

while smart devices utilize a CoAP RESTful API.

LHPM:

LHPM [19, 18] is a prediction model for enabling searching on sensor content. LHPM

consists of three parts. First, sensor readings are approximated with polynomials to lower

the energy transfer cost. Second, sensor content is predicted with a multi-step, SVM-based

method in which the new predictions are fed back as input. Finally, sensors are mapped into

a two-dimensional vector space and ranked according to their cosine similarity with the given

query. LHPM is evaluated with simulations with data from 54 temperature sensors from Intel

Lab dataset and 78 water sensor from NOAA dataset. The experiment shows encouraging

results on the approximation accuracy and energy consumption reduction.

2.5.2 Publication and Citation Analysis

Figure 2.6 presents the number of published works, in-field cited works and in-field citations

each year from over 200 selected works. The number of works related to IoTSE increases

steadily each year since early 2000s, with a surge in 2009. Coincidentally, 2009 also marks

the birth of the Internet of Things as the number of devices connected to the Internet becomes

larger than World’s population 7. This surge of interest represents a gradual shift in focus of

the community connecting things to the Web to finding and utilizing Web-enabled things. It

also reflects the sharp perception of the community working with IoTSE.

However, the number of in-field cited works does not keep up with the number of

publications. The gap between them expands at a steep rate from 2010. In fact, majority

7http://www.postscapes.com/internet-of-things-history/

http://www.postscapes.com/internet-of-things-history/
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of in-field citations are held by a small set of works appearing around 2010. While citation

count is not a perfect metric to evaluate the impact of research works, it can show that the

existence of a research work is acknowledged by the the community. The lack of in-field

citation is a possible indicator that majority of works around IoTSE are not detected by their

peers.

2.5.3 IoTSE Form and Implementation Analysis

Comparison Result

The mapping of selected prototypes into dimensions defined in our analytical framework is

presented in Figure 2.7, 2.8 and 2.9.

Operating scope of an IoTSE is presented in form of [DiscoveryScope]− [SearchScope].

Local scope denotes that the IoTSE can only find resources and provide search services to

users in its vicinity, while Global scope denotes that it can operate across the Globe via the

Web. An IoTSE can be tailored to work with Human or Machine users. It’s evaluation can be

carried with Prototypes on real devices or Simulation (e.g., network simulation with NS2).

The scheme of discovery process carried out by an IoTSE can be either Active or

Passive. Active discovery means the search engine seek resources, while Passive discovery

means resources are registered to the search engine. Depending on the scope and discovery

scheme, an IoTSE uses different types of collector, including Web Crawlers, resource

Registration mechanisms and Local Discovery (LD), which includes mechanisms to detect

entities and resources in the immediate vicinity. The support for mobile objects by an IoTSE

is organized into four groups. Timer denotes the continuous resampling of object’s location

after a predefined time period. Beacon denotes the mechanism in which the search engine

continuously broadcasts beacons for receiving objects to register themselves. Ad-hoc Pull

(AHP) denotes that the location of objects are pulled every time a query is processed. Mobile
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Query:

Query Processing in WoTSE:

Meta-Path:

Meeting Room 1

Meeting Room 2

Auditorium 1

Resource Content

Sensor 1 “Unoccupied”

Sensor 2 “Occupied”

Sensor 3 “28 Celsius”

Sensor 4 “Unoccupied”

Sensor 5 “32 Celsius”

Resource Metadata

Rep 1 “type : meeting”

Rep 2 “type : meeting”

Rep 3 “type: auditorium”

Rep 1 “type : meeting” Home PageResult:

D(Content) + R(Metadata) => Object => R

“Find an available meeting room in the building”

“Find representative Web Page of a room object with the type 
called “meeting” and the real-time state reported as unoccupied”

Discovered Sensor 
Stream Resources

Discovered 
Representative 

Resources

Link between an 
object and a resource

Fig. 2.3 Assessment of a query for available meeting room in a smart building and its related
meta-path
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Web of Things:

Sensor Streams Representatives Functionality

Websites Web Services

Search Engine:

Users:

Interfaces:

Search:

Discovery:

Index:

Secu
rity, P

rivacy an
d

 Tru
st

Application Human

DiscovererRetriever

Storage 
Manager

Indexer Q.I Ranker

Resource 
Collections

Indexes
Q.I Ranking 

Score

Q.D Ranker
Rank 

Aggregator

Query 
Processor

Result 
Processor

Query 
Interface

Result 
Interface

Fig. 2.4 A Modular Architecture for Web of Things Search Engines
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DBLP

Scopus

Meta-path Scope

Meta-path
(4.1)

Modular Architecture
(4.2)

Discovery 
Dimensions

Index 
Dimensions

Search 
Dimensions

User 
Interface 

Dimensions

Security, 
Privacy,

Trust
Experiment

Selection 
Algorithm

Related 
Works

Prominent 
Subset

Detailed 
Analysis

Direction & 
Implementation (6.3)

Growth of the 
Field (6.2)

Results:
Data Collecting:

Modelling:

Publication 
Analysis

Analysis:

Fig. 2.5 Overview of the analytical framework. Oval objects represent components that we
created. Dash arrows denote that the pointed object is derived from the pointing object. Solid
arrows represent represents the link between inputs and outputs of our analysis.

2001 2002 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Number of Publications 2 1 5 6 4 11 7 11 15 23 29 38 38 23

Number of Cited Works 2 1 5 5 4 9 5 10 8 11 10 6 5 0

Sum of citation 19 5 23 18 19 31 18 67 42 34 17 9 9 0

0

10

20

30

40

50

60

70

80

Publication vs Citation

Fig. 2.6 Number of publications, in-field cited works and in-field citations
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Proxy (MP) denotes the use of spatially deployed proxies to query for resources at specific

locations without having to keep track of their mobility [47].

The Collection Type includes Real and Virtual collections. Index Type includes Text-

based (Txt) indexes, which also include image-based indexes that treat images as a set of

terms [45], Spatial Indexes, numerical Value Indexes, Clustering mechanisms, Prediction

Models (PM) (e.g., Sensor Rank [21]) and Unspecified Indexes (U/S) denoting indexing

schemes that are mentioned but not described by the prototype. Q.I Ranking dimension in-

cludes the use of Quality-of-Service (QoS) and Ratings from community. Storage Scalability

support includes the use of Virtual resource collections to negate the need of actual storage

and Distribution of resource storage over multiple instances of the search engine.

The Search Scheme dimension includes Ad-hoc (AH) and Continuous search, denoting

whether the given queries are matched one time against the current snap shot of the resource

collection or continuously assessed against the updating collection. The Query Model

dimension includes Text-based queries (Txt), Logical Conditions and IDentity. The Search

Result can be a List of matching data records, a Single record, or a Stream of dynamic

information (e.g., sensor readings). Q.D Ranking includes ranking based on the value of

prediction models (P(Rnk)), distance-based ranking (D(Rnk)), which can be expressed

by Euclidean distance, Jaccard index or Cosine similarity, and exact matching (Ext). We

consider Text-based ranking (e.g., TF-IDF) a form of D(Rnk). Search Scalability mechanisms

include the Distribution of query processing, caching (Cch) search results to reduce number

of query sending to sensors (e.g., SenseWeb [47]) and scoping (Scp) to reduce the number

sensors to assess. The adaptability dimension includes only one value - ReqT - which

denotes the ability of a search engine to detect and adapt its algorithm to the type of user

making the request.

The Interface Modal denotes the channel of communication between a search engine and

search users, including Web Interface, Web API and specialized APPlication. The form of
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interface on this channel to receive queries from users includes structured Forms, text boxes

(TBx), Sensors on client device, and Implicit queries invoked by the interaction between

users and client application (e.g., [22]). Result interface includes the traditional List of

records and the geographical Map.

Security measures of IoTSE include encryption (Crpt). Privacy in IoTSE is protected by

enforcing access control on objects (OAC) and spatial locations (LAC), Summarizing sensor

data and Filtering of search results to protect sensitive information of involved users. Finally,

on Trust dimension, we have the value R denoting the use of ratings from the community.

Form of IoTSE

Figure 2.10(a) presents the distribution of meta-paths supported by the selected prototypes.

Searching for objects based on their ID or metadata (R ⇒ R) is the most common form of

IoTSE, followed closely by searching for objects using their real-time state (e.g., sensor

readings, location) and searching for sensor streams (D ⇒ D). Familiarity is a possible expla-

nation for the popularity of these meta-paths. For instance, R ⇒ R is similar to Web search,

while R+D ⇒ Ob j ⇒ R comes naturally with the idea of feeding real-world states into

software applications. Surprisingly, searching for real-world functionality is not commonly

supported even though it is crucial in the interaction with IoT-enabled smart environments.

Figure 2.10(b) presents the distribution of operating scopes of selected prototypes. Local

and global resource discovery are equally supported by the prototypes, which reflects the

attention to both ends of the IoT scale. However, global scope dominates the search operation.

Implementation of IoTSE

Figure 2.11 presents the support that key dimensions receive from the selected prototypes.

Q.D ranking and discovery enjoy the strongest support, as they are the core of an IoTSE.

Scalability of query processing and storage capability is supported by about half of prototypes.
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Fig. 2.10 Distribution of Meta-paths and Operating Scopes

Most supporting prototypes scale up by utilizing virtual resource collections and distributing

processing and storage across multiple computers. Mobility of physical objects is considered

by less than 40% of the selected prototypes. The weak support for indexing is a surprising

result, considering its crucial role in resolving queries. A possible explanation for this

phenomenon is the simplicity of usage scenarios and involving resources in the selected

prototypes.

Most prototypes do not support adaptability which means that they cannot change their

operations according to context, such as their current users. Query Independent (Q.I) ranking

also lacks support, even though it plays a crucial role in the success of Web Search engines.

It can be contributed to the lack of natural order of IoT resources. Security, privacy and trust

are also not commonly addressed by prototypes.

Figure 2.12 presents the details of some interesting dimensions that receive high support.

On discovery scheme, the active and passive schemes are equally utilized. This is a surprising

result because both Web Search and Sensor Search systems, which are frequently considered

predecessors of IoTSE, rely on active discovery scheme. On collection type dimension, real

collections dominate because it is most straightforward and traditional solution in search

engines. Search scheme is dominated by ad-hoc search scheme, which is carried over from

Web Search Engines. On targeted user type dimension, human users have a slight edge over
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Fig. 2.11 Support of Prototypes on key Dimensions

machine users. Interestingly, some IoTSE are designed to support both types of users. On

Query Dependent (Q.D) ranking dimension, distance-based ranking and exact matching are

two most common forms of ranking mechanisms among the selected prototypes. On the

query model dimensions, logical conditions is the most common form of query, while list of

resources is the most common result model.

2.6 Industrial Works and Standards

2.6.1 Overview of Industrial Works and Standards

We define industrial works as publicly deployed and, optionally, commercialized products

and services. We select two groups of industrial works for our evaluation based on references

of research prototypes and IoT news sources. The first group is stand-alone IoT Search

Engines. Shodan 8 proclaims to be “the world’s first search engine for Internet-connected

devices”. It is designed and deployed by John Matherly in 2009. Censys 9 [63] search engine,

8https://www.shodan.io/
9https://censys.io/

https://www.shodan.io/
https://censys.io/
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Fig. 2.12 Statistics of key Dimensions

deployed by the University of Michigan in 2015, and Qadium, which raised over 20 million

dollars in fundings by 2016 10, offer similar services. Essentially, these systems are tools for

performing Internet-wide studies. However, they can be adapted to search for devices in the

IoT. Shodan and Censys can detect and access a wide range of vulnerable network devices

from Webcams, baby monitors, to ATM and medical devices 11. Thingful search engine

12, on the other hand, is designed specifically for the WoT. Instead of pinging public IPv4

addresses, Thingful builds its dataset from sensor data sources on the Web. These resources

are exposed for searching via a graphical map.

The second group is search mechanism offered within commercial IoT Cloud Platform

(e.g., Amazon Web Service IoT Platform (AWS IoT) 13, IBM Watson IoT platform (Watson

IoT) 14). These search mechanisms operates on objects and resources of the searcher, linked

10http://www.forbes.com/sites/thomasbrewster/2016/06/05/qadium-iot-google-security-darpa-cia/
#7289d6c42722

11https://blog.kaspersky.com/shodan-censys/11430/
12https://thingful.net/
13https://aws.amazon.com/iot/how-it-works/
14http://www.ibm.com/internet-of-things/

http://www.forbes.com/sites/thomasbrewster/2016/06/05/qadium-iot-google-security-darpa-cia/#7289d6c42722
http://www.forbes.com/sites/thomasbrewster/2016/06/05/qadium-iot-google-security-darpa-cia/#7289d6c42722
https://blog.kaspersky.com/shodan-censys/11430/
https://thingful.net/
https://aws.amazon.com/iot/how-it-works/
http://www.ibm.com/internet-of-things/
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to the platform. The offered search capability is basic, such as filtering objects by their ID

and metadata. It should be noted that while searched objects can be physically distributed

across the globe, the scope of search capability offered to a user is still limited in his own

“silo” of data.

We select standards for analysis based on the technical landscape of IoT Interest Group

[64] and references of the research prototypes. We focus on standards that specify the whole

discovery and search process, and select EPCglobal Discovery Service 15, BRIDGE Dis-

covery Service (WP2) [65], and Afilias Extensible Supply-chain Discovery Service (ESDS)

[66, 67]. These standards revolve around “Discovery Service”, which finds Information

Systems in a network (e.g., Internet) that hold the information corresponding to a given

object identifier. Therefore, from Meta-path perspective, these standards are very similar.

2.6.2 Evaluation

Figure 2.13 presents the evaluation result of industrial works and standards on a subset of

our dimensions.

Comparing to the result of academic prototypes, industrial works and standards are

considerably less “adventurous”. They converge to searching for objects based on their

static information such as ID and metadata, which is arguably the most natural step from the

existing Web Search Engines. And, in the current state of IoT, this form might be all it takes

to reap benefits from the emerging library of the real world.

2.7 Discussions

The goal of IoTSE is building an “ideal” search engine that can find “anything”, at “anywhere”

and “anytime”. “Anything” means it can work with any meta-path, involving any combination

15http://www.gs1.org/epcrfid/epc-rfid-dci/1

http://www.gs1.org/epcrfid/epc-rfid-dci/1
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Work Metapath Scope User Type Collection Type Discovery Scheme Mobility Support Debut Year Managing Organization Cost

Censys R G H R A N/A 2015 University of Michigan Free

Shodan R G H R A N/A 2009 John Matherly From $19 USD/month

Thingful R G H R A N/A 2013 Umbrellium Free

Qadium R G - - A - 2013 Qadium -

AWS IoT R G H,M R P N/A 2015 Amazon $5USD - $8USD per 1 million messages

Watson IoT R G H,M R P N/A 2015 IBM $0.01USD per MB exchanged

(a) Industrial Works

Work Metapath Scope
User 
Type

Collection 
Type

Discovery 
Scheme

Mobility 
Support

Debut Year Managing Organization Current State

EPCglobal Discovery 
Service

R=>S G H R P N/A 2003
340 companies in 3 

action groups
On-going

BRIDGE Discovery Service 
(WP2)

R=>S G H R P N/A 2008
30 partners, 

coordinated by GS1
Ended. Deliverables include requirements 
and high-level design

Afilias ONS and Discovery 
Service 

[afilias:2008,rezafard:2008]
R=>S G H R P N/A 2008 Afilias plc On-going. Internet-draft submitted to IETF.

(b) Standards

Fig. 2.13 Evaluation of IoT search engine industrial efforts (a) and standards (b)

of IoT resources. “Anywhere” means it can utilize the spatial information to objects located

at any specific location, in any specific area. “Anytime” means it can utilize the whole range

of IoT data, from the archived sensor readings to current sensing data to the data that will

be produced in the future to match queries with resources. Resources returned by an ideal

IoTSE not only have relevant content, but they also have that content at the relevant time, at

the relevant place. An ideal IoTSE is the gateway to the Web of Things.

Moving toward this vision from the current state of the art requires us to address a wide

range of issues. In this section, we discuss prominent ones.

2.7.1 Crawling IoT

Constructing resource collections automatically via crawling is desirable in IoTSE. However,

this task is very challenging. The first issue is detecting IoT data sources. These sources

can be organized into four groups [68]: cloud-based IoT platforms (e.g., Amazon Web

Service IoT Platform, IBM Watson IoT platform), live-maps such as real-time transportation
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information services (e.g., FlightRadar24 16), urban crowdsensing services (e.g., Waze 17)

and public environmental sensing services. To detect these sources automatically, their

features must be formally defined and mapped into machine-detectable traits of Websites.

These criteria are not straightforward, even for human operators. For instance, should a

live-map of lightnings 18 around the world be considered a IoT data source?

The second issue is extracting resources automatically. Resources are commonly trans-

ferred by XML HTTP Request (XHR) responses in form of XML or JSON documents.

Currently, the URL pattern of these XHR must be detected manually [62]. The third issue

is automatic integration of resources. High degree of overlapping in coverage is observed

in the IoT data sources (e.g., flight data [62]). However, the data that they provide is not

completely identical. Aggregating reports from different data sources can reveal a complete

picture of collected resources. However, this automation is challenging due to the diversity

of resource data fields and formats.

2.7.2 Supporting Location-based Search

Spatial information is crucial in searching IoT [28, 39]. The first challenge of providing

location-based serach is identifying locations. Latitude, longitude and the height comparing

to sea level together forms a potential location identifier. It is feasible in outdoor scenarios

with sparse sensors. However, its granularity is challenged in indoor environments with

dense distribution of objects. A potential solution is utilizing different coordinate systems

with different granularity for different scenarios. However, this approach raises additional

questions. For instance, how to recognize the utilized coordinate system? How to integrate

different coordinate systems into a single index structure?

16http://flightradar24.com
17https://www.waze.com
18https://www.lightningmaps.org/?lang=en

http://flightradar24.com
https://www.waze.com
https://www.lightningmaps.org/?lang=en
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The second problem is associating coordinates with landmarks. The role of landmarks

to coordinates is similar to the role of domain names to IP addresses. For human users,

landmark is preferable comparing to coordinates in both query and search results. For

instance, a search result showing that the missing key chain is “under the desk in the dining

room” is more intuitive than numerical coordinates. However, the query processing would

be straightforward and unambiguous with numerical coordinates. Therefore, IoT Search

Engines must be able to formally and semantically describe landmarks, and translate between

coordinates and landmarks.

2.7.3 Supporting the Dynamic Nature of IoT

Mobility of physical objects and changing sensor readings reflect the dynamic nature of IoT.

Detecting and storing changes are key problems. In the context of IoTSE, we consider the

problem of storing changes. The critical issue is indexing the changing data.

The first issue of storing changes is indexing. As indexes on sensor measurements are

outdated as soon as they are created [21], a balance must be achieved between the freshness of

stored data and the communication overhead of pulling the latest sensor measurements. For

instance, a naive solution is pulling readings from all detected sensors for every query received.

This approach does guarantee the freshness of data, however the massive communication

overhead negates any scaling up possibility. An emerging solution is indexing prediction

models of sensors instead. These prediction models can be built on the assumption of the

periodic nature of sensor measurements [21] or from the density and scalability of each

sensor reading within a time frame prior to the query [15]. Based on the result of the indexed

prediction model, a search engine contacts can limit the number of sensors to validate before

building search results.

The second issue is storing and purging the collected data. A IoT Search Engine must

find a balance between the number of old readings stored for resolving historical queries
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and building prediction models, and the scale resources that it manages, because each set

of past measurements duplicates the whole resource collection. As a result, mechanisms

for ensuring the scalability of the data storage such as distribution deployment and purging

strategies must be investigated.

The final issue is supporting subscription-based queries and continuous query processing.

These abilities allow search users to register their interest for a specific real-world state

and receive relevant search results in the future when they are detected. Subscription and

continuous query processing are discussed, but not implemented in the existing prototypes.

2.7.4 Supporting the Diversity

An ideal IoTSE must be able to work with many different types of resources and their

combinations to resolve all given queries. Basic solutions are either building a search engine

that is highly adaptable, or building a large number of specialized search engines for different

resource combinations. The first solution might lead to “jack-of-all-trades” systems that

are usable in many scenarios, but not particularly competent in any of them. In the second

solution, the diversity of the search engines itself might become the problem.

A potential solution for this challenge is enabling modular construction of IoTSE, in

which search engines are composed from a set of standardized modules according to the

meta-path needed by a given query (Fig. 2.14). The analysis of existing works reveals that

meta-paths of different IoTSE overlap to a certain degree. By turning the whole discovery

and search process of IoTSE into standardized modules, we can reuse them in other IoTSE

that has (partial) overlapping meta-paths. This method facilitates specialization. Involving

parties can focus on only components that align with their expertise instead of having to

build the whole system. These components are then easily shared with the community to

leverage the improvement and development of other components to ensure that the global

IoTSE is always optimal and ready to cope with any combination of resource types in IoT.
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Modules Pools:

Storage Pool Q.D Ranker PoolIndexer Pool

Query: “Find an available meeting room in the building”

“Find representative Web Page of a room object with the type called 
“meeting” and the real-time state reported as unoccupied”

Meta-Path:

D(Content) + R(Metadata) => Object => R
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Fig. 2.14 Modular construction of Web of Things Search Engines

Two major issues in enabling modular construction are standards and security. For

modules that are independently developed to work together, we must provide standards

for interfaces between modules, their operations, characteristics and their arrangement as a

system. We also need to ensure that modules actually do what they promise, and ensure that

they are not bias in their operation. These are challenging endeavors.

2.7.5 Supporting Scalability

The scale of IoT extends to both extremes of the spectrum: it is expected to be 50 or 100

times larger than the existing Web, yet majority of its interaction would be in small sets of

co-located objects and resources. Therefore, IoTSE must fit the search activity in local scale

naturally, and at the same time, they must also be able to scale up to reach billions devices on

the world. Scaling up centralized search engines is not a preferable solution because these
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Fig. 2.15 Comparison between Federated and Centralized IoTSE

systems are too far from physical world, making them insensitive to changes. Moreover,

these systems must be able to identify a massive number of private locations (i.e., rooms

inside smart homes) and associate private objects with these locations, which is challenging

both technically, socially and politically.

An alternative solution is distributing IoTSE closer to the edge of IoT and linking them

into a federation to provide global coverage. The IoTSE can be hosted on a computer, or

even a smart phone to provide services to all authorized applications in its immediate vicinity

(Fig. 2.15). Distributing IoTSE to the edge of IoT makes them naturally fit for local search

activity, while linking them together provides the coverage to address the upper ends of IoT

scale. Two major issues in enabling federated IoTSE are building effective and efficient

methods to manage this massive federation, and evaluating the trust of each member IoTSE

in the federation.
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2.7.6 Security, Privacy and Trust

As the gateway to IoT that is capable of finding “anything”, at “anywhere” and “anytime”,

IoT Search Engines represent unprecedented security and privacy risks. For instance, IoTSE

can be used to track a person over a broad area and time period for surveillance or other

malicious purposes. It can also be used to find and attack unprotected Web-enabled vehicles

and medical devices, as demonstrated by Shodan and Censys. Such a system can also be

used to spy on the stockpile and the transportation fleet of a company, resulting in massive

economical damage. On the national and international scale, IoTSE can be a dangerous

tool for espionage and sabotage. Therefore, a key issue of IoT Search Engine is protecting

the privacy of searchers, information owners and sensed people. This is a challenging

task, because a person cannot opt out of being sensed by sensors. Moreover, we lack the

mechanisms to define ubiquitously accessible privacy policies and mechanisms to enforce

them.

The second issue is validating the discovered IoT content. As real-world information

in IoT is provided by exposed electronic tags and sensors that can be breached and forged,

a malicious party can inject false information into IoT, which would be distributed by IoT

Search Engines. For instance, consider a restaurant recommendation system that infer the

crowdedness of restaurants with public sensors retrieved via IoT Search Engines. Rivals

of a restaurant can sabotage it by planting forged sensors that report extreme noise and

movement in its vicinity, causing the restaurant to be inferred as full and removed from

the recommendation list. This type of attack can drive the restaurant out of business and

damage the trust of users in both the recommendation system and the IoT Search Engine. A

potential solution for this issue is validating the information received from sensors against

past patterns and readings of their neighboring sensors. Another potential solution is building

the audit-ability into IoTSE. Ensuring that one would be held accountable for his malicious

activities is a powerful preventive mechanism.
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2.8 Related Work

A range of surveys on the WoT and its closely related concept – the IoT – exist in the

literature. Early surveys [9, 2, 6, 7] serve as road-maps to realize the IoT and the WoT. They

cover visions, definitions, enabling technologies and propose potential research directions.

Later surveys focus on more specific usages. [4] reviews IoT from the cloud computing

perspective; [69] reviews the enabling technologies to extend the IoT into Cognitive IoT;

[70] surveys the integration of humans’ social network into the IoT to form a Social IoT; [8]

explores different use cases of the IoT in smart cities and their enabling technologies; and

[71] approaches the IoT from the politics and policy perspective. In these surveys, IoTSE

either receives a brief discussion as a potential research topic [6] or a short introduction

presenting some representative works [43].

A small number of surveys specifically on IoTSE exist in the literature. They either focus

on one type of IoTSE or listing potential research problems without considering the state

of the field. [27] analyze seven prototypes on nine dimensions that focus on the ability to

handle real-time, local sensor queries. [28] performs a similar analysis with six prototypes on

14 dimensions. [29] approaches IoTSE from perspective of EPCglobal’s Discovery Service.

They analyze five works on nine dimensions. Finally, [30] evaluates 49 works, including

both IoT-specific prototypes and results from other fields that are expected to be applicable

to IoT, on nine dimensions. Selected works are analyzed on their basic operating principles,

data representation and type of searched content.

Our survey addresses the limitations of the existing surveys. We retrieve over 200 related

works to build a flexible model for describing IoTSE and a modular architecture for assessing

their implementation. The resulting analytical framework from our models is used to assess

the growth and the state of all major types of IoTSE in the literature. Table 2.3 presents the

comparison between our survey and the existing ones.
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Table 2.3 Comparison between our work and existing surveys on IoT search engine

Prototypes Dimensions Assessment Focus

Romer, et al. 2010 7 9 Ability of IoTSE to handle real-time
sensor data and perform local search

Zhang, et al. 2011 6 14 Ability of IoTSE to handle real-time
sensor data and perform local search

Evdokimov, et al.
2010

5 9 Maturity of Discovery Service
architectures and prototypes

Zhou, et al. 2016 49 9 Technologies and techniques transferable
to IoTSE

Our Survey 214 24 Forms, Implementation of IoTSE and
the current state of the field

2.9 Summary

The World is becoming a library of resources for software applications, thanks to the Internet

of Things. The Internet of Things Search Engines enable the optimal utilization of this

emerging library. The diversity of the solution space and the scale of the IoT are the main

challenges facing IoTSE.

Our survey on over 200 academic and industrial works related to IoTSE confirms the

continuous expansion of the field. It also reveals skewness in the attention that these works

receive from their contemporaries. Searching for real-world objects, based on their real-world

state is by far the most popular form of IoTSE.

Bridging the gap from the state-of-the-art to an ideal IoTSE that can “find anything, at

anywhere and any time” requires addressing various open issues. Supporting the scale of

the IoT is the first notable issue. The IoT is larger yet at the same time smaller than the

World Wide Web. The total amount of the IoT content might be 50 to 100 times larger

than the Web. However, a majority of interactions in the IoT would be among small sets of

co-located objects and resources. A potential solution to this problem is engineering IoTSE

as an extensive collection of instances, which are deployed near the edge of the IoT. Each
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instance monitors a small set of co-located objects and works with other instances to scale

up and cover the anticipated 50 billion devices in 2020.

Supporting the diversity of the IoT is the second notable issue. An ideal IoTSE must

be able to discover and query most types and combinations of IoT content. Such vision

might be achieved by finding a “magical algorithm” that allows assessing any IoT content

and developing an IoTSE instance around it. The other solution, which is arguably more

realistic, is engineering a large number of IoTSE instances that specialize in different types

and combinations of IoT content.

The potential solution to both the scale and the diversity problem point toward engineering

a vast number of IoTSE instances. The analyses in this survey suggested the existence of

significant overlaps in functionality and internal operation of IoTSE instances, which can be

leveraged to enable reuse-centric engineering of IoTSE. These points motivate the research

presented in this thesis.



Chapter 3

An IoTSE Reference Architecture

In the previous chapter, we have conducted an extensive survey of IoTSE literature and

identified the diversity of IoTSE solution space one of the primary open issues in IoTSE

research. We have also found notable overlaps regarding internal operations of IoTSE

instances, demonstrated by the mapping of different IoTSE classes into the same modules.

In this chapter, we leverage those insights to propose an IoTSE reference architecture,

comprising 18 component types, 13 composition patterns, and 6 deployment patterns. We

also introduce a framework for instantiating IoTSE instances based on the proposed reference

architecture. For the evaluation, we map two representative IoTSE prototypes, which utilize

complex composition and deployment patterns, to the constructs of the reference architecture

to demonstrate their utility. By presenting a blueprint for engineering IoTSE instances,

this chapter addresses the second research objective of this thesis: to propose a reference

architecture that captures the commonalities of IoTSE.
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3.1 Introduction

The aim of the research reported in this chapter is compiling the commonalities of IoTSE into

a Reference Architecture for the Internet of Things Search Engine. This reference architecture

captures functional elements and architectural patterns necessary for engineering IoTSE

instances.

In developing the reference architecture, we limited our scope to only building blocks

and patterns that are necessary for the core functionality of an IoTSE instance – to dis-

cover and resolve queries on IoT content. We also avoided the dependency on particular

architectural styles and implementation technologies to ensure the broad applicability of the

reference architecture. Due to this independence, the proposed architecture, for instance,

can instantiate a Service-oriented Architecture (SOA) solution for IoTSE by combining

with a Service-oriented Architecture Reference Architecture (e.g., ISO/IEC 18384 [72], S3

[73]) to incorporate building blocks necessary for enabling, monitoring, and securing a

service-oriented IoTSE solution. The proposed architecture can also be mapped to a modular

system such as OSGi (Open Services Gateway initiative) or even to a set of shared libraries.

The reference architecture serves four purposes. First, it offers a vocabulary comprising

building blocks and patterns to enable the communication about IoTSE between involving

parties [74]. Second, it helps to align the research and engineering effort on IoTSE across

multiple parties by specifying the common architectural building blocks of these systems.

Third, the reference architecture offers a framework for consolidating existing knowledge

on designing IoTSE architectures to guide the engineering of new IoTSE instances. Finally,

building blocks and patterns specified by the reference architecture lay a foundation for

enabling the reuse-centric engineering of IoTSE.

The research for an IoTSE Reference Architecture presented in this chapter addresses the

following three objectives:
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Identifying Functional Elements Functional elements capture common activities across

different IoTSE instances. They represent architectural building blocks, which are

then realized by software components in a concrete IoTSE instance. The reference

architecture specifies 18 functional elements, which are organized into 8 logical layers.

They represent different areas of concern of IoTSE. Section 3.4.2 presents these results.

Identifying Composition Patterns of IoTSE A composition pattern is a named abstraction

of interactions between functional elements to realize different tasks of an IoTSE

instance. Section 3.4.3 presents a taxonomy and details of 13 composable composition

patterns specified in the reference architecture.

Identifying Deployment Patterns of IoTSE A deployment pattern is a named abstraction

of the organization of computing nodes hosting an IoTSE instance and the arrangement

of functional elements on these nodes. While reference architectures generally focus

only on the logical aspect of a software system, we include deployment patterns due

to the increasingly important role of deployment information in describing an IoTSE

instance. Section 3.4.4 presents a taxonomy and details of six patterns observed in the

IoTSE literature.

3.2 Methods for Developing the IoTSE Reference Architec-

ture

Reference architectures emerge from prior, proven concepts and experiences captured by

previous systems and architectures [74]. Inputs of our reference architecture come from

building blocks, patterns, and design decisions extracted from existing primary studies and

the prototypes of IoTSE in the literature. The process utilized by our research consists of

three phases.
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3.2.1 Phase 1: Study Selection

The first phase is selecting primary studies relevant to our research. This phase has been

conducted in the survey, presented in Chapter 2. To help readers follow the discussion, we

introduce it again in more detail.

To ensure a comprehensive and unbiased selection, we systematized the study selection

into a process, which was inspired by the study selection phase of the Systematic Literature

Review (SLR) method [75]. To identify the potential primary studies, we performed a

boolean search on the XML dataset of DBLP with the following query: “search OR discovery

AND internet of things OR web of things”. Different from the SLR method, we also carried

out the “snowballing search”, in which we retrieved references of the potential primary

studies and built a graph of citations between them. The information from this graph helped

us to identify the relevant studies that were published before the emergence of IoT and

therefore missed by our boolean search. To ensure the completeness and integrity of these

effort-intensive activities, we automated them with an in-house developed software tool.

We utilized the following inclusion and exclusion criteria to select the relevant studies:

• Including any study on a software system that is capable of both detecting and resolving

queries on IoT content. The considered types of content include physical objects, smart

appliances, sensors, actuators and content generated by these objects.

• Including any study on a software system that is only capable of resolving queries for

physical objects, smart appliances, sensors, actuators and content generated by these

objects.

• Excluding any primary study that addresses the content discovery problem on the

physical and network layer exclusively, without considering query assessment.

• Excluding any primary study that utilizes sensing data to extend Web search.

• Excluding any secondary study (i.e., other reviews)
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• Excluding any information retrieval study that does not involve the IoT or the WoT,

unless it is referenced by at least two included primary studies.

The selection process results in 210 relevant work. We narrow this set to a representative

subset of 36 work for the detailed analysis, data extraction and synthesis. These works are

chosen in a way that balances high-cited work with new work to capture both the “norm” and

evolution of the IoTSE research.

3.2.2 Phase 2: Information Extraction

The second phase of our process is extracting the relevant information from the chosen

primary studies to address our research objectives. For identifying IoTSE building blocks and

composition patterns, we extracted workflows – sequencing and timing of activities – from the

representative IoTSE prototypes. Activities that overlap among workflows represent potential

building blocks of IoTSE, while their sequencing and timing are possible composition

patterns.

For identifying the deployment patterns of IoTSE, we extracted from each IoTSE proto-

type the arrangement of computing nodes that host its components, and the placement of its

components on those nodes. The extracted information formed the basis for identifying and

classifying the deployment patterns of IoTSE.

3.2.3 Phase 3: Architecture Design

In the last phase, we synthesized the extracted data into an IoTSE reference architecture

iteratively. In each iteration, we processed the data from a batch of five studies and identified

the possible building blocks, composition patterns, and deployment patterns of IoTSE. By

the end of each iteration, we assessed the potential architecture against the IoTSE prototypes

from the previous iterations and refined it. We continued this process until consuming all the
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extracted data. The architecture that emerged at the end of this process became the IoTSE

reference architecture.

For identifying IoTSE building blocks, in each iteration, we derived possible common

activities of IoTSE, each of which was described by its inputs, outputs, and its functional

scope. A set of potential activities is relevant to an IoTSE prototype if the scope of every

activity of the prototype is smaller than that of the potential activities. After each iteration,

we adjust the set of common IoTSE activities and their functional scope. The remaining

activities at the end of the process became the building blocks of IoTSE.

For identifying IoTSE composition patterns, we maintained a catalog of the sequencing

of the IoTSE building blocks and updated it with the newly identified IoTSE building blocks

by the end of every iteration. After processing all primary studies, we analyzed the catalog

and decomposed these system-wide patterns into combinable sub-patterns, and composed

them into a taxonomy of IoTSE composition patterns.

For identifying IoTSE deployment patterns, we maintained a classification of the deploy-

ment structure of IoTSE instances, regarding the type and the position of their involving

computing nodes. We updated this classification by the end of every iteration. The one that

emerged by the end of this process became the taxonomy of IoTSE deployment patterns.

3.3 Data Extraction Results

As described previously, we updated the results of data extraction after every iteration. The

first version of the extraction results contains the verbatim text from the IoTSE prototypes,

which describe their workflows and deployment structure using a variety of terminology.

After every iteration, we refined the potential reference architecture and updated the extraction

results with new terminologies from the refined reference architecture. In this section, we

present the summations drawn from the final version of data extraction results.
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Table 3.1 Distribution of interaction patterns extracted from IoTSE prototypes

Interaction Pattern Frequency

Detect - Collect - Store // Receive Query - Search - Return Result 12

Detect - Collect - Store - Index // Receive Query - Search - Return Result 11

Detect - Collect - Process - Store - Index // Receive Query - Search - Return
Result

5

Detect - Collect - Process - Store // Receive Query - Search - Return Result 2

Receive Query - Search - Return Result 2

Receive Query -Detect - Collect - Search - Return Result 2

Detect - Collect - Store // Receive Query - Process - Search - Return Result 1

3.3.1 Interaction Patterns

Table 3.1 presents the distribution of activity sequences utilised by the processed IoTSE

prototypes. The − symbol links activities that are carried out sequentially. The // sign

denotes that two sequences of activities before and after it are carried out in parallel. For

instance, A−B−C//D−E describes a pattern consisting of two sequences A−B−C and

D−E which run in parallel.

3.3.2 Deployment Patterns

From each IoTSE prototype, we extracted the topology of its computing nodes physical

proximity each computing node (i.e., edge, fog, and cloud) to the sensing and actuating

infrastructure, and the arrangement of its components on computing nodes. Table 5.1 presents

the distribution of topology and physical proximity of computing nodes utilized by processed

IoTSE prototypes.
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Table 3.2 Distribution of deployment patterns extracted from IoTSE prototypes

Cloud Cloud - Edge Edge

Multiple peer nodes 1 7

One central node - Multiple leaf nodes 3 7

One node 16 1

3.4 A Reference Architecture for IoTSE

3.4.1 Meta-model

The meta-model is a “model of model” that defines concepts and relationships appearing

in a reference architecture [72]. Before diving into the details of the IoTSE reference

architecture, it would be helpful to discuss its underlying meta-model. We utilize a meta-

model derived from one underlying the Service-oriented Solution Stack (S3) [73] and the

reference architecture for SOA solution specified in ISO/IEC 18384 standard [72]. Figure

3.1 depicts the meta-model underlying our reference architecture.

In our meta-model, a reference architecture comprises logical layers and patterns. Each

layer represents a different area of concern in the system and has a set of functional re-

quirements, which are represented by the set of capabilities that it offers. Each capability is

specified in terms of the inputs that it utilizes and the outputs that it generates.

A layer comprises multiple Architectural Building Blocks (ABB), which represents

reusable functional elements of a system. ABBs realize capabilities that are offered by

their encapsulating layers. They offer these capabilities either by themselves or by interacting

with other ABBs both within and across layers.

Patterns are abstraction of the interaction between ABBs. Our meta-model utilizes two

types of patterns. Composition pattern captures logical interactions between ABBs either
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Fig. 3.1 Meta-model describing the proposed reference architecture.

within or across layers. Deployment pattern captures the deployment of ABBs on physical

computing nodes, as well as the arrangement and interaction between these nodes.

3.4.2 Layers and Architectural Building Blocks

The proposed reference architecture for IoTSE consists of 18 architectural building blocks. By

their area of concerns, we cluster these building blocks into five horizontal layers: computing

resource, discovery, storage, search, and interface. The reference architecture also includes

three vertical layers to capture cross-cutting concerns in IoTSE development and operation:

integration, management, and security. Figure 3.2 depicts layers and architectural building

blocks in the reference architecture. Table 3.3 presents the capabilities of each layer, and the

building blocks offering those capabilities.
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Table 3.3 Specification of discovery, storage, search, and interface layer by their offering
capabilities

Layer Capability Input Output ABB

Discovery D1. Detect IoT content
sources

Instructions ID / URL of
sources

Source
Detector

D2. Detect IoT content ID / URL of
sources

ID / URL of
IoT content

Content
Detector

D3. Collect IoT content ID / URL of
IoT content

IoT content Content
Collector

D4. Process IoT content
(Clean, Transform, Derive)

IoT content Processed
content

Content
Processor

Storage S1. Generate index structures
for efficient lookup

IoT content Index Indexer

S2. Store IoT content IoT content N/A Content
Storage
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Continuation of Table 3.3

Layer Capability Input Output ABB

S3. Store relations between
IoT content and things

Relations
between
content and
things

N/A Relation
Storage

S4. Store generated indexes Index N/A Index

Search Se1. Score and rank IoT
content by their relevance to
queries

Query, IoT
content

Search Results Q.D.
Ranker

Se2. Score and rank IoT
content by their natural order

IoT content Ranked list of
IoT content

Q.I.
Ranker

Se3. Aggregate search results Search results Aggregated
result

Aggregator

Interface I1. Accept query Interaction
with external
actors

Query Query
Interface

I2. Process query into correct
format

Raw query Processed
query

Query
Processor

I3. Return search results Search Results Interaction
with external
actors

Result
Interface

I4. Process search results into
appropriate format

Search Results Processes
results

Result
Processor

End of Table

Discovery Layer

Discovery layer concerns with detecting and collecting IoT content to build up collection of

contents for answering queries. This layer offers four capabilities (Table 3.3).



74 An IoTSE Reference Architecture

D1. Detect IoT content sources Content sources denote cloud platforms, websites, as well

as IoT-enabled things that offer IoT content. This capability receives instructions

(e.g., seed URLs) and returns identifier or URL of sources as output. Source Detector

building block encapsulates this capability.

D2. Detect IoT content Locating IoT content in a given source is non-trivial. The task

of finding identifiers or addresses of specific pieces of IoT content in a source is

encapsulated in this capability. It receives identifiers or URLs of IoT content sources

as inputs and returns identifiers or addresses for accessing IoT content as outputs. It is

handled by Content Detector building block.

D3. Collect IoT content Many IoTSE instances in the literature retrieve IoT contents as

materials query assessment. This task is encapsulated in this capability. It receives

identifiers or addresses and returns IoT content as outputs.Content Collector building

block encapsulates this capability.

D4. Process IoT content Raw content retrieved from IoT infrastructures might be subjected

to further processing for cleaning, denoising, transforming, or deriving higher-level

information. Capability D4 encapsulates these activities. It receives raw IoT content

and returns processed IoT content. Content Processor building block offers this

capability.

Storage Layer

Storage layer concerns with storing the collected IoT content and generating data structures

to support efficient lookup. Both of which are utilized in the query assessment that follows.

This layer offers four capabilities (Table 3.3).

S1. Generate indexes for efficient look up Achieving sub-second query response time over

an extensive collection of IoT content depends on data structures for supporting effi-
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cient lookup (i.e., indexes). Capability S1 encapsulates this activity. It receives the

collected IoT content as inputs and generates indexes as outputs. Indexer building

block offers this capability.

S2. Store IoT content Many IoTSE instances in the literature store the collected IoT content

for future processing. Storage layer encapsulates this activity in the capability S2. It

receives collected a IoT content as inputs and does not generate outputs. The Content

Storage building block offers this capability.

S3. Store relations between IoT content and things Besides collected content, an IoTSE

instance can also maintain the detected relations between IoT contents and things

offering them, as well as thing-to-thing relations. This capability receives relations as

inputs and does not generate outputs. The Relation Storage building block offers this

capability.

S4. Store generated indexes This capability encapsulates the storage of data structures

generated by the capability S1. It receives indexes as input and does not generate

outputs. The Index building block offers this capability.

Search Layer

Search layer captures concerns of scoring and ranking IoT contents to generate search results.

This layer offers three capabilities (Table 3.3).

Se1. Score and rank IoT content by their relevance to queries IoT content can be sub-

jected to two forms of scoring and ranking. Capability Se1 captures the query de-

pendent (Q.D.) scoring and ranking of IoT content. It receives queries, collected IoT

contents, and, optionally, indexes as inputs. It generates search results which are

generally a ranked list of scored IoT content. Q.D. Ranker building block offers this

capability.
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Se2. Score and rank IoT content by their natural order The second form of scoring and

ranking, defined here as query independent (Q.I.) ranking, does not rely on queries,

but only on the natural order of content. Page Rank algorithm is an example of Q.I.

ranking. This capability receives IoT contents as inputs and generates a ranked list of

IoT contents as outputs. Q.I. Ranker building block offers this capability.

Se3. Aggregate search results Query assessment in an IoTSE instance might involve mul-

tiple Q.D. and Q.I. rankers. The ability to combine multiple sets of search results,

therefore, is crucial. This activity is captured in capability Se3. It receives search

results as inputs and generates aggregated results as outputs. Aggregator building

block offers this capability.

Interface Layer

Interface layer offers the ability to interact with external parties, including human users,

software systems, and other IoTSE instances, to receive queries and return search results.

This layer offers four capabilities (Table 3.3).

I1. Accept Query This capability captures the interaction of an IoTSE instance with external

actors to receive intents of lookup for IoT content. It returns raw queries as outputs.

Query Interface building block offers this capability.

I2. Process query into correct format Raw queries must be transformed to the format that

can be processed by an IoTSE instance. An example would be transforming a string in

natural language into a feature vector. This capability receives raw queries as inputs

and returns processes queries as output. Query Processor building block offers this

capability.

I3. Return search results This capability captures the return of relevant IoT content to

search engine users. It receives aggregated search results as inputs and interacts with
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external actors to communicate results as outputs. Result Interface building block

encapsulates this capability.

I4. Process search results into appropriate format This capability transforms the search

results generated by the search layer into the form required by search engine users.

A simple example would be filtering IoT content so that only relevant information is

returned. This capability receives raw search results as inputs and generates processed

results as outputs. Result Processor building block offers this capability.

Computing Resource Layer

Computing Resource layer offers the computing, storage, and networking capability necessary

for an IoTSE instance to operate. While the reference architecture generally concerns with

abstract logical entities instead of implementation and deployment details, we include various

types of computing nodes in the IoTSE reference architecture due to the emphasis on physical

deployment aspect observed in many existing works on IoTSE. In the reference architecture,

we organize computing resources into three building blocks. Edge nodes denote low-power

computing devices such as wireless sensor nodes and Raspberry Pi devices [5, 76, 77]. Fog

nodes denote major, elastic computing, and storage capability placed physically close to IoT

infrastructures [76]. Cloud nodes denote remote, significant, elastic computing and storage

capability accessible via the Internet [4].

Integration Layer

Integration layer captures the concerns related to the interoperation of components in an

IoTSE instance. Its capabilities include offering communication channels, protocols, and

message formats to enable the interaction between IoTSE components. Details on building

blocks and patterns of this layer are left to the lower-level instantiation of this reference

architecture. For instance, an SOA solution for IoTSE can fill this layer with necessary
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service buses and message formats to achieve interoperation between IoTSE component

services.

Management Layer

Management layer captures the concerns related to monitoring the workflow of an IoTSE

instance and performance of its comprising components. It offers monitoring capabilities on

the IoTSE instance-wise workflows, as well as performance and quality of services offered

by individual components. Details on building blocks and patterns of this layer are left to the

lower-level instantiation of this reference architecture.

Security Layer

Security layer captures cross-cutting concerns on securing IoTSE. This layer has four main

capabilities. First, it protects an IoTSE instance from external intrusions by users and other

IoTSE instances. Second, it assesses the trust and provenance of discovered IoT content.

Third, it authorizes access to an IoTSE instance and the contents that it holds. This capability

can be realized via query interfaces and processors in the interface layer. Finally, it controls

the degree of exposure of IoT content in search results. This capability can be realized via

result processors in the interface layer. Details on building blocks and patterns of this layer

require further research which is out-of-scope of this work.

3.4.3 Composition Patterns

A composition is a system generated from a collection of elements to serve a specific purpose

[78]. Each IoTSE instance is a composition of component instantiated from architectural

building blocks in this reported IoTSE reference architecture. A composition pattern de-

scribes the types of involved components, timing, and sequencing of their interactions to

realize a task in the operation of an IoTSE. Composition patterns are named and described
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by their capabilities, which are represented by inputs and outputs. Patterns discussed in

this section provide the vocabulary for communicating the logical composition of IoTSE

instances and offer a guide for combining ABBs to design a concrete IoTSE instance.

Composition patterns described in this section have been identified from workflows of

IoTSE prototypes in the literature. These system-wide patterns are decomposed into search

and discovery patterns. The later set is further classified into three subsets: content collection,

storage, and indexing (Fig. 3.3). Reaching this level of granularity allows our reference

architecture to capture a wide variety of composition structure with the same set of “pattern

vocabulary”. For instance, our reference architecture can describe both IoTSE instances

carrying out every task, as well as the ones omitting storage and index generation. It can also

describe variations in timing between components involved in a certain task.

Our description of patterns assumes that an ABB can be implemented as functionally

equivalent software components that process different types of IoT content, and these com-

ponents are utilized together in an IoTSE instance to resolve queries. For instance, Q.D.

ranker ABB can be realized as “Q.D. ranker for metadata” and “Q.D. ranker for streaming

sensing data” components, which are utilized together in an IoTSE instance. In the following
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description, we depict the parallel patterns in the context of only two types of IoT content for

clarity. The IoTSE components with the index 1, such as Content Detector 1, process the

first type of IoT content, while the components with the index 2 process the other type. The

depicted patterns, however, can cover an arbitrary number of IoT content type.

It should also be noted that the patterns described in this section concern only with

the parallelization of components on a logical level. They do not capture, for instance,

duplication and parallelization of a component in runtime to achieve scalability.

Content Collection Patterns

The patterns in this group(CC) concern with detecting and retrieving IoT contents necessary

for resolving queries. These patterns involve source detectors, content detectors, and content

collectors. They receive instructions for detecting IoT content and return collected content
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as outputs. Two patterns in this group differ by the parallelization of content detection and

collection.

Storage Patterns

This group (S) contains patterns for storing collected IoT content. These patterns involve

storage building blocks. They receive IoT content as inputs and are not required to generate

outputs. Two patterns in this group differ the parallelization of storage activities for different

types of IoT contents.

Indexing Patterns

The patterns in this group (I) concern with generating and storing indexes for different types

of IoT contents. These patterns involve indexer and index building blocks. They receive

IoT content as inputs and return indexes as outputs. Two patterns in this group differ in the

timing between index generation for different types of IoT content.

Discovery Patterns

The patterns in this group are generated by combining patterns from the three groups

mentioned above. They aim at generating collections of IoT contents to support query

assessment. This group has three patterns: CSI pattern involves content collection, storage,

and indexing; CS pattern omits index generation; and C pattern further omits the storage of

collected IoT contents. CS and C patterns are generally utilized by IoTSE instances which

avoid storing massive data generated by IoT infrastructure.

Search Patterns

This group (Se) contains patterns for resolving queries. They involve Q.D. ranker, Q.I. ranker,

and aggregator building blocks. The patterns in this group receive queries, IoT contents and,
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optionally, indexes as inputs, and generate search results as outputs. The patterns in this

groups differ by the timing of ranking components.

System-wide Patterns

Two patterns in this group capture the macro composition of an IoTSE instance, specifically

the timing between discovery and search processes. In the parallel pattern, content discovery

is carried out continuously and independently from query assessment. This pattern is common

among search systems not concerning with computing and storage resources. The interlaced

pattern, on the other hand, are utilized by IoTSE instances facing constraints on resources. In

this pattern, content discovery is only carried out when a query is received.

3.4.4 Deployment Patterns

A deployment pattern describes the deployment structure of an IoTSE instance, specifically

(i) types and arrangement of utilized building blocks in the computing resource layer, and

(ii) deployment of ABB on computing resource blocks. We decided to capture deployment

patterns in the IoTSE reference architecture due to two observations. First, some work

on IoTSE is driven by the deployment structure, specifically to bring IoTSE instances to

the edge and remove centralized control on such systems. Second, the deployment of an

IoTSE instance plays a crucial role not only in its performance but also in whether or not

it can operate. For instance, due to the sensitivity of data collected by IoT infrastructure,

the search engine might only be deployed in the vicinity of the infrastructure itself. These

observations highlight the role of deployment structures and emphasize the need for the

reference architecture to capture this information. The patterns described in this section

provide a vocabulary for communicating the deployment aspect of an IoTSE instance. These

patterns also guide the deployment of concrete IoTSE solutions.
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Fig. 3.5 A taxonomy of IoTSE deployment patterns.

Patterns in this section have been identified from IoTSE prototypes in the literature. De-

pending on the existence of centralised control and location of utilised computing nodes (i.e.,

edge, fog, and cloud), we organise these patterns into three classes: centralised, hierarchical

distributed, and decentralised (Fig. 3.5). We limit the discussion to only patterns that we

have detected in the IoTSE literature. We also limit the discussion on the arrangement of

ABB on computing nodes only on a layer basis, focusing on discovery, storage, and search

layer. We recognize that, in practice, components of the same layer can be deployed across

multiple nodes, and an IoTSE instance can employ different patterns for each involving

content type. It is not our aim to identify an exhaustive list of patterns.

Centralized Patterns

Centralized patterns capture IoTSE instances that have a central control node and limit their

deployment to one location (i.e., only edge, fog, or cloud). In these patterns, all three layers

are deployed on the same computing resource node. In the edge-based pattern, an IoTSE

instance is deployed entirely on one edge node [46]. In the cloud-based pattern, an IoTSE

instance is deployed on a remote cloud node. It should be noted that even if the cloud is

made available by multiple distributed computing nodes, if it is available as a single (logical)

node, then we still consider the deployment centralized.



84 An IoTSE Reference Architecture

Hierarchical Distributed Patterns

Hierarchical distributed patterns describe IoTSE instances which have a central control node

and are distributed across multiple computing nodes, forming a hierarchy. In the Edge-fog

pattern, the control node resides on a computing node with strong capability in the vicinity of

the IoT infrastructure [35, 46]. In the edge-cloud pattern, the control node resides on a remote

cloud, generally handling storage, indexing, and query assessment, while edge nodes are

generally in charge of detecting and collecting IoT content [17]. In the edge-fog-cloud pattern,

the control node resides on a remote cloud and generally handles global query assessments,

while remaining components are distributed across edge and fog nodes [21, 14, 19].

Decentralized Patterns

Decentralized patterns describe IoTSE instances that do not have a central control node. In the

literature, we observe mostly edge-based decentralized systems. Each node in a decentralized

IoTSE instance possesses all components necessary to resolve queries independently, and

collaborates with other nodes in a peer-to-peer fashion to increase its coverage.

3.5 A Framework for IoTSE Instantiation

Instantiation denotes a series of transformation steps to turn a reference architecture into a

single or a family of software systems [74]. In this section, we introduce an instantiation

framework, which supports both generating an IoTSE instance and an ecosystem that support

engineering multiple IoTSE instances. This framework consists of four phases (Figure 3.6).

Each phase represents a transformation which brings abstract building blocks and patterns of

the reference architecture closer to the implementation.

Phase 1: The first phase transforms the IoTSE reference architecture into more concrete

architectures that are closer to implementation. The key design decision in this phase is on the
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Fig. 3.6 Four phases of the instantiation framework.

type of software component (e.g., software library, module, service) that encapsulates archi-

tectural building blocks of IoTSE. Following this decision, the IoTSE reference architecture

can be mapped onto another reference architecture that supports the chosen type of software

component. This mapping activity helps identify and incorporate the necessary building

blocks to support the interoperation of components, the management, and the operation of the

whole system. For instance, if we decide to design and implement building blocks of IoTSE

as software services, we would map the IoTSE reference architecture to a Service-oriented

Architecture (SOA) reference architecture (e.g., S3 [73] or ISO/IEC 18384 [72]).

This first phase creates either a target architecture that is specific to the IoTSE instance

being instantiated, or a system architecture which is more general than the target architecture

and applicable to multiple IoTSE instances.

Phase 2: The second phase instantiates the software infrastructure necessary for running

IoTSE components and controlling their interactions. For instance, assuming that in the

previous phase, we decided to engineer the IoTSE instance as a set of Web services, each of

which implements an IoTSE component. Then, in this phase, the software infrastructure will

consist of Web servers running on the involved computing nodes to serve the Web services, a

service registry, and a service orchestration engine to control the interaction between services.

If the goal of this phase is instantiating only an IoTSE instance, we can conclude it here.

However, if we aim to engineer multiple IoTSE instances, then we also need to instantiate an
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additional infrastructure that supports the development of IoTSE components according to

the system architecture that we instantiated in the previous phase. Continuing our example,

the development infrastructure might include software libraries to simplify the development

of Web services that encapsulate IoTSE components. It might also include repositories

to accumulate these component services for future engineering of IoTSE instances by ex-

ternal parties. Together with the system architecture in the first phase, the development

infrastructure forms an ecosystem for engineering IoTSE instances.

Phase 3: The third phase involves building algorithms and mechanisms corresponding to

different IoTSE building blocks, based on the capabilities and scope specified in the reference

architecture, and encapsulating them into components to be used by the infrastructure built

in the second phase.

Phase 4: The final phase involves deploying and composing IoTSE components into op-

erational IoTSE instances. The first step in this phase is selecting the components that are

necessary for resolving the targeted type of query from the components developed during the

previous phase. If the goal of the instantiation is engineering multiple IoTSE, then this step

is relevant as the third phase might have produced more IoTSE components than necessary.

If the goal of the instantiation is a single IoTSE instance, this step might be skipped. When

an extensive set of components is available, this step is not trivial and can be benefited by

search tools (e.g., [79]).

The second step involves constructing composition patterns for the IoTSE instance from

sub-patterns defined in the reference architecture. The third step is selecting a deployment

pattern. Finally, the infrastructure constructed in the second phase is utilized to realize these

patterns and generate complete IoTSE instances.
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3.6 Evaluation

A reference architecture is “good” if it is accessible and understandable by a majority of the

involved parties, possesses satisfactory qualities, is up-to-date and maintainable, and adds

value to the business [74]. The “goodness” of a reference architecture is generally assessed

based on feedback from the users (i.e. architects and developers). This form of assessment –

sometimes referred to as validation [80] – presents a paradox: a reference architecture must

be “good” to be published, utilized, and receive feedbacks; however, to be published, utilized,

and receive feedbacks, the reference architecture must first be assessed as “good”.

To avoid the presented loop, we instead assess the “goodness” of the IoTSE reference

architecture on the ability of its building blocks and patterns to model IoTSE instances. In

this section, we present a mapping of the reference architecture onto two representative

IoTSE prototypes as an assessment. In the following chapters, we will conduct case studies,

which involve engineering IoTSE instances based on the reference architecture, as further

assessment. This approach allows us to assess the reference architecture when the external

feedback is not available. The conducted mappings and case studies can also increase the

confidence of architects and developers to adopt the reference architecture and provide

feedback in future evaluation when the reference architecture has been released.

3.6.1 Methods

Assessment of the IoTSE reference architecture was carried out by mapping architectures

of IoTSE prototypes in the literature to its building blocks and patterns. Each mapping

represents a test. The reference architecture passes the test if it can satisfy the following

criteria. First, the reference architecture can map the conceptual components of the prototype

into its building blocks. Second, the reference architecture can model the operation of the

prototype, represented by interactions between its components, with its composition patterns



88 An IoTSE Reference Architecture

Finally, the reference architecture can model the deployment structure of the prototype with

its deployment patterns.

We selected a sample of two prototypes from over 200 existing work based on following

criteria: (i) they must be representative, meaning their approaches and architectures must

appear in multiple studies; and (ii) they should utilize complex composition and deployment

architecture. By applying these two criteria, we selected a sample comprising Dyser [21] and

IoT-SVK [17].

3.6.2 Results

This section presents mappings of IoTSE prototypes to the reference architecture. For each

prototype, we present an overview of its features, the mapping from its functional components

and hardware nodes to architectural building blocks, and the mapping from its workflows to

the composition patterns specified in the reference architecture.

Mapping to IoT-SVK: IoT-SVK [17] is a multi-modal, real-time IoTSE. It resolves queries

on IoT-enabled sensors based on their keyword descriptions, locations, trajectories, and

sensing values. IoT-SVK collects sensor readings and relies on an efficient index update to

enable near real-time querying. Notably, IoT-SVK lacks sensor discovery capability. Instead,

it relies on pre-configured sensor networks.

IoT-SVK utilises 15 types of functional components, which are instantiated from 7 of 18

defined architectural building blocks. These components comprises three storages (S), three

indexers (I), three indexes (Idx), and three query dependent rankers (Q.D) corresponding

to three types of content utilised in query assessment (i.e., keyword description (K), spatio-

temporal data (S), and sensing value (V)); one aggregator (Agg), one query interface (Q.In)

and one result interface (R.In). These components are distributed across a hierarchy of fog

and cloud nodes, following the hierarchical distributed deployment pattern specified in the

reference architecture.
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Fig. 3.7 Mapping of IoT-SVK components and deployment structure to the reference archi-
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Figure 3.8 depicts the mapping of workflow by IoT-SVK to interaction patterns described

in the reference architecture. On the system-wide level, this prototype utilises parallel pattern.

Discovery-wise, IoT-SVK is mapped to pattern SI as it includes only storage and indexing

activity. Search-wise, IoT-SVK is mapped to pattern Sep. In each activity, IoT-SVK processes

three types of content (i.e., S, V, K) in parallel.

Mapping to Dyser: Dyser [21] is also a real-time IoTSE. It searches for physical entities

whose real-world states, reflected by their embedded sensors, match queries given by search

clients. Different from IoT-SVK, Dyser does not store and index sensor readings. Instead, it

contacts and validates the values of sensors during the query assessment. Prediction models

are utilized to prioritize the time-consuming sensor communication.

The scope of Dyser is a challenging design decision that we had to make early in the

mapping. Specifically, we had to consider whether model construction is a component of

Dyser. Sensor content prediction models and model construction have a central role in

Dyser, and related prototypes (e.g., [13–15]), and therefore should be included as a part

of the search engine. However, the architecture described in these works does not include

model construction. Instead, this component locates in remote IoT gateway systems and is

maintained by sensor owners instead of search engine operators. In this mapping, we respect
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the scoping decision presented in the original study and exclude model construction from the

search engine.

Dyser utilizes 19 types of functional components, which are instantiated from 9 of 18

defined architectural building blocks. These components comprises three content detectors

(CD), three content collectors (CC), three indexers (I), three indexes (Idx), and three query

dependent rankers (Q.D) corresponding to three types of content utilised in query assessment

(i.e., entity page (E), sensor page (S), and prediction model (P)); one source detector (SD),

one aggregator (Agg), one query interface (Q.In) and one result interface (R.In). The query-

dependent ranker for prediction model (Q.D-P) encapsulates both sensor ranking based

on prediction models and the validation of real-time sensor readings. These components

are deployed on a single remote computing node, following the cloud-based centralised

deployment pattern specified in the reference architecture. Figure 3.9 depicts the description

of mapping between Dyser’s components and building blocks in the reference architecture.

Note that the reference architecture has finer granularity, and uses different terminologies

(e.g., Dyser uses “indexer” to denote content discovery).

Figure 3.10 depicts the mapping of the workflow by Dyser to the composition patterns

described in the reference architecture. On the system level, this prototype utilizes par-

allel pattern. Discovery-wise, Dyser is mapped to pattern CI as it includes only content

collection and indexing activity. In each activity, Dyser processes three types of content in

parallel. Search-wise, IoT-SVK is mapped to pattern Ses. Sequencing of ranking reflects the

arrangement of query assessment into a filtering pipeline utilized by Dyser.

3.6.3 Threats to the Validity

Threats to internal validity The first threat to the internal validity of our assessment is the

selection of IoTSE prototypes to which the reference architecture is mapped. Specifically,

as chosen IoTSE prototypes have been used as inputs to the reference architecture, one
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would argue that the reference architecture is capable of modeling these prototypes by design.

Therefore, the assessment is not valid. We argue that this is not the case, as the IoTSE

reference architecture emerges from the inputs of many prototypes besides our Dyser and

IoT-SVK in an iterative design process. Due to multiple transformation and aggregation in

this process, the resulting architecture might no longer match Dyser and IoT-SVK. Therefore,

mapping the IoTSE reference architecture back to these works is valid to verify whether the

architecture was built right.

The second threat to the internal validity of our assessment is the correctness of our

mapping from Dyser and IoT-SVK to the reference architecture. To negate this threat, we

derive the architecture of chosen prototypes from their textual descriptions, architectural

models, and described experimentations; and did our best to ensure faithfulness of the

mapping from these architectures to the IoTSE reference architecture.

Threats to external validity A threat to the generalisability of our assessment is size and

representativeness of chosen IoTSE prototypes for testing the reference architecture. Regard-

ing the sample size, we emphasize that the architecture patterns of Dyser and IoT-SVK are

common among IoTSE prototypes. Therefore, our assessment covers not only two systems

but, arguably, two classes of IoTSE prototypes. Regarding the representativeness of our

sample, we emphasize that the sampling has been carried out on a representative subset of

IoTSE works, comprising both highly referenced and latest studies. Finally, we emphasize

that the architectural patterns utilized by chosen IoTSE prototypes are, arguably, among

the most complex ones in IoTSE literature. Therefore, they are valid to test the modeling

capability of the reference architecture.
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3.7 Related Works

Our work falls at the intersection of the Internet of Things Search Engine and the Software

Architecture of Search Engine systems. As we have conducted an extensive survey on IoTSE

literature in Chapter 2, in this section, we focus on comparing and contrasting the proposed

IoTSE reference architecture with other efforts on developing an architecture for search

engine systems.

As literature on architecture of IoTSE is limited, we extend the scope of our related

work to include studies on architecture of non-IoT search engines (e.g., content-based image

search engine [81], distributed document search engine [82, 83], semantic web search engine

[84], academic document search engine [85], spatial-textual search engine [86], social search

engine [87], and Web search engine [88]). We present an overview of these related works in

chronological order and discuss the position of our work with respect to these works.

One of the earliest works on search engine architecture that we found is Virage – an

open framework for content-based image search engines [81]. In these systems, images

are transformed from data-rich matrices of pixels to semantic-rich primitives, and query

assessment is carried out on these primitives. Virage is a library of algorithms for processing

images to primitives and resolving queries on these primitives. External parties can offer

different algorithms for building primitives from images and ranking based on the provided

primitives as plugins.

AgentRAIDER [82] presents the architecture of an agent-based search engine that helps

users finding information hosted in distributed heterogeneous data sources. This architecture

comprises five agents, each of which handles a specific task in the query processing, and

a database holding user profiles for customizing queries and filtering information. This

architecture is instantiated from a reference architecture called I3, developed by ARPA and

Stanford.
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P2P-IR architecture [83] is a layered “generic” architecture for peer-to-peer information

retrieval (P2P-IR) system. It focuses on enabling separation of concern in a P2P-IR system

into abstract layers. This architecture comprises four layers – transport, structured overlay

network, document and content management, retrieval models. Each layer concerns with a

specific type of object, and support a specific set of operations on this object.

Swoogle [84] presents the architecture and implementation of a semantic web search

engine. This work defines a semantic web search engine as a three layer system. It crawls

semantic web document (i.e., written in RDF) from the search results of Google, and resolves

queries on these documents. It is capable of querying for ontology, for a semantic web

document, and answering questions on the structure of a semantic web search engine.

CiteSeerX architecture [85] describes the new architecture of CiteSeer – an academic

document search system. The monolithic architecture of CiteSeer faced the limitation on

scalability to process a large number of queries and documents. This monolithic architecture

also limits the ability to add and modify the functionality of the system. Therefore, CiteSeer

was redesigned into CiteSeerX. The new architecture is a service-oriented system, in which

majority of its functional components are redesigned as autonomous Web services. This

architecture allows independent scalability and ease of modification.

STEWARD [86] presents the architecture of a spatial-textual search engine. The presented

system is capable of tagging spatial location to Web documents and resolving queries on

them based on both their location and textual content. Tagging is done by a combination of

natural language processing and external gazetteers for location-information look up. This

system is structured according to seven phases of operation that it carries out. The motivation

of this decision is the distribution for scalability. The authors claim that each phase can be

mapped onto a different computing node.

Horowitz et al. [87] present the architecture of a large scale social search engine. This

type of system resolves a query, not for documents but human in the extended social network
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of the query client. It finds a human who can resolve the query for information specified by

the query client, and facilitate the communication between them. The reported architecture

comprises the following components: importer, database, index, routing engine, question

analyzer, and conversation manager. The importer is responsible for importing social network

of search clients who register to join the system, identify and index topics that that user

discuss based on public posts. Question analyzer and routing engine are responsible for

finding a human in the social network that might be able to answer the query. Conversation

manager facilitates the message exchange between the query client and potential human

users that have the answer.

Brin, et al. [88] present the architecture of Google, such that it supports large-scale col-

lection and storage of HTML documents, extraction of links between documents, maintains

various information about documents, link structure, and anchor texts, and resolves queries

on these documents in a highly scalable way. The architecture presented in this work is

closely related to its utilized retrieval models.

Our work is different from these works in many ways. First, our work has a different

purpose and is constructed differently. Majority of the reviewed work, except Virage [81]

and P2P-IR [83], focuses on explaining the inner architecture of a specific search engine

prototype, instead of offering an architectural foundation to instantiate new systems. These

architectures can be closely tied up to the specific algorithms and mechanism that they use,

and therefore might not be generalized. Second, the listed works discuss only the building

blocks of their system. Our reference architecture, on the other hand, discusses not the only

building blocks and their capabilities, but also patterns of their interaction and deployment,

and a framework for using the reference architecture to instantiate new systems. Third, the

listed works assume a specific interaction pattern between building blocks. Our work, on the

other hand, provides a taxonomy of combinable patterns to describe and allow instantiating

different IoTSE instances. Finally, the listed work either do not address or assume only one
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pattern of deployment. Our work, on the other hand, provides a taxonomy of deployment

pattern to describe different situation faced by IoTSE systems.

3.8 Summary

The overlap among IoTSE instances of different classes regarding their internal operation and

architecture suggests a potential for leveraging reuse in the engineering of these systems. In

this chapter, we have identified the commonalities of IoTSE from an analysis on representative

IoTSE prototypes, and compiled this knowledge into a reference architecture to guide

the reuse-centric engineering of IoTSE. The reference architecture specifies 18 types of

components, 13 composition patterns, and 6 deployment patterns, which together can model

IoTSE instances of various classes. This reference architecture offers the necessary blueprint

for developing IoTSE components and engineering IoTSE instances.

Future research enabled by the reported reference architecture can be organised into three

directions:

Instantiating a close-to-implementation architecture template for IoTSE. The reference

architecture describes abstract building blocks and patterns of their interactions in IoTSE

solutions. More concrete architecture templates simplifies the instantiation of concrete IoTSE

solutions from the reference architecture. These concrete architecture templates concern

with (i) the type of software components (e.g., services, plug-ins, libraries) into which

ABBs are mapped, and (ii) supporting software components to enable the interoperation and

composition of ABBs into an IoTSE solution. Architecture templates can be instantiated

by applying an architectural style, such as Service-oriented Architecture, to the reference

architecture.

Bringing architectural-level security support to IoTSE. Security protects an IoTSE so-

lution against destruction, corruption, removal, disclosure of its data, and interruption of
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its service. It encompasses privacy and trust concerns. Security has been established as

crucial to the success of an IoTSE solution because this system holds sensitive information

about people and businesses, and it serves other IoT software systems, and therefore its

compromise has a ripple effect across the whole IoT ecosystem. Existing efforts on securing

IoTSE have been limited to policies, algorithms and encryption mechanisms. The reference

architecture allows addressing security at a system level by identifying the security-related

building blocks and the patterns, which can be shared and integrated into IoTSE instances.

Accumulating architecture knowledge resulting from applying the reference architec-

ture. IoTSE architects and operators make various design decisions on the types of com-

ponents and patterns to be used for a specific type of query and operation context of an

IoTSE instance. The body of knowledge resulting from the accumulation of these decisions

represents a “recipe book” for engineering future IoTSE instances. It provides a source of

data for mining new insights on how IoTSE solutions are composed and deployed in practice.

It will also enable machines to learn and resemble the design decisions of IoTSE architects

and operators, which eventually might lead to the automatic engineering of these systems.



Chapter 4

A Kernel-based Approach to IoTSE

Engineering

In the previous chapter, we have proposed a reference architecture, which offers a blueprint

for developing IoTSE components and engineering IoTSE instances. However, the reference

architecture by itself is inadequate for enabling the reuse-centric IoTSE engineering. Compo-

nent developers need a software infrastructure that helps them transform their algorithms

and mechanisms into reusable, composable IoTSE components. Search engine operators

need a software infrastructure that helps them engineer IoTSE instances by accumulating

IoTSE components, controlling their interactions, and deploying them on given computing

infrastructure. This chapter proposes a kernel-based approach to IoTSE engineering as a

solution to the stated problem. It addresses the third research objective of the thesis: to

propose a software infrastructure to support the reuse-centric engineering of IoTSE.
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4.1 Introduction

The IoTSE reference architecture is the first step toward the reuse-centric IoTSE engineering.

By committing to the same reference architecture, independent component developers can

engineer IoTSE components that are compatible with each other and fit into the bigger picture

of an IoTSE engineering effort. Search engine engineers and operators can use the patterns

in the reference architecture to communicate and assess the design of an IoTSE instance

and engineer it with components that have been contributed by independent component

developers. The reference architecture provides the blueprint to enable this vision of reuse-

centric IoTSE engineering.

However, the reference architecture by itself is inadequate. As we have pointed out

in the framework for IoTSE instantiation (Section 3.5), regardless of whether our goal is

engineering one IoTSE instance or multiple instances, software infrastructure is necessary.

This infrastructure runs software components that encapsulate the functional elements of an

IoTSE instance and controls their interactions so that they can work together to discover and

resolve queries on IoT content. If our goal is engineering multiple IoTSE instances, then a

software infrastructure to support the development and accumulation of IoTSE components is

also necessary. Such infrastructure might encourage the engineering of reusable, composable

IoTSE components by reducing the overhead associated with transforming algorithms and

mechanisms related to IoTSE operations to IoTSE components.

In this chapter, we propose a Kernel-based Approach to IoTSE Engineering to enable a

supporting software infrastructure for IoTSE engineering. This approach was inspired by the

design of modern operating systems. In these systems, a majority of their functionality and

operations are developed as plug-able modules around a microkernel that provides essential

utilities. Similarly, algorithms and mechanisms for realizing different internal operations of an

IoTSE instance, such as detecting IoT data sources and generating indexes, can be engineered

as plug-able modules around an IoTSE kernel that offers them a runtime environment and
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control their interaction. Moreover, this kernel might also provide templates for developing

IoTSE components that are compliant with the reference architecture. By utilizing these

templates, a component developer can transform their algorithms and mechanisms into

reusable, composable IoTSE components with minimal effort. These modules, then, can be

shared and acquired via package managers, similarly to APT of the Ubuntu OS and PIP of

Python.

In order to facilitate the development and evaluation of the proposed IoTSE kernel, and

also to clarify the discussions in this chapter, we limit the scope of the reported study to

a subclass of IoTSE, which we will denote as the Web Sensor Retrieval System (WSR).

Instances of WSR discover and resolve queries on metadata and sensing streams to retrieve

IoT-enabled sensors, which are accessible from the Web. While this scoping might impact

the generalizability of the proposed approach, it has three favorable trade-offs:

First, the type of query that WSR instances resolve belongs to the meta-path [D+R =>

E => R], which is the second-most popular type of meta-path and much more complex

compared to the other types detected in the literature. Therefore, by focusing on WSR, we

can bring the specificity to the discussion, which has been revolving around generic IoTSE

instances, without giving up a significant amount of generalizability. Second, as the IoT

has been increasingly accessible from the Web, focusing on Web Sensor Retrieval System is

timely. Finally, the evaluation would be more straightforward as sensory datasets are more

accessible compared to other types of IoT-related datasets, such as the ones on actuation

services.

In the following sections, we will provide more background information of WSR (Section

4.2) and then present details of the kernel-based approach (Section 4.3 and 4.4). Section 4.5

presents an evaluation of the proposed kernel via a case study, which involves engineering an

IoTSE prototype and assessing the reduction regarding the development effort. In Section

4.7, we discuss the strengths and weaknesses of the kernel-based approach and potential
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future works to improve it, which partially inspired the platform-based approach proposed in

the following chapter.

4.2 Background

4.2.1 Web Sensor Retrieval System

Software systems require the ability to retrieve needed sensors and actuators from the

Web in order to adapt themselves to different sensing and actuating infrastructure with

minimal users’ intervention. For instance, to list all empty meeting rooms near a user, the

building management system requires access to passive infrared sensors that detect motion

in meeting rooms to deduce their availability. While sensors can be pre-configured, the

building management system is more flexible with the ability to detect and retrieve sensors in

run-time. We define Web Sensor Retrieval system (WSR) as a system providing the ability to

discover and resolve queries on Web-enabled sensors (i.e., Web Sensors). In a smart building,

instances of WSR can be deployed on each floor to manage its sensors, or on a remote cloud

service to manage all Web sensors in the building. WSR instances can also be integrated into

the building management systems to interact with Web sensors in the vicinity of users.

As WSR is a type of IoTSE, it faces similar problems including the scalability in both

direction, the diversity of sensors and the diversity of queries imposing on them. In a

smart building, different types of sensors such as temperature, humidity, luminance, power

consumption, noise and image are available. They have different forms of descriptions

and different quality metrics, such as refresh rate and power consumption. They produce

observations with different data types and formats. Even if they produce observations with

the same syntax, the real world feature that they observe might be different. For instance,

the temperature in a meeting room has different meaning and behavior than the operational

temperature of an HVAC system. Queries on these sensors are also diverse. They vary
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from simple ID look-up to combinations of textual description, spatial location and numeric

value of sensors [17] (e.g., finding all available parking spots that are less than 500 meters

away from the campus). Queries can also be imposed on features and characteristics of

observation streams produced by sensors, such as finding power consumption sensors that

show abnormalities in the last 24 hours. Each type of sensor and sensor query requires

different techniques to detect, index and query. Despite this diversity, a functional WSR

instance must be able to retrieve any Web sensors needed by client applications.

While the diversity challenge can be addressed by equipping WSR instances with every

available mechanisms and algorithms to work with any sensor and query, this solution is not

appropriate for WSR instances deployed in resource-constrained scenarios (e.g., [35, 38]).

Similarly to IoTSE, reuse-centric engineering is also a potential solution for WSR. By

accumulating an extensive selection of components for discovering and querying different

types of sensors, and then compose them selectively into WSR instances, these systems

can be adapted to different usage scenarios without over-engineering. For example, a WSR

instance that queries temperature-humidity sensors (e.g., DHT22) on seasonal feature of their

observations can be composed from modules that detect, parse, index DHT22 sensors and

resolve queries on seasonal feature of time series. Extending the WSR instance to support

other types of sensors and queries can be done by changing its modules.

4.2.2 Discovery

Discovery and Search are two primary processes in a WSR instance. Discovery is the process

of detecting sensors and, optionally, collecting them into sensor collections (Fig. 4.1a). This

process varies by its scope, trigger, and collection activity. The scope of discovery process

either extends across the globe via the Internet (i.e., global scope) [62, 21] or limits to the

wireless communication range of the device hosting the IoTSE instance (i.e., local scope)

[38, 35]. Global discovery in WoT can be considered WoT crawling [62]. The discovery
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Detect URL of sensors Detect URL of observation streams

Collect sensors

Preprocess sensors
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Preprocess observations

Store and index observations

(a) Discovery

Transform query into internal format

Score sensor collection against each
constraint of the query

Aggregate scores

Present search results to
the query client

(b) Search

Fig. 4.1 Discovery and search activities of IoTSE.

process can be executed continuously as a background task, or triggered by a user’s request.

This feature affects the implementation of sensor collection activity. Discovery processes

implemented as background tasks tend to collect and store the information of detected sensors.

On the other hand, processes triggered by users tend to return the detected sensor information

to users without storing.

For small sensing infrastructure, discovery process alone is sufficient. WoT applications

can filter the small list of detected resources by themselves. However, larger sensing infras-

tructure and more complex queries, such as finding “power consumption sensors on the forth

floor of the campus building that recorded irregularities in the last 24 hours”, require more

sophisticated query mechanisms.

4.2.3 Search

The Search process resolves queries on discovered sensors (Fig. 4.1b). Let s be a sensor, and

S be the collection of discovered sensors. For each sensor query q, a set of sensors rq ⊆ S

that are relevant to the query exists. The task of search process is constructing the result set

r̃q ⊆ S that approximates the unknown rq. This task is done by evaluating the relevance of
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each discovered sensor s against the given query q with a relevance function f (s,q). If the

relevance function produces binary result, the result set comprises of sensors scored positive

and the process is considered “sensor selection” or “lookup” (Eq. 4.1). In case the relevance

function produces a real number, the result set contains sensors whose score higher than a

predefined threshold α (Eq. 4.2). This process is called “sensor scoring”.

Selection: r̃q = {s ∈ S| f (s,q) = 1} where f (s,q) ∈ (0,1) (4.1)

Scoring: r̃q = {s ∈ S| f (s,q)≥ α} where f (s,q) ∈ ℜ (4.2)

While the sensor search process shares the formalization with text information retrieval,

it is different in three ways. First, sensor search relies on rich metadata and descriptive

information that varies according to sensor’s context (e.g., spatial location, interacting

users). Second, content of sensors (observation streams) is unbounded in size and constantly

changing. On the other hand, content of text documents are commonly fixed. Finally, text

content is small and infrequent in sensors. Therefore, sensor search process relies on the

sensor models in addition to text descriptions.

Sensor Model:

Sensor models define constituting components and metadata of sensors, such as real-world

features that they observe. This information determines types of query that a IoTSE instance

can resolve. Notable sensor models in the existing literature includes W3C’s Web Thing

model [32] and OGC’s Sensor Thing API model [89]. In our project, IoTSE is designed

based on a subset of the Sensor Thing API model. Each sensor (s) has an unbounded number

of datastreams (str), which store time-stamped observations (obs) (Eq. 4.3). Each datastream

observes a property of a real-world feature. Consider a temperature sensor deployed in a
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meeting room. Its datastream observes the “apparent temperature” property of the “meeting

room” feature. Each observation is a time-stamped measurement of the feature’s property.

s = {str|str = {obs|obs is a time-stamped observation}} (4.3)

It should be noted that this sensor model is not restricted to real-world, physical phe-

nomenons such as temperature and humidity. It can model any measurable properties and

features, such as daily performance of a software development team or daily revenue of a

business.

4.3 Anatomy of WSR

In order to propose a kernel that provides the essential utilities for operating modules in an

WSR instance and the templates to develop those modules, we need to identify modules in

an WSR instance. This activity corresponds to the first phase in the instantiation framework

that we have introduced in Section 3.5. While most of the identified modules have direct

correspondence to the building blocks specified in the reference architecture, some modules

such as the preprocessing chains and scorer chains have been instantiated specifically for

WSR.

Figure 4.2 presents modules comprising an WSR instance. Detector and collector

modules encapsulate detection and collection activities of the discovery task. Each collector

possesses a chain of preprocessing modules to perform optional cleaning and transformation

on sensor data before inserting it into sensor collections via DB managers. Indexer modules

construct and maintain indexes of sensor collections. They can either be invoked one time or

continuously in response to specific events. The search process is encapsulated into chains of

scorer modules, which are linked in parallel or sequence. A scorer can be either a retriever

which generates search results, or a filter which only reduces the set of results from other
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Fig. 4.2 Architecture of an adaptable and reusable Web Sensor Retrieval system.

scorers. The user interface module passes queries from users to scorer chains and displays

the search results. It utilizes different forms of interaction, from RESTful API to Web Socket

to Augmented Reality (AR).

4.3.1 Reusable Processing Chain

A notable feature of our architecture is reusable processing chains, which model the prepro-

cessing of collected sensors and query scoring. Each processing chain consists of a chain

head and unbounded number of chain members. Each member encapsulates an independent

and reusable processing such as denoising, accumulating data and scoring. Chain heads

arrange the execution of members in either sequence or parallel. They invoke the chain and

perform the final processing step. In a sequential chain, the head acts as the last member of

the chain. In a parallel chain, the head acts as an aggregator or results from chain members.

Figure 4.3 presents parallel and sequential arrangement of a processing chain with two mem-

bers. By organizing complex processing into independent modules, the reusable processing

chain model facilitates the systematic reuse of processing mechanisms and algorithms across

IoTSE instances.
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Processing Head Processing Chain 2Processing Chain 1
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preprocess inputs
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Process

ProcessProcess

(b) Sequential Processing

Fig. 4.3 Parallel and Sequential arrangement of user-defined processing.

4.3.2 Adaptability of the Modular Architecture

A majority of the IoTSE prototypes belonging to the [D+R => E => R] class can be

mapped into the reported architecture. IoTSE instances that have explicit discovery tasks,

search tasks and sensor collections, such as ThinkSeek [62], Dyser [21] and IoT-SVK [17],

have nearly 1:1 mapping. For instance, WoT crawlers in ThinkSeek and Dyser are mapped

into detectors and collectors. Three forms of sensor scoring on textual description, spatial

location and numerical values of IoT-SVK [17] can be mapped into a parallel scorer chain

consisting of three chain members. IoTSE instances that operate without sensor collections

(e.g., Disco-WoT [49]) or on predefined sets of sensors (e.g., CASSARAM [10]), can be

mapped into a subset of our architecture that excludes detector and collector. For IoTSE

prototypes that distribute the processing over multiple sensor nodes (e.g., MAX [35] and

Snoogle [38]), each node can be mapped onto our architecture as a IoTSE instance.

4.4 Kernel-based Approach to Developing WSR

To support the development of modules and the engineering of WSR instances, we propose

introducing a WSR kernel that lies at the core of every WSR instance. This kernel automates



4.4 Kernel-based Approach to Developing WSR 109

Kernel Lv.0: Abstract Modules

Kernel Lv.1: System Utilities

Kernel Lv.2: Shared Utilities

D
et

ec
to

r 
M

o
d

u
le

C
o

lle
ct

o
r 

M
o

d
u

le

P
re

p
ro

ce
ss

in
g 

H
ea

d
 

M
o

d
u

le

P
re

p
ro

ce
ss

in
g 

C
h

ai
n

 
M

o
d

u
le

In
d

ex
in

g 
M

o
d

u
le

Sc
o

ri
n

g 
H

ea
d

 M
o

d
u

le

Sc
o

ri
n

g 
C

h
ai

n
 M

o
d

u
le

U
se

r 
In

te
rf

ac
e 

M
o

d
u

le

D
at

ab
as

e 
M

an
ag

er
 

M
o

d
u

le

Fig. 4.4 Kernel of a Web Sensor Retrieval system

the composition of modules into a functional system. It also defines interfaces, attributes

and key tasks of modules, which would be implemented by WSR developers. It simplifies

the development of modules by separating system management logic from the processing

defined by users, such as scoring sensors and recognizing context from observations. By

providing the definitions and facilities to develop modules, the kernel also improves their

interoperability. An implementation of our kernel in Python is available on our repository

The WSR kernel has three levels (Fig. 4.4). Level 0 contains abstract modules which

provide the foundation to develop reusable WSR modules. Level 1 contains system utilities

for composing modules into WSR instances. They validate configuration scripts given by

users, confirm the existence of required modules, initialize threads to accommodate modules

and setup the communication between them. Figure 4.6 presents the initialization process

carried out by the Lv.1 kernel. Level 2 provides basic utilities that modules might need, such

as HTTP client and server. This level is more prone to change than the lower ones.
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AbsModule
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AbsIndexer
(from Abstract)

AbsOneTimeIndexer
(from Abstract)

AbsPeriodIndexer
(from Abstract)
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Fig. 4.5 Class diagram of abstract modules defined in Lv.0 kernel. Only attributes and
methods of essential classes are presented.

4.4.1 Abstract Modules

Figure 4.5 presents the hierarchy of abstract modules defined at the Lv.0 kernel. All concrete

modules utilized in WSR instances are developed from the leaves of this hierarchy. The root

AbsModule defines three sets of parameters that are used in the initialization of all modules.

System parameters contain shared memory objects, queues and pipes for communicating with

other modules. They are specified by the Lv.2 kernel in the bootstrapping process. Module

parameters and sub-modules are specified by WSR instance developers in configuration

scripts. These parameters are accessible to the user-defined processing methods.

Each abstract module contains concrete methods for performing system management

tasks and invoking abstract methods which contain user-defined processing. For instance,

in the AbsRunnableModule that represents a module running on a separated thread, the

loop() concrete method repetitively invokes the abstract method proc() after every fixed
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Fig. 4.6 The bootstrapping process carried out by WSR kernel.

number of milliseconds specified in the configuration script. When developing a mod-

ule based on AbsRunnableModule, developers only need to implement proc() method.

The underlying thread management and looping are managed by the LV.1 kernel and the

AbsRunnableModule.

4.4.2 Bootstrapping Process

Every WSR instance is defined by a configuration script. It lists modules comprising the

instance, provides locations of their executables and declares their parameters.

The bootstrapping process composes executables of modules into a functional WSR

instance. The process starts with validating the given configuration script and the existence of

listed modules. Figure 4.6 presents the bootstrapping process of an ordinary WSR instance.

During this process, each module performs its own validation to ensure that all of its attributes

are provided in the configuration file. At the end of a successful bootstrap, a WSR instance is

composed and started.

4.5 Evaluation

Due to the lack of quantitative measurements to assess the ability of a architecture in

supporting diverse sensor types and queries, we assess our solution with a case study. In this

case study, we assume the role of researchers who are developing a complex WSR instance

to support a personal building management system. This WSR instance must interact with

eight types of sensors deployed across two sensor platforms. One of which belongs to the
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building, the other belongs to the city. The instance must resolve five types sensor query:

(i) searching by ID, (ii) by metadata, (iii) by observed property, (iv) by feature of interest

(e.g., spatial location) and (v) by current observation. It must be deployed on a Raspberry Pi

3 (RPi3), which also acts as a Web gateway for sensors in the building, and accessible by

module devices (Fig. 4.8).

Two key requirements of our WSR instance are the adaptability to work with new types

of sensors and modify scoring mechanisms in the future. Our WSR architecture and kernel

address these demands. The effectiveness of our approach is assessed via the degree that

it meets our expectation as WSR instance developers. To be specific, we expect to be able

to focus on major tasks of WSR (e.g., scoring a sensor) without having to consider the

underlying mechanisms of the system, such as how query are passed from the user interface

and how scorer threads are synchronized. In the next section, we present major modules that

we have developed and the support that the WSR kernel provides in each one.

4.5.1 Reference IoTSE Instance

Major software and hardware components are presented in Figure 4.8. To emulate Web

sensors of the building and the city, we replay sensor datasets from Intel Lab1 and City Pulse

project2 with a Web Sensor platform (WSP) that we developed. This platform models and

presents each sensor as a Web resource according to OGC Sensor Thing API standard. We

deploy one instance of WSP on RPi3 to emulate the sensor platform of the building. The

other one is deployed on a workstation to emulate the sensor platform of the city. We utilize

an off-the-shelf REST client application, deployed on a tablet PC, to emulate a IoTSE client.

Constituting modules and their composition in the prototype is presented in Figure 4.7.

Our WSR instance utilizes Mongo DB for storing, indexing and querying Web sensors. The

kernel provides AbsStorageManager class to encapsulate sensor collections. We develop the

1http://db.csail.mit.edu/labdata/labdata.html
2http://ict-citypulse.eu/

http://db.csail.mit.edu/labdata/labdata.html
http://ict-citypulse.eu/
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Fig. 4.7 UML class diagram of the prototype. “Queue” type associations indicate that
instances of involving classes are connected with thread-safe queues. Normal associations
indicate connection via function-calls.

MongoDBStorageManager module from this abstract class. Abstract methods for connecting

to the database and performing CRUD operations are implemented using PyMongo library3.

The discovery process is performed by three detectors, three collectors and three prepro-

cessor chains. The detector_source module extracts URLs pointing to WSP instances

from module parameters and puts them into the shared memory object, provided by the

kernel. Remaining detectors extract URLs of sensors and datastreams with the assump-

tion that sources are compliant to OGC Sensor Thing API. Collectors are extended from

AbsCollectorModule. We implement the abstract method collect() to download the

JSON document at the detected URL with the REST client provided in LV.2 of the kernel.

The shared memory object is made available, thread-safe, to the collect() method by the

kernel without requiring inputs from the developer. Each collector module is connected

to a preprocessing chain via a thread-safe queue. We implement a chain member from

AbsPreProcChain module to remove symbols that violate the syntax of Mongo DB from

collected JSON documents. The chain head utilizes MongoDBStorageManager module to

insert processed data to the sensor collection.

3https://api.mongodb.com/python/current/

https://api.mongodb.com/python/current/
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Fig. 4.8 Deployment of our WSR prototype.

(a) Query (b) Result

Fig. 4.9 Screen captures from the REST client application.

The search process is implemented as a parallel chain of retriever scorers. For scorers, we

extend AbsRetrieverScorer module from the kernel and implement its retrieve(query,

result) with the query capability of Mongo DB. For scorer head, we extend AbsParaScorerHead

and implements its aggregation method. IoTSE kernel manages the passing of queries to

retrieve() and returning of result lists to aggregation method in the scorer head. The user

interface is implemented using AbsHTTPInterface. Figure 4.9 demonstrates the interaction

with our IoTSE instance from a REST client.

From these modules, we compose a WSR instance by declaring its components in a JSON

file and invoking the bootstrapping utility. This utility connects modules based on their name.
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For instance, modules collector_[type] and preprocessor_[type] are connected via a

queue if their types are identical. Figure 4.7 presents the architecture of the reference IoTSE

instance. Its source code in Python is available on our repository

4.5.2 Discussion

The WSR kernel simplifies the development of WSR instances by hiding irrelevant system

management tasks from developers to reduce the cognitive loads and the amount of codes to

develop. In the prototype, developers only implement 36 methods (500 lines of codes) in

the total 162 methods (1655 lines) making up the system. In other word, developers using

the IoTSE kernel only need to work on around 30% of their WSR instance, lines of codes

wise. This figure will be even lower if most modules are already available from other projects.

Because of loose coupling of modules and their independence from the composition process,

the resulting WSR instance is reusable and adaptable. It can be extended with additional

modules. For instance, WoT crawlers [62] can be integrated as a source detector module.

Influx DB can be added to provide more efficient stream storage. Its integration can be done

similarly to the existing Mongo DB.

4.6 Related Works

Effective management of large-scale things over the Web relies on the discovery and search

capability provided by retrieval systems [90]. Most existing research prototypes and industrial

solutions are built specifically for a predefined scenario. These systems can be organized

into three groups based on the type of entity being sought. The first group, commonly

referred to as Discovery Service, consists of systems that retrieve data records of physical

objects which are scattered across supply chains. Discovery Service is a component of

the EPCglobal architecture [91]. BRIDGE project (funded by European Commission)



116 A Kernel-based Approach to IoTSE Engineering

investigated Discovery Service [65], and a part of its results contribute to the IETF draft on

the Extensible Supply-Chain Discovery Service (ESDS) [67]. The second group of retrieval

systems works with actuation services. These systems provide semantic models for things

[22] and their functionality [23]. Based on these models, they retrieve actuation services that

are semantically relevant to users.

The third group retrieval systems works with Web sensors. Early research prototypes,

including MAX [35], Microsearch [46] and Snoogle [38], focus on searching for sensor nodes

based on their embedded textual content. They investigate the distribution of information

retrieval techniques over a network of low-power sensor nodes. As WoT and Web sensor

emerge, more works focus on querying sensors based on their observations at the query time.

The key challenge of these projects is predicting sensors’ observations to avoid costly sensor

pull operations. It is solved with regression using SVM [19], fuzzy sets [13] and patterns

in observation streams [21]. Other works focus on integrating spatial information (e.g.,

ThinkSeek [62], IoT-SVK [17]) and quality metrics [10] into sensor queries. In general, each

research prototype exceeds at a different aspects of IoTSE. However, reusing and composing

them into a more optimal WSR instance are not supported.

Industrial solutions relevant to Web sensor search consist of open-source Information

Retrieval (IR) systems and databases. IR systems such as Elasticsearch4, Apache Solr5,

Xapian6 and Indri7 are efficient in processing large corpora. However, they lack efficient

processing for streams and spatial data, which are crucial for Web sensors. Time series

databases such as InfluxDB8 and Warp109 are more suitable. They provide efficient storage

for observation streams and query capability for their metadata. However, most stated

systems require hardware with strong computing capability, which prevents them from being

4https://www.elastic.co/
5http://lucene.apache.org/solr/
6https://xapian.org/
7https://www.lemurproject.org/indri/
8https://www.influxdata.com/
9http://www.warp10.io/

https://www.elastic.co/
http://lucene.apache.org/solr/
https://xapian.org/
https://www.lemurproject.org/indri/
https://www.influxdata.com/
http://www.warp10.io/
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deployed at the edge of WoT. Moreover, substantial amount of development effort is required

to build WSR instances around these systems. This effort might not be reusable.

4.7 Summary

In this chapter, we have proposed a kernel-based approach for engineering WSR, which

is a major subclass of IoTSE. In this approach, an WSR instance is engineered as a set of

modules, which are plugged into a kernel. Each WSR module is a code package developed

independently by component developers, based on the skeleton defined in the kernel. The

interaction patterns and the format of messages exchanged between WSR modules are also

defined in the kernel, which allows independently developed WSR modules to interoperate

without any prior coordination other than using the same kernel. The kernel also includes

bootstrapping utilities to validate and compose given modules into an operational WSR

instance. The conducted case study revealed that an the kernel-based approach can reduce

the amount of new source lines of code in a multi-modal WSR instance to just 30%.

Even though we proposed the kernel-based approach in the context of WSR engineering,

this approach is generalizable to the IoTSE engineering because WSR is a representative

subclass of IoTSE and is notably more complicated compared to other subclasses. Moreover,

because a majority of abstract modules defined in the innermost level of the kernel corre-

sponds to the building blocks defined in the IoTSE reference architecture we might not even

need to modify the kernel when adapting it to a different class of IoTSE.

Future works can improve the kernel-based approach in the following ways. The first

direction is standardizing the query interface of an IoTSE instance, which will allow instances

to operate together as a federated search engine for broader coverage and more capable query

assessment. The second direction is incorporating security and privacy protection into

modules and inter-module communications to support these critical requirements from an

architectural level.





Chapter 5

A Platform-based Approach to IoTSE

Engineering

In Chapter 4, we have proposed a software infrastructure for engineering IoTSE instances

in the form of a kernel, which provides a skeleton for developing interoperable IoTSE

components and utilities for composing IoTSE instances from those components. The

conducted case study has shown that the kernel-based approach can reduce the amount of

new code when engineering a multi-modal IoTSE instance to only 30%. In this chapter, we

propose a platform-based approach to IoTSE engineering, which extends upon the kernel-

based approach to support emerging classes of IoTSE and prepare for features that might

emerge in the future reuse-centric IoTSE engineering, such as automatic composition and

deployment. This chapter addresses the third research objective of the thesis: to propose a

software infrastructure to support the reuse-centric engineering of IoTSE.
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5.1 Introduction

The kernel-based approach reported in Chapter 4 resulted in a software infrastructure to

support the engineering and operation of IoTSE instances, according to the IoTSE blueprint

specified in the reference architecture. For independent component developers, it helped

to transform algorithms and mechanisms for different internal operations of IoTSE into

reusable, composable components for engineering IoTSE instances. For search engine

engineers and operators, the kernel provides the necessary software infrastructure to run

IoTSE components on a computing node and control their interactions to realize the discovery

and search functionality of an IoTSE instance. With these capabilities, the kernel-based

approach enabled the engineering of IoTSE instances that leverage prior components and

architectural patterns.

The kernel-based approach can support engineering a wide variety of IoTSE instances.

Deployment wise, the kernel-based approach is compatible with centralized IoTSE instances,

which represents a majority in the IoTSE literature. It also supports decentralized (peer-to-

peer) IoTSE instances because each node of these systems is generally a fully functional

centralized IoTSE instance itself. Operation wise, the kernel-based approach codifies an

extensive workflow that covers both content discovery and query assessment activities and

allows search engine operators to indicate either parallel or sequential invocation of various

steps in this workflow. By supporting both centralized and decentralized IoTSE instance and

codifying an extensive workflow, the kernel-based approach IoTSE engineering covers most

of the prominent IoTSE classes in the literature.

Despite the already broad coverage, there are still potentials for enhancing the kernel-

based approach, allowing it to support even more types of IoTSE and prepare for features that

might emerge in the future IoTSE engineering. The first potential enhancement is supporting

the distribution of the components of an IoTSE instance across various computing nodes (e.g.,

[21, 35, 17]). The second potential enhancement is supporting arbitrary workflows instead of
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only certain variations of a workflow. The third potential enhancement does not target the

kernel but the ecosystem around it, which concerns with the accumulation of components and

architectural knowledge generated from utilizing the kernel in engineering various IoTSE

instances. Such an ecosystem might support future features of IoTSE engineering, such as

automatic composition and deployment.

The stated enhancement potentials motivated us to extend the kernel-based approach

into the platform-based approach to IoTSE engineering. This approach revolves around a

software platform – Internet of Things Search Engine Platform (ISEP) – that acts as a hub for

conducting both component development and instance engineering. This platform can either

be hosted and used by an organization and its trusted partners or can be opened to component

developers and search engine operators across the world.

ISEP offers developers a component framework that fulfills the role of the component

templates in the innermost level of the reported kernel. ISEP offers IoTSE operators and

engineers a runtime environment that they can install on their computing nodes to support

the IoTSE components. It also provides tools for operators to specify the components that

constitute an IoTSE instance, control the placement of the components on the computing

nodes, and control the interactions of components in workflows. Different from the kernel-

based approach, both the composition and deployment pattern of an IoTSE instance are

independent of the component implementation, and operators can declare these patterns

explicitly. Finally, to link developers and operators, ISEP includes component repositories,

which can be enhanced in future works to run automatic tests on the components and

accumulate architectural design decisions from the instances that the platform supports.

Our experimentations with Microservice architecture and Software Container technolo-

gies inspired the reported platform-based approach and drove the development of its reference

implementation. To increase the specificity and help readers follow the discussion on ISEP,
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we present it in the context of engineering IoTSE instances as a collection of containerized

Web services. However, the applicability of ISEP is not limited to this context.

We would like to emphasize that the platform-based approach reported in this chapter

does not invalidate nor render the kernel-based approach obsolete. For large projects that

aim to reach a global scale and span a significant time, the platform-based approach would

be beneficial and necessary. However, there would also be projects that do not require

maintaining an extensive repository of IoTSE components nor engineering a lot of IoTSE

instance. For these projects, the kernel-based approach would be sufficient, as it provides a

minimal infrastructure that offers all the necessary functionality.

In the following section, we first present a motivating scenario for the platform (Section

5.2). Then, we present our study to identify the functional and architectural requirements of

ISEP (Section 5.3). In Section 5.4, we present the logical architecture of ISEP, comprising

13 components. To assess the feasibility of the reuse-centric IoTSE engineering with the

platform-based approach, we conducted 3 case studies, which involved engineering 16 IoTSE

instances of increasing complexity. The Section 5.5 presents the results from these case

studies.

5.2 Motivating Scenario

The sensors and actuators embedded in “smart buildings” form IoT infrastructures, which

continually generate content such as sensing data, actuating services, and virtual represen-

tatives of real-world entities. Human users and software applications consume this content

to address their information and functionality requirements. IoTSE systems help users to

resolve queries and retrieve IoT content from an IoT infrastructure. Whilst simple lookup

can be carried out directly on an IoT infrastructure, IoTSE systems are critically important

to enable an end user to raise and handle complicated queries due to the unpredictable

availability of IoT devices in an infrastructure. Moreover, the resolution of complex queries
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might require further aggregation and transformation of IoT content. As we have discussed

earlier in this thesis, we anticipate IoTSE systems to be a collection of instances, each of

which covers a specific IoT infrastructure and resolves a particular type of query.

Find “meeting room which reporting abnormal energy consumption”

Find “Available parking bay nearest to the Uni”

On-campus 
IoT Infra.

Smart-city 
IoT Infra.

Internet of Things Search Engine

Internet of Things Search Engine

Room A1 
and B2

Try bay 6 
on Grenfell 

str.

Detect 
Things

Detect 
Things

Collect metadata

Collect readings

Collect readings

Collect metadata

Collect location

Metadata query 
(is this meeting room?)

Process 
(Abnormality detection)

Aggregate 
& Return

Reading query 
(is there abnormality?)

Metadata query 
(is this a parking bay?)

Reading query 
(is this available?)

Location query 
(is this a close to Uni?)

Aggregate 
& Return

Fig. 5.1 Query and an excerpt of the search result. Matching criteria are highlighted.

Let us consider two scenarios as per (Figure 5.1) for which two IoTSE instances are

required. The first instance resolves queries on a smart-city infrastructure, such as finding

“available parking bays that are closest to work”. The second instance can monitor a smart

building infrastructure to query for “conference rooms that are reporting abnormal energy

consumption”. Both IoTSE instances operate on virtual representatives of real-world entities

(e.g., Web pages representing parking bays and conference rooms) and sensing streams

(e.g., pressure sensors at parking bays, energy consumption sensors in conference rooms).

Both IoTSE instances detect available virtual representatives and sensing streams from their

respective IoT infrastructures, generate indexes, assess the relevance of the detected content

to the given queries on different aspects, and aggregate the relevance scores to form the final

search results (Figure 5.1).

The overlap exhibited by the two instances indicates a potential to share and reuse

components, logical structure, and physical architecture between them. However, the current



124 A Platform-based Approach to IoTSE Engineering

literature on IoTSE shows that these instances are engineered independently from scratch

due to the lack of a suitable reference architecture for guidance and a software infrastructure.

This approach of developing every IoTSE from scratch has many disadvantages. For example,

the first instance might be engineered for an indexing scheme that relies on decentralized

index nodes located at the network’s edge, which allows it to be more sensitive to changes

in real-world phenomena. The second instance, on the other hand, might be engineered as

a more accurate and efficient relevance assessment mechanism. The engineering efforts of

both of the instances would fail to leverage the potential of reuse and save precious resources.

An alternative approach is to develop IoTSE components independently, and to engineer

IoTSE instances from the accumulated components. Architectural patterns, such as the

deployment of indexing components on decentralized nodes at the network’s edge, can

also be reused in engineering new IoTSE instances. A common IoTSE architecture, which

defines IoTSE components, their interfaces, and their exchanged data, provides a blueprint for

engineering components and composing search engine instances. However, the architecture

by itself is inadequate to enable architecture level reuse in IoTSE development. As an

example, consider an IoTSE architecture that models IoTSE components as containerized

RESTful Web services. To transform an IoTSE-related mechanism into an IoTSE component,

a component developer must learn architecture, implement a Web service compliant to the

architecture, generate and publish a container image. To compose IoTSE instances, a search

engine operator must search for necessary container images, assess their trustworthiness and

performance, and set up a software infrastructure to run container images on computing nodes

and manage the flow of data and control between them. These activities cause significant

overheads. The involved developers and operators also carry out redundant tasks.

Due to the identified problems above, additional software tools and libraries are required

to leverage reuse in IoTSE engineering. For component developers, these tools and libraries

simplify the development of components that are compliant to an IoTSE architecture. For
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search engine operators, these tools and libraries help find, deploy, run components, and

compose them into IoTSE instances. Collectively, these tools and libraries form a software

infrastructure – a platform – for enabling the reuse-centric engineering of IoTSE. The rest

of this chapter will identify the requirements, describe an architecture, and demonstrate the

feasibility of the reported software infrastructure.

5.3 Requirements of the Software Infrastructure

Given there is currently no software infrastructure to support the architecture level reuse for

engineering IoTSE, we could not find the readily usable requirements from the literature to

guide the development of such a software infrastructure. Therefore, our first research activity

was to identify the functional requirements and the potential constraints for such a software

infrastructure. For conciseness, we refer to the reported software infrastructure as the IoTSE

Platform (ISEP).
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Fig. 5.2 The process to develop IoTSE components and compose IoTSE instances, and
activities carried out by the involved parties.
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5.3.1 Determining the Functional Requirements of the ISEP Infras-

tructure

Method

We identified the functional requirements for ISEP by (1) analyzing the process carried out

by component developers and operators in engineering an IoTSE instance, (2) identifying

the activities that do not belong to the responsibility of developers or operators, and can be

outsourced to ISEP, and (3) aggregating these activities into the functional requirements of

ISEP.

The responsibility of component developers and operators and the process that they

follow were derived from the above motivating scenario. Our experience in engineering

component-based IoTSE instances also provided input for this analysis.

Results

We identified a six-step process that component developers utilize to transform an algorithm

or mechanism into a reusable, composable IoTSE component (Figure 5.2).

Step 1: Designing the RESTful API of the component service. For instance, to transform

a query assessment mechanism into an IoTSE component, a developer must decide on

combinations of URL endpoints and HTTP verbs that the component uses to receive queries

and return search results. The responsibility of this step belongs to neither a developer nor

ISEP. It belongs to an IoTSE architecture upon which developers, operators, and ISEP agree.

Step 2: Engineering the Web service. Continuing from the previous example, in this step,

the developer engineers a Web service based on the designed RESTful API, and connects

the requests and responses of the service to the inputs and outputs of the query assessment

mechanism. The engineering of the Web service is effort-intensive, duplicated among

component developers. Moreover, the developer is responsible for developing the query
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assessment mechanism, not engineering a Web service. Therefore, ISEP must offer a

framework for engineering the Web service (A1) according to the designed RESTful API and

supporting developers in connecting their mechanisms to the Web service.

Step 3: Developing a service discovery client. To support the engineering of IoTSE instances

by operators, the component service developed in the previous step must include a client so

that it can take part in service discovery activities, such as registering and querying service

registries. Given a component developer is not responsible for engineering a service discovery

client, ISEP must offer a default service discovery client (A2).

Step 4: Developing a service orchestration client. IoTSE instances are engineered by

orchestrating component services into a coherent system. To join an orchestration, the

component service engineering in the previous steps must include a client to interact with

the orchestration engine utilized by operators. Engineering an orchestration client is not

a responsibility of component developers. Therefore, ISEP must offer a default service

orchestration client (A3).

Step 5: Containerizing the service. Continuing from the previous example, in this step, the

developer creates a container image that includes the query assessment mechanism, the Web

service, the clients for discovery and orchestration, and other dependencies. The developer

is responsible for specifying the content of the container image. ISEP is responsible for

building a container image (A4) according to the instruction of the developer.

Step 6: Publishing the service. The developer specifies the repositories for sharing the

generated IoTSE component. ISEP is responsible for carrying out the publication process

(A5).

The process of engineering IoTSE instances from the accumulated components also

consists of six steps. The inputs of this process comprise the type of query to be resolved by

the engineered IoTSE instance and the computing infrastructure that will host the instance.

The output of this process is an operational IoTSE instance.
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Step 1: Acquiring component services. An operator is engineering an IoTSE instance for ad-

dressing queries similar to “finding meeting rooms reporting abnormal energy consumption”.

This instance requires components for detecting IoT-enabled sensors, collecting meta-data,

collecting sensor readings, detecting abnormality in sensing data streams, resolving queries

on meta-data and sensor readings, and aggregating search results (Figure 5.1). The operator is

responsible for specifying these requirements. ISEP is responsible for retrieving the relevant

IoTSE components from repositories (A6).

Step 2: Setting up an orchestration engine. This software system controls the invocation and

passing of data between services. ISEP is responsible for offering a default orchestration

engine (A7). This engine is compatible with the default orchestration client that ISEP offers

to component developers.

Step 3: Setting up a service registry. ISEP is responsible for offering a default registry (A8).

This registry is compatible with the default discovery client that ISEP offers to component

developers.

Step 4: Deploying the component services. In this step, the acquired IoTSE components

in the first step, the orchestration engine, and the service registry are placed on computing

nodes. Besides providing the infrastructure for hosting the IoTSE instance, the operator must

also specify how the components are placed on the nodes. ISEP carries out the deployment

according to the instruction of the operator (A9).

Step 5: Creating workflows. This step involves specifying the flow of data and control be-

tween components in an IoTSE instance. Continuing from the example in step 1, the operator

specifies two flows of data from the detector component, through collectors, processors,

query assessors, to the aggregation component (Figure 5.1). The operator also specifies the

invocation order of services (e.g., parallel, sequential). ISEP offers guidelines, tools, and

templates to help the operator define workflows (A10).
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Step 6: Bootstrapping the IoTSE instance. In this step, the deployed components start

accepting requests, and the orchestration engine receives the definitions of workflows to

start the orchestration. The operator issues a command to start the IoTSE instance. ISEP is

responsible for providing a bootstrapping tool to carry out these initializations (A11).

In summary, ISEP supports developers and operators with 11 activities (Figure 5.2),

which can be aggregated into the 5 key functional requirements of ISEP. The requirement R5

on offering a runtime environment for IoTSE components is not apparent in the process. It is

derived from the requirement of ISEP to deploy components on computing nodes.

R1: Providing a framework for implementing the interface of IoTSE components (From A1 -

A3).

R2: Providing tools for packing and publishing IoTSE components (From A4, A5).

R3: Providing tool for acquisition, deployment, and composition of IoTSE components into

IoTSE instances (From A6, A9, A10, A11).

R4: Providing a default infrastructure for composing IoTSE instances from components

(From A7, A8).

R5: Providing a runtime environment for IoTSE components.

Whilst the reported process corresponds to the encapsulation of IoTSE components as

containerized Web service, this process is generalizable to different architectural styles. We

will address this concern in a later discussion of threats to validity.
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5.3.2 Influence from IoTSE Architecture

According to the requirement R5, ISEP must provide a runtime environment for IoTSE

components. It follows that ISEP must span all computing nodes that host IoTSE components.

As a result, the deployment structure of IoTSE, regarding the topology and physical location

of computing nodes, presents a requirement to the architecture of ISEP.

Method

To identify the influence of the deployment structure of IoTSE on ISEP, we need to know

the types and the distribution of these structures. In order to acquire this information, we

performed a systematic extraction and synthesis of the topology and physical location of

hardware nodes utilized by representative IoTSE prototypes. From this information, we

derived notable features of the IoTSE architecture, and identified their influence on ISEP.

We conducted the stated analysis on 36 representative IoTSE prototypes that have been

introduced in Chapter 2. From each of the IoTSE prototype, we extracted the topology and

physical location of its computing nodes. Results were synthesized by tabulation.

Results

Three topologies that involve either cloud nodes, edge nodes, or a combination of them

were identified from the prominent IoTSE prototypes (Table 5.1). Centralised, cloud-based

deployment was identified as the most common deployment pattern. A majority of non-IoT

search engines have also utilized this pattern. Other prominent deployment patterns that were

identified from IoTSE prototypes involve multiple computing nodes spanning from edges

to cloud. These nodes can be arranged as a hierarchy with a central node and multiple leaf

nodes, or as a collection of peer nodes.

Two notable features of the IoTSE architecture that emerged from the extracted data

are the distribution of an IoTSE instance across computing nodes and the utilization of
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Table 5.1 Distribution of topology and physical location of computing nodes identified in
IoTSE prototypes

Cloud Cloud -
Edge

Edge

Multiple peer nodes 1 7

One central node - Multiple leaf nodes 3 7

One node 16 1

edge nodes with limited computing capabilities. Based on these features, we identified the

requirement R6 for ISEP.

R6: The platform must be able to manage and deploy a component of an IoTSE across

multiple, potentially heterogeneous computing nodes.

5.4 A Platform for Engineering and Operating IoTSE

5.4.1 Components of the ISEP

Based on the identified requirements from Section III, we now propose a software infras-

tructure for enabling architecture level reuse in IoTSE development and operation. This

infrastructure comprises 13 components that are clustered by their functionality into five

groups (Table 5.2). To help readers understand these components, we discuss them in the

context of engineering IoTSE components as containerized Web services.

Table 5.2 Functionality and potential deployment location of components in the platform

Group Component Functionality Deployment

Component
Framework

Interface
Library

Encoding the interface of IoTSE
components, which is predefined by
an IoTSE reference architecture

Development
machine; inside
IoTSE
components
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Continuation of Table 5.2

Group Component Functionality Deployment

Interface
Engine

Making interface of IoTSE
components accessible

Development
machine; inside
IoTSE
components

Interoperation
Mechanism

Making the interoperation and
composition of IoTSE components
into IoTSE instances possible

Development
machine; inside
IoTSE
components

Tools for
Developers

Packing Tools Supporting the packing of IoTSE
components into reusable,
composable software components

Development
machine, or cloud
back-end

Publishing
Tools

Supporting the publishing of IoTSE
components to repositories chosen
by the developers

Development
machine, or cloud
back-end

Repository Component
Repository

Storing IoTSE components
published by developers

Cloud back-end

Pattern
Repository

Recording composition and
deployment patterns of previous
IoTSE instances for future reference
and reuse

Cloud back-end

Automatic
Evaluation

Performing automatic evaluation on
performance, security, and
trustworthiness of accumulated
IoTSE components

Cloud back-end

Tools for
Operators

Component
Acquisition
Tools

Querying and acquiring IoTSE
components from repositories

Operator machine,
or cloud back-end

Component
Deployment
Tools

Deploying IoTSE components on
computing nodes based on the
specification of operators

Operator machine,
or cloud back-end

Composition
Engine

Controlling the invocation of IoTSE
components according to a
predefined composition pattern

Operator machine,
or cloud back-end
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Continuation of Table 5.2

Group Component Functionality Deployment

Bootstrapping
Tools

Bootstrapping IoTSE instances
according to the specification by
operators

Operator machine,
or cloud back-end

Runtime
Environment

Runtime
Environment

Comprising of everything necessary
for running IoTSE components.

Computing nodes
hosting an IoTSE
instance

End of Table

The Component Framework group offers a foundation to build reusable, composable

IoTSE components from algorithms and mechanisms that are contributed by component

developers. This group addresses the requirement R1. In the context of engineering IoTSE

components as containerized Web services, the Interface Engine is a Web server. The Inter-

face Library is a Web service implementation library that has been extended to include the

specification of RESTful APIs of all IoTSE component types. With this library, component

developers can ensure that their IoTSE components are compatible with others that utilize the

same library, without having to learn the reference architecture of IoTSE. The Interoperation

Mechanism comprises the service discovery and orchestration clients.

The tools for developers group offers software tools for packing and publishing IoTSE

components to different repositories that form the repository group. These tools address the

requirement R2, while the repositories address the requirement R3. The tools for operators

group offers IoTSE operators with software tools for acquiring, composing, and deploying

IoTSE components on computing infrastructures to generate IoTSE systems. These tools

address the requirements R3 and R4. Finally, the runtime environment group offers everything

necessary for running IoTSE components on computing nodes. This group addresses the

requirement R5 and is influenced by the requirement R6. In the context of the motivating

scenario, the packing tools correspond to containerization tools, the repositories correspond
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to container registries, and the runtime environment corresponds to daemons that execute

container images.

5.5 Feasibility of the Platform-based Approach in the Reuse-

centric IoTSE Engineering

5.5.1 Method

In order to demonstrate the feasibility of enabling architecture level reuse in IoTSE de-

velopment with the proposed platform, three case studies were conducted. In each case

study, a series of IoTSE prototypes were developed and assessed. In the first case study,

simple IoTSE instances that discover and search for IoT-enabled sensors based on their

metadata were investigated. Partial reuse of components was investigated in the second case

study, which involves IoTSE instance querying sensors by their real-time state. Full reuse

of components was demonstrated in the third case study on multi-modal IoTSE. To support

the development and the assessment of IoTSE prototypes, a reference implementation of the

proposed platform and a test bed were developed.

The performance impact – overhead – of developing and operating an IoTSE instance as a

set of loosely coupled components also contributes to the feasibility of leveraging architecture

level reuse in IoTSE development. The overhead caused by ISEP in an IoTSE instance was

quantified as the difference between the response time of the instance – the time between

the reception of a query and the return of query results – and the total execution time of the

components. In order to acquire these metrics, each IoTSE instance was subjected to a query

30 times, and the measurements were extracted from the statistics reported by the service

orchestration engine. The results from all IoTSE instances were tabulated and visualized

together for comparison and analysis.
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A reference implementation of ISEP

The component framework of ISEP codifies service types and service interfaces presented in

Table 5.3. Each type of service is codified in the framework as an abstract class. It contains

resource handlers that response to incoming requests for a combination of endpoint-verb.

These handlers validate and parse incoming data, populate relevant data structures, and

invoke abstract methods that would be implemented by component developers to call their

component logic. Resource handlers are built upon Flask RESTful library1, which is an

extension to develop Web service on a Python-based Web application framework. Gunicorn

- a production-ready, WSGI (Web Server Gateway Interface) compliant Web servers, is

included as the default Web server for hosting the service interface. For service orchestration,

a configurable client is provided for interacting with Netflix’s Conductor – an open-source

and scalable workflow-based service orchestration engine.

The majority of the development and operation tools in the reference implementation of

ISEP revolve around Docker and Netflix’s Conductor engine. The containerisation tool is

based on the image building tool that is available in the Docker daemon. Service publishing

is based on the ability of the Docker daemon to push images to remote repositories. Tools for

retrieving container images of IoTSE components are also based on built-in utilities of the

Docker deamon. For service deployment, a combination of the Docker stack deployment

ability and the “Docker-compose” utility is utilised. These tools accept YAML based

declarations of the deployment structure of IoTSE instances (i.e., which service on which

node) and deploy containers onto nodes automatically. The composition is handled by

Netflix’s Conductor. This orchestration engine accepts JSON based declarations of control

flows and data flows between services, and orchestrate services accordingly.

1https://flask-restful.readthedocs.io/en/latest/

https://flask-restful.readthedocs.io/en/latest/
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Table 5.3 Types of Component Services and Service Interfaces in our reference implementa-
tion of ISEP

Component URL Endpoint HTTP
Verb

Functionality

Detector /api/new-res-ids GET Invoke the content detection process
Collector /api/res-contents POST Invoke content collection on the given

set of URL and return a req-id for
retrieving collected data.

/api/res-contents/req-id GET Get the set of collected IoT content
identified by req-id

Storage /api/iot-resources POST Store IoT content
/api/iot-resources/res-id GET Retrieve the IoT content identified by

res-id
Indexer /api/index POST Invoke the indexing mechanism
Searcher /api/queries POST Submit a query; invoke the query

processing; creates a result_id
/api/results/res-id GET Retrieve a set of search results

identified by res-id
Aggregator /api/agg-results POST Accept a list of search results for future

aggregation
/api/agg-results/res-id GET Aggregate result sets linked to the

res-id
Facade /queries POST Submit a query; initialise query

processing workflows; creates a
result_id for future lookup.

/results/result_id GET Retrieve a set of search results
identified by result_id
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The runtime environment of the platform consists of Docker daemons that resides on

computing nodes hosting an IoTSE instance. These daemons are connected to each other

and to the host that offers operator’s tools.

Test Bed

All IoTSE prototypes and experiments were hosted by a Linux-based workstation with a

quad-core Xeon E3 CPU and 8GB of RAM. Up to three virtual machines would be hosted

on the workstation, depending on the deployment pattern of an IoTSE prototype in an

experiment.

IntelLab dataset2 was utilised to demonstrate the functionality and performance of IoTSE

prototypes. This dataset consists of data from 54 sensors deployed in the Intel Berkeley

Research lab between February 28th and April 5th, 2004. These sensors report timestamped

topology information, along with humidity, temperature, light and voltage values once every

31 seconds.

In order to expose these data streams on the Web as IoT-enabled sensors, a NodeJD-based

sensor gateway was developed. This gateway transforms metadata and sensing data of sensors

into JSON documents and serves them as Web resources according to the SensorThings API

standard3 developed by The Open Geospatial Consortium (OGC).

5.5.2 Case Study 1

Analysis and component development

This case study addresses the class of IoTSE that discovers and searches for IoT-enabled

sensors based on their metadata. Functionalities of these systems were identified as locating

IoT gateways that serve IoT-enabled sensors on the Web, detecting the endpoints of these

2http://db.csail.mit.edu/labdata/labdata.html
3http://www.opengeospatial.org/standards/sensorthings

http://db.csail.mit.edu/labdata/labdata.html
http://www.opengeospatial.org/standards/sensorthings
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sensors, retrieving sensor metadata, storing and indexing sensor metadata, and resolving

queries for sensors with the collected data and generated index.

Component services to be implemented were derived by matching the identified function-

alities with the types of component services codified in the reference implementation of the

platform (Table 5.3). Six component services were identified and implemented:

Source Detector is responsible for detecting IoT gateways. It belongs to the Detector

component type. For detecting sources of IoT data, the IoTSE literature reports various

approaches such as utilising multicast DNS (mDNS), multicast CoAP, Simple Service Dis-

covery Protocol (SSDP) and developing specialised crawlers for the Internet of Things (e.g.,

[62]). As our experiment involves only one IoT gateway and our focus is on the integration

of IoTSE components, not developing state-of-the-arts ones, we opted to provide the address

of IoT gateway to the source detector instead of implementing detection mechanisms.

Sensor Detector is responsible for detecting endpoints of IoT-enabled sensors hosted

by the gateway. It belongs to the Detector component type. This task is complicated as the

interface to access sensors varies significantly between IoT gateways. We developed sensor

detection based on SensorThings API standard, which specifies templates for endpoints of

IoT-enabled sensors. As our IoT gateway was also compliant to the SensorThings API, sensor

detection was possible.

Metadata Collector is responsible for collecting metadata of detected sensors. It belongs

to the Collector component type. Data extraction and parsing were implemented based on

the data template defined in the SensorThings API standard.

Metadata Searcher is responsible for storing, indexing, and resolving queries on sensor

metadata. This component service combines the capability and interface of Storage, Indexer,

and Searcher component types. This combination was motivated by the large and frequent

flow of data between them. Implementation of this component was based on the capabilities

offered by MongoDB – a NoSQL database.
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An Aggregator and a Facade component service were implemented to complete this

IoTSE instance, according to the architectural vision codified in the platform. The aggregator

was implemented to return the intersection of multiple lists of search results based on sensor

ID. The facade is responsible for offering a single point of access to the IoTSE instance. It

was instantiated from the platform without alteration.

Architectural patterns

Two composition and two deployment patterns were utilised to generate four IoTSE instances

from six component services.

Two deployment patterns used were centralised and distributed, in which detector and

collector components were deployed on one virtual machine while remaining components

were deployed on a different virtual machine.

Two composition patterns used were Parallel Discovery (PD) and Interlaced Discovery

(ID). In PD, the detection and collection of IoT content are carried out independently from

the query assessment activities. In ID, the detection and collection of IoT content is invoked

only on reception of a query. This pattern emerges from IoTSE prototypes.

Results

Four IoTSE instances were subjected to a query for IoT-enabled sensors that measure

“apparent temperature” in “degree Celsius”. All instances achieved perfect precision and

recall because a database was utilised for storing and resolving queries on sensor metadata.

For conciseness, query and search result samples of each instance are omitted in favour of

the excerpts from multi-modal IoTSE instances in Case Study 3 (Figure 5.3).

The response time IoTSE instances utilising the Interlaced Discovery pattern was around

6 seconds on average, while instances with the Parallel Discovery pattern responded after

3 seconds on average (meta_ID_C and meta_PD_C in Figure 5.4). The overhead on both
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patterns was around 1 second (Figure 5.5a). Due to having much shorter response time, the

pattern PD was subjected to higher percentage of overhead, which reaches 35% on average

(Figure 5.5b).

5.5.3 Case Study 2

Analysis and component development

This case study addresses the class of IoTSE that discovers and searches for IoT-enabled

sensors based on their sensing value. This class is nearly identical, functionality-wise, to the

one in the first case study. The only difference is the type of IoT content utilised for assessing

queries: real-time sensing value. Consequently, the majority of analysis and components

developed in the previous case study are applicable to this case study.

New components developed in this case study include Reading Collector and Reading

Searcher. The reading collector was implemented to extract and parse real-time sensing value

of IoT-enabled sensors from gateway. The reading searcher is functionally equivalent to the

metadata searcher. For large sensor datasets, time series databases such as Influx DB4 are

suitable solutions. However, given the small scale of IntelLab dataset, we opted for Mongo

DB.

Architectural patterns

Patterns specified in the first case study were reused to generate four IoTSE instances from

six components.

Results

The generated IoTSE instances were subjected to a query for sensors whose latest readings

are less than 25. Similar to the first case study, these instances also achieved perfect precision

4https://www.influxdata.com/

https://www.influxdata.com/
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and recall, at the cost of high response time. The average response time and overhead of

IoTSE instances in this case study (rt_ID_C and rt_PD_C in Figure 5.4, 5.5a, 5.5b) were

nearly identical to the results from the first case study.

5.5.4 Case Study 3

Analysis and component development

This case study addresses the class of IoTSE that discovers and searches for IoT-enabled

sensors based on both their metadata and sensor readings. Functionality-wise, this class is a

hybrid between two prior classes. Consequently, the prototypes of this class can be composed

entirely from component services developed in the previously reported two cases.

Architectural patterns

Due to the existence of two searcher components, two new composition patterns were

introduced in this case study. In Sequential Search (SS) pattern, query assessment on different

aspects of IoT content is carried out as a sequence, followed by the aggregation. In Parallel

Search (PS), query assessment on different aspects of IoT content is carried out in parallel,

and then the aggregation is invoke when all sets of search results are provided.

In summary, four composition patterns (PD-SS, PD-PS, ID-SS, ID-PS) and two deploy-

ment patterns were utilised to generate eight IoTSE prototypes in this case study.

Results

The generated IoTSE instances were subjected to a query for sensors that measure “apparent

temperature” in “degree Celsius”, whose latest readings are less than 25. The search result

comprised SensorThings-compliant JSON representations of matching sensors (Figure 5.3).

The response time was measured to be from 6 to 13 seconds on average, with the

overhead contributing around 1 to 2 seconds on average (multi_ID_PS_C, multi_ID_SS_C,
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Fig. 5.3 Query and an excerpt of the search result. Matching criteria are highlighted.

multi_PD_PS_C, and multi_PD_SS_C in Figure 5.4, 5.5a, 5.5b). Around 8% of average

overhead, which was the lowest among studied instances, was achieved by the ID-PS pattern.

Due to the limitation of our computing infrastructure, the IoTSE instances that utilizes

multiple virtual machines consumed all the processing capability and incurred large response

time, which was not representative due to the overloaded state of our computer. Therefore, we

omitted the measurements from the IoTSE prototypes with distributed deployment patterns

to avoid skewing the results.
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Fig. 5.4 The query response time of IoTSE instances, measured in milliseconds.

(a) (b)

Fig. 5.5 The overhead caused by the platform on IoTSE instances, measured in milliseconds
(a) and percentages of the response time (b).
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5.6 Discussion

With the three case studies, we have demonstrated the feasibility of leveraging architecture

level reuse in engineering IoTSE with the support of a shared software infrastructure. The

first two case studies demonstrate that it is possible to build IoTSE from components indepen-

dently developed according to a shared architectural vision. The third case study presented

the prospect of generating more complex IoTSE instances by combining the components

from simpler ones. As more components had been accumulated, each following case study

exhibited a further reduction in the development effort. In the third case study, IoTSE

instances of a new class were generated without new development effort.

The reported case studies also demonstrate the simplicity of altering composition and

deployment patterns of an IoTSE. With the support of the proposed platform, an operator

can modify the workflows and deployment of an IoTSE instance without changing the

implementation of its components. This ability allowed us to isolate and study the impact of

architectural patterns on performance of an IoTSE instance, given a fixed set of components.

The significant influence of architectural patterns on the performance of IoTSE instances,

such as the drop of average response time by half when the ID-PS pattern is replaced by

PD-PS, suggests a potential for creating substantial advances in IoTSE by combining the

Software Engineering research and the IoTSE research. With the ability to alter architectural

patterns at ease, and to accumulate these patterns along with the components for building

future IoTSE instances, the proposed platform is expected to serve as the catalyst to facilitate

such incorporation.

A limitation of our case studies was the simplicity of both reference implementation of

the platform and the IoTSE components, which resulted in high response time and overhead

in the prototypes. This limitation is attributed to both the lack of access to the implementation

of the state-of-the-art solutions, and the question that our case studies address. Specifically,

an optimal implementation might improve the performance of prototypes; however, such an
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improvement does not offer any new insights into the feasibility of leveraging reuse in IoTSE

engineering using our proposed platform.

Another limitation is that we cannot draw a definite conclusion on the reduction in

development effort and the overhead as the result of the platform-based approach to IoTSE

development. The results from the three cases, albeit informative, are specific to the utilized

IoTSE reference architecture, to the reference implementation of ISEP, and to the limited

computing resource that was used to host the IoTSE prototypes. To generalize this finding,

additional implementations of ISEP based on different IoTSE reference architectures are

required. Such study is only possible when the platform is introduced to the broad research

community and adopted.

5.6.1 Threats to validity

Threats on identification of functional requirements

The identified requirements are based on the motivating scenario, which utilizes a specific

architectural vision of IoTSE. This architecture defines a specific functional decomposition

of IoTSE and dictates the use of containerized Web services for encapsulating IoTSE compo-

nents. It influences the processes utilized by developers and operators, and therefore presents

a threat to the external validity of the identified requirements. This threat was minimized in

two ways. First, the processes were confined to the transformation of IoTSE components

into reusable building blocks and the their utilization. How IoTSE components were scoped

did not contribute to these processes. Second, we identified a generalized version of the

activities specific to building IoTSE components as containerized Web services, and derived

the requirements from these activities.
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Threats on the identification of architectural requirements

One can argue that the analyzed IoTSE prototypes do not represent the IoTSE as a whole.

Therefore, the representativeness of the analyzed prototypes presents a threat to the external

validity of our findings. This threat was addressed by a systematic process of identifying and

analyzing the prototypes, which was conducted and reported in Chapter 2.

Threats to the validity of the case studies

The external validity of this study faces two threats. The lack of involvement from external

parties in case studies is the first threat. One can argue that the case studies were only possible

due to our familiarity with both the platform and the IoTSE architecture. To address this

threat, we avoided utilizing the knowledge that has not been presented in this paper nor in

the reference implementation when conducting the case studies.

The reliance on a specific architectural vision of IoTSE is the second threat. As all the

analysis and functional decomposition of IoTSE instances in three case studies utilized the

specific eight service types (Table 5.3), one can argue that the proposed solution is applicable

only to this architecture. To address this threat, we emphasize that the platform, as described

in Section 5.4, is independent of the chosen architectural vision of IoTSE. It provides a

software infrastructure to enable architecture level reuse in IoTSE, based on an architectural

vision that is shared between involving component developers and search engine operators.

We assert that if a chosen architectural vision can decompose IoTSE into non-overlapping

components, the demonstrated architecture level reuse can be achieved.

5.7 Related Works

Our work approaches IoTSE from a unique perspective which has been to date relatively

unexplored by the existing IoTSE literature. We investigate the architectural support and
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the tools required to address the diversity of the solution space of IoTSE via independent

development of components and separation of IoTSE operation from development. We ob-

serve that the existing work focuses exclusively on a class of IoTSE. For example, real-time

sensor search (Dyser [21], CSS [14, 13, 15]), context-based sensor search (CASSARAM

[10, 12], ThingSeek [62]), functionality search based on semantics [22, 23], object local-

ization (Snoogle [38], MAX [35], OCH [37]), and discovery services based on EPCglobal

specifications [29]. These efforts have concentrated on particular technical perspectives to

create new mechanisms and algorithms for efficient indexing, query processing, or simliar

functionalities.

As a result, there are only a few pieces of work in the IoTSE literature that are related

and directly comparable to our ideas reported in this paper. These related work model IoTSE

components as shared software libraries, and offer templates to simplify their development.

For example, ThingSeek [62] focuses on detecting URL of sources and sensors, while Kernel-

based IoTSE [93], which was proposed in Chapter 4, covers the entire workflow of an IoTSE

instance. These efforts share two limitations. First, developing an IoTSE instance requires

deep integration of components – distributed as shared software libraries – into the code

base of the system. This integration impedes the modification and independent scaling of

components. Second, the shared libraries make assumptions on how an IoTSE component

should be implemented (i.e., variables to use, functions to implements). Our solution reported

in this chapter addresses both of these limitations. By modelling IoTSE instances as workflow-

based composition of containerized Web services, our solution simplifies the modification of

an IoTSE instance and allows independent scaling of its components. Moreover, our solution

only makes assumptions on inputs and outputs of components to ensure their interoperability.

We give component developers total control over data models, algorithms, and technologies

utilized for implementing components.
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Software Engineering and Service-oriented Computing literature addresses various as-

pects of engineering component-based service-oriented software systems, concentrating on

recommending services for composition [94, 79, 95, 96], reconfiguring service compositions

[97–99], enabling service interoperability [100], and documentation for further composition

[101]. Our proposed architectural solution lays a foundation for applying these techniques in

the context of CBSE of search engine systems for IoT.

5.8 Conclusion

In this chapter, we have proposed a platform-based approach for IoTSE engineering. In

this approach, the engineering and operation of IoTSE instance revolve around a software

infrastructure called the IoTSE Platform (ISEP). This platform can be divided into three

parts.

The part given to component developers has a similar role to the innermost level of the

kernel proposed in the previous chapter. The developer side of ISEP comprises a component

framework and software utilities to help to transform algorithms and mechanisms into

reusable, composable IoTSE components. The operator side of ISEP comprises engines

and runtime environments for running individual IoTSE components on computing nodes

and controlling their interactions according to the workflows specified by the search engine

operators. The operator side also includes tools to help operators with defining the workflows

and the deployment structure of the engineered IoTSE instance. The backend of ISEP

includes repositories of components and patterns. It also includes mechanisms for the

automatic evaluation.

The most notable advance of the platform-based approach over the kernel-based approach

is the total separation of the architecture from the implementation of an IoTSE instance.

Given the same set of components, operators can specify various workflows and deployment

structures, and generate multiple IoTSE instances, without having to alter the implementation
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of components. Three case studies, which engineered 16 IoTSE instances, have demonstrated

this ability. Notably, in the third case study, complex IoTSE instances were engineered

entirely from the components of simpler ones. This ability is unprecedented in the IoTSE

literature.

Future works can incorporate security, privacy, and trust support to the software infras-

tructure to provide built-in protection to IoTSE instances. Future works can also consider

automatic IoTSE engineering, based on the components and patterns that will be accumulated.

Implementation wise, future works can also improve the overall efficiency of the reference

implementation of ISEP based on containerized Web services.





Chapter 6

Conclusion

At the beginning of the effort on developing novel discovery and search systems for the

Internet of Things, we recognized the potential and the necessity of leveraging reuse in

engineering these systems, and the lack of architectural support for such reuse-centric IoTSE

engineering.

Due to the diversity of IoT content, which in turn generate a diverse solution space for

IoTSE, we believed that the successful realization of IoTSE does not hinge on the discovery

of an unknown, magical algorithm that can “find anything, at any time and any place”.

Instead, this success depends on the ability to combine the state-of-the-art mechanisms for

discovering and querying different IoT content types to address any combination of IoT

content types that is demanded by incoming queries.

Moreover, due to the sensitivity and location-dependent nature of IoT content, and due

to the emerging trend of decentralizing IoTSE in the literature, it was apparent that IoTSE

will emerge, not as a large and centralized entity, but as a collection of smaller instances that

monitor different IoTSE infrastructure and specialize in different types of IoT query.

Both observations pointed toward enabling reuse-centric engineering as a potential

solution for realizing the Internet of Things Search Engines. The aims of this thesis were

proposing the reference architecture and the software infrastructure necessary for engineering
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IoTSE instances, which support leveraging the reuse of components and architectural patterns.

In this chapter, we summarize our achievements in realizing these aims and the limitations of

our proposed solution. We also discuss further applications areas that might benefit from the

proposed solution and finally conclude this thesis with a discussion on future works.

6.1 Thesis Summary

To summarize the thesis, we revisit its three objectives that were specified in Chapter 1 and

present details on how they have been achieved with the research conducted in this thesis.

6.1.1 Providing a holistic insight in the current state of IoTSE

The first objective of the thesis was to provide a holistic insight into the current state of

IoTSE research and development. To achieve this objective, we conducted a systematic

and comprehensive study that cover over 200 research works on IoTSE, 6 industrial works,

and 4 related international standards (Chapter 2). By the time this study was completed, its

coverage in terms of the number and the diversity of IoTSE works was unprecedented.

By analyzing the number of publication, the number of in-field citations, and the number

of works receiving in-field citations, we identified a cluster of research works published

between 2010 and 2012 that influences majority of IoTSE literature. Most of these works

consider IoTSE as a centralized system that retrieves sensors based on either their static

semantic description or their latest sensing value. Together, they drove the perception of

what IoTSE should be.

To analyze the functionality and internal operations of IoTSE, we proposed a model called

Meta-path and a basic modular decomposition of IoTSE. The meta-path model provides a

succinct and precise description an IoTSE instance regarding the types of IoT content that

it utilizes for assessing queries and deriving search results. We assessed 36 representative
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IoTSE research works, which were chosen from over 200 related works, against the meta-path

model and the shared modules.

Results of the analysis showed that searching for objects based on their ID or metadata

(R ⇒ R) is the most common form of IoTSE, followed closely by searching for objects

using their real-time state (e.g., sensor readings, location) and searching for sensor streams

(D ⇒ D). Surprisingly, searching for real-world functionality is not commonly supported

even though it is crucial in the interaction with smart environments in the IoT. Regarding

the internal operations, most IoTSE prototypes do not consider the mobility of IoT-enabled

things. The ranking of IoT content by their natural order (i.e., Query Independent ranking)

also lacks the support, despite playing a crucial role in the success of Web Search Engines.

Notably, security, privacy, and trust are also barely addressed by prototypes.

Based on the study, we identified open issues in IoTSE research, including IoT crawling,

enabling location-based search, supporting dynamic IoT content, supporting scalability to

both extremes of the spectrum, addressing security, privacy, and trust, and finally, addressing

the diversity of the IoTSE solution space by leveraging the overlaps among IoTSE instances.

6.1.2 Proposing an IoTSE Reference Architecture

The second objective of this thesis was to propose a reference architecture that captures the

commonalities of IoTSE. The research presented in Chapter 3 addresses this objective. Based

on the representative IoTSE prototypes and the common modules identified in the prior

survey (Chapter 2), we developed the reference architecture by extracting and synthesizing

the workflows and deployment structure of IoTSE prototype iteratively.

By following the stated method, we identified 18 functional components of IoTSE from

the overlapping activities of workflows. The extracted workflows were generalized and

organized into a taxonomy of 13 composition patterns, which can be combined to describe

a wide range of workflows in an IoTSE instance. Extracted deployment structures were
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generalized into a taxonomy of 6 deployment patterns. Finally, we introduced a framework

to guide the instantiation of IoTSE instances from the reference architecture.

The proposed IoTSE reference architecture was evaluated by mapping into two IoTSE

prototypes – Dyser [21] and IoT-SVK [17]. These works are representative and present the

extremes in terms of the architectural complexity in the IoTSE literature. In both cases, both

the workflow and the deployment structure of the prototype were entirely captured by the

components and patterns proposed in the reference architecture. The case studies conducted

in the following research on the software infrastructure, which involve engineering IoTSE

instances based on the reference architecture, further validated its suitability and utility.

6.1.3 Proposing a Software Infrastructure to support Reuse-centric

IoTSE Engineering

The last objective of this thesis was to propose a software infrastructure to support the

reuse-centric engineering of IoTSE. The purpose of this infrastructure was to simplify the

development of reusable, composable IoTSE components, and enable the engineering of

IoTSE instances from those components.

Our research on the software infrastructure started with a kernel-based approach to IoTSE

engineering. This approach was inspired by modern operating systems, which have most of

their functionality and operations developed as plug-able components around a microkernel.

Similarly, in the kernel-based approach to IoTSE engineering, each IoTSE instance consists

of modules that are plugged into an IoTSE kernel, which defines abstract templates of

modules and utilities to bootstrap and operate the IoTSE instance. Each module is a code

package that was developed upon the abstract templates in the kernel. These templates codify

the building blocks and patterns defined in the reference architecture. An IoTSE operator

has limited control over the workflow of an IoTSE instance via the choice of modules to
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include. In a case study, which involves engineering an IoTSE prototype with a reference

implementation of the kernel, the effort for engineering the instance was reduced to just 30%.

The kernel-based approach supported a wide range of IoTSE instances. However, we

also identified some enhancement potentials that would extend the support of the kernel and

prepare it for features that might emerge in the future IoTSE engineering. These enhancement

potentials motivated us to propose a platform-based approach to IoTSE engineering. We

would emphasize that this approach did not render the kernel-based approach obsolete, as the

minimal infrastructure offered by the kernel-based approach would be preferable in projects

where the additional features of the platform are not required.

The platform-based approach revolves around an Internet of Things Search Engine

Platform – ISEP – that provides a framework for developing reusable, composable IoTSE

components, provides repositories for accumulating components, provides the runtime

environment for executing IoTSE components across various computing nodes, and offers

tools for engineering IoTSE instances from accumulated components. We developed a

prototype of the platform and conducted three case studies, in which we engineered 16

IoTSE instances of increasing complexity. Notably, in the third case study, we engineered

8 multi-modal IoTSE instances entirely from the components of simpler instances. Such

degree of reuse in IoTSE engineering is unprecedented in the IoTSE literature and suggests

the feasibility of the reuse-centric IoTSE engineering based on our proposed reference

architecture and software infrastructure.

6.2 Limitations

This thesis proposed a reference architecture and software infrastructure for engineering

IoTSE instances, which support leveraging prior components and architectural patterns. As

the reference architecture focuses on the commonalities of IoTSE in terms of their operation,

it offers limited support to aspects of IoTSE that are not common and do not contribute
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directly to the content discovery and query assessment. The following sections discuss these

limitations.

6.2.1 Limited Support for Decentralized IoTSE

A decentralized IoTSE instance consists of functionally equivalent peer nodes, each of

which maintains a subset of the IoT content discovered by the IoTSE instance. Nodes in

a decentralized IoTSE instance can generally operate independently. They tend to resolve

incoming queries locally before propagating them to other nodes in the instance. This class

of IoTSE has become more prevalent in recent IoTSE literature.

The proposed IoTSE reference architecture can model individual nodes in a decentralized

IoTSE instance. It also identified the edge-based decentralized pattern as a part of its

deployment pattern taxonomy. However, it offers limited support beyond that. For instance, it

does not model the topology of the overlay network, the routing algorithm, nor the consensus

mechanism that a decentralized IoTSE instance utilizes. This limitation extends to both the

kernel-based and the platform-based approach.

Our focus on capturing the commonalities of IoTSE in the reference architecture led to

this limitation, as decentralized IoTSE has yet to be the norm in the IoTSE literature. We

addressed this problem partially by including a vertical layer named “Management” which

can be extended in the future to include components that support P2P IoTSE instances.

6.2.2 Limited Support for Security, Privacy, and Trust

IoTSE instances work with highly sensitive content, such as the sensing data from a smart-

home or a health monitoring infrastructure. Therefore security, privacy, and trust are without

a doubt even more critical to the success of an IoTSE instance than its ability to resolve

queries. The survey on the IoTSE literature in Chapter 2 reported that these features are the
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least supported ones by the representative works, and highlighted them as the crucial open

research issues.

The proposed IoTSE reference architecture, however, offered only limited support for

modeling security, privacy, and trust measures of an IoTSE instance. This limitation was

caused by our focus on capturing the commonalities of IoTSE regarding their operation.

As stated previously, supporting security, privacy, and trust has not been common among

representative IoTSE works and does not contribute directly to discovering IoT content and

resolving queries. Therefore, the reference architecture has not capture components and

patterns for securing IoTSE.

We addressed this limitation partially by including a vertical layer named “Security” as a

placeholder for security, privacy, and trust measures to be identified in the future.

6.3 Extending Results

The studies and techniques presented in this thesis target the reuse-centric engineering of

IoTSE. However, these solutions might be applied to problems in different domains, such as

IoT Gateway engineering and Software Architecture.

6.3.1 IoT Gateway Engineering

Smart Gateways are protocol translation gateways at the edge of the network [26]. They

allow devices, which are unable to connect to the Internet, to be available on the Internet and

accessible from the Web. For instance, a smart gateway can interact with local sensor nodes

via ZigBee, generate their virtual representations, and expose them on the Web as REST

resources.

Similarly to the IoTSE, a large number of IoT gateways exist, and they have significant

overlap regarding their internal operations. Specifically, all gateways must detect and
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communicate with things using ZigBee, X10, or other radio frequency (RF) protocols. All

gateways must generate virtual representations of detected things based on a certain standard,

such as OGC SensorThing API, and serve them as Web resources. These activities are

the basis for identifying the shared components of IoT gateways, which can be built by

independent component developers. We can then apply the kernel-based approach to the

gateway engineering similarly to the IoTSE engineering.

We utilized the stated approach to engineer the IoT gateway that appeared in our case

studies. The kernel-based approach was particularly suitable, as IoT gateways do not require

complex workflows nor distributed deployment like IoTSE instances.

6.3.2 Investigating Impacts of IoTSE Architecture

IoTSE research has been focusing primarily on novel algorithms and mechanisms that can

make each IoTSE component more effective and efficient. However, because IoTSE is a

complex system that is made of various components, how these components interact with

each other and how they are deployed on computing nodes also play significant roles in the

system’s performance. In other words, investigating the IoTSE architecture is a potential

direction to improve IoTSE instances, which has been not addressed in the existing IoTSE

literature. The case studies in Chapter 5 demonstrated this point: given the same set of

components and computing nodes, changing the composition pattern of an IoTSE instance

can result in nearly 50% drop in its response time.

The solutions proposed in this thesis can facilitate studies on IoTSE architecture. The

reported taxonomies of composition and deployment patterns provide the constructs to model

the logical and physical architecture of an IoTSE instance. The platform allows modifying

different parts of an IoTSE instance independently with minimal effort. For example, a

researcher can modify only the indexing component of an IoTSE instance and observe the

impact on its response time. In another study, a researcher can focus on the impact of the
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composition and deployment pattern, as has been demonstrated in the case studies conducted

in this thesis.

6.4 Future Work

In this thesis, we laid a foundation for the reuse-centric IoTSE engineering. The most notable

result, we believe, was the ability to compose and deploy an operational IoTSE instance

simply by providing two YAML-based documents that specify its architecture. Currently,

human engineers produce these specifications by analyzing the type of query that the IoTSE

instance must support and the available computing infrastructure for hosting it. Future

research should focus on automating this process and can be conducted in the following

directions.

6.4.1 Developing Formal and Semantic Descriptions

To enable automatic IoTSE engineering, allowing computers to understand query types, com-

ponents, patterns, and the computing infrastructure involved in this process is a prerequisite.

Facilitating such machine-understanding requires formal and semantic descriptions of all

involving aspects. The meta-path model proposed in Chapter 2, as well as the components

and patterns specified in the reference architecture can be the starting points.

6.4.2 Accumulating Architectural Knowledge

Over the course of engineering an IoTSE instance, architects make a range of decisions, such

as on the type of components and architectural patterns to use to address a given type of

query. The IoTSE platform can accumulate these decisions to form a knowledge base, which

can be used as a “recipe book” for engineering future IoTSE instances.
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This knowledge base is also a source for mining new insights on how IoTSE solutions are

composed and deployed in practice. It also provides input for machines to learn and mimic

the design decisions of IoTSE architects.

6.4.3 Automating IoTSE Composition and Deployment

In order to enable automatic composition and deployment of IoTSE instances, machines

must generate the suitable workflows and deployment structure, and select the most suitable

components to realize those workflows. Given a requested type of query and a set of

computing nodes, machine-learning-based or heuristic-based approaches can be proposed

to mimic the design decision of the architects and generate the architecture specifications.

Techniques inspired by the Quality-of-service (QoS) service selection can be used to select

the best IoTSE components among accumulated and overlapping ones.

The degree of automation can increase gradually. In the beginning, machines might

only provide recommendations to human engineers. Then, machines can compose an entire

IoTSE instance and wait for the approval of the engineers before deploying. Finally, when

the automation is proven to be trustworthy and reliable, machines might compose and deploy

IoTSE instances in real-time to adapt to the incoming queries and the state of the computing

infrastructure.

By achieving this degree of automation, we will have realized a search engine for the

“Library of everything” – the Internet of Things.
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