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17 Abstract

18 A new strategy to produce phosphate (P) fertilizers with both fast and slowly soluble P by 

19 compaction method to produce composite products is presented. This unique composition is created 

20 by combining mono-ammonium phosphate (MAP) as a highly soluble P nutrient source, with a 

21 commercially available slow-release P such as struvite (Str) or P-loaded graphene oxide (GO). 

22 Graphene oxide-loaded P was synthesized by in situ oxidation of GO and ferrous ion (GO-Fe) mixtures 

23 with hydrogen peroxide and further loading of P onto the GO-Fe composite. Nutrient release in water 

24 was studied for dual-release MAP-Str and MAP-GO-Fe-P and compared to their corresponding slow 

25 and fast release sources. Column perfusion experiments showed a biphasic dissolution behaviour with 

26 no significant difference between MAP-GO-Fe-P and MAP-Str. Visualization of P diffusion and chemical 

27 analysis of the soil after diffusion was used to assess the diffusion of P from different P fertilizers in 

28 various types of soil. Runoff and leaching simulations were performed to investigate the effects of the 

29 prepared fertilizer formulations on the environment. Overall, the diffusion of the dual-release 

30 fertilizers and the P loss in runoff and leaching experiments was less than for MAP. The better 

31 environmental performance of the dual-release fertilizers compared to MAP was related to the 

32 specific properties of the GO-based materials such their two-dimensional structure and to the low 

33 solubility of the Str in the case of Str-based fertilizers.  

34
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35 Introduction

36 Substantial efforts are now being made to improve fertilizer efficiency yet environmental and 

37 economic issues related to fertilizer usage still exist. The current application of highly soluble P 

38 fertilizers possesses a high risk of leaching and/or runoff of P into water systems which can trigger 

39 serious environmental problems.1, 2 Previous studies have identified P fertilizers as the main provider 

40 of P to surface water bodies contributing to their pollution.3 Depending on the site conditions, type 

41 and application rate of P fertilizers, fertilizer placement practice and timing of fertilizer application 

42 with respect to rainfall, the P losses usually result from a combination of surface runoff of particulate 

43 or dissolved P, channelized surface runoff, drainage and/or groundwater transport.2 Furthermore, 

44 significant P leaching can occur in sandy soils resulting in P deficiency due to the low P retention and 

45 high hydraulic conductivity.4  

46 Most studies have confirmed that the environmental risk associated with P fertilizers such as 

47 surface runoff or leaching is due to a combination of the high solubility of most commonly used P 

48 fertilizers such as monoammonium phosphate (MAP) and diammonium phosphate (DAP), as well as 

49 climatic or management conditions that lead to surface water runoff.3, 5, 6 Phosphorus fertilizers with 

50 slow-release properties can help mitigate the high losses of P encountered when high intensity rainfall 

51 or irrigation occurs shortly after surface applications.7, 8A conventional approach for the synthesis of 

52 slow-release fertilizers (SRFs) is by coating the soluble fertilizer to create a physical barrier around the 

53 granule which can decrease the release rate of the nutrients.9 Materials used for the coatings are 

54 usually cheap, readily available, biodegradable and/or environmentally friendly, either natural10, 11 or 

55 synthetic polymers.12-14 However, the synthesis of most synthetic polymers requires organic solvents 

56 which are harmful and expensive.15 Moreover, the polymer coatings often have low biodegradability 

57 and could potentially become an environmental concern.16, 17Other strategies included the use of 

58 sparingly soluble materials, such as hydroxyapatite,18 struvite,19 or different types of phosphate rock,20 

59 as well as usage of various natural and synthetic materials like layer-double hydroxides (LDH),21, 22 

60 silicates 23 and GO24 as nutrient carriers.

61 The idea underpinning the application of SRFs is based on an assumption that gradual supply 

62 of P to the plant will reduce the immediate and large nutrient losses due to leaching/runoff of P 

63 immediately after fertilizer application, while matching the plant P requirement for a longer period of 

64 supply during the growing season for slower-growing crops in cooler climates.9, 25 While the 

65 application of low solubility fertilizers can decrease the risk of P leaching/runoff, 3 reduced agronomic 

66 effectiveness might occur due to the slower supply of P during periods of peak plant demand.19, 21 For 

67 instance, P uptake by spring wheat was significantly lower for granular Str-based P fertilizer compared 

68 to MAP in both acidic and alkaline soils.19  Other studies have found sparingly soluble P fertilizers to 
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3

69 have similar agronomic effectiveness to soluble P fertilizers, but often these studies used fine particles 

70 mixed through the soil, which enhances the dissolution of the sparingly soluble product.19, 26-28Everaert 

71 et al.21 reported considerably higher P uptake by plants treated with MAP compared to slow-release 

72 LDH or Str fertilizer treatments. Their study also indicated that MAP performed better than Str and 

73 LDH in alkaline soil even when Str was applied in powdered form. Another study conducted with GO-

74 based P carriers showed the inefficiency of the slow-release P fertilizers for wheat growth and P 

75 uptake compared with highly soluble MAP. 29 

76 Management practices, in particular timing, rate and placement, have a very large effect on 

77 fertilizer runoff losses, especially in soil erosion. However, best management practices are not always 

78 followed due to logistic constraints. Improving fertilizer formulations can reduce nutrient losses in 

79 runoff water when fertilizers are surface applied. Recently, da Silva et al.30 have found that the 

80 combination of fast- and slow-release boron (B) fertilizers in macronutrient (muriate of potash) 

81 fertilizers can enhance the efficiency of B fertilizers. The combination of the fast- and slow-release B 

82 resulted in the initial fast-release of B followed by a sustained release of B for a longer time.30 They 

83 have also reported a reduced risk of B loss during a leaching experiment. Therefore, the same concept 

84 can be applied for P fertilizers to combine fast- and slow-release P sources to obtain a product with 

85 dual-release properties which reduces losses of P in runoff (or leaching) while also not severely 

86 compromising agronomic effectiveness of the fertilizer. 

87 In our previous studies,24, 31 we showed that graphene composites can be used as an excellent 

88 carrier for nutrients providing very slow and controllable release of micronutrients or P. Considering 

89 that graphene structure, surface chemistry, nutrient loading and release characteristics are tuneable, 

90 it presents a very promising platform for designing the next generation of fertilizers with controlled 

91 nutrient release kinetics. A serious limitation of preparing graphene-P composites is maintaining low 

92 pH during synthesis to avoid hydrolysis of Fe3+ ions during loading onto the GO suspension. 

93 Considering that Fe3+ ions have a high affinity towards oxygen groups present at the surface of GO, 

94 the high concentration of protons at low pH suppresses the deprotonation of carboxyl groups at the 

95 edge of GO sheets and cause a dramatic decrease of the negative charge on the GO sheets surface, 

96 and hence reduces the loading capacity of Fe and subsequently loading of P.32, 33 Low P content 

97 fertilizers cost more to transport and to spread, so we first aimed to increase the P content of the GO 

98 composite. We therefore hypothesized that mixing a GO suspension with Fe2+ salts at pH values > 2 

99 followed by in situ oxidation using H2O2 could increase the number of carboxyl groups at the edge of 

100 GO, increasing the overall negative charge while simultaneously complexing generated Fe+3 ions. This 

101 procedure should improve the loading of Fe3+ and subsequently PO4
3- ions on the GO sheets. 
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4

102 Therefore, the first objective of this work was to synthesize GO-Fe loaded P composites with higher P 

103 loading capacities which could be used as slow-release sources of P. 

104 Another objective of this study was to develop P fertilizers with dual release properties, 

105 releasing less P immediately after application and having a more sustained and longer period of P 

106 release than current soluble P sources. Two sources of slow-release P, namely a P-loaded graphene-

107 oxide or struvite, were co-compacted with a highly soluble P source, with the aim of creating fertilizers 

108 with dual release properties. We hypothesized that a dual-release fertilizer will reduce the overall 

109 dissolution rate and the diffusion of P in water and soil compared to conventional MAP thus potentially 

110 reducing the environmental issues related to large runoff or leaching losses of P immediately after 

111 fertilizer application.  

112

113 Experimental section

114 Natural graphite flakes were sourced from a local mine (Eyre Peninsula, South Australia). 

115 Ferrous sulphate (FeSO4 7H2O, Sigma-Aldrich), potassium permanganate (KMnO4, Sigma-Aldrich), 

116 potassium dihydrogen phosphate (KH2PO4, Chem-Supply), sulphuric acid (98 %, H2SO4, Chem-Supply), 

117 phosphoric acid (85 % w/w, H3PO4, Chem-Supply), hydrogen peroxide (30 %, H2O2, Chem-Supply), 

118 hydrochloric acid (35 %, HCl, Chem-Supply), and ethanol (Chem-Supply) were used directly without 

119 further purification. Struvite (Crystal Green™, (SGN240)) and MAP were supplied by (Ostara Nutrient 

120 Recovery Technologies Inc, Vancouver, BC and Mosaic Co, Plymouth, MN), respectively. 

121

122 GO-Fe composite preparation

123 The GO sheets were prepared using a modified Hummer method.34 To prepare GO-Fe 

124 composites, approximately 200 mg of GO was ultrasonicated in 20 mL of deionized water to obtain a 

125 homogeneous dispersion while the pH was adjusted to 3. Then, 1 g of ferrous sulphate was dissolved 

126 in a minimum amount of deionized water and added to the GO, under vigorous stirring, to provide 

127 GO:Fe ratio of 1:1 (g/g). Subsequently, 2 mL of H2O2 was added in 0.2 mL portions (to avoid violent 

128 reaction) to the GO-Fe mixture at ~1 min time intervals. The mixture was stirred for 1 h and then 

129 centrifuged at 2950g (Thermo Scientific Sorval, H-6000B rotor) for 1 h. After centrifugation, the 

130 supernatant was removed, and the GO-3Fe composite was freeze dried. Following the same 

131 procedure, GO-4Fe and GO-5Fe composites, with initial pH of GO suspensions of 4 and 5, respectively, 

132 were also synthesized. Henceforth, GO-XFe notation is used, where X denotes the initial pH value of 

133 the GO suspension used for synthesis.

134

135 Loading of P onto GO-Fe composite
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5

136 For loading of P onto the GO-3Fe composite, potassium dihydrogen phosphate (KH2PO4) salt 

137 was used as a source of soluble P. The GO-3Fe composite was suspended in deionized water at a 

138 concentration of 10 mg mL-1 and the pH was adjusted to 6 using NaOH. Then, KH2PO4 salt was added, 

139 under vigorous stirring in order to achieve a GO-3Fe:P ratio of 1:0.5 (g/g) and mixed for 1 h. The 

140 dispersion was centrifuged at 2950g for 1 h. After centrifugation, the supernatant was removed and 

141 the GO-3Fe composite loaded with phosphate (GO-3Fe-P) was freeze-dried. The dried composite was 

142 homogenized using a mortar and pestle and pressed into 40 mg pellets using a desktop pill presser 

143 (TDP 5, LFA Machines Oxford Ltd, UK). The same procedure was used for loading of P onto the GO-4Fe 

144 and GO-5Fe composites. Loading experiments were done in duplicate.

145

146 The total amount of elements in GO-Fe-P composites 

147 The total concentration of elements (Fe, K, P and S) in the GO-3Fe-P, GO4Fe-P, and GO-5Fe-P  

148 samples were determined using an open vessel concentrated acid digestion procedure (3.75: 1.25: 1 

149 mL of concentrated HCl: HNO3: HClO4).35 The samples (~0.1 g) were added into a glass tube with 6 mL 

150 of a mixture of concentrated acids and digested on a heating block at 140 °C for 6 h. After digestion, 

151 samples were filtered using 0.45 μm syringe filters (Sartorius) and analysed for total elemental 

152 concentrations using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) (Spectro, 

153 Kleve, Germany). Acid digests were performed in triplicate. 

154

155 Preparation of fertilizers formulations

156 Five fertilizer formulations were chosen for this study (Table 1): a commercial MAP fertilizer, 

157 a commercial Str fertilizer, a synthesized GO-Fe-P fertilizer, a mixture of Str with MAP and a mixture 

158 of GO-Fe-P with MAP (the GO-Fe-P fertilizer synthesized at pH 3 was used). The dual release fertilizers 

159 were made by mixing MAP powder (< 250 µm) and either Str (< 250 µm) or GO-Fe-P powder in a ratio 

160 that provided 50% of P from MAP and 50% from the slow-release fertilizer source. The freeze-dried 

161 GO-Fe-P powder and the dual release mixtures were homogenized using a mortar and pestle and 

162 pressed into 40-mg pellets using a desktop pill presser (TDP 5, LFA Machines Oxford Ltd, UK).

163 The pH of the product was determined by shaking 1 g of fertilizer in 2 L of water for 2 h. The 

164 total composition of MAP, Str and MAP-Str was measured by acid dissolution in 3.2 M HNO3, followed 

165 by analysis using ICP-OES. 

166 Table 1. pH, water extractable P, and total P, Mg, Fe, S and K concentrations (weight %) for 

167 monoammonium phosphate (MAP), struvite (Str), graphene oxide-loaded iron and phosphorus (GO-

168 3Fe-P), dual-release MAP-Str and MAP-GO-3Fe-P. The numbers in brackets refer to the standard 

169 deviation of three measurements.    
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6

Total (g kg-1)
Fertilizer pH

Water extractable 

P (g kg-1) P Mg Fe S K

MAPa 5.6(0.1) 192 (2) 227 (5) 5 (1) ND 14 (0) ND

Struviteb 7.5(0.1) 4.3 (0.2) 122 (1) 100 (2) ND ND ND

GO-Fe-P 6.7(0.0) 32 (1) 140 (6) ND 152 (2) 9 (1) 142 (7)

MAP-Str 6.9(0.0) 83 (1) 158 (13) 81 (1) 6 (0) 7 (1) 15 (0)

MAP-GO-3Fe-P 6.0(0.0) 91 (6) 173 (5) 5 (0) 106 (2) 13 (0) 94 (3)

170 a Commercial monoammonium phosphate fertilizer

171 b Commercial struvite fertilizer

172 ND refers to not detected in the samples 

173

174 Dissolution kinetics of P 

175 A column dissolution experiment was performed to quantify the kinetics of P release from 

176 MAP, GO-3Fe-P, Str, MAP-GO-3Fe-P and MAP-Str using the method of Baird et al. (2019).36 Briefly, 

177 granules of individual formulations having a total amount of P equivalent to ~50 mg were placed in a 

178 polypropylene column (150 mm×15 mm) and the column filled with acid-washed glass wool. Deionized 

179 water was introduced from the bottom of the column using a peristatic pump at a constant flow rate 

180 (10 mL h-1). The eluate containing dissolved nutrient was collected using an automated fraction 

181 collector (SuperFracTM, Pharmacia) for 48 h. The concentration of P was determined by ICP-OES. All 

182 treatments were carried out in duplicate.

183

184 Soils

185 Two soils from southern Australia were used. They were collected from near Monarto (MO) 

186 and Mt Compass (MC) from the top layer (0–10 cm), air dried, sieved to <2 mm, and thoroughly mixed 

187 prior to characterization and use. Selected physical and chemical properties of the soils used are given 

188 in Table 2. Soil pH was determined in 0.01 M CaCl2. Total C was determined using a dry combustion 

189 method.37 A pressure calcimeter method was used to determine the content of CaCO3.38 Particle size 

190 was measured according to the procedure of McKenzie et al (2002).39 The cation exchange capacity 

191 (CEC) at pH 7.0 and oxalate-extractable Al and Fe concentrations were determined following Rayment 

192 and Higginson. 40

193

194 Table 2. Selected physical and chemical properties of the soils used in this study.

Soil Monarto Mt Compass
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7

pH (water) 7.5 5.9

pH (CaCl2) 7.0 4.9

OC (g kg-1) 10 5

CEC (cmolc kg-1) 8.2 2.0

Clay (%) 8.6 4.2

Silt (%) 7.4 0.9

Sand (%) 84.0 94.9

CaCO3 (g kg-1) < 2 < 2

Feoxal (mg kg-1) 236 138

Aloxal (mg kg-1) 345 38

Total P (mg kg-1) 107 20

195

196 Diffusion of P from fertilizer granules into soil

197 A Petri dish experiment was carried out in which the diffusion of P from the dual-release (MAP-

198 Str and MAP-GO-3Fe-P) formulations was assessed and compared to that from the soluble fertilizer 

199 (MAP) or slow-release formulations (Str or GO-3Fe-P). The two soils were wetted to the field capacity 

200 and Petri dishes (diameter of 5.5 cm) were filled with the moist soil. One granule of each formulation 

201 (MAP, GO-3Fe-P, MAP-Str, MAP-GO-3Fe-P or Str) containing 8 mg P was placed in a 5-mm deep hole 

202 in the centre of the dish. The hole was then carefully covered with soil and Petri dishes were incubated 

203 at 25 °C. Each treatment was replicated three times. The diffusion of P was visualized at 1, 3, 7, 14 and 

204 28 d after fertilizer application using Fe-oxide impregnated paper according to the method of Degryse 

205 and McLaughlin. 41

206 The total amounts of P extracted by acid were measured at the end of the incubation period 

207 for two concentric soil sections following the method described by Lombi et al.42 Soil samples from 

208 the inner and outer sections (<8 mm and >8 mm from the fertilizer application point) were 

209 homogenized after drying in the oven overnight. To measure the total amount of P, a 10 mL solution 

210 containing 20% HNO3 was added to 0.2 g of soil from the inner or outer sections. The suspensions 

211 were shaken overnight and centrifuged 2950 g prior to measuring P with ICP-OES. 

212

213 Runoff experiment

214 A rainfall simulation experiment was performed in the laboratory using a rainfall cabin similar 

215 to Everaert et al.3 Briefly, three runoff trays (with dimensions of 50-cm length, 20-cm width and 7.5-
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8

216 cm depth) were placed 1 m under a spray nozzle while a runoff collector was attached to their front 

217 section. The runoff tray collector sections were covered to prevent the dilution of runoff solution by 

218 direct rainfall. The rainfall set up was pre-calibrated to the rainfall intensity of 98 mm h-1 for the 

219 experiment. 

220 The runoff trays were filled with MO soil up to the lower lip of the tray and to achieve a bulk 

221 density of 1.4 g mL-1. Perennial ryegrass (Lolium perenne L.) was planted in the soil for vegetation cover 

222 and all trays were located in the glasshouse. The trays were watered regularly and grass growth was 

223 monitored. The grass was cut to a height of 5 cm after 2 wk to promote root establishment. It was cut 

224 after another 14 d to the same height and 1 d later the P fertilizers MAP, GO-3Fe-P, Str, MAP-GO-3Fe-P 

225 or MAP-Str were applied onto the surface of  runoff trays at a rate equivalent to 40 kg P ha−1 (0.4 g P 

226 tray−1). A control treatment was prepared without addition of fertilizer. Runoff was generated at 1, 3, 

227 7, 14 and 21 d after the fertilizer application by exposing the trays to the calibrated water spray. Tap 

228 water was used in the rainfall simulator, the P concentration of which was below the detection limit 

229 of the ICP-OES (0.004 mg L−1), other elements detected in tap water are summarized in Table S1. For 

230 all rainfall events, the water was collected from the trays continuously for 30 minutes after the first 

231 droplets of runoff water were generated. Day 1 runoff water was collected separately for 30 minutes 

232 in time intervals of 0 to 5, 5 to 15, and 15 to 30 min, whereas for the rest of the rainfall events, water 

233 was continuously collected from 0 to 30 min. The weight of the runoff water was recorded for each 

234 tray. The runoff water was filtered through a 0.45 μm filter before analysis with ICP–OES. 

235

236 Soil leaching experiment

237 A column leaching experiment was conducted to evaluate the leaching of P from soils treated 

238 with the MAP, GO-3Fe-P, Str, MAP-GO-3Fe-P, and MAP-Str fertilizers, using 50-ml plastic syringes as 

239 columns. The bottom of the columns were covered with a 1.5-mm layer of glass wool to prevent 

240 movement of soil particles. Then, 25 g of dry MC soil was added, fertilizer granules were added at a 

241 rate of 60 mg P per column and covered with 25 g of MC soil. The columns were incubated at 25 °C. 

242 Aliquots of 30 mL of water were introduced from the top of the column at time intervals of 1, 3, 7, 15, 

243 21 and 28 d after addition of fertilizers and collected from the bottom, using a syringe to create 

244 suction. The leachates were filtered with a 0.45 μm filter and P concentrations determined using ICP-

245 OES.

246

247 Kinetic models

248 The mechanism of P release from all formulations was described and interpreted using 

249 different kinetic models, known as the zero- (eq.1), first-order(eq.2) and Higuchi (eq.3) models.43, 44
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250                                                                             (1)
𝑞𝑡

𝑞𝑒
= 𝐾0𝑡

251                         (2)𝑙𝑜𝑔(𝑞𝑒 ― 𝑞𝑡) = 𝑙𝑜𝑔(𝑞𝑒) ―𝐾1( 𝑡
2.303)

252                                                                        (3)𝑞𝑡 = 𝑘ℎ𝑡0.5

253 Where qt and qe represent the amount of nutrients released at time t and equilibrium, respectively, 

254 and K0, K1 and kh are solubility rate constants.

255

256 Characterization

257 The GO-Fe-P samples synthesized at pH 3, 4 and 5 were fully characterized. Thermal 

258 decomposition of samples was performed under air using a thermogravimetric analyser (Q500, TA 

259 Instruments, USA) heating from room temperature to 900 °C at a rate of 10 °C/min. X-ray diffraction 

260 (Model Miniflex 600, Rigaku, Japan) measurements were performed from 2θ = 5°–80° at a scan rate 

261 of 5°/min. FTIR (Nicolet 6700 Thermo Fisher) was used to identify functional groups in materials by 

262 scanning in the range of 500–4000 cm–1 in transmission mode. Scanning electron microscopy (SEM, 

263 Quanta 450, FEI, USA) was used to investigate the morphology of the fertilizer granules. The AFM 

264 image of GO was obtained on a multimode scanning probe microscope equipped with a Nanoscope 

265 IIIa controller (Vecco, USA).

266

267 Data Analysis

268 Analysis of variance (ANOVA) was performed using IBM SPSS statistical software. Multiple 

269 comparison of means was conducted using the LSD test when the ANOVA indicated significant 

270 differences. The level of significance was set at P≤0.05.

271

272 Results and discussion

273 Characterization

274 The XRD profile of GO (Fig. 1a) showed a characteristic peak for GO at 2θ = 10.4˚, 

275 corresponding to the (002) reflection.45 Disappearance of this diffraction peak in the XRD profile of 

276 GO-Fe composite synthesized at pH 3 (Fig. 1a) indicates a loss of the stacked structure of GO sheets, 

277 due to the introduction of Fe3+ ions among the GO layers, as well as lack of formation of any iron 

278 crystal structures on the surface of the GO.46 The absence of the diffraction peak at 10.4˚ for the GO-

279 3Fe-P composites further points out that no crystalline phase was produced on the GO-3Fe composite 

280 during the loading of PO4
3- onto GO-3Fe.24, 47 Similar XRD patterns to GO-3Fe and GO-3Fe-P were 

281 obtained for GO-XFe and GO-XFe-P composites synthesized at pH 4 and 5 (Fig. S1).  

282 Interactions between GO functional groups, Fe3+ and PO4
3- ions were examined using FTIR. The 

283 FTIR spectra of GO exhibits a broad band between 2100 to 3650 cm-1 for O-H stretching vibration due 
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10

284 to the intercalated water and structural hydroxide groups (-COOH, and –COH) of GO.34, 48, 49 The peak 

285 at 1712 cm-1 corresponds to C=O stretching of –COOH, and peak at 1618 can be allocated to C=C 

286 skeletal vibrations of the non-oxidized graphitic structure. Meanwhile, peaks at 1030 cm-1 and 1213 

287 cm-1 conform to the C-O and C-OH bonds, respectively. 34, 50-54 As illustrated in Fig. 1b, addition of Fe2+ 

288 ions and H2O2 to the GO suspension at an initial pH value of 3 resulted in a significant decrease of the 

289 1730 cm-1 peak and a shift of the 1618 cm-1 (to 1614 cm-1 ) and 1220 cm-1 (to 1187 cm-1) peaks, 

290 corresponding to carboxylic, aromatic and epoxy stretches in GO, respectively.55 These experimental 

291 results demonstrate the interaction of Fe ions with the O functional groups and the π-π aromatic 

292 structure of GO. The new peak at 588 cm-1 of the GO-Fe composite can be attributed to the Fe-O bond, 

293 further indicating the iron loading onto the GO sheets.55 A strong stretching band at 1008 cm-1 after 

294 loading of PO4
3- ions onto the GO-Fe composite could be assigned to deprotonated monodentate 

295 surface complex P-OX (where X is either H or Fe).56 Composites obtained at other pH values resulted 

296 in identical FTIR spectra (Fig. S2), suggesting that there is no difference in loading mechanisms onto 

297 GO in the tested pH range (3-5).  

298 TGA analysis of GO, GO-3Fe and GO-3Fe-P is shown in Fig. 1c. Weight loss up to 100° C could 

299 be attributed to detachment of physically adsorbed water, followed by another loss of weight in the 

300 range 200-600° C due to decomposition of labile oxygenated functional groups and subsequent 

301 decomposition of the carbon structure.57, 58 At temperatures higher than 600° C, no change in weight 

302 was observed for GO and GO-3Fe, and undegradable solid residues were 2.6 and 33.5 wt % for GO and 

303 GO-3Fe, respectively. Based on the TGA results, the loading of iron onto the GO-3Fe composite was 

304 calculated to be 21.6 wt %. It is interesting to notice lack of significant weight loss for the GO-3Fe-P 

305 composite, compared to GO and GO-3Fe, in the 400 to 900° C temperature range. Increased thermal 

306 stability of the GO-3Fe-P composite could be ascribed to the formation of ferric phosphate complexes 

307 which have temperatures of decomposition greater than those used in our experiments.59 Similar 

308 results were obtained for composites synthesized at pH 4 and 5 (Fig. S3). It is well known that the 

309 surface charge of GO at pH 3 is negative and further increase of pH to 5 will only slightly change zeta 

310 potential towards more negative values.60, 61 Based on our results these slight changes do not have a 

311 significant impact on the mechanism and amount of Fe loaded at the GO surface.
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312
313 Figure 1. a) X-ray diffraction spectra, b) FTIR spectra and c) TGA analysis of graphene oxide (GO), 

314 graphene oxide loaded with iron in pH 3 (GO-3Fe) and graphene oxide loaded with iron and 

315 phosphorus (GO-3Fe-P).

316 The analysis of GO-XFe-P composites after acid digestion using ICP-OES showed that the 

317 difference in the amounts of P, K, S and Fe in the GO-XFe-P composites were less than 1% indicating a 

318 negligible effect of pH on elemental loading (data not shown). This is in accordance with the 

319 characterization results which showed an identical mechanism of interactions for all the three pH 

320 values.  The presence of sulphur (S) could be explained by the adsorption of SO4
2- ions from the FeSO4 

321 salt, used as a source of Fe, onto the GO-3Fe composite. Likewise, the addition of KH2PO4 salt as a 

322 source of P during synthesis of the GO-3Fe-P composite resulted in sorption of potassium (K+) ions. 

323 The relatively large percentage of Fe in the GO-3Fe-P composite is most likely the reason for the high 

324 loading of P, due to the high affinity of PO4
3- towards Fe+3 ions.31 The presence of K in the GO-3Fe-P 

325 composite may be the result of electrostatic attraction of K+ ions with negatively charged oxygen 

326 groups and PO4
3- groups on the surface of the GO-3Fe-P composite. The small percentage of S present 

327 on the GO-3Fe-P could be attributed to the fact that SO4
2- competes for the same Fe sites as PO4

3-and 

328 has a lower affinity for the surface than PO4
3-.62, 63 
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329 Analysis of the composites, obtained by the simultaneous addition of Fe2+ and H2O2 at a pH > 

330 2 to the GO suspension in water, had high concentrations of iron attached to the oxygen groups of the 

331 GO sheets. Furthermore, Zhang et al. 33 reported that treatment of GO suspensions in water using 

332 FeSO4x7H2O followed by addition of H2O2 would generate Fe(III) composites linked to the GO sheet 

333 edges or surface. Characterization of GO-XFe composites loaded with P suggests the formation of 

334 ferric phosphate complexes at the surface of GO-XFe. The amount of P and K loaded onto the GO-XFe-

335 P composites were close to the values found in typical commercial fertilizers. Based on our previous 

336 work,31 all these newly synthesized composites were expected to behave as SRFs. The GO-3Fe-P 

337 (further labelled as GO-Fe-P) composite was chosen as the model slow-release P source for co-

338 compaction with MAP.

339

340 Kinetics of phosphorus release 

341 The kinetics of P dissolution from fertilizers are reported as the cumulative amount of P eluted 

342 from the column versus time (Fig. 2a). The overall release behaviour depended on the solubility of the 

343 fertilizers. Those with the higher water solubility showed faster P release e.g. the P release for MAP 

344 fertilizer was very fast with 90% of the added P eluted in the first 10 h. For the slow-release fertilizers 

345 (Str and GO-Fe-P), only 10% of the P was measured in the leachate in the first 10 h, and Str showed a 

346 slower release compared to GO-Fe-P for the next 40 h. The release of P for both fertilizers containing 

347 high and low water soluble P sources showed a biphasic behaviour consisting of an initial release in 

348 the first 10 h, followed by a slow release over the next 40 h. The release of other nutrients such as K 

349 and S was also monitored from GO-Fe-P and is reported in Supporting Information (Fig. S4).

350 The pH of eluates from MAP fertilizers increased from 5.5 to 6.5 for the first 15 h when 90% 

351 of P released and once the dissolution of the granules was completed, the column eluate tended 

352 towards a pH value of 6, corresponding to the eluent pH (Fig. 2b).31 The pH of eluates from the GO-

353 Fe-P fertilizers decreased to 5.5 for the first 10 h and maintained this pH throughout the elution study. 

354 This decrease of pH was most likely caused by the production of H+ ions during the dissolution of the 

355 GO-Fe-P composite, 31 as GO can gradually generate acidity by interaction with water.64 In contrast, 

356 the pH of the initial eluates from the columns containing Str was 7.5. The pH of eluates from the MAP-

357 GO-Fe-P and MAP-Str demonstrated similar trends to MAP for the first 15 h and then increased from 

358 6 to 6.5 and 7 for MAP-GO-Fe-P and MAP-Str, respectively. Once the dissolution of the MAP was 

359 complete, the pH of the eluates from MAP-GO-Fe-P remained around 6.5, while the pH of eluates from 

360 MAP-Str tended towards higher pH (around 7.5) due to dissolution of Str.

Page 12 of 27

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13

361
362 Figure 2. a) Kinetics of P release from monoammonium phosphate (MAP), graphene oxide loaded P 

363 (GO-Fe-P), struvite (Str), MAP mixed GO-Fe-P (MAP-GO-Fe-P) and struvite (MAP-Str) from the columns 

364 and b) Changes in the pH of the eluates from the columns as a function of time. Error bars represent 

365 standard deviation (n=2).

366 There was no Fe detected (< 10 µg L-1) in the eluates of the GO-Fe-P composite, indicating that 

367 only P, not Fe, was released. The slow release of P observed from GO-Fe-P fertilizers could be related 

368 to  the strong complexation of P with the Fe-loaded GO.31 Another reason for slow release of P from 

369 the GO-based matrix is the low accessibility of nutrients in the matrix due to the trapping of P in or 

370 between GO sheets. Coordination of Fe on GO and subsequently P on GO-Fe creates wrinkles on the 

371 GO surface due to its decreasing surface charge.31, 65 Therefore, nutrients can be trapped in GO 

372 aggregates and water molecules have to penetrate through the agglomerated GO sheets to release 

373 the nutrient.24 The slow release of Str was due to the low solubility of the mineral which is mostly 

374 governed by the activity of Mg2+, NH4+, and PO4
3− in solution and strongly depends on the pH of the 

375 solution.66

376 The kinetic constant (k) for the release behaviour and the release concentration of P from MAP, Str 

377 and GO-Fe-P at equilibrium time were fitted using the linear form of zero-order, first-order and Higuchi 

378 models (or intraparticle diffusion model) (Table 3). The data for MAP fitted the first order model best. 

379 Conforming to this kinetic model, the rate of P released from the MAP granules is directly proportional 

380 to the initial concentration of P.44 In contrast, the P release constant and the regression coefficient 

381 (R2) data presented in Table 3 showed that the P release from the GO-Fe-P and Str was best described 

382 using the Higuchi model. This model was developed to model the release of low solubility nutrients 

383 incorporated into semi-solid or solid matrices, hence similar to a material such as P-loaded GO.44 

384 Therefore, water needs to diffuse inside the matrix and release the nutrient through the cracks on the 
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385 granule’s surface. A SEM image of Str and GO-Fe-P granules (Fig. S5) confirmed this as granules were 

386 corrugated with cracks but their structure appeared firm.    

387 Table 3. Kinetic pseudo-first and second- order, and Higuchi models for P release from MAP, Str and 

388 GO-Fe-P.

Zero-order model First-order model Higuchi modelKinetic 

parameters

Sample Name
K0 (h-1) R2 K1 (h-1) R2 Kh (mg (g h0.5)-1) R2

MAP -0.7605 0.3379 0.1087 0.7926 12.5990 0.5714

Struvite -0.1206 0.5826 0.0918 0.6720 0.9873 0.7580

GO-Fe-P -0.2787 0.8468 0.0644 0.9540 0.3240 0.9580

389

390 The dual-release P fertilizers showed two release patterns: a fast release for the first 10 h 

391 followed by a slow- and sustained release. Indeed, ~45% of the total P released from both MAP-GO-

392 Fe-P and MOP-Str in the first 10 h, while it took 38 h more to reach the 56% release for total P. The 

393 slightly higher dissolution of P for MAP-GO-Fe-P compared to MAP-Str during the sustained release 

394 period could be related to the high pH of MAP-Str restricting P dissolution from Str. The release data 

395 of MAP-Str and MAP-GO-Fe-P were fitted to different kinetic models where initial and slow release 

396 data were fitted separately to the models. Initial and slow release data of MAP-Str and MAP-GO-Fe-P 

397 fitted the first-order kinetic model well which suggests that the P release rate is concentration 

398 dependent, related to P release from MAP (Table 4) and declined when all P from MAP was released. 

399 The release of P from MAP-Str and MAP-GO-Fe-P was also fitted to the Higuchi model, which is used 

400 to summarize the release of high and low solubility nutrient compounds merged into solid or semi-

401 solid matrices. This model has used to describe the drug release by diffusion in the case of some matrix 

402 tablets containing water-soluble drugs the same condition as MAP-Str and MAP-GO-Fe-P granules. 67, 

403 68The Higuchi model also described the release of slow-release Str and MAP-GO-P well. The kinetic 

404 rate constant (K1 and Kh) data calculated for P release for both dual-release fertilizers were greater for 

405 the first step (fast release) than the second step (slow release), confirming the faster release of MAP 

406 compared to slow-release sources.

407

408

409

410

411

412
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413

414

415 Table 4. Comparison of release constants and co-relation factors for burst and sustained release 

416 obtained by fitting the P release data to zero- and first- order, and Higuchi models for MAP-Str, and 

417 MAP-GO-Fe-P.  

Zero-order model First-order model Higuchi model

K0 (h-1) R2 K1 (h-1) R2 Kh (mg (g h0.5)-1) R2Kinetic 

parameters 1° 

step

2° 

step

1° 

step

2° 

step

1° 

step

2° 

step

1° 

step

2° 

step

1° 

step

2° 

step

1° 

step

2° 

step

MAP-Str 3.935 1.025 0.890 0.944 0.177 0.042 0.982 0.997 16.119 12.366 0.971 0.964

MAP-GO-Fe-

P
4.495 1.159 0.896 0.947 0.201 0.045 0.993 0.995 17.743 15.118 0.964 0.990

418

419 Runoff losses

420 As expected, runoff losses were very low for the Str and GO-Fe-P treatments; in the case of 

421 Str being not significantly different from soluble P losses from control (unfertilized) soil (Fig. 3).  Runoff 

422 losses of P from MAP were high initially (as expected) and declined rapidly over time (Fig. 3a and b).  

423 The dual release sources had runoff losses of P intermediate between the highly soluble MAP, and the 

424 slow release sources, Str and GO-Fe-P. This is also reflected in the cumulative P loss data (Fig. 4). 

425 Compared to MAP, it was evident that the dual release sources reduced the initial flush of soluble P 

426 lost in the first rainfall event, particularly the one based on GO-Fe-P as the slow release source (Fig. 

427 3a). The results of other studies have also shown that less water soluble P fertilizers resulted in a lower 

428 concentration of P in runoff than highly soluble P fertilizers. 69   
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429
430 Figure 3. a) The runoff losses of dissolved P from MAP, GO-Fe-P, MAP-GO-Fe-P and MAP-Str and 

431 struvite during the time intervals of the rainfall event 1 d after fertilizer application (The insets show 

432 the runoff losses from Str and control treatments), b) The runoff losses of P from the treatments during 

433 the 30-min rain events performed 3, 7, 14 and 21 d after fertilizer application. Error bars represent 

434 the standard deviation (n=3) and different letters indicate statistical significance (P ≤ 0.05).

Page 16 of 27

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17

435
436 Figure 4. The cumulative runoff losses of dissolved P from fertilizers across the rainfall events, reported 

437 as milligrams of P per tray. Error bars represent the standard deviation (n=3). 

438 The higher runoff P losses of the MAP-Str than MAP-GO-Fe-P, despite the low solubility of Str, 

439 can perhaps be explained by the structural characteristic and hardness of the granules. Although both 

440 fertilizers were made by mixing the same MAP powder with slow release sources, and the same 

441 pressure was used during manufacture, the crushing strength of the MAP-GO-Fe-P granules was 

442 significantly higher (54.5 ±5.5 N) than those of MAP-Str (10.9±3.3 N), Fig. S6. As illustrated in Fig. 5, 

443 during compression, loosely packed particles transform and rotate at relatively low contact 

444 deformations. Subsequently, due to the increase in the elastic-plastic contact stresses, some particles 

445 deform and break, and smaller particles tend to fill the pores to make the final granule. Several 

446 studies70, 71 have shown that different factors and particle properties including powder flowability, 

447 particle size distribution, shape and hardness can influence the compression behaviour of powders 

448 and the strength of the final granule. Graphene oxide-based materials, due to their unique properties 

449 including planar structure and the flexibility of sheets, can fill pores between the MAP particles and 

450 may have conferred higher granule strength to the MAP-GO-Fe-P treatment, and therefore perhaps 

451 reducing granule degradation by rainfall impact and reducing runoff losses. Several studies have 

452 demonstrated the effect of graphene and its derivatives on enhancing the mechanical properties of 

453 alloys, cement and fertilizers.72-74 Furthermore, Shigaki et al.75 found that rainfall intensity and P 

454 solubility can influence P transport in runoff. Therefore, fertilizers with low mechanical strength are 

455 more affected under the rainfall intensity which can influence P transport in runoff. The SEM images 

456 (Fig. 5 g-j) from the surface of the both types of dual-release granules confirmed our hypothesis that 
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457 MAP-GO-Fe-P granules were more compacted than MAP-Str granules. Large residues of undissolved 

458 MAP-GO-Fe-P with preserved original shape were also detected at the end of the runoff event, further 

459 supporting our hypothesis (Fig. S7).

460
461 Figure 5. Schematic of micro-process and formation of MAP-Str and MAP-GO-Fe-P a) Feed of loose 

462 particles of MAP and Str are subjected to the pressure, b) Fine particles are moving and fill the pores 

463 between the larger particles, c) Particles and their edges tend to break and gaps between the pores 

464 are filled, d) Feed of loose particles of MAP and GO-Fe-P sheets, e) Fine MAP particles and GO-Fe-P 

465 sheets rearranged to fill the gaps between MAP particles, f) MAP particles and their edges tend to 

466 break and GO-Fe-P sheets fill the pores and gaps between the MAP particles, g) and h) Low and high 

467 magnification SEM images of dual- release MAP-Str and i) and j) Low and high magnification SEM 

468 images of dual- release MAP-GO-Fe-P.

469

470 Diffusion of P into soil 

471 At any given time, the diffusion of P from MAP granules was higher than all other treatments 

472 in MO soil (Fig. 6a). The P diffusion zone visualized around the granule was smaller for the slow- release 

473 fertilizers (Str and GO-Fe-P) in MO soils compared to other treatments while GO-Fe-P was superior to 

474 Str. In MO soil, there was little difference in visualized P diffusion between granules containing slow 

475 and fast release P. The diffusion of P from both dual-release fertilizers steadily increased until 21 d of 

476 incubation but enhanced slightly or was at the same level for 28 d showing the P release was governed 
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477 by slow release source after 21 d. In the sandy soil low in Al and Fe (MC), the P released from MAP 

478 diffused very quickly and reached the border of the Petri dish by the third day of incubation, due to 

479 the low P buffering capacity of the soil (Fig. 6b).76 Released P from dual-release fertilizers diffused in 

480 soil very quickly and reached the border of incubated dish in a week. Struvite fertilizers had the lowest 

481 diffusion compared to all other fertilizers. 

482
483 Figure 6. a) Diameter of the high-P zone in Monarto soil and b) Mt Compass soil from the treatments 

484 at 1, 3, 7, 14, 21 and 28 d after the addition of fertilizers. Error bars represent the standard deviation 

485 (n=3).

486 Chemical analysis of soil at the end of the incubation confirmed the findings from the 

487 visualization experiment. It was very clear that most of the P remained in the inner section at the end 

488 of the 4-week incubation for Str and GO-Fe-P granules (Fig. 7a and b) in both soils. However, higher % 

489 of P recovered from Str compared to GO-Fe-P at <8mm was most likely related to the incomplete 

490 dissolution of Str. The amount of P extracted from the >8 mm section increased for dual-release 

491 granules compared to their related slow-release formulation and the fraction of P recovered at >8 mm 

492 for MAP-Str was lower than MAP-GO-Fe-P.  

493
494 Figure 7. The percentage of P recovered by acid from treatments incubated in Monarto and Mt 

495 Compass soils for 28 d at  a) >8 mm and b) <8mm. Error bars represent the standard deviation (n=3)
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496 Phosphorus leaching

497 The cumulative dissolved P leachate from the soil column is presented in Fig. 8a. It is clearly 

498 observed that an average of 37 mg of P was leached from the column containing MAP after 1 d which 

499 corresponded to the 62% of the applied P. The amount of P leached from the MAP fertilizers was 57.5 

500 mg by 3 d corresponding to 97% of P initially present in the column. In comparison, the amount of P 

501 leached was 31 mg for the MAP-GO-Fe-P and 25 mg for the columns containing MAP-Str, 

502 corresponding to 52 and 41% of the P applied as dual-release fertilizer, respectively. MAP-GO-Fe-P 

503 showed higher cumulative loss than the MAP-Str treatment except for the initial leaching events (1 

504 and 3 d) where P losses were most likely related to the highly soluble part of the fertilizer treatment. 

505 The amount of P leached from the column containing GO-Fe-P was around 6% for the first day of 

506 incubation and it reached up to 18% at the end of the leaching event. In contrast, the leachates for 

507 the Str were more gradual over time, as there was less difference in P loss between the different 

508 leaching events resulting in only 3.5% of added P to the columns leached over the whole experiment. 

509 Many sandy soils are often P deficient with less aluminium and iron based minerals that can 

510 adsorb P.4 rapid transport in sandy soils and low P-retention capacity may result in large P leaching.4, 

511 77 The amount of P loss from the columns is also related to the fertilizer source. The high P loss from 

512 MAP was related to its high solubility. Fertilizers with slow-release properties produced the least P 

513 lost during leaching experiments. It has been reported that P release is very quick from water-soluble 

514 P fertilizer granules with most of the P leaving the granules within days, 78 hence  the leaching of all P 

515 from MAP by 3 d. The results of the leaching study was in good agreement with the results of the Petri 

516 dish incubation investigation. 

517
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518
519 Figure 8. a) Cumulative leaching of the dissolved P from all fertilizers across the leaching events of 1, 

520 3, 7, 15 and 28 days, reported as mg of P per treatment, and b) The total % of leached P from MAP, 

521 GO-Fe-P, MAP-GO-Fe-P and MAP-Str at the end of leaching event. Error bars represent the standard 

522 deviation (n=3) and different letters indicate statistical significance (P ≤ 0.05).

523

524 A possible drawback of the application of GO composites as fertilizers could be the higher toxicity of 

525 GO compared to other alternative nanomaterials, such as clays.79 Dimiev et al. 64 have found that 

526 ‘prolonged exposure of GO to water gradually degrades GO flakes, converting them into humic acid-

527 like structures’. Although degradation of GO applied as fertilizer to humic acid-like structures could 

528 improve soil quality, the kinetics of this degradation might be too slow to prevent possible toxicity of 

529 GO. A more detailed knowledge of GO toxicity in soil is necessary before large-scale application of GO 

530 composites as fertilizers. 

531

532 Conclusions

533 The environmental issues associated with losses of P in runoff and leaching from highly soluble 

534 P fertilizers, coupled with the low agronomic effectiveness of very insoluble P sources, led to the 

535 preparation of dual release P fertilizers by co-compaction of both soluble (MAP) and slow release P 

536 sources (struvite and graphene composites). It is evident that dual-release P products can indeed be 

537 formulated that have P release patterns, P leaching and P runoff losses that are intermediate between 

538 highly soluble products and slowly soluble materials. These dual-release products may offer an 
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539 opportunity to reduce the environmentally damaging losses of P that can occur immediately after 

540 fertilizer application, while at the same time providing a sufficient rate of P supply to crops so that 

541 agronomic effectiveness is not compromised. Further research is needed to define the agronomic 

542 effectiveness of dual-release products for a range of crops and on soils differing in the P supply. 

543

544 Supporting information: XRD spectra of the GO-3Fe, GO-4Fe, GO-5Fe, GO-3Fe-P, GO-4Fe-P, and GO-

545 5Fe-P composites, FTIR spectra of GO-3Fe, GO-4Fe, GO-5Fe, GO-3Fe-P, GO-4Fe-P, and GO-5Fe-P 

546 composites, TGA spectra of GO-3Fe, GO-4Fe, GO-5Fe, GO-3Fe-P, GO-4Fe-P, and GO-5Fe-P composites, 

547 kinetics of P, K, and S release from GO-3Fe-P composite, granular crushing strength of MAP-GO-3Fe-P 

548 and MAP-Str granules, photos of GO-3Fe-P and MAP-GO-3Fe-P granules, SEM of GO-3Fe-P and MAP-

549 GO-3Fe-P granules.
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