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ABSTRACT 
 

The limited customisation in commercially available wheelchairs does not always appropriately 

accommodate the anthropometric variations resulting from specific impairment. Wheelchair racing 

athletes demonstrate up to 3.8% total body mass greater in the upper extremities, and up 9.8% total 

body mass reductions in their lower extremities, and between-limb asymmetries of 62.4%. As a 

consequence, athletes may not have the stable base of support required for optimal propulsion. The 

optimisation of an entire wheelchair to match unique athlete geometry is both time consuming and 

costly, as wheelchairs cost over $2000 each. The use of assistive technology can provide an efficient 

transition between the commercially available equipment and the unique athlete anthropometry. 

Customised seating interfaces offer a time and cost effective solution, facilitating regular modifications 

to satisfy athlete growth. These solutions have been used extensively in clinical applications for 

enhanced stress distribution and injury prevention at the seating interface; however, they have not yet 

been applied to sporting contexts. The goal of this research was to investigate the performance impact 

of customised seating interfaces on wheelchair racing propulsion technique. Supplementary goals 

included the development of practically viable instrumentation solutions and a musculoskeletal model 

representative of the unique wheelchair racing athlete anthropometries and physical capabilities to 

assess injury risk to analyse performance impact holistically. 

The research was split into four main themes: 

1. Verification of the importance of the seating interface relative to other key performance 

parameters such as aerodynamics and glove selection. 

2. Instrumentation of the hand-pushrim and seating interfaces 

3. Development of a musculoskeletal model 

4. Computational modelling of performance and injury risk 

Computational modelling was performed in the OpenSim environment which coupled kinematic 

inputs from 3D motion capture (VICON Bonita V16; Oxford Metrics, Oxford, United Kingdom), 

with kinetic inputs from a pressure mat at the seating interface (XSensor LX100; Calgary, Alberta, 

Canada) and inertial measurement units (IMUs) (I Measure U; New Zealand) to estimate the hand-

interface interactions. This was achieved using Newton’s Second Law, incorporating athlete-specific 

mass data (from the analysis DXA scans), and acceleration measured from the IMU. 
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Customised seating interfaces reduced the undesirable peak translations of the knee by up to 41.8% 

and lateral translation of the spine by 33.4%. These translated towards enhanced performance, with an 

average performance time reduction of 29.8 s (3.7% race time) in the eight international competitions 

following the inclusion of the customised seating interface. Additionally, athletes using cushioned 

seating interfaces had reduced peak pressures at the seating interface as compared to those without the 

interface. Instrumentation can be used outside the laboratory environments, and can, therefore, be 

applied in the daily training environment to optimise performance preparation. 

This research provided foundation work for the use of computational biomechanical analyses for the 

holistic assessment of wheelchair racing performance. Whilst this research has demonstrated the 

potential impact computational modelling approaches can have on the performance preparation of 

athletes, some areas for further refinement have been identified. Future research into the processing 

of IMU data and the validation of musculoskeletal models for wheelchair racing athletes are the critical 

areas for improvement. Once achieved, the computational modelling approaches explored in this 

research can positively impact performance outcome, particularly when coupled with the optimisation 

of equipment, such as customised seating interfaces.  
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CHAPTER ONE:  

INTRODUCTION 
 

 

 

 

 

Wheelchair racing is a sport within the stream of athletics and triathlon (running) open to athletes with 

a physical impairment. Athletes propel a specialised wheelchair on either a track surface (Athletics:  

100 m, 200 m 400 m, 800 m, 1,500 m, 5,000 m, 10,000 m, 4 × 100 m relay and 4 × 400 m relay) or a 

road surface (Marathon: 42,195 m, triathlon 5,000 m). Australia has a rich history in both athletics and 

triathlon at an international level. This includes Louise Savage (9 Gold and 4 Silver Paralympic medals 

between 1992 and 2004) and Kurt Fearnley (3 Gold, 7 Silver and 3 Bronze Paralympic medals between 

2000 and 2016) in athletics, as well as Bill Chaffey in triathlon, who has won gold at the World 

Championships five times between 2009 and 2015.  

Wheelchair racing first appeared in an international games for the disabled in 1960, in Rome, Italy.1 

Since its establishment, performance times have improved dramatically. The men’s 1,500 m times have 

dropped from 3:58.50 (minutes : seconds . hundredths) at the 1984 Summer Olympics,2 to 2:51.84, 

which was the fastest official time recorded by a wheelchair racer at the end of 2017. While sporting 

outcome is primarily a reflection of athletic ability, the effective integration of modern technologies 

may have also contributed to the significant drop in performance time over the last 35 years. 
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The use of aluminium, titanium or composite materials make wheelchairs lighter and stiffer, to become 

faster and more responsive,3 which is beneficial for performance. An exploration into further 

performance and equipment optimisation is crucial to maintain current competitive advantages and 

success over international competitors and to assist with the improved performance of developing 

athletes. The integration of science and technology into wheelchair sports is relatively novel, making 

substantial performance gains easily obtained. Additionally, the majority of wheelchair-related literature 

to date has been clinical.  

 

1.1 WHEELCHAIR RACING PROPULSION 

Wheelchair racing propulsion technique is different to the conventional grab and push technique of 

conventional manual wheelchair propulsion (Figure 1.1).4 Wheelchair racers instead use more of a 

striking motion between the hand (which is protected through a glove), and the push-rim (located on 

top of the rear wheels).5 This rubber pushrim has a diameter between 12" (304.8 mm) and 16"  

(406.4 mm), as compared with overall wheel diameter (29", 622 mm)6. The ratio of these two 

measurements acts as the gearing system for the wheelchair.7 The pushrim surface can be modified 

with fabric tape or adhesives to increase the surface roughness, and hence increase traction between 

the hand and pushrim to improve force transfer to the wheelchair.7 As athletes are not gripping the 

wheels, they can have a higher cadence, allowing them to reach greater peak speeds.  

 

Figure 1.1: Wheelchair racing athletes assume a kneeling posture, and contact the pushrims using a striking motion. 
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Athletes assume a kneeling posture for propulsion, and as such, the seating interface is at the shins, 

rather than at the ischial tuberosities seen in conventional, upright postures. This position promotes 

power transfer to the pushrims3 and substantially reduces athlete frontal area by 46% (0.37 m2 

conventional, upright postures,8 but just 0.17 m2 in a racing wheelchair).9 Due to reduced aerodynamic 

drag, power reductions of 16.6% were identified for athletes assuming the aerodynamically optimised 

racing position (with a hyperextended neck) as compared to an upright position. A flexed head position 

(looking up) requires 1.75% greater power than a hyperextended neck position.9 

Wheelchair propulsion is a closed loop cyclic motion, where the legs are rigidly secured within the seat, 

presumably exhibiting a quasi-static movement, while the arms demonstrate a highly dynamic motion. 

Propulsion can be separated into two fundamental phases: propulsion and recovery.10 Force transfer 

between the athlete and wheelchair occurs during the propulsion phase. During the recovery phase, 

athletes return to a position ready for the next hand contact (initiating the start of the following 

propulsion phase). There is no single “optimum” technique, with athletes optimising their technique 

based on their unique physical capabilities. 

To optimise individual performance, athletes must successfully execute the mechanical demands of 

propulsion (overcoming the athlete-wheelchair moment of inertia) to overcome the resistive forces 

acting on the system. The two main resistive forces acting on this system include rolling resistance 

(FRolling) and aerodynamic resistance(FDrag) as presented in the free body diagrams in Figure 1.2 and 

Figure 1.3. These are in horizontal equilibrium with the inertial forces (FInertial) and the force applied to 

the ground by the rear wheels (FApplied). Further information can be found in the literature by Fuss.11 

 

 

Figure 1.2: Free body diagram of the propulsion phase as presented by Fuss.11.  

 

PROPULSION PHASE 

FROLLING 

FDRAG 

FINERTIAL 

FAPPLIED 
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Figure 1.3: Free body diagram of the recovery phase as presented by Fuss.11.  

 

Rolling resistance in wheelchair racing is the more significant source of resistive drag, being between 

65% and 75% of total resistance (depending on speed), with aerodynamics being the remaining 35% 

to 25%.9 Overcoming these resistive forces is achieved through ensuring optimum friction between 

the hand, glove and pushrim; and applying maximal propulsive force over an optimum path.12 

 

1.2 SPORTING WHEELCHAIR DESIGN 

Sporting-specific wheelchair designs are performance driven to effectively balance the competing key 

design requirements of strength, stability, aerodynamics, and agility. Athletes began to modify their 

wheelchairs for specific sports in the 1970s,1 with the first three-wheeled racing wheelchair design 

developed in 1990.6 Modern materials and manufacturing techniques also mean aluminium and carbon 

fibre are used in the construction of the chassis to achieve a lightweight frame (between 4.5 kg and 8.2 

kg)1, 11, 13, 14 without compromised structural integrity and stiffness.15 Use of lightweight materials has 

large implications on performance as additional mass in the athlete-wheelchair system is detrimental.11  

The importance of each of the design requirements varies across wheelchair sports, as is reflected in 

the considerable differences in chassis design. For example, wheelchair mass and aerodynamics are of 

paramount importance to wheelchair racing as these assist in optimising linear velocity and 

acceleration. However, athletes in ball sports are more concerned with mobility, with wheelchair rugby 

also requiring a high stiffness chassis to withstand the frequent collisions. This translates to an 

increased rugby wheelchair mass (17.2 kg).16 As a point of comparison, conventional wheelchairs have 

a mass up to up to 18 kg1 (ultralightweight wheelchairs <13.6 kg; lightweight chair <15.5 kg).17  

FROLLING 

FDRAG 

FINERTIAL 

RECOVERY PHASE 
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Some distinguishing features of wheelchair racing chairs include the tubular tires, lightweight rims, 

precision hubs, and large rear wheels with smaller pushrims.1 The rear wheels are cambered to increase 

stability by providing a broader base of contact (although at the detriment of increased rolling 

resistance). Commercially-available wheelchairs allow limited customisation in configuration. A 

popular brand of wheelchair amongst Australian athletes (Invacare, Ohio, United States of America), 

allows athlete-specific prescription of upper and lower frame width, cage depth, knee width, and height, 

kneel depth and front and rear seat height.6 Additionally, athletes can opt for an elongated front fork 

to further enhance stability. However, the increased length decreases the manoeuvrability of the 

wheelchair, and so athlete-specific wheelchair prescription is required. Triathlon athletes compete using 

the same equipment as wheelchair racers.  

The degree of customisation available in commercially available chairs does not always accommodate 

the anthropometric variations resulting from specific impairment sufficiently. For example, athletes 

with amputation or substantial loss of skeletal muscle tissue (on either one or both legs) are likely to 

have a seating cavity which is too large. As a result, athletes may move relative to the seat, like running 

in a pair of shoes which is too large.  

The relationship between chair geometry, athlete anthropometry, and track characteristics is key to 

improved performance.1 Athletes with different levels of injury have demonstrated distinct differences 

in stroke kinematics,18 and adopt wheelchair designs and seating postures which best optimise balance 

and performance. As para-athletes present with varying levels of skeletal muscle tissue and bone, they 

all sit differently within the seat.  

The optimisation of an entire wheelchair to unique athlete geometry is both time-consuming and costly. 

Additionally, it precludes replacements to accommodate any anthropometric changes (such as loss or 

gain of skeletal muscle tissue). The use of assistive technology can provide an efficient transition 

between the commercially available equipment and the unique athlete anthropometry to improve the 

performance of the athlete-wheelchair system as a whole. For example, seating inserts provide a time- 

and cost-effective solution, which facilitate regular modifications to satisfy athlete growth. These 

solutions have been used extensively in clinical applications for enhanced stress distribution and injury 

prevention at the seating interface, but not in sporting applications.  

Moulding cushions to exactly match an athlete’s geometry can artificially return the tissue lost by 

impairment. Increased support is achieved through custom contouring of the cushion to match athlete-

specific anthropometric adaptations owing to physical impairment. A customised seating interface can 

benefit acceleration, power, and mobility as a consequence of the increased conformity and 

maximisation of the contact surface area between the buttocks and seat.19  
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Despite these benefits; no literature presents what the influence of customised seating interfaces is on 

sporting performance. Anecdotal coach and athlete feedback indicates an investigation into the use of 

customised seating interfaces for sporting performance is warranted.19 This led to the fundamental 

question of this research; what performance effect do customised seating interfaces have on wheelchair 

racing athletes? To understand the performance impact of customised seating however, further 

investigation into appropriate measurement tools (instrumentation) and biomechanical analytical 

techniques (computational modelling) are required.  



 

 

7 
 

 

 

 

 

 

CHAPTER TWO:  

BACKGROUND 
 

 

 

 

 

There are twenty-three summer Paralympic sports (as at January 2019), which are contested by athletes 

having a physical, visual or learning impairment. This research is focused only on athletes having a 

physical impairment. The ten eligible physical impairment types include; impaired muscle power, 

reduced passive range of movement, limb deficiency, leg length difference, short stature, hypertonia, 

ataxia, athetosis, and visual impairment.20 Of the twenty-three sports, four are dedicated wheelchair 

sports (basketball, fencing, rugby, and tennis), with wheelchair athletes also eligible to compete within 

classifications of other sports (athletics and table tennis, for example). This chapter will provide a 

background of wheelchair racing, including the physical impairments of athletes competing in the sport 

and the equipment required for competition, and highlight the need for customised seating interfaces. 

Additionally, the methods currently being used for the biomechanical analysis will be revealed, with 

insight as to how they can be improved to more accurately quantify any technical changes resulting 

from the inclusion of customised seating interfaces. 
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2.1 PHYSICAL IMPAIRMENTS OF WHEELCHAIR RACING ATHLETES 

To be eligible to compete in para-athletics, athletes must present with a physical impairment which is 

the direct result of a health condition or injury.21 These relate to either compromised muscular control 

or impaired muscle power.22 Para sports are governed through a classification system to reduce the 

inequalities between functionality, promoting more equal opportunities for athletes to excel. The 

specific classifications for wheelchair racing are presented in Table 2.1. Lower classifications (i.e. T31) 

have less functional mobility than athletes in a higher classification (i.e. T34).  

 

Table 2.1: Classification profiles for wheelchair racing athletes competing in athletics, and the corresponding physical impairments. Data 

presented in this table is based upon the World Para-Athletics Classification Rules and Regulations.21  

  
Lower Extremity 

Function 
Trunk Control 

Upper Extremity and 

Hand Function 

C
o

m
p

ro
m

is
ed

 M
u
sc

u
la

r 
C

o
n

tr
o

l 

T31 

A demonstrable degree of 

function in one or both 

lower limbs. 

Fair static control. Poor 

dynamic trunk control. 

Hand severe to moderate 

involvement. 

T32 
Poor functional strength in 

all limbs. 

Fair static control. Poor 

dynamic trunk control. 

Hand severe to moderate 

involvement. 

T33 

 

Some demonstrable 

function. Spasticity grade 

4-3. 

Fair trunk control, but 

forward trunk motion 

often limited to extensor 

tone. Spasticity grade 2+. 

Moderate limitation 

spasticity grade 2+. Poor 

finger dexterity. 

T34 

Moderate to severe 

involvement. Spasticity 

grade 4 -3. 

Minimal limitation of trunk 

movements. 

The upper limbs often 

show regular functional 

strength. 

Im
p

ai
re

d
 M

u
sc

le
 P

o
w

er
 T51 N/A N/A 

Decreased shoulder muscle 

power. 

T52 

 
N/A No trunk function. 

Normal shoulder, elbow 

and wrist muscle power. 

Poor to normal muscle of 

fingers. 

T53 
No lower spinal muscle 

activity. 
No abdominal activity. Normal arm muscle power. 

T54 
May have significant leg 

muscle power. 

Partial trunk control to 

normal trunk control. 
Normal arm muscle power. 

 

N/A: No mention in documentation, however based on similar activity limitations (T51: complete spinal cord injury at level C5-6, T52: complete 

cord injury at C7-8), it can be presumed that there is no function. 
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2.1.1 INDIVIDUALS WITH COMPROMISED MUSCULAR CONTROL 

Athletes classified as T31 – T34 have compromised muscular control, and present with either 

hypertonia (high muscle tone), athetosis (involuntary contractions of muscles) or ataxia (impaired 

control of voluntary movement). Such impairments are the result of health conditions including 

cerebral palsy, and multiple sclerosis however they also may be acquired from stroke or acquired brain 

injury.21 

 Hypertonia (resulting from cerebral palsy, stroke, acquired brain injury or multiple sclerosis).21 

Clinically, there are two forms of hypertonia; spastic and dystonic.23 A simplified definition of 

spasticity-related hypertonia is the premature and/or exaggerated muscle contraction (which 

may resist the passive stretch) as a consequence of the absence of modulation of the stretch 

reflex.24 Dystonia, however, relates to sustained contractions of muscles which may result in 

abnormal posture, and contribute to joint stiffness.23  

 Ataxia (resulting from cerebral palsy, brain injury, Friedreich’s ataxia, multiple sclerosis or 

spinocerebellar ataxia).21 Ataxia is the result of a damaged, or dysfunctional cerebellum, which 

is vital in maintaining static and dynamic balance and modulating muscle activity.25  

 Athetosis (resulting from damage to motor control centres of the brain from the result of 

cerebral palsy, stroke or traumatic brain injury).21 Athetosis is characterised by involuntary 

movement of the fingers and toes, an inability to be still (swaying), and characteristic athetoid 

posturing of limbs and the trunk.21 

 

2.1.2 INDIVIDUALS WITH IMPAIRED MUSCLE POWER  

Athletes classified as T51 – T54 have impaired muscle power (resulting from spinal cord injury, 

muscular dystrophy and spina bifida, for example), reduced passive range of movement and congenital 

or traumatic leg length difference.21  

 Spinal Cord Injury (resulting from trauma). Athletes with spinal cord injury have 

compromised voluntary movement and sensory function26 below their lesion level,27 and 

altered skeletal muscle properties28 as a result of the inhibited neural pathways. The extent of 

the impairment is related to the physical activity level, completeness of the spinal cord lesion29 

and time post-injury.30  

 Muscular Dystrophy. The exercise capacity of individuals with muscular dystrophy is 

limited.31 Additional pulmonary limitations extend to perceived shortness of breath during 

cardiopulmonary testing, and hypotensive response. 
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 Brachial Plexus Injury is the most common peripheral nervous system injury,32 with resulting 

neurological symptoms including numbness, tingling and pain in the upper extremity.33 

 Polio. Muscular paralysis from the poliomyelitis virus on the spinal cord. Athletes with polio 

have a rapid onset of fatigue (in weakened muscles)31 which limits their physiological capacity. 

 Spina Bifida (congenital). Athletes with spina bifida have incomplete development of the 

brain, spinal cord, and their protective coverings, resulting in tone changes and balance issues.34 

 Guillain-Barré Syndrome is a non-traumatic peripheral neuropathy characterised by rapidly 

progressive weakness and sensory loss.35 

 

2.1.3 ADDITIONAL IMPAIRMENT TYPES 

Wheelchair racing athletes may also present with  

 Limb Deficiency resulting from amputation which is the result of trauma or congenital limb 

deficiency.21 The minimum impairment criteria imposed by the World Para Athletics 

Classifications require at least half of the foot to be missing to be eligible for competition.21 

 Impaired Passive Range of Movement resulting from arthrogryposis, ankyloses, or post 

burns joint contractures.21 

 Leg Length Difference resulting from congenital or traumatic causes of bone shortening in 

one leg.21  

 

2.1.4 PHYSICAL IMPAIRMENTS OF TRIATHLON ATHLETES 

Within triathlon, athletes compete in six classifications with seven impairment types,36 including 

impaired muscle power and vision impairment (athletes are led by a guide). One classification exists 

for athletes requiring a wheelchair during the run segment.37 Within this classification, there exist two 

subclasses separating the impairment level: H1 and H2, who are more and less impaired, respectively.  

 

2.1.5 HOW STRENGTHS OF WHEELCHAIR ATHLETES DIFFER TO ABLE-BODIED 
POPULATIONS 

It is commonly accepted that in general, athletes have greater strength capacity than non-active 

individuals.38 This is due to physiological enhancement following the extensive physical training as part 

of training and competition.39, 40 However, further physical adaptation results from impairment. 

Differences in both physiological and biomechanical (power production) have been demonstrated for 

manual wheelchair users with and without upper limb impairment.41 More specifically, Mulroy et al. 26 



 

 

11 
 

have shown significant differences in both speed and cycle distance between paraplegics and 

tetraplegics at comparable cadence. Therefore, the strength of wheelchair athletes may differ 

considerably to that of an able-bodied population due to both their physical training and impairment.  

Maximum strength can be assessed objectively during an isometric contraction.42 A survey of the 

literature has revealed similarities in isokinetic measurements between wheelchair athletes and able-

bodied, non-athletic individuals (Figure 2.1, Table 2.2).43-49 These findings are consistent with the 

literature of Haisma et al.50 (as cited in Phillips et al.51) which demonstrated comparable shoulder 

strengths of people with paraplegia against age and gender-matched able-bodied populations.  

 

Table 2.2: Reference detail for Figure 2.1.  

Reference W/AB Ath/Ev M/F N 

1: Ambrosio et al. 43 W EV NA 22 

2: Burnham et al. 44 W ATH M 19 

3: Miyahara et al. 45 W ATH NA 8 

4: Connelly et al. 49 AB EV M 19 

 AB EV F 19 

5: Ellenbacker & Mattallino 46  AB ATH M 125 

6: Bernard et al. 47 AB EV M 12 

 AB ATH M 15 

 W ATH M 21 

7: Ruivo et al. 48 AB EV M 22 

 AB EV M 22 
 

W = wheelchair using, AB = able-bodied, Ath = athlete, Ev = non-athletic, M = male, F = female, N = number of participants. 

Figure 2.1: Peak isometric force measurements for shoulder movements (abduction, adduction, internal and external rotation) at a variety of speeds  

(60 °/sec, 180 °/sec and 300 °/sec) for wheelchair using and non-wheelchair using athletic and everyday populations. References presented in Table 2.2. 
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Increased abduction forces at the shoulder, particularly at higher rotation speeds (120 º/s) are observed 

for wheelchair athletes in contrast to able-bodied individuals (Figure 2.1). While these differences are 

within the same order of magnitude, the consistently greater forces may be indicative of a greater 

maximum isometric force generating capacity for wheelchair users as compared with the able-bodied, 

non-athletic populations. Notable differences in parameters between populations may compromise the 

reliability of the results of the biomechanical simulation. This highlights the need for the use of subject-

specific maximum isometric force generating capacity parameters for the computational analysis of 

wheelchair racing athletes to ensure the governing properties of the musculoskeletal model reflect the 

athlete characteristics as much as possible. 

The comparable magnitude of isometric strengths observed between populations suggests that the 

underlying force-velocity parameters of the muscles are retained. This supports literature by Haisma et 

al.50 who demonstrated comparable upper extremity muscle strength and respiratory function of a 

paraplegic population with the able-bodied population examined. These similarities may be due to no 

pathological conditions being present in the upper extremity of people with paraplegia. This suggests 

the theory that although the magnitude of force-generating capacity may require adaptation, the 

governing principles of muscle (for example, force-velocity relationships) are maintained in unaffected 

skeletal tissue following spinal cord injury. Therefore, for computational analysis, typical able-bodied 

force-velocity relationships as found in literature can be used for athletes classified as T53, T54, and 

T34, meaning the derivation of new governing muscle relationships is not required. This assumption, 

however, would not be appropriate for athletes classified as T51 for example (decrease of shoulder 

muscle power, especially pectoralis major and triceps)22 nor could it be extrapolated to quadriplegic 

athletes, who have varying levels of impairment to the upper extremity.  

 

2.2 WHEELCHAIR RACING EQUIPMENT 

To compete, athletes require a specialised racing wheelchair, wheels, and gloves. There exists some 

capacity to manipulate each of these equipment selections to enhance acceleration and velocity 

(wheelchair and wheels), and the force transmission to the wheelchair (gloves). There are three 

principal wheel types used by wheelchair racers: spoked, aero spoke, and disc (Figure 2.2), of which 

the latter two are constructed from carbon fibre. Athletes opt to use the different wheels based on 

their aerodynamic response. Disc wheels are lighter and more aerodynamic, while spoked wheels have 

better handling characteristics, as the solid disc wheels act like sails when strong crosswinds are present. 

Video analysis of the Rio 2016 Paralympics finals (available through YouTube), revealed 2.7% of 

athletes used spoked wheels, close to 40% used aero spoke, and the remaining 57.3% used disc wheels.  
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Figure 2.2: The three wheel types used in wheelchair racing. From left to right: Carbon disc, carbon aero, spoked.  

 

Gloves are used: for protection of the fingers and thumbs, to maintain optimum hand position, and to 

provide grip against the pushrim surface.52 Athletes can opt to either use a soft, leather glove, or hard 

thermoplastic glove which is moulded to the hand directly. Athletes select gloves based on personal 

preference. Performance benefits using hard gloves include greater peak velocities under sprint 

conditions with larger peak forces as compared with soft gloves.53 Presumably, this is a result of the 

increased stiffness at the hand-pushrim interface. Soft gloves, however, give the benefit of additional 

damping for protection and comfort. An analysis of the Rio 2016 Paralympics demonstrated that an 

even distribution of glove type was used by the athletes making finals (athletes used either a soft or 

hard glove). Australian athletes typically used thermoplastic gloves, and athletes in T31-34 

classifications more frequently opting to use the soft, leather gloves. It is feasible that the preference 

of soft gloves in this classification group is a consequence of the coordination impairment, with the 

soft gloves being more favourable for inconsistent hand positioning than the custom moulded 

thermoplastic counterparts. 

 

2.2.1 ASSISTIVE EQUIPMENT AND TECHNOLOGY 

The biomechanical and physiological variation between athletes leads to a variation in how athletes 

interact with their equipment. Para-athletes may require assistive equipment to return the range of 

motion which is either lost or reduced through illness, injury, or congenital disability. Assistive 

equipment is fundamental for athletes to compete. Ingenious engineering maximises the 

musculoskeletal capabilities of an individual to help an athlete gain a competitive advantage. The 

assistive technology used in sports at the summer Paralympic Games is summarised in Table 2.3.  
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 Table 2.3: Paralympic Sports Australian Athletes compete in which require performance equipment. Data compiled from the author based on 

information found online and from discussions with Australian Paralympic Committee Staff. 

 
Athlete 

Interfaces 

Prosthetics and 

Orthotics 
Wheelchairs 

Throwing 

Frames 

Archery • • • • 

Para Athletics • • • • 

Badminton • • •  

Boccia •  •  

Canoe • •   

Cycling • • •  

Equestrian • •   

Football 5-A-Side     

Goalball     

Judo     

Para Dance Sport •  •  

Para Powerlifting     

Rowing • •   

Sailing • •   

Shooting • • •  

Sitting Volleyball     

Para-Swimming     

Table Tennis • • •  

Taekwondo     

Triathlon • • •  

Wheelchair Basketball • • •  

Wheelchair Fencing •  •  

Wheelchair Rugby • • •  

Wheelchair Tennis • • •  

Total Sports 17 14 13 2 

 

With recent technological advances, it is possible for equipment to provide performance enhancement. 

To ensure any equipment (both able-bodied and adapted), does not offer a competitive advantage 

exceeding human capabilities, the governing sporting body establishes a set of rules for athletes to 

comply with. Rules are updated with emerging technology and innovation. However, as wheelchair 

racing is a relatively modern sport, and does not have the rich sports science history of sports such as 

cycling, equipment guidelines remain broad. Relevant requirements of equipment for use in wheelchair 

racing, as described by IPC (International Paralympic Committee) Athletics,54 include: 

“Rule 159 Para 2: no part of the body of the chair may extend forwards beyond the hub 

of the front wheel and be wider than the inside of the hubs of the rear two wheels. The 

maximum height from the ground of the main body of the chair shall be 50cm.” 
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“Rule 159 Para 9: no part of the chair may protrude behind the vertical plane of the back 

edge of the rear tyres.” 

 

Athlete interfaces include any surface where the athlete interacts with their equipment. For wheelchair 

racing, there are two interfaces. One is at the pushrim; when the hands are in contact with the wheel, 

and the other is at the seating interface; which, due to the kneeling posture, is underneath the shins. A 

considerable amount of literature, both clinical and applied, has been published into the optimisation 

of the athlete-pushrim interactions to maximise movement efficiency.55-64 Less literature surrounds the 

interactions at the seating interface, despite these being demonstrated to influence propulsion.  

Closed chain constraints mean the kinematics of the upper extremity are inextricably linked with 

dynamics at the seating interface, such as pressure distribution. Changes in pressure distribution at the 

seating interface can result from propulsion kinematics and kinetics during the push phase and recovery 

phase, or through wheelchair configuration. One primary cause of this variation between athletes is 

the level of trunk function present, which is consistently used in classification to differentiate between 

different groups.22 Dynamic trunk control is important in the context of upper extremity force 

generation, particularly concerning the inertial effects associated with the head-arm-trunk segments. 

This can potentially lead to a competitive advantage, through increased trunk rotation,64 and greater 

push angle, which has been demonstrated to improve performance.65 Importantly, the centre of force 

at the seating interface has been demonstrated (using a pressure mat) to translate throughout a stroke 

during manual wheelchair propulsion.66 While potential benefits to force application may result from 

trunk function, as the propulsion action causes variation in this centre of force and, potential 

momentary instabilities at the seating interface may exist. 

Instabilities at the seating interface can increase unwanted motion at higher levels, which can place 

additional stresses on the upper extremity, increasing the risk of injury (as literature has suggested 

shoulder injuries result from the repetitive, high shoulder forces required in wheelchair propulsion),63, 

67-69 or introduce spatiotemporal asymmetries during propulsion which can result in steering 

difficulties.70 As both of these are undesirable, manipulation of the seating posture of the athlete to 

enhance stability has been advocated,71 with the degree of customisation related to each sport and the 

type of wheelchair used. Increased conformity at the pelvis can reduce slip at the athlete-wheelchair 

interface, dramatically increasing the component of applied energy into useful power. Achieving this 

increased conformity can be the result of seating and postural support customisation.72 
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Despite these performance benefits, the main focus of literature surrounding athlete-wheelchair 

interactions to date is the prevention of pressure ulcers among wheelchair users. This is likely due to 

the prevalence of pressure ulcers in seated persons ranges up to 60%, which results in both pain and 

systemic illness,73 having a detrimental impact on their livelihoods. Injuries are caused due to the 

prolonged and excessive pressure applied to the blood and lymphatic cells underlying the skin,74 with 

the reduced sensation of the lower extremity leading to insensitivity to pain or discomfort.75 Pressure 

ulcers develop in the deep tissues, and are hence hard to detect until they reach the skin surface,76 by 

which time the damage to tissue has already occurred, and athletes would be unable to train or compete. 

Non-conformity at the seating interface promotes lower limb movement, generating frictional rubbing. 

Pressure sores are referred to as deep tissue injuries which emanate from sustained, localised 

mechanical compression as well as shear and tension deformations which result from the impinging 

bony prominences on the gluteal muscles.77-79 A clinically relevant pressure of 32 mmHg (4.3 kPa) can 

be attributed to a compression-induced muscle cell degeneration in the skeletal tissue of mice.80 This 

level of compression has been considered by clinicians as a causal factor of pressure ulcers.80 This was 

supported in other literature, with further recommendations that pressure should not exceed 60 mmHg 

(8 kPa), which is generally assumed to be the limit of tissue viability.81 Cellular breakdown is not only 

associated with the magnitude of applied pressures but also duration. Significant cell break down has 

been demonstrated to occur in the skeletal tissue of mice after two hours of sustained compression,80 

which can be comparable to the length of an athlete training session.  

 

2.2.2 CUSTOMISED SEATING INTERFACES 

Athletes may customise frame width, depth, height and axle position of their wheelchair82 for an 

optimised position which is both stable and powerful. Additionally, athletes have some flexibility in 

the design of the wheelchair chassis to satisfy their unique characteristics best. This includes wheelchair 

length, cage depth, kneel depth, and front and rear seat height.6 While these can be used to alleviate 

the effect on performance from some of the idiosyncrasies of the athlete, it is common for poor 

interfacing to exist between the athlete and the seat.  

The Great Britain wheelchair basketball team competed at the London 2012 Paralympics with the first 

tailor-made 3D printed seats.83 Eight athletes (four male, four female) participated in these chairs, 

which were created from 3D body scans and computer-aided design technology, before being 

manufactured using selective laser sintering. Widespread improvements in speed, acceleration, and 

manoeuvrability were identified from preliminary testing.84 Despite these performance benefits, the 

complete customisation allows minimal flexibility when it comes to changes in athlete anthropometry, 
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such as through growth. Sport-specific wheelchairs are expensive, with high-end basketball wheelchairs 

costing between CAD 2,500 and 5,000.85 Therefore, athletes do not purchase new wheelchairs 

frequently, and so the development of removable interfaces provides a cheaper alternative. 

The most common customised seating interface is a foam cushion, which has been used in clinical 

literature and applications for the prevention of pressure sore injuries. The increased comfort, 

supportive contact area provided by customised seating interfaces dissipates high shear stresses, 

enhances load distribution, and minimises internal gluteal stresses and strains over the ischial 

tuberosities.86-88 Customised seating may provide a stable base of support for dynamic sitting,52 assist 

in enhancing body alignment, and alleviate pressure to reduce the likelihood of obtaining a pressure-

related injury.89  

Customised seating interfaces can also be created from many different materials, however, are typically 

either a viscoelastic foam or polymeric gel. Foams provide good conformity (as they can be cut into 

any shape), firm support, with multiple stiffness grades, while gel packs are standard sizes and do not 

demonstrate the elastic properties of the foams.74 Different materials have varying levels of 

effectiveness with regards to relieving pressure,90 and comfort.81 When combined, various performance 

and comfort characteristics can be further improved.79 These characteristics are dependent upon the 

intended use. For clinical interfaces, comfort is a high priority, however for athletic interfaces, 

performance is the fundamental consideration, and comfort may be compromised to support this 

performance. 

Athletes can also include contoured foam cushions into the seating interface of their sports wheelchair 

to account for anthropometric idiosyncrasies. The priority for wheelchair athletes is performance. 

Customised seating interfaces (and seating configuration) provide a number of performance-based 

benefits, including: improved head control, posture, reach, grasping and functional capabilities,86 

stability,79 and reduced interface friction,79 better energy transfer efficiency, injury mitigation, and 

optimised balance and orientation for enhanced forward movement,91 allowing maximum force 

transfer through the entire range of motion.92 

The inclusion of foam inserts, as well as manipulating wheelchair set up parameters, affects athlete-

wheelchair interactions, specifically the pressure acting at the seat. All adaptations to the seating 

interface can influence the interactions between the athlete and wheelchair. Apart from anecdotal 

feedback, there have been few comparative studies surrounding the performance of removable 

postural supports for individuals with SCI.79 Additionally, there is a lack of qualitative support for how 

athlete performance is adapted from the inclusion of customised seating interfaces in wheelchair 

sports.19 For example, customised seating interfaces having excessive conformity allow minimal 
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positional error and no tolerance for dynamic movement at the pelvis,91 which may be at the detriment 

of performance. Further biomechanical investigation into how customised seating can be effectively 

integrated into sporting wheelchairs is hence warranted.  

 

2.3 BIOMECHANICAL ANALYSIS OF PERFORMANCE 

Performance can be measured directly using a stopwatch. However, this outcome-centric approach 

does not provide insight into the aetiology of performance. This precludes the ability to understand 

whether gains are optimised, how well they can be generalised across the elite wheelchair racing 

population, and most importantly, whether there are any associated injury risks. Without understanding 

the mechanics of movement, the integration of sporting technology will have minimal impact.  

Wheelchair instrumentation can highlight propulsion asymmetries (which are detrimental to 

performance)70, 93-95 and aid in understanding how propulsion can be made more efficient (such as 

through increased rate of force development, or change the direction of applied forces).96-99 These 

tools can improve performance preparation to benefit outcome. However, another aspect of 

performance preparation is managing injury risk (through monitoring shoulder load)47, 100-102 to ensure 

competitive longevity.  

Manual wheelchair propulsion literature is commonly performed at self-directed speeds, between 1-

1.1m/s. However, these are substantially less than speeds produced by wheelchair racing athletes, who 

can reach average speeds of up to 8.6 m/s.20 Increased speed is likely to impact these results, 

particularly concerning kinematic hand patterns due to differences between manual and racing 

propulsion.58, 103, 104 Based on the observed trends with hip loading compared when walking and 

running,105 it can also be presumed shoulder joint loading will differ at varying speeds. Muscle activity 

and muscle strain are also anticipated to increase, but by an unknown magnitude. 

Biomechanical modelling of wheelchair propulsion can be performed to varying levels of complexity. 

A simplified analysis was performed by Lombardi and Dedini,106 using Newton-Euler and Jourdain 

equations to determine the dynamic behaviour of the upper extremity during motion. This literature 

estimated joint load and the inertial efforts required by wheelchair propulsion.  

Obtaining joint reaction forces in vivo are not experimentally feasible107 as they would require highly 

invasive and potentially harmful instrumentation to collect the data needed.108-110 For example, the 

collection of in vitro intersegmental joint loads requires the surgical implantation of specialised 
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instrumentation. Although instrumented implants have developed substantially since the first use in 

1966,111 they are still not suitable for use within an elite, athletic, wheelchair propulsion. 

Although biomechanical modelling using multi-segment approaches is highly efficient, it is inherently 

limited by the number of assumptions required, the neglect (or over-simplification) of muscular 

contribution, and in some cases, the restriction of the analysis to only two dimensions (e.g. 106). The 

inclusion of the muscular system better facilitates an understanding of the level in which each 

musculoskeletal element impacts movement.112 Understanding these constraints is crucial, and when 

neglected will result in ineffective treatment of movement abnormalities or technique adaptations.  

The biomechanics of sporting wheelchair propulsion have been studied in depth, including the 

contribution of the muscles towards motion.12, 18, 64, 65, 97, 113-119 Benefits of modelling muscular 

contributions were presented by Hamner et al.,120 who generated a more systematic methodology for 

determining the muscular contributions to both the support and propulsion phases of a running gait 

cycle.121, 122 Wheelchair racing propulsion is a physically straining,123 and highly dynamic activity, 

utilising many of the upper extremity and back musculature. As such, the biomechanical evaluation of 

both the efficiency and risk of injury to these muscles through changes in technique (specifically as a 

consequence of adapted seating position) is required. One such method for achieving this is through 

the use of computational modelling. 

 

2.3.1 COMPUTATIONAL MODELLING OF WHEELCHAIR PROPULSION 

Computational modelling approaches enhance the understanding of the interactions and relationships 

within the musculoskeletal system.107 They have been used to identify the pathomechanics and extent 

of movement disorders,124, 125 optimise athletic performance,107 and diagnose and evaluate patient-

specific targeted treatments.126 Modelling applications have positively impacted the approaches to the 

clinical treatment of cerebral palsy, lower extremity amputees, and osteoarthritis.127-132 Indirect 

performance benefits are gained through injury mitigation and maximising competitive longevity. 

Commercially available modelling platforms provide environments which are equipped to handle the 

complex mathematics required to model the musculoskeletal system. These packages also handle the 

inclusion of subject-specific geometries in three dimensional, full body, transient analyses. An example 

of such software is OpenSim, which provides an interactive open-source platform for creating 

sophisticated models.112, 133 Although other platforms also exist for performing computational 

biomechanical analyses, OpenSim will be used as a foundation for the remainder of the review due to 

its prevalence and popularity in the literature.134 While each software package has different coverage 
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of different features for their intended users; they have more similarities than differences and a standard 

workflow across all of them can be recognised. This workflow is highlighted in Appendix A. 

 

2.3.2 MUSCULOSKELETAL MODELS OF WHEELCHAIR RACING ATHLETES 

The computational model requires three input data sets; marker-based or segment-based kinematics, a 

musculoskeletal model containing the inertial and geometrical representation of the athlete, and the 

kinetics (applied and reaction forces) of propulsion. Musculoskeletal models currently available in 

OpenSim for the upper extremity are developed using able-bodied, non-athletic parameters. For 

example, the generic 3DGaitModel2392 (a lower extremity model with 23 degrees of freedom, and 92 

musculotendon actuators) represents an adult subject of height 1.8 m and mass of 75 kg.135-139 Due to 

the presence of biological variation between wheelchair racing athletes and able-bodied, non-athletic 

individuals, small discrepancies between these populations are to be expected. For this review, the term 

‘error’ refers to the level of disagreement between the theoretically defined and physical parameters, 

while ‘accuracy’ refers to their agreement. For example, a high error would be expected when 

estimating inertial properties of an amputated limb (using anthropometric data from an able-bodied 

population), while greater accuracy would be anticipated from subject-specific modelling procedures.  

The use of generic parameters in computational modelling has been questioned in the literature due to 

the limited generalisation to the broader population.140-143 For example, percent root mean squared 

errors greater than 25.0% have been demonstrated in the measurement of thigh segment masses of 

able-bodied living subjects compared with dual-energy X-Ray absorptiometry (DXA) obtained 

values.144 These differences were observed against popular cadaver research (% root mean square error 

(%RMSE) = 27.7%, females 19 – 30 years)145 and a mathematical inertial model (%RMSE = 25.8%, 

females 19 – 30 years),146 which is based on experimentally determined mass distributions and 

anthropometry. As these differences are apparent between two like populations (able-bodied and non-

athletic), it can be inferred that athletes demonstrating physical impairments are likely to present greater 

variances. For example, it has been demonstrated that wheelchair athletes have significantly more lean 

mass in their arms compared to a reference population.147 Although the variation of body segment 

inertial parameters defined in a model has been demonstrated to influence simulation accuracy,141, 148, 

149 the influence of their variation due to age, size, or physical deformation on input parameters is 

currently unknown.124, 130 

Generic musculoskeletal models are derived for average geometries (Appendix B), and hence require 

scaling before use to reflect the subject-specific geometry. These processes are embedded within the 

OpenSim workflow to alter segment masses and lengths with respect to total body mass and height 
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while retaining overall proportions. Body segment lengths are defined by minimising the distance 

between the experimental surface markers and the virtual marker locations on the model.133, 150, 151  

It is clear that these procedures do not accommodate inter-individual anthropometric variations, 

particularly when considering musculoskeletal impairments. As poor scaling approaches generate a 

skeletal model which poorly reflects a subject’s anthropometry, inverse kinematics and dynamics 

computations can be affected.140 Subject-specific parameters (including body segment lengths, mass 

distribution and the identification of functional joint centres) should be ascertained,152 as accurate input 

anatomic details improve the reliability of model estimates.153 However, Mogk et al. 154 have identified 

that model adjustments are still often estimated from generic parameters. Additionally, the extent of 

errors introduced by adjusting individual parameters is currently unknown.124   

The presence of uncertainties within biomechanical modelling approaches is widely acknowledged in 

the literature.155 Engel et al.156 has stated that the field of biomechanics is severely restricted by the 

inability to measure internal forces and pressure, due to ethical reasons. Therefore, unlike other 

mechanical systems, estimations of the function and contribution of musculoskeletal elements are 

required. The uncertainties arising from measurement error and parametric estimation can significantly 

affect the interpretation of results,153 as these errors propagate throughout the sequential process of 

computational modelling. The only literature of note demonstrating the propagation of errors through 

successive simulation studies was performed by Myers et al.153 Findings from this study demonstrated 

movement artefact errors (defined as skin and soft tissue movement relative to the underlying bone) 

grew from 1.8 times to 4.0 times larger than marker placement error between calculation of joint 

kinematics and moments. Additionally, muscle force outputs were observed to be highly sensitive to 

changes in maximum isometric force and tendon slack length. Understanding the magnitude of errors 

and the reliability of outputs is crucial for applying the results to real-world situations. For example, 

poorly defined parameters may lead to false negative load monitoring data, indicating techniques do 

not pose an injury risk, when in fact they do. Consequently, accurate methods of kinematic and kinetic 

data measurement and definition of musculoskeletal model inputs are required.  

The considerable time requirements for customised model development commonly restrict 

investigations to case studies or studies with low subject numbers. For example, Donnelly et al. 157 

noted that the experimental and computational time required to process a single simulation was  

36 hours, which they suggested was a limitation to the application of current in-silico subject-specific 

techniques. As a result, analyses are performed on very specific populations, increasing the potential 

for the presence of sampling effects and consequently for obtaining false positives. For example, 

athletic populations would have significantly higher force generating capacity in their muscles than 
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non-athletic populations. This, in turn, creates a trade-off between modelling accuracy and complexity 

for reliable and generalisable data.158  

Musculoskeletal modelling of the upper extremity is an evolving field, with only a few comprehensive 

musculoskeletal models currently developed.159 Bolsterlee et al. 159 has identified seven commonly used 

large-scale models, including scapular and clavicular motions: the Swedish shoulder model,160, 161 the 

Delft shoulder and elbow model,162, 163 the Newcastle shoulder model,100 Holzbaur’s upper extremity 

model,164 the Anybody upper extremity model,165 Garner’s model,166 and Dickerson’s model.167 Of 

these models, Odle 168 has identified two of these models (Delft shoulder and elbow model, Anybody 

upper extremity model), and two other models (SIMM Upper extremity and Dutch Shoulder and 

Elbow model) which have been used for the biomechanical analysis of wheelchair propulsion in the 

literature (Table 2.4). The majority of previous modelling literature has been performed on manual 

wheelchair propulsion (Table 2.4). Although one example presented in Table 2.4 used wheelchair 

athletes,169 it is clear that the application of modelling to wheelchair racing athletes is novel. Further 

detail regarding the development of a musculoskeletal model and the corresponding errors from poor 

model development are summarised in Appendix B. 

 

Table 2.4: List of literature summarising how musculoskeletal models have been used in wheelchair research. 

Reference Publication 
Population 

Sample 
Model Used 

van Drongelen et al. 170 

5 able-bodied,  

8 paraplegia,  

4 tetraplegia 

Delft Shoulder and Elbow 

van Drongelen et al. 171 

5 able-bodied,  

8 paraplegia,  

4 tetraplegia 

Delft Shoulder and Elbow 

Veeger et al. 169 
3 wheelchair 

athletes 
Delft Shoulder and Elbow 

Veeger et al. 169 
1 able-bodied, 

2 paraplegia 
Delft Shoulder and Elbow 

Dubowsky et al. 101 
2 paraplegia, 1 

able-body 
AnyBody, based on the Dutch Shoulder Model 

Sullivan et al. 172 1 wheelchair user AnyBody 

Sullivan et al. 173  AnyBody 

Morrow et al. 174 12 paraplegia SIMM, based on Holzbauer’s Upper Extremity Model 

Rankin et al. 175 1 paraplegia SIMM, based on Holzbauer’s Upper Extremity Model 

Rankin et al. 176 12 paraplegia SIMM, based on Holzbauer’s Upper Extremity Model 
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Few musculoskeletal models have been explicitly designed to represent the physically disabled 

population. Furthermore, the few models developed to address the gap are representative of non-active 

tetraplegics who differ quite substantially from paraplegic athletes. For example, it has been 

demonstrated that tetraplegics with high cervical level spinal lesions have compromised shoulder 

strength, being just 50% of that of individuals with paraplegia or able-bodied individuals.50, 51, 177 

Consequently, the musculoskeletal models used for the assessment of propulsion biomechanics in 

individuals with spinal cord injury have been weakened, by reducing the defined maximum isometric 

force capability of muscles.170, 178 Aforementioned differences in strength capabilities (Section 2.1.5) 

suggest that the weakened musculoskeletal models representative of individuals with tetraplegia should 

be used with caution for wheelchair racing athletes. 

 

2.4 WHEELCHAIR INSTRUMENTATION  

Performance data (both kinetic and kinematic) are required to drive computational models. Kinematic 

data is measured using motion capture. For wheelchair racing, there are two kinetic inputs required: 

the propulsive forces applied by the hands, and the reaction forces acting at the seating interface. 

Instrumentation must be unobtrusive to performance and capable of being used in training or 

competition environments to ensure the relevance of measured data. Traditionally, force platforms are 

considered as the gold standard method of force measurement, while video digitisation is the gold 

standard for kinematic analysis. 

Gilsdorf et al.179 utilised a force plate located directly on the seat, to compare seating forces of two 

types of cushion. Force plates, however, are not appropriate for use outdoors, nor would force plates 

fit in the seating interface of smaller wheelchair racing frames. Furthermore, despite the frequent use 

of video digitisation for the measurement of sporting wheelchair kinematics,180-182 such methods are 

practically limited. This is due to their high user subjectivity, dependence on evaluator experience, and 

substantial processing times required for reliable analysis. Further limitations extend to constrained 

capture volumes and may restrict testing to be laboratory-based, which have previously been 

criticised.183, 184 Consequently, innovative instrumentation solutions are required for the in-field 

measurement of wheelchair propulsion kinetics, both at the propulsive interface and seating interfaces.  

 

2.4.1 PROPULSIVE FORCES  

The magnitude of mean and peak forces throughout a push cycle in both wheelchair racing and manual 

wheelchair propulsion have been measured extensively in the literature. Numerous studies have used 
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custom dynamometers for the measurement of propulsion torque and power.185 It has been suggested 

that ergometers mounted on dynamometers are widely used as a measurement tool as body movement 

is better controlled and more accurately assessed in a laboratory-based environment.186, 187 However, 

other reviews have criticised their use as they are not representative of overground propulsion.  

Wheel-based measurement systems facilitate the collection of propulsion kinetics across different 

terrain and require little to no acclimatisation period.188 An advantage of these over dynamometers, is 

that they allow the overground assessment of wheelchair propulsion. The most frequently 

implemented wheel-based measurement system is the SMARTWheel (Three Rivers Holdings, Inc, 

Mesa, Arizona).189, 190 This is a commercially available force and torque sensing pushrim and has been 

used to examine the three-dimensional propulsive forces, moments and spatiotemporal characteristics 

of propulsion.60, 62, 70, 96, 188, 191-193 The SMARTWheel itself is comprised of three aluminium beams each 

instrumented with a full strain gauge bridge. A four-channel mercury slip-ring is used for signal 

transmission of the rotating wheel. An A/D (analogue to digital) board, and 15V commercial power 

supply are fastened to the wheel, with an optical encoder used to detect the position of the sensor 

beams, with respect to the top dead centre of the wheel.190 Although the SMARTWheel has been used 

extensively in clinical research, it is not conducive to sporting applications, preventing its use in the 

regular analysis of wheelchair racing propulsion.  

Each SMARTWheel has a mass of 4.9 kg,194 which is comparable to total wheelchair mass (between 

4.5 and 8.2 kg).1, 11, 13, 14 Wheelchair mass is directly related to winning time,11 with 1 kg of  

non-functional athlete-wheelchair mass demonstrated to slow an athlete by up to 0.13 s over a 100 m  

race.11, 195 Performance reductions are due to the altered mass distribution, increased rolling resistance, 

and corresponding adaptions to propulsion kinematics.11, 196-199 Medals were attained within a time 

frame of 0.28% of the winning time for the women's T54 1,500 m race at the London 2012 

Paralympics.200 At the Rio 2016 Paralympics, the difference between gold and silver for the men’s 

(T54) 100 m and 400 m races was 0.20 s and 0.14 s, respectively, and just 0.13 s for the women’s  

100 m.20 The necessity of lightweight instrumentation solutions is evidenced through the comparable 

differences in finishing times with reported losses from 1 kg of additional mass. It is important to 

highlight that the relative importance of the mass of instrumentation varies between sports. As 

wheelchair racing chairs have a mass which is approximately one-quarter of wheelchair rugby chair 

mass (17.2 kg)16 instrumentation mass has a much higher importance in wheelchair racing than other 

wheelchairs. This is supported in the literature by Bednarczyk and Sanderson201 who demonstrated 

that adding 5 to 10 kg of mass to low-mass manual wheelchair system did not change wheeling 

kinematics on level ground, at low speeds, and for short distances.  



 

 

25 
 

The ratio of the pushrim diameter relative to wheel diameter serves as the gearing system of the 

wheelchair, which is individually selected to best satisfy the unique power and velocity requirements of 

an athlete. Athletes choose rear wheel sizes of 700c (622 mm diameter) or 26" (660.4 mm), and pushrim 

diameters of 12" (304.8 mm), 13" (330.2 mm), 14" (355.6 mm), 15" (381.0 mm) or 16" (406.4 mm).6 

The fixed pushrim diameter of the SMARTWheel may not match an athlete’s normal configuration, 

which may influence their performance. Additionally, the pushrim is not present in all wheelchair 

sports (e.g., wheelchair rugby), limiting its generalisation across all wheelchair sports.  

A low-cost and lightweight alternative to the SMARTWheel is the Sensewheel Mark 1 (Movement 

Metrics, London, UK), which was used by Symonds et al. 202, and Symonds et al. 203. This system is 

comprised of three load cells, each containing eight strain gauges with local amplifiers. Accelerometers 

were included to measure wheel angle for coordinate transformation, with a gyroscope used to measure 

wheel rotation speed. A telemeter was mounted at the wheel hub for data transmission.203 This system 

has been used for manual wheelchair propulsion currently, requiring a pillar connected pushrim type 

of wheel, and no camber, and so is incompatible with wheelchair racing chairs. 

Another commercially available alternative is a PowerTap, which is a hub driven power meter used in 

cycling. A PowerTap measures power output through eight strain gauges at the hub, with data 

transmitted using a radio-frequency signal to the receiver.204 This system only has a recording frequency 

of up to 12 Hz.205 As literature has shown that contact time between the hand and pushrim can be just 

0.45 s for steady-state propulsion, and 0.82 s for the first stroke from stationary,116 such a low recording 

frequency may not be appropriate. From this, it can be suggested that commercially available force 

sensors are not compatible with wheelchair racing propulsion. Consequently, the exploration of new 

technologies capable of providing a practical solution for applied practice is warranted.  

A range of bespoke instrumentation solutions have been used in the literature (Table 2.5). Sabick et 

al.206 used a custom instrumented handrim assembly comprised of a 6-component load cell, and data 

logger fixed to the wheel. Alternatively, Newsam et al207 and Kulig et al.208 introduced a strain gauge 

force transducer for determining forces and torque applied to the pushrim to identify the start and end 

of the contact. Additionally, bespoke instrumentation solutions, including optical encoders,209 electric 

generators,210 gyroscopes211 and six degree of freedom (DoF) inertial measurement units (IMU) 

attached to the wheelchair frame,212 have all been used for the measurement of wheelchair speed. 

Turning radius has also been examined using a smartphone embedded with a 6DoF IMU.213  

Lemerle et al. 214 have also examined hand-based instrumentation and established that capacitive 

sensors were unable to assess the coupling forces (gripping and push) of propulsion, with errors of up 

to 80% as compared to load cell measurements. Errors were due to the extreme difficulty in precisely 



2. BACKGROUND 

 

26 
 

measuring the location and orientation of every sensor element during contact. Additional errors may 

result from the high impact nature of wheelchair racing propulsion, hand temperature at the end of an 

effort, and the restriction on movement on the hand as sensors are less flexible than skin. 

 

Table 2.5: Bespoke instrumentation solutions currently used to measure wheelchair kinematics. 

Sensor Variable Location References 

Strain Gauges 
Torque applied to the 

pushrim 
Connections between 

pushrim and wheel 

Asato et al.190 
Rodgers et al.215 

Robertson et al.62 
Cooper et al.99 

Goosey-Tolfrey et al.195 

Newsam et al. 207   
Kulig et al.208 

6-Component Load 
Cell 

Orthogonal force and 
moment applied to 

pushrim 
Pushrim  Sabick et al.206 

Optical Encoders Speed  Moss et al.209 
Electric 
Goniometers 

Speed  Fuss and Ow 210 

Gyroscopes Speed  Chua et al.211 
6DoF IMU Speed Wheelchair frame Usma-Alvarez et al.212 
Smart Phone with 
Embedded 6DoF 

Turning radius Each wheel Fuss et al.213 

IMU Speed, # of pushes Frame and wheels Van der Slikke et al.180 

 
Speed, frame 

displacement, frame 
rotation 

Frame and wheels Van der Slikke et al.216 

 

Velocity, heading, 
ground distance 
covered, motion 

trajectory of 
wheelchair 

Wheel Pansiot et al.217 

 
Propulsion timing and 

coordination 
Wheelchair and wrist Bergamini et al.218 

 

Strain gauges are some of the most frequently utilised sensors for the measurement of applied forces 

and torques at the handrim (Table 2.5). Although useful, these solutions can become bulky through 

the creation of custom mounting, and the inclusion of a data logger to ensure the system is wireless. 

Although there is high confidence in the output data, it may not satisfy the semi-embedded requirement 

of instrumentation solutions to adapt to different pushrim diameters. Additionally, such configurations 

may require permanent fastening (resulting in an exclusive set of testing wheels), and therefore the 

generalisability of the solution across multiple athletes is limited. To promote the regular use of 

instrumentation in the daily training environment, a system which is easily mounted (and removed) 

and operated by coaches, biomechanists and athletes is preferable.  
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An emerging trend in sporting instrumentation is the use of wearable technologies. These are explicitly 

designed to be both lightweight and minimally obtrusive to capture performance information during 

regular movement. One of the primary wearable sensors is the IMU. Success in the measurement of 

position, velocity, acceleration, parameters related to propulsion timing, the progression of force, and 

coordination has been demonstrated when using IMUs in multiple wheelchair sports,180, 216-218 without 

constraining athlete movement.218 Following the development of analysis software, data processing 

can become semi-automated, substantially reducing the computational requirements, as compared with 

the current gold standard measurement method of manual video digitisation.180 From a practical 

perspective, IMUs provide a lightweight solution (12 gm/sensor),219 which have wireless data 

transmission (within 10 m range via Bluetooth) and semi-embedded (quickly connected to or detached 

from the equipment) solution, which can be inexpensive, and operated both indoors and outdoors. 

Despite all these benefits however, IMUs are yet to be used for kinetic estimations, within the sport of 

wheelchair racing, current applications of IMUs have been limited to kinematic analysis. Although the 

application of IMUs for estimating kinetics within wheelchair racing is relatively novel, their use in 

other sports, such as the commercial Push Band used in weightlifting has been well established, 

justifying their investigation within this research. 

In the absence of measuring kinetic information directly, modelling techniques can be used to 

understand wheelchair propulsion biomechanics. Kinetic data have been estimated using modelling 

techniques both in two dimensions,187, 220 and three dimensions.116, 207 Modelling approaches have also 

been employed to calculate braking force as calculated by taking into account the resistance of the 

front and rear wheels,221 or the influence of mass on performance.11 This was not performed as part 

of this research, and so further detail into these approaches will not be provided. 

 

2.4.2 SEATING INTERFACE  

Pressure mats are the most commonly implemented measurement tool in the literature for the 

measurement of seating interface pressure,93, 222, 223 monitoring changes in pressure due to athlete 

positioning,224, 225 and for the use of cushions for pressure relief.81, 90, 226 Pressure mapping technology 

measures the magnitude and distribution of pressure across the seat.79, 90, 222, 224, 225, 227-229 While these 

applications are predominantly clinically based; pressure mapping technology has also been used for 

monitoring pelvic movement227 and monitoring changes in pressure due to the use of customised 

seating interfaces in wheelchair using populations.74, 81  

The pliable surface and lightweight nature of the pressure mat makes it particularly well suited to sports 

wheelchairs, and can adapt to different radii of curvature and length measurements present between 
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different seating buckets, and on contoured foam cushions. Additionally, the wireless transmission 

capabilities present good compliance with sport specific requirements to ensure regular athlete motion 

is not compromised.  

Although pressure mats do not directly measure forces, which are required for performance review 

and input into computational modelling approaches, they have demonstrated success in measuring 

reaction forces of running and walking.230, 231 A comparison of the use of a pressure mat with a force 

platform, revealed both technologies were equally useful in assessing seated postural control.232 

Additionally, pressure mapping technology has demonstrated success for clinical based load 

monitoring literature233 and measuring reaction forces.231  

 

2.5 AIMS AND OBJECTIVES 

This research aimed to assess the effectiveness of customised seating interfaces on linear wheelchair 

performance through computational biomechanical modelling. Foundation work has been able to 

provide a handful of athletes with seating interfaces; however, the methods for quantifying changes in 

performance are still required. Four key objectives were established to achieve these aims, which are 

detailed below, with the interrelation between these aims summarised in Figure 2.3: 

 

Aim 1:  Understand how various aspects of  wheelchair racing technique and equipment at 
the seating interface relate to performance. 

A meaningful change in performance is required to justify the cost of the initial manufacture 

of customised seating interface and the continued research into its optimisation. As such it is 

imperative to understand how the different aspects of athlete technique and equipment relate 

to an athlete’s overall performance to ascertain the potential performance advantages an athlete 

may gain from the use of a customised seating interface. 

 

Aim 2:  Develop instrumentation tools capable of  in-field data measurement. 

Commercially available instrumented wheels currently used in clinical research are not 

appropriate for use on a racing wheelchair as they alter natural athlete propulsion. A bespoke 

instrumentation solution must be developed to obtain the kinetic components of performance 

required as an input to the biomechanical model. This solution must be easily mounted to the 
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wheelchair, having little mass, wireless capabilities, and embedded use, so as not to interfere 

with regular athlete performance, and facilitate consistent athlete usage. 

 

Aim 3: Develop a subject-specific, 3D computational model. 

Existing musculoskeletal models used in biomechanical modelling techniques are yet to 

incorporate the tissue adaptations associated with para-athletes, limiting the relevance of 

obtained findings. Due to the anthropometric variation in the lower extremities of wheelchair 

racing athletes, it is anticipated that current models, based on generic anthropometric data will 

overestimate the inertial and force-generating ability of an individual, while the converse is true 

for the upper extremity. Additionally, the complete systematic analysis of the mechanics of 

movement with the relationship with equipment is yet to be performed.  

  

Aim 4:  Quantify the mechanics of  wheelchair racing using simulation. 

The primary focus of this research is to understand whether the inclusion of customised 

seating interfaces increase injury risk and to quantify the potential performance advantage. 

Traditional measurement approaches can analyse performance outcome, however, are 

incapable of detailing how the outcome was achieved. A subject-specific computational 

modelling approach, using the instrumentation techniques and musculoskeletal model 

developed in Aim 2 and Aim 3 are capable of answering these questions.  

 

2.6 SIGNIFICANCE 

Use of coupled kinematic and kinetic performance analysis utilising computational biomechanical 

modelling can provide an objective and precise measurement of the difference in performance due to 

the use of customised seating interfaces. Such a process can identify the magnitude and efficiency of 

applied loads, as well as how this translates into muscular loading and the reaction forces acting at the 

joints. This research will be of significant benefit to athlete preparation, demonstrating how technique 

can be optimised and how injury risks can be minimised. Wheelchair racing has demonstrated to have 

the highest incidence of soft tissue injury amongst wheelchair sports.234 For example, the prevalence 

of shoulder pain in individuals with spinal cord injury (SCI) is between 31% and 73%.235  
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Figure 2.3: Schematic outline of research demonstrating how each of the sub-studies contribute to the four research aims addressing the main aim 

of the research; to identify the performance benefits of customised seating interfaces on wheelchair racing performance. 
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The methods developed in this research can also be used to benefit a greater range of athletes in 

multiple other sports, as well as assist manual wheelchair users better execute tasks of daily living and 

ambulation. 

In addition, supplementary benefits are gained through the completion of intermediate aims of this 

research. Limited biomechanical performance feedback to the wheelchair racing athletes in this 

research is currently provided, specifically on track surfaces, and with regards to kinetic aspects of 

performance. As a result, athletes, coaches, and biomechanists are reliant on qualitative perceptions of 

performance to make informed decisions regarding changes in equipment and technique. The 

instrumentation developed within this research could thus have considerable practical implications on 

performance preparation. 

 

2.7 CONTRIBUTIONS AND ORGANISATION OF THESIS 

To the best of the author’s knowledge, there has been no computational literature published regarding 

the biomechanics of wheelchair racing, and how it is affected by the implementation of customised 

seating interfaces. These investigations will make a considerable contribution to Paralympic wheelchair 

racing, dramatically improving the way Paralympic coaches conduct daily training.  

The remainder of the thesis is broken into five experimental chapters (Chapters Three to Seven), 

describing the engineering solutions used to answer each of the four principal objectives documented 

previously. The potential performance impact of customised seating interfaces, relative to athlete 

equipment and technique is first established in Chapter Three (Aim 1). Chapter Four then investigates 

the instrumentation of the hand-pushrim interface using IMUs. The effects of placement, athlete 

equipment and propulsion style on recording accuracy were analysed to understand the robustness of 

the IMU as a solution before investigating the capacity to estimate input forces using IMUs. Chapter 

Five builds on Chapter Four, examining the ability for a commercially available pressure mat to 

measure the interactions at the athlete-seating interface. Together, these chapters address the second 

aim of the thesis in developing instrumentation tools capable of in-field data measurement. Chapter 

Six outlines how a subject-specific, 3D computational model (Aim 3) can be generated from DXA 

scans. The findings from Chapters Three to Six provide the foundation for Chapter Seven, which 

quantifies the mechanics of wheelchair racing propulsion using computational biomechanical 

simulation (Aim 4). The final experimental chapter investigates how computational modelling 

approaches can be used to support performance analysis and reduction of injuries. Each of these 

chapters is comprised of some smaller investigations, which have been published, presented at 

conferences, or are currently under review.  
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2.8 RESEARCH OUTPUT 

To date, the research for this thesis has produced many research outputs that have been published in 

peer review outputs. These can be summarised as follows: 

 

2.8.1 JOURNAL PAPERS 

1. Lewis, AR., Haydon, DS., Phillips, EJ., Grimshaw, PN., Pinder, R., Winter, J., Robertson, 

WSP. & Portus, M. 2017. Placement effects of inertial measurement units on contact 

identification in wheelchair racing. Sports Biomechanics. Under review 

2. Lewis, AR., Phillips, EJ., Robertson, WSP., Grimshaw, PN., Portus, M. & Winter, J. 2018. A 

practical assessment of wheelchair racing performance kinetics. Sports Biomechanics. Under 

review 

3. Lewis, AR., Haydon, DS., Phillips, EJ., Grimshaw, PN., Pinder, R., Winter, J., Robertson, 

WSP. & Portus, M. 2018. Monitoring seating interface pressure in wheelchair sports. Sports 

Engineering. doi: 10.1007/s12283-018-0272-3 

4. Lewis, AR., Robertson, WSP., Phillips, EJ., Grimshaw, PN. & Portus, M. 2017. The effects of 

personalised versus generic scaling of body segment masses on joint torques during stationary 

wheelchair racing. Journal of Biomechanical Engineering. Under review 

5. Lewis, AR., Robertson, WSP., Phillips, EJ., Grimshaw, PN. & Portus, M. 2017. Estimating the 

maximum isometric force generating capacity of wheelchair racing athletes for simulation 

purposes. Journal of Applied Biomechanics. Under review 

6. Lewis, AR., Robertson, WSP., Phillips, EJ., Grimshaw, PN. & Portus, M. 2018. Influence of 

customised seating interfaces on wheelchair racing athletes; A case study. International Journal 

of Sports Physiology and Performance. Under review 

 

2.8.2 CONFERENCE PROCEEDINGS 

7. Lewis, AR., Phillips, EJ., Robertson, WSP., Grimshaw, PN. & Portus, M. 2018. Intra-stroke 

profiling of wheelchair propulsion using inertial measurement units. Proceedings. 2(6). 256. 

doi: 10.3390/proceedings2060256 

8. Lewis, AR., Phillips, EJ., Robertson, WSP., Grimshaw, PN. & Portus, M. 2018. Injury 

prevention of elite wheelchair racing athletes using simulation approaches. Proceedings. 2(6). 

255. doi: 10.3390/proceedings2060255 

https://doi.org/10.3390/proceedings2060256
https://doi.org/10.3390/proceedings2060255
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2.8.3 CONFERENCE PRESENTATIONS 

9. Lewis, AR., Phillips, EJ., Periac, F., Portus, M., Grimshaw, PN. & Robertson, WSP. 2017. 

Does glove type influence wheelchair propulsion symmetry in junior athletes. Presented at the 

26th conference of the International Society of Biomechanics, Brisbane, Australia, 23-27 July 

2017. 

10. Lewis, AR., Phillips, EJ., Moore, V., Bartram, JC., Grimshaw, PN., Portus, M. & Robertson, 

WSP. 2017. The Trunk Position for the 2016 Rio Paralympic wheelchair racing finals. 

Presented at the 25th conference of the International Society of Biomechanics in Sports, 

Cologne, Germany, 14-18 June 2017. 

11. Lewis, AR., Phillips, EJ., Grimshaw, PN., Portus, M. & Robertson, WSP. 2017. Effect of 

seating cushions on pressure distribution in wheelchair racing. Presented at the 25th conference 

of the International Society of Biomechanics in Sports, Cologne, Germany, 14-18 June 2017. 

12. Lewis, AR., Phillips, EJ., Portus, M., Grimshaw, PN. & Robertson, WSP. 2017. Changes in leg 

pressure during modes of racing wheelchair propulsion. Presented at the 26th conference of 

the International Society of Biomechanics, Brisbane, Australia, 23-27 July 2017. 

13. Lewis, AR., Robertson, WSP., Grimshaw, PN., Phillips, EJ. & Portus, M. 2017. Body segment 

mass differences from altering intensity thresholds in Dual-Energy X-Ray Absorptiometry 

scans. Presented at the XVI International Symposium on Computer Simulation in 

Biomechanics, Gold Coast, Australia, 20-22 July 2017. 

14. Lewis, AR., Haydon, DS., Grimshaw, PN., Robertson, WSP., Phillips, EJ. & Portus, M. 2016. 

The effect of inertial measurement unit placement on acceleration measurements on 

wheelchairs. Presented at the 10th Australasian Biomechanics Conference, Melbourne, 

Australia, 4-6 December 2016.
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CHAPTER THREE:  

HOW IMPORTANT IS 
THE SEATING 
INTERFACE TO 
ATHLETE 
PERFORMANCE? 
 

 

 

 

 

To justify the critical analysis of customised seating interfaces, it is essential to understand their overall 

impact relative to all other elements impacting performance. For example, interactions at the hand-

pushrim interface have a substantial effect on propulsion performance. Athlete-wheelchair velocity 

(and hence forwards motion in straight-line pushing) is the result of energy transfer from the athlete 

to their wheelchair. Maximising this velocity can be achieved through increasing the power application 

over longer contact ranges and increasing mechanical efficiency. Ensuring maximal power output from 
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each hand (symmetry) may improve the mechanical efficiency of motion. Asymmetrical propulsion 

may result from kinematic error, or possibly through poor equipment (glove) interfacing. 

Aerodynamic effects also require consideration, as it is plausible that through the inclusion of a 

customised seating interface, the frontal area may increase considerably, resulting in a more significant 

drag coefficient and hence resistive forces. Although athletes may be in a position where they are 

capable of producing more power, they may require all of this power, and more, to overcome the 

additional resistive forces. Resistive forces due to aerodynamic drag are substantial in sports (up to 

90% of drag forces in cycling).236 In the absence of wind tunnel testing, the aerodynamic strategies 

employed during wheelchair racing events and whether slight changes to the frontal area, caused by a 

change in seating position impact performance can be investigated.  

The content presented in this chapter addresses the first aim of this research to understand how various 

aspects of wheelchair racing technique and equipment and how these all contribute to performance. 

Hence the potential performance impact from the inclusion of customised seating interface can be 

inferred. This chapter is split into two experimental studies, to improve the understanding of how 

wheelchair racing technique and equipment relate to performance, and highlight whether customised 

seating interfaces have the potential of providing substantial performance gains. The relevance of this 

chapter in relation to the overall research questions are presented in Figure 3.1. 

 

Does glove type influence wheelchair propulsion symmetry in junior athletes?  

(Section 3.1) 

Research Question:  

 Is asymmetry a consequence of athlete equipment or physical impairment? 

 

The optimisation of trunk position for the 2016 Rio Paralympic wheelchair racing finals. 

(Section 3.2) 

Research Question: 

 Do athletes employ aerodynamic strategies, and can a customised seating interface be used to 

optimise this? 
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3.1 ATHLETE CHARACTERISTICS 

A total of thirteen athletes were investigated as part of the research in this thesis (Table 3.1). The 

majority of athletes were from wheelchair racing and triathlon. For these athletes, two key inclusion 

criteria in the participant recruitment process included the use of elite athletes, and that no visible 

upper extremity neurological conditions were present. The population sample demonstrated different 

equipment (wheel type: disc or spoke, glove type: leather or thermoplastic), classification (spinal cord 

injury or cerebral palsy), gender (male and female) and experience (senior and junior). Two additional 

athletes were used from the Wheelchair Rugby national program as a point of comparison within a 

single study. These athletes were either classified as a 2.0 point (limited trunk function, impairment has 

a mid-range effect on performance) or 3.0 point (partial trunk function, impairment has a smaller 

impact on performance).  

  

Figure 3.1 Relevance of the Chapter 3 (How important is the seating interface to athlete performance?) to the fundamental research question; 

what is the performance impact of customised seating interfaces on wheelchair racing propulsion?  
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 For wheelchair racing athletes, this research was restricted to athletes only presenting with physical 

impairment and fair to good functional strength in the arms. Athletes had either no trunk function  

(T53: n = 1) or partial to full trunk power (T54: n = 4) with possible leg function, as well as no lower 

spinal muscle activity (T34: n = 2).22 Two triathlon athletes classified as PT1 (athletes predominantly 

using a wheelchair for daily ambulation)237 also formed part of the population sample. One athlete was 

competitive in both wheelchair racing, and triathlon at the time of data collection.  

 

Table 3.1: Athlete information. Speed is only listed for athletes who performed steady-state propulsion on a treadmill (Section 4.2)  

Athlete Sport Classification Sex Impairment 
Mass 

(kg) 

Speed 

(km/hr)  
Age 

Glove 

Type 

Wheel 

Type 

A WRac T34 M 

Hereditary 

Spastic 

Paraplegia 

62.5 19,20 Junior Soft Aero 

B WRac T34 M 
Cerebral 

Palsy 
60.1 21,22 Junior Soft Disc 

C WRac T54 M Spina Bifida 54.3 22,23 Junior Hard Spoke 

D WRac T54 M Spina Bifida 87.9 26,27 Junior Soft Spoke 

E WRac T54, PT1 F SCI (acq) 60.3 22,23,24 Senior Hard Disc 

F WRac T54 M 
Congenital 

Limb Def. 
62.2 28,29,30 Senior Hard Disc 

G WRug 2.0 point M SCI (acq) 92.9 N/A Senior Soft Disc 

H WRug 3.0 point M SCI (acq) 77.8 N/A Senior Soft Disc 

I WRac T53 F 
Paraplegia 

 
54.4 26,27,28 Senior Hard Disc 

J PTri PT1 M 
Incomplete 

paraplegia 
67.1 32 SPM Senior Hard Disc 

K PTri PT1 M 
Incomplete 

paraplegia 
73.8 N/A Senior Hard Disc 

L WRac T53 M Spina Bifida 62.0 N/A Senior Hard Disc 

M WRac T54 M Paraplegia 56.2 N/A Senior Hard Disc 

 

WRac: wheelchair racing, WRug wheelchair rugby, PTri: paratriathlon, acq: acquired, SPM: strokes per minute. No specified speed for WRug 

athletes. 

 

Throughout each of the studies presented, a subset of these athletes were used. Table 3.2 summarises 

the subset of athletes used for each of the individual analyses comprising this research. 
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Table 3.2: Population sample for each experimental simulation. No athletes were used in study 3.3 which was a review of video (YouTube), or in 

Section 4.1 which involved pilot testing. 

Athlete 3.2 3.3* 4.1* 4.3 4.4 4.5 5.2 5.3 5.4 6.2 6.3 6.4 7.1 7.2 

A •   • • • • •       

B •   • • • • •       

C •    • • • •       

D •    • • • •       

E    • • • • •  • • • •  

F    • • • • • •      

G       •        

H       •        

I    • • •    • • • •  

J              • 

K          • •    

L          • •    

M          • •    

 

A small population sample was utilised due to the nature of the elite wheelchair athlete population and 

the sizeable inter-athlete variability in both the physical impairments and capabilities within the same 

classification. For example; literature has demonstrated kinematic variation for experience,238 gender,239 

and classification.240 It is unlikely that appropriate generalisations will be able to be established for all 

elite wheelchair racing athletes, and hence the use of a small population is not limiting to this research.  

Able-bodied individuals were not recruited to increase sample size as biomechanical variations have 

been reported between experienced and inexperienced (able-bodied, non-wheelchair users) wheelchair 

propulsion, influencing 30 s agility, 1 min distance test, and 10 m sprint performance.241 Additionally, 

differences in the kinematic technique of manual wheelchair users compared with novices (including 

able-bodied, non-athletic population samples) has been demonstrated.202, 238 
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3.2 DOES GLOVE TYPE INFLUENCE WHEELCHAIR PROPULSION 

SYMMETRY IN JUNIOR ATHLETES? 

3.2.1 INTRODUCTION  

For wheelchair propulsion, kinematic114 and kinetic94 asymmetries are commonly documented and 

have negative implications on steering,194 and thus are considered to be undesirable for performance. 

These asymmetries are frequently assumed to be the consequence of a musculoskeletal or anatomical 

imbalance,95 resulting from spinal cord injury or another physical impairment. The aetiology of these 

abnormal motions and methods for their mitigation, such as strength and conditioning have been 

readily explored. However, literature has yet to confirm whether the aetiology of these asymmetries is 

purely a consequence of the geometry and impairment of an athlete, or how well athlete’s equipment 

fits their unique anthropometry (wheelchair and gloves). For example, spatial and temporal hand 

asymmetries may be the result of either musculoskeletal bias in the upper extremity or due to ill-fitting 

gloves, preventing maximum force transfer to the chair. 

Gloves used in wheelchair racing increase the contact area between the hands and pushrim, to improve 

the effectiveness of force transfer to the chair, while protecting the hands from repeated high impact.97 

These gloves can be either custom thermoplastic hard gloves, which most elite racers use, or soft 

leather. Hard gloves have been demonstrated to use less impulse and peak torque to maintain the same 

speed, which may mean they are more efficient than the soft glove counterpart.53 These hard gloves 

are custom made, using 3D scanning and printing methodologies. Typically, however, only one hand 

is scanned, with the design mirrored to fit the other hand, commonly meaning one fits better than the 

other. Conversely, soft gloves can sometimes be customised. This study aimed to compare gloved 

(hard and soft) and un-gloved starting conditions on a stationary wheelchair racing start and whether 

this altered the distribution, rate of force development, or direction of force application. It was 

hypothesised that significant differences would be observed in kinetic symmetry between gloved and 

non-gloved trials. 

 

3.2.2 METHODS 

Athlete Selection 

National level junior wheelchair racing athletes (Athletes A – D), classified as T34 (cerebral palsy,  

n = 2), and T54 (spinal cord injury, n = 2) formed the population sample.   
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Experimental Propulsion Task 

All athletes performed four stationary starts under two conditions: gloved and non-gloved. Starts were 

conducted in laboratory settings, on a Mondo track surface. An audible three-command start was 

provided to the athletes, to represent a race start.  

 

Measurement System 

Three force plates operating at 1 kHz (Kistler 9281B-11, Switzerland), were embedded beneath a 

Mondo track surface to measure the ground reaction force of each wheel independently.  

 

Data Processing 

Data were low pass filtered (Butterworth, bidirectional, -6dB cut-off frequency 20 Hz),242 and 

normalised to system (athlete + wheelchair) weight using MATLAB R2017a (Mathworks, USA). Force 

parameters of interest included peak force (FML; FAP; FV), the rate of force development (RFD), 

propulsive impulse (PI), and time to peak force (TPF). Data are expressed as a ratio of left and right 

measures (Equation 3.1), with positive values indicating right-side dominance). For data collected on 

the left force plate, FML was multiplied by -1 to support direct comparison with data collected on the 

right force plate. Independent samples t-tests determined the influence of glove status and athlete 

classification on each of the dependent variables. Statistical analysis was performed using IBM SPSS 

Statistics 24 Software for Windows (SPSS Inc., Chicago, IL USA), with a significance level of α = 0.05. 

100% ×  2
(𝑅𝑖𝑔ℎ𝑡−𝐿𝑒𝑓𝑡)

(𝑅𝑖𝑔ℎ𝑡+𝐿𝑒𝑓𝑡)
                                     Equation 3.1 

 

3.2.3 RESULTS 

Athletes demonstrated variability over the first stroke with clear differences between left and right 

hands for both gloved and non-gloved conditions (Figure 3.2). Excluding the non-gloved trial for 

Athlete A, the magnitude of the applied forces remains relatively constant between hands, across tests. 

Force transmission differed considerably between athletes. Athletes typically had longer push phases 

with their right hand than their left hand for the gloved conditions (excluding Athlete D, Figure 3.2). 

For the T34 athletes, Athlete A was more symmetrical wearing gloves, while Athlete B was more 

symmetric without wearing gloves. T54 athletes demonstrated a two-phase stroke, while the T34 

athletes with soft gloves, who exhibits a single peak.  
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Figure 3.2: Representative force curves (in AP direction) from a single push, normalised by system (athlete + wheelchair) mass. 

 

Parameters of interest are quantified in Table 3.3, which is presented as mean ± SD, with statistical 

significance identified for FAP (p = .031) when comparing the gloved condition only. As a cohort, it can 

be considered that for most aspects of force generation, the use of either a hard or soft glove does not 

have a significant impact on symmetry. 

 

Table 3.3: Comparison of gloved and non-gloved conditions between classifications and glove type (hard or soft). Data are presented as an 

absolute percentage difference from perfect symmetry (mean ± SD). Larger magnitudes indicating a more considerable difference between hands.  

 Hard Glove Soft Glove T34 T54 

FML (N) -6.3 ± 4.1 10.6 ± 15.5 7.8 ± 12.3 3.1 ± 19.5 

FAP (N) 1.2 ± 4.7 -8.0 ± 7.2 -5.6 ± 5.8 -5.0 ± 10.4 

FV (N) -34.0 ± 2.4 -0.5 ± 4.1 0.5 ± 3.9 -4.1 ± 2.3 

RFD (N/s) 16.5 ± 4.8 15.3 ± 13.3 15.2 ± 12.5 16.3 ± 10.7 

PS (N.s) 1.8 ± 2.5 3.9 ± 8.3 5.1 ± 7.7 0.9 ± 6.1 

TPF (s) -3.4 ± 8.6 1.3 ± 10.8 4.2 ± 8.4 -5.8 ± 10.1 

ML: mediolateral, AP: anterior-posterior, V: vertical. 

 

Significant differences were observed between classifications for FV (p = .024), with non-significant, 

yet considerable differences also found for time to peak force (p = .066) when comparing both the 

gloved and non-gloved conditions. Differences in the symmetry of force development between 
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classifications are observed in Figure 3.3. Differences are possibly attributable to the greater physical 

strength of T54 athletes, which is reflected through faster winning times.243 Thus, it can be extrapolated 

that if athlete speed affects the influence of gloves, proper fitting gloves will be important for senior-

elite athletes. 

 

Figure 3.3: Differences in the symmetry of force development (Asymmetry Index, Equation 3.1).  

 

3.2.4 DISCUSSION 

Considerable inter- and intra- athlete variability was observed in the elite, junior wheelchair racing 

athletes tested under both the gloved and un-gloved conditions for all variables. This variability cannot 

be associated with glove type, as there was an even split in the use of hard and soft gloves used for 

athletes classified as T54. Differences may be present for more experienced senior athletes, who do 

have more consistent start patterns and who are less easily trained out of poor movement patterns. 

Substantial differences between classifications were observed, as expected, with T54 athletes more 

affected by glove type. 

High levels of inter- and intra-athlete variability were demonstrated through the large error bounds of 

Figure 3.3, with the substantial differences between athlete classifications attributed to physical 

functionality. Although junior athletes have more variability than senior athletes, the athletes in this 

study were highly trained, suggesting the skill is highly variable in both novices and experts. The 

influence of glove type may be more conclusive for a more refined skill, such as steady-state propulsion.  

As gloves were not found to contribute to athlete asymmetries substantially, it can be considered that 

these are more of a consequence of physical impairment and geometry. This highlights the potential 

impact that customised seating interfaces may have on performance if they are capable of reducing 

these athlete asymmetries. 
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3.2.5 CONCLUSION 

Considerable variability was observed amongst all athletes suggesting the possibility for further 

optimisation of both technique and the athlete-pushrim interfacing. Symmetry was not significantly 

affected by glove selection, highlighting the potential performance impact of customised seating 

interfaces for wheelchair racing athletes as asymmetries are likely a consequence of physical impairment 

and geometry, thus highlighting the potential performance impact of customised seating interfaces for 

wheelchair racing athletes.  

 

3.3 THE OPTIMISATION OF TRUNK POSITION FOR THE 2016 RIO 

PARALYMPIC WHEELCHAIR RACING FINALS 

3.3.1 INTRODUCTION 

Performance in wheelchair racing is speed dependant,244 with winning velocities being the result of the 

maximisation of physical capabilities, while reducing resistive forces (rolling friction: FR and 

aerodynamic drag: FD).245 Highly trained athletes have limited potential for further physical gains, 

particularly those with physical impairments, making aerodynamic improvements more readily 

available. Based on the well-established FD relationship (Equation 3.2),245 to reduce aerodynamic 

resistance athletes must minimise their frontal area. 

𝐹𝐷 = 0.5𝜌𝐴𝑑𝑣2𝐶𝐷                       Equation 3.2 

Where  𝜌 is the air density,  

 𝐴𝑑 is the frontal area,  

 𝑣2 is athlete velocity, and  

 𝐶𝐷 is the drag coefficient. 

Aerodynamically optimised wheelchairs reduce frontal area by almost half (0.37 m2 in upright positions 

in conventional chairs8 as compared to 0.17m2 for the same position in a racing wheelchair9), with 

further reductions obtained through body positioning. Cycling literature has demonstrated that a flexed 

upper trunk position reduces frontal area by 20–29%;246 however, the same position has only a 3-4% 

improvement in wheelchair racing.247 This difference may be the consequence of wheelchair athletes 

using arms for propulsion, compromising athlete aerodynamics with each stroke. 
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Two distinct wheelchair propulsion strategies exist; high stroke count (frequency) or high power. A 

frequency strategy is more aerodynamic but may have limited contact range, and thus may generate 

lower momentum. A high power strategy, however, increases frontal area (during recovery), as athletes 

increase vertical trunk motion in order to contact the pushrim as close to the top as possible and 

maximise input torque.248 Athletes will typically adopt a technique thought to best suit their specific 

physical capabilities. As the recovery phase can range between 49.6% and 78.4% of stroke time 

throughout a 100 m race,249 poor aerodynamic technique can be detrimental.  

This study examined the propulsion methods used by wheelchair racing finalists in the 100 m – 

5,000 m Track events at the 2016 Rio Paralympic Games to determine whether any relationships exist 

between athlete placings, and technique, specifically concerning trunk position. It was hypothesised 

that there would be clear aerodynamic strategies utilised by athletes who medal more often.  

 

3.3.2 METHODS 

Male and female athletes with a T54 classification; those with paraplegia, having normal hand and arm 

function, normal or limited trunk function, and no leg function,22 formed the population sample. 

Athlete performance, over each distance final (100 m, 200 m, 400 m, 1,500 m, and 5,000 m) was 

analysed independently (n = 87; males n = 43, females n = 44). Race times were obtained from the 

official website of the Paralympic Movement (http://www.paralympic.org/), with video data obtained 

from the public domain (https://www.youtube.com/). Ethical approval was obtained from the 

University of Adelaide Human Research Ethics Committee.  

Peak vertical range of trunk motion (during the recovery phase) and stroke count over the final 100 m 

of racing was documented. Athletes were manually classified into one of three groups (Figure 3.4) 

based on visual inspection: low-trunk remains parallel to track surface; moderate-thoracic region 

elevates from lower extremity, hyperextended neck position; high–trunk opens fully, neck flexed). 

Intra-rater reliability measures were performed to ensure consistency of classification and stroke count 

and were conducted using IBM SPSS Statistics 24 Software for Windows. The impact of trunk position 

on stroke count and finishing position was established using a linear trendline in Microsoft Excel 2013. 

http://www.paralympic.org/
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Figure 3.4: Trunk motion categorisation (based on trunk position at the top of the stroke). Low: trunk remains parallel to track surface, Moderate: 

thoracic region rises from lower extremity, the head remains tucked, High: trunk opens fully, head un-tucked. 

 

Theoretical race times were calculated for moderate and high classified athletes, using an 𝐹𝐷 measure 

calculated from the frontal area of low athletes. Effective frontal area of the athletes was estimated 

using still images (5,000 m and marathon races) in the frontal plane; to prevent parallax errors. 

Background pixels of each image were removed (Figure 3.5). For image calibration, it was assumed 

athletes used a standard 22” front wheel. This enabled a measure of pixels per square metre, and thus 

an estimate of athlete frontal area. Percentage difference to the mean measure of the frontal area from 

the low classified group was obtained. The frontal area presented in the literature by Barbosa et al9 was 

scaled to this difference. 𝐹𝐷 was calculated using average velocity over the duration of the race (as final 

100 m split times were not available), and assuming air density to be 1.2 kg/m3.9 It was assumed 

reductions in 𝐹𝐷 did not impact other stroke characteristics when estimating theoretical race time.  

 

 

Figure 3.5: Example of processed images used for frontal area estimation of a low (A) and high (B) classified athlete. 

 

LOW MODERATE HIGH 

A) B) 
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3.3.3 RESULTS 

Excellent intra-rater reliability was observed for the manual digitisation of classification (intra-class 

correlation coefficient (ICC) > 0.89) and stroke count (ICC > 0.99). Female athletes demonstrated a 

clear trend of a high vertical range of motion not medalling, with medallists more frequently assuming 

a low or moderate position (Figure 3.6). The same trend was not observed for male athletes, with no 

preference observed in sprint or endurance events. A higher number of male athletes (n = 9) utilised 

high positions, as compared with females (n = 4).  

However, a low position was not always observed to be beneficial to performance, however, with all 

male 7th placegetters, and 80% of the female 8th place getters (4 out of 5) assuming a low position. 

Consequently, it can be observed that assuming a low position (for both male and female athletes) does 

not guarantee improved performance.  

 

 

Figure 3.6: Influence of vertical position on athlete finishing place for both male and female athletes. 

 

For the 100 m sprint, the majority of athletes (7 out of 8) assumed a low position for both males and 

females (Figure 3.7), while males predominantly assumed a moderate (n = 3) and high (n = 3) position 

for the 400 m. No trends were observed across other race distances.  
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Figure 3.7: Break down of trunk position and finishing position according to race distance. L: low, M: moderate, H: high. 

 

Females assuming a low vertical trunk motion have a higher stroke count over the final 100 m assessed 

(Figure 3.8). However, males are less consistent, with some athletes having a low position, as well as a 

low stroke count, potentially suggesting an optimised kinematic technique 

Weak negative interactions were observed between a vertical range of trunk motion and stroke count 

(Figure 3.8) for both males (R2 = 0.30) and females (R2 = 0.17). Weak interactions were also observed 

between stroke count and finishing position, which was positive for males (R2 = 0.11) and negative for 

females (R2 = 0.17). The weakness of the correlations suggests that variation exists between athletes, 

which can be expected due to the different physical functionalities within this population.  
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Figure 3.8: Influence of stroke count on vertical motion (left) and finishing position (right). Dashed lines show the line of best fit for male and 

female data sets. N.B. Data for 100 m race excluded for the right plot based on different race tactics. 

 

Athletes classified as moderate and high vertical trunk range of motion displayed respective frontal 

area 113.2% and 147.0% greater than that of a low athlete. Estimated race times of moderate and high 

athletes modelled using a low 𝐹𝐷 are presented in Table 3.4. Reductions in race times were meaningful, 

with all athletes improving their performance outcome, under the assumption that force generating 

capacity was not compromised. 

 

Table 3.4: Possible male time reductions if athletes maintained a low trunk position. 

Height 
100 m  

(n = 16) 

400 m  

(n = 16) 

800 m  

(n = 16) 

1,500 m  

(n = 19) 

5,000 m  

(n = 19) 

Moderate 0.9* 2.8 ± 0.7 5.7 ± 0.0 10.9 ± 0.0 39.8 ± 0.0 

High N/A 8.3 ± 0.1 16.7* 31.9 ± 0.0 116.2 ± 0.1 

* Denotes single athlete with specific position during the event. 

 

3.3.4 DISCUSSION 

A retrospective analysis of the influence of vertical trunk motion on finals placing of T54 athletes at 

the 2016 Rio Paralympics was performed in this study. Females tended to show a greater reliance on 

aerodynamic positioning than males. A positive relationship between stroke count and finishing 

position was observed for male athletes only. This highlights the balance between aerodynamics and 

physical capabilities, as low stroke counts can be considered as being associated with a more powerful 

technique. 
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For males, this aerodynamic position does not appear the decisive factor for winning a race. Females 

however were more likely to win with improved aerodynamic positions. Males can potentially better 

overcome the additional resistive forces of poor aerodynamic positioning due to their enhanced 

strength capabilities. However, this study demonstrates that if already powerful athletes can adopt low 

positions, without compromising their power generating capabilities, they will increase their potential 

for winning. Over-correction of aerodynamic positioning may ultimately adapt technique towards that 

of a T53 athlete, who has no trunk function and hence is forced to adopt a low position. However, 

T53 athletes typically have slower finishing times. Therefore, aerodynamics must not be optimised in 

isolation. Further exploration into upper extremity joint kinematics applied kinetics and contact 

parameters (contact and release angles) should be performed across athletes demonstrating low vertical 

trunk motion to ascertain relationships with athlete speed, to ensure peak force generating capacity is 

not compromised from the reduced push length on the wheel.  

Low positions were used more frequently in the 100 m race, likely due to the negligible steering 

requirements (manoeuvring the bend, and avoiding other athletes). However, some athletes still 

presented moderate frontal areas, which may be due to the presence of leg mass preventing athletes 

from obtaining optimal positions. Wheelchair racing chairs are yet to have the capacity for changing 

seating inclination, despite being within sports guidelines. This is however under investigation in other 

wheelchair sports.181 Forward-inclined seats may counteract this presence of leg mass, while also 

placing athletes in a more powerful position for propulsion.  

Tabulated reductions in time overestimate actual benefits, as they assume athletes maintain a low 

position throughout the race, with no compromise in power generation, which is implausible due to 

the steering requirements around the track. Additionally, peak vertical trunk motion varies considerably 

throughout a race, particularly when drafting, whereby athletes assume lower positioning, suggesting 

the limitation of assessing only the final 100 m sprint, where athletes may adapt their technique. This 

limitation arose from the limited footage available. Classification of trunk height and calculation of 

frontal area may have been impacted by human error. However, intra-rater reliability measures were 

obtained to ensure these effects were minimal. 

Further investigations could optimise the individual power and aerodynamic balance, taking into 

consideration unique strength, physiology, and physical capabilities. Additionally, with more footage, 

the presented trends could be investigated over the duration of a race for a broader range of athletes, 

particularly comparing those who do and do not make finals, and competitions where headwinds were 

considered influential. Such assessments were limited in this study as no high-speed footage was 
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available. These same limitations prevented the quantification of the frontal area of all athletes, which 

would have assisted in providing a more reliable athlete classification methodology.  

 

3.3.5 CONCLUSION 

This study assessed the vertical trunk motion of male and female T54 classified wheelchair racing 

finalists at the 2016 Paralympics in Rio. Winning female athletes were identified as using more 

aerodynamic positions, while more variation in aerodynamic, and non-aerodynamic postures were 

identified in the male athletes. This difference in aerodynamic prioritisation is due to their increased 

ability for force production, and hence optimal position for each athlete may differ and thus requires 

further kinematic exploration. 

 

3.4 IMPLICATIONS AND CONCLUSION 

The optimisation of wheelchair racing technique is reliant on the development of athlete equipment, 

technique, and physiology. From an engineering perspective, the two key factors able to be changed 

include equipment and methods for analysing performance.  

The optimisation of the seating interface (through the inclusion of customised seating interfaces) may 

be considered as having a more significant impact on performance than changing athlete gloves 

(Section 3.2). As mentioned previously, the low cost of manufacture, ease of production, and 

customisation of seating interfaces make it a mostly generalisable solution, not only to wheelchair 

racing athletes, but to other athletes, and manual wheelchair users, with anticipated high impact. 

The inclusion of a customised seating interface has the potential to increase athlete frontal area during 

the process of creating a more stable base of support. For females, this has the potential to detriment 

performance, however, may have less of an impact for males (Section 3.3). Excessive athlete elevation 

should also be avoided to ensure that stability within the chair is not compromised as a consequence 

of having a high centre of mass. 

The presence of leg mass may disadvantage some athletes aerodynamically, as they will not be able to 

assume a completely horizontal position. Currently, racing wheelchair frame design does not allow for 

the inclination of seating buckets to accommodate the legs. However, by custom moulding of the 

customised seating interface, athletes can gain a more stable position, as well as one which is possibly 

more aerodynamic, by forming the inclined surface through the cushion. As the observed time savings 
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between high and low aerodynamic strategies are meaningful, the use of customised seating interfaces 

for performance seating can demonstrate significant results. 

 

Key Findings: 

 Glove selection did not considerably impact the degree of symmetry during a starting motion.  

 The starting motion is a highly variable task. 

 The aerodynamic position is important for females but less so for males, based on different 

technical strategies used, possibly based on strength. 

 Significant time savings can be made if an aerodynamic position is adopted, with no loss in 

power generation. 

 Aerodynamic positions did not always improve performance, with a balance of aerodynamics 

and power required. 

 

Implications: 

 Considerable variability in force generation over the first push suggests further optimisation 

for athlete interaction with the pushrim (for more effective force transfer) is possible.  

 Glove use may provide a more significant impact for stronger, and elite level athletes, and can 

potentially influence competition outcome.  

 Although aerodynamics were not identified as the winning factor for males, improved 

aerodynamics, with no compromise to power generating capabilities can increase the potential 

of winning. 

 For males, aerodynamic positioning is not everything, and performance improvement requires 

a change in kinematic propulsion style or equipment. 

 Overcorrection of aerodynamic positioning may artificially increase impairment, meaning 

athletes must select a technique best suited to their capabilities.
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CHAPTER FOUR:  

WHEELCHAIR 
INSTRUMENTATION 
USING IMUs 
 

 

 

 

 

To comprehensively analyse the biomechanical influence of customised seating interfaces on 

wheelchair racing performance using computational modelling approaches, three key inputs are 

required: kinematic data, kinetic data and a musculoskeletal model containing relevant geometries. 

Within wheelchair racing, there are two main kinetic sources requiring measurement of the dynamic 

interactions between the hand and the pushrim, and the quasi-static interactions at the athlete-

wheelchair interface. As stated in the Literature Review (Chapter Two), the most commonly 

implemented (commercially available) instrumented wheel used in clinical based literature is not 

conducive to sporting performance. Consequently, the kinetic measurement of wheelchair racing 

propulsion is limited due to the lack of practically viable instrumentation solutions available for use 

with sporting applications. From a performance perspective, instrumentation solutions are constrained 

by mass, as this has been shown to have a significant influence on performance. 
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The limitations in the ability to measure the applied forces during wheelchair racing led to the creation 

of the first aim of this research: developing an instrumentation tool capable of in-field data 

measurement of wheelchair racing performance. Based on their practical viability, the use of IMUs 

were explored for measuring the interactions between the hand and the pushrim.  

In this chapter, the robustness of the use of IMUs was analysed across three experimental studies 

which investigate the capability of the IMU method, whether this capability is reduced across different 

athlete equipment and techniques, and how the reliability is affected across different placement 

locations. These studies were performed to ensure the generalisability of the solution to the greater 

wheelchair racing population. The final experimental study presented in this chapter contains the first 

research exploring the capability of IMUs to estimate the kinetic requirements of wheelchair propulsion 

as a more practically viable method than what is currently available with the SMARTWheel. These four 

experimental studies are summarised following, highlighting the focal research questions which drove 

each study, with their relations to overall aim presented in Figure 4.1. 

 

Characteristic response from IMUs measuring wheelchair propulsion at various 

placement locations (Section 4.1) 

Research Questions:  

 Are IMUs capable of identifying wheelchair propulsion data?  

 How does this compare with video data, which is the current gold standard measurement? 

This study was a proof of concept study, performed using able-bodied participants to identify 

whether the IMU was a suitable method before involving elite athletes. Consequently, the 

methods differ from the remaining studies. 

 

Intra stroke profiling of wheelchair propulsion using IMUs, and the influence of 

equipment (Section 4.3) 

Research Questions: 

 Can IMUs identify both the contact and release points of propulsion? 

 Does the characteristic response of IMUs differ when using different equipment and at 

varying speeds of propulsion? 
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Figure 4.1 Relevance of the Chapter 4 (Wheelchair instrumentation using IMUs) to the fundamental research question; what is the performance 

impact of customised seating interfaces on wheelchair racing propulsion? 
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Does the placement of IMUs affect the macroscopic measurement of acceleration in 

wheelchair sports? (Section 4.4) 

Research Question: 

 Is there a placement location which increases the reliability of the IMU for detecting hand-

contact reliably? 

 

The validation of IMUs on estimating torque production of wheelchair racing athletes 

(Section 4.5) 

Research Question: 

 Can an IMU estimate the applied forces of propulsion? 

 

The development of practically-viable instrumentation is beneficial not only for collecting relevant 

performance data for use in the computational model but also for regular biomechanical assessment. 

The margin of victory in wheelchair racing can be a few hundredths of a second, with medals decided 

within 0.5% of the winning time.200 The optimisation of technique can hence have a substantial impact 

on performance outcome. Tools which can be integrated in the daily training environment for regular 

performance feedback could considerably improve performance preparation. 

 

4.1 CHARACTERISTIC RESPONSE FROM IMUs MEASURING 

WHEELCHAIR PROPULSION AT VARIOUS PLACEMENT LOCATIONS 

4.1.1 INTRODUCTION  

The key propulsion characteristics for wheelchair racing have been identified as stroke speed, stroke 

length (time between successive contacts), push times (the time when the hand is in contact with 

pushrim) and recovery times. These parameters diagnose the efficiency of the interaction between the 

hand and wheel. Understanding the relative timing between the hands is also beneficial to performance, 

as kinematic asymmetries can negatively impact performance by introducing steering difficulty.70, 94 

The importance of obtaining the temporal kinematics of propulsion are highlighted through the use 

of the strain gauge force transducer used by Newsam et al. 207 and Kulig et al. 208. As wheelchair 

propulsion is a highly ballistic motion, it can be hypothesised that these points of contact will be 

accompanied by large acceleration peaks occurring at the points of contact and release.  
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IMUs have recently been used to measure wheelchair propulsion kinematics. However, there has been 

no consistent methodology used. Previously, there have been three key placement locations used; the 

frame,180, 216, 218 wheels,180, 216, 217 and the wrist.218 These studies have not detailed the placement location 

on the wheel (radius from axle), and whether signal characteristics change with placement radius on 

the wheel. The different placement locations have enabled measurement of various parameters, with 

propulsion and coordination measured from the wheelchair and wrist, while push detection has been 

quantified from placement on the frame and wheels.180 As no literature has currently explored the use 

of IMUs for kinetic profiling; it is uncertain as to which of these placements provides the cleanest and 

most reliable data.  

This study aimed to investigate the effects associated with IMU placement on the quality of the 

acceleration signal, with specific consideration into identifying separate left and right contacts, and ease 

of signal processing. This was a preliminary study performed to confirm the methods presented in 

literature, and ensure the capability of the IMU to ensure it is a valid tool for the instrumentation 

required to satisfy the first aim of this research, to ultimately provide kinetic input into a 

musculoskeletal model for the comprehensive analysis of wheelchair racing performance. It was 

hypothesised that the hand will provide the best contact location, as this location minimised the 

distance between the acceleration phase and the contact event. 

 

4.1.2 METHODS 

This was a proof of concept study which was performed in the laboratory using non-athletic 

participants and available equipment (rugby wheelchair). It is acknowledged that the signal 

characteristics of the accelerometer may differ between racing and rugby wheelchairs.  

Triaxial acceleration data were collected using three synchronised IMUs (Figure 4.2: IMeasureU, New 

Zealand; Accelerometer: ± 16 g; Gyroscope: ± 2000 °/s; Compass: ± 1200 μT),219 sampling at 500 Hz. 

Rigid fasteners coupled the three IMUs at varying radii (2.8 cm, 10.4 cm and 24.3 cm) onto a rotating 

wheel pedalling at a constant rate (as driven through cranks) for two minutes continuously, to assess 

whether the units were susceptible to the effects of drift and centripetal acceleration. Figure 4.2 

demonstrates the experimental set-up for this investigation. 
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Figure 4.2: Schematic demonstrating how IMUs were coupled to the wheel. Solid rectangles represent IMU placements, with the surrounding box 

indicating the size of the coupling mechanism. 

 

Three placement configurations were tested; Hand (L) versus Wheel (L) versus Frame (L); Frame (L) 

versus Frame (R) versus Frame (C); Wheel (L) versus Wheel (R) versus Frame (C). L and R denote left, 

and right sides and C indicates the central axis of the wheelchair frame. The IMUs were synchronised 

automatically within the IMeasureU Research iPad App and Lightning software. Three distinct 

synchronisation contacts between the hand and wheelchair frame, followed by 10 s of being stationary 

were performed prior to movement to confirm synchronisation between sensors (Figure 4.3). Initial 

contact timings (identified by clear acceleration peaks) were validated against a ‘gold standard’ video 

observation method.180  

 

 

Figure 4.3: Example of IMU synchronisation as performed through comparing impact peaks. 
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Temporal differences less than the a-prioi threshold of ±0.08 s were required for acceptable agreement 

between methods. The propulsion task consisted of four consecutive pushes, a stationary 180° turn, 

and five successive pushes back to the start. A single camera located in line with the direction of travel 

allowed digitisation of both hands in the same footage, preventing synchronisation errors resulting 

from a two camera placement method. IMU data (500 Hz) were down-sampled for synchronisation 

with the video camera (100 Hz). 

Intra and inter-rater reliability (R1 and R2) were assessed through ICCs, with an a-priori threshold of 

ICC > 0.9 established to ensure sufficient accuracy of results.250 R1 and R2 represent independent 

raters experienced with the analysis of wheelchair propulsion motions Systematic differences between 

the video-based methods were assessed through Bland-Altman analyses, and ICCs were used to 

observe agreement between left and right signals.  

 

4.1.3 RESULTS 

Exemplar data (in the propulsive direction) from IMUs located on the wheelchair and wheel are 

presented in Figure 4.4. IMU placement on the hand was inadequate as the resulting acceleration signals 

were ambiguous, as peak accelerations correlate with both impact, and movement back to the start of 

the rim, for the beginning of each propulsion phase, as visualised in Figure 4.5.  

 

 

Figure 4.4: Exemplar data from the IMU at different placement locations on the wheelchair. Contacts indicated by vertical dashed lines. 
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Figure 4.5: Characteristic acceleration data from IMU located on the wheelchair frame and hand. 

 

The differences in contact timings between video observation and wheel and frame measurements 

were within predefined bounds (0.00-0.02 s and 0.00-0.04 s). A high degree of both intra- and inter-

rater reliability was obtained (Table 4.1). Additionally, a strong positive correlation ICC (> 0.95) was 

found between temporal parameters for both the right and left sides when IMUs were placed on either 

the frame or wheels, suggesting both locations are equally useful for identifying the contact.  

 

Table 4.1 Reliability of IMUs in contact timings, data presented as mean time ±SD.  

IMU High-Speed Video 

R1 v R2 R1 v R1 R1 v R2 R1 v R1 

0.01±0.03 s 0.00±0.06 s 0.05±0.07 s 0.02±0.04 s 

 

R1 and R2 represent independent raters experienced with the analysis of wheelchair propulsion motions. 

 

When comparing the differences in push time, intra-rater differences are normalised around zero, while 

inter-rater differences are negatively skewed around one or two frames different (Figure 4.6). The three 

pushes shown in Figure 4.4 have durations of 0.80 s, 0.85 s, and 0.87 s, respectively. Therefore, this 

difference in two frames (which are equivalent to a duration of 0.04 s), is relative to push time.  
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Figure 4.6: Inter- and intra- rater reliability of contact identification between two experienced raters. IMU data obtained from wheelchair wheel. 

 

Video observation was found to be reliant on the direction of travel of the wheelchair (Figure 4.7). 

When the participant travelled towards the camera, IMU detection preceded that of video observation, 

whereas video observation preceded IMU detection when the participant moved away from the 

camera. Additionally, manual identification of specific timings of hand contact was faster and more 

reliable using acceleration signals, further suggesting its superiority over video observation.  

 

 

Figure 4.7: Directional bias in video digitisation approaches, based on IMU located on the wheelchair wheel.  

 

Accelerometer data from wheel-mounted IMUs were subject to radial effects (Figure 4.8) and sensor 

noise. Distal placements were more affected by radial acceleration. Conversely, the acceleration signals 

resulting from more distally located IMUs were higher in amplitude, and more clearly defined. The 

increased signal magnitude was likely a consequence of being closer to the point of force application 

than the axially located sensor. Thus, a fusion of both sensors may most effectively ascertain all 

performance variables of interest.  

AWAY FROM 
CAMERA 

TOWARDS 
CAMERA 
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Figure 4.8: Influence of centripetal acceleration in IMU measurements located at different radii (2.8 cm, 10.4 cm, and 24.3 cm) on a wheel. 

 

Root mean square (RMS) values demonstrated tri-axial consistency for the gyroscope measurements 

throughout the two-minute test duration, indicating that these units are not susceptible to drift over 

short durations, suggesting the appropriateness for in-field measurements. 

 

4.1.4 DISCUSSION 

This study investigated the characteristic response of wheelchair propulsion as measured using IMUs, 

and how this varies across different placement locations on the athlete-wheelchair system and the 

wheels. The IMUs were demonstrated to be effective at identifying contact between the athlete’s hand 

and the wheelchair. Additionally, IMUs may also offer a more accurate representation of contact 

identification, which is less susceptible to subjective assessment than the current gold standard method 

of video digitisation. This suggests that further exploration is warranted into the use of IMUs as an 

instrumentation tool for the analysis of wheelchair racing propulsion.  

A notable finding from this study was the presence of bias in the manual identification of wheelchair 

contact when analysed using video digitisation. A more conventional grab-push motion was employed 

for this study. Initially, the palm contacted the wheel before the fingers made contact. When the camera 

was placed in front of the participant, the contact of the palm on the wheel was partially occluded by 

the fingers, making it difficult to identify the start of contact visually. Conversely, when the camera was 

placed behind the athlete, the palm is the most prominent feature.  

It is presumed that these effects will not be present for a camera located perpendicularly to the athlete 

which was able to capture the movement in the sagittal plane. However, this is not practically viable 

for in-field analysis. This is due to the cost of multiple-camera systems and the reliance on effective 

synchronisation approaches. 
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Placement effects were identified. Rotational effects were observed on the wheels at varying placement 

radii, with noise increasing with sensor placement radius. Further work is required to determine the 

impact of this on both the reliability and capability of processing the data. As well as the difficulties in 

interpreting the data from the IMU located on the hand, it may not be revered by the athlete, as it 

requires strong adhesion to either the athlete skin or glove. Placement locations for the remainder of 

the research were hence restricted to being on the athlete’s equipment. 

Due to a high degree of symmetry (asymmetry index = 0.01), negligible differences were observed for 

left, and right contact (ICC > 0.95) for IMUs mounted on both the frame and wheel. Although the 

welded nature of the frame prevented distinguishing left and right contact timings, non-significant 

differences were detected between wheel-mounted IMUs, demonstrating the capacity for identifying 

temporal asymmetries. 

Interpretation of data collected by the IMU located on the hand was limited by the difficulty in 

distinguishing peaks associated with a contact from those associated with hand motion. It is important 

to acknowledge that this finding may be a consequence of the testing protocol used for this preliminary 

investigation. This changes the propulsion style, as well as differences across the frame. It is anticipated 

the same bias will be present across wheelchair racing propulsion, as neither technique has a 

synchronised hand contact on the wheel, with both requiring rotation of the wrist during the 

propulsion phase. It is anticipated that impact peaks (at contact) of larger magnitude will be observed 

from elite athletes, based on the striking nature of wheelchair racing propulsion. However, there is also 

a higher cadence of propulsion, and so the movement artefacts will also be greater during the recovery 

phases. Additionally, wheelchair rugby frames are far stiffer than that of wheelchair racing chairs to 

withstand the impacts common in that sport. As the plausibility of IMUs has been demonstrated from 

this study, the use of racing wheelchairs and elite athletes were used the remainder of the research. 

 

4.1.5 CONCLUSION 

IMUs are a reliable measurement tool for monitoring the timings of wheelchair contact, with the 

objective measurements provided by the technology superior to the video digitisation methods 

currently used. This suggests that IMUs are an appropriate tool for instrumenting a racing wheelchair 

and were worthy of further investigation to satisfy the first aim of this thesis. The response of the 

IMUs changes with placement locations, warranting ongoing research into identifying the optimal 

placement locations to ensure highly reliable data. 
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4.2 METHODS OF COLLECTING WHEELCHAIR RACING PERFORMANCE 

DATA USING IMUs 

A common methodology was used to collect the data for the remaining experimental studies presented 

in this chapter using elite wheelchair racing athletes. Athletes provided written, informed consent, with 

ethical approval obtained by the University of Adelaide and the Australian Institute of Sport. The 

methods which are common to these remaining studies are presented within this section. Any 

methodologies in the following studies which differ to this are elaborated on later. 

 

4.2.1 EXPERIMENTAL PROPULSION TASK 

Athletes completed trials at a constant velocity on a single-belted treadmill (H/P/Cosmos® Saturn, 

Traunstein, Germany) inclined to 1%, as this has been demonstrated as being most physiologically and 

biomechanically representative of overground propulsion.183 Treadmill (belt) velocity was comparable to 

individual regular race training velocity (92.1 ± 2.4% of mean race velocity at an international competition 

held within six months of data collection).251, 252 Athletes who were new to treadmill propulsion 

completed a familiarisation protocol, whereby treadmill velocity was incrementally increased until testing 

velocity was reached. A 5 min active recovery period was provided between trials to minimise the effects 

of fatigue. All athletes participated in their own racing wheelchairs (Invacare and Top End). 

The front fork of the wheelchair was fastened to the treadmill using a custom designed clamp, which 

prevented lateral translations of the wheelchair but allowed normal fore-aft movement of the wheelchair 

within a safe operating range (Figure 4.9). Any potential detriments to athlete performance from treadmill 

based propulsion did not impede the recording capabilities of the IMU. 

 

 

Figure 4.9: Testing set up. A) Custom clamp (circled) keeping wheelchair on the treadmill; B) IMU locations (circled). 

 

B A 
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Senior athletes completed three trials (each 1 minute in duration) of constant velocity propulsion at 

three speeds (Table 3.1). A modified testing protocol was applied for the junior athletes to ensure that 

effects of fatigue did not deter results. For the junior athletes, belt speed was in line with regular training 

speeds, with athletes only completing trials at two speeds. An additional 30 s trial was performed by 

Athlete F to replicate expected finishing conditions of a male T54 athlete, which places greater 

emphasis on sprinting, and far higher than the speeds demonstrated by the female and junior athletes. 

For each trial, three discrete data capture periods, 10 s in duration were obtained (however, only one 

was collected for the sprint speed performed by Athlete F). Motion capture data could only be analysed 

for one trial at 20 km/hr for Athlete A. 

 

4.2.2 MEASUREMENT SYSTEM 

Triaxial acceleration data were collected using eight synchronised IMUs (Figure 4.10: IMeasureU, New 

Zealand; Accelerometer: ± 16 g; Gyroscope: ± 2000 °/s; Compass: ± 1200 μT),219 sampling at 500 Hz. 

The IMUs were synchronised automatically within the IMeasureU Research iPad App and Lightning 

software. Units were located on the left and right axle housings of the wheelchair frame (FL, FR), the 

wheel axis (WLA, WRA), at the radius of the pushrim, which is located at the midpoint of the wheel, 

(WLM, WRM) and at the outer rim (WLR, WRR). All units were carefully fastened using double-sided 

adhesive tape and secured using fabric tape to rigidly couple all units on each disc wheel, preventing 

unwanted lateral translations and vibrations. Each of the ensuing research studies used a subset of 

these eight IMUs. The IMUs used in each study are documented for each case in the following sections.  

 

Figure 4.10: IMU (square) mounting locations and reflective marker (circle) positioning. An additional marker was located atop the WRA IMU.  

A) Rear view: demonstrates frame (axle housing) placements (FL, FR). B) Right side view: highlights where IMUs were located on the wheel axle 

(WLA, WRA), pushrim (WLM, WRM), and outer rim (WLR, WRR). The left wheel was instrumented identically. 
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Minor variation existed between WRR and WLR placement location, to accommodate differences in 

wheelchair frame size. IMUs were moved marginally closer to the axle to ensure the wheel could rotate 

freely and not damage the IMU. Consequently, units located at WLM, WRM, WLR, and WRR were all 

located on the inside of the wheel. WLM and WRM units were not present for Athlete I.  

Careful consideration was required to ensure FL and FR placements were not fastened to the frame 

itself, but just the axle housing (connection between wheel and frame). This ensured that the two IMUs 

were not coupled via the rigid frame, which if not accounted for would have resulted in compromised 

accuracy in athletes with pronounced temporal asymmetries.  

 

4.2.3 DATA PROCESSING 

Cut off frequencies have been demonstrated as having a significant influence on kinematic 

waveforms.253 Resultant accelerometer data were all low pass filtered with a bidirectional low-pass filter 

using a -6 dB cut off frequency of 100 Hz, which was determined through performing independent 

residual analyses for each IMU, athlete, and speed. 100 Hz represented the highest recommended cut off 

frequency and was nominated due to the low likelihood of distorting the temporal data to identify the 

contact point. Although a high value, this is an appropriate cut off measure, similar to literature by 

Andena et al.,254 who used a cut-off frequency of 120 Hz when investigating impacts between the feet 

and ground for running motions. The resultant acceleration vector was used to account for orientation 

discrepancies during placement.  

Contact and release points were automatically detected using a custom peak-detection algorithm 

developed using MATLAB which located local maxima, with push time calculated as the time between 

successive contacts. The algorithm specified the minimum distance between corresponding points 

(contact or release), 0.45 s based on previous literature,115 with athlete-specific minimum peak thresholds 

manually defined based on visual inspection (0.3 – 17 m/s2). Temporal parameters were validated against 

the video data, which served as the gold standard measurement.180 Video data was manually digitised 

(Kinovea v0.8.15 www.kinovea.org) with hand contact and release identified as the first and last frame 

where any part of the athlete’s hand or glove was touching the pushrim, respectively. 

 

4.2.4 DATA VALIDATION AND VERIFICATION 

Although this research is examining the practical plausibility of IMUs, motion capture is used as the 

primary method of comparison in this research. Through understanding the capabilities of the IMU 
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under controlled environments, it is plausible to extrapolate the practical usability of the solution with 

greater precision than is available from video analysis alone. 

Push contact durations were validated through either motion capture or video. Kinematics of the upper 

extremity and trunk were recorded at 250 Hz using a twenty camera motion capture system (VICON 

Bonita V16, Oxford Metrics, Oxford, United Kingdom). A whole body marker model (based on the 

UWA model) was used.255 A cluster-based model was used due to its improved reliability in measuring 

non-sagittal plane kinematic data.256 More details on cluster-based models can be found in Appendix 

A.2. For the musculoskeletal modelling component (Chapter Six and Chapter Seven), only the markers 

on the upper extremity and torso were used. Nineteen retro-reflective markers were located on the 

upper extremity using a cluster-based marker configuration, with calibration accurate to 0.02 mm. Two 

marker clusters (cuff) of three markers each were fixed on the acromion, and at the distal humerus (in 

line with the medial epicondyle). Two T-bar clusters of three markers each located on the distal 

forearm, and at the hand (between the lateral epicondyle, ulnar styloid and at the base of the second 

digit). Four markers were located on the head (left and right, front and rear), and three markers on the 

trunk, at C7, T10 and the sternum (however, this was rarely visible during motion). An additional six 

static markers were used for model scaling but were removed before data collection. Two markers 

were each located at the shoulder, elbow and wrist, which were converted into virtual markers acting 

at the joint centres to scale limb length (Figure 4.11).  

 

 

Figure 4.11: Tracking and Scaling marker placements used to actuate a musculoskeletal model with the Inverse Kinematics tool in the OpenSim 

environment. 

  

Tracking Scaling 

FRONT BACK 



 

 

67 
 

Gaps in kinematic data (<25 ms) were interpolated using a cubic-spline interpolation, with all kinematic 

data filtered using a bidirectional 6 Hz low-pass Butterworth filter with -6 dB cut-off frequency.113 

Coordinates of the kinematic data were converted into the global coordinate system of OpenSim using 

a rotation matrix. 

No gold standard has been reported in the literature for the definition of contact between the hand 

and pushrim from motion capture data. Kinematic data (position, velocity and acceleration) from 

multiple configurations of markers on the hand of multiple athletes were compared against IMU data 

to determine whether key phenomena correlated between the two measurement systems. Figure 4.12 

represents kinematic data from Athlete E. Correlation between data sets are observed for PML, VAP, 

AML, and AV. Similar trends were observed for other athletes, which justified the use of acceleration 

data for comparison purposes. 

 

 

Figure 4.12: Comparison of motion capture data and its derivatives over 15 push cycles, for the marker at the base of 2nd metacarpal joint on the 

left hand for athlete E at 22 km/hr. Dashed lines represent contact (minimum AV) as determined from visual inspection of motion capture data. 
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In addition to motion capture, three high-speed Sony PXW-FS7 video cameras (located at the rear and 

perpendicularly left and right of the athlete-treadmill system) were used to collect data to validate the 

push durations calculated by the IMUs. Cameras operated at a sampling frequency of 100 Hz and a 

shutter speed of 1/1000 s. Three distinct contacts were made between the hands and wheels followed by 

a period of 20 s where no movement occurred to synchronise IMU and video data. Video data were only 

used as a visual point of reference for post-processing.  

 

4.3 DOES THE PLACEMENT OF IMUs AFFECT THE MACROSCOPIC 

MEASUREMENT OF ACCELERATION IN WHEELCHAIR SPORTS? 

4.3.1 INTRODUCTION 

In Section 4.1, it was demonstrated that IMUs were capable of identifying contact between the hand 

and the pushrim of an able-bodied participant in a wheelchair rugby chair more reliably than the 

previous gold-standard method (video digitisation). This suggested the plausibility of investigating the 

capabilities of the IMU for use within an elite wheelchair racing population. Limitations of the 

preliminary study in Section 4.1 included the use of non-wheelchair racing athletes or equipment, with 

the analysis also limited to only identifying the contact phase. 

This study aimed to explore the effect of IMU placement on the qualities of the acceleration signal, 

with a specific focus on accurately identifying individual propulsion characteristics such as contact 

time. It was hypothesised that IMU sensors would detect contact at all points on the frame and wheels; 

with wheel placements being more reliable due to proximity to the contact point and hence vibration 

source.  

 

4.3.2 METHODS 

Athlete Selection 

To ensure that any observed differences in the signal were attributed only to placement location and 

not athlete or equipment characteristics, athletes were separated into two groups. The first group of 

athletes (n = 3, Athletes E, F and I) were senior athletes who all utilised disc wheels at the rear of the 

chair (Corima, Loriol-Sur-Drome, France), and custom gloves using a rigid thermoplastic material. The 

resulting sample of elite athletes (8.7 ± 5.9 years of international experience) demonstrated comparable 

wheelchair set up, despite varied physical characteristics, propulsion styles, and speeds. Athletes include 

both male (n = 1) and female (n = 2), with full function of the upper extremities, and either full to 
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partial trunk control (n = 2, T54 classification), or no trunk control (n = 1, T53 classification). Athlete 

information is summarised in Table 4.2. The second group of athletes (n = 2, Athletes A and B) 

consisted of junior athletes having a coordination impairment, and utilised soft gloves and either disc 

wheels or aero spoke wheels. Athletes were classified as T34, having good functional strength with 

minimal limitation to the control of the upper limbs and back.22 Motion capture data could only be 

analysed for one trial at 20 km/hr for A4, as reflected in Table 4.2. 

 

Table 4.2: Relevant athlete demographics for the five athletes in this study. Further characteristics were presented previously in Table 3.1. 

 Athlete A Athlete B Athlete E Athlete F Athlete I 

Gender M M F M F 

Age (Years) 16 16 26 24 35 

Classification T34 T34 T54 T54 T53 

Speed (km/hr) 19 20 21 22 22 23 24 28 29 30 37 26 27 28 

# Contacts  

Analysed 
33 0 34 34 48 59 48 51 60 79 21 52 50 55 

 

Pilot testing revealed differences in individual acceleration signals based on equipment stiffness (i.e., 

spoked wheels: low stiffness, disc wheels: high stiffness). Lower stiffness equipment reduced the 

magnitude of the impact spikes, making these of comparable size to the underlying noise (i.e., low 

signal to noise ratio, SNR). Low SNR values limited accuracy and reliability throughout the analysis. 

The characteristic acceleration signal depicting a high and low SNR are presented in Figure 4.13. 

 

 

Figure 4.13: Comparison of data from High SNR (Athlete F, 28 km/hr) and Low SNR signals (Athlete C, 22 km/hr). 
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As such, athletes having spoked wheels were excluded from analysis. At the previous Paralympic 

Games (Rio, 2016), less than 4% of competitors in the finals used spoked wheels, demonstrating that 

this exclusion criterion does not limit the significance and applicability of the research. An even 

distribution of thermoplastic and leather glove use was observed amongst these finalists.  

 

Data Processing 

For both measurement systems, contact times were located using a custom peak detection algorithm, 

as discussed in Section 4.2. Peaks in resultant acceleration were assumed to correspond to the impact 

between the hand and the pushrim (Figure 4.14). Two data points were established for each push; one 

each for the left and right hands. In the event the algorithm detected noise as a contact (false positive, 

FP), the event was gathered. Similarly, missed contacts (false negative, FN) were accounted for in post-

processing. The number of these events, compared with the actual number of contacts was used as a 

measure of placement robustness and demonstrated the plausibility for automated detections. An 

individual analysis approach was employed due to the unique interaction between these constraints. 

 

 

Figure 4.14: Typical resultant acceleration patterns from Athlete F (29 km/hr) for verifying the four IMU placement locations (Frame, Axle, 

Pushrim and Outer Rim) against the reference data (motion capture), which was used to determine the acceleration of the hand. Peak 

accelerations are represented by solid circles, with contacts being annotated on each plot with labels 1–5. Squares demonstrate false positive 

contacts, while an open circle represents a false negative contact. 
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Statistical Analysis 

The effectiveness of placement locations was objectively measured using two metrics: linear correlation 

with reference measurement (motion capture) and through the use of an F1 score, which is the 

harmonic mean of precision and recall. This metric incorporates both the recall (defined as the ability 

of the system to identify contacts correctly) and precision, (defined as the ability of the system not to 

generate false detection). These require the measurement of true positives (𝑇𝑃: actual contacts), false 

positives (𝐹𝑃: impact peak not corresponding to contact between the hand and pushrim), and false 

negatives (𝐹𝑁: no impact peak at the time of contact between hand and pushrim). An F1 score ranges 

between 0 and 1, with a value of 1 indicating perfect accuracy, and was calculated as follows: 

𝐹1 =  2 ⋅  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                    Equation 4.1 

Where: precision 𝑃 =  
𝑇𝑝

𝑇𝑃+𝐹𝑃
                    Equation 4.2 

recall 𝑅 =  
 𝑇𝑝

𝑇𝑃+𝐹𝑁
                    Equation 4.3 

 

Reliability and repeatability of contact identification for both measurement approaches were obtained 

using inter-rater reliability assessments using ICCs. A-priori thresholds of ICC > 0.9 were desired, as 

this suggested excellent levels of reliability and repeatability.250 The between-method agreement was 

obtained for each placement location using the method-comparison approach of Hanneman 257 which 

is based on the analysis of Bland-Altman plots. Cycle times obtained from both the IMU (at each 

placement location) and motion capture was subjected to a Spearman’s correlation analysis to obtain a 

mathematical relationship to quantify the agreement between both methodologies. Spearman’s 

correlations were used as all sample distributions were not normally distributed, as indicated by the 

Kolmogorov-Smirnov test for normal distribution (p <.001). To facilitate objective comparison 

between placement conditions, a Likert-scale approach was adopted, whereby a Spearman’s r > 0.9 

was considered to have nearly perfect goodness of fit, 0.7 < r < 0.9 was very high, 0.5 < r < 0.7 was 

high, 0.3 < r < 0.5 considered moderate, and 0.1 < r < 0.3 considered low.258 Precision, bias, and 

percentage error between measurements were then obtained using Bland-Altman plots, using the 

methods described in Hanneman.257 To be established as a robust solution, each placement location 

had to be less than the a-priori thresholds of absolute measures of bias and precision <0.03 s (± 4 

motion capture frames) and %Error <14.8% (± 0.05 s, ± 6 motion capture frames), respectively. All 

statistical calculations were performed using IBM SPSS Statistics 24 Software for Windows.  
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4.3.3 RESULTS 

Acceleration data were collected for a total of 624 contacts in each of the eight IMUs. Excellent inter-

rater reliability were obtained for the identification of contact locations from both the IMU detection 

approach (R = .990, p < .001) and motion capture (R = 0.997, p < .001). A high level of agreement 

was found between the motion capture and IMU measurement approaches. Reported correlations for 

all athletes and placement locations were statistically significant (p < .001). 

IMUs located on the frame demonstrated the greatest F1 score, as would be anticipated by the reduced 

incidence of detection of both FP and FN pushes (Figure 4.15). F1 scores of 0.99 ± 0.03, 0.92 ± 0.09, 

0.94 ± 0.07 and 0.92 ± 0.09 for the frame, axle, pushrim, and outer rim placements, respectively for 

all athletes. The frame demonstrated the most trials with no FP or FN (n = 62 and n = 64, respectively, 

out of a possible 72). Other location placements demonstrated an error in at least half of the recorded 

trials (Axle: FP = 0, n = 36; FN = 0, n = 31, Pushrim: FP = 0, n = 47; FN = 0, n = 34, Outer rim: FP = 

0, n = 26; FN = 0, n = 30). Higher values indicate fewer errors (either FP or FN).  

 

 

Figure 4.15: Detection rate of false positive (FP) and false negative (FN) contact recordings across the four main placement locations. Frequency is 

indicative of the sensitivity or specificity value for each side (L or R), and each trial (n = 3) at each speed (n = 3 or 4) for each athlete (n = 3). A 

maximum value of frequency is therefore 72. 

 

For athletes using thermoplastic gloves, high to nearly perfect between-method agreement was 

observed when IMUs were located on the frame (Figure 4.16, Athlete E: r = 0.521, p < .001; Athlete 

I: r = .919, p < .001; Athlete F: r = 0.848, p < .001). The increased agreement was associated with the 
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increased signal to noise ratio (SNR) when units were located on the frame, at the axle, or pushrim 

radius (SNR > 6.328 ± 2.411). Lowest between-method agreement was observed at either the outer 

rim (Athlete E: r = 0.211, p = .001; Athlete I: r = 0.833 p < .001) or at the axle (Athlete F: r = 0.515,  

p < .001). For IMUs located on the wheels, both Athlete E and Athlete F demonstrate a larger 

variability of IMU defined cycle times compared to those measured by motion capture. 

 

 

Figure 4.16: Comparison of cycle times (s) estimated by IMUs against reference system (motion capture) for 523 push cycles. Signal to noise ratio 

(SNR) and correlation values (r) from all trials and conditions for each athlete are labelled on each graph. IMUs were not located on the Pushrim 

for Athlete I. Shading of each measurement corresponds with the speed with darker markers representing slower speeds. 
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Lower agreement was observed for the second (junior athletes) group (Figure 4.17), demonstrating a 

moderate agreement for all placement locations (Frame: r = 0.372, p < .001, Axle: r = 0.300, p = .001, 

Pushrim: r = 0.406, p < .001 and Outer Rim: r = 0.464, p < .001). Results were of comparable 

magnitude to Athlete E, who also had comparable SNR to Athlete A and Athlete B. Interestingly, SNR 

was more consistent across this second group than for Athletes E, I and F. 

 

 

Figure 4.17: Comparison of cycle times (s) estimated by IMUs against reference system (motion capture) for 127 push cycles for athletes with a 

coordination impairment. Signal to noise ratio (SNR) and correlation values (r) from all trials and conditions for each athlete are labelled on each 

graph. IMUs were not located on the Pushrim for Athlete A. Axle data was not recorded on one side for one speed for Athlete A, and both 

speeds of Athlete B. 

 

A systematic error (bias) was observed in the IMUs used for the analysis of Athlete E, which 

demonstrated the IMU methodology consistently underestimated cycle time, as compared with the 

conventional motion capture methodology (Table 4.3). However, as these values were all less than the 

a-priori threshold of 0.03 s, it can be considered that the IMU method was equivalent to the motion 

capture method for all placement locations, excluding at the axle for Athlete E and Athlete B. 

Additionally precision values were within the a-priori thresholds for Athlete E (outer rim), Athlete I 

(frame), Athlete F (frame), however not for Athlete A and Athlete B. 
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Table 4.3: Summary statistics demonstrating the quality of agreement between methods (conventional versus IMU) for each IMU placement 

location. Quality of agreement is shown visually through shading, yellow (good) through blue (poor). High SD values of Athlete F are attributed 

to the different propulsion strategy, including swing throughs (cycle time ~1.3 s), which the athlete used for efficiency. No IMUs were located on 

the pushrim for Athlete I. 

` Frame Axle Pushrim 
Outer 

Rim 
Frame Axle Pushrim 

Outer 

Rim 

 Athlete A Athlete B 

Mean (s) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

SNR 4.1 4.2 4.0 4.5 4.3 4.9 4.1 5.9 

SD (s) 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.1 

Bias (s) 0 0 0 0 0 -0.3 0 -0.0 

Precision (s) 0.0 0.1 0.1 0.1 0.1 0.3 0.1 0.2 

% Error 38.6 49.7 49.4 42.1 54.8 105.9 39.9 48.8 

 Athlete E Athlete F 

Mean (s) 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 

SNR 3.1 3.8 3.9 5.6 6.8 3.9 6.3 6.5 

SD (s) 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 

Bias (s) -0.0 -0.0 -0.0 -0.0 0 0 0 0 

Precision (s) 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 

% Error 19.3 74.9 56.7 63.3 5.1 46.0 24.8 41.2 

 Athlete I ALL 

Mean (s) 0.7 0.7  0.7 0.7 0.7 0.7 0.7 

SNR 9.0 8.4  5.2 5.5 5.1 4.6 5.5 

SD (s) 0.0 0.0  0.0 0.1 0.1 0.1 0.1 

Bias (s) 0 0  0 0 -0.1 0 -0.0 

Precision (s) 0.0 0.2  0.3 0.1 0.2 0.1 0.1 

% Error 10.7 11.0  16.4 25.7 57.5 42.7 42.4 

 Excellent      Poor 

         

 

Errors were smallest for the units located on the frame, with %Error values within a-priori limits of  

< 14.84% (± 0.05 s, ± 6 motion capture frames) for two athletes (Athlete I and Athlete F). As both 

error and precision values obtained from IMUs located on the frame in this research satisfied the  

a-priori accuracy requirements, it can be concluded that the IMU method was able to identify contact 

across the sample population. This conclusion, however, does not hold for IMUs located on the 

wheels, at the axle, pushrim or outer rim, as average precision values >0.07 s, and % error > 40%.  
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4.3.4 DISCUSSION 

This study demonstrates how the efficacy of IMUs in detecting contact between the hand and pushrim 

during wheelchair racing propulsion varies with placement. This aids in understanding how to 

maximise the effectiveness of the measurement solution to provide accurate input data into the 

computational model based on the detrimental propagation of errors highlighted in the Background 

section (Chapter Two). All placement locations investigated were capable of identifying contact events, 

supporting the hypothesis. In terms of estimating cycle time, the IMUs located on the frame and 

pushrim demonstrated the highest accuracy, while the IMUs at the outer rim showed consistently lower 

accuracy than the other placements. Similarly, when comparing the automated detection of contacts 

across all placement locations, the units located on the frame demonstrated the lowest error rate of all 

placements, while the outer rim placement showed the most significant error. This was in contrast to 

the second part of the hypothesis, which predicted wheel placements being more reliable due to 

proximity to the contact point and vibration source.  

The errors observed by units located on the axle, pushrim, and outer rim may be attributed to rotational 

effects. Differences in the relative displacement between the hand location at contact and the position 

of the IMU may introduce small timing delays. These effects are more pronounced in more distally 

located units on the wheel, such as at the outer rim. Additionally, the variability observed from the data 

collected from IMUs placed on the axle housings may be a result of the wheelchair. Between brands, 

this housing can either be rounded or flush. The vibration response and hence underlying signal noise 

is enhanced for units which are not fastened to flush surfaces, as there is inherent movement within 

the unit relative to the wheel rotation. Variability in the reliability of units located at the pushrim may 

be associated with athlete technique. However further study is required to confirm this.  

The response was observed to be lower for Athlete A and Athlete B as compared with Athletes E, I 

and F. As mentioned previously, classification and experience impact kinematic patterns, and the 

response of the IMU signal was found to be affected by athlete equipment. The compromised 

capabilities observed from Athlete A and Athlete B can be suggested as being a cumulative effect of 

all of these factors. As the IMU signal of Athlete E had lower accuracy than Athlete I and Athlete F, 

it can be suggested that the use of IMUs are better suited to more experienced athletes, having cleaner 

interactions between the hand and pushrim. 

SNR was a critical factor in the success of the IMU approach (Figure 4.13). This was influenced both 

by athlete technique, and equipment. For example, the best results were observed for Athlete I, who 

was the most experienced athlete and has broken multiple world records. It is possible that a more 

efficient technique has a higher mean peak response of the acceleration signal at the pushrim as 
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compared to the wheel, thus enhancing the SNR. Furthermore, use of spoked wheels and soft gloves 

can reduce this SNR, with the soft gloves providing damping at this contact interface, and hence result 

in impact peaks of lesser amplitude. Therefore, regardless of the placement location, the IMU approach 

may be less robust. This suggests the use of this solution is a top end solution for elite athletes, as 

spoked wheels and soft leather gloves are more common across the junior population. 

 

4.3.5 CONCLUSION 

Highest accuracy in temporal parameter identification was influenced by the SNR of the resultant 

acceleration trace. However, reliability should be suitably high regardless of placement as long as the 

SNR is sufficiently high.  

 

4.4 INTRA STROKE PROFILING OF WHEELCHAIR PROPULSION USING 

IMUS, AND THE INFLUENCE OF EQUIPMENT 

4.4.1 INTRODUCTION 

To be able to provide relevant performance metrics such as contact duration (time hand is in contact 

with the wheel) and the relative timing between the propulsion and recovery phases, it is also important 

to understand whether the release points can also be detected reliably. No studies have been found in 

the literature to investigate this. 

The literature is also yet to report on whether there exists any variation in the resulting acceleration 

signal corresponding to athlete equipment or technique. While this was likely a consequence of the 

methodology used (non-impaired participant, at very low propulsion speeds), this may also have been 

a result of the high stiffness of the frame. As noted in Section 1.2, wheelchair rugby chairs are up to 

four times as heavy as a wheelchair racing chair. Therefore, it is possible that the vibration response 

across a wheelchair rugby chair and wheelchair racing chair may differ. 

Glove selection has already been demonstrated to alter force transmission (Section 3.2). Additionally, 

variable reliability in IMU detection was observed across the population sample in Section 4.3. Glove 

selection, wheel type and propulsion characteristics may also influence the amplitude of the resulting 

acceleration signal, therefore impacting the ability of the IMU to identify propulsion characteristics. 

Athletes can opt to use carbon wheels (disc or aero four spoke) and custom, thermoplastic hard gloves 

(over traditional spoked wheels, and leather gloves) to increase the stiffness of contact, and thus 

provide a more efficient transfer with smaller transmission losses.  
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This study in this section builds on the findings from the preliminary investigation to understand 

whether IMUs are appropriate for use with wheelchair racing chairs. This study aimed to determine 

the capability of IMUs in automatically identifying both contact and release times (and hence push 

time) across different athlete and wheelchair configurations. From this, the generalisability of the use 

of IMUs for instrumentation can be gauged for a broader wheelchair racing population. 

 

4.4.2 METHODS 

Athlete Selection 

Seven wheelchair racing athletes (Athletes A – F, I) from the national level junior (n = 4, < 19 years of 

age, 4.0 ± 0.58 years of experience) and senior (n = 3, >19 years of age, 8.3 ± 3.3 years of experience) 

program were recruited for this study.  

 

Measurement System 

Based on the findings in Section 4.3, IMUs were located on the axle housings of the wheelchair frame 

(FL, FR). Spatiotemporal data were validated using motion capture cameras (Section 4.2). A total of 

221 push times were analysed (4 junior athletes × 13 push times × 2 speeds + 3 senior athletes × 13 

push times × 3 speeds) for each hand (442 data points total).  

 

Data Processing 

Contacts were identified using the automated algorithm described previously. When fewer hand 

contacts were identified using this approach than detected using motion capture (𝐹𝑁), manual contact 

identification was performed. This was achieved using the most prominent peak around the time stamp 

identified from the motion capture data. The frequency of (𝐹𝑁) across the sample presentation are 

presented in Figure 4.15. 

 

Statistical Analysis 

Reliability and repeatability measures were obtained through ICCs. Two independent raters (both 

familiar with wheelchair acceleration data and video) performed manual digitisation on the same video 

and analysed IMU data using the custom peak detection algorithm. Both raters performed a repeated 
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assessment of tasks following a period of two weeks with no exposure to the data. Appropriate 

reliability and repeatability required ICC > 0.9.250 

It was defined for this study that an adjusted coefficient of determination (R2) value > 0.97 (± 1 video 

frame (0.01 s)) demonstrated excellent goodness of fit, R2 > 0.91 (± 2 video frames (0.02 s)) was very 

good, R2 > 0.80 (± 3 video frames (0.03 s)) was good, with R2 < 0.80 considered average. Results of 

the above regression were then ranked and compared across athlete demographics using a Mann 

Whitney U test. Pearson Correlations were used to establish the relationship present between speed 

and reliability. Effect sizes were established based on the methods reported by Field.259 All statistical 

calculations were performed using IBM SPSS Statistics 24 Software for Windows. 

 

4.4.3 RESULTS 

Excellent inter- and intra-rater reliability (ICC > 0.95) were obtained for the manual digitisation of 

high-speed video. For all reliability assessments, mean absolute error in the time for push length was 

< 0.01 s, with standard deviation being < 0.06 s and < 0.01 s for IMU, and video defined contacts, 

respectively. To relate this to a push cycle duration, the four push cycles presented in Figure 4.18 have 

length 0.65 ± 0.00 s, which are example data from Athlete F at 28 km/hr. 

IMUs were effectively capable of automatically identifying contact, however, the algorithm located 

release less reliably, without also detecting noise (Figure 4.18). At this stage, automatic detection of 

release points is not plausible without the assistance of motion capture data.  

 

 

Figure 4.18: Representative example of acceleration trace demonstrating the detection of contact points with an IMU compared to motion 

capture, however, issues with the identification of release. 
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Athlete-specific characteristics were observed to influence the robustness of the IMU method, and 

hence the level of agreement with the video obtained contact timings (Figure 4.19). Results from the 

Mann U Whitney test revealed that, glove type (U = 6; W = 34; p = .02), and wheel type (U = 12;  

W = 22; p = .26) were not observed to impede the effectiveness of IMUs in determining contact 

(Figure 4.19). Statistical affects were identified between the reliability of IMU and video derived push 

lengths, with speed (r = 0.72; p < .01), gender U = 0; W = 55; p = .05), athlete classification (U = 4;  

W = 14; p = .02) and age (U = 0; W = 36; p < .01), or a compounding affect between these. Effect 

sizes ranged between small (Wheel r = .05; Gender r = .05), medium (Glove r = .11; Age r = .15; 

Classification r = .11) and large (Speed r = .72).  

 

 

Figure 4.19: Capability assessment of the accuracy of the IMU-based contact detection methodology across varying athlete characteristics. The 

coefficient of determination (R2) data is presented from the FL (open markers) and FR (solid markers) for each athlete. 

 

4.4.4 DISCUSSION 

This study investigated whether IMUs are capable of intra-stroke profiling for wheelchair racing 

propulsion, and the influence of athlete and wheelchair demographics on this capability. IMUs 

provided a reliable and repeatable method of identifying the contact, but not the release point. The 

release was able to be detected, however as acceleration signals at this moment were comparable to the 

magnitude of signal noise, it precluded entirely automated processing. The accuracy of the IMU 
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method was influenced both by athlete technique. This suggests that it is plausible to use the IMU 

approach across the greater wheelchair racing population, however, to also be mindful that the 

individual response may change between athletes, and so to employ athlete-specific analysis protocols 

to ensure these variations do not influence reliability. 

Contact is a far more ballistic motion than the release of the hand on the pushrim, which can explain 

the reduced accuracy of its detection. One athlete demonstrated consistent identification of release 

points. Qualitative assessment of performance suggests this may be likened to a flicking motion of the 

wrist upon release. Without kinetic validation, it can be hypothesised that this motion does not 

maximise athlete efficiency. While IMUs may have a limited capacity to quantify the release time; they 

can still assist in kinematic profiling, by recognising inefficient release techniques.  

Additional data processing techniques were explored with the intention of better emphasising the 

release point. Taking the log of the data did not increase the visibility of the point, however squaring 

the acceleration data offered a marginal improvement (Figure 4.20). Further research could explore the 

use of wavelet analyses, which are well suited to detecting small temporally related events and machine 

learning algorithms based on athlete-specific temporal data.  

 

 

Figure 4.20: Comparison of different processing methods which can be used to improve the detection of release points. 
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Results suggest that differences in reliability of the IMU are not associated so much with athlete 

equipment (wheel type or glove type) but are related to individual propulsion techniques. However, 

notable differences were observed between the characteristic traces of acceleration data between 

athletes with different equipment type, specifically regarding the magnitude of underlying noise. It was 

typical that the signals from soft gloves or spoked wheels to have a higher number of false negative 

detections. Thus, although contacts were able to be retrospectively deduced from the traces with 

relative accuracy, the ability for automated processing across equipment types may be limited. 

Findings from this study suggest that IMUs demonstrate greater agreement with the current gold 

standard method when used with more experienced, senior athletes, and at higher propulsion speeds. 

Females demonstrate different propulsion kinematics,239 which may provide the rationale as to why 

reliability and gender are correlated, however, this cannot be confirmed from the results of this study. 

Athlete classification, which influences the kinematic technique, was not demonstrated to influence 

the reliability of the IMUs in determining contact. However, both the athlete classifications included 

had full function of their upper extremities. It is expected that level of activity limitation (and therefore 

classification) would be an influencing factor when concerning athletes with different types of 

impairment, specifically when reduced muscular function and greater physical asymmetry is present in 

the upper extremities.  

 

4.4.5 CONCLUSION 

Identification of propulsion events from IMU data was found to be reliable for contact and push 

length, but not for release. The reliability of IMU obtained data was impacted by athlete propulsion 

technique. The robustness of detecting contact was not influenced by classification, wheel type, or 

glove type. However, improved reliability may be associated with athlete speed, gender and variability 

in technique. This suggests that for the population sample of this research, IMUs present a viable 

solution for the instrumentation of racing wheelchairs. While it is considered that the success of the 

methodology can be generalised across elite wheelchair racing athletes, further research is required for 

the extrapolation into other wheelchair sports, manual or daily wheelchair propulsion. 
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4.5 THE VALIDATION OF IMUs ON ESTIMATING TORQUE 

PRODUCTION OF WHEELCHAIR RACING ATHLETES 

4.5.1 INTRODUCTION 

Prior to the use of instrumented wheels, researchers have used a force plate to measure the external 

propulsion loads.260 A limitation of this approach, however, is that only a single push can be recorded 

per force plate and that testing had to be performed under laboratory conditions, meaning speeds were 

not reflective of competition speed. Additionally, commercially available instrumented wheels are not 

practically viable for use within wheelchair racing, highlighting the need to explore new methods 

(Section 2.4).  

Wearable technologies (such as IMUs) are an emerging trend in sporting biomechanics due to their 

unobtrusive measurement. Benefits of IMUs are their low mass (12 gm mass per unit),219 wireless 

operation, ease of fastening, and ease of data recording. Although IMUs have been used extensively in 

the literature for kinematic monitoring, there is no current literature available commenting on the 

feasibility of the use of IMUs in the kinetic monitoring of wheelchair biomechanics. Kinetic estimation 

would be the result of the conversion of the acceleration signal into torque estimates. 

This study aimed to examine the plausibility of IMUs specifically that of the accelerometer, in 

estimating reaction forces using Newtonian mechanics. This data can be used to drive computational 

models with performance-based data, to maximise the relevance and impact of obtained results. It was 

hypothesised that there will be good agreement between the IMU and force plate data per session, 

facilitating a practically viable tool for in field athlete monitoring. It was assumed however that a 

systematic bias would exist between IMU and force plate measurements due to the damping of the 

tires due to the rubber surface (Mondo track surface) overlaying the force plates.  

 

4.5.2 METHODS 

Athlete Selection  

Seven athletes (Athletes A – E, Athlete I; gender: males (n = 5), females (n = 2), age: 24 ± 7 years, 

body mass: 62.87 ± 10.94 kg, experience: senior (n = 3), junior (n = 4), classification: T34 (n = 2), T53 

(n = 1), T54 (n = 4)) participated in this study.  
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Measurement System 

Three-dimensional acceleration data were captured using three IMUs, which were rigidly fastened to 

the wheelchair frame at the left and right axle housings (FL and FR, respectively). Force plate and IMU 

data were synchronised through the use of a thresholding algorithm compared to resting force and 

acceleration, respectively. Acceleration data were converted to equivalent forces using the relationship: 

𝐹 = 𝑚𝑎                     Equation 4.4 

Where  𝐹 is the applied propulsion force,   

𝑚 is the mass of the system (athlete and wheelchair), and  

𝑎 is the measured acceleration.  

 

It is acknowledged that force can also be estimated considering the apparent mass of the system. At 

most, the apparent mass of the system was 2.09% and thus a minor contribution to the total estimate 

of the system, and so was not introduced into the processing methodology. 

For the steady-state trials, mean rolling resistance was calculated as being 7.01 ± 1.10 N, with the 

contribution of these forces per hand being up to 1.02 % of the maximum applied forces. These values 

were subtracted from the propulsion force estimates. It was assumed that there was a symmetrical 

distribution of weight across the seat and that even contributions of rolling resistance acted for each 

hand. Aerodynamic resistance was negligible (calculated as being 0.09 N) based on equations presented 

by Fuss,11 and using parameters defined by Barbosa et al.,9 and were hence not included in this analysis. 

 

Experimental Propulsion Task  

As with the study presented in Section 4.3, while the intention is for in-field data measurement, research 

was performed under controlled, laboratory conditions to ensure maximum data reliability. Applied 

forces were analysed under two conditions: acceleration from stationary, and compared to a gold 

standard force plate measurement; and steady state, and compared to literature reference data. It is 

acknowledged that for wheelchair racing, an instrumented wheel (SMARTWheel) is the gold standard 

comparison tool, however, due to their cost, were not able for this research. The force plate was 

selected as the gold standard measurement tool based on its frequency of use in the collection of 

ground reaction force data for gait. 
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For the acceleration condition, athletes propelled their own wheelchairs over a series of force plates 

(Figure 4.21) sampling at 1000 Hz (Kistler, Kistler Instruments Ltd., Alton, Hampshire) embedded in 

the floor (Mondo track surface) of a 46 m biomechanics laboratory. Athletes performed four stationary 

starts (Start) from the force plate and pushed for at least 10 m at a maximal velocity to ensure the 

starting procedure was well performed. Lane markings and a defined start line were over-laid on the 

Mondo track surface, and start procedures reflective of race conditions were used to represent race 

conditions.  

For the start trial, each wheel (front, and two rear) was located on a separate force plate (Figure 4.21). 

As there is a gap between the front and rear force plates, a full cycle data was not always captured. 

Mass was calculated for the athlete-wheelchair system (with instrumentation attached) using static 

measurements on the force plates. The mean value over fifty data points (representing 0.05 s) was used 

as the mass value. Wheel camber was accounted for in data processing for the mediolateral data. A 

shear force was present in the mediolateral direction, which was equal and opposite for each wheel. As 

effects of camber were not present in the IMU data, this shear force was removed. 

 

 

 

 

 

 

 

 

 

Figure 4.21: Instrumentation configuration, demonstrating the placement locations of each of the three IMUs, and the chair on top of the force 

plates, demonstrating the wheels each starting on a different force plate.  

 

Steady-state trials were performed on a non-instrumented treadmill (as described in Section 4.2), at a 

range of speeds ranging from warm up through to competition pace; IMU data was collected 

throughout. Total test duration and speed were customised for each athlete in accordance with race 

speeds and age (i.e. junior athletes test protocols were scaled down appropriately). Data were collected 
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for one-minute trials once athletes reached steady state propulsion (as controlled by the treadmill). 

Data were analysed for 10 s trials within this data capture period. Measurements were verified against 

results of a comprehensive, but non-exhaustive literature review on resultant force application in 

wheelchair propulsion.41, 55, 56, 62, 188, 220, 261-265 It is acknowledged that these sources all depict manual 

wheelchair propulsion and that there are distinct differences between racing and manual propulsion.  

 

Data Processing 

Triaxial components of acceleration were re-oriented to the global coordinate system. The power 

spectral density of resultant acceleration signals from all athletes for both the acceleration and steady-

state conditions demonstrates a decline between 9 Hz and 10 Hz (Figure 4.22). As filtering data reduced 

the magnitude of impact (see Figure 4.23), following filtering, data were scaled by mean peak 

magnitude, ensuring this mean peak value was consistent with the raw data, and filtered data. 

Consequently, a Butterworth low-pass filter, with a 9 Hz, -6 dB cut off frequency was selected. 

 

 

 

Figure 4.22: Power spectral density of resultant acceleration signals from all athletes for both the acceleration and steady-state conditions for 

determining appropriate cut-off frequencies for the filtering of IMU data. The dashed line shows the selected low pass filter. 

 



 

 

87 
 

 

Figure 4.23: Selection of most appropriate cut-off frequency. The blue line represents filtered data (at the specified cut off frequency). The yellow 

line represents a proportional increase to maintain consistent mean peak data as the raw data. Higher cut off frequencies demonstrates a closer fit 

between data sets. 

 

Statistical Analysis  

Kinetic measures from IMU and force plate data which were extracted for statistical analysis included 

rate of force development (RFDML, RFDV, RFDAP), the magnitude of peak forces (PFML, PFV, and 

PFAP), mean force (MFML, MFV, MFAP), signal RMS (RMSML, RMSV, RMSAP), and impulse (IML, IV, 

IAP). Push time (TML, TV, TAP) was also calculated for both IMU and force plate measurements. 

Statistical differences in force parameters between force plate and IMU methods were compared using 

Bland Altman analysis, as performed by Hanneman.257 Significance was accepted at the (p ≤ .05) level. 

Bias and precision estimates of ± 10 N and ± 5 N, respectively, were established a-priori as the 
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maximum parameters indicating acceptable agreement between methods and precision of difference. 

All statistical analyses were completed using IBM SPSS Statistics 24 Software for Windows.  

 

4.5.3 RESULTS 

Visually, there was an apparent variation in the agreement between IMU and force plate data. Figure 

4.24 demonstrates data with strong between method agreement (Athlete A; Left), and an example 

where the IMU data substantially underestimated the forward's acceleration data (Athlete C; Right).  

The between-method agreement was variable between athletes, with Athletes A, B, F and I consistently 

demonstrating greater performance as compared with Athlete C and D. Directionally, best between-

method agreement was demonstrated in the anterior-posterior direction.  

Statistical analysis reveals that apart from RFD, the IMU was most accurate in the AP (forwards) 

direction (Table 4.4). Impulse, peak and RMS values were all under the a-priori threshold of 10%, with 

mean values very close to this threshold (10.3%). It can be seen that this is accompanied by low bias 

(systematic error), but considerable precision (measurement error) in the AP direction measurements. 

Such a large precision value can be attributed to the aforementioned equipment limitations, such as 

Athlete C, who used spoked wheels.  

 

 

Figure 4.24: Example of two athlete data in three dimensions (IMU data: solid lines; force plate data: dotted line) for a good (right) and poor (left) 

comparison of data in the AP direction. Body mass has been removed in the vertical (FV) direction. N.B. starting time on the x-axis included 

calibration of the force plates and the audible three-command cue for start of motion.  
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Bland-Altman analysis revealed a negative bias (force plate > IMU) for RMS (RMSV), Peak (PFML), 

Mean (MFML, MFV), Impulse (IML, IV) and RFD measurements (RFDML, RFDAP, Figure 4.25). The 

magnitude of this bias was also demonstrated in Table 4.4. However, there was a positive bias for the 

majority of the AP measurements peak, mean, RMS, as well as in the vertical direction for RFD and 

RMS.  

 

Table 4.4: Precision and bias between IMU estimates and force plate data. RFD data were not presented as % mean due to the small 

denominator. 

 Precision Bias 

 ML V AP ML V AP 

RMS (N) 24.3 43.6 13.9 11.3 -52.4 -3.7 

Peak (N) 39.5 259.6 20.6 -7.5 18.0 0.7 

Mean (N) 23.5 51.2 14.1 -8.7 38.6 -3.4 

Impulse (N/s) 30.3 37.5 24.5 9.0 21.7 2.6 

RFD (N/s) 0.3 0.5 0.4 0.3 -0.6 0.4 

Length (s) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

 Precision (% Mean) Bias (% Mean) 

 ML V AP ML V AP 

RMS (%Mean) 237.0 69.9 35.0 28.3 83.9 9.2 

Peak (%Mean) 387.8 376.9 38.0 74.0 26.1 1.3 

Mean (%Mean) 245.5 94.5 42.7 90.8 71.2 10.3 

Impulse (%Mean) 176.7 348.9 78.1 52.5 206.9 8.3 

 

 



4. WHEELCHAIR INSTRUMENTATION USING IMUs 

 

90 
 

 

Figure 4.25: Bland Altman Plots of Agreement for a Start trial for each of the kinetic parameters for each athlete in each primary direction.  

 

Mean peak resultant force data, as measured by the IMU, for each athlete was plotted against speed, 

for both the athlete-measured values and literature-defined values (Figure 4.26). A line of best fit  

(R2 = 0.92) was placed between the literature-defined values. Each experimental data point is 

representative of the mean of at least 10 s of consecutive propulsion.  
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Figure 4.26: Comparison of steady-state data as recorded by IMUs to literature. Data from the literature is below  

3 m/s are representative of manual wheelchair propulsion, while athlete data is above. 

 

4.5.4 DISCUSSION 

This study aimed to examine whether an accelerometer (IMU) served as an appropriate method for 

the estimation of the applied forces to the athlete-wheelchair system (including trunk motion) applied 

by the athlete. Data showed that for specific athletes, the IMUs were very competent in measuring the 

forwards applied forces. However, the effectiveness of this solution varied and was inappropriate for 

two of the seven athletes analysed in this research. Consequently, the use of IMUs may not always be 

appropriate for the use within a computational model based on the propagation of errors. However, 

there does still exist merit for the use of these from a performance perspective. 

This phenomenon can perhaps be explained due to the differences in athlete equipment. For the 

conditions when the IMU performed worst (Athlete C and D), athletes were using spoked wheels. The 

energy response between wheel types is anticipated to differ, with higher energy loss expected for the 

spoked case. The loss in energy across the spoked wheels may contribute to the underestimation of 

force estimations from the IMU as compared to the force plates. As Athlete C was using spoked wheels 

like Athletes A, E and F, who demonstrated the best between method agreement, it can be considered 

that equipment is not the sole contributor to the performance of IMUs. However, from the results of 

Athletes C and D, it can be recommended that this analysis is not performed using spoked wheels, 

which may mean this solution is better suited to elite populations. Less than 2% of the athletes in the 

previous Paralympics (Rio 2016) used spoked wheels, demonstrating that this limitation does not 

restrict the significance of this research. The loss of energy across spoked wheels was not quantified in 

this research, however, should be investigated in the future. The amount of energy lost through 

vibration may be demonstrated through high-speed video analysis. 
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Although the study did not show perfect between-method agreement, particularly for athletes with 

spoked wheels, it did substantiate the merit in the further refinement of data processing to fill the void 

of practically viable instrumentation solutions available for wheelchair racing. For example, this tool 

allows the correlation of force application to performance, and can also look at how much forwards 

directed force is applied, and whether modifications to technique improve or reduce this component. 

It is acknowledged that there are discrepancies to the gold standard measurement, and so the use in 

computational modelling should be limited to prevent the compounding of these errors throughout 

the successive processing. However, there is still merit in the solution from a practical perspective. 

Differences between IMU and force plate data suggest it is not apt to compare multiple athlete’s data. 

However the use of an IMU can still provide a good relative measure of an athlete over time.  

For the out-of-plane directions (FML and FV), no parameter was under the defined thresholds. Once 

again, some of this can be attributed to athlete equipment (spoked wheels), damping on the floor  

(FV measurements), and cambered wheels (FML measurements). Additionally, some of the disagreement 

in FV measures may be due to trunk motion, and changes to CoM, which were able to be recorded by 

the force plate, however not by the IMU. Precision and bias measures (in all three directions) for length 

were all < 0.01, validating the appropriate calculation of Impulse.  

Literature has demonstrated that for manual wheelchair propulsion, absolute peak force magnitudes in 

the anteroposterior direction are far greater than the out-of-plane forces. In-plane forces (in the 

direction of travel) are approximately 3.0 times greater than the forces in the vertical direction, and  

3.2 times greater than in the mediolateral direction across a population with varying spinal cord lesion 

levels.266 Additionally, Goosey-Tolfrey et al. 195 have stated that the tangential (or propulsive) 

component as the most significant. Hence, the anteroposterior direction is the most relevant for the 

evaluation of wheelchair performance, as it best provides the propulsive component. Ensuring the 

interpretation of data (and its precision) is treated carefully, this approach presented provides a vast 

potential for the large scale performance assessment of wheelchair racing during competition. 

The capacity for estimating propulsion forces from IMUs has been demonstrated, however further 

refinement of the data processing methodology is required to increase the reliability of the data such 

that it can be incorporated in computational modelling. For example, rolling resistance was neglected 

in this research, however, may have an impact on road surfaces. Additionally, considering the 

acceleration during a starting motion, and the inertia of the non-spoke wheels, future data analysis 

could consider the apparent mass rather than simply the mass. This could be performed using the 

relation described in Equation 4.5. 
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𝐹 = (𝑚 +
𝐼𝑅

𝑅𝑅
2 +

𝐼𝐹

𝑅𝐹
2)𝑎                  Equation 4.5 

Where  𝐹 = the forward external force, 

 𝑚 = system mass (athlete + wheelchair), 

 𝐼𝑅 , 𝐼𝐹 = mass moment of inertia of the rear and front wheels along their rotation axles,  

 𝑅𝑅, 𝑅𝐹 = rear and front wheel radii, respectively, and  

 𝑎 = measured accelerations 

 

At faster propulsion, peak force followed the line of best fit for the literature values. The observed 

trend is consistent with the literature of walking and running whereby vertical reaction forces increased 

linearly with gait speed up to 60% of maximum speed.267 This suggests the appropriate extension of 

the IMU at speeds more reflective of performance. Two athletes demonstrated consistently greater 

force than the rest. This may be explained due to technique (including experience and skill level), with 

results possibly suggesting an inefficient technique for Athletes F and D, both of whom are male. 

It is possible that damping occurred in the force plate measurements, as the force plates were 

embedded beneath a Mondo track surface, which is made from a synthetic rubber material. An 

attenuation in peak forces has been demonstrated for impacts occurring on lower stiffness floors.268 

For example, firm foam (density 32 kg/m3) can attenuate peak forces by up to 76.6%. A material with 

comparable density to the Mondo track surface (SmartCell (SATech, Chehalis, WA, USA) 1120 kg/m3, 

Mondosport 911.1 kg/m3)269 can attenuate peak forces by between 17.3% to 33.7%.268 As damping is 

only demonstrated in the force plate measurements; this can explain the observed offset for the IMU 

obtained data as compared with force plate measurements. Based on the maximum values of AP data 

presented in Figure 4.24 (~60 N) and the corresponding mean bias value (AP) presented in Table 4.4 

(8.97 N), the bias is approximately 15% of the maximum value. This is in line with the level of damping 

which would be expected from the Mondo track surface. 

Acceleration and steady-state data were analysed separately on account of the kinematic variations 

between motions. For a start, athletes demonstrate greater cycle time with a shorter contact duration, 

as compared to steady-state propulsion. The motion is very much a pushing motion. However, for 

steady-state propulsion, athletes employ more of a striking motion, meaning substantially greater 

impact peaks are present for steady-state data as compared with starting data, unless removed through 

filtering, (Figure 4.27). The large impact peak upon contact may not be observed in starting motions 
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based on athletes applying pre-tension to the wheels. For the data analysed, impact peaks (for Athlete 

A) were in the magnitude of 1.21 ± 0.2 g for steady-state propulsion, with peaks from the starting 

motions being just 8.6% of this value (0.1 ± 0.1 g). The operating range of the IMUs in this research 

was ± 16 g, meaning the observed propulsion, specifically that at the start were very small with regards 

to the operating range of the sensor. It can hence be assumed that there was a reduced capacity for the 

IMU during the starting motion. It is anticipated, that use of accelerometers with a variable operating 

range, more representative of wheelchair propulsion would result in higher accuracy.  

 

 

Figure 4.27: Comparison of raw and filtered steady state and acceleration data demonstrating a clear difference in magnitude of acceleration data 

with movement speed, and how the impact peaks used in Sections 4.1 through 4.4 relate to the force profile. 

 

Previous literature has demonstrated that a three-axis piezoelectric accelerometer has a transverse 

sensitivity below 3%.270 This means very low cross-talk between the components of acceleration exists 

within each IMU, and that data obtained can be considered as being reliable. I Measure U branded 

IMU sensors, as used in this research, utilise a PCB accelerometer,271 which contains piezoelectric 

crystals,272 while the force plate also contains piezoelectric force sensors.273 Therefore, both sensors 

used are operating on the same working principle.  

 

4.5.5 CONCLUSION 

This study investigated the plausibility of the use of IMUs for the estimation of applied forces for 

wheelchair racing propulsion. Although perfect agreement was not attained between IMU and force 

plate measurements for mean force, max force and rate of force development over a starting motion, 

sufficient accuracy was obtained, particularly in the forward's direction, with results showing more 

reliability at steady state speeds. Caution must be used in data interpretation. Data from IMUs can 

facilitate in-field kinetic assessment of performance, however, should not be used within computational 

modelling environments based on the propagation of out-of-plane errors.  
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4.6 DISCUSSION 

This chapter investigated the credibility of IMUs in detecting wheelchair propulsion kinetics. The 

IMUs may provide an advancement to current technologies, through providing a more objective 

measure of performance, as it is not subject to perspective or parallax errors. The practical use of IMUs 

can provide near real-time feedback to coaches and athletes as part of targeted training or competition. 

Although the use of IMUs is intended for practical settings; a controlled laboratory-based environment 

was utilised to assess the accuracy of IMUs to determine hand contact times in wheelchair athletes. 

Motion capture served as a gold standard measure for kinematic assessment, while force platforms 

were the gold standard measure for kinetic assessment. Marker positions and their derivatives were 

compared against IMU acceleration data to determine the most reliable method of identifying contact 

from motion capture data. Both data series presented impact spikes, with similar timings, depending 

on the placement location of the IMU. Hence, for placement locations where good agreement was 

observed between IMU and motion capture data, there exists an improvement on the current practical 

approach of video digitisation. IMUs can plausibly estimate the kinetic contributions of propulsion, 

however, processing requires further refinement before reliably being used in computational analyses. 

From an engineering perspective, validation of the IMU would have benefitted from comparisons 

made against instrumented wheels (such as a SMARTWheel), despite aforementioned criticisms on 

performance impact. Due to the financial cost of obtaining a SMARTWheel, and its lack of anticipated 

future use, it was not deemed practical to procure one. Another advantage of the IMU system is, 

therefore, the greater accessibility of the device, as compared to commercially available, pre-existing 

solutions. A standard tool used for measuring applied power in cycling is the PowerTap. Pilot testing 

was performed using a PowerTap to assess suitability and the potential for its use. However, as 

wheelchair propulsion is not crank driven like cycling is, this tool was not viable.  

Visual inspection of the IMU data revealed the capacity to differentiate timings between discrete 

contacts of the left and right hands. This would be beneficial in the monitoring and assessment of 

temporal asymmetries, which are common amongst athletes and can negatively impact athlete steering 

or promote athlete injury70, 94, 194 and are difficult to observe through video. Propulsion asymmetries 

may have been underestimated in this research as a consequence of the constrained, treadmill-based 

motion. Although kinematic adaptation to treadmill propulsion (particularly regarding athlete 

symmetry)184 is expected, a motor-driven treadmill is suitable for investigating manual wheelchair 

propulsion.274 The primary focus was concerned more with signal detection than performance 

assessment. Despite this, the IMUs still demonstrated the capacity for discerning participant 
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asymmetries. This highlights the precision of this measurement tool, as well as the potential capabilities 

of this technology in a practical environment. 

The sample population was controlled to ensure homogeneous wheelchair configurations, such that 

observed differences were only attributable to IMU placement, and not external factors, such as wheel 

and glove type, which were observed to be influential. Due to the unique impairments and experience 

of each athlete, data were compared on an individual level. The unique kinematic strategies employed 

by each athlete was reflected in the IMU response (Figure 4.16), as well as the amplitude of the signal. 

For example, Athlete F demonstrated a different technique to the remaining four athletes. The athlete 

maintained the cyclic upper extremity motion, however, did not always need to contact the wheel (push 

through action) to maintain speed. Because of this, the cycle time is approximately doubled, which is 

reflected in Figure 4.16. 

As mentioned already, the reliability of the IMU methodology increased with SNR. This can be 

influenced through the use of disc wheels, thermoplastic gloves, and strong impact peaks. These 

characteristics are all relevant to the elite wheelchair racing population. Therefore, the generalisation 

of this method may be limited to some applications of manual wheelchair propulsion analysis, as well 

as within other sports. For example, the contacts of wheelchair rugby may result in false positive 

detections using the developed algorithm. 

 

4.7 IMPLICATIONS AND CONCLUSION 

This chapter demonstrated that IMUs provide a more objective measure of contact, which is less 

susceptible to perspective and parallax error than the current gold standard method of video 

digitisation (Section 4.1). Therefore, IMUs serve as an improvement to the currently available 

technology for wheelchair racing athletes. Although the solution does come with some flaws, it 

optimises the requirements of both high engineering rigour, and practical usability. It was established 

that the method is more reliable in determining contact than release (Section 4.3). The reliability of the 

IMUs approach was subject to both athlete and wheelchair characteristics (Section 4.3), as well as 

placement locations (Section 4.4). Finally, it was established that the IMU could estimate propulsive 

forces of a wheelchair athlete. However, this is only achieved in the AP direction (Section 4.5). While 

this serves as the primary component of propulsive force, and hence an appropriate tool for measuring 

performance, it is not accurate enough for use within the computational modelling environment. As 

such, alternate methods of estimating the reaction forces at the pushrim are required. In this research, 
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estimations using kinematic data were used (and discussed in more detail in Section 6.1). However, the 

problem of instrumenting wheelchair racing chairs warrants further investigation.  

 

Key Findings: 

 IMUs are equally useful in identifying contact as compared to the ‘gold standard’ high-speed 

video observation method, and they provide an advancement due to greater objectivity of data 

analysis which is less subject to parallax and perspective errors.  

 Acceleration response differs between the wheel and frame, with further differences noted 

based on specific placement on the wheel. 

 Release points were not always detected as they were of comparable magnitude to the 

underlying noise of the signal. 

 The reliability of the IMU methodology is reliant on the inherent SNR and was shown to vary 

significantly with speed, gender, athlete classification and age. 

 IMUs can reliably estimate propulsive forces in the AP direction, but are less reliable in 

estimating out of plane forces in both the mediolateral (due to wheel camber) and vertical 

directions. 

 

Implications: 

 Athlete-specific processing algorithms are required to accommodate differences in signal 

characteristics across different propulsion styles. 

 Poor placement of IMUs can result in large differences in performance metrics, which has the 

potential for creating large errors if used to drive a computational model. 

 Frame placements are accessible for use by coaches and biomechanists to ensure compliance 

with the solution for long-term gain in performance preparation. 

 Inaccuracies in out-of-plane estimates question the validity of the approach for use in 

computational modelling approaches. 

 IMUs provide a useful tool for in-field monitoring of the kinetic and kinematic requirements 

of wheelchair propulsion.
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CHAPTER FIVE:  

WHEELCHAIR 
INSTRUMENTATION 
USING A PRESSURE MAT 
 

 

 

 

 

Despite the influence of the seating interface on propulsion being recognised repeatedly in the 

literature,1, 106, 230 little literature exists for wheelchair athletes, detailing the transient variation of 

pressure throughout a stroke.227 Pressure mats have demonstrated success in measuring reaction forces 

of running,230 and they have provided an indication of the quality of athlete-wheelchair interaction, 

which is a crucial aspect of wheelchair performance.119 Pressure mapping technology has demonstrated 

success for clinical based load monitoring literature233 and measuring reaction forces,231 but is yet to 

be applied in sport-based wheelchair propulsion.  

The most relevant pressure mapping literature for wheelchair use is predominantly clinical and 

performed using a pressure mat. Although the interactions at the seating interface are presumed to be 

more quasi-static than the dynamic hand contacts, the transient force data are unknown and are 

required as an input into the computational biomechanical analysis of wheelchair propulsion.  
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The content in this chapter completes the first aim of this research in developing an instrumentation 

tool capable of in-field data measurement of wheelchair racing performance (at the seating interface). 

Within this chapter, the efficacy of a pressure mat in measuring interface parameters at the seating 

interface is investigated and is split into three experimental studies. The first two studies investigate 

the applicability of the pressure mat, and whether its reliability is affected by the use of a foam cushion. 

The chapter concludes with an investigation into how well the lower extremity motion of track-based 

propulsion is replicated during the more controlled, treadmill-based propulsion. These three studies 

and their research questions are summarised following, with their connection to the primary research 

aim demonstrated in Figure 5.1.  

 

Can a commercially available pressure mat effectively measure interactions acting at 

the seating interface? (Section 5.2) 

Research Question: 

 Can a commercially available pressure mat measure interactions at the seating interface? 

 

Effect of seating cushions on pressure distribution (Section 5.3) 

Research Question: 

 Does a foam cushion at the seating interface impede the ability of the pressure mat to 

record valid data? 

 

Changes in leg pressure during modes of wheelchair propulsion (Section 5.4) 

Research Questions: 

 Does treadmill-based propulsion accurately represent track based propulsion? 

  Is data collected on a treadmill appropriate to analyse the influence of customised 

seating interfaces on elite wheelchair racing performance?   

 

The findings from this chapter have additional practical implications. Use of the pressure mapping 

technology can extend to the analysis of performance in the daily training environments, demonstrating 

the practical significance of this research. For example, understanding the transient pressure profile at 

the seating interface can assist in the assessment of sustaining a pressure-related injury and for its role 

in performance-enhancing strategies. It is vital to understand whether athletes can gain a mechanical 

advantage during propulsion through the application of well-directed counter-forces at the seating 

interface. 
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 Figure 5.1: Relevance of the Chapter 5 (Wheelchair instrumentation using a pressure mat) to the fundamental research question; what is the 

performance impact of customised seating interfaces on wheelchair racing propulsion? 

 

 

5.1 METHODS OF COLLECTING WHEELCHAIR RACING PERFORMANCE 

DATA USING A PRESSURE MAT 

The same pressure mat data was utilised in each of the three experimental studies within this chapter. 

The common methodology is summarised following. Study-specific details are elaborated on within 

each specific experiment.  
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5.1.1 MEASUREMENT SYSTEM 

Pressure was measured at the athlete-wheelchair seating interface during propulsion using a pressure 

mat (XSensor LX100; Calgary, Alberta, Canada) at a sampling frequency of 4 Hz (Figure 5.2). It is 

acknowledged that this sampling rate is low. However the procurement of a pressure mat with higher 

sampling rate was outside the scope of this research. This device has been cited as having an accuracy 

of 5 mmHg, less than 1.3% hysteresis and less than 5% creep over 1 hr usage.275 Pressure 

measurements were obtained through a measured change in voltage across the 0.46 m × 0.46 m  

(18 × 18 inches) sensing area of the pressure mat, which was measured through 1,296 sensor points 

(sensels) with a spatial resolution of 12.7 mm. Throughout the remainder of the thesis, the term 

pressure mat relates to the measurement technology, while the term pressure map refers to the resulting 

image. Pressure mat placement facilitated the measurement of pressures applied normally (directly 

below shins), laterally (towards the seating bucket), and propulsively (in front of knees). No visible 

shear or crinkling of the mat was present during the 30 min settling time, which was required to ensure 

appropriate calibration and equilibration (accounting for creep in sensors). 

 

 

Figure 5.2: Placement of a pressure mat in two different wheelchairs (A and B). Tablet demonstrates no apparent singularities from placement. 

 

Video was collected using two SONY PXW-FS7 digital video cameras positioned perpendicularly to 

the right, and at the rear of the athlete. Video data were only used as a visual point of reference for 

post-processing. Data were captured for two independent 10 s periods for each athlete and 

corresponding motions. As each athlete has a unique technique, athletes were analysed independently, 

with no averaging performed across multiple athletes.  
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5.1.2 DATA PROCESSING 

Pressure parameters at the seating interface were calculated using specialised software (ForeSite SS), 

accompanying the pressure mat. Pressure parameters included; peak pressure, average pressure (which 

is the average of all non-zero pressure sensing cells), and contact area (which is calculated by the 

number of pressure sensing cells under load).276 Data were averaged over three separate trials for each 

athlete. Data processing was performed using MATLAB. 

 

5.1.3 EXPERIMENTAL PROPULSION TASK 

All athletes completed the testing protocol, in their regular racing wheelchairs, on either a Mondo track 

surface, athletics track surface or on the treadmill inclined to 1%.183 Treadmill speeds were selected 

based on individual training speeds, based on whether athletes were either sprinters, or endurance 

based athletes, to ensure technique was representative, and to minimise effects of fatigue. These speeds 

ranged from 20 km/hr through 37 km/hr (Table 3.1). Trials were one minute in duration, allowing 

three periods of 10 s data capture at steady state speed. Before testing, a period of acclimatisation both 

at steady state (including at the speed of testing), and acceleration were provided to all athletes, to 

provide confidence in the use of the treadmill during the test protocol.  

Ethical approval for this research was granted by the University of Adelaide Human Research Ethics 

Committee, and by the Australian Institute of Sport, with each athlete providing written, informed 

consent before participation. 

 

5.2 CAN A COMMERCIALLY AVAILABLE PRESSURE MAT EFFECTIVELY 

MEASURE INTERACTIONS ACTING AT THE SEATING INTERFACE? 

5.2.1 INTRODUCTION  

Pressure mapping technology has been demonstrated to be an effective tool for understanding athlete-

wheelchair interactions for manual wheelchair users in clinical environments. The translation of the 

technology from clinical to sporting applications, however, may be limited as a consequence of the 

additional complexities of sporting propulsion. Issues may pertain to the variation in seating geometry 

between sporting and manual wheelchairs and how the pressure mat (and corresponding data logger) 

is mounted.  
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Athletes in sports such as wheelchair rugby, wheelchair basketball and wheelchair tennis assume a 

conventional upright seated posture. From a geometric perspective, there are many similarities between 

the seating interfaces of manual wheelchairs with wheelchairs for these sports. However, as already 

stated (Section 1.1), wheelchair racing athletes adopt a kneeling posture, meaning the interactions with 

the wheelchair are acting at the shins. Wheelchair racing manufacturers produce seating buckets having 

various shapes (i.e. U or V-shaped openings). These are much smaller than the conventional seating 

interface. Therefore it can be considered that translation of pressure mapping research into practice 

could be readily achieved for the sports assuming conventional seating postures, but may be limited 

for wheelchair racing. 

A second consideration relates to whether athletes maintain the capacity to perform while using the 

pressure mat. For example, the pressure mat used in this research has a water resistant outer, meaning 

it has a low coefficient of friction surface, which may promote athlete movement at the seating 

interface. Also, although systems are wireless, there are still considerations regarding both weight and 

placement for the data logger and wireless transmitter.  

This study aimed to investigate whether a pressure mat is capable of measuring the distribution of 

pressure across the athlete-wheelchair interface, and its variation under the following dynamic 

conditions: steady state (constant velocity) propulsion, acceleration from a standstill, and agility. It is 

hypothesised that considerable variation in both the magnitude and distribution of seating pressure 

will be present during acceleration and agility modalities for athletes in both wheelchair racing and 

wheelchair rugby, where trunk movements are more dynamic. 

 

5.2.2 METHODS 

Athlete Selection 

This study compared pressure distribution at the seating interface from two sample populations; one 

used a modified kneeling posture (wheelchair racing), and the other a conventional upright seating 

posture (wheelchair rugby) . Athletes from the National wheelchair racing (n = 6, Athletes A-F) and 

wheelchair rugby (n = 2, Athletes G and H) teams were assessed independently, in regular, sport-

specific training environments.  
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Experimental Propulsion Task 

Testing was performed in the regular training environment of athletes, and as such minor variations in 

obtaining athlete testing protocol were present due to equipment availability in each venue. Wheelchair 

racing athlete masses were obtained through averaging 0.05 s of force plate output (taken as the 

summation of the forces from the three force plates located under each of the three wheels) from a 

static trial and taking the difference in measurements between the athlete-wheelchair system and the 

wheelchair itself. Wheelchair rugby athlete masses were determined using calibrated scales, as no force 

plates were available at the venue of data collection. 

Pressure was measured at the athlete-wheelchair seating interface (wheelchair racing: interface at shank; 

wheelchair rugby: interface at buttocks). Three modes of propulsion were performed by athletes which 

were representative of regular performance: steady state (wheelchair racing only); acceleration from 

stationary (wheelchair racing and wheelchair rugby); and agility (wheelchair rugby only). The 

experimental tasks were selected to meet sporting requirements, where agility is not required in 

wheelchair racing, and constant velocity is rare in wheelchair rugby. The steady-state propulsion trials 

for wheelchair racing athletes were performed on a treadmill, as outlined previously.  

Both wheelchair racing and wheelchair rugby athletes performed an acceleration from a stationary 

position. Wheelchair racing athletes performed the task on a Mondo track surface, with an audible, 

three command start, during which time athletes were allowed to pre-tension wheels (wheelchair racing 

start) to ensure motions were typical of performance. Conversely, wheelchair rugby athletes completed 

the task on a regular court surface and were allowed to begin the sprint in their own time (wheelchair 

rugby start).  

As sustained, linear propulsion is atypical of wheelchair rugby athletes, an agility test (wheelchair rugby 

agility), which consisted of wheelchair rugby athletes completing the standardised Illinois Agility Test 

(Figure 5.3) was performed instead. Athletes completed the entire test, however, only a portion of this 

was analysed within this study. The focus was placed on the weaving section in the middle of the test 

where the most considerable amount of chair manoeuvrability is required, and consequently where the 

most significant variation in pressures would be observed. 
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Figure 5.3: Illinois Agility Test used in wheelchair rugby agility trials, with specific data analysed from the weaving section, as evident in the 

middle of the Figure. 

 

Data Processing 

Within-trial seating pressure was quantified using descriptive statistics for each propulsion mode (min, 

max, mean, and standard deviation) for average pressure, peak pressure, and contact area for each of 

the tested modes of propulsion: steady state; stationary start; and agility, as a whole, as well as for sport-

specific classifications (wheelchair racing: T34 and T54; wheelchair rugby: 2.0 and 3.0). The coefficient 

of variation (CoV) was calculated for each of average pressure, peak pressure and contact area 

throughout a single push, to quantify the variability in these parameters.  

Paired t-tests were used to determine the influence of the seating cushion on resultant seating pressure 

and contact area. Statistical analysis was performed using IBM SPSS Statistics 24 Software for 

Windows, with a significance set at α = 0.05.  

 

5.2.3 RESULTS 

Substantial inter- and intra-sport variation of resultant pressure maps were observed, as presented in 

Figure 5.4. Each sub-figure represents the static posture of each athlete during the pre-tension period 

at the commencement of the acceleration trials. A static comparison (one frame, before the test was 

initiated) was selected to minimise the influence of athlete technique and the corresponding influences 
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on pressure distribution. For wheelchair racing athletes, static postures required them to assume their 

natural kneeling posture, with hands resting on the wheelchair pushrim where contact occurs. Similarly, 

wheelchair rugby images were obtained when the athlete was preparing to start. However, this was 

before any motion (including the upper extremity) had been initiated. 

 

 

Figure 5.4: Inter-individual variation of seating pressure while stationary for a single timestamp. Sub-figures are labelled alphabetically A-H, which 

correlates to athlete characteristics presented in Table 3.1, with subfigures A-F and G-H representing wheelchair racing and wheelchair rugby 

athletes, respectively. 

 

For the wheelchair racing athletes, the average pressure during the static measurement, presented in 

Figure 5.4, ranged between 7.3 kPa and 16.1 kPa (a factor of 2.2 times), while contact area varied 

between 0.0 m2 and 0.1 m2 (a factor of 3.1 times). It was observed that athletes exerted more peak 

pressure than the pressure mat had the capacity for (34.7 kPa). Consequently, at pressures greater than 

34.7 kPa, there was sensor saturation, which prevented the calculation of variability within a trial. As 

average pressure calculations take into consideration all sensels, including the saturated ones, it is 

possible this saturation would also impact average pressure measurements. However, as is visualised 

in Figure 5.4, these regions of high pressure occur over a relatively small area compared with the total 

contact area of the athlete. Wheelchair rugby athletes demonstrated greater consistency in these 

parameters, with the variation being 5.7 kPa and 7.2 kPa (a factor of 1.3) for average pressure, 20.0 kPa 

and 34.1 kPa (a factor of 1.7) for peak pressure, but did not vary for contact area (0.1 m2 and 0.1 m2).  
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A representative example of a within-trial variation of individual athletes is presented in Figure 5.5. 

Peak pressure measurements for wheelchair racing athletes were not obtained, as sensor saturation 

occurred, which is demonstrated through the horizontal line at 34.7 kPa in the peak pressure 

component of Figure 5.5, and subsequent value of 0.0% CoV in Table 5.1. 

 

 

Figure 5.5: Comparison of average pressure, peak pressure and contact area for a single wheelchair racing and a single wheelchair rugby athlete. 

 

A low CoV of average pressure (2.03%) and contact area (1.91%) were observed for the wheelchair 

racing steady state trials. While contact area remained relatively consistent for both the wheelchair 

rugby trials, there was a considerable variation in both average pressure and peak pressure, which was 

similar to all parameters for wheelchair racing start, with all CoV values quantified in Table 5.1.  

 

Table 5.1: Coefficient of variation measures in average pressure, peak pressure and contact area, and demonstrating inter-individual variation 

between modes of propulsion. 

 
Average 

Pressure (%) 

Peak Pressure  

(%) 

Contact Area  

(%) 

Wheelchair Racing Steady State 2.0 N/A 1.9 

Wheelchair Racing Start 6.6 N/A 12.4 

Wheelchair Rugby Start 7.4 12.7 1.7 

Wheelchair Rugby Agility 8.8 11.5 1.7 
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For athlete F, a variation in contact area during propulsive and recovery phases was observed for a 

wheelchair racing acceleration trial (Figure 5.6, bottom), but not steady-state trial (Figure 5.6, top). This 

athlete has a congenital limb deficiency, meaning the pressure map is of a stump (left), and full leg 

(right). It is clear that the contact area for the right leg is substantially increased during the propulsive 

phase of the acceleration trial (0.04 m2), as compared to the recovery phase (0.02 m2).  

 

 

Figure 5.6: Variation of magnitude and location of pressure for Athlete F (wheelchair racing) during steady-state propulsion (Top), and 

acceleration (Bottom) demonstrating that under non-constant velocity propulsion, the pressure at the athlete interface is not consistent between 

the recovery phase (left) and propulsion phase (right). 

 

Apparent variations in both location and magnitude of peak pressure were observed in the pressure 

maps from wheelchair rugby athletes throughout the agility trial, where the athlete was weaving through 

relatively sharp corners. Figure 5.7 shows evident increases in pressure to the side of the turn compared 

with the straight-line motion. 
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Figure 5.7: Variation in magnitude and location of peak pressures during agility tasks for a single wheelchair rugby athlete at a single time instant 

demonstrating seating pressure is not constant under non-linear conditions (A; Left turn, B; Straight propulsion, C; Right turn). 

 

5.2.4 DISCUSSION 

This study evaluated the efficacy of a commercially available pressure mat in determining the pressure 

distribution across the seating interface of wheelchair athletes, and its variation throughout various 

wheelchair sports activities. Clear between-athlete and within-stroke differences in pressure 

distribution were observed, suggesting the adequacy of the measurement approach. This formed the 

first study conducted to measure the transient behaviour of pressure throughout wheelchair propulsion 

across sports.  

Average pressure across a trial can be converted to force estimates for use in biomechanical modelling 

through multiplying obtained values by the spatial resolution of a sensor and normalising against total 

body mass. The consistency demonstrated during constant velocity suggest the plausibility for an 

appropriate simplification to modelling, using a constant force input proportional to a percentage body 

weight. This simplification was applied in the computational model in Chapter Seven. However, from 

the findings of this research, due to the dynamic nature of the seating interface, the assumption of 

constant mass at the seating interface is only valid under linear propulsion at a constant velocity. 

Consequently, for whole body biomechanical modelling of linear propulsion, kinetic measurements at 

the seating interface are required for acceleration conditions, as well as non-linear propulsion to 

provide a more comprehensive analysis.  

Variability in pressure at the seating interface can be influenced by trunk motion, the interaction 

between the hands and pushrim at contact, wheelchair set up parameters (e.g. bucket angle, position 

in relation to wheels, use of foam cushion), as well as the aforementioned spatiotemporal parameters.  
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Further research into these characteristics, with the inclusion of instrumented wheels, is warranted to 

optimise the seating interface for both performance and health reasons. It is plausible that differences 

in leg pressure would be reflective of greater applied hand pressures, suggesting the pressure mat alone 

may facilitate in-field kinetic measurements during propulsion. 

One of the most clinically relevant outcomes of this study was the potential for reduced risk of pressure 

sore ulceration in athletes, through identifying when large loadings occur. The technology utilised 

demonstrated sensor saturation at 34.70 kPa, whilst the limit of tissue viability has been reported as 8 

kPa.81 Although the saturation level, and hence the magnitude of peak pressures exemplified by the 

athletes in this study were higher than the clinically relevant pressure of 4.3 kPa,80, 81 the duration over 

which such high peak pressures are applied is much shorter than what is observed in clinical 

applications. Therefore, the occurrence of sensor saturation does not indicate the athlete will obtain a 

pressure related injury; however, it is of importance to monitor this over extended durations. Based on 

the aforementioned cell break down after sustained compression, it can be recommended that a 

duration dependent injury criterion is imposed in athletic practice to minimise the risk of injury. This 

should be established in line with athlete-specific peak pressure magnitudes. However, it is 

recommended that extended periods of sustained compression should be avoided. 

Currently, wheelchair design incorporates rigid materials at the seating interface to improve 

performance. However this study has demonstrated the necessity to implement cushioned interfaces 

to reduce the peak pressure present for injury prevention purposes. Further exploration is required to 

understand the implications of cushioned interfaces on the performance of both the pressure mat as a 

recording system and the athlete, as it is likely that low-density foams which are highly compressible 

may act as a damper, and thus reduce overall power transmission.  

 

5.2.5 CONCLUSION 

A commercially available pressure mat was capable of identifying between-athlete, and within-stroke 

variation in pressure distribution at the seating interface. Variation in pressure (peak and average) and 

contact area were identified between the propulsion and recovery phases during acceleration tasks for 

both wheelchair racing and wheelchair rugby athletes, as well as during agility tasks for wheelchair 

rugby athletes. This study demonstrated the importance of quantifying seating interactions for 

implementation in biomechanical modelling, as well as exposed that athletes, specifically wheelchair 

racing athletes, are at potentially unsafe levels of pressure at the seating interface.  
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5.3 EFFECT OF SEATING CUSHIONS ON PRESSURE DISTRIBUTION 

5.3.1 INTRODUCTION  

Seating cushions can be used by athletes to increase the contact area with their chair to increase stability 

and reduce peak pressures. They can be used to increase comfort at the seating interface, and can also 

be used to elevate the athlete to increase their purchase on the pushrim, and hence elongate the force 

delivery to the wheelchair during the propulsion phase, hopefully leading to improved performance.  

It is possible that a pressure mat beneath a custom-contoured cushion may not be able to record as 

accurately as on a flat, rigid surface. As the fundamental goal of this research is to understand the 

impact on customised seating interfaces on performance, the ability for a device to be capable of 

recording beneath a foam cushion is necessary. Placement of the pressure mat on top of the cushion 

may not always be plausible, as they may have a highly organic shape based on the anthropometry of 

the individual.  

This study aimed to address the appropriateness of the pressure mat in measuring racing athlete-

wheelchair interaction at the seating interface during propulsion and assess how this varies when 

seating cushions are used. It was hypothesised that the seating cushion would not prevent the ability 

of the pressure mat to record data at the seating interface. 

 

5.3.2 METHODS 

Athlete Selection 

Six athletes provided the population sample for this study (Athletes A – F), with a seating cushion used 

by Athlete B.  

 

5.3.3 RESULTS 

Substantial inter-individual variation in both average pressure and contact area was present between 

athletes (Figure 5.8). Variation in peak pressure measurements was not obtained due to sensor 

saturation. A reduction in peak pressure and larger contact area can be observed when a foam insert 

was used (Figure 5.8 C and F). Contact area varied from 0.2 m2 through 0.7 m2 (where laterally applied 

pressures were present), highlighting a between-athlete increase of 3.1 times was present. 
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Figure 5.8: Exemplar data of seating pressure across three athletes, obtained as a static measure before data collection. Dashed lines are 

representative of laterally applied pressures. 

 
A significant decrease in average pressure and significant increases in contact area (p < .01) occurred 

when seating cushions were used. The magnitude of differences is shown in Figure 5.9, for a single  

10 s trial. Foam cushions can effectively reduce peak pressure, such that they are below the threshold 

of sensor saturation. Average pressures were also more consistent (smaller variance) when foam 

cushions were used.  

 

 

Figure 5.9: Exemplar data from two athletes demonstrating the influence of foam cushions on average pressure, peak pressure and contact area.  

Data are presented as a mean of all athletes who use or do not use foam seating cushions. 
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Statistically significant differences were present between propulsion and recovery phases (no cushion 

and with cushion) as well as between the propulsion phase data and recovery phase data of the no 

cushion and with cushion conditions (Table 5.2).  

 

Table 5.2: Comparison of average pressure, peak pressure and contact area (mean ± SD) during the propulsion and recovery phase when a 

seating cushion was not, and was used. Data are presented as the average of all athletes.  

 No Cushion With Cushion 

 Propulsion Phase Recovery Phase Propulsion Phase Recovery Phase 

Average Pressure (kPa) 131.9 ± 11.8 98.3 ± 6.5 51.3 ± 3.2 43.9 ± 2.2 

Peak Pressure (kPa) 256.0 ± 0.0 254.3 ± 2.5 196.4 ± 18.7 157.4 ± 11.4 

Contact Area (m2) 0.3 ± 0.0 0.3 ±0.0 0.7 ± 0.0 0.7 ± 0.1 

 

 

5.3.4 DISCUSSION 

This study evaluated whether the recording capabilities of a pressure mat were impeded as a 

consequence of being beneath a foam cushion. Use of foam seating cushions did not interfere with the 

capability of the pressure map to record, suggesting that the use of a pressure mat as the 

instrumentation tool is valid for measuring the reaction forces at the seating interface, to ultimately 

analyse the effect of customised seating interfaces on athlete performance. 

Implementation of customised seating cushions effectively increases the contact area of athletes, while 

minimising both average pressure and peak pressure. Aside from the benefits of decreased likelihood 

of injury, increasing contact area may improve the athlete–wheelchair interface. By having a more stable 

base of motion, athletes are more likely to be able to more consistently contact the wheel symmetrically, 

and over an optimal push range. Furthermore, these interfaces may promote consistency at the seating 

interfaces of wheelchair athletes, which may benefit athletes who have a more significant physical 

impairment and greater muscle atrophy in the lower extremities. 

Assessment of the use of pressure mapping technology in a performance capacity is still required, to 

determine the impact of these reductions in pressure. It can be observed in Figure 5.8 A that athletes 

sometimes push outwards on the seat. A seating cushion may not be able to cover these surfaces to 

lower the loading in these regions, however, if athletes have a larger contact area under their legs, they 

may be less inclined to push outwards, but instead, direct their momentum forwards.  
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5.3.5 CONCLUSION 

Cushions at the seating interface effectively increase the total contact area of an athlete, which can 

hence be correlated with lower peak pressures. As these do not impede regular athlete motion, 

implementation of seating cushions can be considered as a beneficial tool for the real-time assessment 

of athlete seating performance. Additionally, use of a cushion can decrease peak pressures, reducing 

the risk of obtaining pressure sore related injuries, and promote greater stability at the seating interface. 

Based on these results, it can be established that both pressure mapping technology, as well as 

customised cushions, would benefit wheelchair racing athletes, and that future research is warranted.  

 

5.4 CHANGES IN LEG PRESSURE DURING MODES OF RACING 

WHEELCHAIR PROPULSION 

5.4.1 INTRODUCTION 

The movement of the lower extremity during non-steady-state and non-linear propulsion has been 

demonstrated earlier in this chapter (Section 5.2). However, these findings only provided a simple 

comparison between steady-state and non-steady state or non-linear propulsion. Literature has 

established that laboratory conditions are unable to depict the physiological and biomechanical 

requirements of performance accurately.183 For example, neither roller-based ergometers nor treadmills 

can holistically replicate acceleration, due to the omission of air resistance, rolling friction and balance, 

or the fixed speed of the treadmill belt.119 Although literature already demonstrates how the upper 

extremity kinematics differ between conditions, to the author's knowledge, no literature currently exists 

which demonstrates how the interactions at the athlete-wheelchair interface differ between laboratory-

based and in-field testing. Consequently, it is possible that there exist differences in both steady-state 

and acceleration motions between a simulated laboratory environment and on-track conditions.  

This study aimed to assess the efficacy of the pressure mat as a measure of seating interface movement, 

under both training and simulated race conditions. It was hypothesised that the pressure profile would 

be similar between treadmill-based and track-based propulsion under steady-state conditions. It was 

also hypothesised that differences might be noted across acceleration techniques, based on an increased 

stimulus in reaching higher speeds. 
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5.4.2 METHODS 

Athlete Selection 

A single elite athlete (Athlete F; age: 24 years, international experience: 6 years, body mass: 54.2 kg) 

provided the sample population for this study.  

 

Experimental Propulsion Task 

The athlete completed four protocols of wheelchair propulsion; two at steady state (treadmill and track) 

and two accelerations (stationary start and 150 m acceleration). Steady-state propulsion was performed 

on both a treadmill and a track surface. Treadmill speed was determined based on preferred speed in 

regular training and was kept consistent with track speed. 

 

Statistical Analysis 

Three sets of 10 s trials were collected for each condition and averaged. Significant differences between 

propulsion tasks were characterised by performing a repeated measures One-Way ANOVA with 

Bonferroni Adjustments. Statistical analysis was performed using IBM SPSS Statistics 24 Software for 

Windows. 

 

5.4.3 RESULTS 

The transient progression of both average pressure (lower) and contact area (upper) is demonstrated 

in Figure 5.10. A minor cyclic variation occurred in the contact area for all modes of propulsion 

indicating propulsion and recovery phases. Acceleration on track surfaces demonstrated the lowest 

contact area. Although this motion appears to have the largest contact area in Figure 5.10, it can be 

suggested that pressure is applied in different directions with propulsion style. 
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Figure 5.10: Transient behaviour of average pressure and contact area for a single athlete (Athlete F) during steady state propulsion on a track and 

treadmill, acceleration on the track, and a starting motion. 

 

Similarities were observed for all pressure parameters during the recovery phase of all modes of 

propulsion. However the most forward point of contact was translated forwards for laboratory-based 

propulsion (Figure 5.11: Treadmill steady-state, start). More distinct differences were observed 

between the propulsion and recovery phases of acceleration based trials, where the pressure placed 

across the athlete’s entire leg increased substantially. Further assessment revealed these pressures were 

predominantly applied vertically downwards, with greater lateral pressures (greater peak pressure in left 

leg) under steady-state propulsion than was observed during acceleration.  

Between-conditions differences between the three key performance parameters are compared visually 

in Figure 5.11. Consistency in average pressure and contact area was demonstrated for steady-state 

motions, with substantially greater variation demonstrated for the acceleration trials.  
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Figure 5.11: Variation in pressure for a single timestamp across different modes of propulsion. Panels represent the different directions of 

pressure measured by the pressure mat. 

 

Increased forwards leg drive was associated with an increased contact area in both acceleration trials, 

with negligible applied knee force demonstrated in both of the steady state conditions. Despite athlete 

velocity being controlled across all condition, it is clear that these acceleration trials demonstrate a 

much more dynamic, and less controlled motion. This can be attributed to the greater bioenergetics 

requirements of acceleration. Steady-state propulsion on a treadmill demonstrated greater consistency 

than on track surfaces, with a systematic difference observed, suggesting that propulsion does differ 

between lab-based and track-based environments. No relationship was established between average 

pressure and contact area for acceleration and start motions (Figure 5.12). Data are presented as 

variability, whereby a value of 1 represents the minimum value to prevent the influence of different 

seating configuration from masking trends in the results. The greater spread of data is indicative of 

greater variability in technique.  
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Figure 5.12: Variability of average pressure and contact area during different modes of propulsion (track steady-state, track acceleration, start, 

treadmill steady-state), compared to the minimum value for a single athlete (Athlete F). 

 

Observed differences in pressure parameters across modes of propulsion were supported from the 

repeated measures One-Way ANOVA (Table 5.3). Significant differences at the α = 0.05 level were 

revealed between most conditions for measures of average pressure and contact area. Apart from track 

steady-state versus start, both average pressure and contact area demonstrated significant differences 

between all modes of propulsion. Similarities in the contact area for track steady-state versus start may 

be a consequence of taking the average of the cyclic data. 

 

Table 5.3: Differences in average pressure and contact area between modes of propulsion (track steady-state, track acceleration, start, and 

treadmill steady-state). 

 Average Pressure Contact Area 

Track Steady-State v Track Acceleration ** p < .010 ** p < .010 

Track Steady-State v Start ** p < .010 p = .14 

Track Steady-State v Treadmill Steady-State ** p < .010 ** p < .010 

Track Acceleration v Start ** p < .010 ** p < .010 

Track Acceleration v Treadmill Steady-State ** p < .010 ** p < .010 

Start v Treadmill Steady-State ** p < .010 ** p < .010 
** indicates statistical significance at the p < .01 level. 
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5.4.4 DISCUSSION 

This study evaluated the practical significance of the use of a pressure mat in an applied setting to 

understand the similarities in the interactions between the athlete-wheelchair at the seating interface 

across laboratory-based and in-field testing. The pressure mat was a useful tool in monitoring athlete-

wheelchair interactions, with potential performance gains obtained through insights of where and the 

direction forces are being applied. For example, low contact area may be due to the athlete applying 

too much of a vertical component of force at the pushrim, which may contribute more towards athlete 

elevation than forwards movement. The consistency in leg drive data obtained from the pressure mat 

under both steady state conditions suggests the treadmill does not simulate non-steady-state conditions 

completely.  

Due to the relative importance of measuring the athlete-wheelchair interaction for this research, other 

testing protocols need consideration for the assessment of customised seating interfaces. Treadmills 

are limited by their controlled speeds, which prevent the acceleration phase of wheelchair propulsion 

motion. As the kinematics of multiple successive trials are required for use within the computational 

model, testing is restricted to laboratory environments. At the time of data collection, outdoor motion 

capture systems were not available. As such, despite the biomechanical and physiological dissimilarities 

identified by Mason et al.,183 an ergometer based protocol will be used in ensuing testing protocols to 

assess the influence of the customised seating interface better. 

Generally, average pressure and contact area were inversely proportional, however, under track 

acceleration conditions, these were directly proportional, and suggesting increased force application 

from the leg. The qualitative assessment revealed that increased contact area was applied predominantly 

in the lateral and normal (downwards) directions of the functional leg. This suggests that although the 

leg is increasing its contribution, this contribution is not currently being directed optimally. As all 

athletes are unique in both functionality and anthropometry, it can be assumed that this level of 

contribution will vary significantly between athletes, concerning both magnitudes and applied 

directions. 

The minimal variation in contact area under steady-state trials may be indicative that at the applied 

propulsion speed, the athlete is not at maximum exertion, suggesting the pressure mat may assist in 

quantifying effort to refine athlete development strategies. Furthermore, the observed similarities 

between steady-state conditions on both the track and treadmill surfaces suggest the adequacy of 

treadmill-based training under steady-state conditions only. Use of a treadmill can be seen to be 

inadequate at replicating all required kinematics of acceleration. 
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5.4.5 CONCLUSION 

The efficacy of pressure maps in quantifying leg pressure was assessed on varying track surfaces and 

tasks. Although limited by recording frequency and sensor saturation, the pressure map was a suitable 

method of quantifying leg contribution to acceleration, and easily applied to in-field measurements. 

When function is present, athletes use their legs during the acceleration phase of propulsion. The level 

and direction of this applied pressure, and hence force is variable between different modes of 

propulsion, and hence should be assessed under performance conditions. 

 

5.5 DISCUSSION 

This chapter investigated the effectiveness of a pressure mat in monitoring seating interface, and how 

these interactions change between athletes, and across different terrains. The pliable surface of the 

pressure mat allowed ease of application across a number (n = 6) of differently shaped seating 

interfaces. Collected data revealed that as the literature suggests, interactions at the seating interface 

can benefit performance.  

It is plausible that variation in centre of mass location across the seating interface may be related to the 

altered kinematics resulting from both spatial and temporal propulsion asymmetries. Use of a pressure 

mat may provide a more practically viable solution for kinematic measurement than motion capture, 

with potential for in-field measurements. Practical limitations of this pressure mapping technology, 

however, include the limited Bluetooth transmission range (10 m), and the reduced coefficient of 

friction of the pressure mat surface, than that present for normal seating conditions. However, athlete 

feedback suggested that the pressure mat would not be an encumbrance during regular training. 

This chapter confirmed that athletes could move relative to the seat (based on the changes in contact 

area). Further research into quantifying the performance impact of this is required, as such movement 

of the athlete relative to their wheelchair may be undesirable, with applied energy not completely 

translating to forwards propulsion. This, however, may assist some athletes in generating a rhythmical 

movement, or act as a source of leverage for greater range of motion or applied power. It is considered 

that optimal stiffness at the seating interface may be motion dependent, with linear tasks favouring a 

stable base, while it may be advantageous for movement at the seat to be present for agility motions.  

While the system utilised in this research adequately demonstrated movement present at the seating 

interface, restrictions in data analysis were evident due to the recording frequency and maximum 

pressure of the system. Wheelchair propulsion is approximately a 2 Hz motion, with literature reporting 

steady state push durations of 0.45 s.116 Of this, the propulsion phase occurs for 0.21 s,116 meaning that 
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at least one data point can reliably detect each of the propulsion and recovery phases. Other systems 

have recording frequencies up to 20 kHz, and pressure ranges up to 207 MPa (I-Scan VersaTek system: 

Tekscan Inc., Boston, MA),277 facilitating the quantification of the transient nature of propulsion 

between the propulsion and recovery phases. These systems were not available for this research, 

however. As limited processing capabilities were inherent with the system used, the effects of sensor 

saturation impacted the calculation of average pressure and the variation in peak pressure. Although 

obtaining the actual peak values would be relevant, as sensor saturation is approximately the same as 

the limits of tissue viability, the presence of any saturation is indicative of injury risk. Although outside 

the capabilities of the pressure mat utilised in this research, future research may benefit from 

fragmenting the seating area into sub-sections, such as the left and right sides to better measure athlete 

symmetry, or understand the direction of pressure application and centre of pressure location. 

Ultimately, the limitations of the pressure mat used did not hinder this research, as the efficacy of 

pressure mapping technology, and the dynamic response of the lower extremity during propulsion was 

still identified.  

Although the inclusion of cushioned interfaces may benefit athletes through a reduced risk of injury, 

it is uncertain whether these cushioning tools may be detrimental to performance. For example, the 

compressibility of a cushion may absorb applied energy from the lower extremity during propulsion 

and hence reduce the rate of force transfer to the chair. Similarly, if the seat is compressing, and hence 

moving underneath the athlete, it is possible that inclusion of these devices may effectively reduce the 

level of stability an athlete has at the seating interface. Further research is required to understand the 

performance impact of customised seating interfaces, and how performance varies with cushion 

manufacture. 

 

5.6 IMPLICATIONS AND CONCLUSIONS 

This series of studies were the first to demonstrate the propulsive advantage that can be achieved 

through the practical use of the seating interface (Section 5.2). It was shown that these interactions 

vary substantially across athletes, in line with physical impairment and functionality. Seating interfaces 

were demonstrated to be sport-specific, meaning the construction and optimisation of this interface 

must be performed on an athlete based approach. Seating cushions have been demonstrated to reduce 

the load acting at the seating interface, which is beneficial for the competitive longevity (Section 5.3). 

Treadmills were also demonstrated to not fully replicate the seated dynamics of overground propulsion 

(Section 5.4), suggesting that future evaluation of the performance impact of a seating cushion should 

be performed using an alternative methodology. 
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Key Findings: 

 A commercially available pressure mat was capable of measuring the reaction forces at the 

wheelchair seat, while not being an encumbrance to athletes.  

 Implementation of a foam insert at the seating interface did not impede the recording capability 

of a pressure mat.  

 The assumption of constant mass at the seating interface is only valid under linear, steady-state 

propulsion, with athletes possibly able to gain a mechanical advantage from the dynamic 

interactions at the seating interface during acceleration or non-linear movements. 

 The inclusion of a foam insert at the seating interface altered athlete-wheelchair interaction, 

through a reduction in seating pressure (average and peak), and an increase in contact area.  

 Treadmill based propulsion does not entirely represent the dynamic interactions at the seating 

interface compared to on-track performance. 

 

Implications: 

 Biomechanical analysis incorporating a pressure mat can provide insight as to how to optimise 

the seating interface to provide a stable support for the most powerful and efficient technique. 

 Wheelchair racing athletes require cushioning at the seating interface based on the high stresses 

applied, to reduce the chance of obtaining a pressure sore injury.  

 Use of a seating interface may promote greater stability at the wheelchair-athlete seating 

interface due to the enhanced contact area.  

 Pressure mat technology can measure whether athletes are utilising their lower extremity.  

 When analysing the performance of the seating interface, the analysis should not be performed 

using the treadmill. 
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CHAPTER SIX:  

DEVELOPMENT OF A 
SUBJECT-SPECIFIC, 3D 
MUSCULOSKELETAL 
MODEL 
 

 

 

 

 

Gross performance of wheelchair racing can be analysed merely through a time metric (which can be 

adjusted to take into consideration air density and wind conditions). However, this only measures 

performance outcome and not how it was achieved. Alternatively, computational biomechanical 

simulations can analyse performance more holistically through estimating the intersegmental joint 

loads and muscular contributions (activations, coordination and forces) of movement,129, 153 including 

when functional asymmetries are present.278 Modelling error results from the poor estimation of 

physical parameters,107, 158 specifically when they differ from the norm as a result of age, size or physical 

deformation.124, 130  
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This chapter addresses the second aim of this research in developing a subject-specific musculoskeletal 

model of wheelchair racing athletes. The sensitivity of the simulation protocol to the anthropometric 

adaptations associated with impairment and whether the use of subject-specific parameters derived 

from the analysis of DXA scans improves reliability was explored. Three experimental studies were 

performed. The first investigated the sensitivity of the simulation to the processing of DXA scans. 

Body mass distribution of elite wheelchair racing athletes was compared to other populations 

(including those which musculoskeletal models are currently derived from) to see whether subject-

specific parameters were required, or whether generic inertial parameters would suffice. Finally, 

another sensitivity analysis was performed to understand how to modify maximum isometric force 

generating capacity in the musculoskeletal model of wheelchair athletes, and whether this could be 

estimated using data obtained from the analysis of DXA scans. These three studies and their research 

questions are summarised following, with their relation to the main aim of this research demonstrated 

in Figure 6.1.  

 

The effect of altering intensity thresholds in DXA scans for the calculation of body 

segment inertial parameters (Section 6.2) 

Research Question:  

 How sensitive are segment mass estimates (derived from DXA scans) to the processing 

methodology used? 

 

Mass distribution of wheelchair athletes assessed using DXA scans (Section 6.3) 

Research Question: 

 Is the body mass distribution of wheelchair racing athletes significantly different from an 

able-bodied population? 

 What magnitude of errors will be present if a simulation uses body segment inertial 

parameters from an able-bodied distribution, and is it appropriate to make 

simplifications? 
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A strategy for estimating maximum isometric force-generating capacity of wheelchair 

racing athletes. (Section 6.4) 

Research Questions: 

 Does the maximum isometric force-generating capacity of a model need to be altered to 

reflect the muscular hypertrophy following athletic training? 

 

 

  

Figure 6.1: Relevance of the Chapter 6 (Development of a subject-specific, 3D musculoskeletal model) to the fundamental research question; 

what is the performance impact of customised seating interfaces on wheelchair racing propulsion? 
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6.1 PROCESSING OF DXA SCANS FOR THE CALCULATION OF BODY 

SEGMENT INERTIAL PARAMETERS 

Athlete Selection 

DXA scan data were obtained for five internationally ranked Australian wheelchair athletes (Table 6.1) 

competing in wheelchair racing (n = 3, Athletes I, L and M) and triathlon (n = 2, Athletes E and K) 

from a prospectively maintained database at the Australian Institute of Sport (Canberra, ACT, 

Australia). The population for this study was a convenience sample, based on what data was available 

at the time of testing. The mass of Athlete E and I varies in section 6.3 compared with the remainder 

of the thesis, in line with the collection of DXA scans and kinematic data collection at different times. 

Additionally, values presented in Table 6.1 are representative of system mass (athlete + wheelchair), 

while DXA data is purely athlete mass. 

 

Table 6.1: Relevant athlete characteristics. Further elaboration can be found in Table 3.1. 

 Gender Mass (kg) Impairment 

Athlete E F 52.9 Spinal Cord Injury (acquired) 

Athlete I F 48.0 Paraplegia 

Athlete K M 72.3 Incomplete Paraplegia 

Athlete L M 56.2 Spina Bifida 

Athlete M M 62.0 Paraplegia 

 

Measurement System 

DXA scan data were previously obtained using contemporary methodologies,279 with ethical approval 

obtained from the Australian Institute of Sport. All scans were taken since 2015, using the same 

densitometer. The physical collection of the DXA scans did not form part of this research. DXA scan 

data were exported into the raw DICOM format using enCORE version 16 software (GE, Medical 

Systems Ultrasound and Primary Care Diagnostics, USA). Limb segments were manually delineated 

using the low attenuation image (with more clearly defined anatomical landmarks) using custom code 

developed in MATLAB. A standard fourteen segment configuration was defined 280-285 which included: 

Head and Neck; Torso; Upper Arm; Forearm; Hand; Thigh; Shank; and, Foot for both the left and 

right limbs (Figure 6.2). Segment boundaries identified during the delineation process were transferred 

to the high intensity (soft tissue) image, for the calculation of segment masses.  

The intensity of a pixel and the density of the region represented by the pixel were related using linear 

regression. The mass of each pixel was calibrated using coefficients of attenuation, which were 
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explicitly derived for each athlete. Segment masses were calculated through summating all segment 

intensities within a specified limb segment boundary and scaled with an areal density calibration factor 

to determine specific segment masses. This method was validated by comparing total body mass  

(as a sum of all pixel elements for the fourteen segments for the five athletes) with measured total body 

mass (calibrated scale measurement) based on the methods presented by Rossi et al. 284 

 

 

Figure 6.2: Example of DXA scan images delineated into the fourteen segments used in this research. A) provides an example of a high 

attenuation image which is inclusive of soft tissue mass. B) provides an example of the low attenuation image which shows the skeletal structure.  

 
All fourteen appendicular segments for each athlete scan were analysed by the same investigator over 

five separate days (with at least 24 hours between analyses) and re-analysed by four independent 

investigators following the initial analysis. This was performed to ensure consistency in the assessment 

of body segment masses using DXA scans. All investigators were required to follow the delineation 

protocol of Rossi et al. 284 to ensure consistency across investigators. Reliability of segment masses 

obtained from the same rater and independent raters was assessed through the use of ICCs and 

coefficients of variation (CV), which were calculated using statistical analysis software (IBM SPSS 

Statistics 24 Software for Windows). The strength of reliability for the ICC coefficients was classified 

by Hopkins 258 (R ≥ 0.3: moderate; R ≥ 0.5: strong; R ≥ 0.7: very strong; R ≥ 0.9: nearly perfect; 

and R = 1.0 is perfect).  

A B 
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Some athletes were unable to maintain the standard anatomical position recommended for a DXA 

scan,279 meaning their limbs were overlapping in the DXA scan. A limitation of the use of pre-existing 

scans meant that under such circumstances the overlapping limbs were excluded from the analysis, and 

mass could not be estimated for these segments. Bilateral symmetry was assumed for affected limbs 

only to provide an estimate of total body mass to facilitate the verification of the segmentation 

processes. The asymmetry between masses of left and right limbs (𝑚𝐿 and 𝑚𝑅, respectively) was 

quantified using the asymmetry index (AI) presented by Bell et al. 286  

AI: 100% × 2(𝑚𝑅 − 𝑚𝐿)/(𝑚𝑅 + 𝑚𝐿)                             Equation 6.1 

 

Musculoskeletal Model 

The Upper Extremity Dynamic Model287 was used to calculate the muscle forces required for 

wheelchair propulsion using OpenSim software.133 This model was designed to represent the 

anthropometry and muscle force-generating characteristics of a 50th percentile adult male. The model 

and marker placements can be observed in Figure 6.3. In the generic model, bone length data and 

inertial parameters were obtained from anatomical studies presented in the literature, including cadaver 

specimen, while peak isometric force was determined from published muscle volume and isometric 

joint strength data from healthy young adults. 

 

 

Figure 6.3: Musculoskeletal model used in research, highlighting the muscles modelled and marker placements used to actuate the model. 

 

FRONT REAR 
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Output joint torques included: 

 thorax (tilt; list (increase/decrease trunk relative to horizontal); rotation); 

 sterno-clavicular (rotation; elevation; protraction); 

 acromio-clavicular (flexion; rotation; abduction); 

 glenohumeral (rotation, elevation, plane (adduction/abduction)); 

 humero-ulnar (flexion/extension); and, 

 radio-ulnar (pronation/supination).  

 

An additional three reaction forces were reported: 

 thorax (mediolateral (FX); anteroposterior (FY); elevation/depression (FZ)) 

 

Generalised forces at the joint are calculated as follows: 

∑ [(𝑎𝑚𝑓(𝐹𝑚
0 , 𝑙𝑚, 𝑣𝑚))] 𝑟𝑚𝑗 =  𝜏𝑗

𝑛

𝑚=1
                     Equation 6.2 

    

Where  𝑛 is the number of muscles in the model,   

𝑎𝑚 is the activation of the muscle (value between 0 and 1), 

𝐹𝑚
0 is the maximum isometric force generating capacity,  

𝑙𝑚 is muscle length, 𝑣𝑚 is the shortening velocity of the muscle,  

𝑟𝑚𝑗 is the muscle moment arm about the 𝑗th joint axis, and  

𝜏𝑗 is the generalised force acting about the jth joint axis.  

 

This was used to solve a minimum stress cost function (Equation 6.3) which calculated the muscle 

forces during propulsion.   

𝐽 = ∑ (𝑎𝑚)𝑝𝑛
𝑚=1                     Equation 6.3 
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In this study, p was set at 2. The solver is constrained by force-length-velocity properties of the muscles, 

which are all defined during the development of the musculoskeletal model. The muscle forces required 

to reproduce measured kinetics and kinematics using the default cost function in OpenSim, which 

minimises the sum of activations squared.133 Despite relative insensitivity for the user-defined constant 

p for values higher than 2,288 discrepancies may have been introduced by incorrect objective function 

selection. For example, research by Laschowski et al. 289 has suggested that for wheelchair motion, 

minimising angular joint accelerations is the most effective. However, these capabilities are not 

available within the OpenSim environment, with only the single cost-function available for use. 

From Equation 6.2 and Equation 6.3, as the maximum isometric force-generating capacity of the 

muscles spanning the joint increases, the activation of each of the muscles is decreased. This alters the 

relative contribution of the muscle in the overall cost function J. Therefore, the calculation of individual 

muscle forces can be sensitive to the maximum isometric force generating capacity. 

Total muscle force was obtained by summing the forces of the muscle elements within the model used. 

Forces were expressed as absolute values, as well as the percentage of the maximum defined in the 

generic model to highlight the influence of the maximum force generating capacity parameter. 

It is acknowledged that the Upper Extremity Dynamic Model is a single limb (right) model, and hence 

unable to measure the asymmetries which may be present. As no pathological conditions (or physical 

impairment) were present in the upper extremity of the analysed athletes, it can be assumed that these 

asymmetries would be minor. Thus it can be concluded that this approach will introduce fewer 

uncertainties than through the development of a custom, full body musculoskeletal model. Hence, the 

use of a pre-verified musculoskeletal model of a single limb is justified, and representative for 

concluding from this work. 

Adaptations were made to this model to reflect the subject-specific inertial and anthropometric 

parameters. Subject-specific segment masses were obtained from the analysis of DXA scans, in a 

similar procedure to what is reported in the literature.282-284 Moments of inertia were scaled to match 

the subject-specific segment masses. Segment dimensions were obtained through marker based scaling 

approaches, following best practice guidelines. Although skeletal ratios can be precisely measured from 

DXA data, it has been shown that each pixel within an image has a precision of 1.3cm.290 Bone lengths 

were not measured through DXA data, due to the probable introduction of random errors, with 

concerns specifically regarding the location of joint centres which are established based on marker 

placement. 
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In the standard OpenSim methodology, fictitious sets of actuators (reserve actuators) are introduced 

into the simulation to accommodate for the dynamic inconsistencies between kinematic and kinetic 

data. The reserve actuators intend to supplement the forces which the muscle actuators cannot resolve 

alone.291 Within the computational framework, if a muscle actuator (muscle forces spanning a joint) 

cannot produce the force required for motion, reserve actuators are recruited. Reserve actuators were 

applied for each degree of freedom within the model with each optimal force value set at 200 N. The 

value of optimal force chosen in this study was established by performing a sensitivity analysis on the 

influence of the optimal force value on outputs (using values of 10 N, 50 N, 75 N, 100 N, 150 N,  

200 N and 1000 N). Details of this study can be found in Appendix C.1. 

The musculoskeletal model utilised within this research was designed to represent the 50th percentile 

male. However, this model was being used for both male and female athletes. Only the Thoracolumbar 

Spine Model292 in OpenSim software contains both a male and female model. Both of these are 

representative of the 50th percentile. For the female model, limb segment sizes are scaled down from 

the male equivalent, with updated body mass distribution and centre of position. Although a female 

model was not used in this research, subject-specific inertial parameters and marker-based scaling were 

used to minimise the impact of these errors. Although some dissimilarities may still result, it was outside 

the scope of this research to validate a female musculoskeletal model.  

 

Experimental Propulsion Task 

After familiarisation with the experimental setup, subjects propelled their own racing wheelchair on a 

treadmill at self-directed speeds (Athlete I: 26 km/hr, 27 km/hr, 28 km/hr, Athlete E: 22 km/hr, 23 

km/hr, 24 km/hr), which were reflective of typical race speeds. Athletes performed conventional 

propulsion for one minute at the targeted speeds, with three periods of 10s data capture collected at 

steady state (Section 4.2). Kinematic data were only collected for two of the athletes, as they were the 

only participants who integrate treadmill-based propulsion into regular training. Kinematics were not 

modelled using the inertial parameters obtained from the remaining three athletes to ensure 

biomechanical integrity and relevance of modelling results. 

 

Data Processing 

As no practically viable and validated method for the collection of reaction forces at the pushrim is 

currently available for use in wheelchair racing (as emphasised in Chapter Two:), external loads at the 

hands were estimated. It was established in Chapter Five that the IMU provided a beneficial tool for 
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the estimation of applied kinetics in the forwards direction, however out of plane forces were less 

reliable. An alternative approach is the estimation of reaction forces through kinematic data. This 

methodology is restricted to laboratory-based testing only, however, places no impediment on athlete 

motion, and makes use of pre-existing data. Additionally, this method has demonstrated a reliability of 

6% for vertical force, 10% for anterior force and 13% for sagittal moment during gait.293 

As joint reaction forces are all equal and opposite, the sum of external (joint reaction) moments can 

be derived by taking the sum of translational acceleration vector of each segments mass centre (�̈�), 

multiplied by its mass (𝑚), as presented in Ren et al. 293 The translational acceleration vector of each 

limb segment was obtained through Inverse Kinematics analysis. It was assumed that the left and right 

sides of the trunk contributed equally to propulsion, meaning half of the total head and torso mass 

estimated from DXA was incorporated into the external load calculations. Therefore, the external loads 

on the hands were estimated as follows, assuming a standard value of gravity (g = 9.81 m/s2):  

 

∑ 𝐹𝑒𝑥𝑡 = (
1

2
𝑚𝐻𝑒𝑎𝑑 & 𝑁𝑒𝑐𝑘,𝑇𝑜𝑟𝑠𝑜(�̈�𝐻𝑒𝑎𝑑 & 𝑁𝑒𝑐𝑘,𝑇𝑜𝑟𝑠𝑜 − 𝑔)) + 𝑚𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚(�̈�𝑈𝑝𝑝𝑒𝑟 𝐴𝑟𝑚 − 𝑔) +

𝑚𝐹𝑜𝑟𝑒𝑎𝑟𝑚(�̈�𝐹𝑜𝑟𝑒𝑎𝑟𝑚 − 𝑔) + 𝑚𝐻𝑎𝑛𝑑(�̈�𝐻𝑎𝑛𝑑 − 𝑔)                 Equation 6.4 

 

Output joint torques were normalised against results from the baseline (generic model). As data were 

cyclic, an RMS value was taken of each output joint torque. 

 

6.2 THE EFFECT OF ALTERING INTENSITY THRESHOLDS IN DXA 

SCANS ON THE CALCULATIONS OF BODY SEGMENT MASSES 

6.2.1 INTRODUCTION  

The analysis of DXA scans provides a practically effective and reliable estimation of body segment 

masses (Section 2.3). A DXA scan generates a black and white image of the human musculoskeletal 

system. The whiteness of each pixel within a scan, or its intensity, has a value between 0 (black) and 

255 (white: Figure 6.4A). A histogram demonstrating the distribution of all intensities within an image 

accompanies each DXA scan (Figure 6.4B). DXA software typically uses thresholding to optimise the 

dynamic range of the intensity distribution. However, the dynamic range thresholds can be manually 

adjusted prior to the analysis of a scan (Figure 6.4C). 
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Figure 6.4: A) Example of a DXA scan, B) the histogram with default thresholds and C) the thresholds extended to maximum. 

 

Software to collect DXA data typically uses thresholding to maximise the dynamic range of the images 

collected. The threshold values used cannot be fixed constant, due to variations in radiofrequency field 

inhomogeneity, receiver coil sensitivity profile, main magnetic field inhomogeneity, or imperfect 

properties of the pulse sequences.294 To the author’s best knowledge, no documentation currently 

exists for a standardised protocol regarding gold standard bounds to ensure the best accuracy. By 

altering the intensity thresholds of an image, greater emphasis is placed on either the higher (bone) or 

lower (soft tissue) frequency musculoskeletal elements, potentially altering the total mass distribution. 

Greater dynamic ranges may compromise the distinction between pixels due to the fixed intensity 

range (0-255). This may result in errors, as the impaired ability to differentiate between soft tissue and 

bone, for example, will affect mass calculations. This can be visually observed in Figure 6.5. It can be 

seen that the when only the lower bound is minimised, the whiteness of the distribution is maintained 

(Figure 6.5A), however, loses the intensity of the lower end (i.e. black). When all bounds are maximised 

(Figure 6.5C), the distribution of intensity is lost. 

 

 

Figure 6.5: Comparison of the distribution of pixels across the majority of DXA scan data. 
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This research aimed to understand the sensitivity of mass segment calculations obtained using DXA 

scans with varying intensity thresholds to understand the associated impact of this variation on 

computational simulations. It was hypothesised that the differences in segment mass values between 

threshold protocols would significantly impact the accuracy of computational simulation outputs. 

 

6.2.2 METHODS 

Data Processing  

Each athlete’s DXA scan was analysed three times, with each one undergoing a different intensity 

threshold protocol (Figure 6.6). Segment boundaries remained consistent for each of the three analyses 

of each athlete when intensity thresholds were manipulated. The three intensity threshold protocols 

can be defined as; the software default (original), minimising the lower threshold value while retaining 

the software default upper threshold value (standard), and minimising the lower threshold value while 

maximising the threshold value, and hence including all intensities within an image (maximum). Images 

were segmented into limb segments using the approach outlined in Section 6.1. 

 

 

Figure 6.6: Threshold protocols for the high attenuation (soft tissue: top) and low attenuation (bone: bottom). 
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6.2.3 RESULTS 

Differences between the raw DXA scan, and with adjusted threshold protocols are presented 

qualitatively in Figure 6.7. There is an evident increase in the presence of soft tissue when the standard 

and maximum approaches, as compared to the original (default) analysis. Similarly, the contrast and 

whiteness of bones are visibly reduced in the maximum approach. Similar trends were observed in the 

comparison of soft tissue scans but to a lesser extent. 

 

 

 

Figure 6.7: Comparison of DXA scan data due to different threshold intensities. 

 

Qualitatively, it is clear that the maximum approach has a more significant impact on the estimation of 

body segment mass parameters (for a single athlete, Athlete M). Differences of 0.21 % total body mass 

were observed across all limb segments using the standard approach (Figure 6.8). However, differences 

of up to 5.57 % total body mass were observed in the torso estimation for Athlete M when using the 

maximum approach. Although segment masses of the extremities were overestimated, they were 

unable to balance the substantial underestimation of the trunk, resulting in a net underestimation from 

the use of the maximum approach (99.6% total body mass). Put simply, altering thresholds artificially 

altered the distribution of soft tissue and bone within the body.  

Trends observed for Athlete M (as presented in Figure 6.8) were consistent across the remaining 

athletes, with trunk mass consistently underestimated when using the maximum approach (91.9 ±  

0.0 % total body mass, ranging between 89.9% through 93.4 % of the original value). Body mass 

distribution ranged between 99.9% through 100.3% of total body mass when analysed using the 

standard thresholding protocol (Figure 6.9), while the maximum approach consistently underestimated 

total body mass (97.1% through 99.6%). However, bony segments (hands and feet) were significantly 

impacted segments, being up to 157.1% and 147.0 % greater, respectively than the values obtained 

using the standard approach. Absolute differences for all athletes are quantified in Table 6.2. 

STANDARD ORIGINAL MAXIMUM 
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Figure 6.8 Differences in mass segments based on alterations in intensity. 

 

 

Figure 6.9: Comparison of body mass distribution based on threshold intensity protocol.  

 

Table 6.2: Changes in segment mass based on intensity threshold protocol. 

 Standard Δ  

(% Segment Mass) 

Maximum Δ  

(% Segment Mass) 

Head and Neck -0.1 ± 0.4 -4.6 ± 6.3 

Torso 0.4 ± 0.4 -8.2 ± 1.4 

Left Upper Arm -0.4 ± 0.4 1.7 ± 2.3 

Right Upper Arm -0.4 ± 0.4 1.5 ± 2.9 

Left Forearm -0.8 ± 0.3 22.3 ± 5.8 

Right Forearm -0.6 ± 0.3 22.2 ± 4.4 

Left Hand -0.8 ± 0.6 34.9 ± 13.7 

Right Hand -0.7 ± 0.3 29.9 ± 12.7 

Left Thigh -0.4 ± 0.2 4.2 ± 6.2 

Right Thigh -0.6 ± 0.2 8.2 ± 10.3 

Left Shank -0.3 ± 0.1 23.5 ± 11.2 

Right Shank -0.3 ± 0.4 28.2 ± 15.8 

Left Foot -0.8 ± 0.6 28.7 ± 12.6 

Right Foot -0.8 ± 0.6 24.6 ± 16.3 
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An example of a propulsion cycle can be seen in Figure 6.10. Estimated joint output torques are highly 

sensitive to the analysis approach of DXA scans (Figure 6.11). Agreement between the standard and 

original approaches was 99.2 ± 0.08% (as calculated by Standard/Original) × 100 % (Equation 6.5) 

for Athlete E, and 95.2 ± 0.2% for Athlete I. The reductions for Athlete I are the direct result of two 

outputs (sternoclavicular elevation and glenohumeral flexion). However much lower agreement  

(3.6 ± 4.5%) can be observed for all joint reaction moment estimates when using the maximum 

approach. Figure 6.11 also demonstrates the higher range in estimated joint reaction moments using 

the maximum protocol, as compared with the standard and original protocols. This demonstrates that 

through the poor estimation of input parameters, there is a change in system dynamics, and hence 

there is a noticeable impact of the thresholding intensity in biomechanical modelling.  

 

Figure 6.10: Propulsion cycle modelled in OpenSim using the upper extremity dynamic model. Pink dots represent markers. 

 

 

Figure 6.11: Influence of segment mass definition on inverse dynamics results (joint reaction torques). 
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6.2.4 DISCUSSION 

The processing of DXA scans is subject to a user-defined intensity threshold. In this study, the 

reliability of the processing of the DXA scans (based on the definition of threshold intensity) was 

established. Evident between-method variability was observed for the estimation of body segment 

mass parameters, which was found to influence system dynamics and the output joint reaction 

moments dramatically. 

While the standard method estimated limb masses consistently with the original approach, it 

underestimated the trunk segment and correspondingly total body mass. This error may have been a 

result of poor differentiation between different intensities as a consequence of including too broad a 

range of intensities within the image. This error was however very minor and had a negligible impact 

on the joint reaction estimates in this research. Interestingly, the standard method had opposite results 

to the maximum method, whereby total body mass was calculated the same as the original approach, 

however substantial variation was demonstrated in the magnitude of each limb. These differences can 

be assumed as a consequence of the artificially applied high pass threshold from the standard and 

maximum approaches, which overestimates bony tissue presence, such as the hand which can be seen 

to differ by approximately 60% (right hand in Figure 6.8). Generally, the denser bony regions were 

overestimated while the soft tissue regions, predominantly in the trunk, were underestimated. It can 

be assumed that these differences would have a significant impact on the accuracy of computational 

simulations. Based on the highly dynamic motion of wheelchair racing propulsion, and hence the high 

centre of mass accelerations of the upper extremities, the hand segments are also the most susceptible 

to errors. 

Guidelines for defining the ideal threshold intensity were not present within the accompanying user 

manual of the DXA scans analysed. As such extreme cases were analysed in this study, recommended 

best practice cannot be identified. Further research to find the ideal values is recommended, with 

validation to be performed using phantom scans (scans of blocks with known mass and density). The 

remaining research in this thesis uses data obtained from the original thresholding approach. 

 

6.2.5 CONCLUSION 

This study demonstrated that the intensity threshold definition influences body segment mass 

calculations using DXA processes. While no standardised measure currently exists, it appears that the 

machine default (original) is most reliable and hence least likely to artificially introduce errors into 

computational simulations, which would be propagated throughout the analysis. 
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6.3 MASS DISTRIBUTION OF WHEELCHAIR ATHLETES ASSESSED 

USING DXA SCANS  

6.3.1 INTRODUCTION 

As a consequence of a physical impairment, such as spinal cord injury, individuals who use wheelchairs 

demonstrate anthropometric variation to able-bodied counterparts. Such variations are exemplified 

through a substantial increase in muscle atrophy30, 295, 296 reduced bone mineral content,30, 295 and 

increased presence of adipose tissue.30 As a result, musculoskeletal geometries and soft tissue 

composition are dissimilar in the affected limbs of those with spinal cord injuries as compared to their 

able-bodied counterparts. These dissimilarities, however, are not necessarily observed in unaffected 

limbs above the level of spinal cord lesion. Additionally, an increased presence of skeletal tissue in the 

upper extremities may ensue as a consequence of the tissue adaption resulting from the loading during 

training and competition. It was seen in Section 6.2 that the definition of inertial parameters has an 

impact on the reliability of the simulation. 

This study aimed to first quantify the variation in body segment masses of elite wheelchair racing 

athletes with those from other populations (able-bodied and non-athletic, able-bodied and athletic, and 

physically impaired athletes). It was then aimed to understand whether variations from generic and 

individualised subject-specific models had a significant impact on the estimation of joint reaction 

moments. It was hypothesised that generic parameters would underestimate segment parameters in the 

upper extremity (due to muscle hypertrophy), while overestimate them in the lower extremity (due to 

muscle atrophy). As a consequence, it is anticipated that joint reaction moments at the shoulder would 

be significantly underestimated when generic body segment mass parameters are utilised.  

 

6.3.2 METHODS 

Data Processing 

Segmental masses were compared against three populations presented in the literature; commonly 

referenced anthropometric data of various able-bodied, non-athletic (Generic) populations,285, 297-305 

elite able-bodied athletes (Elite Swimmers),284 and a para-athlete population (Para Curlers).282, 283 

Generic data were comprised of a comprehensive, but non-exhaustive sample of body segment inertial 

parameters representing varying ages and ethnicities to develop a broad representation of an able-

bodied, and non-athletic population. For the generic model, the scaling of limb lengths was achieved 

(within OpenSim) through matching the distance between the locations of the virtual markers (which 

were defined on the musculoskeletal model) with the experimental markers. Mass scaling was either 
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done through the measured mass values (actual) or through the generic approach used by OpenSim 

(using the measured mass of the right arm). 

Output joint torques were normalised against results from simulations incorporating the generic scaling 

strategies employed for a mass-matched model. As data were cyclic, a root mean square (RMS) value 

was taken of each output joint torque.  

 

Statistical Analysis:  

Coefficients of variation (CV) less than 5% were considered highly reliable. RMS signal amplitudes of 

the output joint torques calculated in OpenSim were computed in MATLAB. To establish whether 

changes in output torques between the actual and generic inertial parameter input were significant, data 

were compared using an independent-samples Kruskal-Wallis test. The independent variable in this 

analysis was the RMS difference in joint reaction moments, with three levels corresponding to the limb 

segments. Additionally, relationships between the magnitude of the difference between output reaction 

torques, and actual and generic segment masses were determined using Spearman’s Correlation. 

 

6.3.3 RESULTS 

Nearly perfect intra- and inter-rater reliability of estimated masses were observed for all segments, and 

total body mass (RINTRA > .990 and RINTER > .990). Furthermore, very high reliability was demonstrated 

across all appendicular segments and total body mass (0.5% < CVINTRA < 3.1% and  

0.6% < CVINTER < 4.7%). Verification of limb segment masses (arms, right arm, left arm, legs, right 

leg, left leg, trunk and total body) were compared between the outputs of this research and the direct 

measurements from the DXA software. High agreement (98.6% ± 5.3%) was observed between the 

two sets of data for Athletes E, K, L, M and N. Athlete I data was not included in this comparison 

based on the different posture assumed when taking the scan. 

Clear variation in body mass distributions was observed across all five wheelchair racing athletes 

(Figure 6.12). Due to overlapping thigh and shank segments in the DXA scan of Athlete I, segment 

masses were not calculated, with total body mass calculated using measured body mass values and not 

the sum of all segment masses, as was done for Athletes L , M, E and K. Largest between-athlete 

variation was observed for the torso and thigh segments, and was approximately 10% total body mass 

for the torso (Athlete E: 46.5%, Athlete K: 56.7%) and 15% total body mass for the thigh (Athlete L: 

7.8%, Athlete E: 22.4%), respectively. These differences were supported with large CV values for each 
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of the segments; head: 20.5%, thorax: 13.6%, upper arm: 27.1%, forearm: 24.6%, hand: 23.7%,  

thigh: 39.3%, shank: 33.0%, and foot: 12.0%. Consistent measurements were observed (mean 

± standard deviation) for the following segments within the population sample: foot (1.1% ± 0.0%), 

shank (2.2% ± 0.1%), head and neck (2.2% ± 0.1%), hand (2.0% ± 0.1%), and forearm (5.1% ± 0.3%).  

 

 

Figure 6.12: Body mass distribution of all athletes. Thigh and shank segments of Athlete I were excluded from analysis due to the presence of 

overlapping limb segments.  

 

Notable asymmetries were present for some athletes, predominantly in the lower extremities (Figure 

6.13). Larger AI values included upper arm (Athlete I: 41.7%, 3.0 kg; Athlete L: 32.97%, 2.0 kg), thigh 

(Athlete L: 62.4%, 3.1 kg; Athlete M: 22.3%, 1.3 kg) and shank (Athlete L: 24.6%, 0.4 kg). 

 

 

Figure 6.13: Appendicular mass asymmetry indices calculated from DXA data. Positive values indicate right side bias, with larger magnitudes 

demonstrating larger asymmetry. 
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Considerable inter-population variation in mean body mass distribution (Figure 6.14) and intra-

population variability (Figure 6.15) was also observed. Greatest between-population variance was 

observed in mean thigh mass (Generic: 24% TBM, Elite Swimmers: 26%, Para Curlers: 17%, 

Wheelchair Racers: 15%) and torso mass (Generic: 47% TBM, Elite Swimmers: 48%, Para Curlers: 

53%, Wheelchair Racers: 52%), with upper arm measurements being twice as large for wheelchair 

racers, than the able-bodied, non-athletic population analysed (Generic: 6% TBM, Wheelchair Racers: 

11%). Maximum differences between methods for individual measurements of each segment ranged 

between 0.1% TBM (hand) and 13.7% TBM (torso). 

 

 

Figure 6.14: Population-based averages for body mass distribution. 

 

 

Figure 6.15: Segment masses as presented as a percentage of total body mass (mean of left and right data). Box plots demonstrate mean and range 

of population sample data, with outliers denoted by a “+”. 
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Significant differences were observed between all athletes for the estimated segment masses and those 

of the able-bodied, non-athletic population sample for the torso (p < .050), upper arm (p < .010), 

forearm (p < .010), thigh (p < .010), shank (p < .010), and foot (p < .010). Significant differences were 

also observed between segment masses of the wheelchair athletes within this study, and the elite 

swimming athletes for the head and neck (p < .010), torso (p < .010), upper arm (p < .010) and forearm 

(p < .010) and for the upper arm (p < .010), forearm (p < .050), and upper arm (p < .050) of the para 

curler athletes. 

As stated in Section 6.1, kinematic data was only available for two of the five athletes (Athlete E and 

I), and so the remainder of the results are presented only for these athletes. Use of generic total body 

distribution poorly matched the DXA obtained values, with segment masses ranging between 66.7% 

and 216.7% of the DXA obtained values. For the specific model used, it was observed that the greatest 

variation between scaling approaches (2.3% total body mass) was observed in the upper arm mass of 

Athlete E (Table 6.3). Output torques using generic scaling approaches overestimate the torques 

calculated using measured mass distributions (mean RMS variation Athlete I: 10.2% (100 – 

Actual/Generic*100%), Athlete E: 7.0% maximum RMS variation Athlete I: -36.3%, Athlete E: 31.5%, 

Figure 6.16). Athlete E demonstrated smaller variations between actual and generic parameter use, as 

would be expected based on the greater agreement between segment masses input to the model.  

 

Table 6.3: Differences in mass distribution of the computational model between scaling approaches (actual and generic). 

Segment 

Athlete E 

Actual  

(%) 

Athlete E 

Generic  

(%) 

Athlete E 

Difference 

(%) 

Athlete I 

Actual 

 (%) 

Athlete I 

Generic  

(%) 

Athlete I 

Difference 

(%) 

Clavicle 0.5 0.3 0.2 0.5 0.4 0.1 

Scapula 1.2 1.2 0 1.3 1.6 -0.3 

Humerus 4.4 3.5 0.9 6.9 4.6 2.3 

Ulna 1.3 1.9 -0.6 1.4 2.6 -1.2 

Radius 0.3 0.4 -0.1 0.3 0.5 -0.2 

Proximal 

Row 
< 0.1 < 0.1 0 < 0.1 < 0.1 0 

Hand 0.8 1 -0.2 0.6 1.3 -0.7 

 

The Kruskal-Wallis test revealed that the difference in output joint torques, as the percentage of the 

actual value was not significantly associated with limb segment (H (2) = 3.0, p = .223). A non-significant 

correlation was observed between the percentage difference in limb mass between the actual and 

generic scaled limb masses with the difference in output torques (r = -.343, p = .139). 
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Figure 6.16: Variation in joint reaction moments calculated using inverse dynamics, between athlete-specific and total body mass-matched scaled 

models. 

 

6.3.4 DISCUSSION 

Individual mass segment values were obtained from fourteen manually delineated segments using 

DXA scans of three elite wheelchair racing athletes and two international-level triathletes. The purpose 

of this study was to obtain and compare athlete-specific measurements with the generic input 

parameters currently used in wheelchair literature to ascertain measures of significance of these 

parameters in the quantitative analysis of wheelchair propulsion for elite athletes. This study addressed 

the second aim of the thesis, demonstrating methods capable of estimating subject-specific body 

segment parameters for input into a musculoskeletal model. Results also highlight the importance of 

the subject-specific modelling approach, and not relying on generic data. 

Use of generic mass distribution data in computational modelling was considered inadequate for two 

reasons; the substantial between-method variation (~10%, torso, Figure 6.15), and low relevance to 

the mass parameters of wheelchair racing athletes. This is in support of previous literature, which has 

questioned the generalisation of generic body segment inertial parameters, and the necessity of 

obtaining in-vivo, subject-specific parameters for biomechanical modelling.140-142 Differences between 

methods correlate to modelling error, highlighting that the current methods of employing generic body 

segment inertial parameters and scaling procedures are inadequate. As it was demonstrated that 
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differences in limb segment masses (measured and generic) do not directly correlate with differences 

in joint reaction moments, it can be suggested that errors in the definition of the model can change the 

system dynamics. This highlights the necessity of using subject-specific mass parameters for use in the 

analysis of wheelchair racing propulsion. Additionally, it can be suggested that the increased joint 

reaction moments at the shoulder for the generic scaled models may be a consequence of increased 

moment arms due to the mass being more distal from the joint. 

This is the first research to report body segment parameter data from a population of wheelchair racing 

athletes. As hypothesised, substantial differences in segment masses were observed for wheelchair 

racing athletes as compared with the general population (including cadaver-based data), elite able-

bodied athletes,284 and elite para-curler athletes282, 283 for the torso, upper arm, forearm, thigh, shank 

and foot segments. Greatest between-population variance was observed in mean thigh mass (Generic: 

24% total body mass, Elite Swimmers: 26%, Para Curlers: 17%, Wheelchair Racers: 15%) and torso 

mass (Generic: 47% total body mass, Elite Swimmers: 48%, Para Curlers: 53%, Wheelchair Racers: 

52%), with upper arm measurements being twice as large for wheelchair racers, than the able-bodied, 

non-athletic population analysed (Generic: 6% total body mass, Wheelchair Racers: 11%). Maximum 

differences between methods for individual measurements of each segment ranged between 0.1% total 

body mass (hand) and 13.7% total body mass (torso). Only the bony segments, such as the head and 

neck, demonstrated good agreement with the normalised mass segment values of commonly 

referenced anthropometric data of able-bodied data.285, 297-305 This can likely be explained due to the 

higher presence of skeletal tissues in these limbs, and consequently, are less sensitive to the 

musculoskeletal adaptations resulting from training or atrophy (due to impairment). These findings 

confirm that generic models are often unsuitable for use within physically impaired populations. The 

use of subject-specific parameters will allow for more accurate computational biomechanical analysis 

of sporting wheelchair propulsion. In turn, this can identify whether athletes can gain greater efficiency 

and power from specific techniques, while also reducing the risk of attaining an overuse injury. 

The magnitude of variation between the mass segments of Paralympic athletes and generic approaches 

is substantially lower than the most comparable literature of elite para curler athletes,282, 283 despite 

adopting consistent delineation protocols. These differences result from the use of different 

normalisation approaches, specifically the denominator used. In the aforementioned literature, the 

denominator is segment masses, while in this research, the denominator was total body mass. 

Normalising against relative segment masses demonstrates greater sensitivity to smaller limb segments 

which have been demonstrated to be influential in this research. However, normalisation against total 

body mass was preferred in this work as total mass was more efficiently and accurately validated. 

Additionally, as high reliability was identified for the estimation of segment masses (98.6% of total 
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body mass), it can be assumed that there will be minimal errors from the conversion of data from an 

absolute to a relative measure. 

Inconsistent boundary definitions of limb segments can overestimate between-method variations.143 

Substantial differences were still noted when comparing data from this study with data presented in 

the literature which used consistent boundary definitions. For example, thigh mass (as % total body 

mass) was 10.3 % in Clauser et al.,280 10.0% in Dempster 281, and 8.3% ± 3.4 in this research. Therefore, 

although minor discrepancies in boundary definition may exist, there are still clear between-population 

variations, which are highlighted in this research. These differences highlight the importance of using 

subject-specific parameters for accurate biomechanical modelling.  

The joint torques estimated in this research are of the same order of magnitude as presented in the 

literature when normalised for speed. Mean absolute elbow flexion torque from this research was 

approximately 5.1 and 8.9 times higher for Athlete I, and Athlete E, respectively (Athlete I: 35.9 N m, 

Athlete E: 62.6 N m) than other data presented in the literature (7.0 N m ± 0.2 N m).169  This difference 

can be attributed to both the greater speed of propulsion presented in this research (8.1 m/s here vs 

1.4 m/s in literature), with the alteration in wheelchair propulsion mechanics due to speed 

demonstrated frequently in the literature.64, 306, 307 

 

6.3.5 CONCLUSION 

The use of DXA scans was able to provide a reliable estimation of body segment inertial parameters. 

Wheelchair racing athletes have substantially different body segment mass properties to the general 

population currently used in computational modelling approaches. Athlete asymmetries, as well as 

inter-athlete variation of defined trunk mass by 9.3% total body mass, may impact joint moments, 

which would limit the reliability of the outputs of computational biomechanical analyses. This study 

hence revealed the importance of using subject-specific inertial parameters for use within 

computational modelling of wheelchair racing athletes. Future wheelchair propulsion research should 

incorporate subject specific in-vivo measurements to ensure confidence in the simulation outputs.  
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6.4 A STRATEGY FOR ESTIMATING MAXIMUM ISOMETRIC FORCE 

GENERATING CAPACITY OF WHEELCHAIR RACING ATHLETES 

6.4.1 INTRODUCTION  

Common musculoskeletal models utilise parameters obtained from cadaver studies, which is a method 

that has received much scrutiny in the literature for representing a biased sample population (e.g. 

Milgrom et al.308), which has limited generalisability, particularly for wheelchair athletes. Section 6.3 

demonstrated the errors associated with this approach. Within a computational simulation, muscle 

forces are estimated as a distribution of joint loads across the muscle fibres crossing the joint. If 

maximum isometric force generating capacity is insufficiently defined during the development of the 

musculoskeletal model, the surrounding muscles will be recruited to complete the movement. 

However, in the process, muscle co-ordination strategies may be altered, and are hence representative 

of non-physiologically-plausible movements. As Spinal cord injury (SCI) results in altered skeletal 

muscle properties,28 with further musculoskeletal adaption (hypertrophy) resulting from the extensive 

physical training,39, 40 and highly dynamic and physically straining propulsion motion (Section 2.1),309 

improving maximum force generating capacity estimates in generic models is warranted. 

The maximum force-generating capacity of a muscle can be directly or indirectly estimated through 

isokinetic dynamometry with muscle activations measured using EMG, respectively, with muscle 

PCSA estimated using medical scanning technologies. Literature has demonstrated good test-retest-

reproducibility of dynamometer data at the shoulder, but, factors such as anatomical postures during 

testing, software and in particular angular velocity can limit its reliability.310 While isokinetic 

dynamometry provides a good representation of the strength of an individual, movements tested are 

not reflective of the multiple degrees of freedom movement of wheelchair propulsion. Alternatively, 

EMG can gauge muscle activation. Apart from static or quasi-static activities, it does not directly 

correlate with muscle force,311 and so it is better suited to analyses regarding excitation timings, such 

as in the work of Mulroy et al. 26 and Tries 312.  

The maximum force a muscle can produce is a function of both its specific tension (force generated 

per unit of cross-sectional area) and its physiological cross-sectional area. Imaging techniques have 

been used to relate the size of a muscle to its force-generating ability. Volumetric based estimations 

present a preferred method of evaluating the force-size relationship.313 For example, O’Brien et al.314 

used MRI scans to obtain muscle volume, which was divided by optimal fascicle length at the angle of 

peak force, as measured using ultrasound images. Alternatively, this has been achieved using DXA and 

computed tomography (CT). These methods often do not report individual muscles however.313 
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No literature currently presents recommended values of maximal isometric force generating capacity 

for use in computational modelling of elite wheelchair racing athletes. The aim of this research was 

twofold, firstly assessing the sensitivity of a musculoskeletal model to the defined value of maximal 

isometric force generating capacity. Secondly, this research aimed to compare anthropometric 

parameters used in the definition of the musculoskeletal model, against subject-specific mass values 

obtained using DXA. If a close agreement was observed, scaling DXA segment mass values against 

generic model parameters can provide a simplified method of estimating appropriate input parameters. 

As athletes commonly present greater strength characteristics than the 50th percentile male 

characteristics currently used in some musculoskeletal models, it is hypothesised that current models 

(with generic parameters) will underestimate the maximal isometric force-generating capacity of 

wheelchair racing athletes. 

 

6.4.2 METHODS 

Athlete Selection 

Data from two female, internationally ranked athletes competing in both wheelchair racing (Athlete I: 

T53 classification, age: 35 years, mass: 48.2 kg, experience: 13 years) and para-triathlon (Athlete E: PT1 

classification; age: 26 years, mass: 52.8 kg, experience: 2 years) for this study. Athletes were classified 

as having no pathological impairments in the upper extremities. Both athletes had complete spinal cord 

lesions. 

 

Muscle Scaling 

The maximum isometric force-generating capacities were scaled from 25% to 400% in 25% 

increments.315 Throughout the remainder of this manuscript, these are referred to as ‘scaling factors.’ 

A scaling factor of 1.00 represents the generic musculoskeletal model data, while values of 0.25 and 

4.00, for example, represent weakening the model to 25% of its original strength or strengthening the 

generic parameters by 400%, respectively. A total of 96 simulations (16 variations per three speeds per 

two athletes) were performed. As athletes were representative of classifications demonstrating no 

pathological conditions to the upper extremity, all muscles were scaled simultaneously to represent a 

holistic, proportional increase in limb strength. Due to the many antagonist muscle pairs responsible 

for motion, it can be assumed there exists no bias to specific muscle groups as a consequence of regular 

training. This was assumed as no pathological conditions were present in the upper extremity of 
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athletes in this study, however, could not be applied for use with athletes with incomplete lesions, and 

demonstrating different functional characteristics between left and right limbs.  

A review of anthropometric parameters presented in the literature was also performed to demonstrate 

the morphological similarity between population samples, thus ensuring compliance with the 

underlying assumptions required for volumetric based estimations. This involved comparing limb 

circumference measurements of a non-athletic, non-obese population,316 and against the limb segment 

masses defined for a generic, musculoskeletal model scaled with athlete-specific total body mass 

values.164 This is a similar approach to research by Knarr et al.,313 who presented the maximum force-

generating ability of a muscle or muscle group (between paretic and non-paretic limbs) as the ratio of 

the volume between the limbs. 

 

Data Processing 

A period of 2.8 s (> 5 consecutive strokes) was obtained from the middle of the propulsion task to 

ensure steady state. Input data were sampled at 250 Hz, and filtered with a bidirectional second-order 

Butterworth low-pass filter with a -6 dB cut-off frequency of 10 Hz317 in MATLAB.  

A convergence criterion was used to establish the model had sufficient strength. Convergence indicated 

that the model had reached a balance between the reserve and muscle forces, and despite increasing 

the scaling factor of muscles, the contribution of the reserve actuators was stable. This method has 

been performed in the literature previously, with an example by Valente et al.130 defining the 

convergence criterion for the variable of interest to have mean and standard deviation over the final 

10% of the simulations being less than 5% of the overall mean and standard deviation. The overall 

mean and standard deviation was taken from all data points.  

A similar convergence criterion was established for this study. Data from scaling factors < 1 were 

excluded from the calculation of overall mean and standard deviation as they were not representative 

of physiologically viable conditions. Therefore, the overall mean and standard deviation were taken as 

the mean value of the discrete mean and standard deviation values for scaling factors between 1  

and 4. The variable of interest in this study is the difference in muscle or reserve actuation and force 

compared with the overall mean of muscle force and activation. 

The range of convergence was defined to be 10% of the simulations. For each athlete, 16 simulations 

were performed at each speed, meaning two consecutive data points (based on scaling factor) had to 

be within the convergence criterion to be considered an appropriate scaling factor. 
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6.4.3 RESULTS 

Total muscle force over time for each of the scapulothoracic, scapulohumeral, and upper arm muscles 

identified as dominant in wheelchair propulsion are presented in Figure 6.17, for each of the scaling 

values. Figure 6.17 provides a representative example of data from Athlete I, at 26 km/hr. Raw data 

(for each muscle or reserve actuator), are overlayed on the mean, and 95% confidence interval bounds 

for each of the scaling factors. With increasing scaling factor, muscle activation, reserve actuation, and 

reserve force begin to converge. Convergence, however, is not observed for muscle force, which 

increases with scaling factor, suggesting risks associated with the considerable overestimation of 

maximum isometric force generating capacity.  

 

 

Figure 6.17: Comparison of muscle and reserve actuator contributions to activation and force, for Athlete I at 26 km/hr. Each data point 

corresponds to the activation or force of each muscle or reserve actuator in the system per time stamp (0.004 s) over the simulation period. 

Activation has been normalised against total activation.  
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As the parameters start to converge, it would be anticipated that the difference between successive 

scaling factors (e.g. between a scaling factor of 1.25 and 1.5), would decrease. Scaling factors 

demonstrate the relative value compared to the generic parameters currently present in the 

musculoskeletal model. When comparing the change in magnitude of muscle activation and muscle 

force as a percentage of the overall mean (calculated as the mean value from scaling factors 1 – 4) 

(Figure 6.18), it can be observed that variation decreases in magnitude with increasing scaling factor. 

For a scaling factor > 1, it can be seen that between successive trials (e.g., between scaling factor 1.3 

and 1.5) there is less than 5% difference (as indicated by the dashed line), indicating convergence in 

the simulations. The considerable variation observed for scaling factors < 1 demonstrate unsuitable 

parameter definition. 

 

 

Figure 6.18: Comparison of the difference in muscle activation and force between successive scaling factors. Data are presented as a percentage 

of the mean value of muscle activation and force for scaling factors 1-4.  

 

Reserve contribution was seen to decrease with an increased scaling factor, as would be expected, as a 

larger muscle force capacity creates a more substantial solution space. Figure 6.19 demonstrates the 

percentage of reserve force compared with mean muscle force (top) and the contribution (ratio) of 

absolute reserve force compared with absolute muscle force. In both absolute plots (left), it can be 

seen that a contribution of the reserve force is required for higher speeds of propulsion, as would be 

expected from a musculoskeletal model containing only a subset of all muscles. When investigating the 
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difference between successive scaling factors, it can be seen that convergence exists at higher scaling 

factor. Two successive data points must be within the a-priori thresholds (± 5 % change in reserve force 

sensitivity) to satisfy the convergence criteria. As these data points are indicative of the difference 

between successive scaling factors, the scaling factor was chosen as the higher of the two scaling factors 

used when calculating the difference in the second data point within the threshold. Athlete I requires 

a lower scaling factor (1.5) than is required of athlete E (1.75). It can be seen that for athlete E, there 

is a more variable response for the fastest (24 km/hr) trial, indicative of the maximal nature of 

propulsion. 

 

 

Figure 6.19: The contribution of the reserve actuators varies with increasing scaling factor. 

 

The observed scaling factor of wheelchair athletes to general populations (Athlete I: 1.5,  

Athlete E: 1.75) was comparable but greater than anthropometric data presented previously by 

Bulbulian et al.316 between paraplegic and able-bodied (ectomorph) college athletes. Differences in the 

chest, flexed and non-flexed bicep and forearm measures were 1.17, 1.24, 1.26 and 1.18, respectively. 

When comparing athlete-specific segment masses compared to those in the musculoskeletal model 

used, trunk measurements (as determined by clavicle mass) were 1.45 (Athlete I), and 1.70 (Athlete E), 

whilst upper arm measurements were 1.49 (Athlete I), and 1.25 (Athlete E).318 Based on these 

comparisons, it is possible that the mass of the torso can be used to predict maximum isometric force 

generating capacity, however, further investigations are required to confirm this. 
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6.4.4 DISCUSSION 

This study generated a simulation of wheelchair racing in OpenSim and examined its sensitivity to the 

defined maximum isometric force-generating capacity of muscles. Higher sensitivity was demonstrated 

when the musculoskeletal model was artificially weakened for the two female athletes analysed. 

Sensitivity decreased at higher values of maximum isometric force generation capacity. Muscle 

activation, reserve (actuator) force and reserve activation all demonstrated a converging trend with an 

increased scaling factor of isometric force generating capacity (where a scaling factor of 1.5 is equal to 

150% of the generic parameters, for example). Muscle activation was observed to vary < 5% between 

scaling factors when the scaling factor was > 1. At greater scaling factors, the magnitude of this increase 

reduces, however; an over-estimate of the maximum isometric force-generating capacity of muscles 

may overestimate the muscle force required to complete the task. Optimal values were observed to be 

athlete-specific (Athlete I required a scaling factor of 1.5, while Athlete E required a higher scaling 

factor of 1.75), and partially related to muscular physiology. Thus, the use of DXA or other medical 

scanning technologies may act as a simplified approach for estimating the required input parameters 

on a large scale. 

Greater disparities in muscle activity were observed when muscles were weakened. This high sensitivity 

is indicative of the simulation altering muscle recruitment strategies, through the use of compensatory 

muscles to achieve the desired task. Consequently, it is clear that under-defining the maximum 

isometric force-generating ability of muscles will result in non-physiologically-representative, or 

potentially invalid results.  

Estimation of muscular force from size is reliant on numerous assumptions with regards to the muscle 

tissue structure.313 Volumetric and mass-based comparisons also require morphological similarity, as 

measurements are also based on bone and adipose tissue. The force to cross-sectional area relationship 

is complicated, and not all changes in muscle force can be attributed to differences in cross-sectional 

area,313, 319 especically following muscle wasting due to ageing or malnutrition.320 These, however, are 

not necessarily relevant for the elite wheelchair racing population. Morphological similarities in bone 

mineral density and total body fat mass exist between the sample population and reference literature. 

Upper extremity bone mineral density values for the athletes in this research are comparable between 

low paraplegics and able-bodied controls, however, is reduced in the lower extremity of individuals 

with SCI.321-323 Total body fat mass (as percentage total body weight) for wheelchair track and field 

athletes (20.9 ± 4.4%)324 are consistent with the recommended guidelines for the (age and gender 

matched) average population (19.2 ± 8.6%).325 Therefore, increased segment masses can be related to 

an increase in skeletal muscle tissue.  
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Although scaling factors must be a non-zero, positive number (ensuring maximum isometric force 

generating capabilities > 0.0001 N) to ensure system dynamics can be solved, practically, a scaling 

factor should always be greater than 1 for use in the upper extremity of wheelchair racing athletes. 

Lower values would be indicative of severe muscle atrophy, which is not present within the upper 

extremities of this population, but may be in tetraplegic athletes. It is acknowledged that lower scaling 

factors will be required for the lower extremities of athletes, and should hence be considered in future 

research.  

Reported muscle activations overestimated what is previously presented in models of manual 

wheelchair propulsion. For example, Lin et al. 311 demonstrated muscle forces ranging between 0.4 N 

(triceps long head) through 343.6 N (infraspinatus) during the propulsion phase, and between 0.9 N 

(teres minor) and 118.9 N (middle deltoid) during the recovery phase, as obtained using a similar 

computational approach. As increased speed has been demonstrated to change wheelchair propulsion 

patterns58, 104, 326 and increase joint loading (e.g. walking v running)105 the observed differences can be 

partly attributed to previous research being performed at lower propulsion speeds, representative of 

manual wheelchair propulsion. Additional variation may also be the result of the more dynamic 

‘striking’ motion employed by wheelchair racing athletes, as compared to the ‘pushing’ motion 

demonstrated in manual wheelchair propulsion.  

The recommended practice was followed to minimise errors. However, some limitations are 

recognised for the current research. While these preclude the measurement of muscular forces, they 

do not prevent the estimation of relative muscle force (compared to a generic value) which can be used 

in the musculoskeletal model. Based on the relative insensitivity demonstrated at greater magnitudes 

of scaling factors, these limitations are not detrimental. It is acknowledged, however, that the results 

presented in this research are specific to the methods applied, and so although the particular results 

are not generalizable, the used process is.   

Future research using subject-specific muscle parameters will improve the validity of the assessment 

of how muscles influence movement, especially when functional impairments are present. Use of 

musculoskeletal modelling can assist with both the designation of athlete-specific strength and 

conditioning programs, instruct methods to counteract athlete asymmetries, and predict the likelihood 

of applied motions generating injury. Findings are also applicable to the manual wheelchair using 

population, who also have a high capacity to benefit from modelling approaches as up to 73% of 

paraplegic manual wheelchair users exhibit shoulder pain.327 Through the use of more relevant 

isometric force generating capacity input data, the reliability of simulations will improve. 
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6.4.5 CONCLUSION 

Increasing the maximum isometric force-generating capacity of muscles is recommended for the 

computational biomechanical assessment of wheelchair racing propulsion. The magnitude of increase 

is performed on an athlete-specific basis through multiple sensitivity analyses. Research demonstrated 

that the use of DXA scans might provide a streamlined approach to this, which may be of benefit 

when analysing some athletes. Avoiding the gross- overestimation of maximum isometric force-

generating capacity of muscles is also recommended.  

 

6.5 DISCUSSION 

This chapter focused on the development of subject-specific musculoskeletal models for use in the 

biomechanical modelling of wheelchair racing propulsion. Subject-specific parameters were established 

from the analysis of DXA scans, which is a method emerging in the literature for estimating body 

segment inertial parameters. Although not as precise as some of the more traditionally used scanning 

technologies, DXA scans are an attractive alternative due to their practical feasibility, with many elite 

athletes having regular scans as part of monitoring body composition. The reliability of the DXA 

scanning approach was revealed to be sensitive to the processing methodologies (Section 6.2) which 

also revealed the inaccurate definition of body segment inertial parameters impacted on the joint 

reaction moments. This was further supported in Section 6.3 when comparing against able-bodied, 

non-athletic populations. This provided the first research to adapt musculoskeletal models to represent 

the physical characteristics of an elite wheelchair racing population, and demonstrated methodological 

flaws with previous literature which has been based upon able-bodied, non-athletic populations.  

As suggested in the literature, DXA scans provided a valid method of estimating body segment inertial 

parameters. As observed in Section 6.2, the reliability of the inertial estimates is sensitive to the 

processing method. The definition of intensity thresholds is not disclosed in accompanying user 

manuals or commented on in the literature. However, understanding how this process is performed is 

of benefit to future processing for enhanced reliability. As this research only investigated extreme 

bounds, recommendations for future use cannot be provided. However, it can be suggested that best 

practice would ensure the collection and exportation of phantom scans with each athlete scan. These 

are DXA scans taken of objects with known mass and density. These would also assist in understanding 

how to define the intensity thresholds, as phantom scans can act as validation measures with known 

properties. As this research made use of pre-established DXA scans from an existing database, 

phantom scans were not available. 
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Although the analysis of DXA scans provides a validated approach for body segment inertial parameter 

definition in-vivo, the application may be limited to all athletes. Reliability of scans may be reduced in 

athletes with muscle spasticity who may not be able to achieve or sustain postures for the entire 

duration of the scan, as well as those with metal implants.283 Mass cannot be quantified in regions 

where metallic implants are present, as they limit data transmission to the DXA receiver.283 Due to the 

low dose of radiation emitted by each DXA scan, however, scans can safely be taken in multiple planes 

(i.e. frontal and sagittal) to estimate the mass of each limb segment accurately. As this research utilised 

data from a pre-established database, postural alignment served as a limitation for a single athlete, as 

the right thigh and left foot segments were excluded from the analysis, and a bilateral limb symmetry 

assumption was enforced. While large limb asymmetries presented in this study question the validity 

of this assumption, these errors are easily overcome in future applications. 

This research established that the body mass distribution of wheelchair racing athletes differed 

significantly from that of able-bodied, non-athletic individuals. These parameters are currently used in 

musculoskeletal modelling research and have a significant impact on joint reaction force estimates. 

Clear between-athlete differences, particularly surrounding the volume of tissue in the lower 

extremities were also observed. Therefore, it can be suggested that for this population, from a small 

subset, a set of normative values representative of the whole population cannot be established. Thus, 

it is suggested that for the biomechanical analysis of wheelchair racing athletes, customised, subject-

specific modelling approaches should always be applied. While the use of DXA scans were suggested 

in the literature to require less sophisticated software than other medical scanning approaches; it is not 

always permissible. In the absence of these, it is possible to use volumetric estimation methods as 

suggested by Zatsiorsky et al. 328 or Hanavan,146 ensuring appropriate anatomical landmarks and 

measurements are obtained. However, it is also crucial to consider the morphological similarity 

between athletes and the population these volumetric equations are based upon, however. 

Alternatively, reference values from this research can be used for athletes with comparable 

anthropometries as an estimate.  

The assumption that there was no change in the physiological architecture of muscles or the governing 

force-velocity relationships compared to an able-bodied population was used due to the population of 

this research demonstrating no upper extremity physical impairment (Section 2.1). However, it should 

be noted that these parameters may require alteration when investigating populations with impairments 

to the upper extremity, as seen in athletes with tetraplegia, or incomplete spinal cord lesions.  

A concern with the simulation approach is the sensitivity of the model to the input parameters, which 

are mostly estimated. Although approaches such as sensitivity analyses can be performed to improve 
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the precision of these estimates, such as what was done for the reserve actuator contribution, it is 

important to highlight that the obtained results are influenced by this parameter. Therefore, when 

converting research into practice, it is done with consideration of the reliability and inherent 

uncertainties of the approach. Model verification was performed in light of this, with results presented 

in Appendix B. 

No accurate or validated method is currently recognised in the literature for estimating the reaction 

loads between the hands and the pushrim during wheelchair racing propulsion. It is acknowledged that 

the estimated external loads may overestimate the actual values. Effects should be minimal, however, 

with the literature reporting that performing inverse dynamics using kinematic data alone for gait 

analysis provided reasonable estimates of ground reaction forces and moment, with errors in the 

sagittal plane of 6% compared to force plate data.293 The joint torques estimated in this research are of 

the same order of magnitude as presented in the literature when normalised for speed. Mean absolute 

glenohumeral flexion/extension torque from this research was approximately 13.0 times greater  

(274 Nm ± 75.7 Nm) than other data presented in the literature (21.1 Nm ± 0.9 Nm).169 This difference 

can be attributed to both the higher speed of propulsion presented in this research (8.1 m/s here 

compared to 1.4 m/s in literature), with the alteration in wheelchair propulsion mechanics due to speed 

frequently demonstrated in the literature.64, 306, 307 This is significant as at lower speeds, propulsion is 

more of a pull-push action, whereby athletes grab the wheel, while at the speeds employed by 

wheelchair racing athletes, strokes are executed solely by the push phase.306, 307 

 

6.6 IMPLICATIONS AND CONCLUSION 

Wheelchair racing athletes demonstrate substantial between-athlete, and between-population 

variability, with strengths greater than what is currently defined in the musculoskeletal model. This 

research section demonstrated the importance of using subject-specific parameters for both the inertial 

(Section 6.2, Section 6.3) and maximum isometric strength generating capacity (Section 6.4) in 

musculoskeletal models for the computational analysis of wheelchair racing propulsion, which can 

both be obtained through the analysis of DXA Scans. The importance of appropriate processing of 

the DXA scan was also highlighted (Section 6.2). Due to the uniqueness of athlete impairment, it is 

unlikely that a normative database can be established to simplify future modelling. However, estimation 

of inertial parameters through the application of volumetric modelling techniques when DXA scans 

are unavailable, or base parameters off the data presented in this chapter may still offer improvements 

to the generic counterparts. 
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Key Findings: 

 The processing of DXA scans is subject to a defined intensity threshold, with bony segments 

found to be more sensitive. 

 Generic scaling approaches based on able-body mass distribution, poorly estimated DXA 

obtained segment mass values of physically impaired athletes. 

 Differences in output joint torques were observed between subject-specific (DXA) and 

generically scaled models, however, was not associated with limb segment. 

 The balance between muscle activation and reserve activation converges to an increased 

maximum isometric force generating capacity is defined, which can also be estimated with the 

assistance of DXA scan data. 

 Weakening a model provided physiologically invalid results for wheelchair racing propulsion. 

 

Implications 

 Inadequate processing of DXA images does not estimate total body mass and its distribution 

correctly, and it is proposed that a standardised, objective method of determining threshold 

values is required.  

 Parameters of able-bodied, non-athletic populations should not be used in the analysis of 

wheelchair propulsion biomechanics by physically impaired athletes. 

 Future wheelchair propulsion research should incorporate subject specific in-vivo 

measurements to ensure confidence in the simulation outputs. 

 The maximum isometric force generating capacity is likely to be greater for athletic 

populations, and the musculoskeletal model requires adjusting to reflect this. 

 Reserve actuator contribution should be defined with care, as it will likely change the point of 

convergence (particularly if reserve actuators are set high).
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CHAPTER SEVEN:  

QUANTIFYING THE 
MECHANICS OF 
WHEELCHAIR 
PROPULSION USING 
SIMULATION  
 

 

 

 

 

The contribution to the holistic comparison of performance and assessment of injury prevention 

strategies are presented in this chapter, addressing the final aim of the research. Two experimental 

studies are presented, which together demonstrate the potential benefits of having a coupled kinetic 

and computational biomechanical analysis approach. The first study looks into whether simulation 

approaches can be used as an injury prevention and management tool. The second study then addresses 

the fundamental aim of the thesis; investigating how customised seating interfaces influence 

performance. These studies and their research questions are summarised following and in Figure 7.1.  
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Influence of customised seating interfaces on lower extremity wheelchair kinematics. 

(Section 7.1) 

Research Question:  

 What is the performance benefit of customised seating interfaces? 

 

Injury prevention of elite wheelchair racing athletes using simulation approaches. 

(Section 7.2) 

Research Question:  

 Can computational simulations be used to predict techniques which may be more at risk 

of putting athletes at risk of obtaining an injury? 

 

 

 

 

 

 

 

Figure 7.1: Relevance of the Chapter 7 (Quantifying the mechanics of racing propulsion using simulation) to the fundamental research question; 

what is the performance impact of customised seating interfaces on wheelchair racing propulsion? 
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7.1 INJURY PREVENTION OF ELITE WHEELCHAIR RACING ATHLETES 

USING SIMULATION APPROACHES 

7.1.1 INTRODUCTION 

Upper limb injuries are common amongst wheelchair athletes, particularly in the shoulder.119 Literature 

has identified that wheelchair racing and road racing are amongst the sports with the s risk to athletes 

for sustaining a soft tissue injury.234 Injuries to the upper extremity can both impede performance and 

limit the mobility of wheelchair-using individuals and athletes. It is therefore imperative that due 

diligence is taken to ensure athletes are employing propulsion techniques which have a low risk of 

promoting injury.  

Soft tissue injuries have been demonstrated as a leading injury amongst athletes in wheelchair sports 

specifically wheelchair racers.234 Monitoring muscle loading requires an inherent understanding of both 

the forces and activation pattern of each muscle, to determine how much it is contributing to the 

motion. As individual muscle forces and joint reaction moments cannot be measured directly, 

computer simulations using musculoskeletal models are required. 

Athletes in wheelchair sports have demonstrated higher rates of the shoulder, elbow-arm, and forearm-

wrist injuries as compared to other Paralympic athletes.234 The high incidence of injury can be 

attributed to the nature of the shoulder girdle being ill-equipped for the kinematic requirements of 

wheelchair propulsion. The shoulder girdle, which is responsible for the majority of kinetic 

requirements of wheelchair propulsion, is structured to maximise freedom of movement.119 However, 

in order to obtain maximum speed, athletes must apply large forces over short durations to achieve a 

high net impulse. The repeated, high loading of wheelchair propulsion contributes to injury in the 

shoulder-girdle construct.329  

The specific aim of this study was to evaluate whether a coupled kinematic investigation and 

computational simulation approach could effectively discern whether kinematic aspects of the 

technique may lead to greater injury risk. As shoulder injuries have typically been diagnosed as a 

consequence of the repeated, high impact loadings, it was hypothesised in this study, that greater injury 

risk was associated with greater reaction joint moments. 
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7.1.2 METHODS 

Athlete Selection  

Two female wheelchair racing athletes from the national level senior program were recruited for this 

study (Athlete E: age = 24.4 years, mass = 52.9 kg, experience = 3 years, classification = T54;  

Athlete I: age = 33.7 years, mass = 48.0 kg, experience = 23 years, classification = T53). The 

experimental task and measurement system are consistent with methods presented in Section 6.1.  

 

Data Processing 

Hand speed at contact and release were obtained from taking the first derivative of the marker position 

data measured using motion capture. Push time, contact angle and release angle were obtained from 

manual digitisation of video data in Kinovea software. 

 

Musculoskeletal Model 

Computer simulations utilising the Wu Shoulder Musculoskeletal Model330 were performed in 

OpenSim.133 This model was developed after the Upper Extremity Dynamic Model used in Chapter 

Six. This model incorporates subject-specific inertial parameters of the torso segment. Based on the 

between-athlete variation in torso mass identified in Section 6.3, this was considered advantageous. 

Also, the Wu shoulder model allows independent scapula-humeral rhythm. Based on the highly 

dynamic motion of the shoulder, this was also considered beneficial in the analysis of wheelchair racing 

athletes.  

The musculoskeletal model was adapted to incorporate athlete-specific segment mass, and maximum 

isometric force generating capacity data. Segment masses were obtained through the assessment of 

DXA scans, as detailed by Laschowski et al.,282 while optimum isometric force generating capacity was 

established through an optimisation problem, iterating through strength factors. The optimum strength 

of the model was established through a convergence of muscle activation (Section 6.4). The range of 

motion analysed for this investigation is depicted in Figure 7.2. For trunk flexion angle, a value of -90° 

has the trunk parallel to the ground, with a value of 0° representing the athlete is in a conventional 

upright seating posture. 
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Figure 7.2: Joint range of motions explored in this investigation. 

 

Inverse kinematics calculations in OpenSim were used to reveal the trunk, shoulder joint and elbow 

flexion at contact, with specific timestamps established directly from motion capture data. Reaction 

forces were estimated from the kinematic data,293 whereby forces were estimated as a sum of the 

segment masses multiplied by their respective translational acceleration and were used to drive the 

inverse dynamics calculations to obtain net joint reaction moments (Section 6.1). An example of the 

propulsion motion, including applied forces, can be seen in Figure 7.3. 

ELBOW FLEXION SHOULDER ELEVATION 

SHOULDER ROTATION SHOULDER PLANE 
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Figure 7.3: Example of a computational model of wheelchair racing propulsion. Arrows demonstrate the direction and magnitude of applied 

forces. 

 

Statistical Analysis 

Multiple regression analyses were performed to identify interactions between reaction moments and 

kinematic parameters. All statistical calculations were performed using IBM SPSS Statistics 24 Software 

for Windows. 

 

7.1.3 RESULTS 

Intra- and inter-athlete kinematic variation was observed and is presented qualitatively in Figure 7.4, 

and quantitatively in Table 7.1 and Table 7.2. Key kinematic variations included release angle  

(Athlete E: 218.9 ± 7.3°; A2: 180.9 ± 7.9°), shoulder elevation (Athlete E: 52.1 ± 2.6°;  

A2: 91.7 ± 8.0°), shoulder plane (A1:-141.4 ± 5.9°; A2: -107.8 ± 2.0°), and elbow flexion  

(Athlete E: 83.3 ± 3.1°; A2: 122.2 ± 4.8°). Figure 7.4 demonstrates the different kinematic strategies 

employed by athletes with regards to head position and movement throughout the motion. As the 

head segment was not modelled, its movement variability is not discussed.  

 

A (CONTACT) B C 

D F E (RELEASE) 
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Table 7.1: Kinematic and kinetic characteristics of propulsion presented for Athlete E as mean ± SD; n represents the number of push cycles 

recorded. Contact and Release angles are presented to no decimal places to reflect the precision of the collected data.  

  

Athlete E 

22km/hr 

n = 15 

Athlete E 

23km/hr 

n = 21 

Athlete E 

24km/hr 

n = 19 

Hand Speed Contact  (m/s) 8.2±0.6 8.5±0.7 9.3±0.7 

Hand Speed Release  (m/s) 6.3±1.3 6.6±1.6 6.9±1.5 

Push Time  (s) 0.2±0.0 0.2±0.0 0.2±0.0 

Contact Angle  (°) 21±5 24±5 26±4 

Release Angle  (°) 188±4 183±7 175±7 

Trunk Flexion Angle* (°) -89.9±0.0 -89.9±0.1 -86.2±1.1 

Shoulder Elevation Angle* (°) 97.1±3.4 96.0±4.5 81.5±3.2 

Shoulder Rotation Angle* (°) 156.3±4.9 153.3±18.0 137.1±3.3 

Shoulder Plane Angle* (°) -108.4±0.0 -108.2±0.1 -106.4±3.6 

Elbow Flexion Angle* (°) 125.1±0.7 125.6±1.0 115.3±0.9 

Reaction Force (Resultant)* (N) 1077.8±23.8 1066.9±19.3 883.5±15.6 

Shoulder Elevation Reaction Moment* (Nm) -116.6±4.5 -117.2±6.3 -113.3±4.3 

Shoulder Rotation Reaction Moment * (Nm) 62.7±3.0 76.2±3.7 72.6±9.8 

Shoulder Plane Reaction Moment* (Nm) 114.1±4.4 108.3±3.6 108.3±3.6 

*Represents data collected for a single side only. 

 

 

Table 7.2: Kinematic and kinetic characteristics of propulsion presented for Athlete I as mean ± SD; n represents the number of push cycles 

recorded. Contact and Release angles are presented to no decimal places to reflect the precision of the collected data.  

  

Athlete I 

22km/hr 

n = 15 

Athlete I 

23km/hr 

n = 16 

Athlete I 

24km/hr 

n = 16 

Hand Speed Contact  (m/s) 7.3±0.4 7.2±0.2 7.4±0.8 

Hand Speed Release  (m/s) 4.5±0.7 3.8±0.8 5.1±0.9 

Push Time  (s) 0.3±0.0 0.3±0.0 0.3±0.6 

Contact Angle  (°) 25±4 28±4 28±4 

Release Angle  (°) 217±8 221±7 219±7 

Trunk Flexion Angle* (°) -91.7±0.9 -93.4±1.1 -92.8±0.7 

Shoulder Elevation Angle* (°) 50.0±1.0 52.6±1.2 53.7±2.4 

Shoulder Rotation Angle* (°) 157.1±2.0 159.4±1.2 160.9±1.2 

Shoulder Plane Angle* (°) -146.0±1.0 -151.6±1.0 -138.3±5.8 

Elbow Flexion Angle* (°) 82.3±3.2 85.0±3.0 83.6±2.9 

Reaction Force (Resultant)* (N) 844.2±11.4 818.4±10.6 825.2±10.7 

Shoulder Elevation Reaction Moment* (Nm) -321.9±3.4 -322.2±7.5 -326.8±3.6 

Shoulder Rotation Reaction Moment * (Nm) 230.7±6.3 211.3±8.4 231.3±3.2 

Shoulder Plane Reaction Moment* (Nm) 232.1±3.4 243.2±7.7 262.2±5.5 

*Represents data collected for a single side only. 

 

 



7. QUANTIFYING THE MECHANICS OF RACING PROPULSION USING SIMULATION 

 

166 
 

 

Figure 7.4: Kinematic comparison of motion for Athlete E (left) and Athlete I (right). Grey regions represent time in contact with the wheel, with 

guideline references located on the outside of the wheel. Segments presented represent the kinematic tracking of the head, shoulder, elbow and 

hand markers, respectively. 

 

Statistical analysis revealed that the reported shoulder joint reaction moments correlated with the 

athlete (Table 7.3). Additional correlations were observed with elbow flexion angle  

(Rotation: r = -.981, p = .000; Plane: r = -.970, p = .001) and reaction force (Rotation: r = -.817, p = 

.024; Plane: r = -.801, p = .028). 

 

Table 7.3: Statistical significance for shoulder reaction moments with kinematic parameters. 

 
Shoulder Elevation 

Reaction Moment 

Shoulder Rotation 

Reaction Moment 

Shoulder Plane 

Reaction Moment 

Athlete r = -.947, p = .002 r = .992, p = .000 r = .988, p = .000 

Speed r = -.734, p = .048 r = .899, p = .007 r = .903, p = .007 

Hand Velocity at 

Contact 
r = .875, p = .011 r = -.866, p = .013 r = -.880, p = .010 

Hand Velocity at 

Release 
r = .977, p = .000 r = -.891, p = .009 r = -.891, p = .009 

Push Time r = -.866, p = .013 r = .940, p = .003 r = .965, p = .001 

Release Angle r = -.928, p = .000 r = .959, p = .001 r = .970, p = .001 

Trunk Flexion Angle r = -.784, p = .020 r = -.807, p = .026 r = -.834, p = .020 

Shoulder Elevation 

Angle 
r = .925, p = .004 r = -.963, p = .001 r = -.946, p = .002 

Athlete E Athlete I 
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7.2.4 DISCUSSION 

This study aimed to ascertain whether kinematic characteristics of motion could increase injury risk, 

and was assessed through coupling kinematic and computational modelling approaches. Greater joint 

reaction moments at the shoulder was the inferred mechanism for injury risk. With greater joint 

reaction moments, greater stresses are applied to the muscles spanning these joints, potentially 

generating a higher risk of overuse strain injury. Hand velocity at contact and release, push time, and 

joint angles at contact were important contributors to higher joint reaction moments. The magnitude 

of the reaction force and the speed of propulsion were significantly correlated with a greater shoulder 

plane and rotation moments. Athletes did not present with shoulder injuries at the time of testing.  

Clear variations in kinematic strategies were employed between the two athletes, with a clear point of 

distinction being the hand speed at contact. Athlete E demonstrated a greater hand speed at contact, 

as well as a shorter push time (approximately 2/3 that of Athlete I). In performance terms, this is 

indicative of a compromised transfer of force between the athlete and wheelchair. This may explain 

the reduced average race velocity as compared with Athlete I, who is a World Champion level athlete. 

Biomechanically, due to the shorter push time, and potentially greater hand speed at contact, Athlete 

E experiences a much greater impulse with each contact, which can be translated to the estimated 

reaction force data. It is interesting to observe, however, that despite this, all reported shoulder joint 

reaction moments are smaller in Athlete E. It can be inferred that Athlete E adopts a technique which 

minimises moment arms, effectively reducing the reaction loads passing through the arm and acting at 

the shoulder. It can hence be suggested that the largely different kinematic position at contact may be 

reducing the likelihood of the athlete in sustaining a soft tissue injury to the shoulder. It is important 

to highlight that athletes must optimise the balance between biomechanical stability for injury 

prevention, and the highly dynamic motions required for competitive advantage. Through utilising this 

coupled kinematic and modelling analysis approach, athletes can modify techniques with the aim of 

improved performance, however also reaping the benefits of reduced risk of soft tissue injury.  

The clear inter-individual variations observed can be likened to the difference in classification, and the 

degree of trunk control (present in Athlete E only). Additionally, Athlete I demonstrated > 10 years of 

international experience. Inter-individual variations across speeds are consistent with the literature and 

can be explained by the fastest speed being representative of race velocity, while the other two are sub-

maximal efforts, where athletes may have greater control over technique. When considering the 

kinematic parameters alone, Athlete I demonstrated greater consistency across each of the speeds, 

which can potentially be attributed to experience. It is assumed that as both athletes were female, 

performed at comparable speeds, and had a similar classification, the results presented in this study are 

more homogenous than would be characteristic of the entire population.  
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This study identified that elbow angle and shoulder elevation and plane angles are correlated with 

greater peak joint reaction moments. Hence, the continuation and expansion of this work in developing 

a database of normative values may better promote kinematic techniques which are less likely to result 

in athlete injury. However, these techniques will also be reliant on the unique physical impairments and 

capabilities of each athlete. Furthermore, this study examined a simplistic approach to the diagnosis of 

athlete injury, focusing solely on increased joint moments being the causative factor, without 

consideration of interaction effects with other performance aspects. It is also plausible that additional 

factors, including highly consistent techniques (repeatedly straining the same tissues), may also 

contribute to injury, and should be explored further.  

It is acknowledged that the simulation of only the right-hand side of the body is a limitation of this 

study, as temporal asymmetries have been observed for both athletes. Verified musculoskeletal models 

of a full upper extremity, are currently not available within the OpenSim environment. Both athletes 

exhibit complete spinal cord injuries, with less pronounced asymmetries as compared to athletes with 

incomplete spinal cord lesions. Additionally, both athletes are competitive in classifications having full 

physical function in their upper extremities. Therefore, in terms of the musculoskeletal model 

definition, it can be inferred that there is a reasonable agreement between the left and right limbs, and 

it is unlikely that the reported kinematic parameters would vary largely. 

Lateral rotation of the torso occurs throughout the motion, with the magnitude of this potentially 

exceeding what is observed in video data (Figure 7.5). While this rotation may be partly attributed to 

athlete asymmetry, it may also be a consequence of only modelling the right limb. No reaction loads 

were applied to the left shoulder. Movement in this plane could have been locked within the OpenSim 

modelling environment (restricting its motion to two dimension) to remove this error, however, was 

not desirable as it would mask any rotations caused due to asymmetries.  

 

Figure 7.5: Torso rotation to the right side during propulsion. The dashed line between the centre of spine and sternum. 

 



 

 

169 
 

Multiple smaller models can be carefully amalgamated to create a larger model. For example, the 

OpenSim Upper Extremity (top left),164 Wrist 331 and Lower Extremity model 332 can be combined to 

estimate the 3D joint reaction loadings under wheelchair propulsion (Figure 7.6). As the Upper 

Extremity and Wrist model were only created for the right limb, the assumption of limb symmetry is 

required for the development of the left limb. As different generic models source input parameters 

from different sources, it is possible that inconsistencies will exist between each of the different models. 

Future research is required to analyse the plausibility of this approach. 

 

 

 

 

 

 

 

 

Figure 7.6: Amalgamation of existing verified models, including the Upper Extremity (top left),164 Wrist 331 and Lower Extremity 332 to produce a 

full body model.  

 

Another limitation with this study was that the input force estimates presented in Table 7.1 and  

Table 7.2 are much larger than what is presented in the literature and based on the linear extrapolation 

of the force-velocity plot presented in Figure 4.26. The large error may fundamentally be a consequence 

of extrapolating the methodology which demonstrated promising reliability for a low impact and speed 

gait motion, to a far more ballistic motion of wheelchair racing.  

Further investigation into the source of errors also revealed an error introduced during the calculation 

of the centre of mass accelerations in OpenSim. While the independent scapula-humeral rhythm in the 

Wu Shoulder Model was considered an advancement to what was in the Upper Extremity Dynamic 

Model, it was revealed that it might have contributed to the large over-estimation of forces. As can be 

seen in Figure 7.7, the scapula moves away from the thorax near the release point. It is possible that 

this error is also the result of the magnitude of increased scaling.  
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Figure 7.7: Scapula movement during propulsion from a top view (top) and rear view (bottom). Data is from Athlete J (Section 7.2). 

 

For the athletes in this research, the torso segment masses were up to 1.70 times larger than the generic 

model (Section 6.4). A sensitivity study was performed on how important the scaling of the specific 

clavicle and scapula masses are to the overall reliability of the simulation (Appendix C.2). Increases of 

up to 7.61% in joint reaction moments resulted from a reduction in scapula mass by 10%. Therefore, 

the increase in torso mass in the musculoskeletal model of wheelchair racing athletes may be influential. 

Locking the motion of the scapula onto the torso (thus removing the independent scapulohumeral 

rhythm), significantly reduced the magnitude of the centre of mass accelerations, which lead to a 

reduced input force (Figure 7.8). Although still higher than what would be anticipated from Figure 

4.27, it is more reasonable. Additionally, locking the motion of the scapula also prevented the errors 

associated with the movement of the scapula away from the torso (Figure 7.6). Although the high 

magnitude of estimated forces used in this research may have impacted the statistical significance of 

the findings, as it was a systematic error, it is not anticipated that the overestimation of input forces 

would have impacted the trends identified. Thus, there is still merit in completing a coupled kinematic 

and computational modelling analysis, particularly when input forces of appropriate magnitude are 

included.  
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Figure 7.8: Comparison of reaction force estimates for unlocked (top) and locked (bottom) scapulothoracic joints, which resulted in the large 

overestimation of error in the results for Athlete I at 27 km/hr. 

 

It is possible that errors may have been further emphasised by the high stiffness at the hand-pushrim 

interface due to the negligible damping provided from the use of thermoplastic gloves. This may have 

increased marker acceleration upon contact, which may have then propagated through to the 

calculation of the centre of mass accelerations of each of the limb segments. This can be observed 

from the instantaneous peak FRESULTANT from the ‘locked’ condition in Figure 7.8, which may be 

eradicated through further data filtering. 

 

7.2.5 CONCLUSION 

This study has demonstrated the potential impact of using a coupled kinematic and modelling approach 

as a performance assessment tool to better ascertain relationships between kinematic technique and 

injury. Increased shoulder loading is a compounding effect of numerous kinematic parameters, with 

clear differences observed in the kinematic strategies utilised by the athletes in this study. By coupling 

regular kinematic feedback with a biomechanical model, it is possible to balance the performance and 

injury-risk requirements of propulsion.  
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7.2 INFLUENCE OF CUSTOMISED SEATING INTERFACES ON LOWER 

EXTREMITY WHEELCHAIR RACING KINEMATICS: A CASE STUDY 

7.2.1 INTRODUCTION 

Optimising the athlete-wheelchair interface is critical for enhancing performance, and is achieved 

through best matching wheelchair geometry to unique athlete anthropometry. When buying a 

wheelchair, athletes can manipulate configuration parameters to best suit functional capacity. For 

example, athletes with reduced balance require higher knee placement, which is achieved with shorter 

seating (cage) depths.6 However, the level of customisation in commercially available chairs does not 

always appropriately accommodate the anthropometric variations resulting from specific impairment. 

As a consequence, athletes may not have the stable base of support required for optimal propulsion.19 

The optimisation of an entire wheelchair to match unique athlete geometry is both time consuming 

and costly and precludes replacements to accommodate growth. The use of assistive technology can 

provide an efficient transition between the commercially available equipment and the unique athlete 

anthropometry. Customised seating interfaces provide a time and cost-effective solution, facilitating 

regular modifications to satisfy athlete growth. These solutions have been used extensively in clinical 

applications for enhanced stress distribution and injury prevention at the seating interface,74, 88, 222-224, 

228, 232, 333-336 however, these solutions have not been applied to sporting contexts. As such, this study 

examines how the inclusion of customised seating interfaces enhance athlete performance. 

The inclusion of additional material at the seating interface has the potential to be detrimental to 

performance for two key reasons. Firstly, through the addition of increased aerodynamic resistance 

through the increased frontal area. Wheelchair racing athletes are subject to aerodynamic forces based 

on the high speeds they reach, with the kneeling posture adopted by wheelchair racing athletes almost 

halving this frontal area.9 However, the customised seating interface does not contain much mass, and 

so the athlete does not sit much higher than in their conventional position. This also suggests that the 

centre of mass is not increased, which would make them more prone to increasing instability due to 

tipping. 

Secondly, benefits of performance interfaces extend to improved head control, posture, reach, grasping 

and functional capabilities,86 as well as allowing maximum force transfer through the entire range of 

motion.92 Enhanced reach and grasping capabilities are crucial for effective force generation on the 

wheel. It is desired that athletes can use the entirety of the vertical plane of the pushrim for greatest 

force transfer. 
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This study aimed to investigate the performance impact of customised seating interfaces on wheelchair 

racing propulsion technique. It was hypothesised that through enhanced conformity at the seating 

interface, performance would be enhanced. 

 

7.2.2 METHODS 

Athlete Selection 

A single male athlete (Athlete J: age = 40 years; body mass = 62.4 kg; wheelchair mass= 6.7 kg; 

impairment: incomplete spinal cord injury) participated in this study after providing informed consent. 

The athlete was an experienced athlete, regularly competing in para-triathlons at an international level. 

The athlete adopted a seated position in his own racing wheelchair which was fixed on a single-roller 

ergometer system (Section 5.4). 

  

Measurement System 

Propulsion kinematics pre- and post- customised seating interface intervention were captured through 

synchronised motion capture (sampling frequency = 250 Hz,) and high-speed video (Panasonic F15, 

Sampling Frequency 300 Hz, shutter speed 1/1000 s). Pre-intervention data was recorded using the 

athlete’s conventional seating configuration, while post-intervention data were collected when the 

customised seating interface was included. High-speed camera footage captured the rear and sagittal 

(dominant side) planes of motion. 

Markers were located on key anatomical landmarks, as well as the frame and wheel, (reflective tape 

rather than traditional spherical markers) to measure relative athlete and chair motion, as well as obtain 

an independent source of wheel speed, later converted to translational velocity. Marker placement was 

selected to be as unobtrusive as possible, while effectively measuring the range of motion at each joint. 

Four markers were located at the top of the seating bucket, where they were not obstructed and did 

not interfere with athlete motion. Five markers were located on each wheel: one at the centre, two 

located 180°apart on the pushrim, and two outer rim markers placed perpendicular to these. The cross 

arrangement (Figure 7.9) facilitates the use of relative trajectories to accommodate marker occlusion 

during wheel contact. Wheel based markers were made from flat strips of reflective tape to ensure no 

interference or loss of marker with motion.  
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Figure 7.9: Marker (circles) configuration on A) the wheelchair frame (four, front two occluded) and B) wheel (five, same on both wheels). 

 

A twenty-one marker-configuration was applied to the athlete (Figure 7.10): one marker on each of the 

shoulder (acromion process), elbow (styloid process), ulnar and radial wrist joints, and at the base of 

the 3rd metacarpal (adhered to the gloves). An individual marker was located on each of the C7 and 

T10 spinal processes, left and right posterior, superior iliac crests. On the lower extremity, one marker 

was located on each of the greater trochanters, knee, heel and big toe. Gaps in kinematic data (<25 

ms) were interpolated using a cubic-spline interpolation. Despite cluster based marker configurations 

being more commonly implemented in modern literature than joint based, much of the modern 

literature regarding wheelchair kinematics adopt a plug-in marker-set approach.262, 337 

 

 

Figure 7.10: Motion capture marker placement on an athlete. 

 

A B 
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Experimental Propulsion Task 

A period of at least 15 minutes was provided to athletes before data collection to perform a self-

directed warm up and acclimate with ergometer propulsion. Two stationary starts and steady-state trials 

at race pace (32 SPM) of 20 s were performed, with 2 minutes active recovery between trials, with the 

short duration of trials ensuring potential effects of fatigue on kinematic patterns were minimised. For 

the steady-state trial, data collection commenced after the athlete demonstrated consistent propulsion 

at speed, as determined through a velocimeter (Garmin Edge) located on the wheelchair frame. The 

three-dimensional kinematic data were filtered with a fourth-order Butterworth low-pass filter, zero 

lag, and a 7 Hz, - 6dB cut off frequency,262 and processed using methods described in Section 4.2. 

It is acknowledged that the use of the rollers is a limitation of the study. Biomechanically, it has been 

demonstrated that ergometers do not completely reflect the biomechanical and physiological 

requirements of propulsion.183 For example, the lower rolling resistance means it is easier for athletes 

to accelerate, and as the wheelchairs are constrained to the rollers, athletes can neglect all steering 

requirements. However, findings from Section 5.4 demonstrated that a treadmill did not accurately 

represent overground propulsion, and hence as testing was refined to a laboratory (for the use of 

motion capture), rollers were used. These are still commonly used training tools suggesting their 

biomechanical relevance. Results were purposefully presented as relative comparisons, as it was 

assumed that any biomechanical variation introduced into the testing protocol would be consistent 

across both conditions. 

 

Musculoskeletal Model 

Computer simulations utilising the Wu Shoulder Musculoskeletal Model330 were performed in 

OpenSim.133 The musculoskeletal model was adapted to incorporate athlete-specific segment mass 

(Section 6.3). No DXA data for this athlete was available in the prospectively maintained database 

identified previously. The collection of DXA data for this athlete was not feasible. Upper extremity 

body mass distribution was estimated from the average of the body mass distribution of three male 

athletes (Athlete K, Athlete L, and Athlete M). Segment masses were calculated based on multiplying 

the body mass distribution of segments against the measured athlete mass value. While it is 

acknowledged that this is a limitation, as none of the athletes had visible impairments to their upper 

extremity, were all male, and were all elite athletes, any errors introduced should be minor. 

The generic model segment mass and inertia parameters were scaled by 1.29x for the thorax, clavicle 

and scapula, 1.51x for the humerus, 1.84x for the ulna and radius and 1.47x for the hand. As the 
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findings in Section 6.4, the maximum isometric force generating capacity upper extremity 

demonstrated close agreement with the difference in segment mass of the thorax with the generic, 

muscles were uniformly scaled by 1.3x. It is acknowledged that the scaling factor is lower in this study 

than what was presented in Chapter Six (1.50x for Athlete I and 1.7x for Athlete E). This can be partly 

attributed to the use of different models between Chapter Six and Chapter Seven.  

 

Statistical Analysis 

Asymmetries in the lower extremities were deduced through statistical significance between the 

translations of the left and right limbs. Independent samples t-test were performed on cycle-based peak 

data between left and right markers in all three directions (AP, ML, V). All statistical calculations were 

performed using IBM SPSS Statistics 24 Software for Windows. 

 

7.2.3 RESULTS 

Unwanted translations of the lower extremity and torso were minimised through the inclusion of 

customised seating interfaces (Table 7.4). Pre and post designates performance prior to and after the 

inclusion of a customised seating interface, respectively. PSIS and knee marker motion was reduced by 

59.42% and 41.46% respectively, with lateral translation of the spine reduced by up to 34.28%. 

Statistical significance was observed between the motions of all limbs between the old and new seating 

configurations. Statistically significant differences were observed for the toe (Race Pace: AP p = .000, 

Race Start: ML p = .004), knee (Race Pace: AP p = .000, ML p = .012, V p = .000, Race Start: AP  

p = .000), PSIS (Race Pace: AP p = .000, ML p = .000, V p = .000, Race Start: AP p = .008, V p = .000) 

and C7 (Race Pace: AP p = .000, V p = .000, Race Start: AP p = .019, ML p = .009, V p = .000). 

Statistically significant differences in symmetry were observed at the knee and toe only, with these 

primarily observed in the old seating configuration (Toe: Race Pace ML: p = .000, V: p = .000, Race 

Start V: p = .008, Knee: Race Pace ML: p = .000, V: p = .000, Race Start ML: p = .054, V: p = .008). 

Asymmetries were not mitigated within the new seating interface for Race Pace ML for both the toe 

and knee (p = .026 and p = .026, respectively).  

Asymmetry of the upper extremity was analysed through the use of cyclograms (Figure 7.11 and Figure 

7.12). It is clear that low asymmetries were present in the upper extremities with these being minimised 

through the inclusion of a customised seating interface. Greatest motions are present further down the 

kinematic chain, demonstrating the sensitivity of the motion. 



 

 

177 
 

Table 7.4: Changes in forwards knee motion between old and new seating conditions. Positive values indicate a reduction in movement (post).  

  Race Pace Race Start 

  Pre (mm) Post (mm) % Pre (mm) Post (mm) % 

Toe 

AP 10.5 ± 1.6 9.3 ± 1.1 11.8** 10.9 ± 2.2 9.1 ± 2.1 17.0 

ML 5.9 ± 3.3 8.1 ± 3.9 -36.2 5.6 ± 2.5 8.5 ± 3.3 -52.5** 

V 7.1 ± 2.9 11.7 ± 1.9 -65.3 6.6 ± 1.7 10.2 ± 2.0 -54.8 

Knee 

AP 12.9 ± 4.1 9.4 ± 1.1 26.8** 17.3 ± 3.9 10.1 ± 2.9 41.5** 

ML 6.0 ± 2.1 5.9 ±1.6 0.7* 6.8 ± 2.2 6.7 ± 2.3 0.9 

V 17.6 ±5.4 16.4 ± 1.7 6.5** 21.5 ± 3.2 18.0 ± 3.6 16.2 

PSIS 

AP 30.4 ± 15.5 12.4 ± 2.6 59.4** 41.8 ± 7.2 23.1 ± 8.3 44.7* 

ML 8.4 ± 3.3 7.9 ± 2.1 6.5** 9.4 ± 2.6 9.2 ± 2.6 2.7 

V 22.9 ± 3.5 21.8 ± 2.2 4.4** 23.7 ± 3.1 25.9 ± 6.6 -9.2** 

C7 

AP 41.9 ± 19.9 19.4 ± 5.9 53.8** 63.0 ± 9.1 36.5 ± 11.5 42.0* 

ML 13.7 ± 5.4 11.6 ± 7.5 15.2 17.0 ± 8.2 11.1 ± 4.1 34.3* 

V 129.8 ± 23.1 129.6 ± 8.3 0.2** 126.8 ± 15.5 128.5 ± 33.5 -1.3** 

* denotes p < .05, ** denotes p < .001

 

Figure 7.11: Cyclograms demonstrating reduced asymmetries at the hand during steady state conditions due to a customised seating interface. 
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Figure 7.12: Cyclograms, demonstrating reduced asymmetries at the hand and elbow through the inclusion of the customised seating interface 

under race start conditions. 

 

Clear variability was observed between the old and new seating conditions for both steady state  

(Figure 7.13) and starting motions (Figure 7.14). However, there were no considerable increases in 

peak moment in any of the modelled degrees of freedom, suggesting that the use of customised seating 

interfaces do not increase the risk of athlete injury. It can be seen particularly for the starting motion 

(Figure 7.13), that the distribution of data post-intervention was more normally distributed about 0 

(Shoulder Plane Moment, Shoulder Reaction Moment) than pre-intervention. Additionally, there is a 

more symmetric loading between the left and right hands, in line with the reduced asymmetries 

observed from the analysis of the kinematic data. A higher magnitude of discrete data points from the 

post-intervention case, however, have a higher absolute value than was observed with the pre-

intervention data, however as can be seen in Figure 7.13 and Figure 7.14, the occurrence of these were 

rare, suggesting they are movement artefact errors and can be neglected. 
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Figure 7.13: Violin plots demonstrating joint reaction moments differ between left (blue) and right (yellow) limbs during steady-state motion. The 

width of the violin plot for a particular moment indicates its relative frequency in the distribution.  

 

 

Figure 7.14: Violin plots demonstrating joint reaction moments differ between left (blue) and right (yellow) limbs during a starting motion. 

 

Performance was observed to have a 3.7% improvement in mean race time since the inclusion of the 

customised seating interface. Figure 7.15 demonstrates the individual and mean performance times in 

the eight international competitions immediately before and after the inclusion of the seating interface. 

Improved performance translates to 0.36 s over 5,000 m. 
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Figure 7.15: Performance impact of customised seating interfaces on performance. Dashed lines indicate mean time. Values are omitted to retain 

athlete anonymity.  

 

7.2.4 DISCUSSION 

This study evaluated the performance impact of a customised seating interface for a single athlete. 

Customised seating interfaces were demonstrated to effectively increase the conformity at the seating 

interface, as demonstrated through the reductions in unwanted lower extremity movement. 

Additionally, lateral translations of the spine were reduced. No significant increases in joint loading 

were observed, suggesting the altered kinematic patterns acquired through the use of customised 

seating interfaces does not increase the risk of the athlete acquiring an injury risk. Finally, performance 

benefits were observed through a 3.7% reduction in competition time, which has a significant impact 

on race outcome. This study only investigated the seating interface, with no modifications to the 

existing wheelchair frame made.  

The athlete in this study demonstrated lower extremity bilateral asymmetry, suggesting that the results 

from this study are greater than what may be observed across the whole population. However, based 

on the uniqueness of each athlete’s impairment, their requirement on their equipment varies largely. 

Although the case study approach in this study cannot be formally generalised across the entire 

population, the findings of this study demonstrate the potential performance impact of customised 

seating interfaces.  

Viscoelastic foam was the preferred material selection in this research. However, a problem with 

commonly used viscoelastic foams is that they lose their supportive properties with wear over time.91 

The specific manufacture of customised seating interfaces was outside the scope of this research. 

Further optimisation into material selection is justified for the future. 

It was demonstrated in this study that lower extremity motion was substantially reduced following the 

inclusion of a customised seating interface. Although this is theoretically reducing the unwanted 

slipping and frictional rubbing motions which are not contributing to movement, previous literature 
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has demonstrated the potential use of the lower extremity as a form of leverage to gain a biomechanical 

advantage in propulsion.338 As such it is suggested that the specific density of stiffness of foam may be 

related to the functional capacity of the lower extremity, and hence needs individual consideration. 

Further, the customised interface may need customisation for the race course itself. For example, 

performance times can be impacted by external factors (such as wind), as well as race geometry, with 

courses having tighter turns may require more support and control. 

A key performance outcome of this study is that reductions in asymmetry (albeit minor) were observed 

immediately. From a skill acquisition perspective, it is possible that the values presented in this study 

underestimate the actual changes, which the athlete would experience after appropriate acclimation. It 

is currently unknown what the optimal acclimation period is. However, it is theorised that this is of the 

magnitude of months. However, the benefits of these immediate changes are that they require no 

cognitive control, and as such, the reduced asymmetries, and lower extremity translations are unlikely 

to be observed during competition or when fatigued. This suggests greater longevity in the outcome. 

The increased peak moments from the inclusion of the customised seating interface may not imply 

increased injury risk. As suggested in Section 7.1, normative databases need to be established to inform 

whether increases are as a consequence of greater force transmission and hence performance, or 

whether they indicate injury risk. As can be seen in the violin plots, the majority of the data is of much 

smaller magnitude than the peak values are presented in Table 7.1 and Table 7.2. This is indicative of 

errors with the estimation of input forces, which as mentioned in Section 7.1, may have high 

instantaneous peaks due to the ballistic nature of contact between a hard, thermoplastic glove, and the 

pushrim. 

The inclusion of muscular stresses would complement future research. A preliminary investigation into 

the modelling of muscular forces was performed in this research (Appendix C.3). However, based on 

the limitations surrounding the estimation of applied forces, and the propagation of errors throughout 

the OpenSim modelling workflow, the reliability of these estimates was questioned. Further refinement 

into the estimation of input forces (Section 4.5) and the scaling of the clavicle and scapula (Section 

C.2) are required to facilitate the estimation of these muscle stresses. 

 

7.2.5 CONCLUSION  

Customised seating interfaces can positively influence wheelchair propulsion motion. Performance 

increases are the result of reduced unwanted motions at the lower extremity, which lead to the 

increased symmetry of the upper extremity. Additionally, no substantial increases on joint reaction 
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loads (Figure 7.13 and Figure 7.14) were identified from the inclusion of customised seating interfaces, 

suggesting there is no additional risk of injury from their use. 

 

7.3 IMPLICATIONS AND CONCLUSION 

Computational modelling provides an advancement on traditional video observation, or motion 

capture analyses. By coupling the kinematic patterns with estimated kinetic loading, it is possible to 

associate technical strategies with injury risk (Section 7.1), and the influence of athlete equipment on 

performance (Section 7.2). While the process of performing computational analyses is laborious, for a 

sport such as wheelchair racing, where minimal sports science has been performed, the understanding 

of techniques invoking injury is of critical importance. Further research is required in the development 

and validation of appropriate musculoskeletal models and methods for estimating input forces to 

improve the reliability of this process. 

 

Key Findings:  

 Customised seating interfaces improve athlete performance, through the reduction in 

unwanted lateral translations of the lower extremity. 

 Customised seating interfaces can improve whole body symmetry. 

 Joint loadings are not increased through the inclusion of customised seating interfaces. 

 Shoulder, elbow and torso angles can affect the loads acting at the shoulder. 

 Greater applied loads at the hand rim do not necessarily translate to the shoulder. 

 

Implications: 

 The degree of conformity should be analysed in more detail to match performance.  

 The level of performance impact may rely on the level of athlete impairment, and what 

anthropometric adaptions are present in the lower extremities.  

 Coupled kinematic and modelling studies can be used to balance the performance and injury 

risk requirements of propulsion. 

 Athletes can manipulate technique to ensure maximum force application, without injury risk. 

(E.g. High hand velocity at contact may reduce performance and increase injury risk). 

 A normative database may be established to highlight techniques which are more prone to 

injury.  
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CHAPTER EIGHT:  

CONCLUSION 
 

 

 

 

 

8.1 OVERVIEW OF THE EXPERIMENTAL CHAPTERS  

This research aimed to determine whether the inclusion of customised seating interfaces lead to 

improve the performance of wheelchair racing athletes. The performance was analysed using a 

computational modelling approach based on its ability to provide an understanding of both the 

kinematic advantage and injury risk of a specific technique. Computational modelling approaches are 

not novel methodologically in the analysis of sporting motions. However, they are for applications 

involving wheelchair athletes. The fundamental musculoskeletal model used typically reflects the 

musculoskeletal parameters of able-bodied, non-athletic populations, who are more conventionally 

analysed using these processes. The development of subject-specific musculoskeletal models 

representative of an elite wheelchair racing population was required to address the fundamental 

research aim. In addition to the musculoskeletal model, two experimental data sets (kinetics and 

kinematics) were used to drive the computational modelling approach. An exploration into practically-

viable instrumentation solutions capable of measuring in-field performance (both propulsive and 

reaction forces) for input into the computational model was also required, as no commercially-available 

systems are currently appropriate for use with wheelchair racers. This can be reflected in the four key 

aims of the research, with the interrelation between these presented in Figure 8.1. 
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 Understand how various aspects of wheelchair racing technique and equipment relate to 

performance. (Chapter Three) 

 Develop instrumentation tools capable of in-field data measurement. (Chapters Four and Five) 

 Develop a subject-specific, 3D computational model. (Chapter Six) 

 Quantify the mechanics of wheelchair propulsion using simulation. (Chapter Seven)  

 

 

A series of experimental investigations, resulting in six journal papers, two conference proceedings, 

and six conference presentations were performed to answer each of these objectives holistically. The 

key findings for each of the studies, which led to the overall assessment of customised seating interfaces 

on wheelchair performance are summarised as follows. 

 

8.1.1 UNDERSTAND HOW VARIOUS ASPECTS OF WHEELCHAIR RACING 
TECHNIQUE AND EQUIPMENT RELATE TO PERFORMANCE 

The effective integration of specialised equipment into athletic applications is an iterative process 

requiring concurrent research and contributions from a multidisciplinary team. To ensure resources 

are being maximised, it is hence important to understand the magnitude of the potential performance 

gains relative to other factors affecting performance such as technique and equipment. It was, 

Figure 8.8.1: Relation of key research aims to overrall research aim. 
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therefore, essential to understand whether aerodynamic strategies dominate performance (as seating 

cushions may increase frontal area) and whether customised gloves promote asymmetries.  

Some athletes elect to use customised thermoplastic gloves. These are commonly 3D printed based off 

the mould of a single hand, with the glove on the non-dominant hand being a mirror-image of the 

glove on the dominant hand. Athlete asymmetries were not found to increase through the use of these 

thermoplastic gloves. It can hence be assumed that the aetiology of athlete asymmetry is more so a 

consequence of athlete impairment and geometry rather than glove selection. This demonstrates the 

potential benefits of the use of customised seating interfaces for asymmetric athletes.  

While some sports are dominated by aerodynamics, findings from Section 3.2 demonstrated that 

aerodynamic advantage might be compromised in order to achieve maximum force transmission to 

the wheelchair, and hence acceleration. The marginal increase in seating height and hence frontal area 

resulting from the inclusion of a customised seating interface are henceforth not anticipated to be of 

detriment to performance. The findings from these two studies highlighted that the use of a customised 

seating interface might lead to practically meaningful performance gains. The key findings from 

Chapter are summarised in Table 8.1. 

 

Table 8.1: Key findings from Chapter Three: How important is the seating interface to athlete performance? 

Section Key Findings 

3.2 

 No significant differences were observed in the degree of symmetry between soft and no 

glove conditions.  

 Hard gloves only influenced the level of symmetry of the propulsive impulse. 

 Symmetry was more affected by the use of gloves for T54 athletes, as compared with the 

T34 classified counterparts. 

 

3.3 

 Female performance improved with better aerodynamic positions, however aerodynamics 

were less critical for males who may better overcome additional resistive forces due to 

enhanced strength capabilities. 

 Although aerodynamics were not identified as the winning factor for males, improved 

aerodynamics, with no compromise to power generating capabilities can increase the 

potential of winning. 

 Overcorrection of aerodynamic positioning may artificially increase impairment, meaning 

athletes must select a technique best suited to their capabilities. 
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8.1.2 DEVELOP INSTRUMENTATION TOOLS CAPABLE OF IN-FIELD DATA 
MEASUREMENT 

Wheelchair motion is the result of an effective transfer of force from the hands to the pushrims on 

the wheelchair wheels. Substantial literature has explored the optimisation of these interactions to 

improve movement efficiency or velocity for both manual wheelchair users and athletes alike. These 

studies are typically performed in laboratory conditions, with propulsive forces measured using a 

SMARTWheel. However, due to the influence of mass on performance, and the lightweight nature of 

wheelchair racing frames, the use of a SMARTWheel does not translate to the assessment of wheelchair 

racing performance. Consequently, contemporary methods of measuring the hand-pushrim 

interactions are required for use within the computational model in this research. For completeness, 

the reaction forces at the seating interface are also required for input into the computational model. 

These have not typically been considered in previous literature detailing the biomechanics of 

wheelchair racing, however, are commonly explored in clinical applications which aim to minimise the 

risk of manual wheelchair users attaining pressure ulcers through alleviating peak pressures.  

 

Propulsive forces 

A literature review revealed the practical inadequacies of the commonly-used, commercially-available 

wheel-based instrumentation solutions, and the need for new technologies. To ensure integration 

within the daily training environment for the maximal benefit to performance preparation, any 

developed instrumentation must not be an encumbrance to performance. It was preferred that 

instrumentation was able to be efficiently and reliably operated by coaches and biomechanists, allowing 

nationally-based performance assessment. This supported the development of performance-based 

assessment protocols for the rapid growth in the understanding of optimisation of wheelchair racing 

technique. IMUs formed the primary instrumentation tool in this research, based on their light mass, 

ease of mounting, accessibility and cost, and previous success in the kinematic monitoring of 

wheelchair propulsion. The limited application of IMUs in the literature previously, which was 

predominantly court-sport and manual wheelchair propulsion oriented, merited the exploration of their 

efficacy in wheelchair racing. 

Good agreement in contact timings was observed between IMU, video, and motion capture. The 

optimum placement location was on the frame, which was where the best results were achieved as 

determined by the best between method agreement. The IMU assessment approach facilitates an 

automated processing capability, which is an improvement to the currently used video analysis. An 

IMU located on the frame provided a robust solution across varied athlete and equipment 
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characteristics for this population sample. Detection reliability was positively associated with the SNR 

of the acceleration data. Therefore the use of IMUs may be limited for use with junior athletes or 

manual wheelchair users who have lower SNR (which is possibly due to lower stiffness equipment). 

Good agreement in kinetic parameters between IMU data was observed under steady-state motion, 

with data from most athletes following a linear force-velocity relationship against previous research. 

IMUs were ineffective when used with wheelchairs having spoked wheels. The performance was best 

for measurements in the direction of motion. Although exact agreement was not observed, the IMU 

can provide an effective tool in the in-field assessment of propulsion kinetics. However, based on the 

data processing approaches implemented within this research, IMUs are not yet appropriate for use in 

computational modelling, due to the compounding and propagation of errors throughout the analysis. 

The key findings of the individual studies summarised in Table 8.2. 

 

 Table 8.2: Key findings from Chapter Four: Instrumentation using IMUs. 

Section Key Findings 

4.1 

 IMUs are equally useful in identifying contact as compared with the ‘gold standard’ high-

speed video observation method. 

 IMUs provide a method which is less susceptible to parallax and perspective errors than 

the current ‘gold standard’ methodology. 

 The characteristic response of IMUs changed across placement locations. 

 

4.3 

 Release points were not always identified, as they were of comparable magnitude to the 

underlying noise of the signal. 

 Release points were identified when athletes performed an inefficient technique, meaning 

IMUs may still be useful in kinematic monitoring for performance preparation. 

 Reliability of the IMU improved with speed, gender, athlete classification and age. 

 

4.4 

 Automated analysis requires more sophisticated data analysis than raw signal detection. 

 Acceleration response differs between the wheel and frame, with further differences 

based on specific placement on the wheel. 

 The reliability of the IMU methodology is reliant on the inherent SNR. 

 

4.5 

 IMUs can reliably estimate propulsive forces in the forwards direction but are less reliable 

in estimating out of plane forces in both the mediolateral (due to wheel camber) and 

vertical directions. 

 The reliability of the IMU increases with steady-state speed monitoring as compared with 

starting motions. 
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Reaction forces 

The dynamic response at the seating interface of the wheelchair racing athlete has not been reported 

previously. Much of the literature detailing the biomechanical response of racing wheelchair propulsion 

has omitted the interactions at the seating interface, despite its importance frequently raised in the 

clinical literature involving manual wheelchair users. The gold standard measurement tool in this 

clinical research is a pressure mat. The translation of the use of pressure mapping technology from 

clinical to applied practice may have been limited by the vastly different geometries of the seating 

interface between wheelchairs used for ambulation, and racing wheelchairs.  

Several performance aspects of a commercially-available pressure mat were explored, and these 

revealed there were no problems in measuring the athlete-wheelchair interactions at the seating 

interface, even when foam cushions were used. Preliminary findings also revealed the dangerously high 

pressures athletes are exposed to, as well as the potential for competitive advantage through effectively 

leveraging through the seating interface. This highlighted the need for athletes to introduce customised 

seating interfaces as part of regular wheelchair configuration to dissipate peak stresses and lower the 

risk of the athlete obtaining a pressure-related injury. Other key findings are presented in Table 8.3.  

From a modelling perspective; the key finding was that for steady-state, linear propulsion (as performed 

in this research), the reactions at the seating interface were not dynamic, but quasi-static. Thus, these 

reaction forces could be simplified as being a proportion of total body mass.  

From a practical perspective, athletes demonstrated large within-trial variation in average pressure, 

peak pressure and contact area for the acceleration and agility (wheelchair rugby only) trials, suggesting 

the change in requirements of the seating interface for wheelchair athletes across different motions. 

This research suggests the need for greater individualisation of athlete-wheelchair seating interfaces to 

promote performance, as well as the importance of including these seating interactions in 

biomechanical analyses of wheelchair propulsion. Regular monitoring of pressure distribution and 

sport-specific demands will assist in wheelchair prescription and provide an improved understanding 

of individual seat design requirements associated with specific athlete impairments. 
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Table 8.3: Key findings from Chapter Five: Instrumentation using a pressure mat. 

Section Key Findings 

5.2 

 A commercially available pressure mat can measure pressure at the wheelchair seat, while 

not being an encumbrance to athletes.  

 Dynamic interactions occur at the seating interface which may impact performance. 

 The assumption of constant mass at the seating interface is only valid under linear, steady-

state propulsion. 

 

5.3 

 Implementation of a foam insert at the seating interface did not impede the recording 

capability of a pressure mat.  

 A minority of the sample size in this research currently use cushioned interfaces. 

 The inclusion of a foam insert at the seating interface altered athlete-wheelchair 

interaction, through a reduction in seating pressure (average and peak), and an increase in 

contact area.  

 

5.4 

 Pressure mapping technology can identify the direction of applied pressure at the seating 

interface. 

 Treadmill propulsion does not adequately represent the dynamic interactions at the seating 

interface compared to on-track performance. 

 Track steady-state and treadmill steady-state propulsion have similar variability, however, 

differ in absolute magnitude. 

 

 

8.1.3 DEVELOP A SUBJECT-SPECIFIC, 3D COMPUTATIONAL MODEL  

Computational modelling provides an advanced analytical tool which is capable of both analysing 

performances and understanding the associated injury risk of movement technique. The direct 

application of these approaches is limited by the dominance of parameters from able-bodied, and non-

athletic populations used in existing musculoskeletal models. Based on muscle loss from physical 

impairment, and hypertrophy, the physical anthropometry of wheelchair racing athletes was considered 

to differ substantially to the population samples these models are currently built upon. Due to the 

accumulation of errors in computational modelling, it is possible that the use of generic musculoskeletal 

models may invoke large errors, which would ultimately invalidate the results of a simulation. This 

research investigated the sensitivity of model predictions to increased personalisation of 

musculoskeletal models to more reliably analyse the influence of customised seating interfaces.  

The majority of parameters used in large-scale models (such as optimal fibre length) cannot be 

practically measured as part of a regular biomechanical analysis. The use of DXA scans provides an 

attractive alternative facilitating the estimation of subject-specific inertial parameters in a far less time-

expensive way than what is otherwise required from the processing of MRI scans, for example.  
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Substantial between-athlete body mass distribution variances (thigh mass between 7.8% and 22.4% 

total body mass), and between-limb asymmetries (< 62.4% segment mass; 3.1 kg) were observed. 

Compared to non-athletic able-bodied anthropometric data, wheelchair racing athletes demonstrated 

greater mass in the upper extremities (up to 3.8% total body mass), and less in the lower extremities 

(up to 9.8% total body mass). Computational simulations were sensitive to individual body mass 

distribution, with joint torques increasing by up to 31.5% when the scaling of segment masses 

(measured or generic) differed by up to 2.3% total body mass. These data suggest non-athletic, able-

bodied mass segment inertial parameters are inappropriate for analysing elite wheelchair racing motion 

and highlight the importance of the subject-specific modelling approaches.  

Artificially weakening a model through the under-definition of maximum isometric force-generating 

capacity of muscles presented physiologically invalid simulation estimates. This may be the 

consequence of the use of generic parameters for an athletic population. Artificially strengthening a 

model excessively (4.0x) also demonstrated physiologically invalid muscle force values. The ideal 

scaling factors were 1.5x and 1.75x for Athletes E and I, respectively, which was comparable to the 

relative difference in limb masses between DXA data and anthropometric data in the literature (1.49x 

and 1.70x). This finding suggests that DXA may be used to estimate the required scaling factors to 

enhance the reliability of simulations for elite wheelchair racing athletes. The key findings from the 

development of a subject-specific, 3D computational model are presented in Table 8.4. 

 

Table 8.4: Key findings from Chapter Six: Development of a subject-specific, 3D, musculoskeletal model. 

Section Key Findings 

6.2 

 The processing of DXA scans is subject to a defined intensity threshold, with bony 

segments found to be more sensitive. 

 The machine-default threshold protocol was the most accurate method investigated. 

 Errors in segment mass definition can alter system dynamics. 

 

6.3 

 Large between-athlete variation and between-population variation in body mass 

distribution were observed.  

 Generic scaling approaches based on able-body mass distribution, poorly estimated DXA 

obtained segment mass values of physically impaired athletes. 

 Differences in output joint torques were observed between subject-specific and generically 

scaled models. 

 

6.4 

 The use of DXA scans can assist in defining the maximum isometric force-generating 

capacity of wheelchair athletes. 

 Weakening a model (reducing maximum isometric force-generating capacity) provided 

physiologically invalid results for wheelchair racing propulsion. 

 Muscle activation changed as scaling factor was increased in a non-proportional fashion. 
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8.1.4 QUANTIFY THE MECHANICAL BENEFITS OF CUSTOMISED SEATING 
INTERFACES FOR WHEELCHAIR RACING ATHLETES 

Customised seating interfaces can improve conformity through increased contact area to reduce the 

incidence of pressure sore formation in manual wheelchair users. Despite the clinical benefits of 

customised seating interfaces, they are not yet commonly integrated into sporting wheelchairs. The 

findings from Chapter Five (a constant mass input can be used for the estimation of the reaction force 

at the seating interface for steady-state, linear propulsion), and Chapter Six (subject-specific 

musculoskeletal models) were used to drive the computational model to quantify mechanical 

performance of wheelchair racing (Chapter Seven). As the IMU was not suitable for use in the 

computational model, these were estimated using kinematic data. 

Competition performance improved by 3.7% after implementation of a customised seating interface 

for the athlete investigated. This is a practically significant finding, as it has been demonstrated that 

medals were attained within a time frame of 0.28% of the winning time for the women's T54 1,500 m 

race at the London 2012 Paralympics.200 Model predictions suggested that these performance gains 

may have been a consequence of increased propulsion efficiency resulting from the reduced lateral 

translation and unwanted movement in the seat. Additionally, despite the changes in posture invoked 

through manipulation of the seating interface, model predictions did not indicate significantly higher 

injury risk (as a consequence of enhanced joint loading and hence muscle strain). This suggests that 

the implementation of customised seating interfaces is both safe and effective and that they could start 

to be integrated into sports on a larger scale. As seating posture and hence spinal alignment are being 

altered, it is recommended that the introduction of these interfaces are performed in conjunction with 

multidisciplinary teams involving biomechanists, physiotherapists or occupational therapists to ensure 

safety and athlete wellbeing is upheld. The key findings from this aim are summarised in Table 8.5. 

 

 

                       Table 8.5: Key findings from Chapter Seven: Quantify the mechanics of wheelchair racing propulsion using simulation. 

Section Key Findings 

7.1 

 Different athletes employ different kinematic strategies. 

 Shoulder, elbow and torso angles can affect the loads acting at the shoulder. 

 Greater applied loads at the hand rim do not necessarily mean greater impact loads at the 

shoulder. 

 

7.2 

 Lateral translations of the lower extremity can be reduced when using customised seating 

interfaces. 

 Customised seating interfaces can improve whole body symmetry. 

 Joint loadings are not increased through the inclusion of customised seating interfaces. 
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8.2 CONTRIBUTION TO SCIENTIFIC UNDERSTANDING AND FUTURE 

DIRECTIONS 

Given the lack of computational modelling of wheelchair racing athletes previously identified in the 

scientific literature, this research has contributed significantly to the scientific understanding in this 

field. Additionally, the findings and tools developed are applicable to biomechanists, coaches and 

athletes for improved performance preparation, which may lead to improved performance outcome. 

Many of the findings presented in this research are preliminary and can be further developed through 

ongoing research to ensure maximal performance gains are delivered to the athletes. 

The evidence of the ergonomic benefits of customised seating interfaces on elite wheelchair racing 

athletes was demonstrated in this research. Although the research presented in this research has 

substantially contributed to the field of study, some further questions have evolved which require 

continued evaluation. Repeat investigations should be completed with a larger population sample, 

possibly inclusive of a more diverse range of physical impairments, both within wheelchair racing and 

across other wheelchair sports. However, some methodological limitations were present within this 

research, which should be addressed prior to the large-scale evaluation of wheelchair racing propulsion 

using computational modelling approaches.  

The research was predominantly constrained to wheelchair racing. As sporting wheelchairs are 

performance driven, there are substantial differences in designs. For example, wheelchair sports 

involving contact (Rugby and Basketball) both require much higher frame stiffness than is seen for 

wheelchair racers. Additionally, the kneeling position wheelchair racers adopt, and the use of a pushrim 

differs from other wheelchair sports. As such, it is anticipated that the response may vary across 

different wheelchair sports, and should be further investigated under conditions relevant to each sport. 

Nonetheless, wheelchair racing has been established as one of the most popular events at the 

Paralympics,245 suggesting that this constraint does not limit the relevance of the obtained results. 

Athletes were from classifications where there was no physical impairment to the upper extremity to 

maintain some homogeneity across modelling results. Use of more impaired athletes is likely to require 

more substantial adaption in the model, and thus should be performed as an extension to this research. 
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8.2.1 UNDERSTAND HOW VARIOUS ASPECTS OF WHEELCHAIR RACING 
TECHNIQUE AND EQUIPMENT RELATE TO PERFORMANCE 

This research provided the first study to quantify the aerodynamic strategies used by wheelchair racing 

athletes in a competition setting and the impact of gloves on athlete asymmetry. Findings from Chapter 

Three justified the relevance of customised seating interfaces for wheelchair racing athletes (and hence 

the premise of this research), as the findings from both studies indicated the performance benefit of 

customised seating interfaces. 

Further research into understanding how all of the elements of wheelchair racing (technique and 

equipment) is required to develop athlete performance in the sport further. The impact of structured 

technical interventions and customised seating solutions can be investigated using the instrumentation 

strategies presented in this thesis. Currently, a relatively homogenous athlete sample was used for the 

investigation of injury risk using computational modelling approaches. There are likely to be multiple 

mechanisms of action which promote injury, and a more diverse population sample may help 

differentiate between some of these effects due to the variation in function. Additionally, a broader 

population sample would further identify kinematic strategies which may promote injury risk as a 

consequence of high loading at the shoulder.  

Aerodynamic testing of athletes with and without the use of customised seating interfaces was outside 

the scope of this project. While it is anticipated that changes in the frontal area from the inclusion of 

customised seating interfaces will be marginal, quantifying the increased drag forces will be beneficial. 

 

8.2.2 DEVELOP INSTRUMENTATION TOOLS CAPABLE OF IN-FIELD DATA 
MEASUREMENT 

The first-stage investigation conducted as part of this research explored the ability of IMUs to estimate 

propulsion forces, which are critical in determining the efficiency of the technique. The solution itself 

provided a lightweight and practically viable instrumentation tool, which demonstrated the potential 

to estimate the most practically significant propulsive forces.  

Despite its simplicity, the application of a pressure mat at the seating interface provided many novel 

findings, substantially increasing the understanding of the interaction between wheelchair racing 

athletes and their equipment. Prior to the findings of Chapter Five, the interactions between the athlete 

and wheelchair were assumed to be quasi-static. Therefore, Chapter Five contributed to the 

understanding of the dynamic nature of the athlete-wheelchair interface during non-linear or non-

steady-state propulsion. From this research, it is now understood that athletes can gain mechanical 

leverage from the operational use of one of their legs.  
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Of clinical importance was the high peak pressures at the seat of wheelchair racing athletes. Although 

quantification of their absolute magnitude was precluded by sensor saturation within the system used, 

the regions of high pressure were above the theoretical limit of tissue viability, highlighting the potential 

injury risk to athletes, if no preventative mechanisms are established.  

The combined findings of Chapters Four and Chapter Five have demonstrated how commercially 

available sensors can be used to develop a comprehensive understanding of the whole-body dynamics 

of wheelchair racing propulsion. 

The main limitation of this research was the estimation of the propulsive forces input to the model. 

Fundamentally, the development of instrumentation tools capable of measuring in-field propulsion 

forces for use in computational modelling is still required. The estimation of propulsive forces using 

kinematic data resulted in propulsive forces higher than what is currently presented in the literature. 

Further refinement of this methodology, particularly coupled with validation against the clinical gold 

standard instrumented wheels (SMARTWheel) is suggested. Through future validation and refinement 

of data processing, IMUs may be an effective instrumentation strategy for the collection of in-field 

performance data of wheelchair racing athletes. 

Minor limitations in available instrumentation impacted on the processing of measured data, however, 

they did not prevent their collection. As such, future research may potentially benefit from the use of 

IMUs with a variable sensing range, which is more representative of the requirements of elite 

wheelchair propulsion or a pressure mat which allows the fragmentation of the seating area into sub-

sections, such as the left and right sides to better measure athlete symmetry, or understand the direction 

of pressure application and centre of pressure location. Additionally, although the pressure mat used 

in this research was deemed sufficient in recording pressures at the seating interface, use of more 

sophisticated technologies which allow more comprehensive data analysis would be beneficial.  

 

8.2.3 DEVELOP A SUBJECT-SPECIFIC, 3D COMPUTATIONAL MODEL  

This research presented the first anthropometric dataset of elite wheelchair racing athletes, and how 

DXA scans can be used to provide a better estimate of the maximum force-generating capacity of elite 

athletes. Although not novel methodologically, this was the first research to use DXA scans to obtain 

subject-specific body segment inertial parameters of elite wheelchair racing athletes. This research 

quantified the magnitude of difference in body mass distribution between elite wheelchair racing 

athletes and the generic counterparts in which musculoskeletal models are traditionally derived from. 

Based on the associated modelling error when using generic musculoskeletal models, it is suggested 
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that subject-specific modelling approaches are required for the computational analysis of wheelchair 

racing propulsion. The methods presented in this research can inform future researchers how to adapt 

open-source musculoskeletal models to represent elite wheelchair athletes, which will considerably 

improve the reliability of future biomechanical analysis of racing wheelchair propulsion. 

Accurately defined musculoskeletal models that can provide a three-dimensional description of the 

mechanics of movement, which are required based on the complexity of the human movement system. 

While the sophistication of these approaches is continually improving, the limitations on measuring all 

relevant model parameters mean a musculoskeletal model will always be a simplification of the real 

system, and errors are likely to result from mathematically optimising neurological control systems.  

The adaptations to body segment inertial parameters and maximum isometric force generating capacity 

provide the foundation for the adaptation of a musculoskeletal model for use with wheelchair racing 

athletes. These parameters formulate a baseline for developing more comprehensive models, which 

although they have demonstrated the benefits of the approach, are not without their limitations. For 

example, perturbing all maximum isometric force generating parameters by the same percentage does 

not approximate the effect of personalisation. Future research should detail more specific scaling 

strategies. Before any future conclusions are drawn from the computational modelling approach of 

wheelchair racing athletes, further model validation is required, including the integration of EMG. 

While these cannot validate muscle forces themselves, previous literature has used them to verify 

activation patterns of muscles.  

Ultimately a predictive biomechanical model incorporating the aforementioned subject-specific 

parameters could be developed to aid the fitting process of customised seating interfaces based on the 

understanding of associated propulsion kinematics and joint loadings.   

 

8.2.4 QUANTIFY THE MECHANICAL BENEFITS OF CUSTOMISED SEATING 
INTERFACES FOR WHEELCHAIR RACING ATHLETES 

The findings presented in Chapter Seven have provided the first literature quantifying the mechanical 

benefits of customised seating interfaces. While no definitive conclusions can be made as only a case-

study was performed, the detectable differences in performance times provide the rationale for further 

research into the optimisation of these for enhanced athlete performance. The need for coupled 

kinematic and computational biomechanical analysis approaches to correlate performance with injury 

risk to best inform technique changes was also highlighted. 
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An extension of the case study performed in Chapter Seven would improve understanding of how 

seating interfaces can impact a range of athletes. The athlete investigated presented with an incomplete 

spinal cord injury, having large asymmetry between leg masses. These findings imply that athletes 

having a greater physical impairment in the lower extremity will receive more benefit from customised 

seating interfaces. The extension to other wheelchair sports would also be beneficial.  

To help explore the magnitude of the influence of customised seating interfaces, where feasible, future 

studies should aim to do more testing under competition scenarios. The rapid development of 

technology has meant outdoor motion capture systems are now available. This would address the 

limitations surrounding the mode of propulsion (which was identified in Chapter Five), and also better 

understand how athletes are interacting with the seat during these key acceleration phases.  

The interaction between athletes and their wheelchairs differed, with further variation observed for 

different modes of propulsion. While research has demonstrated that customised seating interfaces can 

improve performance, the degree of performance gain can still be optimised. Material selection may 

serve as a critical element to delivering a seating interface which provides adequate support, yet 

maintains the natural ability of the athlete to generate momentum, and consequently requires further 

research. The change in athlete performance with the wear of the cushion should also be monitored. 

Development of an extensive database would be useful to understand which aspects of performance 

can translate to enhanced performance, and which may invoke injury risk. For example, apparent 

differences in shoulder and elbow angle were observed between the two athletes. Perhaps this also 

relates to wheelchair configuration parameters such as camber and pushrim diameter.  

 

8.3 CONCLUDING REMARKS 

This research has shown that customised seating interfaces have a measurable beneficial performance 

impact for wheelchair racing athletes. Customised seating interfaces were observed to have a 3.7% gain 

in performance time, which has major implications in elite sport. Additionally, athlete asymmetries 

were reduced, which resulted in improved movement efficiency, with kinematic improvements seen 

immediately with the individual. 

The benefits of the use of holistic and subject-specific computational modelling approaches for the 

assessment of wheelchair racing performance has also been demonstrated throughout this research. 

The changes in muscle and joint reaction moment prediction as a result of individualising 

musculoskeletal models highlight the necessity to use subject-specific modelling approaches in future 
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wheelchair racing research. The feasibility of this is improved through the use of DXA scans, which 

offer a more simplified, and practically viable approach to estimating body segment inertial parameters 

than other medical imaging analysis techniques. Although the full extent of personalisation (due to 

both impairment and training) are difficult to include, the steps presented in this research offer an 

advancement to the generic modelling approaches currently available. 
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Computational modelling has a sequential workflow, with this research utilising three computational 

stages: inverse kinematics, inverse dynamics and static optimisation (Figure A.1). At each analytical 

step, a series of matrix operations are performed incorporating the movement data collected in 

Chapters Four and Five and incorporating the subject-specific physical parameters introduced in 

Chapter Six. This chapter provides an overview of each of the calculation steps used within the 

computational modelling workflow; inverse kinematics (Section A.1), inverse dynamics (Section A.2) 

and static optimisation (Section A.3). Common error sources for each of these calculation processes 

are documented within each of these sections, with additional comments as to how these potential 

error sources were controlled within this research.  
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Figure A.1: Flowchart of the modelling process demonstrating the required inputs (left, dark boxes), the processes (outlined boxes), and the 

resulting outputs (right, light boxes)... 

 

A.1  INVERSE KINEMATICS 

Inverse kinematics calculations estimate the requirements of all the anatomical structures (e.g. limb 

segments) required for producing the observed motion, subject to the constraints imposed through 

the defined boundary conditions.133 A generalised set of joint motions (angles, velocities and 

accelerations) is computed for each time stamp of experimental data. The fundamental inputs for 

inverse kinematics include the kinematic marker trajectories (obtained using motion capture) and the 

musculoskeletal model (Figure A.2).  

During this process, the three-dimensional coordinates of marker position are resolved onto the known 

landmarks on rigid body segments.112 The orientation of the musculoskeletal model is established using 

a global weighted least-squares optimisation method. This minimises the distances between the 

generalised coordinates of the rigid segment virtual markers and the recorded positions of the 

experimental markers.133, 151 The weighting for each marker can be manually adjusted for each 

simulation, such that greater weighting is placed on makers with a known location (such as near a bony 

landmark). For cluster based marker systems, lower weighting can hence be placed on the segment 

clusters, which have a more arbitrary location. 
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Figure A.2: Required inputs (left) for inverse kinematics calculations and the resulting output measures (right).  

 

The presence of modelling error and uncertainty are associated with a loss in modelling accuracy.339 

For example, errors associated with the pre-processing of data has the potential for compounding in 

later calculations, resulting in the misclassification of information.151 Additional examples of the error 

and sensitivity of model outputs to marker placement are summarised in Table A.1. For inverse 

kinematics results, errors can be established in both the development of the musculoskeletal model 

and in the collection and the processing of kinematic data. Consequently, methods for the development 

of subject-specific musculoskeletal models were explored in this research (Chapter Six) to minimise 

potential error sources.  

Marker placement (both physical and theoretical) serves as the most prominent error source for the 

joint angles calculated using inverse kinematics. Inaccuracies of surface marker-based model-derived 

kinematics predominantly result from the presence of soft tissue artefacts and model inadequacies.150, 

151, 340 Soft tissue artefacts are the result of relative displacement of the marker to the bony landmark 

in which it was placed and is most commonly due to the presence of skin or adipose tissue.153, 341 While 

the effects of soft tissue artefacts on kinematic variables have been well characterised and recognised,342 

the resulting accuracies of the surface measured model derived kinematics remain relatively unknown. 

This gap in knowledge may result from the activity-dependent nature of soft tissue artefacts, which are 

more pronounced at higher speed motions.150, 343, 344 OpenSim endeavours to minimise the effects of 

soft tissue artefacts through incorporating residual measures in their underlying formulations.151 This 

residual term is calculated for each marker within OpenSim and represents the difference between the 

placement of the assumed and virtual marker locations. 
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Table A.1: Observed kinematic uncertainties and impact on the model and ensuing calculations. Table initially presented in Prinold et al. 345 and 

has been extended in this review. Gaps in the table occur when model output sensitivity was not explicitly mentioned in the literature and does 

not indicate results are immune to these considerations. 

Parameters 

And Methods 
Accuracy And Error Sensitivity Of Model Output Reference 

Scapula and 

Clavicle 

Kinematics 

Scapula ±4˚ and clavicle ±2˚.346, 

347. 

The optimisation of kinematics 

is a significant factor that is 

poorly studied. 

Primary input, thus high.100, 162, 348 

Static scapula compared with 

regression,349 segment lengths, 

scapula kinematics,100 and scapula 

lateral rotations178 have shown a 

significant effect on model outputs. Prinold et 

al. 345 
Large Bone 

Kinematics 

Humerus, forearm and thorax 

±2˚. 

Palpation error.350 

Sensitive when used as a constraint 

for the scapular kinematics. 

Scapulothoracic 

Gliding Plane 

A good fit is shown for original 

geometries.348 

Scalability is unclear. 

Sensitive when used as a constraint 

for the scapular kinematics.100 

Hip, Knee and 

Ankle 

Kinematics 

Experimental data tracked 

within a maximum of 3˚. 
 

Liu et al. 
121 

 

Maximum RMS deviation of 

1.5˚ for all joint angles over the 

gait cycle. 

 
Hamner et 

al. 120 

RMS differences are exceeding 

15˚, with averages around 4˚. 
 

Lathrop et 

al. 151 

RMS differences during running 

were 9.1±3.2˚. 
 Li et al. 150 

Reduction of 

Noise 

White noise in the range of 6-9 

mm. Improved the accuracy of 

joint moment estimations when 

residuals removed. 

For a 9 mm SD noise, the moment 

estimation error was reduced by 

approximately 59% at the lower 

back and by 23% at the hip 

(flexion/extension moments). 

Remy and 

Thelen 351 

Confidence 

Bounds in Gait 

The combined effect of 

uncertainty resulted in mean 

confidence bounds (5-95%) of 

2.7°-6.4°. 

 
Myers et 

al. 153 

 

In a physical sense, marker placement on bony landmarks should be avoided (except for static markers) 

to minimise the extent of skin movement artefacts. For example, marker placement directly over the 

lateral and medial epicondyles of the elbow during cricket bowling has been criticised.255 Cluster-based 

marker models are emerging in the literature. Static markers located on bony landmarks are removed 

following calibration, minimising errors due to soft tissue artefact. Additionally, cluster-based marker 

models are less reliant on marker placement,352 reducing inter-trial and inter-subject errors.  
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The controversy over the extent and timing of data processing has long existed within biomechanics 

research. Methods for determining an appropriate cut off frequency for use in low pass filters have 

been established by both Cooper et al. 353 (manual wheelchair propulsion) and DiGiovine et al. 113 

(wheelchair racing propulsion). Verification of data outputs should be performed to ensure the integrity 

of data following data-processing techniques. Best accuracy of joint angle measurements can be 

achieved through direct measurement approaches. Lathrop et al. 151 have identified intercortical pins, 

external fixation devices, stereo radiography, and fluoroscopic techniques as alternative methods for 

the precise measurement of joint angles. Joint kinematics can be more practically compared to 

simulation outputs and raw motion capture data. Accuracy can be quantified through the level of 

agreement between data sets, as performed by Bland Altman plots, and Wilcoxon Matched-Pairs 

Signed-Ranks Tests.114 Guidelines for assessing the reliability of results recommend that the kinematics 

be within two standard deviations of published data for a similar motion.140 Due to the variance of 

wheelchair propulsion styles presented in the literature, this is limited. Bland Altman plots are used 

extensively throughout literature to evaluate the correlation between two measurement types which 

are both subject to error.257 These plots present the relationship between two data sets, which should 

be high when comparing two data sets measuring the same parameter.354 It should be noted that a high 

correlation does not necessarily imply a high level of agreement between the two datasets.  

 

A.2 INVERSE DYNAMICS 

Inverse dynamics is calculated using the known motion (angles, velocities and accelerations) and inertia 

of the model to solve the equations of motion for the unknown generalised forces. The output joint 

reactions (inter-segmental moments) represent the total force acting across a joint, and not the bone 

on bone force, which is the actual force acting across the articulating surfaces of the joint and includes 

the effect of muscle activity.355 The underlying equation of motion is subject to the dynamic equilibrium 

and boundary conditions being satisfied (Figure A.3) and is presented in Equation A.1. 

Figure A.3: Required inputs for inverse dynamics calculations and the resulting output measures.  
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M(q)q̈ + C(q)q̇ + G(q) =  τ                   Equation A.1 

Where  N is the number of degrees of freedom; 

q, �̇�, �̈�  ∈ RN are the vectors of generalised positions, velocities and accelerations, respectively; 

M(q) ∈ RN is the system mass matrix; 

C(q, q̇) ∈ RN is the vector of Coriolis and centrifugal forces 

G(q) ∈ RN is the vector of gravitational forces; and 

τ ∈ RN is the vector of generalised forces. 

 

Inverse dynamics can either be performed through the top-down approach (using kinematic data of 

the upper body) or the bottom-up approach (using the kinematic data of the lower limbs and ground 

reaction data), with the latter approach more accurate.356 OpenSim opts to use the bottom-up method, 

possibly due to the enhanced accuracy, but also due to the predominant use for gait analysis and the 

availability of ground reaction data. The top-down approach can also be used when reaction force data 

cannot be obtained.356  

Minimal errors are introduced during the inverse dynamics calculation process, but are instead a 

consequence of the inputs driving the simulation (Table A.2).345 Mass and inertial properties of limb 

segments are required to convert the kinematic trajectories obtained from inverse kinematics into force 

and torque values. The availability of input data and the capability to accurately define all parameters 

influencing motion is restricted by the practical and ethical limitations surrounding their direct 

measurement. Use of subject-specific body segment mass estimations was included as part of this 

research (Chapter Six) as they are one of the most influential input parameters with regards to 

accuracy.154  
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Table A.2: Observed kinetic uncertainties and impact on the model and ensuing calculations. Table initially presented in Prinold et al. 345 and has 

been extended in this review. Gaps in the table occur when model output sensitivity was not explicitly mentioned in the literature and does not 

indicate results are immune to these considerations. 

Parameters 

and 

Methods 

Accuracy and Error Sensitivity of Model Output Reference 

BSP 

(moment of 

inertia, mass) 

Significant error upon scaling, up to 

20% in segment mass.357 

Low in relation to the input force 

created in high output tasks (e.g. 

Pull-ups). High when external 

forces are low since the primary 

input to inverse dynamics.149 
Prinold et 

al. 345 
Inverse 

Dynamics 

(joint 

torques) 

Negligible (errors from inputs). 

Highly sensitive to noise at high 

speed. Smoothing of kinematics 

can reduce this.349 The timing of 

smoothing has little effect. 

Confidence 

Bounds in 

Gait 

The combined effect of uncertainty 

resulted in mean confidence bounds 

(5-95%) of 2.7-8.1 Nm. 

 
Myers et 

al. 153 

 

Errors can also be introduced through the measurement or estimation of input forces. Traditionally, 

OpenSim is used for the analysis of gait, where force plate data is used, and hence this is not a common 

error source. However, the force plate is not always a practically viable approach for use within 

wheelchair racing, and so alternate instrumentation solutions were explored in this research (Chapters 

Four and Five). Although an IMU provided a reliable measure of contact time and estimated force 

with appropriate reliability in the direction of motion, it was poor at estimating out of plane forces, 

and so was not used as a modelling input in this research. Instead, kinetic data were estimated from 

the kinematic data recorded using motion capture (Section 4.2) to minimise error sources. 

Inverse dynamics is calculated using Newtonian Mechanics, more specifically the summation of forces 

and moments at the joints of a link segment model. The inclusion of muscles in analyses generates a 

redundancy problem as there are more unknowns than there are boundary conditions. Literature by 

Moissenet et al. 358 has demonstrated that increased muscular redundancy (the number of muscles 

defined) corresponds with greater accuracy. Due to the presence of errors in the experimental motion 

data and the inaccuracies in the musculoskeletal model, Newton’s second law is not satisfied.133 

Residual forces are applied to models to reduce inconsistencies existing between model and 

experimental data, with a weighting applied to each degree of freedom to reduce the overall 

inconsistencies between data sets.359 Reduced residual algorithms can be implemented to prevent these 

residual forces from becoming large. It was also suggested by Hicks et al. 140 that residual forces of the 

experimental simulation should be within 5% of the net external forces measured.  
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Verification of output data is restricted as the direct measurement of joint reaction data is practically 

limited. Surgical implantation of specialised instrumentation can be used to facilitate the direct 

measurement of dynamic joint loads360 of the hip joint, spine, shoulder joint and knee joint, as well as 

in bone and cartilage.361 However, this process requires the use of invasive sensors surgical 

reconstruction.361 As direct measurement techniques are infeasible; verification is limited to 

comparisons with literature. It was suggested that the measured forces should be within two standard 

deviations of experimental joint forces, as obtained through instrumented implants for similar 

motions,140 similarly to inverse kinematics. However, care should be taken in ensuring comparisons 

are made against motions of comparable dynamics. For example, significant variations in the 

kinematics, kinetics and ground reaction forces of the ankle, knee and hip were identified by the 

literature of Hamner et al. 120 and other literature, based on the greater dynamic requirements of the 

motion. A similar magnitude of variation would be anticipated between manual wheelchair propulsion 

(commonly around 1.1 m/s), compared to wheelchair racing (up to 8.6 m/s). Although neither of these 

methods is capable of holistically identifying the impacts of errors on analysis or quantifying their 

magnitude, close observation can assist in their minimisation. 

 

A.3 STATIC OPTIMISATION 

Static optimisation further resolves the net joint moments obtained through inverse dynamics into an 

estimated time history of activations and forces of all muscles included in the computational model 

(Figure A.4). These techniques are commonly used for the solving of indeterminate force distribution 

problems, such as at the shoulder joint complex during wheelchair propulsion.101, 169-171, 174, 175, 191, 311, 

362-366  

The contribution of individual or lumped muscle groups is estimated through decomposition of the 

net joint forces obtained through inverse dynamics methods. These forces are resolved by minimising 

the sum of squared muscle activations (Equation 6.4).133 As each step in time is considered in isolation, 

both the time-dependent nature of muscles364 and the activation dynamics and tendon compliances140 

are neglected. These considerations aside, it has been demonstrated that equivalent force predictions 

exist for both the static and dynamic cases.138, 139, 364 

Similar to inverse dynamics, errors are the consequence of the propagation of the errors and 

uncertainties introduced at earlier stages. The degree of solver can be defined when performing static 

optimisation calculations. Varying the degree of solving alters the convergence time and quality of the 

simulation, but should have no direct influence on the quality of the results.133 
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Recommended practice suggests inverse kinematics results should be filtered prior to being used in 

static optimisation calculations, whereby they should be presented as a smooth signal to prevent the 

calculation from failing. As mentioned previously, close inspection of the impact of the filtering 

process is warranted and should be accompanied by sensitivity analyses to ensure the raw data are not 

artificially altered. 

 

 

Figure A.4: Required inputs for Static Optimisation calculations and the resulting output measures. Yellow boxes contain the required input 

parameters, and orange boxes are the computational tool employed by OpenSim. 

 

Muscle activation data collected through electromyography (EMG) can be used to assist in the 

verification of the static optimisation outputs. This data can be used to analyse the agreement between 

the timing and magnitude patterns of muscle activations, as was performed by Knarr et al. 367. Due to 

the random nature of muscle excitations, it is unlikely that these two data sets will present a perfect 

correlation. However trend wise similarities, as observed for the co-contraction index can provide 

confidence that the model simulation is performing as it should. Whilst EMG can be used to gauge 

the activity of muscles; it does not directly correlate with muscle force for dynamic measurement,311 

and so are better suited to analyses regarding excitation timings, such as in the work of Mulroy et al. 26 

and Tries.312 EMG data can also be incorporated into the modelling process. These are given higher 

weightings than the estimated activations during static optimisation equations. This can reduce the 

reliance on earlier estimations, which may ultimately limit the influence of the propagation of errors. 

This method is only effective when the measured electromyography data has sufficient accuracy. For 

example, the superficial placement of the electrodes required for electromyography is susceptible to 

the same skin movement artefacts as the marker placements.  
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A.4 CONCLUSION 

It is well accepted that inherent errors are present within computational analyses on account of the 

strict practical limitations preventing the collection of experimental data. In the majority of cases, errors 

are considered to be within acceptable bounds and not detrimental to the reliability of the resultant 

estimates. The magnitude of these errors correlates with the dynamic extent of movement measured. 

The propagation of errors in highly dynamic activities, such as sprinting, identifies concerns of the 

computational modelling approach. The majority of errors are introduced at the model development 

stage on account of the superfluous parameters requiring estimation or modification to reflect the 

particular characteristics and capabilities of the individual who performed the movement.
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A musculoskeletal model consists of rigid bodies connected by joints which have muscles spanning 

across them to generate the moments and forces responsible for the motion.133 This is used to provide 

a visual representation of all included computational elements (such as bones and joints) and boundary 

constraints (such as ranges of joint motion).125 Musculoskeletal models demonstrate varying levels of 

complexity depending on the intended application and range from a wrist model,331 through to a full-

body model,120 with some even considering aspects of neuromuscular control. This complexity is 

driven by the number of modelling constituents defined. Model development in OpenSim requires the 

definition of musculoskeletal elements via XML code. This chapter provides an extended literature 

review detailing which input parameters are contained within a musculoskeletal model (Section B.1), 

the impact of parameter perturbation on simulation output (Section B.2), how subject-specific inertial 

parameters (Section B.3) and maximum isometric force-generating capacities can be estimated (Section 

B.4), and the estimation of joint reference frames (Section B.5). 
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There are four major elements required in the models; bones, joints, muscle actuators, as well as contact 

elements and ligaments (Table B.1). Even small models, such as the Wrist model requires over 1000 

input parameters to be defined for the 29 bones, 29 joints and 25 muscles.331  

 

Table B.1: Required parameters for the development of a computational model in the OpenSim environment. List of computational counterparts 

acquired from the XML file for the gait2392_scaled.osim file.135-139 

Structure Required Parameters 

BODY SET 

Bones 

(Rigid Bodies) 

MASS PROPERTIES 

- Mass 

- Mass Centre 

- Inertia (xx,yy,zz,xy,xz,yz) 

CONSTRAINT 

SET 

Joints 

(Constraints, 

Mobilisers and 

Forces) 

JOINTS 

- Type (Weld, Pin, Slider, Ball, Ellipsoid, Free, Custom) 

- Parent Body 

- Location and orientation in the Parent body 

GENERALISED COORDINATES 

- Motion Type (Translational, Rotational, Coupled) 

- Default and initial value, default speed value, range  

- Clamped (Constrain motion to be within the range values)  

- Locked (Constrain motion to initial value – i.e. No movement) 

MARKER SET 

- Body segment marker resides on 

- Location in body 

- Fixed (Or allowed to move when performing scaling etc.) 

OBJECTS 

Ligaments and 

Muscle 

Actuators  

(Forces) 

MUSCLE ARCHITECTURE  

- Origin, insertion and via points 

MUSCLE PARAMETERS 

- Maximum force actuator can produce 

- Maximum isometric force fibres can generate 

- Optimal fibre length, resting tendon length, optimal pennation angle 

(angle between tendon and fibres at optimal length), maximum 

contraction velocity, activation and deactivation time, tendon and passive 

muscle strain at maximum isometric muscle force, shape factor for 

Gaussian active muscle force-length relationship, exponential shape factor 

for passive muscle force-length relationship, force-velocity shape factor, 

maximum normalised lengthening force  

 

Often, input parameters rely on relationships established in the literature, such as that of McConville 

and Air Force Aerospace Medical Research Laboratory (U.S.) 368, Dempster 281, or Hanavan.146 

Segment mass parameters or lengths are commonly presented relative to the total body, such as the 

anthropometric data set presented by de Leva.369 Musculoskeletal models currently utilised in 

wheelchair literature and available in OpenSim utilise the anthropometric table approach (Table B.2).  
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Table B.2: Source of BSIP in the most common shoulder and upper extremity models, demonstrating the reliance on cadaver studies, despite the 

questions in the literature regarding their reliability. 

Model 
Reference 

Publication 
BSIP Estimation Method 

Source of Inertial 

Parameters 

Delft Shoulder 

and Elbow 

Model 

 

 

Blana et al. 178 

Nikooyan et al. 370 

van der Helm 163 

Anthropometric tables 

(cadaver studies) 
Klein Breteler et al. 371 

Upper 

Extremity 

Dynamic 

Model 

Saul et al. 287 
Anthropometric tables 

(cadaver studies) 

McConville and Air Force 

Aerospace Medical Research 

Laboratory (U.S.) 368 

Reich and Daunicht 372 

Blana et al. 178, as derived 

from Clauser et al. 280 

Holzbaur’s 

Upper 

Extremity 

Model 

  

Holzbaur et al. 164 
Anthropometric tables 

(cadaver studies) 

Klein Breteler et al. 371 as 

derived from Clauser et al. 
280. 

Newcastle 

Shoulder 

Model  

Charlton and Johnson 
100 

Anthropometric tables 

(cadaver studies) 
de Leva 369 

Swedish 

Shoulder 

Model  

 

Karlsson and Peterson 
373 

Makhsous et al. 374 

Morphological 

measurements 

Based on the model of 

Hogfors et al. 160, Hogfors et 

al. 161 

Dickerson’s 

Model 
Dickerson et al. 167 

Regression prediction 

equations 
Zatsiorsky 285 

 

B.1 SUBJECT-SPECIFIC MODELLING APPROACHES 

A comparative study by Scheys et al. 375 has revealed differences in flexion moment arm length in 

models with varying levels of detail. However, these differences were not always statistically significant. 

Musculoskeletal models are highly sensitive to their input parameters (Table B.3), and so appropriate 

scientific rigour is required when making subject-specific perturbations. 
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Table B.3: Model Definition result errors as presented in the literature. Note, the table is an extension of what was presented in Prinold et al.345 

Gaps in the table occur when model output sensitivity was not explicitly mentioned in the literature and does not indicate results are immune to 

these considerations.  

Parameters 

and Methods 
Accuracy and Error 

Sensitivity of Model 

Output 
Reference 

Segment 

Lengths (joint 

centres) 

Landmark palpation repeatability ± 2 

mm.376 Joints offset from palpated 

surface landmarks lead to additional 

error. Scapula has a complex 3D 

shape,377 leading to larger errors. 

Coupled nature of segments leads to 

accumulated error. 

Sensitive to clavicle length; 

important role in 

kinematics.100 Sensitive to 

scapula size, given the 

number of muscle 

attachments and the shape 

variability across 

subjects.377, 378 

Prinold et al. 
345 

Bony 

Landmarks 

(not joint 

centre) 

Accurate if directly digitised (± 2 

mm).350 

Inaccurate for scapula (if 

homogeneously scaled).377 

Affects the contact force 

between the scapula and 

the thorax. Sensitivity is 

unclear. Also similar 

sensitivity as with segment 

lengths. 

Musculotendon 

Model 

Input parameter accuracy unclear. 

Cadaveric studies 371 and in vivo 

measures from maximal voluntary 

contractions and other measurements 

used.166, 379 

Highly sensitive to the 

force-length relationship.380 

Low sensitivity to force-

velocity in activities of daily 

living.348 Sensitive to high 

output activities.349 

Glenohumeral 

Centre of 

Rotation 

3 - 4.6 mm error 381 < 8.3 mm 

repeatability.382 Reliable and valid.383 

Change in force of up to 

300% (linked to the 

retroversion angle).377 

Toe Marker 

Placement 

Variation in maker placement and 

anatomical landmarks vary up to 5 cm 

due to inadequate identification and 

presence of shoes. 

Highly sensitive. 42.9% 

difference in kinematics 

and 17.8% in muscle forces 

when markers moved 5.5 

cm from reference points, 

and 0.6% - 7.8% in 

kinematics with 1 cm 

marker movements as well 

as muscle forces varying 

between 0.8% through 4%. 

Xu et al. 384 

Marker 

Placement 

Marker placement on loose skin or 

adipose tissue. 

Impact of movement 

artefact was 1.8 times 

greater than any other 

propagated source. 

Myers et al. 
153 

Marker placement variability (mm, ± 

2SD) X: 0.7 (5th metatarsal head)-

12.2(greater trochanter), Y: 1.4 (distal 

medial condyle femur) – 11.5 (right 

 

Rabuffetti et 

al. 385, Della 

Croce et al. 
386, Della 
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anterior superior iliac spine), Z: 2.9 

(distal lateral condyle femur) – 17.9 

(greater trochanter). 

Croce et al. 
387 

Mean error between model 

reconstruction and bone pin 

experiments: 0.4 - 2.4mm. 

 

 
Seth et al. 388 

Muscle 

Attachment 

Points 

Measured and calculated moment 

arms varied between 48.5% - 99.5% 

(mean 75.5%) for intrinsic and 

extrinsic finger muscles. 

Differences in modelled and 

experimentally measured muscle 

attachments were less than 4.9 mm. 

Muscle attachment point 

differences within 7.1% of 

the average length of the 

muscle-tendon paths and 

so suitable for use in many 

applications. 

Lee et al. 389 

 

The Euclidian distance between joint 

reference frames approximately 14.9 

mm. 

Precise joint angles are 

dependent on joint centre 

location,355 hence errors 

impact on joint angle 

trajectory measurements.390 

Abdulrahman 

et al. 391 

 

B.2  PERTURBATION OF MUSCULOSKELETAL MODEL PARAMETERS 

A considerable amount of literature has been published on musculoskeletal model personalisation. 

However, no literature currently exists with regards to what adaptation of input parameters required 

for musculoskeletal modelling of wheelchair racing athletes. 

Xiao and Higginson392 demonstrated that during walking, perturbation of maximum isometric forces 

had normalised differences of -1.362, and 1.267 for -10% and +10% perturbations respectively. 

Differences in internal rotation torque of -15.4% were observed between wheelchair athletes and able-

bodied athletes (Figure 2.1), and 10.8% between wheelchair athletes and non-athletic individuals. 

Consequently, due to the sensitivity of defined maximum isometric forces, there exists the potential 

for significant propagation of errors throughout the modelling workflow, particularly considering the 

high speeds of racing propulsion. The literature of Xiao and Higginson 392 only noted this difference 

for the Gluteus Maximus muscle, however, which may be indicative of the size and contribution of 

the muscle towards motion. This may suggest that for this research, only the muscles of the upper 

extremity, which are so dominant in wheelchair propulsion require adaptation, which would drastically 

simplify model development.  
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B.3 ESTIMATING BODY SEGMENT INERTIAL PARAMETERS 

Numerous methods have been explored for the measurement of body segment inertial parameters, 

each placing a different weighting on the time-accuracy optimisation (Table B.4 through Table B.7)). 

Estimation methods have improved and will continue to improve in line with technological 

advancements. These methods are either direct (such as cadaver measurements or the processing of 

medical imaging scans) or indirect (using mathematical relationships, based on measured data).  

Subject-specific modelling techniques have emerged in more recent literature; however, such 

approaches have yet to be extended into wheelchair sports literature. Such approaches allow individual 

musculoskeletal anatomy and properties, tissue volumes, and musculotendon architecture 

parameters130 to be defined for each subject. Whilst theoretically the customisation of all parameters 

to accurately replicate each subject is considered ideal, realistically parameter customisation on a large 

scale is difficult, if not impossible.159 Parametric identification and definition is a time-consuming 

process, with unavoidable uncertainties introduced due to the aforementioned limitations in 

validation.130 Consequently, parametric customisation should be restricted to the most influential 

parameters, as determined through sensitivity analyses.130, 393 These analyses provide an attractive tool 

for understanding the impact of changing input parameters on the overall result and should be 

performed on all parameters most influential to subject-specific model development.393-395 For 

example, it has been identified that statistically significant correlations exist with respect to segment 

mass, maximum isometric force and tendon slack length, with low sensitivities to the moment of 

inertia.130, 153, 393-395 The inclusion of strength of impaired limbs has been identified as the most 

influential.124 However, these are yet to quantify the uncertainties of subject-specific models wholly, 

and how their combined effect may compromise model predictions.395 

When available, direct measurements provide the most precise method for obtaining parameters. 

These can be obtained using direct measurements on limbs of cadavers, or living subjects through 

processes of medical image reconstruction (e.g., magnetic resonance imaging, MRI). MRI can be 

implemented for the measurements of muscle volumes and attachments,154 as opposed to by the 

regression estimations present in generic models. Although these have been demonstrated to have high 

accuracy, medical scanning technologies were not developed for use in musculoskeletal modelling 

approaches, and as such demonstrate some limitations. These limitations include being, time-

consuming, expensive, and may impose large doses of ionising radiation on the athlete (computed 

tomography).283, 284, 295 Ultimately, these practical limitations suggest that alternative scanning methods 

may be required for the measurement of in vivo body segment parameters of living subjects. DXA scans 

provide an attractive alternative, with greater accessibility, and safety (lower radiation dose) than other 
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medical scanning methodologies.144, 282-284, 396-400 Analysis of DXA data provides accurate and direct 

estimates of two-dimensional body segment parameters of humans.144, 396, 398, 400 Masses are estimated 

through the correlation of areal density data with the DXA grayscale image, establishing a relationship 

between the pixel colour gradient and the mass with which it represents.284 When these are not 

available, ensuring compliance with the International Society of Biomechanics standards of body and 

joint coordinate systems may also increase confidence in the obtained results.395, 401 

Table B.4: Limitations and specific applications of a number of direct BSIP estimation methods performed ex vivo.  

Limitations Reference Method Application 

Up to 5% fluid loss 

from dissection 

process.282 

 

Parameters vary from 

living state.143, 148, 402 

Gender and 

population type bias, 

limiting 

generalisation.403 

Clauser et al. 280  

Koontz et al. 262 

Kulig et al. 102 

Saul et al. 287 

Holzbaur et al. 164 

Dempster 281 

Water immersion techniques using 

dissected cadavers obtaining 

volume, mass, CoG and MoI. 

Morrow et al. 191 

Morrow, et al. 13 

Sabick et al. 206 

Winter 145 Adapted from Dempster 281 
Sauret et al. 221 

Robertson et al. 62 

 

 

Table B.5: Limitations and specific applications of a number of direct BSIP estimation methods performed in vivo. For medical scanning 

techniques, GRay represents gamma ray, CT; Computed Tomography, MRI; Magnetic resonance imaging. 

Limitations Reference Method Application 

Large expense & 

operational costs.143, 

298, 404, 405 

 

Data processing 

labour 

demands.284 

 

Limited accessibility 

to specialised 

equipment.284, 403 

 

Health risks owing to 

high exposure to 

radiation.143, 284 

 

G
R

ay
 Zatsiorsky et 

al. 328 

100 male and 15 female living 

subjects of varying age to estimate 

mass, CoM and Ixx, Iyy, Izz. 

 

C
T

 

Pearsall et al. 
405 

Pixel intensity values correlated to 

tissue densities. 

 

 

Huang and 

Suarez 406 

Mass density and density of pixel 

across the manually digitised cross-

section. 

N/A: Animal 

Study 

M
R

I 

Cheng et al. 
143 

Tissues were differentiated, mass 

and volume summed through 

integration. 

 

Martin et al. 
402 

Volume measures combined with 

cross-sectional images of 8 baboon 

cadavers.  

N/A: Animal 

Study 

Mungiole 

and Martin 
404 

Sum individual masses for each of 

the tissue sections, using density 

data of Clauser et al. 280 
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Table B.6: Limitations and specific applications of a number of indirect BSIP estimation methods performed in vivo using regression equations.  

Limitations Reference Method Application 

Limited by 

population based 

upon (e.g. 

cadavers).407 

 

Limited by uniform 

densities.407 

 

Highly simplified 

representations.144, 

403 

Chandler et al. 408 

Linear relationships between total 

body mass and separate segment 

masses obtained through cadaver 

dissection. 

 

McConville and 

Air Force 

Aerospace 

Medical Research 

Laboratory (U.S.) 
368 

Bodies of 31 males 

photographically segmented into 

24 parts, with volumes established 

stereometrically. 

 

Durkin and 

Dowling 144 

 

Linear regression equations 

developed using mass, CM 

location and radius of gyration 

values determined through DXA. 

 

Zatsiorsky and 

Seluyanov 409 

Use whole body mass and height 

as predictors (based on 100 young 

Caucasian males). 

 

Zatsiorsky and 

Seluyanov 410 

Uses anthropometric measures of 

specific segments. 
 

 

 

Table B.7: Limitations and specific applications of a number of indirect BSIP estimation methods performed in vivo using geometric models.  

 

Limitations Reference Method Application 

Time-consuming for 

the subject (the 95 

measurements for 

Yeadon model 

requires >40mins.403 

 

Geometric 

assumptions 

produce cavities, and 

consequently large 

volume errors.411, 412 

 

Simple geometries 

not reflective of the 

specific 

anthropometry of an 

individual. 

Durkin and 

Dowling 396 

 

Ensemble average of mass 

distribution from DXA scans 

(frontal and sagittal plane) of 40 

subjects from 4 populations. 

 

 

 

Yeadon and 

Morlock 413 

Cylindrical and stadium shaped 

solids are representing segments. 

(Assume the uniform density of 

Dempster.281) 

 

Zatsiorsky et al. 
328 

 

Assumes each segment to be a 

circular cylinder, with segment-

specific quasi-density values. 

 

Hanavan 146 

15 segment model using cylinders 

with elliptical bases, rotational 

ellipsoid, spheres and truncated 

cones. 

Koontz et al. 262 

Cooper et al. 98 

Rodgers et al. 414 

Mercer et al. 327 

 

Yeadon and 

Morlock 413 

40 segments, assuming uniform 

density, volume and mass can be 

estimated using stadium solids and 

anthropometric measurements. 

Kulig et al. 102 

Slavens et al. 415 
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B.4 ESTIMATING MAXIMUM FORCE GENERATING CAPACITY OF 

SKELETAL MUSCLES 

As the inclusion of strength of impaired limbs has been identified as influential,124 perturbation of 

muscular parameters is essential for modelling of wheelchair racing athletes. The well-established hill 

type muscle relationships416 are commonly used in OpenSim. A simplified explanation of the model 

has been provided by Haeufle et al. 417 The model itself consists of three elements; a contractile element 

incorporating force-length and force-velocity parameters, as well as a series and a parallel element. The 

model takes inputs of muscle-tendon complex length, contraction velocity and neural muscle 

stimulation to produce a one-dimensional force, which is applied between the origin and insertion 

points of a model.  

The maximum force a muscle can produce is a function of both its specific tension (force generated 

per unit of cross-sectional area) and its physiological cross-sectional area. Measuring the cross-sectional 

area of muscles can be a difficult and time-consuming task and so is commonly estimated. Some of 

the methods used to do this in the literature are presented in Table B.8.  

 

Table B.8: Estimation procedures for muscle physical cross-sectional area (PCSA). 

Reference Aim Type Data Source 

Asadi 

Nikooyan 

et al. 418  

Development of a 

musculoskeletal model of the 

shoulder and elbow. 

Morphological data and muscle 

parameters from cadaver studies. 

Klein Breteler et 

al. 371 

Minekus 419 

Veeger et 

al. 169 

Load on the shoulder in low-

intensity wheelchair propulsion. 

PSCA data from cadaver studies, 

and the task performed by young 

subjects. 

Veeger et al. 420 

van 

Drongelen 

et al. 170 

Glenohumeral joint loading in 

tetraplegia during weight relief 

lifting. 

Multiply PCSA by a force of 100 

N/cm2. 

Veeger et al. 420 

Veeger et al. 421 

Lin et al. 
311 

Muscle force analysis in the 

shoulder mechanism during 

wheelchair propulsion. 

Proportional to the cross-sectional 

area of muscle, maximum stress 

set to 115.97 N/m2. 

Wood et al. 422 

Chang et al. 423 

 

 

Magnetic Resonance Imaging or CT can present more accurate measurements of muscle size, however, 

these techniques are not always practically feasible. These methods are associated with considerable 

expense and operational costs, data processing labour demands, limited access to specialised equipment 

and health risks owing to high radiation exposure from some of these methods.284 Additionally, 

wheelchair athletes with muscle spasticity may not be capable of maintaining the required body position 
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over the scan duration. As discussed previously, DXA presents a more practically viable approach with 

standard scan duration just 6 min and 30 s.424 

Morphological equivalence is required for between-population comparisons. Morphological variations 

between paraplegic athletes and able-bodied individuals have been reported previously. This has 

included paraplegic athletes having a lower bone mineral density in the lower extremity (76.5% of 

controls),323 and higher skeletal mass in the upper extremities.147, 283, 316 However, comparable bone 

mineral density has been observed between low-lesion level paraplegics (such as what the athletes in 

this research are), and controls.321 Similarly, fat mass in the arms and trunk for wheelchair athletes has 

been reported to be approximately 20%,323, 325 which is comparable to the 15-20% body fat range 

suggested as acceptable by Jeukendrup and Gleeson.425 Hence, morphological similarities can be 

assumed between the wheelchair athlete and the general population.  

 

B.5 ESTIMATING JOINT REFERENCE FRAMES 

Estimation of bone positioning and joint orientations are further diversified through the presence of 

subject-specific differences in bone geometries such as anteversion, bowing or torsion. For example, 

the natural bowing in the shaft of the femur leads to a variable shape of the proximal femur, reflective 

of physiologic variations.426 Such bone features are present in both wheelchair populations and able-

bodied populations. However, as anatomical reference frames within the OpenSim environment are 

embedded within the generic bone models, they are inept at accommodating these variations.151 These 

anatomical differences alter the definition of the reference frames utilised for joint angle calculations, 

hence limiting simulation accuracy.427 Reference frames may better be defined through the use of 

clinical scanning technologies as they are better equipped to reconstruct the limbs and their 

constituents than what is presented in the generic models. For example, Zhang et al. 428 improved upon 

standard scaling methods using an articulated statistical shape model of the left lower limb. Lower limb 

bone geometry, pose, and muscle attachment regions were estimated more accurately based on seven 

commonly used motion-capture landmarks. However, such processes do come at the cost of 

substantially increased model development time. Estimating joint reference frames was outside the 

scope of this research.
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Validation and verification measures determine the degree in which the computational model 

represents the real world problem and underlying mathematics, respectively.155 No gold standards are 

currently defined for how validation and verification are to be performed.155 Validation procedures are 

limited by the restrictions on in vivo measurements, thus promoting the use of model verification. There 

exist a number of different statistical measures assessing various aspects of modelling uncertainties. 

One of the most prevalent methods is the use of probabilistic analyses, such as the use of confidence 

bounds and sensitivity factors to quantify impacts associated with the uncertainties generated through 

parametric estimation and measurement of motion.153 A number of sensitivity analyses were performed 

to ascertain the reliability of the modelling process implemented.  
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Definition of  reserve actuators (Section C.1) 

Research Question: 

 What magnitude of reserve forces are required to simulate wheelchair racing propulsion for 

elite wheelchair racing athletes successfully? 

 

Verification of  musculoskeletal model adaptions for use with wheelchair racing 

athletes. (Section C.2) 

Research Question: 

 Is the increased scaling of the scapula and clavicle (in line with increased torso mass) likely to 

introduce errors into the computational workflow? 

 

Upper extremity muscle demand for wheelchair racing propulsion technique.   

(Section C.3) 

Research Question: 

 How well does the muscle coordination strategies and stresses match what is in the literature? 

 

C.1  DEFINITION OF RESERVE ACTUATORS 

As only a subset of muscles is included within the musculoskeletal model, it is possible that not all the 

forces acting at the joint will be able to be accommodated by the muscles spanning it. Reserve actuators 

are defined to compensate this force. A number of parameters control the reserve actuators, including 

maximum allowed value, and the optimal force produced by the actuator. As a cost function is used to 

solve the problem, higher reserve actuator optimal force values are cheaper to use. This suggests that 

the model may recruit the reserve actuators in preference to the muscles. OpenSim documentation 

recommends that peak reserve actuator torques be less than 10% of the peak torque joint.152 However, 

if larger reserve forces are required for a successful simulation, the maximum control value can be 

increased, but will be penalised in the cost function for doing so. 
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A sensitivity analysis was performed to determine the required reserve actuator magnitude, as reserve 

actuator forces greater than 10% of the peak torque joint was required. It was hypothesised that a 

convergence analysis approach could be used to reveal the optimal selection of reserve actuation based 

on reserve force values.  

 

Methods 

A convergence analysis was performed using the same simulation protocol presented in Section 6.4. 

Reserve actuator optimal forces were set at 50 N, 100 N, 150 N, 200 N and 500 N. Reserve forces 

(acting at the joints) were analysed at each of the degrees of freedom within the model.  

 

Results 

The variation in reserve forces is presented graphically in Figure C.1. Low reserve actuator values  

(< 200 N) were observed to have low sensitivity, with minimal variation between different values. The 

model was sensitive to reserve actuators when defined to be 500 N. At this value; it can be seen that 

there is a different characteristic response in both the shoulder rotation reserve force, and pronation-

supination force, suggesting an over-dependence on the reserve actuators, as they are so cheap to use.  

 

Figure C.1: Comparison of reserve actuator with defining various levels of optimal force in reserve actuators. 
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Discussion 

Reserve actuators were identified to change the system dynamics when set too high. As the solver is a 

cost-based function which minimises activations, defining such a large optimal force value in the 

reserve actuators will make the simulation rely too heavily on the reserve actuators, and not the 

muscles. For the musculoskeletal model used, the median maximum isometric force generating 

capacity was 251.2 N for the unscaled model. A reserve actuator value was designated as 200 N, such 

that it was less than this median value. As can be seen from Figure C.1, this choice has little impact on 

results. Based on the reaction force values reported in Table 7.1 and Table 7.2, reserve actuator forces 

are approximately 20% of the input torque. 

The large reliance on reserve actuators in this research may be a consequence of the large instantaneous 

peaks, which should have been filtered out of the kinetic data prior to performing the analysis. It may 

also be possible that the shoulder models currently available within the OpenSim environment are not 

ready for use in such dynamic applications yet, and should not be used when higher precision data is 

required. If inadequate reserve actuator force is provided, the simulation does not solve correctly, with 

errors appearing that the muscles have insufficient strength to complete the required task. 

 

Conclusion 

The value of optimal force defined for each of the reserve actuators has an impact on how muscles are 

recruited to complete a task. Values which are too high are undesirable as they change the dynamics of 

motion. Values too low may also be unable to complete the motion. An iterative process investigating 

both the reserve forces and the activations on the muscles should be performed to determine the 

required value for each simulation. 

 

C.2  VERIFICATION OF MUSCULOSKELETAL MODEL ADAPTIONS FOR 

USE WITH WHEELCHAIR RACING ATHLETES 

To date, computational modelling has predominantly been used in the literature involving the lower 

extremity. Of the limited literature available for the upper extremity, and specifically for wheelchair 

propulsion, the use of OpenSim to analyse sporting propulsion is novel. As a consequence, there is 

limited validation at the speeds observed in this research. In addition, there are a number of 

uncertainties which have yet to be addressed in the literature, including the explicit scaling of the 

scapula and clavicle in relation to the remainder of the trunk segment.  
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C.2.1 SCALING OF THE SCAPULA AND CLAVICLE 

Introduction 

The upper extremity dynamic model used for the analysis consisted of seven bodies requiring mass 

and inertial input. These included the thorax, clavicle, scapula, humerus, ulna, radius and hand, with 

the ulna and radius each comprising half of the forearm mass. Although subject-specific masses were 

obtained for each of the limbs, within the upper extremity dynamic model, values needed to be 

estimated for the scapula and clavicle.  

Across different models, there exists a difference in the distribution of the scapula mass relative to the 

thorax. For example, this is 2.5% in the Wu shoulder model and 3.5% in the dynamic arm simulator 

model. There is no mass in the torso for the upper extremity dynamic model, so the same ratio cannot 

be presented. However absolute mass is similar to that in the dynamic arm simulator model. Similarly, 

the clavicle is 1.0% of the torso mass in the Wu shoulder model and 0.8% in the dynamic arm simulator 

model.  

No literature was identified which establishes how the scapula and clavicle should be scaled with 

increasing torso mass, and how this may differ with morphological composition. In the absence of this 

information, the default torso-scapula-clavicle scaling protocols were used within this research based 

on the overall mass of the torso segment obtained from the analysis of DXA scans.  

This investigation aimed to understand the relative sensitivity of the scaling of the scapula and clavicle 

on the overall joint reaction moments, to understand the possible errors introduced through scaling. 

It was hypothesised that as the scapula and clavicle are small, and are not dynamic in their movements, 

there will be a low sensitivity to the defined value of these parameters.  

 

Methods 

A sensitivity analysis was performed for each of the scapula and clavicle using the dynamic arm 

simulator model within OpenSim. Using the same simulation protocol, as outlined previously, the 

scapula and clavicle mass were altered by ± 10% and 20% increments. Kinetic and kinematic data were 

obtained using athletes E and I using the methods described in Sections 4.2 and Section 6.2, whilst 

subject-specific mass and strength characteristics were defined using the values presented in Section 

6.3 and Section 6.4. Trunk mass was held constant (at a subject-specific value) with the distribution 

between the scapula, clavicle and remainder of the trunk altered.  
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Kinematic trajectories (inverse kinematics results), joint reaction moments (inverse dynamics) and 

muscle activations and forces (static optimisation) were normalised against the unscaled simulation to 

present relative differences.  

 

Results 

Kinematics results did not alter due to changes in scapula mass, whilst mean absolute RMS differences 

were 1.2% when the clavicle was scaled. Minor variations in joint reaction moments occurred as a 

consequence of scaling the scapula (Figure C.2). For the majority of modelled degrees of freedom, the 

increased mass of the scapula led to an increased output parameter, and vice-versa. Observed 

differences were < 10% for all instances, with the highest sensitivities noted for the wrist. Similar trends 

were observed for the clavicle. 

 

 
 

Figure C.2: Differences in reaction forces or moments for each of the modelled ROM for scaled values compared to default. 
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A minor correlation exists between the magnitude of change in muscle forces and activations based 

on the mass of the scapula and clavicle (Table C.1). It can be seen that the model is more sensitive to 

the scaling of the clavicle than the scapula. It is clear, however, that the model is highly sensitive to any 

change in scapula mass and inertia. Both muscle activation and force are correlated, as would be 

anticipated. 

 

 
Table C.1: Mean absolute RMS differences between original and scaled conditions on static optimisation when scapula scaled. 

 Scapula Clavicle 

Scaling 

Factor 

Muscle Force  

(% Difference to 

Original) 

Muscle Activation 

(% Difference to 

Original) 

Muscle Force  

(% Difference to 

Original) 

Muscle Activation 

(% Difference to 

Original) 

-20% 21.9 20.4 49.3 43.3 

-10% -18.9 18.3 19.4 18.6 

10% 21.9 20.5 52.9 51.5 

20% 22.3 21.7 17.2 16.0 

 

Discussion 

The sensitivity of the simulation outputs compared to the ratio of trunk to scapula to clavicle mass was 

analysed to understand potential errors introduced into the model. As presented in the literature review, 

there was an apparent error propagation throughout the simulation workflow, with substantial 

potential errors in muscle force and activation estimates. 

A small variation in joint kinematics due to scapula and clavicle mass were anticipated, as this 

calculation is more related to marker placement, with little variation in mass distribution due to the low 

mass of the scapula (1.1 kg) and clavicle. However, based on the scaling protocols, increased mass is 

accompanied by increased size, meaning the joint centres are moved relative to the origin. This can 

also explain why there are such large errors with the static optimisation results, as increased scapula or 

clavicle size changes the origin and insertion points of a muscle, and hence its line of action relative to 

the joint centre.  

No clear trends were observed with increased mass of either the scapula or clavicle with specific output 

parameters from any of the analyses. As such, it can be suggested that changes in the distribution of 

mass within the torso segment has the capacity to alter the system dynamics. Hence, the simulation 

has a high sensitivity to the value of these parameters. As the models have obtained these parameters 

from cadaver studies, the values used in this research are relevant. However, future investigations 

should investigate how to obtain subject-specific values for the relative mass of the scapula and clavicle.  
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It is also important to understand how the distribution of these masses varies with scaling. For example, 

a reasonably constant scaling would be anticipated when scaling between a child and adult due to bone 

growth. However, for athletes, the skeletal mass increases in the torso, which is not necessarily 

accompanied by bone growth, suggesting that this scaling would not be consistent. 

 

Conclusion 

A sensitivity analysis was performed to understand how kinematics, joint reaction moments, and 

muscle forces alter with a change of scapula and clavicle mass. It was identified that these outputs are 

highly sensitive to the input masses. Research presented in this thesis was performed using default 

mass distributions of the torso. It is acknowledged that this may have introduced errors, and that future 

investigation should examine how clavicle and scapula mass can be estimated for use in computational 

modelling. 

 

C.3 UPPER EXTREMITY MUSCLE DEMAND OF WHEELCHAIR RACING 

PROPULSION TECHNIQUE 

Wheelchair racing propulsion is a highly dynamic and physically straining activity, utilising much of the 

upper extremity and back musculature.123 The significance of the rotator cuff muscles, biceps, triceps, 

serratus anterior muscles, trapezius and pronator quadratus on propulsion have been demonstrated169 

either through computational simulation100, 169, 311, 363-366 or EMG26, 429-431 analysis, with the deltoids 

frequently considered the most influential. The anterior deltoid (along with the pectoralis major) has 

been identified as the prime movers for the push phase,311 while the middle and posterior deltoids are 

considered crucial for the recovery phase.335, 432  

While many muscle groups have been considered influential towards the motion, muscles of the 

shoulder, particularly deltoids are frequently regarded as the most influential. Lin et al. 311 identified the 

anterior deltoid and pectoralis major as the prime movers for the push phase, while Veeger et al. 432 

and Masse et al. 335 have demonstrated the middle and posterior deltoids being crucial for the recovery 

phase.432 Veeger et al. 169 further described the significance of the rotator cuff muscles as well as the 

biceps, triceps, serratus anterior, trapezius and pronator quadratus on propulsion. The key muscles 

analysed through either computational analysis or electromyography are summarised in Table C.2.  
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Table C.2 Muscles and the number of muscle elements modelled in computational modelling and EMG literature. 

 Computational Model EMG 

 Reference Model 100 363 311 365 366 169 364 430 429 431 26 

Trapezius 2 1    1  1 1 1 1 

Levator Scapulae 1     1      

Rhomboid Minor 1     1      

Rhomboid Major 1 1          

Serratus Anterior 1 1    1     1 

Pectoralis Minor 1 1          

Latissimus Dorsi 1 1 1  3 1 3 1  1  

Pectorialis Major 2 1 2 4 3 1 3 1 1 1 1 

Deltoideus 2 1 3 3 3 2 3 2 3 2 3 

Supraspinatus 1 1 1 1 1 1 1    1 

Infraspinatus 1  1 1 1 1 1    1 

Subscapularis 1 1 1 1 1 1 1     

Teres Minor 1 1 1 1 1  1     

Teres Major 1 1 1  1  1     

Coracobrachialis 1 1   1  1     

Biceps Breve 1   1 1  1     

Biceps Long 1  1 1 1 1 1     

Triceps 4 2 1 3 3 1 3 1 1 1 1 

Brachialis 1 1  1 1 1 1     

Anconeus 1   1 1  1     

Brachioradialis 1 1  1 1  1     

Supinator 2   1 1       

Pronator Teres 2   1 1 1      

Pronator Quadratus 1   1 1 1      

Biceps Brachii  1      1 1 1 1 

Suprascapularis  1         1 

 

Verification was performed on the obtained outputs to ensure that the simulation protocol utilised by 

this research is providing reliable outputs. This verification compared the obtained values to three 

simulation studies performed on wheelchair propulsion currently presented in the literature, as well as 

checked the physiological validity of the obtained results.  

The instantaneous stress of muscles during the push and recovery phases of manual wheelchair 

propulsion has been investigated previously in the literature. Muscle recruitment strategies from this 

research Figure C.3 are consistent with literature by Slowik et al. 10, whereby the subscapularis muscles 

and deltoid muscles are under the highest amount of strain. When looking at the magnitudes of these 

strains, once again data is of consistent magnitude to reported literature,103 however, there exists a 

variation in how muscles are loaded.  
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Figure C.3: Average (left) and maximum (right) instantaneous stress for the simulated muscles during wheelchair racing propulsion for Athlete E 

at 22 km/hr. Delt: deltoid, SUBSC: subscapularis, SUPSP: supraspinatus INFSP: infraspinatus, TMIN: teres minor, PECM: pectoralis major, 

CORB: coracobrachialis, LAT: latissimus dorsi TMAJ: teres major, TRI: triceps, ANC: anconeus, BRA: brachialis, BRD: brachioradialis,, BIC: 

bicep, SUP: supinator, PT: pronator teres, and PQ: pronator quadratus. 

In the literature, subscapularis muscles present the most substantial average instantaneous stress 

(muscle force divided by the maximum isometric force-generating capacity), followed by the pronator 

quadratus. This is not observed in this research, however, with both of these muscles having low 

instantaneous stresses. Such differences may be explained by the difference in posture between 

wheelchair racing (kneeling) and manual wheelchair (conventional, upright) propulsion.  

For Athlete I, at 27 km/hr (7.5 m/s), resultant peak forces were approximately 280 N, and at 28 km/hr 

(7.8 m/s) were 271.6 N, with instantaneous peak values closer to 1130 N (Figure C.4). These are higher 

than measured values in the literature, where peak tangential forces of 158 N at 20.3 km/hr (5.64 m/s) 

were reported for propulsion performed on a wheelchair ergometer,195 with peak radial forces of 166.2 

N reported for propulsion at 15.8 km/hr (4.4 m/s) on a wheelchair stationary roller.433 Peak forces 

may be higher than reported in the literature as a consequence of the increased speed of testing, but 
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may also be a consequence of the estimation method used in this research. Limitations in this method 

may be due to the high accelerations at impact, which may not translate directly to increased force. For 

example, the use of hard, thermoplastic gloves increases stiffness, meaning greater contact 

accelerations will be measured through the hands than if some of this force were damped through 

padded gloves. It can be seen that this change in damping does not translate to the amount of force 

applied. However, as the magnitudes are comparable to the values presented in the literature, it can be 

inferred that errors in force estimations are likely present. However, they are not detrimental to the 

research. 

 

 

Figure C.4: Muscle force during propulsion (shaded) and recovery phases. Darker regions mean more muscles are being recruited to complete the 

task. 

 

 

 

 

 

 

 


