
 

A Novel Approach to Reservoir Simulation 

Using Supervised Learning 

 

 

Shahdad Ghassemzadeh, B.Sc. (Hons), M.Sc. 

A thesis submitted for the degree of  

Doctor of Philosophy (Ph.D.)  

 

 

Australian School of Petroleum and Energy Resources 

Faculty of Engineering, Computer & Mathematical Sciences 

The University of Adelaide 

 

 

November 2020 

 

 



i 
 

Dedication 

 

This dissertation is lovingly dedicated: 

 

To my mother, Shahla, and my father, Alireza, for their eternal support, endless 

encouragement, and constant love, which have sustained me throughout my life. 

 

In memory of my grandmother, Shahrbanoo and grandfather Parviz. Although they are no 

longer of this world, their memories continue to regulate my life. 

  



ii 
 

Table of Contents 

List of Figures ........................................................................................................................... iv 

List of Tables ............................................................................................................................. v 

Abstract ..................................................................................................................................... vi 

Declaration ................................................................................................................................ ix 

Acknowledgement ..................................................................................................................... x 

List of Publications .................................................................................................................. xii 

List of Abbreviations ............................................................................................................. xiii 

List of Symbols ....................................................................................................................... xiv 

1. Introduction ........................................................................................................................ 1 

1.1. Research Background and Rationale........................................................................... 1 

1.2. Research Gap............................................................................................................... 4 

1.3. Research Aim and Objectives ..................................................................................... 5 

1.4. Thesis Structure ........................................................................................................... 6 

1.5. Chapter Overview ....................................................................................................... 8 

2. Literature Review............................................................................................................. 10 

2.1. Reservoir Simulation ................................................................................................. 10 

2.2. Proxy Modelling ........................................................................................................ 13 

2.2.1. Proxy Model Types ............................................................................................ 13 

2.3. Deep Learning ........................................................................................................... 22 

2.3.1. Introduction ........................................................................................................ 22 

2.3.2. Model Representation Mathematics .................................................................. 25 

2.3.3. Activation Functions .......................................................................................... 27 

2.3.4. Model Hyperparameters..................................................................................... 30 

2.3.5. Optimiser Algorithms ........................................................................................ 33 

3. A feasibility study into the application of Deep Learning in Reservoir Simulation ........ 41 

3.1. Application of deep learning in reservoir simulation ................................................ 41 

3.2. Deep Net Simulator (DNS): a New Insight into Reservoir Simulation .................... 47 

4. Development a Data-Driven Model for the Real-Time Forecasting of Natural Gas 

Reservoirs’ Behaviour  ............................................................................................................ 56 

5. Application of fast and reliable Data-Driven reservoir simulation in Conventional Dry 

Gas Reservoirs ......................................................................................................................... 77 

6. Modelling Hydraulically Fractured Tight Gas Reservoirs with an AI-based simulator, 

Deep Net Simulator (DNS) .................................................................................................... 110 

7. Conclusion and Future Work ......................................................................................... 116 



iii 
 

7.1. Concluding Remarks ............................................................................................... 116 

7.2. Future Work ............................................................................................................ 118 

References .............................................................................................................................. 119 

 

  



iv 
 

List of Figures 

Figure 1.1, A scheme of the closed-loop reservoir management approach ............................... 3 

Figure 1.2, A rough comparison of accuracy and speed of a commercial simulator, a proxy 

model and a possible suitable replacement. ............................................................................... 4 

Figure 2.1, Cross-sectional scheme of a typical oil/gas reservoir. ........................................... 11 

Figure 2.2, Schemes of grids for 1D (Top) and 2D (Bottom) reservoir simulation. ............... 11 

Figure 2.3, Neural networks schematic representation. ........................................................... 15 

Figure 2.4, Shallow and deep neural networks: schematic representations ............................. 23 

Figure 2.5, Schematic representation of a simple Neural Network model .............................. 25 

Figure 2.6, Linear activation function...................................................................................... 27 

Figure 2.7, Sigmoid activation function .................................................................................. 28 

Figure 2.8, ReLU activation function ...................................................................................... 29 

Figure 2.9, ELU activation function ........................................................................................ 30 

Figure 2.10, Illustrations of the effects of suitable and unsuitable learning rates on the 

validation error ......................................................................................................................... 31 

Figure 2.11, Illustration of the effect of the number of epochs on the validation error ........... 33 

Figure 2.12, Illustration of the gradient descent algorithm ...................................................... 34 

 

  



v 
 

List of Tables 

Table 1.1, List of publications and associated chapters. ............................................................ 9 

 

  



vi 
 

Abstract 

Numerical reservoir simulation has been a fundamental tool in field development and planning. 

It has been used to replicate reservoir performance and study the effects of different field 

conditions in various reservoir management scenarios, and during field development and 

planning. Consequently, physics-based simulations have been heavily used during various 

reservoir studies such as history matching, uncertainty quantification and production 

optimisation; grid size and geological complexity also have a significant influence on the speed 

of the simulation. Furthermore, heterogeneities such as natural or hydraulic fractures can cause 

convergence problems and make the simulation even more time-consuming and 

computationally expensive. Due to being computationally demanding, such studies are also 

extremely time intensive. As a result of this downside, it is practically impossible to follow 

workflows such as the closed-loop reservoir management approach, which recommends 

updating the model every time a set of new data is available. 

Additionally, any management scenario must be approached from a business and economic 

standpoint. This means that, based on the predefined objectives within the study, the respective 

layers of precision must be chosen by the user. Therefore, if less expensive techniques can be 

implemented and provide adequate results, the use of more accurate and costly methods cannot 

be justified. 

One popular solution in overcoming this problem involves the creation of an approximate 

proxy model for the required features of the desired reservoir. This is achieved by either 

replacing or combining the physics-based model with this approximate model. However, by 

following this approach, the designed proxy model is only able to represent its corresponding 

reservoir, with a new proxy model needed to be rebuilt from scratch for any new reservoir. 

With consideration to the overall runtime, it can be observed that the time taken in iteratively 

running a numerical reservoir simulation may be faster than the time taken by the entire process 
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of building, validating and using a proxy model. Therefore, this thesis focuses on the feasibility, 

advantages and contribution of a complete stand-alone AI-based simulator, Deep Net Simulator 

(DNS), in a wide range of different conventional and tight sand reservoir scenarios in 1D, 2D 

and 3D space.  

This thesis involves the use of deep learning to create a data-driven simulator, Deep Net 

Simulator (DNS), that enables the simulation of a wide range of reservoirs. Unlike conventional 

proxy approaches, a large amount of data is collected from multiple reservoirs with varying 

configurations and complexities. This results in the creation of a comprehensive database, 

including various possible reservoirs’ features and scenarios. The hypothesis is that such an 

approach will enable the data driven model to perceive and understand the principles that make 

up reservoir modelling and that the model will act as an excellent approximation to the 

equations that traditional physics-based numerical simulators solve. This objective is highly 

possible, since deep learning has been shown to be a great universal function estimator, which 

is capable of estimating the physics once given enough data and observations. Hence, this thesis 

aims to develop a series of data-driven models with the aforementioned features for various 

types of reservoirs. 

Initially, a workflow is designed to integrate a commercial simulator with a data extraction 

algorithm, enabling the generation of input-output simulation datasets. Next, the datasets are 

generated and reviewed. These datasets are then used in the training, validating and testing of 

the developed models. These developed data-driven models are able to learn and reproduce the 

physics governing fluid flow for a range of different scenarios: a single-phase oil reservoir in 

one-dimensional space, a single-phase gas reservoir in two-dimensional space, a single-phase 

gas reservoir in three-dimensional space, and hydraulically fractured tight gas reservoirs in 

two-dimensional space. 
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The developed model was evaluated in terms of precision, speed, and reliability. For each 

scenario, the developed model was compared with a commercial reservoir simulator, and its 

performance was assessed using the following metrics: mean absolute error, mean absolute 

percentage error (MAPE), mean relative error, mean square error, root mean square error and 

r squared. The developed model was able to predict 45%, 70% and 90% of the cases with less 

than 5%, 10% and 15% MAPE, respectively. Furthermore, depending on the number of cells 

requiring outputs, the developed model was able to reduce runtime by 100% up to 1.04E+08%.  

This thesis takes the first steps towards establishing a new approach using AI and deep learning, 

for reservoir management procedure that is cheaper, less computationally demanding and more 

adaptable. This approach may result in a better value creation alongside a quicker decision-

making process and, possibly, the advantage of integrating other attributes and data that are 

currently not used in physics-based models.  
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1. Introduction 

1.1.Research Background and Rationale 

Reservoir Simulation is a fundamental concept for achieving both a deep understanding and a 

detailed interpretation of a reservoir's behaviour. This is crucial in studies involving reservoir 

management and field development planning within the oil and gas industry. The reservoir's 

behaviour is quantified by using a series of partial differential equations called flow equations. 

These equations have been derived from the integration of three physical concepts: mass 

conservation, thermodynamical equilibrium and fluid flow (and may or may not include heat 

transfer). Using numerical methods such as the finite-difference method, these equations can 

be solved throughout the entire reservoir. This outcome is achieved through the use of high 

computational power, allowing for the prediction of flow through porous media; therefore, this 

prediction enables the interpretation of the performance of a reservoir over a range of different 

development scenarios. By incorporating these profiles into their respective oil and gas price 

forecasts, industries are then able to generate cash flow predictions, later to be used in 

quantifying the financial outcome for any given scenario. 

Currently, depending on if the required rock, fluid and production data, are available, physics-

based numerical simulation is the most popular method for predicting the reservoir's 

performance. Reservoir simulations are typically used for the following outcomes: to quantify 

reservoir uncertainties, calibrate the simulation model through history matching, and to 

optimise the production of the desired field. Each of these respective tasks would generally 

require the completion of hundreds, or even thousands, of simulations to examine various 

possible scenarios. Although the introduction of powerful hardware and software in recent 

years has improved the reservoir models and simulations indisputably, computational 

inefficiencies and slow runtimes are still ongoing issues within some reservoir simulation areas, 

such as history matching and optimisation applications. The main reason for this slow runtime 
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is linked to the expansion of the static models’ sizes in recent years, and the complex physics 

needing to be taken into account. A static model integrates all the collected features into one 

single network and then represents the entire reservoir as interconnected blocks in space with 

its associated attributes. Given that more advanced technologies in data collection have been 

introduced in recent years, considerably more data are available, resulting in the same 

interconnected network being represented by many more cells. In addition to the slow nature 

of reservoir simulation itself, the number of scenarios that must be examined in order to find 

the optimum configuration has caused a significant annual price rise for the computational 

expenses of reservoir optimisation and management. Although this runtime can be partially 

reduced by using high-speed computers, there is still a considerable associated cost in doing 

this, justifying the investigation of alternative approaches. Hence, designing and implementing 

faster reservoir simulators is one of the main priorities within the oil and gas industry. 

In the recent decade, the expansion of the implementation of automation within varying 

operations and services has boomed within the petroleum industry. This expansion has led to 

the development of smart field technologies, allowing for the almost continuous collection of 

field data. However, the collection of this massive amount of data causes a new challenge as 

to how to best deal with this data to create useful values and thus make better decisions. The 

closed-loop reservoir management approach is recommended as an efficient approach to 

overcome the challenges faced when a massive amount of data is present, see Figure 1.1 

(Jansen, Brouwer et al. 2009). This approach involves updating models continuously, as soon 

as new information is available. When using this workflow in decision-making, it is crucial 

that the model can fulfil the following criteria: 

• Update quickly once new data is presented. 

• Be accurate enough to represent the actual system.  
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Figure 1.1, A scheme of the closed-loop reservoir management approach (Jansen, Brouwer et 

al. 2009) 

 

Such a workflow could potentially be obtained through reliance on AI techniques. These 

techniques could enable the development of data-driven models, capable of reproducing the 

relationship existing between the input and output variables during the training phase. The key 

difference between data-driven and physics-based models is the presence of an accepted visible 

correlation, used to describe the natural phenomena in physics-based models. Unlike physics-

based models, data-driven models do not assume such tangible relationships and instead 

capture the phenomenon's information via the extraction of features that existed within the 

observed data. 

One of the most popular applications of data-driven models in reservoir engineering is the 

creation of a proxy model with the desired outputs as a replica of the simulation model of a 

specific reservoir. Through the application of mathematics functions, the proxy model of a 

corresponding reservoir can approximate the response of that system quickly and without 

requiring a significant amount of computational simulations (Artun, Ertekin et al. 2011, 

Goodwin 2015, Kalantari-Dahaghi, Mohaghegh et al. 2015, Alenezi and Mohaghegh 2016, 
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Ghassemzadeh and Charkhi 2016, He, Xie et al. 2016, Alenezi and Mohaghegh 2017, Chen, 

He et al. 2017, Mohaghegh, Gaskari et al. 2017, Kim and Shin 2018, Nwachukwu, Jeong et al. 

2018). Model inputs usually include initial conditions, operational configurations, and 

reservoir characteristics, such as porosity, permeability, etc. Model outputs include production 

or saturation profiles and recovery facts among other variables.  

1.2.Research Gap 

While these methods have provided a significant step forward in the field, each of these proxy 

models can be used only for their corresponding reservoirs, since they are Specifically built 

based on data from these reservoirs. This means that for each new reservoir, a new proxy model 

must be constructed from scratch. Furthermore, if the time spent building, validating, and 

running a proxy model is considered, it may be observed that running a physics-based 

numerical reservoir simulator iteratively could result in comparatively greater time efficiency. 

Therefore, seeking a faster alternative approach is inevitable.  

 

Figure 1.2, A rough comparison of accuracy and speed of a commercial simulator, a proxy 

model and a possible suitable replacement. 

As roughly illustrated in Figure 1.2, to be considered a faster alternative, the right candidate 

must satisfy both prerequisites of the closed-loop reservoir management approach. In other 
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words, it must have both the accuracy and generalisation of a commercial simulator and the 

runtime of a proxy model. (Ghassemzadeh, Perdomo et al. 2019).  

1.3.Research Aim and Objectives 

The aim of this research is to investigate the possibility of developing a fast and reliable 

alternative simulator: a data-driven simulator.  

This model is designed to be a forecasting tool, to instantly predict the pressure at any point 

within the reservoir once given the initial conditions, operational parameters, and reservoir 

characteristics. An advantage of using such simulator is that it enables engineers to investigate 

a wide range of scenarios in a shorter timeframe and thus present a more attractive approach.  

This approach should be interpreted as a data-driven clone to a numerical reservoir simulation, 

as it represents multiple reservoirs in place of the single reservoir approach dictated by 

conventional proxy modelling. Therefore, the outcome of this research can be considered a 

data-driven simulator. Ideally, we should learn directly from field observations, as this allows 

us to reduce the uncertainty associated with the fluid flow equations. However, since this 

research is a feasibility study, we used a commercial simulator to generate the required database 

as the surrogate to field observations in this thesis. When completed, this data-driven simulator 

is pre-trained and independent of any commercial simulators. 

This investigation will be followed by the development of a prototype of a simulator for a series 

of reservoir types and conditions. This data-driven simulator could be a game-changer in the 

industry, as it provides a fast and reliable means to achieve every decision-making stage. A 

better decision-making workflow will result in improvement in the efficiency of the reservoir 

management and development planning studies, leading to an increased profit margin and 

greater productivity in the long run. The following objectives are studied in this research: 
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• To design a workflow that integrates a commercial simulator with a data-mining algorithm 

to generate input-output simulation datasets (labelled data) 

• To generate labelled data for a single-phase one-dimension oil reservoir, and build and train 

a data-driven model to the extent that it can learn and reproduce the physics governing fluid 

flow for these assumed conditions 

• To produce labelled data corresponding to two-dimensional natural gas reservoirs and build 

and train a data-driven model and investigate its accuracy using multiple scenarios with 

unseen features and characteristics  

• To build and develop a data-driven simulator for hydraulically fractured tight gas reservoirs 

in the two-dimension space 

• To investigate the practicality of the proposed workflow in creating a data-driven simulator 

for natural gas reservoirs in the three-dimension space 

• To validate the developed data-driven simulator using real field data 

 

1.4.Thesis Structure 

This thesis consists of three principal sections: the literature review, feasibility study and model 

construction.  

In the first part (Chapter 2), a brief review of reservoir simulation and deep learning are 

presented. In addition to these, a comprehensive literature review of previous applications of 

machine learning, specifically for artificial neural networks, in reservoir simulation is 

presented. 

Next, in the second part (Chapter 3), a feasiblility study for using a data-driven model as an 

independent simulator is presented. In this study, the possibility of replacing fluid flow 

equations with a data-driven network is explored. Therefore, as a part of this study, a 
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commercial simulator coupled with a data-mining algorithm will be generated, resulting in the 

development of a workflow that generates input-output data sets for any desired scenarios. Two 

data-driven simulators were developed: one for one-dimensional oil reservoirs and one for two-

dimensional gas reservoirs. Both developed simulators used the same inputs required by a 

physics-based simulator and are able to predict the pressure drop throughout the reservoir. 

During the feasibility study, a sensitivity analysis was used to understand the effect of different 

input parameters. The proposed model presented a novel approach for modelling fluid flow in 

a porous media, based on fluid and rock properties alongside production characteristics. The 

study presents a fast approach, leading to exploration of more scenarios in history matching 

and optimization. Having explored more scenarios, engineers can provide better future cash 

flow predictions. 

In the final part (Chapters 4, 5 and 6) the designed workflow was improved using the feedback 

of the first two scenarios, allowing a bigger dataset to be created. The use of big data results in 

a data-driven network with higher capacity and, consequently, a more accurate model. This 

modified workflow was used to develop several versions of the developed data-driven 

simulator for conventional and unconventional gas reservoirs in two and three dimensions, as 

elaborated below. 

The first study was shaped around a data-driven model of a gas reservoir in a 2-dimensional 

space. A wide-ranging dataset was generated using a data-mining algorithm. This dataset was 

pre-processed, then fed into a deep learning model. The model was trained and validated via 

80% of the generated data. Next, the trained model was tested by the unseen test data, the 

remaining 20% of the generated dataset. Then, in order to examine the accuracy of the model 

even further, the developed model was tested through multiple scenarios for various input 

parameters: the initial reservoir pressure, porosity and permeability quantity and distribution, 

well location, well rate and bottom hole pressure. Each scenario was a complete synthetic 
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reservoir model, and we were able to compare the outputs of the developed model with a 

commercial simulator. In total, 53 scenarios, consisting of around 8,000,000 data points were 

used to confirm the accuracy of the model and, consequently, the developed approach.  

The next study was focused around upgrading the 2-dimensional model to a 3- dimensional 

one, in order to make the developed model more practical. Furthermore, three different PVT 

datasets were used, as opposed to only one set in the 2D model. As the 3D fluid dynamic is 

more complicated, we needed a bigger dataset. Therefore, in the development of this version 

of the model, 40,000,000 data points, corresponding to 100 synthetic models, were used. A 

similar data-mining workflow was implemented, and then the generated data set was fed to a 

commercial simulator. Similar to the previous case, the model was verified by unseen test sets 

and multiple unseen scenarios. To confirm the accuracy of the developed model, 600 scenarios, 

which consisted of more than 500,000,000 data points, were simulated by both the developed 

model and a commercial simulator. In addition to examining the accuracy, the model’s speed 

was also compared with that of a commercial simulator.  

The final study was focused on the development of a data-driven simulator for tight gas 

reservoirs, under hydraulic fracture operations. This was a challenging scenario, as the 

transmissibility is altered significantly in the fractures and the porous media in this type of 

reservoir. Again, the developed model was examined using unseen test sets and 140 

benchmarks.  

  

1.5.Chapter Overview 

This thesis is written based on the thesis by publication format. In total, five publications are 

included in this thesis; one article has been published in peer-reviewed journals, two extended 

abstracts have been published in distinguished conferences, one article has been conditionally 
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accepted, pending final feedback from reviewers and one article is currently pending 

submission.   

Table 1.1, List of publications and associated chapters. 

Paper Chapter Title Status 

1 3 
A novel approach for Dynamic Reservoir simulation 

using Deep Learning Network 
published 

2 3 
Deep Net Simulator (DNS): a New Insight into 

Reservoir Simulation 
published 

3 4 

Development of a Data-Driven Model for the Real-

Time Forecasting of Natural Gas Reservoirs’ 

Behaviour 

Not submitted 

4 5 

Deep Net Simulator (DNS); Implementing a Fast and 

Reliable Data-Driven Reservoir Simulation for Natural 

Gas Reservoirs 

Conditionally 

accepted 

5 6 

Modelling Hydraulically Fractured Tight Gas 

Reservoirs with an AI-based simulator, Deep Net 

Simulator (DNS) 

published 

 

The body of this thesis is formed by seven chapters. The first chapter includes an introduction 

to the significance of the research, general aim and objectives and structure of the dissertation. 

The second chapter presents a brief introduction to reservoir simulation and deep learning. This 

chapter also includes a comprehensive literature review of the research background in the 

application of machine learning to reservoir simulation. The third chapter presents a feasibility 

study in the development of a data-driven simulator. The fourth chapter presents the 

development of the two-dimension data-driven simulator and reports its accuracy. The fifth 

chapter presents a complete study of the accuracy and speed of the developed data-driven 

simulator in a three-dimension space. The sixth chapter presents the development of another 

version of the developed model for hydraulically fractured tight gas reservoirs. The seventh 

chapter summarises the research work in this thesis and presents recommendations for future 

work. 
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2. Literature Review  

2.1.Reservoir Simulation 

Oil and gas reservoirs are a set of lithological units that contain porous and permeable media. 

This porous media is formed of either sedimentary or carbonate layers, and hydrocarbons can 

be accumulated inside these pores. Stored fluids are trapped by an overlying impermeable 

layer, like shale. Figure 2.1 shows a simplified cross-section view of a typical hydrocarbon 

reservoir. To have a better understanding of the reservoir and make proper investment 

decisions, companies perform reservoir simulations. They regularly perform and tune these 

simulations throughout the life of a field from exploration to development, production and 

enhanced oil recovery.  

The first step to simulate a reservoir is to gather geological data and create a static model. By 

discretising the reservoir, reservoir simulators subdivide a reservoir into a series of 

interconnected blocks (finite volume elements). Gathered data is then assigned to each block; 

Figure 2.2. Flow-equations are expressed in terms of partial differential equations written in a 

finite-difference form, which discretises the problem in time and space.  This discretisation 

allows the simulator to compute the fluid flow through the entire reservoir. Each cell includes 

different variables, such as petrophysical attributes, which represent the characteristics of the 

reservoir. In the simplest case, the grids are cube-shaped cells. Due to the geological 

complexity of the internal structure of reservoirs, such as faults and fractures, an appropriate 

and acceptable reservoir model comprises millions of cells (Fanchi 2001).  
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Figure 2.1, Cross-sectional scheme of a typical oil/gas reservoir. 

 

Figure 2.2, Schemes of grids for 1D (Top) and 2D (Bottom) reservoir simulation. 

 

As the first step to simulate a reservoir and its fluid’s behaviour, a static model must be 

generated using the available data. Well and seismic data are then used to create a geological 

model, containing fine cells of rock lithofacies, porosity, permeability, fluid saturation, and 

faults location. Then, all the properties of this model are up-scaled to a reservoir model, which 
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still can have up to millions of cells. After assigning boundaries and initial conditions based on 

the type of the reservoir, the simulator solves the following or similar fluid flow equations for 

each time step and cell: 
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These equations represent the flow of oil, water, and gas in porous media in three dimensions, 

respectively. These flow equations contain all the fundamental principles we are dealing with 

in reservoir engineering: mass conservation, thermodynamic equilibrium and fluid flow. Using 

the finite-difference method, we discretise these partial differential equations in time and space 

and make these equations computable throughout the entire reservoir (Fanchi 2001, Abou-

Kassem, Farouq-Ali et al. 2013).  

Given there are no analytical solutions available for such complex equations, numerical 

methods are used to solve them. To avoid any convergence problem in the solving procedure, 

engineers mostly use the fully implicit finite difference method. Based on the field conditions 

and desired economic outcome, parameters such as reservoir and fluid characteristics, well and 

surface facility configuration, and geological condition play a vital role in the final solution. 
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2.2.Proxy Modelling 

Proxy modelling, as well as response surface methods, are used to discover and analyse the 

relationship that is found between explanatory variables with a particular response variable. 

The sections below discuss the various proxy models and how to use them best in a practical 

application. 

2.2.1. Proxy Model Types 

Through application of the simple mathematics function of the input parameters, proxy models 

approximate the response of a system without requiring computationally-demanding 

mathematical modelling. In the reservoir simulation context, proxy models can be used to 

predict model behaviour instantly and to quantify the change of an input value on output. These 

are significant advantages, as typically each of these tasks would be time and computationally 

intensive.  

Proxy models are typically designed and built based on the results from multiple simulations. 

Statistical methods are usually used to select the minimum amount of simulated runs so as to 

obtain the maximum amount of information based on the uncertainty space (Friedmann, 

Chawathe et al. 2001, Yeten, Castellini et al. 2005, Montgomery, Peck et al. 2012) 

There are several types of proxies that are generally used. Some of these proxies are heavily 

based on simple analytic functions, while others rely on the use of numerical approximations 

that cannot be represented clearly through simple functions. 

- Analytic proxy 

Analytic proxy is done through the analysis of an analytic function such as polynomial 

functions. This proxy is designed and built by fitting a suitable mathematical function to the 

respective data points through the use of regression techniques such as the least-squares 
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technique. These techniques result in the determination of the coefficients required to minimise 

the cost function between the real data points and the fitted numerical function.  

- Numerical proxy 

Like the Analytic proxy, the Numerical Proxy is used to approximate the relationship between 

the input factors against the respective output values. However, in numerical proxies, this 

relationship is obtained through a response surface developed using a numerical algorithm as 

opposed to an analytical function. Three of the most popular numerical proxy methods consist 

of Kriging, Splines and neural networks. 

Kriging is used to predict the value of a function at a sampling point through the calculation of 

the weighted average of the function values, based on the data points. Kriging assumes that all 

points are spatially correlated; this correlation is described by a variogram model, which is a 

function of the Euclidean distance between two points. The larger the gap between these points, 

the more variant these two points are.  The weights generated in computing the weighted 

average are obtained from the covariance from the sampling point, each data point respectively, 

and between all respective data points.  If a data point is closer to the sampling point, a larger 

weight is assigned to this point. These weights are computed in such a way that the cost function 

of the fitted function is minimised (Journel and Huijbregts 1978, Deutsch and Journel 1992).  

Spline function is a form of interpolation that is defined by a special type of piecewise 

polynomial. At the polynomial’s connection, the point where its function value is known, the 

spline function has a significant level of smoothness (Li and Friedmann 2005).  

Artificial Neural Network (ANN) is a popular machine learning method that has been used 

significantly in the creation of proxy models for reservoir simulation. The ANN method is 

inspired by the brain system in animals. ANN models consist of the interconnection of nodes, 

such as that of neurons in a brain. Each node accepts the inputs from other nodes and 
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respectively generates outputs based on the inputs received and the node's internal stored 

information. 

These nodes are systematically grouped into one or multiple layers. This input layer 

corresponds to receiving data from outside, and the data is then processed through the hidden 

layers in order to produce the corresponding response, which is called the output layer, Figure 

2.3. The ANN needs to be trained to deliver the proper output response per given input 

accurately. This training is completed using training data where a known relationship is given 

between the output and input factors. 

 

Figure 2.3, Neural networks schematic representation. 

 

ANN is widely used within the petroleum industry in a range of different research areas 

including formation evaluation, reservoir thermodynamics, well placement and production 

optimisation. Furthermore, ANN has been used successfully to create proxy models for a range 

of reservoirs, such as: fractured reservoirs, shale gas reservoirs, conventional reservoirs, 

enhanced oil recovery and field optimisation. 
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Below, a brief review is presented for several successful implementations of proxy models for 

different purposes in the oil and gas industry:  

Cullick et al. (2006) used a neural network to develop a proxy model for the history matching 

process. This model was used to minimise the difference between simulation results and field 

data. They applied the developed model in a water injection scenario. The reservoir model they 

studied consisted of 50,000 grid cells with approximately 141 million barrel oil in place. Data 

was generated from running a commercial simulation 50 times. The inputs of their model are 

permeability, porosity, net-to-gross and water contact depth, and the outputs are water injection 

rate and oil production rate. The developed ANN had a correlation coefficient of approximately 

1. They achieved their goal in history matching through the fine-tuning reservoir and unknown 

parameters of wells, such as fluid production rate, pressure and water cut and using the 

developed proxy model. Even though they did not report how much faster their approach is, 

they concluded that such an approach could decrease the number of required simulation in the 

history matching process (Cullick, Johnson et al. 2006). 

Mohaghegh et al. (2006) used fuzzy pattern recognition technology to develop a proxy model 

for a massive hydrocarbon field in the Middle East, consisting of close to one million grid 

blocks and more than 160 horizontal wells. Although the inputs of the model were not 

mentioned in the paper, the outputs of their model are the cumulative oil and water productions 

and water cut at any time for every horizontal well (Mohaghegh, Hafez et al. 2006) 

Artun et al. (2011) developed an optimisation scheme in the cyclic pressure pulsing process 

with CO2 and N2 in naturally fractured reservoirs. They combined genetic algorithms and 

neural networks to achieve this. First, a series of proxy models were built with respect to the 

injected gas (CO2 or N2), and the reservoir fluid (heavy, volatile or black oils). To construct 

these proxy models, they fed neural networks data collected from a limited range of reservoir 

characteristics and design scenarios, with a correlation coefficient of 0.91 on average. Then, 
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genetic algorithms were used to find the optimised operating conditions based on a cost 

function that considers cumulative injected gas and the time of the production. In the proxy 

model they made, they observed that the fracture permeability, ratio of fracture to matrix 

permeability, area, area-thickness product, oil-in-place, and oil saturation are the most critical 

parameters (Artun, Ertekin et al. 2011). 

Dahaghi et al. used ANN to develop a proxy model for a shale reservoir model consisting of 

5838 grid cells. This model was used to calculate the oil flow rate of a horizontal well as a 

function of 16 reservoir parameters, including matrix porosity and permeability, fracture 

porosity and permeability, hydraulic fracture properties, rock compaction and bottom hole 

pressure. The input data was generated by running the reservoir model 31 times for a 12-month 

production. Reporting an average correlation coefficient of 0.99, the authors reported that their 

model was fast and showed excellent accuracy when compared with a commercial simulator 

(Kalantari Dahaghi, Esmaili et al. 2012). 

Memon et al. used a radial basis neural network (RBNN) and a back-propagation neural 

network (BPNN) to construct two proxy models. Their case study was a 3-layer synthetic 

reservoir with an initial pressure of 4800 psi. This reservoir included a gas injection well and 

an oil production well. Their models had 13 inputs including porosity, permeability, initial oil 

and water saturation. The developed neural models contained one hidden layer. The developed 

model could predict the bottom hole flowing pressure throughout ten years of production. 

When compared with a commercial simulator, the authors reported that RBNN and BPNN 

models showed an accuracy of 99.78% and 44.74%, respectively. They suggested that RBNN 

have more potential in comparison with BPNN in their case study (Memon, Yong et al. 2014). 

Kalantari-Dahaghi et al. (2015a) proposed an ANN-based proxy model to estimate the 

production profile of a significantly hydraulic-fractured shale gas reservoir. The final model 

had one hidden layer with 55 neurons. The data set was generated with a commercial simulator 
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and consisted of 98020 data points, which were used for training, validation and testing their 

model. The input of the developed model consists of: matrix porosity, matrix permeability, 

natural fracture porosity, natural fracture permeability, shale factor, hydraulic fracture height, 

hydraulic fracture length, hydraulic fracture conductivity, rock density, net to gross ratio, 

Langmuir volume, Langmuir pressure, diffusion coefficient, sorption time, and initial reservoir 

pressure. The developed model had a correlation coefficient of 0.99 and an error of less than 

15% on average for the test sets when compared with a commercial simulator. They concluded 

that such an approach could be beneficial in reservoir management study and history matching 

(Kalantari-Dahaghi, Mohaghegh et al. 2015).  

Later, these same researchers (Kalantari-Dahaghi et al., 2015b) used the same approach to 

replicate the production and injection profiles for the CO2-enhanced gas recovery and storage 

process. 

They applied this method in a hydraulically-fractured Marcellus shale gas reservoir, located in 

Southwestern, Pennsylvania. The corresponding model for this reservoir was a three-layer 

model with 200,000 grid cells. To generate the spatio-temporal database, they simulated the 

reservoir model 20 times for 100 years and created a 116,000-point data set. The input data 

was similar to their previous model, but also included CO2 and CH4 properties. When 

compared with a commercial simulator, the model showed a correlation coefficient of 0.99 on 

average (Kalantari-Dahaghi, Mohaghegh et al. 2015).  

Ghassemzadeh and Hasshempour introduced a two-proxy model in order to integrate a well 

production simulation software and reservoir simulation software. By using two different proxy 

models for the well and reservoir models, the new integrated model was more than just a simple 

approximation workflow. Each of the proposed proxy models has the ability to act as 

independent simulation software, and this approach provides a more reliable and flexible 

solution with respect to the whole system proxy. In other words, the proxy models learn the 
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physics of the problem (reservoir and well) instead of being a simple copy of a specific 

reservoir and well. They integrated this workflow to a genetic algorithm optimiser to improve 

the net present value of the gas lift operation. They applied their model in order to perform 

real-time optimisation on a synthetic field with four wellbores. Their model showed a 

correlation coefficient of 0.99 and mean absolute percentage error (MAPE) of 2% on average, 

in comparison with commercial simulators. Using this approach, they enhanced the field 

production by 23%, when compared with the conventional approach (Ghassemzadeh, Charkhi 

et al. 2016). 

Kulga et al. developed a data-driven model for tight gas reservoirs with hydraulic-fractured 

horizontal wells. Their model was designed to be used as a forecasting tool to predict the well 

behaviour of the horizontal well, once reservoir characteristic, operational configuration, the 

initial condition, and the hydraulic fracture parameters are given. This proxy was built using a 

shallow neural network with three hidden layers with 16,15 and 14 neurons. The developed 

model had 13 input variables: reservoir thickness, porosity, permeability, temperature, drainage 

area, length of the horizontal well, gas gravity, initial pressure, flowing bottom-hole pressure 

and the hydraulic-fracture properties. The outputs of this model were hyperbolic decline-curve 

coefficients. They tested their model with three unseen cases, in which well performance was 

forecasted with an average error of 4.9% and the cumulative gas recovery after ten years 

forecasted with an average error of 3.2% (Kulga, Artun et al. 2017). 

Later, Kulga et al. (2017) continued this research on developing a data-driven model for tight 

gas reservoirs. They used a similar approach to determine both the reservoir characteristics and 

hydraulic fracture effectiveness, once provided with the operation parameters, initial conditions 

and the well performance characteristics. The developed ANN model consisted of three hidden 

layers with up to 57 hidden neurons. The outputs of this network were the reservoir 

characterisation and hydraulic fracture parameters, along with their respective probability 



20 
 

distribution. They applied this model to an unseen case study and incorporated the observed 

production range into a Monte Carlo simulation. Once quantified, the probabilistic estimates 

of the parameters were found to be in agreement with the predefined uncertainties in the 

numerical model. The model was observed to have an average error ranging from 12.4% to 

27.5%. Although the range is relatively high, it can be used as a quick fix for inverse problems 

due to its computational efficiency (Kulga, Artun et al. 2018). 

Alenezi and Mohaghegh (2016) used ANN and data mining to build a proxy model for a 

reservoir, being water flooded with one injection well. This reservoir was located north-east of 

the Permian Basin in West Texas. The reservoir model consisted of 9,450,362 grid cells with 

more than two thousand wells drilled since 1948. Numerical simulation was used to generate a 

comprehensive spatiotemporal database. This database, then, was used to train, calibrate, and 

verify the developed model. The outputs of their proxy model were pressure and saturation for 

each cell. The inputs for the developed model were location, injection rate, depth, injection 

cumulative, thickness, production rate, porosity, production cumulative, permeability, 

pressure, distance to injection and boundaries, and saturation. Their model showed a correlation 

coefficient of approximately one in the training and test sets (Alenezi and Mohaghegh 2016). 

Using the same approach, Alenezi and Mohaghegh (2017) created a proxy model for the 

northern platform of SACROC field. The result of this research was the development of a smart 

proxy model that can replicate simulation with 2% of MAPE (Alenezi and Mohaghegh 2017). 

Shams et al. (2017) compared four popular methods used in creating proxy models: radial basis 

function, kriging, thin-plate spline, and ANN. Using each method, they developed four proxy 

models for the Gullfaks reservoir. The reservoir model for this reservoir consisted of 487,750 

grid cells. The results showed that the ANN and kriging, with an average error of 28.88% and 

25.38 % respectively, are more effective compared to radial basis function and thin-plate 



21 
 

spline. The last two methods showed an average error of 38.09% and 35.85, respectively 

(Shams, El-Banbi et al. 2017). 

Zheng et al. (2018) aimed to develop a proxy model to predict steam-assisted gravity drainage 

(SAGD) production profiles for arbitrary configurations in shale barriers. This model was 

achieved by training a shallow ANN with 21,600 data points gathered from 300 SAGD 

scenarios. The data they used in their study derived from a synthetic model collected from 

Suncor's Firebag project. The inputs of the model were: steam injection rate, elapsed time and 

shale location indexes; and the output is the oil production rate. It took the authors twelve hours 

to generate the training dataset, and around two minutes to train their ANN. The developed 

model generates output in less than three seconds. The authors tested the developed proxy 

model using 1008 data points from 14 unseen SAGD scenarios. The average MAPE for these 

14 scenarios is 12.08% (Zheng, Leung et al. 2018). 

Navratil et al. proposed a workflow to develop a proxy model of a reservoir capable of 

predicting the well production rate. In their approach, they consider the following features from 

the neighbourhood of the wellbore as inputs: rock type, porosity, permeability, pressure and 

saturation. In this workflow, they used a recurrent neural network arranged in an encoder-

decoder architecture.  They applied the proposed approach to the SPE9 benchmark model 

(Killough 1995). They reported that, using this approach, the simulation accelerated by 2000 

times in well control optimisation. However, the accuracy of their model was quite high, as it 

ranges between 10% to 15% over a 20-40 month production period (Navratil, King et al. 2019).  

Brantson et al. (2020) developed a proxy model to predict the recovery of a reservoir under 

low salinity water polymer flooding. They integrated particle swarm optimisation with an 

artificial neural network in the development of their model. The developed model consisted of 

three hidden layers with the following input parameters: saturation time, porosity, permeability, 

water saturation, polymer concentration, salt concentration and reservoir pressure. They used 



22 
 

3200 data points in the training of this model. Their model was able to show an accuracy of 

less than 1% of MAPE for the test set (Brantson, Ju et al. 2020). 

As mentioned earlier, the downside to the conventional proxy models is that each is built based 

on data corresponding to a specific reservoir model. This means that it can only be used as a 

replacement for this corresponding model. Since a proxy model acts only as a replacement to 

its corresponding reservoir, in the case of a new reservoir, the entire process of building a proxy 

must be restarted. This includes redoing the entire time-consuming numerical simulation for 

the new reservoir in order to build the new proxy model. It implies that the limitation of this 

approach is that it always depends on the mathematical model. 

 

2.3. Deep Learning  

2.3.1. Introduction  

 

A neural network is a name given to a sequence of many neurons, which are individually 

activated through either perceiving an environment or through the weighted connections from 

other neurons. It is possible to make the network learn, understand and exhibit the desired 

behaviour by assigning appropriate weights. The learning algorithm of a neural network can 

either be supervised or unsupervised. A neural network is considered supervised when the 

network learns to map an input to an output based on training sets with already-known outputs. 

A neural network that learns unsupervised has no such pre-existing labels. In unsupervised 

learning, the goal is to seek previously-undetected patterns among a training set with the least 

possible human supervision. Regardless of the type of the problem, a long combination of 

series of neurons and different activation functions may be required (Schmidhuber 2015). 

Shallow neural networks, which typically comprise very few layers, have been around for many 

years. Backpropagation and gradient descent methods used in optimising the network, were 
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developed in the 1960s. These methods have been applied to shallow neural networks since 

1981; however, they were never successfully implemented into deep networks at that 

time.  Nonetheless, after many years of vigorous research, supervised deep neural networks 

have earned many credits by winning many official pattern recognition 

competitions. (Schmidhuber 2015). Figure 2.4 shows a schematic of shallow and deep neural 

networks.  

Deep Learning is a machine learning technique that can learn complicated relationships across 

data sets. It provides good approximations through the multiple layers with nonlinear 

transformation functions. In the learning process, functions' parameters and weights are 

optimised using the introduced data set. As mentioned, a large volume of data must be provided 

to the network to achieve optimised values for each parameter. This learning process extracts 

the useful features and information in hierarchical orders, allowing the model to obtain the 

complicated relationships of input data. It must be noted that features in higher levels are 

formed by the composition of features at lower levels (Schmidhuber 2015). 

 

Figure 2.4, Shallow and deep neural networks: schematic representations 

 



24 
 

The depth of the architecture is one of the main differences that lies between standard artificial 

neural networks and deep learning networks. Additionally, more powerful optimisation 

functions are used in the learning process of deep learning networks. Given the recent progress 

in activation functions, optimisation algorithms, and hyperparameters,  deep learning networks 

have enormous advantages over shallow neural networks (Schmidhuber 2015).  

In deep learning, there are a series of layers between the input and output data; each identifying 

essential features of the data sets. Through this capability, the deep learning nets take away the 

time consuming, complicated, and sometimes even impossible feature selection task from the 

expert. Deep neural networks are exposed to raw data; next, they pre-process the data, extract 

and select critical features for complex mapping problems and use them for prediction or 

classification (Schmidhuber 2015, Goodfellow, Bengio et al. 2016). 

Due to limited access to computational power and large data sets during the '80s and '90s, all 

experimental results were typically obtained from the few non-linear hidden layers in the 

traditional neural networks. It was not until 2006 that the computational power, data storage, 

and learning algorithms barriers were solved. Since then, deep learning nets have been 

successfully applied in many fields, including science (Mayr, Klambauer et al. 2016), biology 

(Alipanahi, Delong et al. 2015, Angermueller, Pärnamaa et al. 2016, Lore, Stoecklein et al. 

2018), medicine (Giusti, Caccia et al. 2014, Das, Pradhapan et al. 2018), computer science and 

media (Hussain, Cambria et al. 2014, Barros, Jirak et al. 2015, Stettler and Francis 2018) and 

chemistry (Jeong and Lee 2018, Wu and Zhao 2018, Kim, Park et al. 2019).  

Deep learning networks are truly an emerging technology gaining significant attention in image 

recognition, language translation, and signal/voice processing. In contrast with traditional 

neural networks, deep learning requires large volumes of data, regarding both features and 

samples, for proper training (Goodfellow, Bengio et al. 2016). Given the recent progress in 
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activation functions, optimisation algorithms and hyperparameters, deep learning networks 

have outperformed shallow neural networks. Below is a summarised explanation of deep 

learning and its most important terminologies. 

 

2.3.2. Model Representation Mathematics 

Figure 2.5 represents a scheme of a simple Neural Network model with the following features:  

a series of input nodes (three input nodes and one bias), a hidden layer comprising four nodes 

and a single output node. Bias is a constant value that allows us to shift the output of the node 

to either left or right, similar to the role of a constant in a linear function. This adjusts the output 

a little to predict the data more accurately.  

 

Figure 2.5, Schematic representation of a simple Neural Network model 

 

By denoting the "bias" nodes in layers L2 & L1 as x0 and a0 respectively, we can insert the input 

nodes into a vector "X" and the hidden layer into a vector "A". It should be noted that 𝑥0 and 

𝑎0 refer to the respective biases.  
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𝑋 = [ 

𝑥0

𝑥1

𝑥2

𝑥3

] , 𝐴 =

[
 
 
 
 
 𝑎0

(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

]
 
 
 
 
 

 

The weights (arrows) of the neural network are denoted by "w". As can be seen in the neural 

network diagram above, the weights between the input and hidden layer will be of a 3×4 matrix, 

with the weight between the hidden and output later being a 1×4 matrix. 

w(1) = [

w1,0 w1,1 w1,2 w1,3

w2,0 w2,1 w2,2 w2,3

w3,0 w3,1 w3,2 w3,3

] 

The output for each hidden layer is calculated as follows: the input vector X is multiplied by 

the weights matrix 𝛉(𝟏), then the activation function "g" is applied to their product: 

𝑎1
(2)

= 𝑔(w1,0
(1)

 𝑥0 + w1,1
(1)

 𝑥1 + w1,2
(1)

 𝑥2 + w1,3
(1)

 𝑥3) 

𝑎2
(2)

= 𝑔(w2,0
(1)

 𝑥0 + w2,1
(1)

 𝑥1 + w2,2
(1)

 𝑥2 + w2,3
(1)

𝑥 3) 

𝑎3
(2)

= 𝑔(w3,0
(1)

 𝑥0 + w3,1
(1)

 𝑥1 + w3,2
(1)

 𝑥2 + w3,3
(1)

 𝑥3) 

An activation function maps the resulting linear values into usually non-linear space. (This will 

be explained further in Section 2.3.3).  

When a neural network has multiple hidden layers and nodes, we would obtain the following 

equation: 

𝑎𝑛
𝐿 = [ 𝜎 (∑ w𝑛𝑚

2

𝑚
 [⋯ [𝜎 (∑ w𝑘𝑗

2

𝑗
 [ 𝜎 (∑ w𝑗𝑖

1

𝑖
𝑥𝑖 + 𝑏𝑗

1)] + 𝑏𝑘
2)]… ]

𝑚

+ 𝑏𝑛
𝐿)]

𝑛

     

where Layer L and layer L-1 have n and m nodes, respectively. 

If the right number of hidden layers, neurons per layer and a suitable activation function are 

selected, it allows the correlations of any significant data to be observed.  In relation to 
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improving the neural network design, there are a variety of parameters that can be changed and 

implemented. These will be discussed below. 

2.3.3. Activation Functions 

The activation function in neural networking refers to whether or not a given node should be 

triggered. As explained, this is decided based on the weighted sum of a node. Some of the more 

popular activation functions will be discussed below: 

• Linear Functions 

As the name suggests, using a linear function in neural networks would result in the output 

later being a linear function. This, however, means that it is not possible to map any non-linear 

data, as can be observed in Figure 2.6. 

𝒚 = 𝒂𝒙 

 

Figure 2.6, Linear activation function 

• Sigmoid Function: 

Sigmoid functions, better known as logarithmic functions, are a very well-known and popular 

approach as an activation function in neural networks, Figure 2.7. In this approach, the 

respective input of the function is transformed into a value between the range of 0.0 – 1.0. 

When an input value is significantly larger than 1.0, it is converted back to 1.0; likewise, for 
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values considerably smaller than 0.0 which are rounded up to 0.0. For all possible inputs, the 

curve of this function is permeably a lazy S. 

𝑆(𝑥) =
1

1 + 𝑒−𝑥
=

𝑒𝑥

𝑒𝑥 + 1 
 

 

Figure 2.7, Sigmoid activation function 

 

This function has limited sensitivity and saturation regardless of the information provided to 

the node. Once the information becomes saturated, it becomes very challenging for the 

algorithm to attempt to improve the performance of the model continuously via weight 

manipulation. 

• ReLU 

A Rectified Linear Unit (ReLU) is typically the most common activation function that is used 

throughout neural networks. Mathematically, the ReLU function is defined as 𝑦 = max(0, 𝑥); 

graphically it can be observed in Figure 2.8. 
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Figure 2.8, ReLU activation function 

If the best activation function to use is unknown, the ReLU function is typically a sufficient 

first choice. 

• ELU 

The Exponential Linear Unit (ELU), is very similar to ReLU except for having negative inputs, 

as described below:  

𝑅(𝑧) = {
𝑧 𝑧 > 0

𝛂 ( ez − 1) 𝑧 ≤ 0
} 

 

In terms of the cost function (this will be explained in Section 2.3.5), ELU tends to converge 

to zero more quickly and provide more accurate results than other functions. Compared with 

other activation functions, the ELU has an extra alpha constant, and this value should be a 

positive number.   

In comparison with ReLU's sharp linearity at zero, ELU curves tend to smooth slowly until the 

output equals – α, as per Figure 2.9. 
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Figure 2.9, ELU activation function 

 

2.3.4. Model Hyperparameters 

Model hyperparameter is the term used to describe properties that govern the entire training 

process. These hyperparameters are made up of variables that are used to both determine the 

structure of the network (i.e., No. hidden units) and how the network is to be trained (i.e, the. 

learning rate). They are defined before the training, i.e., before the optimisation of weights and 

biases. Therefore, they are directly related to the performance given by a given model under 

training. Therefore, the appropriate hyperparameters must be chosen carefully, given their 

impact on the network.  For example, given a low learning rate, the model may miss the 

important patterns presented in the data; whereas, if it is too high, it may result in collisions. 

The two main benefits of choosing good parameters are: first, that they allow the model to 

search efficiently across the space of possible hyperparameters, and second, that they enable 

easier management of a large set of experiments during parameter tuning. The most important 

hyperparameters are as follows: 

• Learning Rate 

The learning rate of a model refers to the size of each step taken per iteration. With a high 

learning rate, the large step size allows for more ground to be covered per iteration. However, 

this comes with the risk of overshooting the local minima, and can result in the algorithm 

potentially not converging. On the contrary, if a lower learning rate is used, we can confidently 
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move towards the local minima. This is due to the sheer number of gradients that are calculated 

via the small step size. Low learning rates, although being more precise, have the downside of 

taking a significantly longer time in computing the minima of the gradient. Figure 2.10 

illustrates the effect of different learning rates on the validation error. A common starting 

learning rate = 0.001. 

 

Figure 2.10, Illustrations of the effects of suitable and unsuitable learning rates on the 

validation error 

 

• Mini-Batch Size: 

Batch sizes have an influence on the following properties: the number of required resources in 

the training procedure, and the speed and number of iterations in a non-trivial system. The most 

common technique used today is the setting of a mini-batch size. If the mini-batch size is set 

to a value of 1, this is called stochastic training; on the other hand, if the mini-batch size is set 

to the number of examples in the training set, it is called batch training. The following starting 

values are recommended for use in experiments: 1, 2, 4, 8, 16, 32, 64, 128 and 258.  
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A larger mini batch causes a boost in computation; this boost, in turn, allows for the exploitation 

of matrix multiplications in training calculations. However, this comes with its consequences, 

requiring more memory in the training process. On the other hand, typically, a smaller mini 

batch introduces a higher amount of noise within error calculations; however, this can be used 

to prevent the training procedure from stopping at a local minimum. Hence, a typical safe value 

for minimal batch size = 32. 

• Number of hidden units (model capacity) 

The number of hidden units present within the neural network, determines the degree of the 

model's learning capacity. The learning capacity of a model refers to its ability to learn the 

respective function to approximate better. This demonstrates that, although the number of 

hidden units is a subtle hyperparameter, it should not be overlooked. Models with higher 

complexities typically have a larger number of hidden units and can fit a wide range of data; 

this is due to the learning capacity that this model requires. 

When compared with the optimal number of units, having slightly more is not typically an 

issue; however, a significantly larger amount leads to overfitting the data, thereby reducing its 

ability to generalise. 

• Number of epochs and generalization  

Given the importance of overfitting and number of training iteration, the model performance 

must be monitored for both the training set (the data used to adjust the weights) and the 

validation set (the unseen data used to evaluate the model generalization), Figure 2.11. This 

figure demonstrates the relationship between the number of epochs and the concept of 

generalization, by plotting the errors associated with the training and validation sets as a 

function of the number of epochs. At lower epochs, errors for both the training and validation 

sets are high. However, after a particular point in the plot at higher epochs, while the training 

error continuously decreases, the validation error starts to increase as a result of overfitting. 
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Therefore, that particular turning point is the optimal number of epochs for this model, which 

represents the optimal generalization for this training set.  

  

Figure 2.11, Illustration of the effect of the number of epochs on the validation error 

 

A common method in monitoring the validation is through intuitive methods. This method 

involves the close monitoring of the validation error and stopping the model only once the 

validation error stops decreasing. This technique, called "early stopping", involves stopping 

the training process if, within the past 10-20 epochs, the validation error has not been improved. 

2.3.5. Optimiser Algorithms 

• Gradient Descent 

Gradient descent refers to an optimisation algorithm that allows the minimization of a cost 

function and finds the optimal parameters associated with this minimised function. This is 

achieved by iteratively taking steps in the direction of steepest descent, as is defined by the 

negative gradient, Figure 2.12. Gradient descent is used in machine learning to update the 

parameters of the respective model. In this case, the parameters refer to both the coefficients in 

linear regression as well as the weights and biases of the neural networks. 

Er
ro

r

Number of Epochs

Training Validation

Optimal number 

of epochs 

Overfitting 

Zone 
underfitting 

Zone 

Generalization gap 



34 
 

Gradient descent begins at an initial value, corresponding with random values of weights and 

biases, and starts to move in the direction of the steepest descent. Due to the shape of the cost 

function (convex), initialisation does not affect the outcome. Each step tries to reduce the value 

of the cost and takes values towards the downward direction, as much as possible. After a series 

of iterations, gradient descent will converge towards a minimum cost, that associated with 

optimum network parameters. The learning rate, as described earlier, controls the size of step 

taken in each direction. 

    

 

Figure 2.12, Illustration of the gradient descent algorithm 

• Backpropagation 

Backpropagation is the name given to an algorithm that is used in the training of artificial neural 

networks. This is achieved through the analysis of gradient descent. Once the artificial neural 

network and its respective errors are provided, this method is able to calculate the gradient 

present in the error function with respect to the overall neural network weight. This has been 

observed to be a generalisation of the delta rule, where perceptions are used to update 

parameters in the multilayered neural network.  
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𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝜕𝐸(𝑋, 𝜃𝑡)

𝜕𝜃
 

Where: 

• E(𝑋, 𝜃𝑡) is the gradient of the error function, with respect to the weight 𝑤𝑖,𝑗
𝑘  and 

biases 𝑏𝑖
𝑘 

• 𝜂 = 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

• 𝜃 = 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤𝑖,𝑗
𝑘  𝑎𝑛𝑑 𝑏𝑖𝑎𝑠𝑒𝑠 𝑏𝑖

𝑘 

• 𝜃𝑡 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑎𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ′𝑡′ 

 

This 'backwards' aspect of the 'backpropagation' method, refers to the backward direction that 

the network follows to calculate the gradient. This implies that the gradient in the last layer is 

computed first, and consequently, the gradient found in the first layer is determined last. 

Throughout this method, the partial calculations of the gradient from each layer, are employed 

in the calculation of the next layer (in the backwards direction). This back stream of error data 

provides the means for effective computation of the respective gradient per layer compared 

with the separate calculation of each respective gradient layer. 

• Cost function 

A loss function allows an accurate analysis of a model’s prediction for a single training set. A 

cost function defines as the average of the loss function over the entire training set and has its 

respective curve and gradients. Based on the slope of this curve, parameters should be updated 

to increase the accuracy of the model. 

Given the cost function: 

𝑓(w, 𝑏) =
1

𝑁
∑(𝑦𝑖 − (w𝑥𝑖 + 𝑏))

2
𝑛

𝑖=𝑛

 



36 
 

The gradient can be calculated as: 

𝑓′(w, 𝑏) = [

𝑑𝑓

𝑑w
𝑑𝑓

𝑑𝑏

] =

[
 
 
 
 
 

 

1

𝑁
∑−2𝑥𝑖(𝑦𝑖 − (w𝑥𝑖 + 𝑏))

𝑛

𝑖=𝑛

1

𝑁
∑−2(𝑦𝑖 − (w𝑥𝑖 + 𝑏))

𝑛

𝑖=𝑛 ]
 
 
 
 
 

 

As described, by running the gradient descent using the cost function, two parameters can be 

controlled. These are the weights "w" and the bias "b". As each of these has a significant impact 

on the final prediction, partial derivatives can then be calculated, each with respect to the 

parameters, to be analysed as gradients. 

To solve for the gradient of each parameter, the data points must be iterated using "w" and "b" 

values in order to calculate the partial derivatives. This new gradient can then show the slope 

of the cost function at the specified position alongside the direction that the updated parameters 

should head towards. The learning rate controls the size of each update. 

• Stochastic Gradient Descent 

The stochastic gradient descent (SGD) is a fundamental algorithm used for converging neural 

networks. There are several gradient descent algorithms. One of the main differences among 

these algorithms is the number of cost calculations taken per step. As only one example is 

needed to calculate SGD, using this algorithm significantly increases the speed of the neural 

networks. 

Below is the SGD equation: it enables updating of parameters within a neural network. The 

parameters are updated in a backwards pass via backpropagation to calculate the gradient ∇: 

𝜃 = 𝜃 − η. ∇θ J(θ; x, y)   

 

where: 
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• J is the known objective function (cost function/loss function) 

• 𝜃 are the parameters 

• η  is the learning rate  

• ∇θ J(θ; x, y) is the backpropagation value 

 

(θ; x, y) means that the parameters (𝜃) have to be inputted alongside a training example and a 

label, denoted 'x' and 'y' respectively. The semicolon in this equation indicates that the 

parameter theta 𝜃 is different from the training example (x) and the label (y), which are divided 

by a comma.  

The advantage of using SGD is that its process is relatively quick compared with the other 

gradient descent approaches. SDG is also relatively easy to learn due to its non-mathematics 

intensive approach when compared with newer models. 

However, as SDG is an old relative algorithm in optimisation, it is typically slower to converge 

than a newer algorithm. SGD also has a higher likelihood of being trapped at a local minimum 

rather than at the actual minimum. It is also outperformed in terms of optimising the cost 

function by more recent approaches. 

• Momentum gradient descent 

The momentum algorithm can be used to obtain to a local minimum faster, which can increase 

the speed of progression. To do this, a temperate element of time is inserted in the equation 

used to update the parameter of a neural network. 

This time element increases the momentum of the parameter's change by some gamma amount 

'γ', which is typically initialized to 0.9. This gamma value is then multiplied by the previous 

update ' νt'. 
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𝜃 = 𝜃 − η∇J(θ) + γ νt 

It can be observed that the momentum equation is very similar to the SGD equation, but with 

an added term. 

Where: 

• J is the known objective function (cost function/loss function) 

• 𝜃 are the parameters 

• η  is the learning rate  

• γ is the momentum term 

•  νt is the last update to 𝜃, called the previous update. 

 

• Adaptive moment estimation (Adam) 

The adaptive moment estimation, also known as Adam, is most typically the optimiser, which 

performs the best. This is done using momentum and adaptive learning rates so as to converge 

faster.  

This optimisation algorithm keeps both averages of past gradient m and past squared gradient 

𝜈 at decay rates of 𝛽. Given the parameters of 𝑤𝑡 and the loss functions of 𝐿𝑡, where 't' denotes 

the index of the current training iteration (beginning at 0), Adam's parameter updates are given 

by the following: 

𝑚𝜃
𝑡+1 = 𝛽1𝑚𝜃

𝑡 + (1 − 𝛽)∇𝜃𝐿𝑡 

𝜈𝜃
𝑡+1 = 𝛽2𝜈𝜃

𝑡 + (1 − 𝛽2)(∇𝜃𝐿𝑡)2 

𝑚𝑤
𝑡+1 and 𝜈𝑤

𝑡+1 are estimations of the first and second moments, or, in other words, the mean 

and the uncentered variance of the gradients, respectively. During initial time iterations, when 
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the decay rates are low, these values are biased towards zero. To lower these biases, the 

following corrections are applied: 

�̂�𝜃 =
𝑚𝜃

𝑡+1

1 − 𝛽1
𝑡+1 

�̂� =
𝜈𝜃

𝑡+1

1 − 𝛽2
𝑡+1 

Using these corrected values, the desired parameter (weight or bias) can be calculated for the 

next time step: 

𝜃𝑡+1 = 𝜃𝑡 − η(
�̂�𝜃

√�̂�𝜃 + 𝜖
)  

where 𝜖 is a smoothing term to prevent division by zero. 

• Adaptive gradients (AdaGrad) algorithm 

Adaptive Gradients (AdaGrad) is a relatively simple approach where the learning rate is 

changed over time. This allows adaptation to the differences in datasets, considering there can 

be small or large updates accordingly to the definition of the learning rate. Having an adaptive 

learning rate enables large steps to be taken initially, followed by smaller steps as the local 

minimum is approached.  This allows for an initially fast move, followed by smaller and 

smaller steps as the learning rate decays, allowing for the faster convergence, and thus the local 

minimum will not be overstepped. 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
η

√𝜀 + ∑ (∇𝐽(𝜃𝜏,𝑖))
2

𝑡
𝜏=1

∇𝐽(𝜃𝑡,𝑖) 

Where: 

• 𝜀 is a small value to ensure that it does not divide by zero 
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• √∑ (∇𝐽(𝜃𝜏,𝑖))
2

𝑡
𝜏=1  is the square root of the summation over the gradients squared. 

These gradients are summed from time step 𝜏 = 1 up to current time step 't'. 

This algorithm works best for sparse data, as the learning rate is decreased more quickly for 

frequent parameters, and more slowly for infrequent parameters. However, there are cases 

where the learning rate can decrease very fast due to the accumulation of gradients from the 

training, showing that there is a point where the model will not learn again due to the learning 

rate being almost zero.  

 

  



41 
 

3. A feasibility study into the application of Deep Learning in Reservoir Simulation 

3.1.Application of deep learning in reservoir simulation 
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3.2. Deep Net Simulator (DNS): a New Insight into Reservoir Simulation 
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4. Development a Data-Driven Model for the Real-Time Forecasting of Natural Gas 

Reservoirs’ Behaviour 
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Abstract 

Reservoir simulation is an area within reservoir engineering where computer models are used 

to predict the flow of fluids through porous media. Reservoir simulation is typically used to 

quantify the uncertainties and to assist the decision-making process within the petroleum 

industry. The first step in achieving this is through the calibration of the model through a history 

matching process via the use of production data, depending on its availability. Therefore, 

during the reservoir management study and field development planning, the desired reservoir 

is must be simulated multiple times in order to investigate a range of different parameters and 

operation strategies. Due to the relatively long runtime that each simulation requires, the overall 

duration of the reservoir management study and field development planning is extremely time 

intensive. Therefore, engineers are always looking for a workflow to reduce the simulation 

time and, consequently, to speed up the decision-making process. Through the use of deep 

learning, a machine-learned model is developed in this study, assisting the time-consuming 

partial differential diffusivity equations to be formulated explicitly, while keeping the accuracy 

found through the implicit approach. With this approach, a data-driven simulator is developed 

to predict the pressure across a drainage area of a vertical well in a dry gas reservoir instantly. 

This simulator is a pre-trained deep learning model and can represent a wide range of rock and 

fluid properties to cover a large number of reservoirs unlike conventional proxy models, which 

represent only one corresponding reservoir. All the data required for training, testing and 

validation are generated by a commercial reservoir simulation software (ECLIPSE). Unlike the 

conventional proxy models, which must be rebuilt for a new reservoir, the developed simulator 

does not need to be retrained or rebuilt for any new reservoir as long as the reservoir 

configurations lie within the training data specified in this study. In this research, the deep net 

simulator (DNS), the developed model, showed a remarkable accuracy for the training, 

validation, and test sets. All values are in a similar range (Mean Absolute Percentage Error = 

0.9, Mean Absolute Error = 11.0, Mean Relative Error = 0.0, Mean Squared Error = 651.3, 

Root Mean Squared Error =25.5, and R-Squared = 1). To investigate DNS even further, we 

designed multiple benchmarks, which consist of a wide range of initial conditions, geological 

conditions, and production settings. The average observed error in these benchmark cases, 

where the reservoir configuration lay within the specified training range, was very close to 

zero. This low error means that DNS can show extremely accurate results when the reservoir 

configuration lies within the specified training database range. 
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1. Introduction 

Reservoir simulation is a crucial asset, used to achieve an adequate understanding and 

interpretation of reservoir behaviour in reservoir management studies. Additionally, reservoir 

simulation is used to create the fluid production profile of a reservoir. By incorporating this 

profile with the respective oil and gas price forecasts, engineers can generate cash flow 

predictions that can be used later to quantify the financial outcome for any given scenario. 

Reservoir simulation is typically used for the following: to quantify reservoir uncertainties, 

calibrate the model through history matching, and to optimise the field production. Each of 

these respective tasks would generally require the completion of hundreds, or even thousands 

of simulations. 

Furthermore, to automate and accelerate the real-time decision-making process and manage a 

reservoir efficiently during its production life, we are required to update the model continually. 

These updates are associated with real-time data, gathered from respective real-time 

measurements of various time-dependent properties. Therefore, it can be very advantageous to 

have an accurate and fast workflow that is capable of being updated rapidly once presented 

with new data (Artun 2017).   

Such a workflow could potentially be obtained by relying on machine learning techniques. 

These techniques could allow us to develop a data-driven model, capable of reproducing the 

relationship that exists between the input and output variables during the training process. The 

key difference between data-driven and physics-based models is the presence of an accepted 

visible correlation that describes the natural phenomena in physics-based models. Unlike 

physics-based models, data-driven models do not assume such a relationship and capture 

knowledge about the phenomena only through the extraction of features existing in the 

observed data (Kulga, Artun et al. 2017).  

Regardless of how impractical this may appear, this feature makes data-driven models an 

incredibly fast tool in regression problems, an example being in the prediction of reservoir 

behaviour. The reason is that a data-driven model creates an explicit numerical correlation 

approximate to the desired output, in contrast with the conventional mathematical approach, 

which requires many iterations to provide a proper approximation of the output. 

Given the above characteristics of data-driven models, the advantages of this approach can 

become more apparent in the following situations:  

• When there are no reliable physics-based models available 

• When there is a time limit, and the runtime of a physics-based model is significantly 

longer than expected 

• When not all the data required is available for the physics-based model to use. 

 

There is a high possibility that at least one of these aforementioned situations will be present 

throughout a reservoir simulation study (Kulga, Artun et al. 2018). 

 

The introduction of powerful hardware and software in recent years has sped up reservoir 

simulations. However, tasks such as history matching and uncertainty quantification, 

computational inefficiency and long runtimes remain an ongoing problem in this area. Even 

though the use of high-speed computers can reduce the runtime, there is a considerable 
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associated cost (Eldred, Orangi et al. 2014, Beckner, Haugen et al. 2015). Since we require the 

completion of hundreds, or even thousands, of simulations for any of the previously-mentioned 

tasks (history matching, uncertainty quantification and optimisation), seeking a faster 

alternative is inevitable, especially if we require an efficient yet fast workflow for the reservoir 

management study.    

To overcome this inefficiency, researchers have frequently opted to create a proxy model of a 

reservoir using mathematical or machine learning methods in an attempt to discover faster 

workflow techniques. Reduced-order modelling methods, such balanced truncation, proper 

orthogonal decomposition, trajectory-piecewise linear and dynamic mode decomposition, have 

been widely used to reduce the dimensions of the problem in order to create a fast approximate 

numerical solution (Antonio Cardoso and J. Durlofsky 2010, Kaleta, Hanea et al. 2011, 

Ghasemi, Yang et al. 2015, He, Xie et al. 2016).  

In addition to reduced-order modelling, machine learning techniques, specifically using a 

shallow artificial neural network (fewer than 3 hidden layers), have been used to construct 

proxy models for different types of reservoirs (Artun, Ertekin et al. 2011, Goodwin 2015, 

Kalantari-Dahaghi, Mohaghegh et al. 2015, Alenezi and Mohaghegh 2016, Ghassemzadeh and 

Charkhi 2016, He, Xie et al. 2016, Alenezi and Mohaghegh 2017, Chen, He et al. 2017, 

Mohaghegh, Gaskari et al. 2017, Kim and Shin 2018, Nwachukwu, Jeong et al. 2018).   

Even though these methods provide robust results, each proxy developed with these approaches 

can be used only for one corresponding reservoir. This means that for a completely new 

reservoir, the construction of a proxy model must be restarted from scratch. Furthermore, 

considering the time that is spent building, validating, and running the proper proxy model of 

a reservoir, in some cases, running a numerical reservoir simulation iteratively could be found 

to be more time-efficient in comparison. 

The aim of this article is to continue ongoing research into the application of deep learning for 

reservoir simulation (Ghassemzadeh, Perdomo et al. 2019) and to address the practical 

possibility of using a data-driven simulator, as opposed to a numerical physics-based simulator, 

for a natural gas reservoir. This developed model will be used as a forecasting tool to predict 

the pressure at any point within the reservoir instantly, given the initial conditions, operation 

parameters and reservoir characteristics. This approach can be interpreted as a proxy to the 

numerical reservoir simulator to represent multiple reservoirs, in comparison with a 

conventional proxy modelling approach, in which it can only be used to represent its 

corresponding reservoir. 

2. Methodology 

The steps that were taken to develop this proposed model are in some way similar to the steps 

previous researchers have proposed in their development of a conventional proxy model 

representing a specified reservoir. However, unlike for the convention proxy modelling 

approach, the database that was used in the training of our model was collected from a range 

of different reservoir models, all with diverse characteristics, descriptions, and settings. This 

approach results in a complex database covering a range of complexities that may occur within 

a reservoir, Figure 1. This approach can be used to help us create more sophisticated, complex 

data-driven models that can be used as a proxy for various numerical reservoir simulations.  
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The main challenge throughout this study was to train such complicated problems and to extract 

the complex features amongst this big data. We achieved this by relying on one of the latest 

machine learning techniques, deep learning.  

 

 

Figure 1, Flowchart of building DNS. This Figure demonstrates the difference between a 

traditional proxy model and a DNS model. While a proxy model corresponds to a single 

desired reservoir, our DNS can be used as a proxy for a wide variety of reservoirs. 

 

2.1.The development of a Spatiotemporal database 

During this step, we generated a spatial-temporal database to train a deep learning model and, 

consequently, to replicate the behaviour of a commercial simulator. Future work in this study 

involves the use of real field data, to fine-tune our developed model’s potential to match the 

reality of the reservoir behaviour. This allows us to reduce the uncertainty present within 

diffusivity equations. As there are different physical phenomenon used to govern different 

reservoirs, the first step in developing an alternative tool to reservoir simulation is to target a 

specific reservoir type. 

During this study, we have concentrated on natural gas reservoirs with gas expansion as the 

primary drive mechanism. There are serious reasons to focus on gas reservoirs. First, from a 

sustainability point of view, many consider natural gas as a clean bridge to a renewable future 

(Brown, Krupnick et al. 2009, Kerr 2010, Tour, Kittrell et al. 2010, Leung 2015). Given how 

many natural gas resources are prospective, we prioritised gas reservoirs over oil resources. 

Furthermore, in comparison with single-phase oil flow, single-phase gas flow is more 

complicated, and therefore more challenging to model using a data-driven model. There are 

two main differences between the single-phase flow of oil and gas. Firstly, gas flow velocities, 
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in general, are higher to the extent that the inertial forces may become significant and no longer 

be ignored. Therefore, Darcy's Law for flow in porous media should be replaced by the more 

complex Law of Forchheimer, which includes the effect of inertial forces. Secondly, gas 

compressibility and gas viscosity are dependent on pressure, and this results in a differential 

equation for gas flow that is substantially non-linear (Hagoort 1988). 

Since single-phase gas flow is investigated in this research, we selected a black oil model, 

which is accurate enough to formulate and represent the behaviour of gas reservoirs (Iwere, 

Moreno et al. 2006). Furthermore, the model we considered to simulate the fluid flow in the 

dry gas reservoir is a 1-layer (2-dimensional) system with rectangular and uniform grid cell 

distribution. We assumed the drainage area is partially saturated with gas, whilst the water-

phase is considered immobile.  

We used a commercial reservoir simulator (ECLIPSE) to develop the spatial-temporal data of 

the gas reservoirs. Using this simulator, we built a template black oil model that represented 

the drainage area of a vertical well in a dry gas reservoir. Based on a predetermined range of 

reservoir configurations, we then generated the required spatial-temporal database. 

In the development of our model, we first began with the random generation of 50 synthetic 

reservoir configurations. These models were designed with a random generator, which 

randomly chooses values that lie within the pre-specified range of data presented in Table 1. 

These values are based on real field data obtained from various reservoirs located around the 

globe (Zou, Zhu et al. 2012). By using randomised realistic values, we aimed to generate 

synthetic reservoir configurations with various properties that would allow us to determine and 

describe the physical behaviour of gas flow in porous media.  

The first step in each iteration of this flowchart was to create an ECLIPSE data file. ECLIPSE 

data files comprise the necessary reservoir descriptions and settings to model a reservoir. To 

create the proper data file, the required values were read randomly from the range presented in 

Table 1 and written into a file in the data file format. It should be noted that each value obtained 

from each row in Table 1 was chosen independently from each value in other rows in order to 

maximise the randomness. 

To make this model more realistic, we specified that the geology in our models was 

heterogeneous in every case. This allowed us to consider the specified mean porosity for each 

reservoir by applying the normal distribution function, allowing us to assign the porosity values 

over the grids in the reservoir. In order to calculate the absolute permeability for each cell, we 

used one of the most common modifications of the Wyllie-Rose empirical equation, Timur’s 

equation (Timur 1968). This equation, as shown below, provides a reasonable estimation of the 

absolute permeability of sandstone formations (Schön 2015): 

 

k = [100 × 
φ2.25

Sw,irr
]
2

        Equation 1 

 

where the Sw,irr  is the irreducible water saturation and is considered to be 20 % for all cases 

(Baker, Yarranton et al. 2015). This was followed by the calculation of the reservoir’s initial 

pressure. To do this, we used hydrostatic pressure based on the assigned reservoir depth 

(Hagoort 1988). This is given by:  
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Pi = 0.475 × Depth        Equation 2 

Apart from the previously mentioned variables, some features and settings were fixed 

throughout all the scenarios and models. In this study, we considered that the production well 

was controlled by the bottom-hole pressure (BHP). This is a practical setting in a gas field, as 

it helps us to avoid sand production and water coning, and satisfies the constraints in regards 

to production facilities and regulatory authorities (Guo and Ghalambor 2014). Therefore, the 

production well present in each model was produced at its assigned well rate until it reaches its 

allocated BHP.  It should be noted that both the saturation and relative permeability values 

were kept constant; this is due to this study being focused on single-phase flow. 

After generating the data files, the ECLIPSE software is used to simulate these data files. A 

parsing algorithm is then used to read and convert the required values from the specified data 

files, and their corresponding output files are converted into tabular-format files. Finally, these 

tabular-format files are then combined into a single file, resulting in a database of 

approximately 20,000,000 data points, corresponding to all 50 synthetic models. 

The training data files included: 

Inputs:  

• Time  

• Cell size in X, Y, Z – direction 

• Formation volume factor for water and gas 

• Viscosity  

• Porosity 

• Relative permeability in X, Y- directions 

• Gas density 

• Initial water saturation 

• Rock compressibility  

• Reservoir depth  

• Well location 

• Well rate  

• Initial pressure  

• Bottom hole pressure  

Output:  

• Cell pressure  

 

In order to help the deep learning model understand the dynamic concept of this problem, we 

included time as one of the input data sets in the model. To speed up the learning process, we 

normalised the input values with zero mean and unit variance.  
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Table 1, Range of different variables used to develop DNS 

Parameters (Oil Field Units) Min Max 

Grid Size 20 x 20 70 x 70 

Z - Direction Cell Number 1 1 

X, Y, Z - Direction Cell Size 50 300 

Gas Density (lb/ft3) 0.04 0.048 

Initial Water Saturation (%) 0.16 0.25 

Rock Compressibility @ 3500 psi (1/psi) 3.00E-06 3.50E-06 

Mean Porosity (%) 15 25 

Permeability (mD) 
Timur’s empirical 

equation 

Well rate (MSCF/d) 12000 800000 

 Reservoir Depth (Top) (ft) 5000 9000 

Initial pressure (psia) 0.475 * Depth 

Bottom Hole Pressure (psia) 800 1300 

Time step (days) 10 30 

Production Time (days) 1000 4500 

 

 

2.2.The training of the model 

The next step is the determination of a suitable architecture and the selection of a proper 

training configuration for the mentioned architecture. The database that was generated in the 

previous step is then fed into this architecture, such that the trained model can predict the same 

results as a numerical simulator.  

We used dense-layered deep learning and attempted different architectures to create the best 

possible model. We started with an architecture that contains one hidden layer and used a 

variety of different combinations of neurons, activation functions, optimisation functions and 

loss functions. Once we achieved the best possible parameters within the architecture with one 

hidden layer, we increased the number of hidden layers to two and attempted to optimise the 

new architecture by testing new values for these hyper-parameters. We continued to increase 

the layers until we were assured that there was no chance to improve the accuracy of the model 

by increasing the layers. We used the early stopping strategy with a validation set using the 

mean absolute percentage error (MAPE) as the monitoring metric in the training process to 

avoid the overfitting problem. Table 2 shows the different values we attempted for each 

parameter and hyperparameter to create the proposed model. Figure 2 illustrates the schematic 

diagram of the deep learning topology we used in this study.  
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Table 2, Parameters and hyper-parameters used in the deep learning network 

Parameters Values 

Layers Up to 25 

Neurons 2 - 300  

Epoch 5000 

Regularisation Drop out 

Activation functions Linear, Sigmoid, tanh, ELU, Relu 

Optimisation Function ADAgrad, ADAselta, ADAM, SGD 

Loss Function MSE, MAPE, MAE 

 

 

Figure 2, Schematic diagram of the deep learning topology of DNS with dense layers 

 

3. Results 

In the process of developing the final model, many architectures (up to 25 layers) and 

parameters were attempted. Figure 3 represents the accuracy of the models with a different 

number of hidden layers compared with ECLIPSE. According to this figure, the most accurate 

model that we created is a model with 15 hidden layers with a mean absolute percentage error 

(MAPE) of 0.087 for the training dataset. It is worth noting that models designed with more 

than 15 layers did not provide more accurate results.   

Although there were many architectures developed, to investigate the results further, the 

accuracy of four of these developed architectures was compared. Table 3 shows the attributes 

of these models. Model 3 represents the assumed final architecture. As explained within the 

methodology, these models demonstrate the highest level of accuracy that can be achieved with 

the corresponding number of hidden layers. 
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Figure 3, The effect of a different number of layers on the accuracy of the training dataset 

 

Table 3, Comparing the structure of the three different models 

Parameters Model 1 Model 2 Model 3 Model 4 

Layers 5 10 15 20 

Neurons 2 - 100 2-100 2-300 2-300 

Epoch 5000 5000 5000 5000 

Regularisation Drop out Drop out Drop out Drop out 

Activation functions Linear 
Linear, Elu 

and Relu 
Elu and linear Elu 

Optimization Function SGD ADAM ADAgrad ADAgrad 

Loss Function MSE MAPE MSE MSE 

 

 

Throughout this article, in addition to MAPE and R-squared (R2), we used the mean relative 

error (MRE), mean square error (MSE) and root mean square error (RMSE) to evaluate the 

developed models. Figure 4 shows the MAPE percentage of the four aforementioned models 

during the learning process. Table 4 provides a comparison of MAPE, MAE, and MRE, MSE, 

RMSE, and R2 of the four models when evaluated with the test set. 
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Figure 4, The change of accuracy (MAPE) of the models during training with 500 epochs 

 

Table 4, Comparing the accuracy of the three different developed models using different 

metrics 

Metrics Model 1 Model 2 Model 3 Model 4 

MAPE 3.011 1.210 0.891 0.890 

MAE 121.254 38.179 15.906 15.201 

MRE 0.015 0.010 0.006 0.006 

MSE 42678.967 6732.207 3632.760 3629. 604 

RMSE 206.589 82.050 60.272 60.246 

R2 0.810 0.989 0.998 0.998 

 

Given the accuracy of the models in Table 4, we were assured that the architecture used in 

model 3 is the best possible architecture for the database we used. As can be seen in Table 4, 

model 1 and model 2 were unable to reproduce the same values as the commercial simulator. 

In contrast, model 4 provided almost identical results with respect to model 3. However, the 

speed of model 3 is slightly faster when compared with model 4, as there are a lower number 

of hidden layers present.   

Although the high value of R2 and low value of MAE and MAPE respectively are a promising 

sign of the accuracy of the model 3, the value of MSE is higher than we expected. As can be 

seen from the cross-validation plot, model 3 was able to predict the pressure values below 3000  

psi and above 4000 psi with remarkable accuracy; however, it was unsuccessful in doing so for 

values between 3000 to 4000 psi. By studying the database, we realised this inaccuracy was 

caused by the lack of data points over these ranges.  To solve this failure, we improved the 

dataset and included more data points for this specific margin. We added 20,000,000 more 

points to the data set in 4 stages. Figures 5a (top left) to 5d (bottom right) show the change of 

cross-validation plots through these four stages. 
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Figure 5, The change of the trend cross-validation plot when more data is used for training 

the model 

 

By adding these data points, the quality of the databases improved, and features between 

variables were extracted more effectively by the deep learning model. After training the model 

with the new database, similar accuracies were achieved for the training, validation, and test 

sets: MAPE = 0.9, MAE = 11.0, MRE = 0.0, MSE = 651.3, RMSE =25.5, R2 = 1. Given the 

massive mismatch between model 3 and the final model, it is obvious that MSE and RMSE 

values must be considered as the main metrics of comparison in this problem and that low 

values of MAPE and MAE can be misleading. The reason the R2 values are high in all models 

is due to the number of data points we used. In other words, a high volume of accurate data 

points compensates for the less accurate values. The importance of this fact can be understood 

when comparing Figures 5a and 5d. 

3.1.Benchmarking 

We studied the effects of changing different input variables on the accuracy of DNS. Each 

benchmark includes a full simulation of a complete reservoir model. The initial reservoir 

pressure, porosity and permeability, well rate, and BHP were studied. Figure 6 compares the 

pressure calculated with ECLIPSE, with the pressure predicted using the developed model for 

the base model from Tables 5 and 6. As can be seen, the model accurately reproduced the 

pressure drop through different time steps for the base-model (MAE = 0.611, MAPE = 0.031, 

MRE = 0.000, MSE = 0.664, RMSE = 0.815, R2 = 1.000). 

 

 

 



68 
 

Table 5, Reservoir description for the base-model 

Parameters (Oil Field Units) for Base-

Model 
Values 

X, Y, Z-Direction Cell Size (ft) 100 

Reservoir Depth (ft) 5000 

Gas Density (lb/ft3) 0.044 

Initial Water Saturation (%) 0.20 

Rock Compressibility @ 3500 psi (1/psi) 3.0E-06 

Porosity (%) 0.20 

Well rate (MSCF/d) 120,000 

Time step (days) 10 

Production period (days) 1000 

Number of Cells in X and Y direction 50 

Initial pressure (psia) 3000 

Bottom Hole Pressure (psia) 1200 

 

Table 6, PVT table for the base-model 

Pressure 

Formation 

Volume Factor of 

gas (rb/MSCF) 

Gas Viscosity 

(cP) 

1414 13.947 0.0124 

1614 7.028 0.0125 

1814 4.657 0.0128 

2214 3.456 0.0130 

2614 2.240 0.0139 

3014 1.638 0.0148 

3614 1.282 0.0161 

 

 

To investigate the accuracy of the DNS, we designed different reservoir configurations based 

on the base-model. In these scenarios, different initial conditions, geology conditions and 

production settings were used to generate unseen reservoir models to examine the DNS. This 

model can be used to predict the pressure of a reservoir with unseen configurations without 

requiring further training and rebuilding, as long as the reservoir configuration lies within the 

range of the training data, Table 1. The primary benefit of such an approach is when a 

considerable number of simulations (i.e., in the range of thousands) are demanded in a limited 

time or with limited computing resources. 
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Figure 6, Pressure distribution throughout the reservoir for different time steps using DNS 

(up) and ECLIPSE  (down) 

3.1.1. Initial conditions: 

Pressure: 

Table 7 shows the accuracy of the model when we keep all the variables constant except for 

the initial pressure. As can be seen, for initial reservoir pressure less than 4000 psi, the model 

was incredibly accurate, but when we simulate reservoirs with an initial pressure higher than 

4000 psi, it started to behave inconsistently. This issue relates to the fact that these values are 

beyond the range of the initial conditions we used in the training dataset. In other words, DNS 

is unsuccessful in extrapolating beyond the range of the training data set, which is not unusual 

in data-driven models. Due to the reliable results obtained via the current version of DNS for a 

given training dataset range, we believe that, given a broader range of training sets and a higher 

degree of computation power, an updated version of DNS can outperform the current version. 
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It must be mentioned that due to our own limited computational power, we could not surpass 

using 40,000,000 data points in the current study.   

 

Table 7, The effects of different initial pressures on the accuracy of DNS 

Initial pressure 

(psia) 

MAE MAPE MRE MSE RMSE R2 

950 16.183 0.931 -0.003 438.778 20.947 0.998 

1425 6.775 0.497 0.005 47.867 6.919 0.996 

1900 14.296 0.913 0.009 259.473 16.108 0.998 

2375  

(Base Model) 
0.224 0.013 0.000 0.260 0.510 1.000 

2850 23.394 0.825 0.008 4590.823 67.756 1.000 

3325 35.022 1.116 0.010 7678.560 87.627 0.991 

3800 130.408 3.704 0.016 50274.049 224.219 0.755 

4275 380.949 10.501 0.008 178086.970 422.004 0.157 

4750 488.274 10.787 0.101 295087.841 543.220 0.415 

5225 833.426 25.938 -0.259 910401.347 954.150 0.099 

 

3.1.2. Reservoir rock properties:  

Porosity and permeability: 

The distribution of porosity and permeability can be highly variable across a reservoir. This 

variation is dependent on the geological settings of the reservoir. For example, in a sandstone 

reservoir, porosity is evenly distributed, with the permeability relatively high across the 

reservoir. However, in a carbonate reservoir, porosity and permeability depend on vugs and 

fractures, which are not uniformly distributed across the reservoir volume. Due to limitations 

in measuring these variables, there is a high level of uncertainty in the recorded values. A 

reliable simulator must provide an appropriate response to these uncertainties, as a minor 

change in the value could greatly influence the outcome. Therefore, we studied the effect of 

different distributions of porosity and permeability on the accuracy of DNS.   

In Figure 7, there are four different porosity and permeability distributions present. In the top 

left and top right figures of Figure 7, porosity images and permeability reduce towards the right 

and bottom sides. The bottom left figure is of a constant value, while the bottom right figure is 

of a random distribution. In the latest scenario, the specific mean porosity for each case was 

considered, and the normal distribution function was applied to assign porosity over the grids 

in the reservoir. Then, based on the assigned value for porosity, a value for permeability was 

assigned to each cell using Timur’s equation (eq 1). 

Table 8 shows the accuracy of DNS for the first three geological scenarios shown in Figure 7. 

Table 9 presents how a change of porosity affects the accuracy of DNS in more challenging 

cases when porosity is randomly distributed across the reservoir. As can be seen, DNS predicts 

consistent results for different porosity and permeability distributions. As shown in Tables 8 

and 9, in all cases, the DNS predictions are highly accurate, unlike the results from ECLIPSE.  
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Figure 7, An illustration of the different porosity distributions we used in this study 

Table 8, The effects of different porosity and permeability on the accuracy of DNS 

Porosity MAE MAPE MRE MSE RMSE R2 

Geology 1 4.407 0.248 -0.002 20.551 4.533 1.000 

Geology 2 4.407 0.248 -0.002 20.551 4.533 1.000 

Geology 3 4.729 0.260 -0.003 23.184 4.815 1.000 

 

Table 9, The effects of different porosity and permeability on the accuracy of DNS in 

heterogeneous formations 

Porosity MAE MAPE MRE MSE RMSE R2 

0.15 0.444 0.025 0.000 0.636 0.797 1.000 

0.16 0.261 0.015 0.000 0.364 0.604 1.000 

0.17 0.287 0.016 0.000 0.351 0.593 1.000 

0.18 0.261 0.015 0.000 0.360 0.600 1.000 

0.19 0.244 0.014 0.000 0.275 0.525 1.000 

0.2 0.232 0.013 0.000 0.298 0.546 1.000 

0.21 0.197 0.011 0.000 0.213 0.462 1.000 

0.22 0.339 0.019 0.000 0.456 0.676 1.000 

0.23 0.222 0.013 0.000 0.229 0.479 1.000 

0.24 0.228 0.013 0.000 0.296 0.544 1.000 
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3.1.3. Production Settings: 

Well location  

Wellbores were placed in various locations to evaluate the response given by DNS when the 

distance between the wellbore and boundaries varies. Table 10 demonstrates the accuracy of 

DNS compared with ECLIPSE when the different well locations are selected across the base 

model.  

 

Table 10, the effects of different well locations on the accuracy of DNS 

Well location 

(x,y) 

MAE MAPE MRE MSE RMSE R2 

5,5 (Base 

Model) 

0.224 0.013 0.000 0.260 0.510 1.000 

5,10 16.892 0.938 0.009 517.064 22.739 1.000 

10,10 13.513 0.750 0.007 413.651 20.338 1.000 

10,15 14.639 0.813 0.008 448.122 21.169 1.000 

15,15 16.892 0.938 0.009 517.064 22.739 1.000 

20,20 18.018 1.000 0.010 551.534 23.485 1.000 

25,20 20.270 1.125 0.011 620.476 24.909 1.000 

30,15 21.396 1.188 0.011 654.947 25.592 1.000 

35,10 13.513 0.750 0.007 413.651 20.338 1.000 

35,35 15.765 0.875 0.008 482.593 21.968 1.000 

 

Well rate 

Table 11 represents the accuracy of DNS compared with ECLIPSE for different well rates. It 

is evident that, as in the previous case, changing the production rate does not affect the accuracy 

of DNS. 

Table 11, the effects of different well rates on the accuracy of DNS 

Well 

rate(Mscf/d) 

MAE MAPE MRE MSE RMSE R2 

25000 0.522 0.028 0.000 0.664 0.815 1.000 

50000 0.340 0.019 0.000 0.452 0.672 1.000 

75000 0.264 0.015 0.000 0.290 0.539 1.000 

100000 0.225 0.013 0.000 0.237 0.486 1.000 

125000 0.225 0.013 0.000 0.272 0.522 1.000 

150000 0.212 0.012 0.000 0.259 0.509 1.000 

200000 0.210 0.012 0.000 0.279 0.528 1.000 

250000 0.214 0.012 0.000 0.309 0.556 1.000 

300000 0.233 0.013 0.000 0.362 0.602 1.000 

400000 0.254 0.015 0.000 0.437 0.661 1.000 
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Bottom hole pressure (BHP) 

Table 12 shows the effect of BHP on the accuracy of DNS. According to these results, changing 

the BHP does not affect accuracy. DNS has understood the influence of the determined BHP 

and predicts the correct value accordingly.  

Table 12, the effects of different BHP on the accuracy of DNS 

BHP 

(PSI) 

MAE MAPE MRE MSE RMSE R2 

800 0.206 0.012 0.000 0.242 0.492 1.000 

850 0.208 0.012 0.000 0.247 0.497 1.000 

950 0.206 0.012 0.000 0.243 0.493 1.000 

1000 0.208 0.012 0.000 0.249 0.499 1.000 

1050 0.208 0.012 0.000 0.247 0.497 1.000 

1100 0.213 0.012 0.000 0.254 0.504 1.000 

1150 0.215 0.012 0.000 0.254 0.504 1.000 

1200 0.224 0.013 0.000 0.260 0.510 1.000 

1250 0.225 0.013 0.000 0.261 0.511 1.000 

1300 0.240 0.014 0.000 0.269 0.519 1.000 

 

Despite the accuracy that DNS has shown in these benchmarks, we are aware that our research 

may have some limitations: the first being that we only consider single-phase flow.  The second 

involved the use of only one vertical production well that is considered within the reservoir. 

The third is that we did not attempt to simulate different geological structures. Regardless of 

these limitations, we believe that the results are promising and that by increasing the range of 

training data and improving computational power, we can eventually build a pre-trained 

simulator that can predict the fluid behaviour in any reservoir around the world, similar to any 

commercial numerical simulators.  

 

4. Conclusion  

This paper describes a data-driven model that predicts the pressure across a drainage area of a 

vertical well in a dry gas reservoir. The novelty of this study lies in the implementation of deep 

learning to develop a trained model with the capability to predict reservoir behaviour for a wide 

range of reservoir configurations. The results confirm that this approach is a promising method 

for building a pre-trained data-driven simulator with accurate, fast and reliable results for any 

reservoir configuration.   

Unlike the conventional approach to proxy modelling, DNS is not built for one specific 

reservoir alone. Instead, once it is built, it can be used to predict the reservoir performance for 

a wide range of reservoir configurations, without further training and building processes.  

The developed model showed similar results for the training, validation and tests sets, MAPE 

= 0.889, MAE = 11.014, MRE = 0.005, MSE = 651.276, RMSE =25.520, R2 = 0.999. We 

compared the results using different metrics to measure accuracy, as partial use of some of 

these metrics could be misleading. 
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A series of blind case studies in a wide range of different descriptions and settings are 

implemented to highlight the performance of the developed simulator, a deep net simulator. 

DNS predicts the pressure across the drainage area with remarkable accuracy when the model 

configurations lie within the training data used in this study (in the least accurate case: 

MAE<130 psi, MAPE<3.7%, MRE<0.016 psi, MSE<50275, RMSE<225 R2>0.76).  

Prior to this study, machine learning has been used to build proxy models that represent only 

one reservoir. This study shows that with recent advances in machine learning algorithms, it is 

possible to create a proxy model not just for one reservoir but also for multiple reservoirs. 

Currently, DNS works only under the assumption of having one vertical wellbore in a single-

phase flow reservoir. Despite these limitations, this ongoing study aims to develop a data-

driven model that can act as a proxy model for a numerical reservoir simulator. This fast 

simulator can be used to investigate many cases during history matching, uncertainty 

quantification and field optimisation, leading to a more effective and lower cost decision-

making process.  
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Abstract 

Physics-based reservoir simulation is the backbone of many decision-making processes in the 

oil and gas industry. However, due to being computationally demanding, simulating a model 

multiple times in iterative studies, such as history matching and production optimisation, is 

extremely time-intensive. This downside results in it being practically impossible to update the 

model every time a set of new data is available. One of the popular solutions for this problem 

is creating an approximate proxy model of the desired reservoir that combines or replaces the 

physics-based model with this fast alternative. However, the consequence of this approach is 

that such a proxy model can only represent one corresponding reservoir, and, for every new 

reservoir, a new proxy model must be rebuilt from scratch. Additionally, when the overall 

runtime is considered, it can be observed that, in some cases, iteratively running a numerical 

reservoir simulation may be quicker than the process of building, validating, and using a proxy 

model. To overcome this obstacle, in this study, we used deep learning to create a data-driven 

simulator, deep net simulator (DNS), that enables us to simulate a wide range of reservoirs. 

Unlike the conventional proxy approach, we collected the training data from a large set of 

observations, which consist of multiple reservoirs with completely different configurations and 

settings. The hypothesis is that such an approach can teach the DNS to learn the principles of 

modelling a reservoir and act as an excellent approximator to the equations that a physics-based 

numerical simulator solves. We compared the precision and reliability of DNS with a 

commercial simulator for 600 generated case studies, consisting of 500,000,000 data points. 

DNS successfully predicts 45%, 70% and 90% of the cases with a mean absolute percentage 

error of less than 5%, 10% and 15% respectively. Due to the indirect dependency of DNS on 

the initial and boundary conditions, DNS can be executed for a specific cell for a specified 

period. This attribute allows DNS to act incredibly fast when compared with traditional 

physics-based simulators. Our results showed that DNS is, on average, 9.25E+7 times faster 

than a commercial simulator. Furthermore, if one simulates the entire grid cells with both DNS 

and ECLIPSE, DNS would still be relatively faster (37% on average). With the same 

consideration of simulating the entire reservoir, when compared with ECLIPSE, DNS has 

shown that when two relatively large-scaled case studies were simulated 1000 times, DNS 

could reduce the runtimes by 108% and 443% (56 and 177 hours), respectively.   

1. Introduction 

Reservoir modelling is a crucial aspect of any decision-making aspect within reservoir 

management studies and field development planning. Generally, when a reservoir model is 

being built, one of the following methods are used: analogical, experimental or physics-based 

numerical methods (Ertekin, Abou-Kassem et al. 2001). 

If the required data is available, physics-based numerical simulation is the most popular method 

to predict reservoir performance. Within the past two decades, the expansion of implementing 

automation within different operations and services has evolved significantly within the 

petroleum industry. This expansion has led to the development of smart field technologies that 

enable the almost continuous collection of various data.  However, as a result of this large data 

income, a new challenge has arisen as to how best to use this big data in order to create a useful 

value and thus make better decisions. The closed-loop reservoir management approach is 

recommended as an efficient approach to overcome the challenges faced when a massive 

amount of data is present, Figure 1(Jansen, Brouwer et al. 2009). This approach involves 
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updating models continuously as soon as new data is available. When using this workflow in 

decision-making, it is crucial that the model can fulfil the following tasks: 

• Update quickly once new data is presented. 

• Be accurate enough to represent the actual system.  

 

Figure 1, A scheme of the closed-loop reservoir management approach (Jansen, Brouwer et 

al. 2009) 

However, physics-based numerical simulation is not a great candidate for this scheme due to 

its intense computational nature. Because of this attribute, the simulation of a full reservoir 

takes a significant period of time, ranging from a couple of hours to days. This is due to the 

discretisation process required to model the reservoir and the iterative nature of the 

optimisations and complex partial differential equations that have to be solved within the 

simulator. Although this runtime can be partially reduced with the use of high-speed computers, 

there is still a considerable associated cost in doing this (Eldred, Orangi et al. 2014, Beckner, 

Haugen et al. 2015).  

In order to address the required precision of a potential approach in this workflow, two elements 

must be considered: the accuracy of the method itself and the accuracy of the input data.  

For the first element, reservoir management must be looked at from a business and economic 

perspective. In practice, this means, based on the aim defined within a particular study, 

individual decisions are made to determine the level of precision required to fulfil the defined 

objective. If less expensive techniques can provide satisfactory results, then more advanced 

and costly methods are not justified (Coats 1969, Fanchi 2001). 

Additionally, regarding the accuracy of the input data, due to the presence of either limited data 

or measurement errors, both static and dynamic input data generate considerable levels of 

uncertainty. This level of uncertainty within the inputs leads to partially inconsistent outputs in 

comparison with field production data. Therefore, to better quantify the uncertainties present 

during performance predictions and thus better manage its associated risk, hundreds to 

thousands of simulations must be completed. Furthermore, a similar number of simulations is 

required to complete both the history matching and the field optimisation processes. The 
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justification for this iterative approach is that each task attempts a variety of parameters and 

operation strategies. This number of simulations, combined with the amount of time taken to 

complete each respective simulation, results in an extremely time-consuming process, 

becoming a liability to engineers and companies alike. 

To reduce this computational time and the cost associated with the simulations, many 

researchers suggest building a proxy model of the desired reservoir and use its fast 

approximation instead (Jensen 2017, Mohaghegh 2017, Abooali and Khamehchi 2019, Zheng, 

Leung et al. 2019). They present different approaches, mostly including machine learning 

methods. Through the application of simple mathematics functions, the proxy model of a 

corresponding reservoir can approximate the response of that system quickly, without requiring 

a significant amount of computational simulations (Artun, Ertekin et al. 2011, Goodwin 2015, 

Kalantari-Dahaghi, Mohaghegh et al. 2015, Alenezi and Mohaghegh 2016, Ghassemzadeh and 

Charkhi 2016, He, Xie et al. 2016, Alenezi and Mohaghegh 2017, Chen, He et al. 2017, 

Mohaghegh, Gaskari et al. 2017, Kim and Shin 2018, Nwachukwu, Jeong et al. 2018). Model 

inputs usually include initial conditions, operational parameters, and reservoir characteristics 

such as porosity, permeability, etc. Model outputs include the production or saturation profile, 

recovery factor, etc.  

While these methods have provided a significant step forward in the field, each of these proxy 

models can only be used for their corresponding reservoir. This means that for each new 

reservoir, a new proxy model must be constructed from scratch. Furthermore, if the time spent 

building, validating, and running a proxy model is considered, it can be observed that running 

a numerical reservoir simulation iteratively could result in being comparatively more time 

efficient.  

 

Figure 2, A rough comparison of the accuracy and speed of a commercial simulator, a proxy 

model and a possible suitable replacement. 

A good candidate, which can satisfy both prerequisites of the closed-loop reservoir 

management approach, must have both the accuracy and generalisation of a commercial 

simulator and the speed of the proxy models, Figure 1.2. This article seeks to expand our 

previous work on the application of deep learning on reservoir simulation into a three-

dimensional space (Ghassemzadeh, Perdomo et al. 2019). The aim for this model is for it to be 
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used as a forecasting tool: to instantly predict the pressure at any point within the reservoir 

once given the initial conditions, operation parameters and reservoir characteristics. An 

advantage of using such a simulator is that it enables us to investigate a wide range of scenarios 

and thus present a more profitable production scheme.  This approach is to be interpreted as a 

data-driven clone to the numerical reservoir simulation, representing multiple reservoirs as 

opposed to the single reservoir approach dictated by conventional proxy modelling. Therefore, 

the outcome of this research can be considered a data-driven simulator. This simulator is pre-

trained and independent of a commercial simulator. Ideally, we should learn directly from 

observations, as this allows us to reduce the uncertainty associated with the fluid flow 

equations, but we use the simulators as the surrogate in the experiments here.  

2. Methodology 

2.1.Deep Net Simulator (DNS) 

The steps that were taken in order to develop this proposed model are in some way similar to 

the steps previous researchers have proposed in their development of a conventional proxy 

model representing a specified reservoir. However, the database that was used in the training 

of our model was collected from a range of different reservoir models instead of only one 

reservoir model. This approach results in an elaborated database covering a range of 

complexities that may occur within a reservoir, Figure 3. This approach can be used to help us 

create more sophisticated, complex, data-driven models that can be used as proxies to various 

numerical reservoir simulations.  

The main challenge throughout this study was to train such complicated problems and to extract 

the complex features from amongst this big data. We achieved this by relying on one of the 

latest machine learning techniques, deep learning.  

 

Figure 3, Flowchart of building DNS. This Figure demonstrates the difference between a 

traditional proxy model and a DNS model. While a proxy model corresponds to a single 

desired reservoir, Our DNS can be used as a proxy for a wide variety of reservoirs. 
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2.2.The development of a Spatiotemporal database 

During this step, we generated a spatial-temporal database in order to train a deep learning 

model and, consequently, to replicate the behaviour of a commercial simulator. Future work in 

this study involves the use of real field data, to fine-tune the potential of our developed model 

to match the reality of the reservoir behaviour. This will allow us to reduce the uncertainty 

present within diffusivity equations. As there are different physical phenomena used to govern 

different reservoirs, the first step in developing an alternative tool for reservoir simulation is to 

target a specific reservoir type. 

During this study, we have concentrated on natural gas reservoirs with gas expansion as the 

primary drive mechanism. There are key reasons to focus on gas reservoirs. First, from a 

sustainability point of view, many consider natural gas as a clean bridge to a renewable future 

(Brown, Krupnick et al. 2009, Kerr 2010, Tour, Kittrell et al. 2010, Leung 2015). Given how 

much natural gas resources are prospective; we prioritise gas reservoirs over oil resources. 

Furthermore, in comparison with single-phase oil flow, single-phase gas flow is more 

complicated, and therefore more challenging to model using a data-driven model. There are 

two main differences between the single-phase flow of oil and gas. First, gas flow velocities, 

in general, are higher to the extent that inertial forces may become significant and can no longer 

be ignored. Therefore, Darcy's Law for flow in porous media should be replaced by the more 

complex Law of Forchheimer, which includes the effect of inertial forces. Second, the gas 

compressibility and gas viscosity are dependent on the pressure, and this results in a differential 

equation for gas flow that is substantially non-linear (Hagoort 1988). 

Since single-phase gas flow is investigated in this research, we selected a black oil model, 

which is accurate enough to formulate and represent the behaviour of gas reservoirs (Iwere, 

Moreno et al. 2006). Furthermore, the model we considered to simulate the fluid flow in the 

dry gas reservoir is a multi-layer (3-dimensional) system with rectangular, uniform grid cells 

distribution. We assumed the drainage area is partially saturated with gas and the water-phase 

is considered immobile.  

We used a commercial reservoir simulator (ECLIPSE) to develop the spatial-temporal data of 

the gas reservoirs. Using this simulator, we built a template black oil model that represented 

the drainage area of a vertical well in a dry gas reservoir. Based on a predetermined range of 

reservoir configurations, we then generated the required spatial-temporal database. 

In the development of our model, we first began with the random generation of 100 synthetic 

reservoir configurations. These models were designed with a random generator that randomly 

chooses values that lie within the pre-specified range of data presented in Table 1. These values 

are based on real field data obtained from various reservoirs located around the globe (Zou, 

Zhu et al. 2012). By using randomised realistic values, we aimed to generate synthetic reservoir 

configurations with various properties that would allow us to determine and describe the 

physical behaviour of gas flow in porous media.  

The first step in each iteration of this flowchart was to create an ECLIPSE data file. ECLIPSE 

data files comprise the necessary reservoir descriptions and settings to model a reservoir. In 

order to create the proper data file, the required values were read from the range presented in 

Table 1 randomly, and written into a file in the data file format. It should be noted that each 
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value obtained from each row in Table 1 was chosen independently from each value in other 

rows in order to maximise the randomness. 

In order to make this model more realistic, we specified that the geology in our models was 

heterogeneous in every case. This allowed us to consider the specified mean porosity for each 

reservoir by applying the normal distribution function, allowing us to assign porosity values 

over the grids in the reservoir. In order to calculate the absolute permeability for each cell, we 

used one of the most common modifications of the Wyllie-Rose empirical equation, Timur’s 

equation (Timur 1968). This equation, displayed below, can provide a reasonable estimation 

of absolute permeability for sandstone formations (Schön 2015):  

 

k = [100 × 
φ2.25

Sw,irr
]
2

         (1) 

 

where the Sw,irr is the irreducible water saturation and is considered to be 20 % for all cases 

(Baker, Yarranton et al. 2015). This was followed by a calculation of the reservoir’s initial 

pressure. To do this, we used hydrostatic pressure based on the assigned reservoir depth 

(Hagoort 1988). This is given by:  

Pi = 0.475 × Depth         (2) 

Apart from the previously-mentioned variables, some features and settings were fixed 

throughout all the scenarios and models. In this study, we considered that the well production 

was controlled by the bottom-hole pressure (BHP). This is a practical setting in a gas field, as 

it helps us to avoid sand production and water coning, and satisfies the constraints in regards 

to production facilities and regulatory authorities (Guo and Ghalambor 2014). Therefore, the 

well production present in each model was produced at its assigned well rate until it reaches its 

allocated BHP.  It should be noted that both the saturation and relative permeability values 

were kept constant; this is due to this study being focused on single-phase flow. 

After generating the data files, the ECLIPSE software was used to simulate the data files. A 

parsing algorithm was then used to read and convert the required values from the specified data 

files, and their corresponding output files were converted into tabular-format files. These 

tabular-format files were then combined into a single file, resulting in a database of 

approximately 40,000,000 data points, corresponding to all 100 synthetic models. 

The training data files included: 

Inputs:  

• Time  

• Cell size in X, Y, Z – direction 

• Formation volume factor for water and gas 

• Viscosity  

• Porosity 

• Relative permeability in the X, Y- direction 

• Gas density 

• Initial water saturation 

• Rock compressibility  
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• Reservoir depth  

• Well location 

• Well rate  

• Initial pressure  

• Bottom hole pressure  

Output:  

• Cell pressure  

Table 1, Range of different variables used to generate data sets 

Parameters (Oil Field Units) Min Max 

X, Y, Z-Direction Cell Size (ft) 50 300 

 Reservoir Depth (ft) 3,000 11,000 

Gas Density (lb/ft3) 0.038 0.048 

Initial Water Saturation (%) 20 30 

Formation Volume Factor (rb/MSCF) 0.355 180.349 

Rock Compressibility @ Ref Pressure 

(1/psi) 
3.00E-06 4.50E-06 

Gas Viscosity (cP) 0.009 0.180 

Permeability (md) 30 800 

Porosity (%) 4 32 

Well rate (MSCF/d) 1,200 1,000,000 

Time step (days) 5 30 

Number of Cells in XY Plane 100 4900 

Initial pressure (psi) 1,425 5,225 

Bottom Hole Pressure (psi) 14.7 1,400 

 

 

Table 2, Different PVT tables used in this study 

PVT1  PVT2  PVT3 
Pressure 

(psi) 

Bg 

(rb/Mscf) 

µg 

(cp) 
 

Pressure 

(psi) 
Bg 

(rb/Mscf) 
µg 

(cp)  
Pressure 

(psi) 
Bg 

(rb/Mscf) 
µg 

(cP) 

1414 13.947 0.0124  1214 13.947 0.0124  14.700 180.349 0.009 

1614 7.028 0.0125  1414 7.028 0.0125  513.965 4.588 0.011 

1814 4.657 0.0128  1614 4.657 0.0128  1013.230 2.028 0.013 

2214 3.456 0.013  1814 3.456 0.013  1512.495 1.174 0.019 

2614 2.24 0.0139  2214 2.24 0.0139  2011.760 0.793 0.029 

3014 1.638 0.0148  2614 1.638 0.0148  2511.025 0.619 0.043 

3614 1.282 0.0161  3014 1.282 0.0161  3010.290 0.535 0.057 

        3509.555 0.489 0.070 

        4008.820 0.459 0.082 

        4508.085 0.438 0.093 

        5007.350 0.423 0.103 

        5506.615 0.410 0.112 

        6005.880 0.400 0.121 
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        6505.145 0.392 0.130 

        7004.410 0.385 0.138 

        7503.675 0.378 0.145 

        8002.940 0.373 0.153 

        8502.205 0.368 0.160 

        9001.470 0.363 0.166 

        9500.735 0.359 0.173 

        10000.000 0.355 0.180 

 

 

Table 3, Range of parameters used in the Deep Learning Network 

Parameters Values 

Layers Up to 25 

Neurons Up to 1000  

Epoch 5000 

Regularisation Drop out 

Activation functions 
Linear, Sigmoid, tanh, ELU, 

Relu 

Optimization Function 
ADAgrad, ADAdelta, 

ADAM, SGD 

Loss Function MSE, MAPE, MAE 

 

2.3.The training of the model 

The next step is the determination of suitable architecture and the selection of a proper training 

configuration for the above-mentioned architecture. The database that was generated in the 

previous step is then fed to this architecture, such that the trained model is able to predict the 

same results as a numerical simulator.  

We used dense-layered (fully-connected) deep learning and attempted different architectures 

to create the best possible model. We started with an architecture that contains one hidden layer 

and used a variety of different combination of neurons, activation functions, optimisation 

functions and loss functions. Once we achieved the best possible parameters within the 

architecture with one hidden layer, we increased the number of hidden layers to two and 

attempted to optimise the new architecture by attempting new values to these hyper-parameters. 

We continued to increase the layers until we were assured that there was no chance of 

improving the accuracy of the model by increasing the layers. We used an early stopping 

strategy with a validation set using the mean absolute percentage error (MAPE) as the 

monitoring metric in the training process to avoid the overfitting problem. Table 3 shows the 

different values we attempted for each parameter and hyperparameter to create the proposed 

model, and Table 4 shows the values for the final model. Figure 54 illustrates the schematic 

diagram of the deep learning topology we used in this study.  
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Table 4, Parameters and hyper-parameters used in the deep learning network 

Parameters Values 

Layers 14 

Neurons Up to 300 

Epoch 5000 

Regularisation Drop out 

Activation functions Linear, ELU 

Optimization Function ADAgrad 

Loss Function MSE 

 

 

Figure 54, Schematic diagram of the  deep learning topology of DNS with dense layers 

 

2.4.Validation procedures  

Data-driven models are usually validated using a test dataset. However, since we were aiming 

to create a stand-alone simulator, validating the model by using a test dataset alone was not 

deemed sufficient. To challenge the developed simulator, we created different case studies to 

examine the accuracy and speed of this developed simulator. These benchmarks help us to 

study the accuracy and speed of the simulator in each cell per production time and provide 

thoughtful feedback as to whether or not the developed simulator can both follow the trend of 

pressure drops and understand the physics of the problem correctly. 

 

We used the following metrics to examine the accuracy performance of the developed 

simulator: 

• Mean absolute error (MAE): 

𝑀𝐴𝐸 =
1

𝑛
∑  |𝑦𝑗 − ŷ𝑗|

𝑛
𝑗=1          (3) 

• Mean absolute percentage error (MAPE) 
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𝑀𝐴𝑃𝐸 =
1

𝑛
∑  |

𝑦𝑗−ŷ𝑗

𝑦𝑗
|𝑛

𝑗=1          (4) 

• Mean Squared Error (MSE) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑗 − ŷj)

2𝑁
𝑗=1          (5) 

• Root mean squared error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑗 − ŷj)

2𝑛
𝑗=1          (6) 

• R Squared (R2) 

𝑅2 = 1 −
𝑀𝑆𝐸 (𝑚𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
        (7a) 

 

The MSE of the model is computed as above, while the MSE of the baseline is defined as: 

𝑀𝑆𝐸 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) =
1

𝑁
∑ (𝑦𝑗 − �̅�)

2𝑁
𝑗=1        (7b) 

 

where ŷ  is the prediction, 𝑦 is the observed value and �̅� is the average of the observed 

values.  

3. Results 

This approach results in the creation of a deep learning model that has the speed of a proxy 

model and an acceptable generalisation when compared with a commercial simulator. In the 

following section, we present the results from a few of the case studies investigated using the 

developed simulator, Deep Net Simulator (DNS), and compare the results obtained from our 

developed simulator with a commercial simulator (ECLIPSE). 

Overall, around 600 case studies, containing more than 500,000,000 data points have been used 

for testing the accuracy of DNS. By using these case studies, we were able to investigate the 

claims that we made earlier to develop an accurate, fast reservoir simulator. In these case 

studies, we began by investigating the accuracy of DNS. This resulted in DNS and ECLIPSE 

being used to simulate each of the reservoir models, calculating the pressure change for all cells 

over the production time. The speeds of the developed simulator and ECLIPSE are then 

compared for each case where the model contains a higher number of cells. Finally, we 

discussed the reliability of DNS. 

• Accuracy of the case studies:  

In each benchmark case, we covered a wide variety of possibilities. Cell sizes were randomised 

between 60 - 300 ft. The porosity among the grid cells was randomly distributed, with the mean 

porosity generated via a normal distribution function (Slider 1983). The values used for this 

mean porosity were directly related to the depth of the reservoir. The reservoir’s initial pressure 

was calculated in proportion to the depth of the reservoir, with normal pressure regimes 

considered in each case (Hagoort 1988). However, as each benchmark case is a gas reservoir, 

the rock compressibility is not deemed an important parameter. The gas density in each case is 
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considered between 0.038 to 0.042 for natural gas. As this study concentrates on dry gas, we 

can assume only one fluid is within the system. This means the initial water saturation is 

considered the minimum value. 

Furthermore, we can assume the saturation table is constant for each benchmark case, as it has 

a low effect on the model. In some cases, a constant well rate was allocated over the production 

period. Conversely, in the rest, a high well rate was allocated such that, after 40% of the 

production period, the well rate would continuously drop for the duration of the reservoir’s 

remaining life, satisfying the assigned bottom hole pressure (BHP). Values of the BHP were 

considered to lie between 900 to 1200 psi; these are typical values for conventional gas 

reservoirs. Each benchmark was simulated for up to five years, with time steps of up to 30 

days. Different well locations were investigated in each case. 

As five cells in the Z-direction were selected per case, different production scenarios were 

subsequently investigated. The grids that connected the respective wells were either fully or 

partially open, resulting in either all five cells being connected to the well or a randomly 

allocated amount being connected. 

Due to each reservoir having varying grid sizes and porosities, this results in each reservoir 

having a different amount of gas originally in place. Furthermore, three PVT tables (Table 2) 

were randomly assigned to each case. Different values of formation volume factors and 

viscosity imply a different type of fluid flow in each reservoir. 

- Case study 1:  

Table 5 shows the properties of this case study. This model includes 4500 cells with an initial 

gas saturation of 80%. PVT1 in Table 2 shows the PVT properties of the gas. It is worth noting 

that there is no water flow within the porous media throughout its production time. The well 

produces for 600 days over 40 timesteps, meaning the pressure drop of each cell is reported 

every 15 days. We considered the gas reservoir is located in shallow depth and gas in-place has 

a density equal to 0.04 lb/ft3. A mean porosity of 0.15 is considered, and normal distribution 

was used to allocate the porosity to each cell within the 30 x 30 x 5 grid. Figure 5a and Figure 

5b indicate the porosity and permeability (kx) distributions that were used to create this 

reservoir model. The wellbore is located in the corner of the grid with an open hole wellbore. 

The initial well rate was set to 120,000 Mscf/ day.  
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Figure 5, the porosity and permeability distribution for case study 1 
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Table 5, Reservoir configurations for case study 1 

 

Table 6 compares the DNS and ECLIPSE models using different metrics. As can be seen, the 

results for both cells have similar accuracy, even though they were in the different parts of the 

reservoir. DNS predictions have MAE of 4 psi, MAPE of almost zero, and R2 of almost 1. 

These excellent values for each metric illustrate how DNS was able to calculate the correct 

pressure change across the reservoir.   

Table 6, The accuracy of DNS in predicting the pressure across the reservoir for case study 1 

Cell Number MAE (psi) MAPE (%) MRE (psi) MSE RMSE R2 

Cell 1 4.505 0.203 0.002 23.829 4.882 0.999 

Cell 2 4.505 0.203 0.002 23.829 4.882 0.999 

 

To study these results with a greater level of detail, we evaluated two cells and thoroughly 

examined them. One of the selected cells contained the wellbore, and the other was a randomly 

selected cell far away from the wellbore.  

Figure 6a demonstrates the pressure changes of the cell with 20 x 20 x 4 coordinates over 600 

days; this was calculated with both DNS and ECLIPSE. As can be seen, DNS was able to 

produce almost exactly the same results as the ECLIPSE simulation. In addition, DNS was able 

to predict the change of slope that occurred within the last quarter of the production time 

successfully. Figure 6c displays the relative error (RE) and the relative percentage error (RPE) 

of different timesteps for this cell. From this figure, it can be observed that the maximum value 

for MAE is around 9 psi. 

Properties Reservoir Description 

Number of Cells in the X and Y direction 30 

Number of Cells in the Z direction 5 

X, Y, Z-Direction Cell Size (ft) 300, 100, 300 

Mean Porosity (%) 20 

Mean Permeability (md) 200 

 Reservoir Depth (ft) 5000 

Rock Compressibility @ Ref Pressure (1/psi) 0.0000045 

Gas Density (lb/ft3) 0.043 

PVT Table PVT 1 

Initial Water Saturation (%) 2 

Initial Pressure (psi) 2325 

Well Location X=15, Y=5 

Perforation Intervals Z= 1:2 

Well Rate (MSCF/d) 120000 

Bottom Hole Pressure (psi) 1200 

Time Step (days) 15 

Production Duration (days) 600 
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Figure 6, Pressure trend, RE and RPE for the cell 15 x 5 x 1 (left) and the cell 20 x 20 x 4 

(right) 

 

Figure 6b shows the pressure change of the cell containing the wellbore. Like with the previous 

cell, both trends are highly similar. Interestingly, the trend of RE and RPE for this cell are 

similar to the trend of the other cell (Figure 6c and Figure 6d). 

The pressure distribution in the reservoir over 12 steps is then compared. Figure 7 compares 

the pressure distribution in the XY plane calculated by DNS and ECLIPSE. According to these 

figures, DNS predicted that the transition flow lasts for five timesteps, whereas ECLIPSE 

predicted that this flow lasts for four timesteps. In both simulators, the rates of pressure drop 

in pseudo-steady state flow are the same, confirming the precision of DNS, as even such a 

trivial feature was correctly predicted.  

 

Figure 7, Pressure distribution throughout the reservoir for different time steps using DNS 

(left) and a commercial simulator (right) 
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Next, we compare the pressure distribution across the reservoir. Figure 8 illustrates a snapshot 

of pressure distribution for two time steps. Figures on the left were plotted using the results 

from DNS and the rest were plotted using results obtained from ECLIPSE.  

 

 

Figure 8, Pressure map throughout the reservoir for two time steps using DNS (left) and a 

commercial simulator (right) 

 

When comparing the results obtained from DNS with the ECLIPSE model, a high level of 

similarity was noted. This suggests that DNS can predict the outcomes of this case study with 

a high degree of accuracy. 

Case study 2 

In this case, a couple of the parameters, such as gas density, initial pressure, well rate and BHP, 

were slightly altered. First, it consisted of a smaller, but higher amount of grid cells: 12,500 

cells, and a new set of PVT data. This change allows us to see how DNS reacts to a completely 

different reservoir fluid. The production duration for this case is still two years, but a higher 

well rate is achieved. Table 7 summarises the reservoir description for this case study. Figure 

9 illustrates the porosity and permeability distribution, respectively.  
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Figure 9, The porosity and permeability distribution for case study 2 

 

Table 7, Reservoir configurations for case study 2 

 

Once again, we evaluated two cells. One cell was connected to the wellbore at coordinates 10 

x 20 x 1, the other cell was located far away from the wellbore at 30 x 30 x 3. As indicated by 

Table 58, DNS was able to predict the pressure drop accurately. The low value of MAE and 

MAPE present in this case indicates that the flow behaviour was predicted with accuracy. 

Figure 10a and Figure 10b illustrate the pressure drops calculated with both DNS and ECLIPSE 

which are almost identical. 

 

 

 

Properties Reservoir Description 

Number of Cells in the X and Y direction 50 

Number of Cells in the Z direction 5 

X, Y, Z-Direction Cell Size (ft) 100, 100, 200 

Mean Porosity (%) 20 

Mean Permeability (md) 202 

 Reservoir Depth (ft) 5500 

Rock Compressibility @ Ref Pressure (1/psi) 0.0000042 

Gas Density (lb/ft3) 0.045 

PVT Table PVT 2 

Initial Water Saturation (%) 22 

Initial Pressure (psi) 2558 

Well Location X=10 , Y=20 

Perforation Intervals Z= 1:5 

Well Rate (MSCF/d) 200000 

Bottom Hole Pressure (psi) 500 

Time Step (days) 15 

Production Duration (days) 600 
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Table 58, Accuracy of DNS in predicting the pressure across the reservoir for case study 2 

Cell number MAE (psi) MAPE (%) MRE (psi) MSE RMSE R2 

Cell 1 3.154 0.138 0.000 38.169 6.178 1.000 

Cell 2 3.154 0.138 0.000 38.169 6.178 1.000 
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Figure 10, Pressure trend, RE and RPE for cell 10 x 20 x 1 (left) and cell 30 x 30 x 3 (right) 

 

Figure 10c and Figure 10d display the RE and PRE throughout the production time. It can be 

observed that the RE values vary between -10 to 7 psi, which is negligible.  

The pressure drop that occurred within the cells with wellbores were then examined. The value 

of these predicted errors was the same as that of other previously-analysed cells, Table 58. Like 

the other cells, this pressure change was accurately predicted by DNS when compared with 

ECLIPSE. Furthermore, the results obtained for RE and RPE distribution in these two cells are 

of high similarity.  

Figure 11 compares the pressure distribution on the wellbore plane within the reservoir. This 

was calculated with both DNS and ECLIPSE. Like in the previous case, DNS was able to 

predict the pressure distribution correctly.  
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Figure 11, Pressure distribution throughout the reservoir for different time steps using DNS 

(left) and a commercial simulator (right) 

 

Figure 12 indicates the pressure map on the well plane for two time steps. Again, DNS was 

able to predict the pressure distribution over the production time and throughout the reservoir 

correctly.  

 

 

Figure 12, Pressure map throughout the reservoir for two time steps using DNS (left) and a 

commercial simulator (right) 
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Case study 3 

Table 9 lists the reservoir description for a reservoir with 4500 cells. This case has the lowest 

well rate, porosity and permeability among all the cases. This well is perforated only at the 

upper cells, with a BHP of 1000 psi, porosity equal to 16 and a horizontal permeability of 

78md.  Figure 13 shows the porosity and permeability distribution for this case study.  
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Figure 13, The porosity and permeability distribution for case study 3 

 

Table 9, Reservoir configurations for case study 3 

 

Since previous cases show consistent errors across all cells, the following cases report the 

results of the cell with the wellbore and compare its predicted values with that of ECLIPSE’s 

output. Similar to the previous cases, the metrics are shown in  

Table 10 and highlight the accuracy of DNS in predicting the pressure change in this reservoir.  

Properties Reservoir Description 

Number of Cells in the X and Y direction 30 

Number of Cells in the Z direction 5 

X, Y, Z-Direction Cell Size (ft) 300, 300, 100 

Mean Porosity (%) 16 

Mean Permeability (md) 78 

 Reservoir Depth (ft) 5000 

Rock Compressibility @ Ref Pressure (1/psi) 0.0000042 

Gas Density (lb/ft3) 0.043 

PVT Table PVT 2 

Initial Water Saturation (%) 20 

Initial Pressure (psi) 2325 

Well Location X=5 , Y=10 

Perforation Intervals Z= 1:1 

Well Rate (MSCF/d) 20000 

Bottom Hole Pressure (psi) 1000 

Time Step (days) 10 

Production Duration (days) 400 



96 
 

 

Table 10, The accuracy of DNS in predicting the pressure across the reservoir for case study 

3 

MAE (psi) MAPE (%) MRE (psi) MSE RMSE R2 

5.635 0.256 -0.003 676.736 26.014 0.993 

 

Figure 14a compares the pressure changes of these cells throughout the production phase. 

Figure 14b illustrates the change of RE and PRE over the predetermined period. Both of these 

figures indicate that DNS was able to represent the phenomenon of the gas flow in the porous 

media. 
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Figure 14, Pressure trend, RE and RPE for the cell connected to the wellbore 

 

As illustrated in Figure 15, DNS understands the change of the flow patterns correctly. In these 

figures, it is obvious that DNS can predict the transient flow properly and determine the time 

taken for the flow to reach the outer boundary. Furthermore, the change of flow regime from 

transition to pseudo-steady state is predicated in a similar way to the outcome from ECLIPSE.  

 

 

Figure 15, Pressure distribution throughout the reservoir for different time steps using DNS 

(left) and a commercial simulator (right) 
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The pressure maps for two timesteps are illustrated in Figure 16. In this Figure, the top and 

bottom snapshots are associated with time step #3 and time step #35, respectively.  These 

figures confirm the accuracy displayed by DNS in the prediction of the pressure distribution 

throughout the reservoir. As shown in these figures, the front lines in these figures are predicted 

like the results from ECLIPSE in the right figures.  

 

 

 

Figure 16, Pressure map throughout the reservoir for two time steps using DNS (left) and a 

commercial simulator (right) 

Case study 4 

Case study 4 was observed to be the case with the highest well rate presented in this section. 

This well was partially completed, with field PVT data being used in this case to investigate if 

DNS has captured the essence and physics of the fluid flow. There is a significantly higher well 

rate assigned to this case in comparison to previous cases. Table 11 shows the complete 

description of this case study. Similar to the previous case, the porosity and permeability 

distribution are displayed in Figure 17. The presence of low error values and high correlation 

coefficient values indicates that DNS was able to predict the output values correctly (Table 12). 

Figure 18a demonstrations that DNS is able to predict the same trend as the ECLIPSE model. 

Figure 18b shows the accuracy of the DNS prediction over the production time.  
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Figure 17, The porosity and permeability distribution for case study 4 

 

 

Table 11, Reservoir configurations for case study 4 

 

 

 

 

 

 

 

Properties Reservoir Description 

Number of Cells in the X and Y direction 40 

Number of Cells in the Z direction 5 

X, Y, Z-Direction Cell Size (ft) 60, 200, 100 

Mean Porosity (%) 16 

Mean Permeability (md) 80 

 Reservoir Depth (ft) 6000 

Rock Compressibility @ Ref Pressure (1/psi) 0.0000045 

Gas Density (lb/ft3) 0.042 

PVT Table PVT 3 

Initial Water Saturation (%) 20 

Initial Pressure (psi) 2790 

Well Location X=10, Y=5 

Perforation Intervals Z= 1:3 

Well Rate (MSCF/d) 300000 

Bottom Hole Pressure (psi) 1000 

Time Step (days) 10 

Production Duration (days) 600 
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Table 12, The accuracy of DNS in predicting the pressure across the reservoir for case study 4 

MAE (psi) MAPE (%) MRE (psi) MSE RMSE R2 

15.391 0.710 0.006 590.623 24.303 0.994 
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Figure 18, Pressure trend, RE and RPE for the cell connected to the wellbore 

 

 

Figure 19, Pressure distribution throughout the reservoir for different time steps using DNS 

(left) and a commercial simulator (right) 

 

As can be observed in Figure 19, the results obtained by DNS and ECLIPSE respectively have 

extremely high similarity. However, the time taken to produce such plots varied drastically, 

with DNS producing the above plot in the span of less than a second. 

Figure 20 demonstrates the pressure distribution in a 2D plane over time. It can be observed 

that DNS was able to predict this distribution flawlessly, with the two pressure maps appearing 

almost identical. 
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Figure 20, Pressure map throughout the reservoir for two time steps using DNS (left) and a 

commercial simulator (right) 

 

To further examine the DNS, Table 513 was produced to represent more scenarios, to better 

validate the accuracy of DNS. In this table, cases with various configurations compared with 

the aforementioned case studies are presented. Table 14 provides a comparison of DNS and 

ECLIPSE for these reservoirs. Yet again, the results obtained through DNS were remarkably 

accurate compared with those from ECLIPSE.  
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Table 513, Reservoir configurations for case studies 5 to 9 

 

 

Table 14, The accuracy of DNS in predicting the pressure across the reservoir for case studies 

5 to 9 

Case MAE (psi) MAPE (%) MRE (psi) MSE RMSE R2 

5 4.953 0.113 -0.001 49.618 7.0440 0.884 

6 34.539 0.795 -0.001 1658.12 40.72 0.9645 

7 53.587 1.41253 0.01395 13290.6 115.285 0.98298 

8 46.1246 1.39781 0.00611 18396.8 135.635 0.98298 

9 42.0364 1.18225 0.01123 20316 142.534 0.98298 

 

  

Properties Case 5 Case 6 Case 7 Case 8 Case 9 

Number of Cells in the X and Y 

direction 
40 50 50 30 40 

Number of Cells in the Z 

direction 
5 5 5 5 5 

X, Y, Z-Direction Cell Size (ft) 200-100-

100 

200-200-

100 

100-200-

100 

100-200-

100 

100-100-

100 

Mean Porosity (%) 21 24 22 17 24 

Mean Permeability (md) 248.5  301 102 440 

Reservoir Depth (ft) 9500 9500 8000 7000 7500 

Rock Compressibility @ Ref 

Pressure (1/psi) 
3.2 3.5 3.5 3.5 3.5 

Gas Density (lb/ft3) 0.044 0.046 0.043 0.045 0.047 

PVT Table 2 1 3 2 3 

Initial Water Saturation (%) 0.2 0.24 0.2 0.22 0.2 

Initial Pressure (psi) 4418 4418 3720 3255 3488 

Well Location 5–10 10–10 5-5 10-15 5-5 

Perforation Intervals 1-3 1-3 1-5 1-2 1-5 

Well Rate (MSCF/d) 20000 200000 200000 150000 150000 

Bottom Hole Pressure (psi) 1250 900 1200 1200 950 

Time Step (days) 10 10–10 10 10 20 

Production Duration (days) 400 300 400 400 800 
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• Speed Results: 

To analyse the speed of DNS, we designed several cases of varying sizes. Table 15 lists these 

case studies and Table 16 reports the observed accuracy of DNS in comparison with ECLIPSE. 

In all cases, it can be observed that DNS was able to predict the pressure changes over the 

production time accurately. A major advantage of DNS is that it does not need to be run across 

every cell, unlike commercial software. This requirement for commercial software originates 

from the fact that it takes into account the initial and boundary conditions directly through 

numerical methods. As a result, DNS only needs to be used for a handful of selected cells, 

gaining significant acceleration for the simulation.  

As has been shown throughout the previous case studies, DNS tends to show the same errors 

in all the cells within a specific reservoir. This allows us to run DNS for the desired grid cells 

(the ones connected to the wellbore) alone, although the times taken to run DNS for all grid 

cells are presented, regardless.  

Another advantage of DNS is that it can be used to estimate only the desired production period. 

This means that, after defining the initial conditions, we can run a simulation, for example, 

starting two years after the recorded initial time. This flexibility assists us in accelerating the 

simulation. Another advantage occurs when we deal with physics-based reservoir models that 

have convergence problems when solved with numerical approaches. This convergence 

problem takes the simulation longer. Unlike numerical simulations, DNS avoids this problem 

as it is a data-driven model, containing an explicit mathematic formula that is able to estimate 

the desired outputs.  

Table 17 shows the runtime of the aforementioned case studies. The first row of the table 

displays the time taken by ECLIPSE to simulate these models. Obviously, the speed of the 

simulation directly depends on the number of cells and timesteps present. Since ECLIPSE 

solves a series of partial differential equations, all cells within the boundary must be 

considered. Therefore, for example, in the second case, it took ECLIPSE more than 13 minutes 

to solve the pressure change. However, due to DNS being developed independently of the 

boundary and initial conditions, only the desired cells needed to be simulated, which in this 

case were the cells connected to the wellbore (three grid cells). It took DNS fractions of a 

second (9.00E-05 seconds) to simulate the pressure change over the production period for each 

cell, meaning it takes 2.70E-04 seconds to simulate all three cells. This is a %2.90E+08 

reduction in the runtime when compared with ECLIPSE. Furthermore, if we simulated the 

entire reservoir grid, DNS could still reduce the runtime by 443%. As can be seen in this table, 

the amount of runtime reduction is significant, particularly when we deal with a large-scale 

study. Overall, in the six large-scale case studies that we investigated in this paper, on average, 

DNS was able to reduce the runtime by 9.25E+07% if we simulate only the cells connected to 

the wellbore and 117% if we simulate the entire grid cell.  
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Table 15, Reservoir configurations for large-scale case studies 

 

 

Table 16, The accuracy of DNS in predicting the pressure across the reservoir for case studies 

with a large number of grid cells 

Case MAE (psi) MAPE (%) MRE (psi) MSE RMSE R2 

10 8.244 0.395 -0.003 519.015 22.782 1.000 

11 9.725 0.373 -0.002 269.216 16.408 0.997 

12 4.105 0.188 0.002 509.361 22.569 1.000 

13 9.893 0.514 -0.003 726.621 26.956 1.000 

14 10.698 0.522 0.004 764.042 27.641 1.000 

15 12.838 0.574 0.005 687.638 26.223 1.000 

Properties Case 10 Case 11 Case 12 Case 13 Case 14 Case 15 

Grid size 2,500,000 1,600,000 2,500,000 900,000 1,000,000 16,000 

X, Y, Z-Direction 

Cell Size (ft) 
50-60-100 80-50-50 

100-200-

50 
50,50,50 100,100,100 100,100,100 

Mean Porosity (%) 18 19 21 16 22 14 

Mean Permeability    247 78 300  

 Reservoir Depth 

(ft) 
5000 6000 5000 7000 4000 8000 

Rock 

Compressibility @ 

3000 psi (1/psi) 

3.5e-6 3.5e-6 3.5e-6 3.5e-6 3.5e-6 3.5e-6 

Gas Density (lb/ft3) 0.047 0.041 0.042 0.04 0.045 0.04 

PVT Table 1 2 1 3 2 3 

Initial Water 

Saturation (%) 
20 20 25 21 22 21 

Initial Pressure 

(psi) 
2325 2790 2325 3255 1860 3720 

Well Location 5-5 5-5 5-15 250-250 50,50 25,25 

Perforation 

Intervals 
1-5 1-3 1-5 1-5 3-5 1-5 

Well Rate 

(MSCF/d) 
400000 120000 150000 600,000 150,000 200,000 

Bottom Hole 

Pressure (psi) 
700 1200 700 1200 1000 1200 

Time Step (days) 10 15 30 15 20 15 

Production 

Duration (days) 
500 900 1200 1800 2000 1500 
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Table 17, Comparing the Runtime of DNS and ECLIPSE 

Properties Case 10 Case 11 Case 12 Case 13 Case 14 Case 15 

ECLIPSE runtime (Sec) 390 782 188 328 185 2.4 

DNS runtime 

(Sec /Cell/Time Step) 
1.50E-06 1.50E-06 1.50E-06 1.50E-06 1.50E-06 1.50E-06 

DNS runtime (Sec /Cell) 7.50E-05 9.00E-05 6.00E-05 1.80E-04 1.50E-04 1.50E-04 

DNS Runtime (Sec) 3.75E-04 2.70E-04 3.00E-04 9.00E-04 3.00E-04 7.50E-04 

Runtime Percentage 

reduction (%) – target 

cells 

1.04E+08 2.90E+08 6.27E+07 3.64E+07 6.17E+07 3.20E+05 

DNS runtime (Sec) – 

full grid 
187.50 144.00 150.00 162.00 150.00 2.40 

Runtime Percentage 

reduction (%) – entire 

grid 

108.00 443.06 25.33 102.47 23.33 0.00 

 

Figure 21 represents the runtime of cases 10 and 11, simulated using DNS and ECLIPSE, when 

we run each model multiple times. As can be seen in this Figure, across 1000 simulations, we 

can save 56 and 177 hours for cases 10 and 11, respectively, if we use DNS instead of 

ECLIPSE. This is equal to a 108% and 443% reduction on the runtime.  

0 500 1000

0

50

100

150

200

250

Simulation

T
im

e
 (

H
rs

)

DNS 10

ECLIPSE 10

DNS 11

ECLIPSE 11

 

Figure 21, Comparing the runtime of case studies 10 and 11 for multiple simulations 

 

 

• Reliability  

One of the main concerns in any machine learning outcome is its reliability. Although machine 

learning methods can provide some remarkable results with any data, they may behave 
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completely bizarrely over some other data. Therefore, throughout this research, we ran DNS 

for about 600 case studies, overall containing more than 500,000,000 data points and they were 

compared against the results obtained from a commercial simulator. Figure 22 displays a 

histogram (left) and a cumulative histogram (right), showing the accuracy given by DNS for 

every unseen case study. For approximately 45% of the simulated cases, DNS displays 

incredible accuracy, with a MAPE less than 5%. Additionally, over 70% of all cases were 

observed to have a MAPE less than 10%, and 90% have a MAPE less than 15%. Although in 

most of the cases that were studied, DNS behaved with incredible accuracy. There were a 

couple of cases where the results were not satisfactory. This implies that even with this 

approach, which we believe has a huge potential considering its formidable speed, this current 

version of DNS can be further improved, enabling higher reliability. We believe DNS can be 

deemed reliable if it is able to predict all cases with an overall error of less than 5%. Given that 

even commercial simulators suffer from huge mismatches when compared with real production 

data, DNS can be used reliably, once this objective has been achieved.  
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Figure 22, The histogram of the accuracy of DNS for all the case studies in this study 

• Limitations 

Despite the accuracy that DNS has provided throughout these benchmark cases, there are still 

limitations to be considered.  

The first is that we only consider gas as the fluid flow in this study. Considering there are 

different physics governing gas and liquid flows, we had to differentiate between these two 

studies. We decided to focus on gas flow on the current research and investigate liquid flow in 

a future study.   

The second limitation revolves around only a single vertical production well being considered 

within the reservoir. The main reason we opted to start with a vertical well was that we are at 

the primary phase of this ongoing study. In the next phase, we will investigate the effect of 

multiple wellbores on the accuracy of DNS. However, it must be noted that the results from 

this study are still valid, as wellbores are not drilled with the same drainage area.  

The third limitation of this approach revolves around the lack of different geological structures 

attempted. This was mainly due to the lack of computational power. In order to make a 

comprehensive data set that covers a proper range of geological structures, we would need a 

ten times bigger dataset than the one we used in this study. Training such an enormous dataset 

over a deep network requires massive computational power. This was not an option during the 

primary phase of this ongoing study; however, we have planned to improve the computational 

power for the next phase of this study.  
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Regardless of these limitations, we believe that the produced results have great potential. 

Furthermore, by increasing the range of training data while improving the computational power 

could minimise these limitations. Therefore, we believe a pre-trained data-driven simulator that 

is capable of predicting the behaviour of the fluid within any reservoir can eventually be built 

using the approach presented in this study.  

 

Conclusion  

This paper describes the logistics of designing and implementing a data-driven model, capable 

of predicting the pressure across the draining area of a vertical well within a natural gas 

reservoir. The novelty of this study lies within the implementation of a deep learning network 

to develop a trained model, which provides a comprehensive tool as a fast data-driven 

replacement for a commercial simulator. The proposed model can predict reservoir behaviour 

for a wide range of reservoir configurations.  

The results obtained confirm that this approach has the potential to be used in building a pre-

trained data-driven simulator, capable of providing accurate, fast and reliable results for any 

given reservoir configuration. Unlike conventional approaches to proxy modelling, DNS is not 

built for only one specific reservoir. On the contrary, DNS is built to be used in predicting 

reservoir performance for a wide range of reservoir configurations, without requiring further 

training or building processes. 

We evaluated this model in terms of precision, speed and reliability. These results were then 

compared with a commercial simulator, Schlumberger ECLIPSE. 600 different synthetic 

reservoirs were generated, each with various descriptions and production settings. We used 

multiple metrics to evaluate these case studies; MAE, MRE, MAPE, MSE, RMSE and R2.  

We presented the precision of DNS, by comparing its results with ECLIPSE in nine case 

studies. In each case study, we compared the pressure drop over time, pressure distribution 

across the reservoir and the pressure map produced by DNS and ECLIPSE. In all cases, DNS 

was able to learn the fluid behaviour accurately and thus predict the pressure with remarkable 

precision.  

We then investigated six case studies with larger grid sizes, each containing a different number 

of cells. Due to the indirect dependency of DNS on initial and boundary conditions, DNS can 

directly simulate specific cells within a particular period. This allows DNS to be incredibly fast 

when compared with a physics-based simulator. Therefore, it takes DNS only 1.5e-6 seconds 

to predict the cell pressure for one timestep. Through this approach, it takes DNS on average 

1.18E-04 seconds to predict the pressure trend of the wellbore for five case studies. This means 

that, on average, DNS is 2e10 times faster than a commercial simulator. Furthermore, it must 

be noted, if we want to simulate the entire grid, DNS would still be comparatively faster, 

specifically when the numerical model has a convergence problem. We showed this approach 

could reduce the runtime by 108% and 443% (56 and 177 hours) when simulating two of the 

large-scale case studies 1000 times. 

Finally, we investigated the reliability of DNS when predicting 600 benchmark cases, 

containing 500,000,000 data points. DNS was able to predict 45%, 70% and 90% of the cases 
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with less than 5%, 10% and 15% MAPE, respectively. Given the speed of DNS, these results 

are significantly better than a commercial simulator.  

This ongoing study aims to develop a data-driven model that is able to act as a proxy model 

for numerical reservoir simulators. This simulator is aimed to be used to investigate a variety 

of scenarios quickly during history matching, uncertainty quantification and field optimisation, 

allowing for quicker and better decision-making processes.  
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6. Modelling Hydraulically Fractured Tight Gas Reservoirs with an AI-based 
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7. Conclusion and Future Work 

 

7.1.Concluding Remarks 

This study focused on studying the feasibility of the development of an entirely data-driven 

simulator as an independent alternative to physics-based reservoir simulators. Based on the 

results of this dissertation, a series of prototype versions of this data-driven simulator were 

developed for a range of different scenarios. Subsequently, these data-driven simulators were 

validated via thousands of benchmark cases, consisting of more than 800,000,000 data points. 

These developed data-driven models are able to understand and reproduce the physical 

governing fluid flow for a range of different scenarios: a single-phase oil reservoir in one-

dimensional space, a single-phase gas reservoir in two-dimensional space, a single-phase gas 

reservoir in three-dimensional space, and a hydraulically-fractured tight gas reservoirs in two-

dimensional space. 

It was shown that the developed simulator, DNS, can predict reservoir behaviour for a wide 

range of reservoir configurations using the following inputs: time, cell size in the X, Y, Z – 

direction, formation volume factor for both water and gas, viscosity, porosity, relative 

permeability in the X, Y, Z- directions, gas density, initial water saturation, rock 

compressibility, reservoir depth, well location, well rate, initial pressure and bottom hole 

pressure.   

Throughout this dissertation, it is demonstrated that DNS is able to act as an independent clone 

to numerical reservoir simulators. This simulator could be used to investigate a variety of 

scenarios during the history matching, uncertainty quantification and field optimisation 

processes, allowing for faster and better decision-making processes. 

The exceptional contributions within this thesis can be summarised as follows: 
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• This thesis details the logistics of the design and implementation of a data-driven model 

that is capable of predicting the pressure across the drainage area of a vertical well 

within a hydrocarbon reservoir. The novelty in this study lies within the implementation 

of a deep learning network to develop a trained model to act as a comprehensive tool 

that can act as a fast data-driven replacement for a commercial simulator. 

• The results confirm that this approach has the potential to be used in building a pre-

trained data-driven simulator that is capable of providing accurate, fast and reliable 

results for any given reservoir configuration.  Unlike conventional approaches to proxy 

modelling, DNS is not built for any one specific reservoir. Conversely, DNS was built 

to be used in predicting the reservoir performance for a wide range of reservoir 

configurations, without a requirement for further training or building processes. 

• The simulation was evaluated in terms of precision, speed and reliability. These 

obtained results were then compared with the physics-based simulator, Schlumberger 

Eclipse. This resulted in more than 800 varying synthetic reservoirs being generated, 

each with its own unique description and production settings. Multiple metrics were 

used in evaluating these case studies; MAE, MRE, MAPE, MSE. RMSE and R2. 

• Due to the indirect dependency that DNS holds to the initial and boundary conditions, 

it can directly simulate specific cells within a particular period. This allows DNS to be 

incredibly fast compared with traditional physics-based simulators. It results in DNS  

taking only 1.5e-6 seconds to predict the cell pressure for a single timestep. Through 

this approach, it takes DNS approximately, on average, 1.18e-4 seconds to predict the 

pressure trend of a wellbore for five case studies. This means that, on average, DNS is 

2e+10 times faster than commercial simulators. 
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• In this study, the objective of incorporating real field data in the simulation was not 

achieved. This is due to some limitations associated with DNS in its current form. The 

current configuration of DNS makes it suitable for single-phase gas reservoirs with one 

vertical production well, with or without hydraulic fractures, in non-complex geological 

structures, however, the same approach could be accommodated to model all types of 

reservoirs with different features and settings. Due to these restrictions, DNS was not 

evaluated against the real field data, as field data with such attributes was not found. 

Regardless, the results confirm the feasibility of development of a data-driven 

simulator. It is believed that DNS can predict the outcome of a commercial simulator, 

whatever the inputs to this simulator are. This includes synthetic data, semi-synthetic 

data, and real field data, as long as their attributes lie within the range of the training 

data.  

7.2.Future Work 

 

Future work on this topic should consider the following recommendations: 

• To consider multiple wellbores within the reservoirs under study 

• To study the effect of multi-phase flow in the accuracy of the data-driven model by including 

an aquifer and/or incorporating injection-production scenarios within the reservoirs under study 

• To consider various reservoir shapes and geometries within the reservoirs under study. This 

study only focuses on cube-shaped reservoirs. 

• To perform history-matching and a field optimisation study to compare the outcomes with a 

physics-based simulator  

• To incorporate the multilayer perceptron (MLP) with recurrent neural networks (RNN) for 

more complicated scenarios, such as multiphase fluid flow with/without multiple production 

wells and water/gas injection wells 
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• To feed the deep learning model with real field data, instead of generating synthetic data using 

a commercial simulator. 
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