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Thesis Summary 

Target tracking is a complicated task from an engineering perspective, especially where 

targets are small and seen against complex natural environments. Due to the high demand 

for robust target tracking algorithms a great deal of research has focused on this area. 

However, most engineering solutions developed for this purpose are often unreliable in real 

world conditions or too computationally expensive to be used in real-time applications.   

While engineering methods try to solve the problem of target detection and tracking by using 

high resolution input images, fast processors, with typically computationally expensive 

methods, a quick glance at nature provides evidence that practical real world solutions for 

target tracking exist. Many animals track targets for predation, territorial or mating purposes 

and with millions of years of evolution behind them, it seems reasonable to assume that these 

solutions are highly efficient. For instance, despite their low resolution compound eyes and 

tiny brains, many flying insects have evolved superb abilities to track targets in visual clutter 

even in the presence of other distracting stimuli, such as swarms of prey and conspecifics. 

The accessibility of the dragonfly for stable electrophysiological recordings makes this 

insect an ideal and tractable model system for investigating the neuronal correlates for 

complex tasks such as target pursuit. 

Studies on dragonflies identified and characterized a set of neurons likely to mediate target 

detection and pursuit referred to as ‘small target motion detector’ (STMD) neurons. These 

neurons are selective for tiny targets, are velocity-tuned, contrast-sensitive and respond 

robustly to targets even against the motion of background. These neurons have shown 

several high-order properties which can contribute to the dragonfly’s ability to robustly 

pursue prey with over a 97% success rate. These include the recent electrophysiological 

observations of response ‘facilitation’ (a slow build-up of response to targets that move on 
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long, continuous trajectories) and ‘selective attention’, a competitive mechanism that selects 

one target from alternatives. 

In this thesis, I adopted a bio-inspired approach to develop a solution for the problem of 

target tracking and pursuit. Directly inspired by recent physiological breakthroughs in 

understanding the insect brain, I developed a closed-loop target tracking system that uses an 

active saccadic gaze fixation strategy inspired by insect pursuit. First, I tested this model in 

virtual world simulations using MATLAB/Simulink. The results of these simulations show 

robust performance of this insect-inspired model, achieving high prey capture success even 

within complex background clutter, low contrast and high relative speed of pursued prey. 

Additionally, these results show that inclusion of facilitation not only substantially improves 

success for even short-duration pursuits, it also enhances the ability to ‘attend’ to one target 

in the presence of distracters.  

This inspect-inspired system has a relatively simple image processing strategy compared to 

state-of-the-art trackers developed recently for computer vision applications. Traditional 

machine vision approaches incorporate elaborations to handle challenges and non-idealities 

in the natural environments such as local flicker and illumination changes, and non-smooth 

and non-linear target trajectories. Therefore, the question arises as whether this insect 

inspired tracker can match their performance when given similar challenges? I investigated 

this question by testing both the efficacy and efficiency of this insect-inspired model in open-

loop, using a widely-used set of videos recorded under natural conditions. I directly 

compared the performance of this model with several state-of-the-art engineering algorithms 

using the same hardware, software environment and stimuli. This insect-inspired model 

exhibits robust performance in tracking small moving targets even in very challenging 

natural scenarios, outperforming the best of the engineered approaches. Furthermore, it 

operates more efficiently compared to the other approaches, in some cases dramatically so.  
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Computer vision literature traditionally test target tracking algorithms only in open-loop. 

However, one of the main purposes for developing these algorithms is implementation in 

real-time robotic applications. Therefore, it is still unclear how these algorithms might 

perform in closed-loop real-world applications where inclusion of sensors and actuators on 

a physical robot results in additional latency which can affect the stability of the feedback 

process. Additionally, studies show that animals interact with the target by changing eye or 

body movements, which then modulate the visual inputs underlying the detection and 

selection task (via closed-loop feedback). This active vision system may be a key to 

exploiting visual information by the simple insect brain for complex tasks such as target 

tracking. Therefore, I implemented this insect-inspired model along with insect active vision 

in a robotic platform. I tested this robotic implementation both in indoor and outdoor 

environments against different challenges which exist in real-world conditions such as 

vibration, illumination variation, and distracting stimuli. The experimental results show that 

the robotic implementation is capable of handling these challenges and robustly pursuing a 

target even in highly challenging scenarios.  
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Chapter 1. Introduction 

Historically, development of target tracking algorithms dates back to the era before the 

ubiquity of personal computers. Some of the earliest works on target tracking appeared in 

the 1950s (Wax, 1955), 1960s (Kalman, 1960; Sittler 1964), and 1970s (Singer and Stein, 

1971). The initial works in this field were mostly proposed to automatically track objects by 

means of radar systems. The increasing need for automatic tracking systems and the ability 

of visual systems to provide rich information of the real-world such as shape, colour and 

texture, shifted the focus of attention towards visual tracking methods.  

Due to the increasing demand for automation, developing a robust tracking algorithm has 

been the focus of much research during the last decade. The potential applications for such 

visual target tracking systems include autonomous vehicle navigation, surveillance systems, 

wildlife study, human assistance mobile robots, surgical robots and bionic vision. All these 

applications and many others identify a common requirement for technology that can 

successfully extract features of interest, track them robustly within complex environments 

through long trajectories and do so even in the presence of other distractions.  

However, detecting and tracking a moving object against a cluttered background is one of 

the most challenging tasks for both natural and artificial visual systems. The pursuer must 

overcome different challenges during the pursuit to be successful: 

1) Ego motion and background motion: The pursuer motion through the world causes 

background motion. This wide field optic flow is fundamental to detection, control 

and successful completion of pursuit. 

2) Obstacle avoidance: Obstacles can cause collision or visual occlusions during the 

pursuit, therefore, obstacle avoidance is necessary for a successful pursuit. 
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3) Target detection: This task is complicated due to illumination changes, background 

clutter and texture, rapid changes in target appearance, partial or full occlusion, 

sudden changes in target trajectory, and presence of distractors within the 

environment. 

4) Visual attention: Once the target is detected, the pursuer needs to maintain attention 

on it and ignore other salient distracters. 

5) Closed-loop pursuit: Once all the other conditions have been met the pursuer must 

control its translational and rotational speed to close the distance between itself and 

the target. 

Many algorithms have been developed over the last decade to address the problem of object 

detection and tracking for different scenarios. Most of these methods use assumptions to 

simplify the situations and make the tracking problem tractable. For instance, smoothness of 

motion, minimal amount of occlusion, illumination constancy, high contrast with respect to 

background, etc., are the common requirements in many of the developed algorithms 

(Yilmaz et al., 2006). Consequently, most of these methods collapse when it comes to 

tracking objects in real world situations, within a distracting environment or in the absence 

of relative background motion. Moreover, most of these methods and techniques involve 

complex and time consuming computational mechanisms which require significant 

processing capacity that makes them impractical in many applications. This identifies a clear 

need for an alternative and more efficient approach to solving at least a subset of the target 

tracking problem. 

Insects such as dragonflies have a low spatial acuity visual system, and a small size, light-

weight and low-power neuronal architecture. Nonetheless, they show remarkable visual 

guided behaviour in chasing other insects, e.g. for predation, territorial or mating behaviour, 

even against complex moving backgrounds (Collett and Land, 1975; Wehrhahn, 1979) or in 



Chapter 1. Introduction 
 

3 

the presence of distractors (Corbet, 1999; Wiederman and O'Caroll, 2013). All these features 

make insects an ideal group to draw inspiration from in the context of target detection and 

pursuit. Therefore, within this thesis I am aiming at developing an insect-inspired target 

tracking mechanism based on the state-of-the-art knowledge in the field of insect 

neurobiology and behaviour. 

In the following sections, first I review engineering approaches for target tracking and then 

introduce the state of knowledge in insect behaviour and neural mechanisms involved in 

their target detection and pursuit. At the end of this chapter I explore the bio-inspired motion 

detection algorithms. These underlie the central focus for my thesis.  

1.1 Target Detection and Tracking Models in Engineering 

Traditionally, computer vision techniques approach the problem of target tracking either 

from a detection or tracking perspective (Ren et al., 2003). Detection considers the video 

frames as independent and localizes all objects that correspond to an object model. Tracking 

uses temporal coherence in consecutive frames to estimate the object motion and generate 

its trajectory. Machine learning is often employed in both of these approaches. Detectors use 

machine learning to build better models that cover various appearances of the object. 

Trackers use machine learning to adapt to changes of the object appearance. In recent years, 

some research has shown that the integration of image-based target detection and tracking 

improves the robustness of the overall system (Wang et al., 2008; Kalal et al., 2012).  

1.1.1 Detection 

Object detectors are used to identify the location of the objects in an input image and play a 

key role in tracking, especially when the target is partially or fully occluded or moves in and 

out of the camera field of view. Object detectors do not make any assumptions about the 

number of objects nor their location in the image. The objects are described by a model that 
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is built in a training phase which usually remains fixed during run-time. At the core of 

detectors there is a binary classifier, which classifies patches in an input image, and the goal 

is to find a decision boundary that separates the target from the negative examples. Figure 

1.1 illustrates a typical detection system. In the following I review the most common 

detection approaches in computer vision literature.  

 

Figure 1.1. Diagram of a typical detection system showing the three stages of detection. 

1.1.1.1 Features used in object detection 

Target features play a key role in object detection as they provide the information about the 

object. The main challenge in visual detection resides in the changes in object appearance 

caused by viewpoint, occlusion, illumination, texture, etc. Therefore, different object 

features have been used in order to extract the most unique feature of the object and make it 

distinguishable in the feature space. The most commonly used features for description of 

object appearance include: 

Object Model

   (Classifer)

Offine Training

Detection
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Figure 1.2. Features that are commonly used to represent appearance in object detection. The original photo 

was downloaded from legis.wisconsin.gov. 

• Raw pixels. Raw pixel (Figure 1.2a) represents the objects by the intensity values of 

pixels. This representation method has been widely used in visual tracking due to its 

simplicity and efficiency (Silveria and Malis, 2007; Ho et al., 2004; Ross et al., 2008; 

Li et al., 2007; Wen et al., 2009; Hu et al., 2010; Li et al., 2008). However, these 

methods suffer from high dimensionality and lack of robustness to appearance 

variations.  

• Histograms. Histogram or a combination of different histograms to represent the 

object appearance by distribution of colours, grey-scale values, texture, edge 

orientations, etc. (Figure 1.2b). The main advantage of these methods is their 

effectiveness and efficiency in capturing the distribution of target features. However, 

the histogram approach only takes into account the value of pixels rather than the 

location information. Therefore, one of the major drawbacks of this approach is the 

loss of spatial information. Moreover, this approach can easily lose the target in the 

background clutter with a similar histogram.  

• Wavelet filtering. This method of object representation use wavelet transforms to 

filter the object regions in different scales or directions and detect predefined 

intensity patterns in an image patch (Figure 1.2c). One of the most popular types of 

wavelet filters are Haar-like filters (Papageorgiou et al., 1998). Haar-like features are 

a) Raw Pixels b) Histograms c) Wavelet Filtering d) Gradients e) Binarized Features
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relatively robust to noise and lighting changes (Chen et al., 2008). One significant 

problem of Haar wavelet filters are their extremely high dimensionality in space. 

This problem is usually alleviated by selecting only important features.  

• Gradients. Gradients represent a significant cue in many object recognition systems. 

Gradient features (Figure 1.2d) are invariant to changes in illumination and 

shadowing, and provide better shape cues than grey level intensity or colour patterns 

(Wang, 2011). The gradient-based features include edge orientation histograms 

(EOHs) (Gerónimo et al., 2007a; Geronimo et al., 2007b; Levi and Y. Weiss, 2004), 

histograms of oriented gradients (HOGs) (Dalal, 2006; Dalal and Triggs, 2005) 

multi-level edge energy features (Maji et al., 2008), shapelets (Sabzmeydani and 

Mori, 2007), and edge density (Phung and Bouzerdoum, 2007).  HOGs (Dalal, 2006; 

Dalal and Triggs, 2005) are the most successful features for object detection, 

particularly for human detection and footwear-based gender recognition (Yuan et al., 

2010). Since the first development of HOGs different modifications have been 

proposed to improve the accuracy and computational efficiency of HOGs (Wang et 

al., 2009; Watanabe, 2009). 

• Binarized features. These type of features convert real-valued intensity patterns to 

binary codes (Figure 1.2e). The Local Binary Pattern (LBP) (Ojala et al., 2002) is an 

efficient texture operator commonly used in object detection. The LBP generates a 

binary code for a pixel’s nearest neighbours. With some improvement on 

discriminability of the binary code, the LBP was successfully applied to face 

detection (Hadid et al., 2004). Robustness to illumination variations and 

computational efficiency are the main reasons behind the popularity of the LBP.   
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1.1.1.2 Detection of Object Instance 

In this section I explore the approaches which detect the objects by their instances, such as 

a specific book cover.  For certain classes of objects (such as planar or textured objects), the 

detection of object instances has reached a level of maturity. However, objects that are non-

rigid and non-textured still remain challenging for detection. The methods for detection of 

object instances can be categorized as (i) global, (ii) local, and (iii) learning approaches.  

(i) Global appearance models are top-down approaches which represent the 

observation of the object as a whole. These methods encode the object 

appearance by a collection of examples and search the image to find the closest 

match to the object model (Murase and Nayar, 1995; Hinterstoisser et al., 2009; 

Hinterstoisser et al., 2010). Global appearance models are appealing since they 

provide much information about the object. However, they are sensitive to 

viewpoint, occlusions and background clutter. 

(ii) Local appearance methods calculate local patches around the spatio-temporal 

points of interest and then create a final representation by combining the related 

patches (Lowe, 2004; Obdrzalek and Matas, 2005; Lepetit et al., 2005; Taylor 

and Drummond, 2009; Pilet and Saito, 2010). Unlike the global models, local 

approaches are resistant to occlusions. However, extraction of sufficient relevant 

interest points usually requires excessive pre-processing. 

(iii) Learning approaches. Both global and local appearance models usually have 

two processing stages; training and testing. The training state is essential and 

often requires a large number of human-annotated examples. Consequently, the 

application of these methods is restricted to scenarios when the object appearance 

is known in advance. Recent models try to process the training during the run-

time. A common strategy is to add new target appearances into the object 
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classifier (Hinterstoisser et al., 2010; Calonder et al., 2008; Hinterstoisser et al., 

2009; Pilet and Saito, 2010) but the challenge remains as how often the classifier 

should be updated and learn new appearances. 

1.1.2 Tracking 

Tracking, also known as frame-to-frame tracking, is the task of estimating object motion 

between consecutive frames (Figure 1.3) (Yilmaz et al, 2006). Trackers identify the object 

trajectory by inferring a temporal sequence of its states (e.g. location, scale, speed, pose). 

The implicit assumption of these algorithms is that the location of the object in the previous 

frame is known. However, this assumption is not valid when the target is occluded or leaves 

the camera view for a while. Here I use the object state to classify tracking algorithms into 

five categories (Figure 1.4). 

 

Figure 1.3. Illustration of a typical tracking system. The original photos are from ALOV300 dataset 

(Smeulders et al., 2014). 

1. Points (Figure 1.4a) are usually suitable to represent small objects where their scale 

does not change dramatically. Point trackers estimate only translation of the object. 

Many successful tracking methods have been developed based on point trackers 

(Veenman et al., 2001; Sahfique and Shah, 2005; Zimmermann et al., 2009; Takacs 

et al., 2010). The work of Sahfique and Shah (2005) shows a high level of accuracy 

despite a significant level of noise in the tested videos. Although some proposed 

point tracking methods can cope with occlusions and foreground clutter, these 

Object State (t-1) Object State (t)

Motion Estimation
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methods have not effectively addressed the effect of illumination changes (Cannons, 

2008). 

2. Geometric shapes such as rectangles, ellipses or other primitive geometric shapes 

(Figure 1.4b) (Jepson et al., 2003; Comaniciu et al., 2003; Dowson and Bowden, 

2005; Rahimi et al., 2008; Kalal et al., 2012) can model the target motion by 

translation, affine, or projective transformation. Geometric shape representation is 

very popular since it can be used for general purpose tracking and real-time 

applications. One limitation of geometric shape models is that parts of the 

background might reside inside the defined shape which can lead to tracking failure. 

3. 3D models are used to represent rigid objects, for which the 3D geometry is known 

(Figure 1.4c) (Vacchetti et al, 2004; Leng and Wang, 2004; Lepetit et al., 2005; Klein 

and Murray, 2007). These 3D models can be obtained through CAD, range-finders, 

or using manual methods. 3D trackers estimate location, scale and pose of the object 

and have been applied to various objects including human faces (Vacchetti et al., 

2004). However, 3D trackers have mostly been examined only under simple and 

controlled environments. Hence, their performance under real world conditions and 

cluttered environments is, as yet, largely unknown.  

4. Contours are used to represent the boundary of non-rigid objects such as animals 

and the human body (Figure 1.4d). Contour trackers have been significantly 

improved since their original inception. Different contour trackers have been 

proposed (Paragios and Deriche, 2000; Yilmaz et al., 2004, Bibby and Reid, 2008; 

Bibby and Reid, 2010) to address some of the issues related to object tracking, such 

as automatic initialization and occlusion. Although these approaches have 

successfully solved some issues, none are truly robust to background clutter.  
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5. Articulated models are used to represent the motion of non-rigid objects consisting 

of several rigid parts connected to each other with joints (Figure 1.4e) (Wang et al., 

2003, Ramanan et al., 2007, Buehler et al., 2008). The relationship between the parts 

are determined by kinematic motion models. These methods mainly have been used 

for tracking specific targets such as humans. Due to the complexity of these models 

they have remained unattractive for general purpose tracking. 

 

Figure 1.4. Classification of trackers based the representation of the object states: a) points, b) geometric 

shapes, c) 3D models, d) contours, and e) articulated models. The original photo for a is from Smeulders et al. 

(2014), b, d and e from Wu et al. (2015), and d from s104.photobucket.com. 

1.1.2.1 Representation of Motion 

Vision based tracking uses information extracted from the video and prior knowledge about 

the target states to estimate the object motion and fit the object model to the current frame. 

The Kalman filter and its variants (e.g. Extended Kalman filter and Unscented Kalman filter) 

and particle filters are the most commonly used models for this purpose.  

Kalman filter (Kalman, 1960) is a prediction and correction tool which uses the states of 

the previous time step and observable measurements to compute a statistically optimal 

estimate for the hidden states of a system. Although Kalman filters are a powerful estimation 

tool, they have limitations. The mathematical model of the Kalman filter assumes that the 

dynamic model is linear but some systems are not well-described by linear equations. 

Another limitation of the Kalman filter arises from modelling the measurement uncertainties 
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by white Gaussian noise processes. There are many instances where this simplified model is 

not appropriate such as tracking a target throughout a cluttered environment, where the 

measurement distribution might not be a unimodal Gaussian.  

Extended Kalman filter (EKF) (Bar-Shalom, 1987) is a variation of Kalman filter which 

was developed to provide prediction and correction for non-linear models. In the Extended 

Kalman filter framework a Taylor series expansion is used as a linear approximation of non-

linear models. The strength of the EKF lies in its simplicity and computational efficiency. 

Nonetheless, unlike the Kalman filter, the Extended Kalman filter in general is not an 

optimal estimator. In addition, due to the Extended Kalman filter’s sensitivity to linearization 

errors and covariance calculations, the filter may quickly diverge.  

Unscented Kalman filter (UKF) (Julier et al., 1995) is another popular non-linear variation 

of Kalman filter. The UKF utilizes deterministic sampling methods to represent the 

measurement and state variables. The UKF tends to be more robust and more accurate than 

the EKF in its estimation of error. However, neither the EKF nor the UKF solve the cases 

where white Gaussian noise cannot be used as an estimation descriptor of measurement 

uncertainties. 

Particle filters or Sequential Monte Carlo filters (Isard & Blake, 1996) maintain a 

probability distribution over the state of the object being tracked by using a set of weighted 

samples, or particles. Each particle represents a possible instantiation of the state of the 

object. In other words, each particle is a guess representing one possible location (or other 

states) of the object being tracked. The denser the particles at one location or state, the more 

likely it represents the target. 

The main advantage of particle filters over Kalman filters (and variations) are their 

applicability to nonlinear models and non-Gaussian noise processes. Although with a 
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sufficient number of samples, particle filters are more accurate than both the EKF and UKF, 

when the simulated sample is not sufficiently large, they might suffer from sample 

impoverishment. Additionally, the number of required samples and therefore the 

computational load for a particle filter increases exponentially with the number of states 

which can cause problems for real-time applications. 

1.1.2.2 Tracking models 

Tracking models can be categorized in two main classes based on the type of information 

they represent: (i) generative, and (ii) discriminative. Generative models represent the 

appearance of the object ignoring the environment where the object moves. Discriminative 

models focus on differences between the object and the environment. Both of these models 

are either static (remain fixed during tracking), or adaptive (accept new information during 

tracking). 

State-of-the-art trackers are often adaptive, i.e. they update the object model during run-time, 

which allows them to handle changes in object appearance, illumination or environment. 

One of the main problems with adaptive algorithms is that errors from the update accumulate 

over time and the tracker slowly slips away from the object (drift problem). Drift is different 

from tracking failure, which is a sudden incorrect estimation of the object state. Tracking 

failures typically happen when the object dramatically changes appearance, gets fully 

occluded or moves out of the cameras field of view. 

Generative Trackers 

Generative trackers (Schweitzer et al., 2002; Reddy & Chatterji, 2002; Comaniciu et al., 

2003; Porikli et al., 2006; Ross et al., 2008) model the appearance of the object target and 

search for image regions that best match with this model. Template trackers are the most 

common form of generative trackers which represent the object appearance by a template 
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(e.g. an image patch). While it is critical to construct an appearance model which is capable 

of handling various challenges involved in tracking, the required computational complexity 

is often time consuming. To increase the speed of tracking, some models use integral images 

(Schweitzer et al., 2002), or the frequency domain (Reddy & Chatterji, 2002). Another 

approach to speed up the process of the tracking is to restrict the search area. Although 

restricted exploration of the neighbouring region increases the efficiency of the template 

tracker, the tracker may lose the target if the frame-to-frame motion is larger than expected. 

Therefore, many trackers use the motion models which were discussed in Section 1.2.2.1 to 

reduce the search area and increase the robustness of the tracking. 

One of the main challenges in template tracking is finding a trade-off between static and 

adaptive tracking. A single static template cannot provide sufficient models for all the 

appearances of the object. On the other hand, adaptation of the template can lead to drift and 

eventually tracking failure. Recent advances (Matthews et al., 2004; Dowson & Bowden, 

2005; Rahimi et al., 2008; Kalal et al., 2012) in generative tracking have shown that drift 

can be reduced by reusing previous observations of the target during tracking, and that the 

resistance to partial occlusions can be achieved by decomposing the template into 

independent parts. However, the generative trackers only use models of the object 

appearances and discard useful information from the background. Consequently, they can 

easily fail in background clutter.  

Discriminative trackers 

Unlike generative trackers, discriminative trackers use information from both the target and 

the background to form a binary classifier that distinguishes the object from its background. 

The static discriminative tracker proposed by Avidan (2004) was one of the earliest work in 

this field. He demonstrated successful performance of his proposed tracker on the task of 
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vehicle tracking. However, static discriminative trackers require an extensive offline training 

dataset to provide all appearances of the object and background. 

 

Figure 1.5. Block diagram of a typical adaptive discriminative tracker. The original image is from ‘Maya the 

bee’ movie which was downloaded from animationmagazine.net. 

Adaptive discriminative trackers (Collins et al, 2005; Avidan, 2007; Grabner & Bischof, 

2006; Babenko et al., 2011; Hare et al., 2011; Kalal et al., 2012) update the classifier during 

run-time. A typical procedure for these trackers (Figure 1.5) is that the tracker builds a simple 

classifier in the first frame. In each frame, the tracker applies the classifier on the surrounding 

area of the previous location of the object (e.g. by calculating the confidence map). 

Afterwards, the tracker identifies the new location of the object and performs an update. The 

classifier uses this new location to generate new positive and negative labels and then 

deploys a new update.  
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Adaptive discriminative trackers are capable of tracking a wide range of objects immediately 

after initialization. The state-of-the-art adaptive discriminative trackers (Henriques et al., 

2015; Kalal et al., 2012; Hare et al., 2011) have shown successful tracking of objects with 

significant appearance changes and within cluttered environments. A key element in these 

types of trackers is the speed of the classifier’s adaptation. A rapid adaptation increases the 

impact of new appearances on the classifier so the model can handle abrupt changes in target 

appearance. On the other hand, if the object is not visible for a long period (e.g. occluded or 

out of view) the classifier will eventually forget all of the object’s information and may never 

recover.  

1.1.3 Machine Learning 

Recent advances in machine learning provide powerful tools for modern vision techniques 

which are required to efficiently learn from large quantities of data. These tools basically 

classify patches in the input image to find a decision boundary that separates the positive 

examples from the negative ones. Both detecting and tracking algorithms use machine 

learning methods to improve the labelled samples and consequently robustness of target 

tracking. In this section I review the machine learning strategies which are commonly used 

in target detection and tracking. These techniques can be categorised into two major groups; 

supervised learning and semi-supervised learning (Figure 1.6). 
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Figure 1.6. Two main categories of machine learning: a) Supervised learning which only takes the labelled 

samples into account; b) Semi-supervised learning which exploit both labelled and unlabelled training 

examples. 

1.1.3.1 Supervised Learning 

In supervised learning the training dataset only contains labelled data (Figure 1.6a). The 

objective is that the algorithm correctly determines the class labels for unseen instances 

(classification). The name ‘supervised’ implies that the learner is provided with the 

necessary labelled data. Detectors are traditionally trained using supervised learning. 

Although supervised learning is not suitable for tracking of unknown objects, it can be 

applied to scenarios where the class of the object is known in advance.  

Boosting (Schapire, 1990; Freund, 1995) is a supervised learning strategy which is formed 

based on the idea that a strong classifier can be obtained by combining a set of weak 

classifiers (Figure 1.7). A weak classifier is only slightly correlated with the true 

classification. The boosting algorithm first generates a set of poor classifiers by calculating 

a distribution of weights over training data. Then the algorithm performs an update which 

increases the weight of misclassified examples and decreases the weights of the correctly 

classified samples. The algorithm iterates over these steps to form the strong classifier 

(Figure 1.7). 

Positive sample

Negative sample

Unlabelled sample

a) Supervised b) Semi-supervised
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Figure 1.7. Boosting: a) the block diagram; b) a weak classifier and a weighted training set; c) a strong 

classifier. 

The original boosting method was first proposed by Schapire (1990) and then Freund (1995) 

generalized the algorithm to combine an arbitrary number of weak classifiers. However, it 

was in 1997 when Freund and Schapire developed a practical and adaptive version of 

boosting named AdaBoost (Freund and Schapire, 1997). AdaBoost has been widely used in 

many applications including feature selection and extraction (Viola et al., 2003; Viola et al., 

2005; Opelt et al., 2006). 
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Figure 1.8. Difference between supervised learning classifier and Multiple Instance Learning (MIL) 

classification. The MIL algorithm labels a group of instances while other supervised learning algorithms 

typically label individual samples. The original photo is from Wu et al., (2015). 

AdaBoost is a fast, simple and easy to use algorithm. It does not require any prior knowledge 

about the weak learner and so can be flexibly combined with any method for finding weak 

hypotheses. Nonetheless, Adaboost can fail in the cases where the given data is insufficient 

or the hypotheses are too weak. Additionally, boosting methods are generally sensitive to 

noise (Banfield et al., 2007). 
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Multiple Instance Learning (MIL) is a variation of supervised learning which is proposed 

to deal with uncertainty of sample labels. In comparison to other supervised learning 

methods, in MIL the labels are only assigned to a group of instances and there are no labels 

on the individual samples (Figure 1.8). In MIL algorithms a group has a positive label if at 

least one sample in that group is positive. Samples in negative labelled groups belong to the 

negative class, so there is no uncertainty about their label. 

The MIL technique has been successfully implemented in different computer vision areas, 

such as object detection (Zhang et al., 2005; Dollár et al., 2008), object recognition 

(Andrews et al., 2003; Galleguillos et al., 2008; Vijayanarasimhan, 2008) and object tracking 

(Babenko et al., 2009; Babenko et al., 2011; Zeisl et al., 2010).  One of the main issues of 

the MIL classifiers is that there might be samples within one group that do not convey any 

information about its group, or they can be more related to other classes. Consequently, the 

problem can become harder than even noisy supervised learning classifiers.   

1.1.3.2 Semi-supervised learning 

Semi-supervised learning exploits both labelled and unlabelled training examples to provide 

a high performance classifier. Figure 1.9 illustrates a simple form of semi-supervised 

learning strategy. The goal is to train a classifier from two labelled samples and a collection 

of unlabelled samples. The semi-supervised learning classifier clusters the unlabelled 

samples (Figure 1.9 b) and use the labelled samples to assign a class to each cluster (Figure 

1.9.c). This classification is based on the assumption that if points are in the same cluster, 

they are likely to be of the same class (cluster assumption). Some popular semi-supervised 

learning models include Expectation-Maximization, self-training and co-training.  
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Figure 1.9. A simple semi-supervised strategy: a) uses both labelled and unlabelled samples and b) performs 

clustering on the data; and c) use the labelled samples to assign a class to each cluster. 

Expectation-Maximization (EM) (Dempste et al., 1977) estimates model parameters given 

unlabelled data by iteration over two steps: (i) The E-step where the algorithm first trains a 

classifier using the labelled data, and assigns probabilistic weights to unlabelled data by 

calculating the expectation of the missing class labels. (ii) The M-step where it finds the 

classifier parameters that locally maximises the likelihood of both labelled and unlabelled 

data. Then it trains the classifier using new labelled data. EM was successfully applied to 

document classification (Nigam et al., 2000) and learning of object categories (Fergus et al., 

2003).  

The main advantages of the EM algorithm are its simplicity and ease of implementation 

(Couvreur, 1997). Therefore, it can be implemented using parallel computation. Also its 

memory requirements tend to be modest compared to other methods (Couvreur, 1997). 

Moreover, the EM algorithm is numerically very stable. However, it has extremely slow 

linear convergence is some cases. 

Self-training starts by training a classifier with the small amount of labelled data. Then the 

classifier is used to classify the unlabelled datasets. Typically, the unlabelled examples with 

most confidence are added to the training set. The classifier is re-trained and the procedure 

repeated. The classifier is re-trained with the new data and the process is repeated. Self-

Positive sample

Negative sample

Unlabelled sample

a) Data Pool b) Clustering c) Labelling
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learning has been successfully applied to object detection (Rosenberg et al., 2005) and object 

tracking (Avidan, 2007; Collins et al., 2005; Lim et al., 2004).  The major advantage of self-

training is its simplicity. However, since the classifier uses its own predictions to teach itself, 

an early classification mistake will lead to generating incorrectly labelled data. Some 

algorithms (Sillito & Fisher, 2008; Uhlmann et al., 2014) try to alleviate this problem by 

defining a threshold for the prediction confidence. 

Co-training (Blum & Mitchell, 1998) is a learning method similar to self-training with a 

critical difference. Co-training uses two independent classifiers to discriminate the cases that 

are ambiguous for the other classifier, therefore, they can mutually train each other in an 

iterative process (Figure 1.10). To create such independent classifiers, co-training assumes 

that (i) features can be divided into two independent sets and (ii) each sub-feature set is 

sufficient to train a good classifier.  

Co-training has been used for car detection in surveillance (Levin et al, 2003), moving object 

recognition (Javed et al, 2005) and tracking (Tang et al, 2007; Yu et al., 2008). The method 

performs well only if the two sub-features actually meet the independence assumption 

(Nigam and Ghani, 2000). However, since the image patches (samples) are extracted from a 

single modality, they may be dependent and consequently violate the fundamental 

assumptions of co-training.  
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Figure 1.10. Co-training illustration. The training is initialised by the training of two separate classifiers using 

the labelled examples. Both classifiers are then evaluated on unlabelled data. The confidently labelled samples 

from the first classifier are used to augment the training set of the second classifier and vice versa in an iterative 

process. 

1.1.4 Summary 

Although the computer vision methods I reviewed here all have their own advantages and 

disadvantages, the main problem with the current computer vision methods can be 

summarised as follows. Object detection models reached a level of maturity for scenarios 

where a sufficient number of training examples can be generated. However, the underlying 

assumption of object detectors is a separation of training and run-time phase. This limits 

their applicability to objects that can be modelled in advance. Methods that enable efficient 

online update of detectors have been proposed, but the problem of when to update these 

detectors is still an unsolved issue.  

Tracking methods are becoming increasingly complex to handle increasingly challenging 

environments and appearance changes. The main assumption of trackers is that the object 
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state in the previous frame is known. However, this is an invalid assumption in unconstrained 

environments due to the challenges which exist in real-world conditions such as occlusion, 

direct/scattered sunlight and camouflage in the background clutter. Therefore, the tracker 

eventually fails, especially in long term tracking.  

Machine learning techniques play a key role in the state-of-the-art target detection and 

tracking methods. Machine learning allows building of models that cover various 

appearances of the object and adapt to changes of the object appearance. I reviewed two 

classes of learning approaches often used for target detection and tracking: supervised and 

semi-supervised. In the supervised approaches the learning is often realized by standard 

variants of boosting, which do not perform well and should be combined with bootstrapping 

to handle large training sets. In the semi-supervised approaches the improvements are 

marginal since it is hard to find independent features that would efficiently drive the learning 

process. 

Since the main motivation for developing target tracking algorithms is their application in 

robotic applications, the processing speed plays a crucial role in this context. State-of-the-

art target tracking models try to increase the robustness of tracking by combining detection 

and tracking with the addition of machine learning. However, this combination substantially 

increases the computational complexity and therefore, the processing time for these models. 

In Chapter 4, I directly compare the efficiency and efficacy of my insect-inspired model with 

some of these computer vision models to investigate whether insect-inspired approaches 

provide suitable alternatives for computer vision algorithms. 

1.2 Motion Detection pathway in Flying Insects 

Despite the enormous effort and significant progress in the field of visual target tracking, the 

lack of an efficient and robust algorithm capable of tracking objects in the most complex 
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environments is still evident and target tracking is still a highly active area in computer vision 

literature. However, a quick glance at nature shows that target tracking has been resolved 

even in seemingly simple biological systems such as insects. With millions of years of 

evolution behind them, it seems reasonable to assume that these biological solutions are 

highly efficient.  All these observations motivated me to investigate how biological systems 

such as insects solve the problem of target tracking differently from computer vision 

algorithms. 

In this section I briefly review flying insect visual pathways to provide the required 

background information necessary for this research and explore how these biological 

systems address challenges of target tracking compared to computer vision approaches. 

1.2.1 Structure of a compound eye 

The main visual organs of many insects are their compound eyes which are composed of 

thousands of closely-packed units called ommatidium (Figure 1.11). Ommatidium is the 

structural and functional unit of vision, where its components include the corneal lens 

(facets), a crystalline cone, a rhabdom and a more or less complicated pigment screen. 

Externally, each ommatidium is marked by a convex corneal lens which gathers the light 

and directs it to the crystalline cone. Together, the lens and the crystalline cone form a 

dioptric apparatus that refracts incoming light down into a receptor region containing visual 

pigment. The light-sensitive part of an ommatidium is called the rhabdom. Within each 

ommatidium the rhabdom contains eight or more photoreceptors comprised of the light-

absorbing visual pigments. These pigments absorb certain wavelengths of incident light and 

generate nerve impulses through a photochemical process.  
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Figure 1.11. Compound eye of flying insects; a) surface of compound eye, showing the facet lenses. b) 

Schematic illustration of the compound eye of an insect modified from Figure 1, Srinivasan (2011).   

1.2.1.1 Optics 

Optics of the compound eye process the light intensity of the surrounding environment via 

thousands of regularly arranged facet lenses (Figure 1.11 a). Each facet points to a slightly 

different part of the visual field and accepts light from a narrow angle (Nilsson, 1989; 

Strausfeld, 1989).  Collectively, the facets in the two eyes capture a near-panoramic view of 

the environment, with considerable binocular overlap. 

 The ability of an eye to resolve detail depends on two factors. The first one is the fineness 

of the moasic of receptive elements that sample the image, which is usually described in 
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terms of the spatial sampling frequency of the mosaic (Land, 1989). The second one is the 

optical quality of the image which mainly is determined by the spatial cut-off frequency of 

the optics (Land, 1989).  

In a diffraction-limited eye the interreceptor angle is inversely related to the size of the 

aperture (Land, 1989). Therefore, the bigger the lens the finer the mosaic. Consequently, 

compound eyes are naturally low resolution structures due to the small diameter of the 

individual facets. A higher resolution of compound eye as a whole requires an increase in 

both size and number of ommatidia. A compound eye with the same distribution of 

resolution as human eye would result in an eye with a diameter of 1 m (Kirschfeld and Wenk, 

1976). To overcome this limitation many insects are equipped with a region of eye with 

modest overall resolution. This small region is called the “acute zone” and serves for the 

detection of other small insects at greater distances (Horridge, 1978; Land and Eckert, 1985). 

Often this region is only present in the male for mating purposes (hoverflies, drone bees, 

mayflies) (Figure 1.12). However, in predatory insects such as dragonflies the acute zone is 

found in both sexes (Horridge, 1978; Land, 1997; Land 1989). A feature of acute zones is 

that facets are usually bigger than elsewhere in the eye (Figure 1.12). 
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Figure 1.12. Sexual dimorphism modified from Figure 1 and Figure 2 Sukontason et al. (2008). The compound 

eye of a) female (left) and b) male (right) C. megacephala. The acute zone in dorsal eye of male has larger 

facets which provides a higher resolution for mating purposes. 

1.2.1.2 Photoreceptors 

Object luminance varies significantly within natural environments due to constant change in 

sunlight, shadows and reflection from surfaces. Therefore, photoreceptors should be able to 

adapt to changes in light level of at least 2-3 log10 units in a very short time (van Hateren, 

1997).   

The photoreceptors which are involved in the motion processing pathway are sensitive to 

UV or green-blue light (Hardie, 1985). Photoreceptors code for contrast (Barlow, 1961; 

Laughlin et al., 1987) and change their contrast gain dynamically dependent on the 

background to reduce noise and improve the signal-to-noise ratio (SNR) (Juusola et al., 

1994). Generally, photoreceptors act as low-pass filters that change to band-pass filters with 

increasing light adaptation (Jarvilehto and Zettler, 1971). The study by Brinkworth et al. 

(2008) shows that the temporal processing in photoreceptors improves the spatial 

discriminability of the target by approximately 70%. Photoreceptors transform the processed 

information to the visual interneurons in the lamina by producing graded membrane 

potentials (Yarfitz and Hurley, 1994, Hardie, 2001). 
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Figure 1.13. Schematic of horizontal cross section of fly head modified from Figure 2 Hausen (1982) showing 

the visual processing regions including retina, lamina, medulla, lobula and lobula plate. 

1.2.2 Lamina 

The second optic ganglion, the lamina (Figure 1.13), is the primary site of redundancy 

reduction in the insect visual pathway. Each retinotopically arranged group of neurons in the 

lamina, which is referred to as neuro-ommatidia, corresponds to a sampling point in visual 

space. This columnar organisation is maintained through the subsequent visual stages 

(Laughlin, 1984; Shaw, 1984).  

The large monopolar cells (LMC) of lamina are directly postsynaptic to the photoreceptors 

and remove redundant information by spatio-temporal high-pass filtering (Srinivasan et al., 

1982). Studies show that the LMC dynamically changes its filtration characteristics (both in 

time and space) depending on the current visual conditions (Laughlin et al., 1987; Juusola 

et al., 1995; Srinivasan et al., 1990). While under dark conditions (i.e. low SNR) the LMC 

act more like low-pass filters becoming more transient and high-pass in nature as the 

luminance increases (Juusola et al., 1995). These transient responses enhance object 

boundaries and consequently improve target discriminability (Srinivasan et al., 1990). 

Spatial filtering in the LMCs is believed to be the result of inhibitory interactions between 

nearest neighbor receptors (Srinivasan et al., 1982). 
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1.2.3 Rectifying Transient Cells 

The downstream neurons that have been identified in the 2nd optic neuropil (medulla) of 

locust (Osorio, 1991; O’Carroll et al., 1992), and blowfly (Jansonius and van Hateren, 1991; 

Wiederman et al., 2008), separate transient ON and OFF phases via partial rectification. 

Wiederman et al. (2008) refer to these neurons as rectifying transient cells (RTCs). Each 

sub-pathway adapts independently to luminance changes, dependent on the polarity 

(increment or decrement) of the change (Jansonius and van Hateren, 1991). The state of 

adaptation is fast if depolarizing, and slow when repolarizing. Consequently, RTCs quickly 

adapt to repeated inputs (background variance), while selectively responding to ‘novel’ 

stimuli (targets) (Wiederman et al., 2013). These processing properties of RTCs are well 

suited as additional input processing stages for the insect target motion detection pathway 

(Wiederman et al., 2013). 

1.2.4 Higher Order Pathway 

In previous sections I explained how optics and early visual processing neurons play an 

important role in the enhancement of a visual signal. However, the motion specialized 

neurons do not appear until the second and third optic ganglia of the insect brain, the medulla 

and lobula. In this section I briefly explore the motion detection neurons but the main focus 

is “small target motion detection” neurons. 

1.2.4.1 Lobula Plate Tangential Cells  

Lobula plate tangential cells (LPTC) respond to wide-field motion. These cells are sensitive 

to directional visual motion in areas of the visual field and often correspond with the three 

rotational elements (pitch, yaw and roll) as well as translational, progressive self-motion 

(Borst and Haag, 2002; Krapp and Hengstenberg, 1996). 
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1.2.4.2 Lobula Giant Motion Detector and Descending Contralateral Motion 

Detector  

The lobula giant motion detector (LGMD) system within the lobula are respondent to 

‘looming’ motion (Strausfeld and Nassel, 1980; Rind and Simmons, 1992; Simmons and 

Rind 1997; Gabbiani et al., 2002). Looming neurons are sensitive to the motion of objects 

growing larger as they approach. These neurons are likely to be part of a circuit which 

triggers escape/avoidance behaviour when a looming visual stimulus reaches a certain 

angular size (Hatsopoulos et al., 1995; Santer et al., 2012).   

1.2.4.3 Feature Detecting (FD) Neurons 

Feature detecting (FD) neurons of lobula plate, are motion opponent neurons and respond to 

medium size (rather than wide-field) motion (Egelhaf, 1985). FD neurons respond optimally 

to gratings with limited spatial extent (>10º) travelling in the preferred direction (Egelhaaf, 

1985).  

1.2.4.4 Small Target Motion Detector Neurons 

Small target motion detector (STMD) neurons are a class of lobula neuron which are likely 

to play an important role in target detection and discrimination. These neurons are size and 

velocity tuned and contrast sensitive which robustly and specifically respond to small 

moving objects even in presence of background clutter and motion (O'Carroll, 1993; 

Nordstrom et al., 2006; Nordström and O’Carroll, 2009; O'Carroll and Wiederman, 2014). 

This response behaviour of STMDs is even more impressive when we note that the features 

that STMDs are tuned to are on the same scale as the spatial sampling resolution of the eye 

itself, therefore, optical blur may make the feature contrast very low (Nordstrom et al., 2006; 

O’Carroll & Wiederman, 2014).  

Significant variations have been observed in the receptive field size, direction selectivity and 

response modality of the STMDs (Nordstrom & O’Carroll, 2009). The receptive field of 



Chapter 1. Introduction 
 

31 

STMDs varies between only a few degrees (small-field STMDs) to one hemifield or both 

hemispheres (large-field STMDs). The small-field STMDs are retinotopically organised 

(Barnett et al., 2007) and it is hypothesized that their outputs are likely processed by large-

field STMDs (Geurten et al., 2007; Nordstrom & O’Carroll, 2009).    

One type of STMD neuron from the lateral mid-brain of the dragonfly, the ‘centrifugal small 

target motion detector 1’ (CSTMD1), has shown several high-order properties such as 

facilitation and selective attention which can contribute to the dragonfly’s ability to robustly 

pursue prey with over a 97% success rate (Olberg et al, 2000).  

Facilitation. In general, facilitation can be defined as the enhancement of a neuron’s 

response to a stimulus as a result of a prior stimulation. Recent studies (Nordstrom et al., 

2011; Dunbier et al., 2011; Dunbier et al., 2012) have shown strong evidence for facilitation 

in CSTMD1 neurons. The onset response of CSTMD1 builds up slowly to objects moved 

continuously through the receptive field and reaches a steady state over a time course of 

hundreds of milliseconds (Nordstrom et al., 2011). Despite the sluggish onset response, 

CSTMD1 have shown fast decay to object disappearance (Nordstrom et al., 2011). 

Nordstrom et al. (2011) argued that this asymmetry is a strong evidence against just a simple 

low-pass filter mechanism in higher order neurons that integrate local motion detectors. 

They suggested that the asymmetric time course of the CSTMD1 response is due to a slow 

facilitation in responses. Further research supports this, showing that the CSTMD1 resets to 

a naïve, non-facilitated state when there are large breaks in the trajectory (Dunbier et al., 

2011; Dunbier et al., 2012). Furthermore, even with this slow build-up in response, the 

underlying velocity tuning of the neuron is similar to other STMD neurons (60-190 deg.s-1) 

(Geurten et al., 2007). One possible benefit of a such a facilitation mechanism is that it would 

potentially reject noise within noisy (cluttered) environments, permitting the very high 

amplification required to respond to very small or low contrast targets.  
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Selective Attention. Attention refers to the processes by which an organism selects a subset 

of available information for particular focus (Treisman, 1969; Driver, 2001). There are two 

major theories for mechanisms by which object selection occurs. The first one is a bottom-

up theory which suggests that early stages of visual processing provide ‘visual salience’ to 

some stimuli to stand out from the crowd (Itti and Koch, 2000). The other component of 

attention involves an endogenous, top-down process. In this process the animal directs 

attention to a small subregion of the visual field and deliberately suppresses the relative 

salience of other areas, even if the features there are inherently more salient from a signal 

detection standpoint (Treisman and Gelade, 1980).    

Neuroanatomy of CSTMD1 neurons suggest a potential role in attention as targets move 

from one visual hemisphere to the other (Bolzon et al., 2009; Geurten et al, 2007). 

Wiederman and O’Carroll (2013) have tested this possible role by comparing CSTMD1’s 

response to single and paired stimuli. They showed that this neuron competitively selects 

one target in the presence of distracters responding as if only one target was presented. This 

competitive selection was observed irrespective of target size, contrast, or separation. 

Facilitation can potentially play an important role in this competitive selection by enhancing 

saliency of one target over the other.  

Such a competitive selection is essential for a control system for target pursuit allowing 

tracking of individual targets in the presence of distracters, without changing the gain of the 

control loop. Despite recent breakthroughs in insect physiology it is still unclear where 

CSTMD1 sits within such a target pursuit control system or what is the underlying hierarchy 

of mechanisms of competitive selection. The CSTMD1 could reflect the output of a bottom-

up attention mechanism emerging from a competitive process occurring at a lower level in 

the STMD pathway. However, there is no evidence which rules out a top-down, endogenous 
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attention process. Current physiological experiments try to investigate the possibilities of 

these two mechanisms in flying insects. 

1.3 Target Detection and Pursuit in Insects 

Insects adopt a number of behaviours that enhance their ability to detect and pursue targets 

in their environments. These behaviours synergise with anatomical and optical adaptations 

to enhance detection of targets. In this section I briefly overview these behaviours. 

1.3.1 Target Detection 

Three main detection modes are identified in flying insects: perching, hovering and hawking. 

Perching or initiating predation from a fixed perch is the most common detection behaviour 

among flying insects. This ‘sit and wait’ detection strategy allows the motion of a relevant 

target to ‘pop out’ against a stationary background (Srinivasan, 1998). A 97% of successful 

capture rate is reported for perching dragonflies (Olberg et al., 2000). 

Hovering species, including hoverflies and bee-flies, hover at a fixed spot within their 

territory, maintaining position by minimizing optic flow. Hovering is more visually 

challenging than perching, however, it reduces the reaction time for the animal since it is 

already in flight. 

Hawking is the most challenging mode of target detection which involves detection and 

pursuit of conspecifics and prey whilst patrolling over large areas of land or water (Corbet, 

1999; Sherk, 1978). The main challenge in hawking mode is identification of target motion 

in the presence of the pursuer’s ego-motion. In several hawking insects, the difficulty of 

target detection against the background is alleviated by two strategies. Firstly, these insects 

often detect targets in the fronto-dorsal eye region, i.e., against the sky, which provides a 

vividly clear background for detection of small moving prey (Syder et al., 1977; Zeil, 1983; 

Corbet, 1999). Secondly, many species keep the target centered in the frontal eye region, 
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where the expansive ego-motion during their forward motion through the world is minimum 

(Land, 1981; Land, 1997).  

1.3.2 Target Discrimination 

Once a target is detected, the animal needs to identify whether it is a viable prey, a 

conspecific competitor, a potential mate, a predator, or just an irrelevant distant object.  

Object grouping can be thought of as the ability to classify items that are ‘similar’ according 

to their shared characteristics, even though they are distinguishable from one another. These 

are the tasks similar to the ones that computer vision literature try to achieve via machine 

learning (Section 1.1.3).  Studies have revealed that monkeys and other primates are able to 

categorise complex visual images, such as photographs of human faces, trees and other 

animals (Davenport and Rogers, 1971; Vogels, 1999; Freedman et al., 2001). Pigeons also 

have the capacity to group objects into a number of different categories, such as people, 

other pigeons, trees, water, landscapes and so on (Mallott and Siddall, 1972; Herrnstein, 

1984; Roitblat, 1987; Huber et al., 2000).  

The traditional view of target discrimination in insects is that they lack cognitive ability, and 

the insect brain is just a simple ‘hard-wired’ circuit (Giurfa and Manzel, 1997) which evokes 

a fixed motor pattern in response to an external stimulus. For example, a male drosophila 

fruit fly will mate with a female fly once pheromonal, visual and mechanosensory cues 

coincide in the right pattern and above a certain threshold (Greensan and Ferveur, 2000).  

However, recent studies have observed remarkable visual learning and discrimination 

abilities in honeybees. Indeed, bees are capable of discriminating complex forest scenes 

(Dyer et al., 2008), categorizing different flower shapes (Zhang et al., 2004), human faces 

(Dyer et al., 2005; Dyer and Voung, 2008, Avarguès-Weber et al. 2010), and more 
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surprisingly they even can be trained to discriminate Monet paintings from Picasso ones (Wu 

et al., 2013).  

Although numerous studies have demonstrated that honeybees use a range of stimulus 

features such as colours (Chittika et al., 1993), shapes (Lehrer et al., 1995), symmetry 

(Horridge and Zhang, 1995; Giurfa et al., 1996; Horridge, 1996) and orientation of objects 

(Wehner, 1971; van Hateren et al., 1990), the cues that honeybees use to solve complex 

visual categorization are still under investigation. Some studies stay with the traditional view 

and believe that bee vision relies only on low-level feature detectors and elemental cues with 

little or no plasticity for learning (Horridge, 2000; Horridge, 2005; Horridge 2009). 

However, this simple elemental processing cannot explain the ability of bees to apply 

previously acquired information in solving novel tasks, categorize new stimuli that 

significantly differ in low-level cues, and transfer abstract concepts to novel domains. 

Therefore, other views suggest that for simple visual tasks, honeybees may rely on elemental 

processing. However, as the complexity of the task increases, honeybees can learn to switch 

to non-elemental processing (e.g. configural type processing and rule-learning), and use top-

down information to solve novel tasks (Giurfa et al., 2003; Stach et al., 2004; Stach and 

Giurfa, 2005; Giurfa, 2007; Avargue`s-Weber et al., 2010; Dyer, 2012). 

Although visual object categorization has only been studied in honeybees, it is likely that 

other insects such as dragonflies employ grouping and learning for complex tasks such as 

target detection and tracking.  

1.3.3 Pursuit Strategy 

During a pursuit, an insect has to control its forward velocity and distance to the target while 

fixating the target in the frontal visual field. Two different gaze control strategies have been 

observed among flying insects (Figure 1.14), referred to as tracking and interception (Collet 
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and Land, 1978). Many insects use a tracking strategy where the pursuer steers to minimize 

the deviation of the pursued target from the pursuer’s visual midline (Fig 1.14). Tracking 

results in spiraling flights that will result in a successful pursuit if pursuer is faster than the 

target.  

Interception (Collet and Land, 1978) is a pursuit strategy which is observed in hoverflies 

and dragonflies (Collet and Land, 1978; Olberg et al., 2000) (Figure 1.14b). Interception is 

a process which requires prediction and planning which is functionally similar to the 

reaching process in primates. This high-performance control of behaviour requires internal 

models of sensorimotor system (Franklin, and Wolpert, 2011). Studies of humans and non-

human primates have identified three types of internal models involved in sensorimotor 

control: 1) physical models to predict properties of the world (Zago et al., 2004; Flanagan et 

al., 2001); 2) inverse models to generate the motor commands needed to attain desired 

sensory states (Kawato, 1999); 3) forward models to predict the sensory consequences of 

self-movement (Wolpert et al., 1995; Mehta and Schaal, 2002).  However, up until recently, 

it was unknown whether insects rely on internal models to guide actions. 

Mischiati et al. (2015) investigated the existence of internal models in dragonfly by tracking 

the position and orientation of the dragonfly’s head and body during flight. They provided a 

compelling case that interception steering relies on both predictive and reactive control 

which is driven by forward and inverse models of dragonfly body dynamics and by models 

of prey motion with visual feedback. 
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Figure 1.14. Two main flying insects' pursuit strategies modified from Figure 1 Olberg et al. (2000). The black 

circles represent the target.  

1.4 Biologically-Inspired Motion Detection Models 

As I described in the introduction of this chapter, the pursuer faces two general form of 

motion. The first one is induced by the pursuer ego-motion causing rotary and translator 

movement of the entire visual field.  The second one is the movement of objects within 

visual surround. The computation basis of motion detection in biological system has been 

the focus of many studies and two categories of motion detection mechanism have been 

proposed in the literature. The first category which has been proposed to explain motion 

vision is ‘feature tracking’ mechanisms (Braddick 1980; Ullman 1983). As I explained 

earlier ‘feature tracking’ mechanisms are extensively used in computer vision. The main 

disadvantage of such schemes is identification of the location of features. The other category 

of motion detection models is ‘intensity based’ which employs information on local 

spatiotemporal changes of intensity to measure velocity. Two mathematically distinct 

families of ‘intensity based’ models are the gradient scheme (Limb and Murphy, 1975; Mar 

and Ulman, 1981; Srinivasan, 1990) and correlation schemes (Hassenstein and Reichardt, 

1956). 
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The gradient detector calculates the velocity signal by dividing the temporal derivative of 

local luminance 𝝏𝑰(𝒙, 𝒕)/𝝏𝒕 by its spatial derivative 𝝏𝑰(𝒙, 𝒕)/𝝏𝒙 (Figure 1.15a). The 

gradient detector provides a signal that is proportional to the image velocity at each point 

and does not depend on pattern properties. Another subclass of the intensity-based models 

is ‘correlation type’ detectors, which apply spatiotemporal correlations to extract motion 

signals (Reichardt, 1957). The correlation based models has been very successful in 

describing motion sensitivity in animal vision from insects to primates (Borst and Egelhaaf 

1989). In the following sections, I explore the models that are most relevant to the content 

of this thesis in further detail. 

1.4.1 The Hassenstein-Reichardt Detector 

The Hassenstein-Reichardt elementary motion detector (HR-EMD) is the simplest form of 

EMD which is inspired by the study of behavioural turning response (the optomotor 

response) of the beetle Chlorophanus to the movement of the visual surround. The HR-EMD 

model (Figure 1.15b) is composed of two spatially separated input channels such as 

photoreceptors (Hassenstein and Reichardt, 1956). The HR-EMD multiplies these signals, 

with one signal delayed relative to the other (Hassenstein and Reichardt, 1956). The output 

of HR-EMD is a direction selective signal which will be more positive when a pattern moves 

in the preferred direction and more negative in the reverse direction. The spatial separation 

and correlation provides sensitivity to moving stimuli without computing derivatives (a 

process that would amplify noise).  

Various versions of this basic EMD with different filtering schemes have been proposed to 

make the model robust to diverse static environmental visual conditions. However, some of 

the elaborations to the EMD that enable the model to operate under more demanding visual 

conditions reduce its efficiency at the basic processes for which it is best known (Frye, 2015).   
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Although the predictions of EMD models are consistent with a number of behavioural and 

electrophysiological results, it remains as an ambiguous motion sensor. The output of EMD 

is an ambiguous function of velocity of a moving stimulus, although it has a strong 

dependence on spatial structure and contrast of the stimulus. These shortcomings, as well as 

the results of additional behavioural experiments that appear inconsistent with model 

predictions suggest that other mechanisms of motion detection may be involved in the insect 

brain (Srinivasan et al. 1993). 

 

Figure 1.15. a) The gradient detector calculates velocity by dividing the derivative of luminance over time, by 

the derivative of luminance over space. b) HR-EMD. The correlator composed of two sub-units. Each sub-unit 

consists of two spatially separated inputs, with one of the signals delayed relative to the other before 

multiplication between two arms.  

1.4.2 Elementary Small Target Motion Detector 

A modified correlator model has predicted a different set of computations for an especially 

challenging form of visual perception, small object detection. The recent work of 

Wiederman et al. (2008, 2007) provides a neuromorphic model for target discrimination in 

visual clutter. This model suggests that STMD neurons with large receptive fields could be 

the product of summation across a retinotoptic array of putative ‘elementary STMDs’ 
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(ESTMDS). The Wiederman et al. model includes nonlinear filtering based on fly optics, the 

photoreceptors, LMCs, and RTC (Figure 1.16). Their model provides a good match for size 

and velocity tuning, and contrast sensitivity of STMDs. Subsequently, Halupka et al. (2011, 

2013) developed a discrete closed-loop version of this model which displayed very similar 

tuning characteristics to the continuous version.  

However, the ESTMD model is not a true motion detector, but rather a spatiotemporal filter 

for a small, dark target whether moving continuously or just a single flicker. Nonetheless, it 

is unlikely that STMD neurons respond to a rapid variation in brightness. The recent 

observation of facilitatory behaviour of CSTMD1 neurons (Nordström et al., 2011; Dunbier 

et al., 2011; Dunbier et al., 2012) as well as their selective attention (Wiederman and 

O’Carroll, 2013) have raised interesting new questions regarding the role that CSTMD1 

plays in the small target motion detection pathway. These findings suggest that the dragonfly 

displays a dynamically shifting centre of salience dependant on the previous stimulation. 

Therefore, it is respondent to persistent stimuli such as another insect which moves in a long 

continuous trajectory rather than short transient stimuli (i.e. local flicker).  

Moreover, directional information is a key requirement to predict the future path of a target. 

While many STMD neurons have shown selectivity for the direction of target movement 

(O'Carroll, 1993; Barnett et al., 2007; Nordström and O'Carroll, 2006), the ESTMD model 

is a non-directional model. Additionally, while the ESTMD model is only selective for dark 

stimuli, the target polarity and contrast can change significantly dependant on the 

background and lighting throughout the pursuit. Therefore, a mechanism is required to track 

targets independent of their contrast polarity. All these suggest that robust target tracking 

behaviour observed in dragonfly requires additional computational components to address 

the limitations of the ESTMD model. 
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Figure 1.16. Overview of ESTMD model modified from Figure 2 Wiederman et al. (2007). 

1.4.3 Summary 

Our research group has been investigating the neuronal mechanism underlying target 

detection and tracking in flying insects through electrophysiological experiments and 

computational modelling for several years. Although several motion detection models have 

been developed based on the insect visual system (as discussed above), the model that I 

present in this thesis is an extension of an earlier model developed in our own research group 

(Halupka et al., 2011; Halupka et al., 2013). As I mentioned previously, the Halupka et al. 

(2011, 2013) model is a discrete version of the ESTMD model (Wiederman et al., 2008), 

which has been implemented in closed-loop using a virtual reality environment. However, 

like the original ESTMD model, the Halupka et al. (2011, 2013) model lacks certain 

characteristics of the STMD neurons as I discussed in Section 1.4.2, including a predictive 

facilitation mechanism and selectivity for small moving targets irrespective of their contrast 

polarity. 
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1.5 Hardware Applications of Insect-Inspired Motion 

Detection 

In recent years, the insect-inspired motion detection models and their applications to bio-

inspired robot sensors and analog-VLSI chip design have been the focus of much research. 

Franceschini et al. (1992) was one of the first studies which employed the principles of 

‘elementary motion detector’ to develop ground-based robots that would navigate 

autonomously and avoid collisions with obstacles. Following this work different studies 

attempted to implement insect-inspired vision models on hardware platforms for various 

applications which can be summarized as three different types:  

1) Bio-inspired circuits embedded in the control structure of mobile robots. Examples 

include a model of locust Lobula Giant Movement Detector (LGMD) for collision detection 

(Blanchard et al., 2000), fly-inspired obstacle avoidance (Zufferey and Floreano, 2006), and 

safe navigation through narrow corridors (Coombs and Roberts, 1992; Santos-Victor et al., 

2012; Conroy et al., 2009).  

2) Bioinspired chips such as the neuromorphic chips developed based on fly vision 

(Harrison, 2000), neuromorphic eyes for mini-unmanned aerial vehicles (UAVs) (Ruffier 

and Franceschini, 2003), and VLSI retinal circuits (Liu, 2000). 

3) Bio-inspired behavioural strategies such as docking (Zhang et al., 2013; Zhang et al., 

2014; Xie et al., 2013; Kendoul, 2014), executing smooth landings (Thurrowgood et al., 

2014; Srinivasan et al., 2001), or interception (Strydom et al., 2015).  

In all these insect-eye-inspired designs, the goal has been to make fast, robust, lightweight 

and low-power vision systems.  



Chapter 1. Introduction 
 

43 

1.6 Thesis Aims and Scope 

Although very different in detail, target tracking in both computer vision algorithms and 

biological systems have three main steps; detection, selection and tracking. By looking at 

computer vision literature, it appears to me that computer vision models are often loosely 

based on feedforward hierarchies of the ventral stream in the visual cortex of primates 

(Figure 1.17). The ventral stream begins with the primary visual cortex (V1), goes through 

the secondary visual cortex (V2), then through visual area V4, and to the inferior temporal 

cortex (IT cortex). Neurons in lower visual areas have small receptive fields and are sensitive 

to basic visual features such as edges and lines. These neurons send signals to neurons at the 

next stage, which code for more complex features. By the V4 visual area, the neurons are 

selective for basic shapes, and by IT they respond in a viewpoint-invariant manner to full 

objects (e.g. human face). Computer vision models rely on the established features of V1 

(through V1-style Gabor filtering or Haar wavelets) and then directly apply sophisticated 

machine learning techniques to detect what object categories are likely to be in the image. 

These computer vision models bypassed thinking about intermediate representations (i.e. V2 

and V4) altogether in their implementations. However, the recent studies show that the 

remarkable robustness in biological visual systems is likely achieved gradually over 

different hierarchical levels (Kermani Kolankeh et al., 2015). Moreover, studies show that 

the visual system is not purely hierarchical (Herzog and Clarke, 2014; Ghodrati et al., 2014; 

Tschechne and Neumann, 2014). Feedback connections are believed to play an important 

role in visual processing, as they improve local activations with contextual information that 

is represented at higher visual areas (Tschechne and Neumann, 2014). When objects are 

presented on natural backgrounds reaction times in humans significantly increases compared 

to plain backgrounds, suggesting that some further feedback processes should happen when 
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objects have cluttered natural backgrounds (Ghodrati et al., 2014). These might explain why 

computer vision methods are still far behind the robustness of biological visual systems. 

 

 

Figure 1.17. Ventral stream in primate visual cortex reproduced from Figure 1 of Herzog and Clark (2014). 

Visual information processing starts at the retina, proceeds to the lateral geniculate nucleus (LGN), then to the 

primary visual cortex (V1), the secondary visual cortex (V2), visual area V4, and inferior temporal cortex (IT 

cortex). The receptive field of neurons gradually increases in the higher areas, integrating information over 

larger and larger regions of the visual field. Low order neurons, such as V1, code for basic features such as 

edges and lines while higher order neurons such as V4 and IT are selective for basic shapes and full objects 

respectively. 

Due to the complexity of recordings from primates’ brains there is little known about the 

computational process of intermediate level neurons (V2 and V4) and the feedback processes 

involved in target detection and tracking. However, target tracking is not limited to primates 

and amazingly robust target tracking behaviour has been observed even in seemingly simple 

animals. For example, many species of flying insects, such as dragonflies, detect and chase 

prey or conspecifics within a visually cluttered surround for predation, territorial or mating 

behaviour. Remarkably, despite their limited neuronal architecture (Strausfeld, 1976) and 

low-resolution visual system (~1°), the dragonfly is capable of performing this task even in 

the presence of other distracting stimuli, such as swarms of prey and conspecifics (Corbet, 
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1999; Wiederman and O’Carroll, 2013). This behaviour requires an underlying neuronal 

network capable of processing algorithms for target detection (against cluttered 

backgrounds), selection (amidst many distracters) and interaction (varying gaze and pursuit 

strategies). Amazingly, the relatively simple brain of the dragonfly employs neuronal 

algorithms similar to the ones developed in humans and other primates (Clark et al., 2014; 

Mischiati et al., 2015; Wiederman and O’Carroll, 2013). Moreover, insects exhibit a 

remarkable behavioural plasticity as numerous species learn and memorize different sorts of 

sensory cues as predictors of reward (Matsumoto and Mizunami, 2000; Giurfa, 2007; 

Menzel, 1999; Dupuy et al., 2006) or punishment (Vergoz et al., 2007; Davis, 2005). They 

form memories of such experiences that can be retrieved at different times after learning, 

from the short-term to the long-term range (Giurfa, 2013) which is comparable in many 

aspects to vertebrates. For examples, bees can extract general properties of a stimulus and 

apply them to distinguish between other stimuli which they have never experienced before 

(Wu et al., 2013; Zhang et al., 2004). However, the accessibility of the insects for stable, 

electrophysiological recordings has made them an ideal and tractable model system for 

investigating the neuronal correlates for this detection, selection and interaction behaviour. 

Fortunately, as a result of the recent breakthroughs in understanding insect vision we are 

now at a point where modelling and implementing similar strategies in an autonomous 

system is a practical possibility. This project therefore aims to adopt an insect-inspired 

approach to target tracking and pursuit, based largely on recent physiological research on 

the insect visual system. At the same time, re-engineering such a mechanism in robot 

hardware and software provides useful insights into how the neural systems might work.  

Therefore, the main objective of this thesis is to develop a closed-loop insect-inspired target 

tracking model based on ‘elementary small target detection’ operation and recent 

observations of facilitation and selective attention. Additionally, I will investigate whether 
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insect-inspired algorithms provide a suitable alternative for computer vision and robotic 

applications. 

Moreover, while many studies focused on the role of motion adaptation (a reduction in 

sensitivity seen after the system is exposed to moving imagery) in information processing in 

flying insects (Maddess and Laughlin, 1985; Clifford and Langley, 1996; Harris et al., 2000), 

there are very few studies that test the effect of facilitation (enhancement in the response 

gain due to prior stimulations) in complicated information processing such as selection. 

Therefore, investigating the role of facilitation in target detection, selection and pursuit is 

another focus of my thesis.  

Although the results of electrophysiological experiments and computational modelling 

provide insight into insect neurophysiology, our understanding of target tracking 

sensorimotor mechanisms is still very limited. An important question within this context is 

how animal saccadic movement or environmental factors change neural responses 

underlying the detection and selection task. To answer these questions, experiments require 

directly linking neural circuits and behaviour, however, during physiological recordings the 

insect is restrained with wax and can only experience imposed, open-loop stimuli. To model 

sensorimotor systems, it is necessary to accurately represent the physical interaction of the 

animal and the environment which is very complex to model in simulations. However, robots 

provide a suitable alternative to model such sensorimotor mechanisms. Therefore, another 

main goal of this thesis is to implement the insect-inspired target tracking mechanism on a 

robotic platform to test it in unstructured natural environments under demanding conditions 

similar to what insects experience during pursuit. 
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1.7 Thesis Outline 

The rest of this thesis is structured as follows. In Chapter 2 and 3, I introduce an elaborated 

version of the ESTMD model, with inclusion of a model for the recently observed facilitation 

mechanism. I implement this elaborated model in a closed loop target tracking system that 

uses an active saccadic gaze fixation strategy inspired by insect pursuit. I test this model in 

virtual world simulations against heavily cluttered natural scenes using MATLAB/Simulink. 

Additionally, I use this model to investigate the role of some neuronal properties in closed-

loop target tracking and pursuit. 

In Chapter 3, I test both the efficacy and efficiency of this insect-inspired model in open-

loop, using a widely-used set of videos recorded under natural conditions. I directly compare 

the performance of this model with several state-of-the-art engineering algorithms using the 

same hardware, software environment and stimuli.  

Computer vision literature traditionally tests target tracking algorithms only in open-loop. 

However, one of the main purposes for developing these algorithms is implementation in 

real-time robotic applications. Therefore, it is still unclear how these algorithms might 

perform in closed-loop, real-world applications, where inclusion of sensors, actuators and 

physical robot dynamics results in additional latency which can affect the stability of the 

feedback process. Additionally, studies show that animals interact with the target by 

changing eye or body movements, which then modulate the visual inputs underlying the 

detection and selection task (via closed-loop feedback). This active vision system may be a 

key to exploiting visual information by the simple insect brain for complex tasks such as 

target tracking. Therefore, in Chapter 4, I implement this insect-inspired model along with 

insect active vision in a ground-based robotic platform (Figure 1.18). The choice of a ground 

robot would constrain the pursuit to a 2-dimensional environment. However, it maintains the 
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focus on testing the key algorithmic questions and model performance under real world 

challenges (e.g. lighting changes, vibration, presence of distracters, hardware limitations) 

rather than engineering problems associated with UAVs. I test this robotic implementation 

both in indoor and outdoor environments against different challenges which exist in real-

world conditions including vibration, illumination variation, and distracting stimuli.  

In the final chapter, the key conclusions that have been documented throughout the thesis 

will be presented. It must be noted that the investigations discussed in this thesis are only 

the beginning of the development of a robust insect-inspired model. Consequently, a 

significant amount of potential work still exists for future investigations which is also 

explained in the final chapter. 

 

Figure 1.18.  The insect-inspired target tracking model is implemented on a ground-based robot to 

autonomously track targets within natural environments.  
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Chapter 2. Properties of Neuronal Facilitation that 

Improve Target Tracking in Natural Pursuit 

Simulations 
 

Wiederman et al. (2008) have developed a neuromorphic model for target discrimination in 

visual clutter based on the specificity of the target rather than the segregation of target and 

background motion (Section 1.4.2). However, this model is not a true motion detector. It 

would respond to the motion of a dark target as well as a localised black single flicker. This 

suggests that some other form of higher order neuronal mechanism is required for robust 

target tracking. Recent electrophysiological experiments from one type of STMD neurons 

(CSTMD1) revealed two interesting higher-order properties for these neurons; ‘facilitation’ 

(Nordström et al., 2011; Dunbier et al., 2011; Dunbier et al., 2012) and ‘selective attention’ 

(Wiederman and O’Carroll, 2013a) (see Section 1.2.4.4). I hypothesized that these properties 

play a key role in dragonfly’s robust target tracking behaviour. Therefore, in this chapter I 

present an elaborated closed-loop model of this target-detection pathway (set in a virtual 

reality environment) which includes these recent neuronal properties. As I mentioned earlier 

(Section 1.4.3) this closed-loop model is based on the preliminary model developed in our 

research group (Halupka et al., 2011, Halupka et al., 2013).  Using this model, I test the role 

of facilitation in selective attention, as well as target tracking and pursuit in flying insects. 

Although these modelling efforts focus on insect physiology, these results may be 

generalisable to our understanding of such principles in biological organisms, as well as for 

translational applications (e.g. artificial vision systems). 

The preliminary results of this work were published in: 

“Bagheri Z. M., Wiederman S. D., Cazzolato B. S., Grainger S., & O'Carroll D. C. (2014). 

A biologically inspired facilitation mechanism enhances the detection and pursuit of targets 
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of varying contrast. In 16th International Conference on Digital Image Computing: 

Techniques and Applications, IEEE, 1-5.” 

 

and is presented in Appendix B. The supplementary material for the current chapter is 

provided in Appendix A. 
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2.1  Abstract 

 

Although flying insects have limited visual acuity (approx. 1°) and relatively small brains, 

many species pursue tiny targets against cluttered backgrounds with high success. Our 

previous computational model, inspired by electrophysiological recordings from insect 

‘small target motion detector’ (STMD) neurons, did not account for several key properties 

described from the biological system. These include the recent observations of response 

‘facilitation’ (a slow build-up of response to targets that move on long, continuous 

trajectories) and ‘selective attention’, a competitive mechanism that selects one target from 

alternatives. Here, we present an elaborated STMD-inspired model, implemented in a closed 

loop target-tracking system that uses an active saccadic gaze fixation strategy inspired by 

insect pursuit. We test this system against heavily cluttered natural scenes. Inclusion of 

facilitation not only substantially improves success for even short-duration pursuits, but it 

also enhances the ability to ‘attend’ to one target in the presence of distracters. Our model 

predicts optimal facilitation parameters that are static in space and dynamic in time, changing 

with respect to the amount of background clutter and the intended purpose of the pursuit. 

Our results provide insights into insect neurophysiology and show the potential of this 

algorithm for implementation in artificial visual systems and robotic applications.  

2.2  Introduction 
 

Many animals have evolved the ability to visually detect moving targets, often selecting a 

single target from amidst many distracters. Furthermore, these animals may interact with the 

target by initiating motor commands (e.g. eye or body movements), which then modulate 

visual inputs underlying the detection and selection task (via closed-loop feedback) (Land, 

1999). While such ‘active vision’ is almost ubiquitous in guiding complex animal behaviour, 

it remains uncommon in artificial vision systems. However, active vision may be key to 
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exploiting the highly nonlinear pre-processing of visual information by the simple insect 

brain for complex tasks. For example, dragonflies detect, select and then chase prey or 

conspecifics within a visually cluttered surround for predation, territorial or mating 

behaviour (Corbet, 1999). Remarkably, despite limited visual resolution (approx. 1°), they 

perform this task even in the presence of other distracting stimuli, such as swarms of prey 

and conspecifics (Corbet, 1999; Wiederman and O’Carroll, 2013). Recent studies show that 

dragonflies rely on both predictive and reactive control for accurate target tracking 

(Mischiati et al., 2014), similar to those involved in hand-reaching by primates (Wolpert et 

al., 1995). 

The accessibility of the dragonfly for stable electrophysiological recordings makes this 

insect an ideal and tractable model system for investigating the neuronal correlates for 

complex tasks such as target pursuit. Our laboratory has identified and characterized a set of 

neurons likely to mediate target detection and pursuit. These ‘small target motion detector’ 

(STMD) neurons of the insect lobula (third optic neuropil) are selective for tiny targets, on 

the same scale as the optical resolution of the eye. STMDs are velocity-tuned, contrast-

sensitive and respond robustly to targets even against the motion of high-contrast 

background features (O’Carroll, 1993; Nordström et al., 2006; Nordström and O’Carroll, 

2009; O'Carroll and Wiederman, 2014). Individual STMDs may have very small receptive 

fields, corresponding to just a few dozen facets of the compound eye, or view an entire visual 

hemisphere, suggesting a complex hierarchy in their contributions to underlying control 

systems for target pursuit (O’Carroll, 1993; Nordström et al., 2006; Nordström and 

O’Carroll, 2009; Barnett et al., 2007).  

Our recent electrophysiological data lend strong support for an underlying algorithm for 

local target discrimination based on an ‘elementary-STMD’ (ESTMD) operation at each 

point in the image to provide a matched spatio-temporal filter for small moving targets 
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embedded within natural scenery (Wiederman et al., 2008). The ESTMD model reliably 

predicts several properties of STMD neurons, including their spatio-temporal tuning, their 

rejection of background motion (Wiederman and O'Carroll, 2011) and even the selectivity 

for dark targets seen in some STMDs (Wiederman et al., 2013). However, this remains a 

model only for the elementary operation of local target discrimination: it makes no attempt 

to account for how information integrated across a large visual field is used to control visual 

gaze or target pursuit. Moreover, the ESTMD model does not explain several recently 

described features of STMD physiology and insect behaviour required by such a control 

system: 

(1) The ESTMD itself is a non-directional feature detector, yet directional information is a 

key requirement to predict the future path of a target. Indeed, many STMD neurons are 

selective for the direction of target movement (O'Carroll, 1993; Barnett et al., 2007; 

Nordström and O'Carroll, 2006). 

(2) The ESTMD model and some STMD neurons are selective for the polarity of target 

contrast (Wiederman et al., 2013). Yet insects pursue targets against variable backgrounds, 

thus requiring a mechanism to track targets independent of their relative luminance. 

(3) ESTMDs are local detectors, responding only to matched features within a limited area 

of space viewed by the central detector and its near neighbours. Recent physiological data 

provide us with evidence for additional nonlinear interactions between ESTMDs viewing 

nearby parts of the same scene. In CSTMD1, an identified dragonfly STMD, responses build 

over several hundreds of milliseconds only if targets move along continuous trajectories 

(Nordström et al., 2011). This ‘facilitation’ resets to a naive state when there are large breaks 

in the trajectory (Dunbier et al., 2011; Dunbier et al., 2012). We hypothesize that such 

encoding of the trajectory improves extraction of target signals by noise-constrained neurons 
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within noisy (cluttered) environments and may thus contribute to the dragonfly’s ability to 

robustly pursue prey (at more than 97% success rate) (Olberg et al., 2000). 

(4) Presented with several salient targets at different locations, several ESTMDs within a 

wide-field array would respond independently if features match their spatio-temporal tuning. 

Successful target pursuit requires a mechanism to select one target from among alternatives 

(e.g. a winner-takes-all network). Indeed, CSTMD1 neurons were recently shown to 

competitively select one target in the presence of distracters (Wiederman and O’Carroll, 

2013a), responding as if only one target was presented. This was observed, irrespective of 

the target’s size, contrast or separation (Wiederman and O’Carroll, 2013a). We hypothesize 

that local facilitation might play a role in this competitive selection by enhancing 

discriminability of one target over the other. 

To test these hypotheses and address the limitations of the ESTMD, we present here an 

elaborated model for a control and pursuit system inspired directly by these latest 

physiological findings. This is based on inputs from ESTMDs (Wiederman et al., 2008), but 

incorporates additional processing to permit (i) prediction of target direction (ii) robust 

responses independent of the luminance contrast and (iii) a competitive selection mechanism 

that exploits response facilitation. We incorporate this front-end processing into a closed-

loop simulation of dragonfly prey pursuit that incorporates an active saccadic gaze fixation 

strategy inspired by studies of insect pursuit behaviour (Olberg et al., 2000; Wehrhahn et al., 

1982; Land MF and Collett, 1974). We then use this system to explore the effect of varying 

the spatial and temporal scale of response facilitation on pursuit success and target 

discriminability under different environmental conditions. 

Despite a relatively simple image processing strategy compared with traditional machine 

vision approaches, this system proves to be remarkably robust, achieving high prey capture 

success even with complex background clutter, low contrast and high relative speed of 
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pursued prey. Hence, our results should be of interest to robotics engineers looking for 

computationally simple yet robust systems for figure/ground segregation. Moreover, while 

our results are consistent with emergent hypotheses for the role of hierarchical elements of 

the insect STMD system, we also identify several key principles for optimal performance of 

such a system that are directly testable in future physiological experiments. 

2.3  Methods 
 

Appendix A, Figure A.1 shows an overview of the target pursuit model implemented in 

MATLAB/SIMULINK. The model is composed of five subsystems: (i) a virtual reality 

environment to model insect position (predator and prey) and environmental parameters, (ii) 

an early visual processing stage, (iii) a target matched filtering (‘ESTMD’) stage, (iv) a 

position selection and facilitation mechanism, and (v) a saccadic pursuit algorithm based on 

insect behaviour.   

2.3.1 Virtual-Reality Environment 

A Virtual Reality (VR) environment (SIMULINK 3D animation toolbox, Mathworks Inc.) 

was composed of a cylindrical arena (radius 6 m), rendered with textures derived from 

natural panoramic image data from four natural scenes (see (Brinkworth and O'Carroll, 

2009) for details on acquisition of the original HDR image data). Within this arena we 

generated randomized ‘prey’ paths (100 times for each condition tested) with biologically 

plausible saccadic turns (Schilstra C and van Hateren, 1999) initiated when the target 

approached within 50 cm of the cylindrical wall. At each saccade, the new heading was 

constrained in a range where targets turned between 30° and 150° in the horizontal plane 

(i.e. as viewed from above) and to a heading in the vertical dimension that ensured that it 

would not be lost from the limits of the camera viewport. Response transients from initial 

filter conditions were disregarded by introducing the 40 mm-sized target after a delay of 40 
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ms. Initial target location was 4 m away from the pursuer (angular size approx. 0.6°). Video 

was sampled at 1000 Hz from a 40°x98°-sized viewport to represent the visual field of the 

pursuer, which moved at a velocity of 8 ms-1.  

2.3.1.1 Simulations with one target 

We tested target velocities between 50% and 200% of the pursuer velocity moving against 

one of four natural images. All images (Image A-D, Appendix A, Figure A.1b) had varying 

clutter, however, all contained 1/f power spectra; a statistical property of natural scenes 

(Field, 1987). The average clutter value (see Appendix A, Text A.3 for details of the 

quantifying method) and intensity of each image is presented in Appendix A, Table A1. We 

simulated a range of target intensities set specifically for each image (Appendix A, Table 

A1).  

2.3.1.2 Simulations with two targets 

To investigate competitive selection, we simulated a black target against Image B (Appendix 

A, Figure A.1b) with a second distracter target introduced 100 ms later. At the time of 

appearance of the second target, both targets had the same size, luminance, and distance 

from the pursuer. Both targets travelled in mirrored paths (Appendix A, Figure A.1c) at a 

velocity of 6 ms-1. 

2.3.2 Early Visual Processing 

The optics of flying insects are limited by diffraction and other forms of optical interference 

within the facet lenses (Stavenga, 2003). This optical blur was modelled with a Gaussian low-

pass filter (Appendix A, Text A.1). The green spectral sensitivity of the insect motion 

pathway was simulated by processing only the green channel from the original RGB images 

(Srinivasan and Guy, 1990).  
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In biological vision, redundant information is removed with neuronal adaptation (temporal 

high pass filtering) and centre-surround antagonism (spatial high pass filtering) observed in 

physiological recordings of photoreceptors and the first-order interneurons, the large 

monopolar cells (LMCs). Subsequent stages of our model simulate these properties 

(Appendix A, Text A.1). 

2.3.3  Target Matched Filtering (ESTMD stage) 

 

2.3.3.1 Rectifying transient cell 

Rectifying transient cells (RTCs) within the insect second optic neuropil (medulla) exhibit 

partial rectification properties well suited as additional input processing stages for an STMD 

pathway (Wiederman et al., 2008). Similar processing properties were implemented in our 

model by modelling RTC-like independent adaptation to light increments or decrements 

(Osorio, 1991; Jansonius and van Hateren, 1991) with strong spatial centre-surround 

antagonism (Appendix A, Text A.2).  

2.3.3.2 Independence to target polarity  

At a single location, small targets are characterized by an initial rise (or fall) in brightness, 

and after a short delay are followed by a corresponding fall (or rise), irrespective of the 

direction of travel. This property of small features is exploited in the original ESTMD model 

(Wiederman et al., 2008) to provide selectivity for dark objects, by multiplying each ON 

channel with a delayed version of the OFF channel. Sensitivity to targets independent of their 

polarity was provided by multiplying each contrast channel (ON or OFF) with a delayed 

version of the opposite polarity (via a low-pass filter, τ=25 ms) and then summing the outputs.  

2.3.4 Integration and Facilitation of ESTMD Outputs 

Despite its elaboration to permit detection of both contrast polarities, our ESTMD model 

only provides local target discrimination. To generate an input to the subsequent control 
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system for target pursuit, we therefore added additional stages to integrate target motion 

across the full visual field of the camera. Our target selection and integration stages were 

inspired by the observed hierarchy of insect STMD neurons and the recent evidence for 

facilitation within their receptive fields (Nordström et al., 2011; Dunbier et al., 2011; 

Dunbier at al., 2012).  

2.3.4.1 Target selection  

Wide-field integration in our model begins with neuron-like soft saturation of ESTMD 

outputs, modelled as a hyperbolic tangent function, ensuring all signals lie between 0 and 1. 

A simple competitive selection mechanism is then added to the target detection algorithm by 

choosing the maximum of the output values across the full visual field of the input camera 

(equivalent to the receptive field of a wide-field STMD neuron). In our model, the location 

of this maximum is assumed to be the target location. In the insect STMD system, such local 

position information could be provided by the retinotopic array of small-field STMDs (SF-

STMDs) which integrate local outputs of a small number of underlying ESTMDs, as 

observed in the hoverfly STMD pathway (Barnett et al., 2007).  

2.3.4.2 Direction selectivity and local facilitation  

We implemented facilitation as observed in dragonfly CSTMD1 neurons (Figure 2.1a,b)  

(Nordström et al., 2011; Dunbier et al., 2011; Dunbier et al., 2012) with a Gaussian-weighted 

‘map’ dependent on the location of the winning feature, but shifted by the target velocity 

vector. The ESTMD output was multiplied with a low-pass filtered version of this facilitation 

map with a time constant that controls duration of the enhancement around the predicted 

location of the winning feature. This was varied in the range 40 to 2000 ms (13 values) thus 

spanning the typical facilitation time course (approx. 200 ms) observed in dragonfly STMDs 

(Dunbier et al., 2012). We varied the size of this map via two-dimensional Gaussian kernels 
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from 3° to 15° (half-width at half maximum, six values), thus spanning the observed size 

(approx. 7°) of the receptive fields of the SF-STMD neurons (Barnett et al., 2007). 

Predicting the future target location required estimation of a velocity vector (Appendix A, 

Figure A.2) calculated using a traditional bio-inspired direction selective model; the 

Hassenstein-Reichardt elementary motion detector (HR-EMD) (Hassenstein and Reichardt, 

1956). In this case the EMD was applied as a second-order motion detector on the ESTMD 

outputs which correlates adjacent inputs after a delay (via a low-pass filter, τ=40 ms) 

resulting in a direction selective output tuned to the velocity of small objects (Wiederman 

and O'Carroll, 2013b). The spatial shift of the facilitated area was determined by segmenting 

the output of the HR-EMD into three equal intervals (estimating the range of target velocity).  
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Figure 2.1. Response facilitation in a dragonfly target selective neuron, CSTMD1. a) When targets appear and 

commence a short path within the receptive field (solid line) responses rise above spontaneous levels within 

50 ms then continue to rise for the next 450 ms. If the same target moves along a longer path (dashed line) 

facilitation leads to stronger responses compared with those of the short path stimulus. b) The facilitation time 

course is observed by subtracting the spontaneous level (grey line in a) and then dividing the short path 

response by the long path equivalent. c) The response time course of individual CSTMD1s to the onset of 

target motion are variable (blue lines) with mean response (red line) increasing over several hundreds of 

milliseconds. d) Individual responses of CSTMD1 to target offset are less variable (data not shown for clarity), 

with mean response (red line) rapidly decreasing. e) The step response of the computational model reproduces 

both onset and offset properties observed in the physiological systems. The time course of the model onset 

response changes depending on the facilitation time constant. Data in a and b are adapted from (Nordström et 

al., 2011). 



Chapter 2. Properties of Neuronal Facilitation that Improve Target Tracking in Natural 
Pursuit Simulations 

91 

2.3.4.3 Facilitation time course 

We previously described CSTMD1 responses to the presentation of a moving target with a 

slow onset time course and a fast offset decay (Nordström et al., 2011). Figure 2.1c shows 

curve fits modified from individual CSTMD1 responses that we recorded to target onset (as 

described in Dunbier et al. (2012)). We previously suggested that this asymmetry reveals 

that the neuron is not merely ‘sluggish’, but rather that the slow facilitation in responses 

enhances encoding of the target trajectory. Further research supports this, showing that local 

discontinuities in target trajectory reset the response to a naive, non-facilitated state (Dunbier 

et al., 2011; Dunbier at al., 2012). Furthermore, even with this slow build-up in response, 

the underlying velocity tuning of the neuron is similar to other STMD neurons (Geurten et 

al., 2007).  

To test whether our model of facilitation emulates this asymmetry in onset/offset time course 

under similar open-loop stimulus conditions, we first simulated an immobilized pursuer 

viewing a grey (50%) target that moved horizontally along the circumference of the arena 

against a white background. Our model (Figure 2.1e) reproduces the slow onset and rapid 

decay of the average CSTMD1 time course (Figure 2.1c, d red lines). In CSTMD1, the offset 

time course is consistently fast from neuron to neuron ( 65 ms). Although CSTMD1 

shows an average 200 ms time constant in the response onset, individual examples also show 

large variability (Figure 2.1c, blue lines). The variation in onset kinetics is readily simulated 

by our alteration of the facilitation time constant, but does not affect the offset time course 

(Figure 2.1e).  

2.3.5 Saccadic Pursuit Algorithm 

Flying insects implement different pursuit strategies by maintaining the target at a specific 

angular position on the eye. For example, a male housefly will chase another fly by fixating 

it frontally (i.e., at azimuth 0°), thus ‘tracking’ the target in looping paths (Wehrhahn et al., 
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1982; Land and Collet, 1974). On the other hand, an aerial predatory dragonfly will intercept 

prey, with a recent study indicating that their head movements maintain the target in a frontal 

region (approx. 5°) (Mischiati et al., 2014). Similar to these pursuit strategies, we 

implemented a hybrid ‘tracking’, initiating a frontal fixation saccade whenever the winning 

feature of the ESTMD output (Appendix A, Figure A.1a) moved more than 5° from the 

centre of the field of view. This strategy keeps the target close to the pole of expansion in 

the flow-field generated by the pursuer’s own motion through the world, i.e. where local 

background image speeds are lowest. This discontinuous position-servo approach then 

allows the nonlinear spatiotemporal filtering inherent to the ESTMD pathway to enhance 

target ‘pop out’ against a highly cluttered background during the inter-saccade period.  

STMD neurons are tuned to small objects, with peak responses to an optimum target size of 

1.6°×1.6° (Wiederman et al., 2008). In the biological system, it is presumed that other 

neurons, such as the ‘looming’ system observed in the locusts (Rind and Simmons, 1992; 

Rind and Bramwell, 1996), could be recruited to finalize prey capture as the target nears and 

thus becomes larger than optimal for an STMD. For the sake of clarity, we therefore limited 

our modelling efforts to the STMD pathway and declared a successful capture when the 

pursuer came within 1.2 m of the frontally fixated prey in less than 2 s. To exclude 

‘fortuitous’ last minute saccades towards background features in the vicinity of the intended 

target, we arbitrarily included the additional criterion that the target had to be the winner in 

the output of the ESTMD array for more than 50% of the last 6 ms of tracking. 
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2.4  Results 
 

2.4.1 Testing Facilitation with One Target  

 

2.4.1.1 Effect of facilitation on target discriminability in individual pursuits 

 

While analysis of biological neurons is limited to studying facilitation as an ‘always on’ 

feature of the underlying detection pathway, our model allows us to simulate the fate of 

pursuit flights from identical starting points but with the facilitation mechanism turned on or 

off. This allows us to explore effects of facilitation both locally (target discriminability) and 

globally (average effect on pursuit success).  

Figure 2.2 shows three individual examples of pursuit simulations where targets pass across 

challenging parts of the background. In all three, the non-facilitated pursuit fails, whilst 

facilitation results in successful target capture. Figure 2.2a,b shows two estimates of target 

contrast during the pursuit. The first is based on the input imagery: i.e., a simple measure of 

the signal to noise ratio based on the luminance difference between the target and its near 

background. The second is a weighted signal to noise ratio (WSNR) calculated (Appendix A, 

Text A.4) from target and background luminance, as well as target angular size (i.e., distance 

between target and pursuer). This takes account of the optical blur that demodulates the 

target at large distances owing to its small angular size. In all these examples, the WSNR 

gradually improves throughout the duration of the pursuit as the pursuer nears the target. 

This is because its angular size increases from the initial value (0.6°) - well below the 1.4° 

optical blur introduced by the optical sampling. Figure 2.2c shows target discriminability 

(Appendix A, Text A.5) in the ESTMD output for both facilitated and non-facilitated 

simulations. Discriminability values below 1 (dashed line) are due to detection failure 

(discriminability=0) or detection of stronger false positives (0<discriminability<1). In 

Example 1, the non-facilitated pursuit fails rapidly owing to low target discriminability, 
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whilst addition of facilitation leads to successful target capture. In Examples 2 and 3, the 

pursuit failure in non-facilitated simulations is due to detection of strong false positives 

generated by highly contrasting features of the background scene. In these examples, 

facilitation boosts the local response in the vicinity of the previously tracked target, 

maintaining focus on the target even though it is inherently less salient than such distracters.  

2.4.1.2 Effect of facilitation kinetics on pursuit success in natural conditions 

Although we observe clearly improved target discriminability in selected individual pursuits, 

facilitation might conceivably have a negative influence on target discrimination in some 

situations, e.g. by enhancing responses to background features. We therefore examined the 

pursuit success (%) with the addition of facilitation in different environmental scenarios. For 

this purpose we varied target to pursuer velocity ratio (|Vt|/|Vp|) and target intensity 

(Appendix A, Table A1) against different images (Appendix A, Figure A.1b). Additionally, 

we tested the effect of duration of enhancement (facilitation time constant) in these 

simulations. 
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Figure 2.2. Examples of successful facilitated versus unsuccessful non-facilitated pursuits. a) Target contrast 

at the input image stage is calculated with signal-to-noise ratio (SNR). b) To account for target angular size, 

an elaborated target contrast measure (after optical blurring) uses a weighted signal-to-noise ratio metric 

(WSNR). The WSNR value improves throughout the duration of the example pursuits as the pursuer nears the 

target. c) In these examples, target discriminability at the ESTMD output stage is markedly improved with the 

addition of facilitation. The values above the dashed line indicate that the target is the ‘winner’, and the green 

asterisk indicates the successful capture. 

Figure 2.3 shows pursuit success (averaged over four target intensities) varied across the 

four images. The more cluttered images, Image A and Image D, yield maximum success 

rates of approximately 50%. Both include features that evoke false positives, either 

naturalistic (e.g. foliage in Image A) or man-made (e.g. windows in Image D). Image B is 
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sparse and Image C contains predominantly straight edges. Neither evoke many false 

positives, resulting in maximum success rates exceeding 75%. 

As target velocity exceeds that of the pursuer, pursuit success decreases because the pursuer 

is simply not fast enough to catch the target (Figure 2.3). However, given the randomized 

nature of its path, targets sometimes move towards the pursuer at some point during the 

simulation so pursuit success is greater than zero. Moreover, pursuit success exhibits tuning 

to optimal velocity ratios because if a target moves too slowly or too quickly, it falls out of 

the velocity tuning range that is an inherent property of the ESTMD model (Wiederman et 

al., 2008).  

The optimum facilitation time constant (dashed line) changes in response to variation of the 

target-pursuer velocity ratio. As target velocity increases, the optimum time constant 

decreases. This reflects the fact that faster targets require a facilitated area of enhancement 

to rapidly ‘keep up’ and have less ‘sluggish’ kinetics (i.e. lower time constant). Hence the 

ideal time constant is likely to depend on the goal of the pursuit system (e.g. slower-moving 

prey versus fast-moving conspecifics). 
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Figure 2.3. Average pursuit success at varying velocity ratios and with changes in facilitation duration for four 

different background images. This reveals higher pursuit success (%) for less cluttered scenes (Image B, Image 

C). Average pursuit success increases as the target-pursuer velocity ratio (|Vt|/|Vp|) decreases. These results 

reveal that there is an optimum facilitation time constant (dashed lines) which varies dependent on both target 

velocity and the background scene. 

2.4.1.3 Model robustness and facilitation kinetics in clutter  

In addition to the consistent influence of target speed, the optimum facilitation time constant 

changes across images. Pursuit success at any particular target speed improves with longer 

time constant in Images A and Image D, compared with the qualitatively less cluttered Images 

B and C (Figure 2.3). These data also suggest a relationship between the kinetics of 

facilitation and the average amount of background clutter. However, this is complicated by 

the fact that targets may sometimes be viewed against locally less cluttered parts of generally 

high-clutter scenes and vice versa. To quantify this relationship and investigate how it may 
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evolve during a pursuit, we developed a robustness metric (Appendix A, Text S6). This 

represents the real performance of the model as a percentage of the ideal performance. The 

minimum criterion for an acceptable performance is a successful pursuit; however, a higher 

target discriminability throughout the pursuit indicates more robust performance. Therefore, 

our robustness metric calculates success rate, with individual successes weighted by their 

average target discriminability. 

We examined the evolution of pursuit robustness in response to changes in background 

clutter (Appendix A, Text A.3) and facilitation kinetics. Pursuit durations varied across all 

images with an overall mean of 0.6561±0.0031 s (Appendix A, Figure A.3). Figure 2.4 

shows pursuits segmented into three equal periods (determined for each individual pursuit 

depending on its duration), as well as the whole pursuit (|Vt|/|Vp|=3/4). Robustness is 

initially less than 15% (Figure 2.4a), however, it increases as the pursuit progresses (Figure 

2.4b,c), owing to the growth of target angular size and the build-up of facilitation. These 

data confirm that as background clutter increases, target discrimination decreases. More 

interestingly, the optimum facilitation time constant (dashed line) is oriented towards longer 

time constants as background clutter increases. This trend can be explained by more frequent 

camouflage of the target in more cluttered backgrounds. Consequently, a longer time 

constant enhances the area of target disappearance for a longer duration, thus improving 

target discrimination when it reappears. This is an analogue of the ‘expectation’ human 

observers have for the reappearance of a target, following disappearance behind an 

occluding object (Doherty et al., 2005). However, when the background is less cluttered, 

facilitation with a long time constant lags behind a visible target, with the potential to 

enhance false positives. Consequently, faster facilitation performs better for smaller clutter 

values.   



Chapter 2. Properties of Neuronal Facilitation that Improve Target Tracking in Natural 
Pursuit Simulations 

99 

 

Figure 2.4. (a-d) A robustness metric is calculated (relating both target discriminability and pursuit success, 

see Appendix A, Text A.6) for three equal periods of pursuit (Early, Middle, and Late) as well as for the entire 

duration of the pursuit. Robustness improves throughout the pursuit owing to the growth of target angular size 

and the build-up of facilitation. Overall, higher local clutter has a detrimental effect on pursuit robustness. The 

oriented nature of the optima (dashed line) reveals that more reliable model performance in increased clutter 

is obtained with longer facilitation time constants. 

2.4.1.4 The optimum facilitation kernel size 

Our rationale for using a Gaussian-weighted patch as the basis for facilitation is that position 

information must be represented in the insect brain via retinotopically organised local feature 

detectors (Barnett et al., 2007). It is most likely that facilitation operates at the level of these 

units. In hoverflies, retinotopically organised SF-STMD neurons have approximately 

Gaussian receptive fields with a half-width approximately 7° (Barnett et al., 2007). It is 

interesting to consider whether there is a clear optimum scale for this operation. Figure 2.5 
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displays the effect of varying facilitation kernel size on pursuit success for different time 

constants, averaged over target intensities. Small sizes of the kernel (half-width less than 7°) 

diminishes the model’s ability to successfully track the target. Because the velocity vector 

used to shift the facilitation map (Section 2.3.4.2) is only an estimate of the target velocity, 

too small a facilitation patch might not accurately enhance the area around the target, 

particularly when the target trajectory is unpredictable (e.g. during a prey saccade). Although 

larger kernels increase the probability of enhancing the correct location of the target, they 

also boost false positives in a larger area of the background. This likely explains declining 

pursuit success for kernel sizes above 9° (Figure 2.5). Pursuit success reaches its maximum 

at the size of 7°-9° for all images, remarkably similar to the size of insect SF-STMD 

receptive fields (Barnett et al., 2007).  
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Figure 2.5. Average pursuit success for the background images (Appendix A, Figure A.1b) is plotted with 

respect to both the facilitation time constant and facilitation kernel size (half-width). More cluttered images 

have optima at longer facilitation time constants; however, spatial facilitation is optimal at 7°-9° irrespective 

of image. 

2.4.1.5  Facilitated versus non-facilitated model 

The preceding sections explored optimal parameters for the facilitation mechanism, but do 

not tell us about the resulting gain in performance. We therefore ran pursuits using optimal 

parameters for each image and then re-ran them from identical starting points with 

facilitation turned off, to quantify the absolute improvement in pursuit success (Figure 2.6). 

With less cluttered images (Image B and Image C), high contrast targets led to very high 

capture success even without facilitation, leaving little headway for improvement. We 

therefore also ran simulations across a larger range of target intensities than in the earlier 

simulations. The success rate in non-facilitated simulations (contour lines) improves as 
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target intensity is increased or decreased away from the mean background (dashed line). The 

difference between facilitated and non-facilitated model is shown with the colour map. The 

largest improvement from facilitation (hot colours) happens when the non-facilitated model 

is only successful in 30-60% of simulations. When the target contrast is too low, facilitation 

has no effect owing to the complete failure of target detection (grey area in the plot).  

 

Figure 2.6. Optimized facilitation improves pursuit success rate over a range of target intensities and target-

pursuer velocity ratios (|Vt|/|Vp|). Contour lines indicate pursuit success without facilitation, whilst the colour 

map portrays the difference in success owing to the addition of facilitation. Over all conditions, facilitation 

either has no effect or improves pursuit success (hot colours). White dashed lines indicate the mean background 

intensity. 

2.4.2 Testing Competitive Selection with Two Targets 

Dragonflies can feed among swarms of prey, requiring an attention mechanism to select one 

target. A likely neuronal correlate is the competitive selection previously observed in 
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CSTMD1 electrophysiological recordings (Wiederman and O’Carroll, 2013a). These 

neurons respond to only one of the competing stimuli at any point in time, although they 

may switch from one to the other. To examine the interplay between facilitation and 

competitive selection in our model, we introduced a distracter target to the simulations. We 

determined whether facilitation results in ‘locking’ on to one target, thus reducing the 

number of switches between two targets.  

2.4.2.1 Examples of effect of facilitation on competitive selection 

Figure 2.7 shows discriminability of the targets in the ESTMD output and their WSNR value 

(Appendix A, Text A.4) for simulations both with and without facilitation. As intuitively 

expected for two identical targets, in the non-facilitated case, both targets have similar 

discriminability and thus compete as ‘winners’ in the ESTMD output (Figure 2.7a). At any 

instant, the winner depends only on the local properties of the background, leading to a 

competitive switching between the two. As a consequence, any given saccade is more likely 

to result from a switch in ‘attention’ between the two targets (i.e. change in the current 

winner indicated by a discriminability value greater than 1) than a ‘normal’ fixation saccade 

to re-centre the tracked target in the frontal visual field. However, the addition of facilitation 

reduces both these attentional switches (Figure 2.7a-c) and resulting switching saccades 

(Figure 2.7a-c, small coloured markers). Switches are reduced even further by increasing 

facilitation time constant. In the example shown in Figure 2.7c, the longer time constant 

leads to the model focusing exclusively on the first target after 170 ms, with only normal 

fixation saccades after this time. In the same simulation with a shorter facilitation time 

constant (Figure 2.7b) a lock-on to the second target occurs after 240 ms, following several 

prior switches between the two. Considering the WSNR value, in the facilitated simulations, 

even when the winning target moves across an area of the background that causes its contrast 

to decrease below that of the alternative, the model does not necessarily switch to the 
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inherently more ‘salient’ target. An example is shown in Figure 2.7c, where the 

discriminability of target 1 is boosted by facilitation to a winning level (greater than1) even 

though target 2 has a higher WSNR at the corresponding time frame (the dashed box). These 

examples support the idea that facilitation plays a potential role in the selective attention 

observed in the STMD neurons (Wiederman and O’Carroll, 2013a).   
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Figure 2.7. Example of facilitation effect on switches between two targets. a) In the non-facilitated simulation, 

targets have similar discriminability and compete closely as winner.  b) The results of the same simulation with 

addition of facilitation (τf=40 ms). c) The same simulation with addition of a more sluggish facilitation (τf=600 

ms). The small triangular markers show the saccades towards the target which has the same representing colour. 

This example shows that the facilitation mechanism effectively reduces the number of both attentional switches 

and switching saccades. 
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2.4.2.2 Effect of facilitation on saccade frequency 

To further quantify the effect of facilitation on competitive selection, we calculated the 

frequency of both fixation saccades (saccades toward the same target) and switching 

saccades (from one target to the other). Figure 2.8 clearly shows that the frequency of 

switching saccades decreases with longer facilitation time constants. With longer time spent 

with individual targets as the winner, this leads to an increase in the frequency of fixation 

saccades (Figure 2.8a, open symbols). Interestingly, we see this increase in fixation saccades 

even for relatively short facilitation time constants (less than100 ms), even though these do 

not lead to a significant reduction in the corresponding frequency of switching saccades. 

This reflects the fact that the boost in local ‘salience’ to one or other (or both) targets 

resulting from even short facilitation time constants leads to a decrease in the time during a 

pursuit when neither target is the winner (Figure 2.8b). As expected, for long time constants, 

when fixation saccades are dominant, average saccadic turn angles approach the angle 

defined for initiating a frontal fixation saccade (5°, Figure 2.8c). Although the appearance 

of the second target is always as a mirror image of the first target and thus initially at a small 

angular separation (between 3° and 10°), as pursuits continue the different paths of the two 

targets leads to an increase in their angular separation. Consequently, the average saccadic 

turn angle increases dramatically for shorter time constants where switches between the two 

targets dominate saccades.  
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Figure 2.8. Effect of facilitation time constant on the saccades in pursuit of two targets. a)  The increase in 

facilitation time constant leads to a decrease in the frequency of switching saccades and increase in the 

frequency of fixation saccades. b) The boost in local discriminability of the targets resulting from facilitation 

leads to a decrease in the percentage of the time during which neither target is the winner. c) As the facilitation 

time constant increases, the average saccadic turn angle converges to the value of pre-defined re-centring angle 

(5°) resulting from domination of fixation saccades. 
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2.5  Discussion 

Our data clearly show that an elaborated version of the ESTMD model incorporating 

summation of feature detectors for both dark and light-contrasting targets provides robust 

detection of varying target intensities against a wide range of backgrounds. This rivals the 

remarkable sensitivity for low contrast targets of the insect visual system upon which it is 

based (O'Carroll and Wiederman, 2014). 

2.5.1 Facilitation Time Constant 

The newly discovered facilitation in CSTMD1 neurons is suspected to play a role in 

enhancing sensitivity for targets moving along long trajectories, possibly contributing to the 

high capture rate in dragonflies. Supporting this hypothesis, inclusion of facilitation in our 

closed-loop model substantially improves pursuit success. This particularly interesting 

improvement was even observed for very slow facilitation time constants despite the average 

duration of successful pursuits remaining relatively short. In this regard, our model 

optimization parallels analysis of both physiology and behaviour in dragonflies. Dragonfly 

pursuit flights are typically very short, with an average of 184 ms (Olberg et al., 2000) 

(although we note that this was calculated from the time the dragonfly commenced pursuit, 

so it is likely that the underlying neurons were already encoding target motion for some time 

prior). Yet the physiologically measured facilitation time reported in our earlier work is on 

the order of 300-500 ms ((Nordström et al., 2011; Dunbier et al., 2011; Dunbier at al., 2012), 

and Figure 2.1a-c).  

One might intuitively expect that time constants governing biological image processing 

should be at least as fast as the behaviour for which they are employed. In fact, the same 

expectation is a fundamental basis of control theory. Reducing the phase delay to reach the 

steady-state mode in the shortest possible time is one of the main concerns in the design 
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process of closed-loop systems (Ogata and Yanjuan, 1970; Dorf, 1995). However, our 

observation – in both the biological system and in our model of it – suggests that this need 

not always be the case. The reduced effectiveness of facilitation with very short time 

constants most likely reflects numerous contributing factors including uncertainty of the 

actual target location at any given instant and periods during which the target is camouflaged 

in the background clutter. Having a sluggish time constant for facilitation allows 

‘persistence’ in enhancement of the estimated vicinity of a temporarily invisible target. But 

as a consequence, the fully facilitated ‘steady state’ response of neurons observed in the 

laboratory after 500 ms of motion against a blank background may be rarely experienced in 

nature when the entire pursuit may be shorter (Olberg et al., 2000). On the other hand, prey 

pursuit is not the only target detection and pursuit task that many insects engage in, e.g. 

dragonflies also pursue fast moving conspecifics for several seconds in highly cluttered 

environments. Targets would be frontally fixated for much of such pursuits, providing ample 

time for STMD neurons to become fully facilitated.  

As mentioned earlier, the actual optimum in this relationship between facilitation kinetics 

and pursuit behaviour likely depends on many factors and should be dynamic, changing 

based on the amount of background clutter and the target velocity. Therefore, it is possible 

that facilitation time course may reflect different ‘modes’ of behaviour adopted by different 

species. Some dragonflies capture small moving prey above water, where low vegetation in 

the ecosystem provides a less cluttered environment (Corbet, 1999). The rapid prey pursuit 

flights analysed by Olberg et al. (2000) were from perching dragonfly species that view prey 

45-90° above the horizon at their perch location, allowing them to use the sky as a clear 

background for detection of small moving prey (Corbet, 1999). However, our physiological 

recordings are taken from a hawking dragonfly (Hemicordulia) which feeds while 

continuously flying and is frequently observed catching prey in complex visual clutter. We 
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predict that the optimum facilitation mechanism might thus differ substantially between 

species that adopt such varied behaviour. It awaits further experiments from other dragonfly 

species to test this hypothesis. 

The other question thus arises as to whether facilitation observed in CSTMD1 neurons 

indeed exploits dynamic kinetics given different environments or target speeds (as our model 

predicts), or whether the insect has simply evolved a static facilitation time constant for its 

natural habitats. Because species like Hemicordulia must deal with a variety of different 

background scenes, an intriguing possibility is that a dynamic facilitatory time constant 

would allow for variation in both the background clutter as well as for the purpose of the 

pursuit (e.g. prey or conspecific). The variation in onset time course observed in individual 

CSTMD1 recordings (Figure 2.1c) may indicate a dynamically adaptable facilitation 

mechanism, possibly modulated by factors such as preceding visual stimuli (clutter) and 

behavioural states (e.g. attention). Further physiological and behavioural experiments will 

be required to address these questions more directly.  

2.5.2 Spatial Mechanisms of Facilitation 

Our implementation of facilitation involved an element with a Gaussian receptive field 

property inspired by recordings of small-field elements of the insect STMD pathway. We 

hypothesized that such elements represent a level at which target location is encoded by this 

pathway, but our simulations were able to explore a range of widths for the ‘receptive field’ 

of these facilitating elements. Impressively, our results reveal an optimum kernel size for 

facilitation close to the size of SF-STMD receptive field (approx. 7°) observed in hoverflies 

(Barnett et al., 2007). The fact that this receptive field size is intermediate between the size 

of the local elements (ESTMDs) that are actually responsible for local target motion 

detection and the larger receptive fields of STMD neurons like CSTMD1, suggests a 

hierarchy in the organisation of STMD neurons. This intermediate scale for SF-STMDs 
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within this hierarchy most likely results from the trade-off between uncertainty in the 

estimation of target location and in the value of long-lasting facilitation in maintaining an 

improved sensitivity for targets in clutter. This would be particularly important when 

features are temporarily obscured by their low contrast against the background or when 

passing behind occluding foreground features. Although a larger facilitation kernel may 

increase the probability of enhancing the appropriate target despite uncertainty in its precise 

location, it also increases the chance of detecting false positives in the background. We have 

not yet tested this hypothesis for occluding features, but our model architecture is ideally 

suited to elaborated simulations of pursuit in more structured three-dimensional scenarios.  

2.5.3 Facilitation or Attention? 

Our data support a possible role for facilitation in selective attention, even though we did 

not implement it as an attention mechanism per se. However, we noted that the addition of 

facilitation leads to both a decrease in the proportion of time during which neither target is 

the winner, and in the frequency of switches between fixating the two alternatives. We also 

see clear examples (Figure 2.7) where the previously fixated target remains the winner 

despite not always being the inherently more salient of the two – a classic hallmark of 

attention (Ipata et al., 2006; Sawaki et al., 2012). In this respect our data mirror the response 

of the dragonfly CSTMD1 neuron, which displays selective attention in response to two 

targets moving simultaneously in its receptive field (Wiederman and O’Carroll, 2013a). In 

CSTMD1, there are also clear instances where the initially fixated target remains the 

‘winner’ even when the alternative would have produced a stronger response had it been 

presented alone (Wiederman and O’Carroll, 2013a). In our model, both the improvement in 

the relative frequency of normal fixation saccades towards the selected target (as opposed to 

switches) and the decrease in the average saccadic turn angle saturate as the facilitation time 
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constants approach the order of 100 to 300 ms. Once again, this is a remarkably close fit to 

the observed time constant in CSTMD1 (Nordström et al., 2011; Dunbier et al., 2012). 

Selective attention in insects and other animals undoubtedly involves additional processes 

to the relatively simple selection mechanism we implemented here. Nevertheless, our results 

support a potentially important role for a ‘bottom-up’ competitive process in attention as an 

emergent property of lower level processing in the STMD pathway. However, given the 

relatively simple winner-takes-all mechanism that we implemented for target selection, we 

cannot reject the possibility that target selection in biological STMDs might not also reflect 

a top-down attention process. Testing such mechanisms in physiological recordings is 

severely restricted in the richness of stimuli that can be presented, because the animal is 

restrained with wax and can only experience stimuli imposed upon it in open-loop. A major 

advantage of our computational model is that it allows us to investigate future questions that 

are difficult or impossible to conceive in physiological recordings. For example, of the effect 

of facilitation on both attentional switches and the physical saccades. Given its ability to 

reproduce so much of the lower-level behaviour of the physiological system, our model thus 

provides a promising platform to further explore the possible ‘higher order’ network 

interactions that may be involved in target selection. As we have demonstrated here, a further 

advantage of our modelling approach is that it also generates hypotheses that require further 

physiological experiments that are feasible in open loop STMD recordings, such as the 

possibility that facilitation time constants may be influenced by the statistics of the 

background clutter against which stimuli are presented.
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Chapter 3. Effect of Facilitation on the Efficiency and 

Efficacy of Target Tracking 
 

In the previous chapter I investigated the role of facilitation and its parameters on closed-

loop target tracking and pursuit. My results in Chapter 2 show that more sluggish facilitation 

kinetics can be beneficial in more cluttered backgrounds. It also enhances the ability to 

‘attend’ to one target in the presence of distracters. However, it is still unclear how this 

facilitation time constant affects the duration of the pursuit. Although there is a large degree 

of overlap between the publication in the current chapter and the former one (Chapter 2), 

here I investigate the effect of facilitation both on efficiency and efficacy of target tracking. 

I propose a new metric to quantify the trade-off between efficiency and efficacy of the model 

which represent both the ability of the model and energy expended by a pursuer in capturing 

a prey successfully. Further details of this metric are provided in Appendix F.
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3.1 Abstract 
 

Biological visual systems provide excellent examples of robust target detection and tracking 

mechanisms capable of performing in a wide range of environments. Consequently, they 

have been sources of inspiration for many artificial vision algorithms. However, testing the 

robustness of target detection and tracking algorithms is a challenging task due to the 

diversity of environments for applications of these algorithms. Correlation between image 

quality metrics and model performance is one way to deal with this problem. Previously we 

developed a target detection model inspired by physiology of insects and implemented it in 

a closed loop target tracking algorithm. In the current paper we vary the kinetics of a 

salience-enhancing element of our algorithm and test its effect on the robustness of our 

model against different natural images to find the relationship between model performance 

and background clutter. 

3.2 Introduction 
 

A challenging problem for autonomous and robotic applications is the development of robust 

artificial vision systems that can detect and pursue moving targets within cluttered natural 

environments. Insects, such as dragonflies, have evolved a solution to this problem and are 

capable of tracking small prey or conspecifics in cluttered, natural environments. 

Dragonflies, despite their low spatial acuity (~1°) and tiny brain, have a high successful 

capture rate (97%) (Olberg et al., 2000). Dragonflies are thus an ideal animal model to draw 

inspiration for target-tracking algorithms, and have motivated extensive investigation into 

the neuronal system that underlies pursuit behaviour. 

‘Small target motion detector’ (STMD) neurons in the dragonfly's lobula are size selective, 

velocity tuned and contrast sensitive (O'Carroll, 1993). They respond robustly to small 

targets moving against cluttered backgrounds (Nordström et al., 2006; Nordström and 
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O’Carroll, 2009). We developed a target detection computational model 

(MATLAB/Simulink), inspired directly from electrophysiological recordings from STMD 

neurons (Wiederman et al., 2008; Wiederman et al., 2010, Wiederman and O’Carroll, 2011). 

This ‘elementary small target motion detector’ (ESTMD) model effectively provides a 

highly nonlinear matched spatiotemporal filter for the detection of small moving targets in 

natural scenery. This model simulates the properties of STMD neurons. Unlike most 

engineering algorithms, the ESTMD model does not rely on relative motion between target 

and background for target discrimination (Wiederman et al., 2008). We recently developed 

a discrete-time implementation of this model and implemented it in a closed-loop control 

algorithm to simulate the pursuit of small targets within a virtual-reality arena (Halupka et 

al., 2011).  

Recent studies on dragonflies reveal that one type of STMD neuron, CSTMD1, exhibits a 

facilitatory mechanism in tracking targets. Electrophysiological recordings show that the 

spiking activity of CSTMD1 builds over time in response to targets traversing in long, 

continuous trajectories (Nordström et al., 2011). Responses to stimuli moving in interrupted 

paths show that they reset to a naive state when there are breaks (~7°) in the trajectory path 

(Dunbier et al., 2012). This facilitatory mechanism can enhance the response to weak stimuli 

and direct attention to the estimated reappearance location of the object. This increases the 

robustness of pursuit even if the target is temporarily occluded. 

We recently showed that inclusion of a simple form of slow facilitation in a dark-target 

selective ESTMD model, based on known physiological properties of STMDs, enhances 

detection and pursuit of dark contrasting targets (Halupka et al., 2013; Wiederman and 

O’Carroll, 2013). However, the robustness of a target-tracking algorithm requires extensive 

examination under different scenarios. One way to avoid this problem is to correlate the 

image features with the model performance and simplify the prediction of model behaviour.  
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Here we test the efficiency and efficacy of our bio-inspired model when pursuing targets of 

varying contrast against different natural images and measure the relationship between 

robustness and clutter of the background images. 

 

Figure 3.1. a) Overview of the closed-loop block diagram of the computational model for simulation and the 

output of each stage. We varied the facilitation low-pass filter time constant (τf) to find its effect on model 

performance. b) Plan view of a model of random target trajectory. c) Background Images: from top to bottom 

shows the rendered images A, B, C, and D respectively. 

3.3 Methods  

Figure 3.1 shows an overview of the computational model implemented in 

MATLAB/Simulink, which simulates the pursuit of small targets moving against cluttered 

backgrounds. 
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3.3.1 Virtual World Arena 

We used Simulink 3D animation toolbox (Mathworks Inc.) to build a Virtual Reality (VR) 

arena as the front-end for our bio-inspired target detection and pursuit control algorithm. The 

pursuer chased the target within a cylindrical arena (of radius 6 m) rendered with natural 

images (see Brinkworth and O'Carroll (2008) for details of image acquisition). We tested 

the model with targets moving in randomized 3-dimensional paths with biologically 

plausible constraints on saccadic turn angle (Schilstra and van Hateren, 1999). If prey 

approached to within 50 cm of the cylinder wall, we initiated a random turn away from the 

VR boundary (Figure 3.1b).  

Four target intensities from black to white were examined against each image to vary target 

contrast in different simulations. We simulated pursuits against four different panoramic 

natural scenes (Images A, B, C, D in Figure 3.1c). Although all of these images had 1/f 

power spectra, a statistical property of natural images (Field, 1987), they varied in the 

amount of background ‘clutter’ in the scene (Figure 3.1c).  The values of target intensities 

along with mean intensity of each background are listed in Table 3.1.  

We tested five different target-pursuer velocity ratios (|Vt|/|Vp|, where the subscripts t and p 

represent the target and pursuer respectively) ranging from 0.5 to 2 with the ‘pursuer’ 

moving at a constant velocity of 8 ms-1. The start location of the 40 mm sized ‘target’ was 

at least 4 m away from the pursuer which yields an initiated target angular size of less than 

0.6°. Pursuit simulations were repeated 50 times. Video was sampled from a 40°x98° sized 

viewport to represent the visual field of the pursuer and thus served as inputs to the detection, 

facilitation and pursuit algorithm. 
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Table 3.1. Target intensities used for simulations against different backgrounds and the mean intensity of 

each background. 

Background Target Intensities  

(green channel, 8-bit) 

Mean of Background   

(green channel, 8-bit) 

Int 1 Int 2 Int 3 Int 4 

Image A 0 25 204 255 92 

Image B 51 77 230 255 130 

Image C 0 51 204 255 110 

Image D 0 25 204 230 98 

 

3.3.2 Insect_Inspired Target Discrimination Model 

To emulate green sensitivity of the insect eye (Srinivasan and Guy, 1990) and optical blur 

of the insect compound eye (Stavenga, 2003), this model selects only the green channel of 

the RGB input image and applies a Gaussian blur (full-width at half maximum of 1.4°). The 

blurred image is sampled at 1° separation, which represents the resolution of the fly eye 

(Straw et al., 2006). The output of this stage (Figure 3.1a), is considered as the ‘model input’ 

to the target detection algorithm in further analyses. 

The next stages of the insect visual pathway are the photoreceptors and then Large 

Monopolar Cells (LMCs). It is known that the photoreceptor responses are temporally 

limited (Laughlin and Weckström, 1993) and LMCs remove redundant information by 

acting as spatiotemporal contrast detectors (bandpass filters) (Coombe et al., 1989). In the 

ESTMD algorithm, the temporal properties of photoreceptor and LMC are modelled with a 

discrete version (Halupka et al., 2011) of a log-normal function (James, 1990) which 

provides a good match to the temporal impulse response. Then spatial high-pass filtering 

representing centre-surround antagonism is applied on the output image. 
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The output of early visual processing (Figure 3.1) is half-wave rectified to imitate the 

independent ON and OFF channels in insect vision (Wiederman et al., 2008). Each 

independent channel is processed via a fast adaptive mechanism. The fast adaptive 

mechanism is modelled by using a fast low-pass filter (τ=3 ms) when the input signal 

increases, and a slow low-pass filter (τ=70 ms) when it decreases. This adaptation process 

serves to inhibit repeating bursty inputs, such as noise. Both of the ON and OFF channels 

then undergo further strong centre-surround antagonism, selectively tuning the model to 

targets with small angular extent (orthogonal to the direction of travel). Sensitivity to both 

dark and light targets is provided by delaying and multiplying each contrast channel (ON or 

OFF) with a delayed version of the opposite polarity (delayed using a low-pass filter, τ=25 

ms). This also conveys selectivity for objects that are small in the dimension matching the 

direction of travel, since a small feature will usually be characterized by an initial rise (or 

fall) in brightness at each point that it passes across, followed a corresponding fall (or rise) 

after a short delay. The output image undergoes non-linear saturation using a hyperbolic 

tangent function. This serves to ensure all signals lie between 0 and 1. Then the maximum 

is determined as the target. 

3.3.3 Target Tracking Algorithm 

The pursuit strategy implemented was ‘saccadic tracking’ as observed in male houseflies 

(Wehrhahn et al., 1982; Land and Collett, 1974). Saccadic turn angles are calculated in order 

to keep the target in the central axis of the pursuer’s gaze. Re-centring towards the target 

was initiated when the winning feature in ESTMD output moved 5°. This strategy promotes 

target ‘pop-out’ by permitting the spatiotemporal filters to ‘fade away’ (high-pass) the more 

distant background. A pursuit was considered successful only if the pursuer was within 1.2 

m proximity of the target (the initial distance was at least 4 m) in less than 2 s and the target 
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was the winner in the output for more than 50% of the last 6 ms of the tracking, thus 

excluding detections from fortuitous saccades. 

3.3.4 Reichardt Correlator 

A Reichardt correlator is a biologically inspired model for ‘elementary motion detectors’ 

(EMDs) which produces a directionally selective response to motion (Hassenstein and 

Reichardt, 1956). The output of an EMD uses two spatially separated contrast signals and 

correlates them after a delay (via a low-pass filter). Here, we cascaded ESTMD with an 

EMD to maintain the core STMD properties but with direction-selective outputs 

(Wiederman and O’Carroll, 2013). 

3.3.5 Facilitation Mechanism 

We previously implemented a facilitation mechanism inspired by physiological experiments 

(Halupka et al., 2013). This mechanism enhanced a region near to the current location of 

maximum model output. The region was calculated for a single state (position) with a spatial 

offset predicting the next location of the target. Nonetheless, in the current version, the 

output of the EMD is thresholded and used to estimate a target velocity range. The output of 

ESTMD-EMD cascade is then used to estimate the next location of the target, building a 

weighted ‘map’ dependent on the location of the winning feature but offset in the direction 

of target movement. We multiplied the ESTMD output with a low-pass filtered version of 

this ‘facilitation map’ to model responses observed in the dragonfly neuron, CSTMD1 

(Nordström et al., 2011; Dunbier et al., 2012). The role of the low-pass filter time constant 

here is to control the kinetics with which the facilitation matrix enhances the area around the 

winning feature. We varied this low-pass filter time constant in the range from 40 to 2000 

ms (nine different values) to examine its effect on the model efficiency and efficacy. 
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3.3.6 Evaluation 

3.3.6.1 Clutter Measure 

To measure background clutter, we used the metric developed by Silk (1995). This method 

measures image clutter by convolving the image with an average kernel, which was chosen 

to be the same approximate size as the target (Ralph et al., 2006). The clutter value is 

calculated by the following formula: 

𝐶𝑀 = 1
𝑁⁄  (∑ ∑ (𝑏𝑖,𝑗 − 𝐵̅𝑖,𝑗)

2

𝑗𝑖
)

1
2⁄

 

 

(3.1) 

 

where b is the value of the i,j pixel, 𝐵̅ is the mean of the box centered at pixel i,j and N is the 

number of boxes convolved over the whole image. 

3.3.6.2 Target Discriminability Measure 

To determine the discriminability of the target at the output stage, we defined the following 

metric: 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚 =
𝑀 − 𝑁

𝑀
𝑒(𝐼𝑡−𝐼𝑚𝑎𝑥−𝜎𝐼𝑏

)
 

 

(3.2) 

where M is the total number of background pixels, N represents the number of background 

pixels with equal or higher values than the target, It is the target intensity, Imax is the 

maximum intensity of the background pixels, and 𝜎𝐼𝑏 is the deviation of background pixels 

with higher value than the target value, given by: 

𝜎𝐼𝑏 = √∑ 𝑛𝑖(𝐼𝑡 − 𝐼𝑖)2

𝐼𝑚𝑎𝑥

𝐼𝑖=𝐼𝑡

 

 

(3.3) 
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where ni is the number of pixels with the intensity of Ii. Based on this metric, the maximum 

possible discriminability is e, and whenever the target is the winner at the output, the 

discriminability value is greater than 1. 

3.4 Results 
 

We ran 40,000 simulations with and without facilitation against four different natural images 

to determine whether the inclusion of facilitation enhances robustness and efficiency of the 

model. For this purpose, we varied model parameters, such as: facilitation low-pass filter 

time constant (nine values), target velocity (five values), and target intensity (four values) in 

these simulations. 

3.4.1 Effect of Facilitation Time Constant on Efficiency and Efficacy of 

the Model 

We tested the effect of varying the facilitation time constant on model efficiency (pursuit 

duration) and efficacy (pursuit success) for each of the background images. These metrics 

represent both the ability of the model and energy expended by a pursuer in capturing a prey 

successfully. The distributions of capture times of the target moving at a velocity of 6 ms-1 

for four facilitation time constants are illustrated in Figure 3.2. This figure shows that the 

distribution of capture time has distinct behaviour in response to variation of time constant 

in different backgrounds. For instance, in the heavily cluttered Image A longer time 

constants (667 ms and 1538 ms) lead to increased frequency of faster pursuit success. In 

Image B this happens with shorter time constants.   
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Figure 3.2. Distribution of capture time for simulations with target-pursuer velocity ratio (|Vt|/|Vp|) of 3/4. 

 

A metric to represent pursuit success (combining both efficiency and efficacy) at different 

time constants, was calculated as the first moment of area around the axis perpendicular to 

x=2 and y=0 (which we refer to this axis as z') in Figure 3.2. For this purpose, the x-axis is 

normalized by the maximum simulation time (2 s) and the y-axis is divided by the total 

number of simulations for each time constant (200 simulations), giving a performance metric 

of 

 𝐼𝑧′ = ∑(√(
2 − 𝑥

2
)
2

+ (
𝑦

200
)
2

∆𝐴) 

 

(3.4) 

where Iz’ is the first moment of area around z', and ΔA represents the area of each small 

element under the curve.   
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Figure 3.3. Calculated first moment of area of the capture time distribution around z' with respect to time 

constant and target-pursuer velocity ratio (|Vt|/|Vp|). The column on the right side of each plot shows the result 

of simulations without facilitation. Images A to D are shown in Figure 3.1c. 

Figure 3.3 shows the values of Iz’ (pursuit efficiency and efficacy) at varying target-to-

pursuer velocity ratios and facilitation low-pass filter time constant for all four images. The 

column in the right-hand side of each plot shows the results of simulations without 

facilitation. 

 Results reveal that model performance varied across different background images. As 

expected, success rate decreases dramatically as target velocity exceeds that of the pursuer. 

However, in all cases the addition of facilitation increases the performance of the model. 

Interestingly, each background image has a different optimum for the facilitation time 

constant. We hypothesized that this was due to a relationship between the facilitation time 

constant (τf in Figure 3.1) and the amount of background clutter in an image.  
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3.4.2 Optimum facilitation time constant across clutter 

We used the results of 7,200 simulations with target-pursuer velocity ratio (|Vt|/|Vp|) of 3/4 

to examine whether the optimum facilitation time constant is related to the degree of 

background clutter. We used the following formula to define robustness of the model 

facilitation for each particular mean background clutter and time constant value: 

           𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
∑  𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝐾

𝑘=1

∑ 𝑀𝑎𝑥 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐷𝑖𝑠𝑐𝑟𝑖𝑚
𝐽
𝑗=1

 ×100            
(3.5) 

where J represents the total number of simulations of each dataset, K is the number of 

successful simulations of each data set, 𝐷𝑖𝑠𝑐𝑟𝑖𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑘 is the average discriminability during the 

pursuit calculated by (Eq. 3.2). 

Figure 3.4 presents the calculated robustness of the pursuit at varying facilitation time 

constants and background clutter values. This figure clearly shows that the optimum 

facilitation time constant shifts towards longer time constants as clutter of the background 

increases. This trend makes intuitive sense since in more cluttered backgrounds the target is 

camouflaged more often. Consequently, a longer time constant enables the facilitation 

mechanism to enhance the area of target disappearance for a longer time, permitting the 

discrimination of the target again when it reappears - a simple form of predictive salience 

enhancement. The results show that although the robustness of the model decreases as the 

background clutter increases, the addition of facilitation can effectively increase the 

robustness of the model across different background images. 
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Figure 3.4. Robustness versus facilitation time constant and average clutter of the pursuit. The column on the 

right hand side of the plot shows the results of simulations without facilitation. 

3.5 Discussion 

The insect inspired ESTMD model provides a highly nonlinear spatiotemporal ‘target 

matched’ filtering which can detect small moving objects robustly, even against natural 

cluttered backgrounds. The model is improved with the addition of a recently described 

physiological phenomenon of facilitation - in effect, a bio-inspired estimation technique. 

Here, we tested the robustness of the model with respect to variation of background clutter. 

Our results show that in more cluttered backgrounds the success of detection and pursuit of 

targets decreases, due to difficulty of pursuit. Nevertheless, by altering the facilitation time 

constant the model performs reliably in highly cluttered environments. Although we have 

modelled a simple facilitation mechanism, we have showed that it can effectively improve 

both efficacy and efficiency of the target pursuit against cluttered, complex backgrounds.
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Chapter 4. Performance of an Insect-Inspired Target 

Tracker in Natural Conditions 
 

In previous chapters I examined the performance of the insect-inspired target tracking model 

in closed-loop natural simulations. Our rationale behind the efficiency of the insect-inspired 

algorithms is the insect’s miniature brain which evolved over millions of years to consume 

tiny amounts of power compared with even the most efficient digital processors. Despite this 

apparent efficiency however, there are very few studies that directly compare insect-inspired 

systems with engineering algorithms. Just because a brain is small, it is not necessarily 

simple – neuronal networks often implement complex and highly non-linear processing. The 

question remains whether insect-inspired algorithms are really useful alternatives for 

computer vision and robotic applications? In this chapter I address this question. I directly 

compare the insect-inspired tracker with state-of-the-art engineering solutions to test their 

computational efficiency and efficacy. The preliminary results of this work were published 

in: 

“Bagheri Z. M., Wiederman S. D., Cazzolato B. S., Grainger S., & O'Carroll D. C. (2015). 

Robustness and Real-Time Performance of an Insect Inspired Target Tracking Algorithm 

Under Natural Conditions. In IEEE Symposium Series on Computational Intelligence, 97-

102.” 

 

which is presented in Appendix C. The supplementary material for the current chapter is 

provided in Appendix D and the STNS dataset is presented in Appendix G.
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4.1 Abstract 

Robust and efficient target-tracking algorithms embedded on moving platforms, are a 

requirement for many computer vision and robotic applications. However, deployment of a 

real-time system is challenging, even with the computational power of modern hardware. As 

inspiration, we look to biological solutions - lightweight and low-powered flying insects. 

For example, dragonflies pursue prey and mates within cluttered, natural environments, 

deftly selecting their target amidst swarms. In our laboratory, we study the physiology and 

morphology of dragonfly ‘small target motion detector’ neurons likely to underlie this 

pursuit behaviour. Here we describe our insect-inspired tracking (IIT) model derived from 

these data and compare its efficacy and efficiency with state-of-the-art engineering models. 

For model inputs, we use both publicly available video sequences, as well as our own task-

specific dataset (small targets embedded within natural scenes). In the context of the tracking 

problem, we describe differences in object statistics within the video sequences. For the 

general dataset, our model often locks on to small components of larger objects, tracking 

these moving features. When input imagery includes small moving targets, for which our 

highly nonlinear filtering is matched, the robustness outperforms state-of-the-art trackers. In 

all scenarios, our insect-inspired tracker runs at least twice the speed of the comparison 

algorithms.  

Index Terms—Visual target tracking, bio-inspired vision, real-time.  
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4.2 Introduction 
 

Real-time target tracking is an important component of computer vision and robotic 

applications, employed in the fields of surveillance, human-computer interaction, intelligent 

transportation systems and human assistance mobile robots. However, this task is 

complicated by the diverse requirements that must be addressed in one computationally 

effective algorithm. Targets must be tracked with overall illumination changes, background 

clutter, rapid changes in target appearance, partial or full occlusion, non-smooth target 

trajectory and ego-motion. 

Every tracker requires a description of the target, based on features such as gradient (Bay et 

al., 2006; Felzenszwalb et al., 2008; Gall and Lempitsky, 2013), colour (Abdel-Hakim and 

Farag, 2006; Burghouts and Geusebroek, 2009), texture (Ojala et al., 2002; Chen et al., 

2010), spatiotemporal pattern (Scovanner et al., 2007; Zhao and Pietikainen, 2007), or a 

combination of these. However, irrespective of the descriptor quality, adaptive mechanisms 

must be employed to account for variation of the target’s appearance throughout the pursuit. 

These adaptive, online algorithms can be formulated in two different categories; generative 

and discriminative.  

Generative algorithms search for a target location which best matches the appearance model 

(Black and Jepson, 1998; Comaniciu et al., 2003; Ross et al., 2008; Porikli et al., 2006). One 

limitation is that they require numerous samples over successive frames.  With only a few 

samples at the outset, most generative trackers assume target appearance does not change 

significantly during the training period. Discriminative trackers use both target and 

background information to build a binary classifier (Kalal et al., 2012; Babenko et al., 2011; 

Hare et al., 2011; Zhang et al., 2012). The classifier searches a local region constrained by 

target motion to determine a decision boundary for separating target from background. 
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Whilst discriminative methods tend to be noise sensitive, generative methods can fail within 

cluttered backgrounds (Yang et al., 2011). 

Despite the high efficiency of online trackers, each update during run-time can introduce 

error in the target model. This cumulative error usually arises from uncertainty in object 

location or target occlusion, with drift resulting in tracking failure. State-of-the-art trackers 

use techniques such as robust loss functions (Leistner et al., 2009; Masnadi-Shirazi et al., 

2010), semi-supervised learning (Chapelle et al., 2006; Zhu and Goldberg, 2009; Grabner et 

al., 2008; Saffari et al., 2010), multiple-instance learning (Babenko et al., 2011; Zeisl et al., 

2010), and co-training (Blum and Mitchell., 1998; Javed et al., 2005; Levin et al., 2003; 

Kalal et al., 2012) to improve labelled samples and reduce drift during run-time.  

Following object representation, object tracking involves a search process for inferring target 

trajectory from uncertain and ambiguous observations of states such as, position, velocity, 

scale, and orientation. The Kalman filter (Bar-Shalon and Fortmann, 1988) and its variations 

such as the Extended Kalman filter (EKF) (Bar-Shalon and Fortmann, 1988) and the 

Unscented Kalman filter (UKF) (Li et al., 2004) are extensively used in target tracking to 

find the optimal solution for target states. These methods model observation uncertainties 

by Gaussian processes which may not always be appropriate. For example, measurement 

distributions for target tracking within cluttered environments may not be unimodal 

Gaussian. Particle or Sequential Monte Carlo filters (Kitagawa, 1987) have been proposed 

to address this problem, by maintaining a probability distribution over the state of the object 

being tracked with a set of weighted samples. With a sufficient number of particle samples, 

these filters account for nonlinear target motion and non-Gaussian noise. However, as 

particle number increases exponentially with the number of states, computational load is a 

concern. 
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Considering the complexity of the target detection and tracking task, it is intriguing to 

observe the accuracy, efficiency and adaptability of biological visual systems. Robust target 

tracking behaviour is seen in seemingly simple animals, such as insects, with brain sizes 

measured in millimetres. The dragonfly selects and chases prey or conspecifics within a 

cluttered surround even in the presence of distracting stimuli (Corbet, 1999; Wiederman and 

O’Carroll, 2013) with a success rate over 97% (Olberg et al., 2000). This task is performed 

despite their limited visual acuity (~0.5°) and relatively small size, light-weight and low-

power neuronal architecture.  

We determined key properties of this system using intracellular, electrophysiological 

techniques to record from ‘small target motion detector’ (STMD) neurons. STMDs are size 

and velocity tuned and are sensitive to target contrast. A subset of STMDs respond even 

without relative motion between the target and a cluttered background (O'Carroll, 1993; 

Nordström et al., 2006; Nordström and O’Carroll, 2009; O'Carroll and Wiederman, 2014, 

O’Carroll et al., 2011; Wiederman and O'Carroll, 2011). Inspired directly by these 

physiological data, we developed an algorithm for local target discrimination based on an 

‘Elementary-STMD’ (ESTMD) operation at each point in the image (Wiederman et al., 

2008). This nonlinear model provides a matched spatiotemporal filter for small moving 

targets embedded within natural scenery (Wiederman et al., 2008). Recently, we elaborated 

this model (Halupka et al., 2013; Bagheri et al., 2014a; Bagheri et al., 2014b; Bagheri et al., 

2015) to include a property observed in CSTMD1 (an identified STMD) termed ‘facilitation’ 

(Nordström et al., 2011; Dunbier et al., 2011; Dunbier et al., 2012), which accounts for the 

slow build-up in neuronal responses to targets that move in long continuous trajectories. We 

implemented this model in a closed-loop target tracking system within a virtual reality (VR) 

environment. We included an active saccadic gaze fixation strategy inspired by observations 

of insect pursuits (Halupka et al., 2011, 2013; Bagheri et al., 2014a, 2014b, 2015). We have 
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shown that facilitation not only substantially improves success for short-duration pursuits, it 

enhances ‘attention’ to one target in the presence of distracters (Bagheri et al., 2015). 

Facilitation may thus contribute to selective attention observed in the CSTMD1 neuron, 

which tracks a single target in the presence of a distracter (Wiederman and O’Carroll, 2013). 

This model shows robust performance with high prey capture success even within complex 

background clutter, low contrast and high relative speed of pursued prey (Bagheri et al., 

2015).  

Having optimized model tuning, in this paper we turn to quantifying the effectiveness and 

efficiency of our insect-inspired approach. Firstly, we compare robustness with other 

trackers, testing them with natural challenges and non-idealities in the input imagery, such 

as local flicker and illumination changes, and non-smooth and non-linear target trajectories.  

Furthermore, the inspect-inspired tracker utilizes a number of highly non-linear processing 

stages. To investigate whether these come at a cost of processing efficiency, we compare 

processing time of our algorithm with other computer vision approaches. We test efficacy 

and efficiency with a widely-used set of videos recorded under natural conditions. We 

directly compare the performance of our model with several state-of-the-art algorithms using 

the same hardware, software environment and video inputs.  

Even though the insect-inspired model is intentionally tuned to small moving objects (on the 

same scale as the resolution of the flying insect compound eye), we find that it often performs 

favourably in these environments. When tracking small moving targets in natural scenes, 

our model exhibits robust performance, outperforming the best of the tracking algorithms. 

In all scenarios, our model operates more efficiently than the other trackers. Given the 

specificity of the task (small target detection), we demonstrate the feasibility of applying this 

bioinspired model to real-time robotic and computer vision applications. Furthermore, these 
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results provide insight into how our model could be applied to more generalised, object-

tracking tasks. 

4.3 Methods 

4.3.1 Computational Model 

Figure 4.1 shows the insect-inspired tracker (IIT) overview, implemented in MATLAB. 

Figure 4.2 shows example output at model stages. The detection and tracking model is 

composed of three subsystems: (1) Early visual processing, (2) Target-matched filtering 

ESTMD (Elementary Small Target Motion Detector) stage and (3) Integration and 

facilitation.  

4.3.1.1 Early visual processing 

The compound eye of flying insects is limited by diffraction at thousands of facet lenses 

(Stavenga, 2003). The resulting optical blur is modelled by a Gaussian function (full-width 

at half maximum of 1.4°) (Stavenga, 2003): 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒(−(𝑥−𝜇)2 (2𝜎2))⁄  , 

 

(4.1) 

where µ and σ are the mean and standard deviation respectively. Noting that the full-width 

at half maximum is desired to be 1.4°, the standard deviation of the Gaussian is therefore: 

𝜎 =
1.4

2√2ln2
 . (4.2) 

We model an inter-receptor angle between ommatidial units of 1° (Straw et al., 2006) and 

green spectral sensitivity by selecting the green channel of the RGB image (Srinivasan and 

Guy, 1990).  
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Figure 4.1. Model overview of the insect-inspired tracker (IIT). The model includes: 1) Early visual processing 

which simulates the spectral sensitivity, optical blur and low resolution sampling of the insect visual system. 

2) Target matched filtering or Elementary Small Target Motion Detector (ESTMD) provides selectivity for 

small moving targets: separation of OFF and ON channels, fast temporal adaptation, strong surround 

antagonism and temporal correlation between opposite contrast polarity channels. 3) The facilitation 

mechanism which is observed in dragonfly CSTMD1 neurons was modelled by building a weighted map 

(FG(r'), supplementary material, Fig. S1) based on the predicted location of the target in the next sampling 

time (r'(t+1)). The predicted target location was calculated by shifting the location of the winning feature (r(t)) 
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with an estimation of the target velocity vector (v(t)) provided by the Hassenstein-Reichardt elementary motion 

detector which was multiplied with sampling time (Ts). The facilitation mechanism multiplies the winning 

output of ESTMDs (maximum) with a delayed (z-1) version of a weighted map based on the current location 

of the winning feature but offset in the direction of the target’s movement. The time constant of the facilitation 

low-pass filter controls the duration of the enhancement around the winning feature. 

 

Figure 4.2. Output of model stages, including optics, large monopolar cells (LMC) and elementary small target 

motion detector (ESTMD). The red rectangle in the input image shows the bounding box of the target. 

The large monopolar cells (LMCs) in the insect lamina remove redundant information by 

using neuronal adaptation (temporal high pass filtering) and centre-surround antagonism 

(spatial high pass filtering). The band-pass temporal properties of early visual processing 

(combining photoreceptors and LMCs) were simulated with a discrete log-normal transfer 

function (Halupka et al., 2011): 

𝐺(𝑧) =
∑ 𝛼𝑖𝑧

(𝑖−1)8
𝑖=1

𝑧8+∑ 𝛽𝑗𝑧
(𝑗−1)8

𝑗=1

 . 

 
(4. 3) 

where G(z) is the transfer function of the temporal filter in the z-domain (sampling time Ts=1 

ms), i, j represent time index, αi and βj are the numerator and denominator coefficients of the 
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filter which are given in Table 4.1. The weak centre-surround antagonism was modelled by 

convolving the image with a kernel which subtracts 10% of the centre pixel from the nearest 

neighbouring pixels: 

𝐻 =

[
 
 
 
−1

9⁄
−1

9⁄
−1

9⁄

−1
9⁄

8
9⁄

−1
9⁄

−1
9⁄

−1
9⁄

−1
9⁄ ]
 
 
 

  . 

 

(4.4) 

Table 4.1. Coefficients of the discrete log-normal function shown in Eq (4.3). 

Numerator Coefficients Denominator Coefficients 

α1 -0.15240 β1 0.06510 

α2 0.17890 β2 -0.54180 

α3 -0.05740 β3 2.14480 

α4 0.04390 β4 -5.30600 

α5 -0.01700 β5 9.00040 

α6 0.00520 β6 -10.71100 

α7 -0.00110 β7 8.68500 

α8 0.0001 β8 -4.33300 
 

 

  

4.3.1.2 Target matched filtering (ESTMD stage) 

Rectifying transient cells (RTCs) of the insect medulla exhibit independent adaptation to 

light increments (ON channel) and decrements (OFF channel) (Osorio, 1991; Jansonius and 

J. van Hateren, 1991). The separation of the ON and OFF channel was modelled by half-

wave rectification (HWR1): 

𝐻𝑊𝑅1 = {
𝑂𝑁 = {

𝑥 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

𝑂𝐹𝐹 = {
−𝑥 𝑖𝑓 𝑥 < 0
0 𝑖𝑓 𝑥 ≥ 0

  . (4.5) 

The independent ON and OFF channels are processed through a fast-adaptive mechanism, 

with the state of adaptation determined by a nonlinear filter which switches its time constant 

dependent on whether the signal is increasing or decreasing (Wiederman et al., 2008; 



4.3. Methods 
 

150 

Halupka et al., 2011) (Figure 4.3). Matched to the observed physiological properties, time 

constants were ‘fast’ (τ=3 ms) when channel input is increasing (depolarising) and ‘slow’ 

(τ=70 ms) when decreasing (hyperpolarising): 

𝐺𝐶(𝐼) = {
𝜏 = 3 𝑖𝑓 𝐼(𝑡) − 𝐼(𝑡 − 1) > 0

𝜏 = 70 𝑖𝑓 𝐼(𝑡) − 𝐼(𝑡 − 1) < 0
 . (4.6) 

where GC is the ‘Gradient Check’ function in Figure 4.3, τ is the time constant of the filter 

(first order), and I is the intensity of the pixel in the half-wave rectified channels (‘u’). 

For each independent ON and OFF channel, this adaptation state subtractively inhibits the 

unaltered ‘pass-through’ signal. Therefore, in the presence of textual fluctuations, a novel 

ON or OFF contrast boundary is required to ‘break-through’ the adapted channel. 

Additionally, strong spatial centre-surround antagonism (CSA) was applied to each 

independent channel. Target size tuning is achieved by varying the gain and spatial extent 

of this centre-surround antagonism (Figure 4.4). A second half-wave rectification was 

applied to the output of the strong centre- surround antagonism to eliminate the negative 

values: 

𝐻𝑊𝑅2 = {
𝑥 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

 . (4.7) 

At each location in space, small, moving targets are characterized by an initial rise (or fall) 

in brightness, and after a short delay are followed by a corresponding fall (or rise). This 

property of small features is matched by multiplying each contrast channel (ON or OFF) 

with a version of the opposite polarity delayed via a discrete first order low-pass filter (τ=25 

ms, Ts=1 ms): 

𝐿𝑃𝐸𝑆𝑇𝑀𝐷 =
𝑧 + 1

51𝑧 − 49
 , (4.8) 

and summing the output (Bagheri et al., 2015). This processing provides sensitivity to both 

contrasting target polarities (dark or light) (Bagheri et al., 2015). 
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Figure 4.3. Fast adaptation algorithm (FA). The half-wave rectified channels ‘u’, is fed into the ‘Gradient 

Check’ block (Eq. 4.6), which determines whether the luminance of each individual pixel is rising or falling, 

and outputs a matrix of appropriate ‘τ’ (time constant) values. Both ‘u’ and ‘τ’ are fed into the FA low-pass 

filter block, which filters each pixel of the image according to the time constant value. The filtered image ‘v’ 

is subtracted from the original image ‘u’. This computation emulates fast temporal adaptation, reducing 

responses to textural variations in the image. 

 

Figure 4.4. The kernels that are used in centre-surround antagonism (CSA) to change model size-tuning. 

4.3.1.3 Integration and facilitation 

A hyperbolic tangent function was used to model the neuron-like soft saturation of ESTMD 

outputs, ensuring a signal range between 0 and 1: 

𝑆(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥  . 

 
(4.9) 

A simple competitive selection mechanism is added to the target detection algorithm by 

choosing the maximum of all ESTMD output values sampling the visual field. The location 

of this maximum in the ESTMD output is considered as the target location. The slow build-

up of facilitation as observed in dragonfly CSTMD1 neurons (Nordström et al., 2011; 

Dunbier et al., 2011; Dunbier et al., 2012) permits the extraction of the target signal from 

noisy (cluttered) environments (Bagheri et al., 2015). Previously, we modelled this 

facilitation mechanism with a Gaussian weighted ‘map’, located relative to the winning 
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feature, shifted to account for the target’s velocity (Bagheri et al., 2015). Here we implement 

facilitation with a retinotopic array of small-field STMDs, each integrating ESTMD output 

(~10°x10° region) with weights defined by a grid of 2D Gaussian kernels (half-width at half 

maximum of 5°) with centres separated by 5° (50% overlap) (Appendix D, Figure D1). To 

mimic the slow build-up of the response of CSTMD1 neurons the ESTMD output was 

multiplied with a low-pass filtered version of this facilitation map (Ts=1 ms). 

𝐿𝑃𝐹𝑎𝑐 = 
𝑧 + 1

(1 +
40
𝑤 ) 𝑧 + (1 −

40
𝑤 )

 , (4.10) 

 

by changing w we varied the time constant of this discrete low-pass filter (facilitation time 

constant), thus controlling the duration of enhancement around the predicted location of the 

winning feature. We previously showed that the optimal facilitation time constant is 

dependent on the amount of background clutter and the target’s velocity (Bagheri et al., 

2015). In physiological recordings, we observe variability in individual response time-

courses (mean ~200 ms), suggesting variability in facilitation time constants and modulatory 

factors that may dynamically change this parameter are currently under investigation. Here, 

we approximated this variability by determining the optimum facilitation time constant for 

each data sequence, testing across the range 40 to 2000 ms (9 values).  

The directional component of the velocity vector was provided using a traditional bio-

inspired direction selective model; the Hassenstein-Reichardt elementary motion detector 

(HR-EMD) (Hassenstein and Reichardt, 1956). The HR-EMD (Figure 4.5a) was applied to 

the ESTMD outputs, correlating two adjacent inputs, one after a delay (via a low-pass filter, 

τ=40 ms, Ts=1 ms): 

𝐿𝑃𝐻𝑅−𝐸𝑀𝐷 = 
𝑧 + 1

9𝑧 − 7
 . (4.11) 
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 This results in a direction-selective output that is tuned to the velocity of small objects 

(Wiederman and O'Carroll, 2013b). The output of HR-EMD will be positive when the target 

moves from S1 to S2 (Fig. 5a), and negative in the reverse direction. The HR-EMD was 

applied in both horizontal and vertical directions to estimate whether the target is moving 

right/up (positive) or left/down (negative). The spatial shift of the facilitation kernel was 

determined by binning the magnitude of the output of the HR-EMD into three equal 

intervals, to estimate whether the speed of the target is slow, medium or fast (Bagheri et al., 

2015). Figure 4.5b shows how this facilitation map builds up throughout tracking. 

 

Figure 4.5. a) The Hassenstein-Reichardt (HR) EMD uses two spatially separated contrast signals (S1, S2) and 

correlates them after a delay (LP, low-pass filter) resulting in a direction selective output (Hassenstein and 

Reichardt, 1956). Subtracting the two mirrored symmetric sub-units yields positive response for the preferred 

motion direction (in this case left to right) and a negative one in the opposite direction (right to left). b) The 

facilitation map builds up slowly in response to targets that move along long, continuous trajectories. 

Therefore, as the tracking progresses, the facilitation map builds in strength around the selected target. 

4.3.2 Input Imagery 

4.3.2.1 High contrast target 

The ESTMD model is size-tuned, due to spatial centre-surround antagonism and temporal 

cross correlation between local ON and OFF pathways. This forms a ‘matched filter’ for 

both the spatial and temporal characteristics of small, moving features. Additionally, the 
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model has inherent velocity tuning as observed in correlation-type motion detection 

mechanisms (i.e. HR-EMD). The position of the peak velocity response is dependent on the 

ON/OFF delay filter time constant as seen in Figure 4.1. We quantified this model tuning by 

presenting high contrast (black on white) targets of varying size and velocity.  

4.3.2.2 Large targets within natural scenes 

The IIT model was designed to detect small moving targets, in the order of a few degrees. 

However, because large objects may be composed of several small parts, we examined what 

the IIT model would do when presented with a range of object sizes. To test such scenarios, 

we used the CVPR2013 Online Object Tracking Benchmark (OOTB) (Wu et al., 2013). This 

is a popular and comprehensive benchmark dataset of 50 sequences, specifically designed 

for evaluating performance. The field of view (FOV) for these sequences was not available, 

therefore our 1° subsampling was implemented assuming capture by a 35 mm (equivalent) 

camera with a normal 50 mm lens (average diagonal FOV~55°). Figure 4.6a shows a 2-D 

histogram of target size and velocity within OOTB. This reveals that only a small proportion 

of targets within the OOTB dataset is within the tuning range of IIT (see Section 4.4.1). 

4.3.2.3 Small targets within natural scenes 

To match our problem definition, i.e. tracking small, moving targets in natural scenes, we 

recorded 25 additional video sequences (STNS Dataset). These sequences included heavy 

background clutter and camera motion. The statistical properties of the targets within these 

video sequences are presented in Figure 4.6b. The range of target size and velocity presented 

in the STNS dataset is one typically required for applications such as airborne surveillance. 

Datasets varied from 71 to 3872 frames, with an average of 760.  These video sequences are 

available online, including the manually generated ground truth for each frame 

(https://figshare.com/articles/STNS_Dataset/4496768). 

https://figshare.com/articles/STNS_Dataset/4496768
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Figure 4.6. 2D histograms of dataset statistics showing the target size and velocity range in the tested datasets. 

The OOTB dataset has a broader range of objects at larger sizes, that move at slower speeds.  Our problem 

definition is the tracking of small, moving targets as created in the STNS dataset (~5°, ~20-70°/s). 

The datasets we used here contained a range (and type) of background motion including 

translation, rotation, and vibration. Although due to the lack of depth perception we could 

not quantify the motion in the direction perpendicular to the image plane, the camera motion 

in the image plane in these sequences ranges from a stationary camera (0 °/s) to an average 

camera velocity of 22±8 °/s. 

4.3.3 Benchmarking Algorithms 

To establish the efficacy and computational efficiency of our insect-inspired tracker (IIT) 

model, we compared its performance with three recent models DSST (Danelljan et al., 

2014), KCF (Henriques et al., 2015), and MUSTer (Hong et al., 2015) as well as six ‘classic’, 
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highly-cited algorithms. We chose MATLAB implementations of these algorithms 

(provided by their authors), to maximise the fairness of comparison. The Matlab code for 

the IIT model is downloadable via https://figshare.com/s/377380f3def1ad7b9d44.  

1- Discriminative Scale Space Tracker (DSST) (Danelljan et al., 2014) proposes a 

separate 1-dimensional correlation filter to estimate the target scale. This model uses 

the original feature space as the object representation.  

2- Kernelised correlation filter (KCF) tracker (Henriques et al., 2015) uses multiple 

channels by summing over the results from all the channels in the Fourier domain. This 

model boosts its performance by using a Gaussian kernel and histogram-of-oriented-

gradients (HOG) features.  

3- MUlti-Store Tracker (MUSTer) (Hong et al., 2015) proposes a cooperative tracking 

framework inspired by a biological memory model called the Atkinson Shiffrin 

Memory Model (ASMM) (Atkinson and Shiffrin, 1968). ASMM is inspired by short-

term and long-term memory in the human brain. Short-term memory which updates 

aggressively and forgets information quickly, stores local and temporal information. 

However, long-term memory which updates conservatively and maintains information 

for a long time, retains general and reliable information. 

4- Compressive Tracking (CT) (Zhang et al., 2012) proposes an appearance model 

based on features extracted in the compressed domain. This tracker uses a sparse 

measurement matrix to extract the features for the appearance model.  

5- Incremental Visual Tracker (IVT) (Ross et al., 2008) proposes an adaptive 

appearance model. This tracker calculates and stores the Eigen images of the latest 

target observation with incremental principal component analysis (IPCA) while slowly 

deletes the old observations.  

6- L1-minimization Tracker (L1T) (Mei et al., 2011) employs sparse representation by 
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L1 to provide an occlusion insensitive method. This tracker uses a particle filter to find 

target windows. Then it defines sparse representation by using the intensity of sample 

windows close to the target location.  

7- Locally Orderless Tracker (LOT) (Oron et al., 2012) divides the initial bounding 

box into super pixels. Each super pixel is represented by its centre of mass and average 

HSV-value. This tracker employs a parameterized Earth Mover Distance (Rubner et 

al., 2000) between the super pixels of the candidate and the target windows to calculate 

the likelihood of each particle sample. 

8- Super Pixel Tracker (SPT) (Wang et al., 2011) clusters super pixels based on their 

histograms to form a discriminative appearance model for distinguishing the object 

from the background.  

9- Tracking, Learning and Detection (TLD) (Kalal et al., 2012) combines a 

discriminative learning method with a detector and a Median-Flow tracker. The 

learning process uses a pair of false positives and false negatives experts to estimate 

the errors of the detector and to avoid these errors in future observations. 

All models were tested in MATLAB on the same PC with a 4-core Intel i7 3770 CPU (3.4 

GHz) and 16 GB RAM. The location of a target bounding box in the initial frame was 

provided for the benchmark algorithms. Likewise, in the first frame, we biased our IIT model 

toward the initial location of the target by allowing the facilitation to build up in the target 

region for 200 ms prior to the start of the experiment. This was implemented by feeding the 

target location in the first frame as the future location of the target (r’(t+1) in Figure 4.1) to 

the facilitation mechanism. 

4.4 Results 

Here, we present our measures of robustness and processing speed for the group of trackers. 

The protocol is to initialize the tracker in the first frame and then track the object of interest 
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until the last. The resultant trajectory is compared to ground truth using metrics as specified 

in each experiment. 

4.4.1 Size and Velocity Tuning 

An important feature of our model is its size and velocity tuning. The addition of facilitation 

increases target discriminability, but also modifies model size and velocity tuning. We 

quantified this tuning (Figure 4.7) to investigate the relationship between model responses 

and target properties within the input imagery. We varied facilitation time constants in 

addition to a non-facilitated model.  

The model displays maximum responses at a target size of ~3-4°, diminishing above 10º. 

The model does not respond to targets slower than 20º/s and the optimum velocity increases 

as target size increases. This is due to the increased spatial separation between leading and 

trailing edges (in the direction of travel), which requires a faster transit speed to match the 

correlation delay between OFF and ON channels (confounding target width and velocity, as 

observed in physiology). This relationship between velocity and size might be beneficial in 

closed-loop pursuit as the insect approaches its target. 

Figure 4.7 shows facilitation changes the size and velocity tuning of the model. While the 

non-facilitated model responds to target sizes of up to 14º, facilitation broadens the tuning 

range to 27º at high target velocities (V>200º/s, facilitation time constant τ=40 ms). The 

shorter the facilitation time constant is, the faster facilitation builds up to its maximum 

(Bagheri et al., 2015), therefore, model responses increase as facilitation time constant 

decreases. However, the choice of optimum facilitation time constant is complicated since 

it depends on different factors such as target velocity and background image statistics 

(Bagheri et al., 2015). 
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Figure 4.7. Size and velocity tuning of the model. The average model response was calculated by varying the 

size and velocity of a black target moving against a white background for both facilitated (with different time 

constant) and non-facilitated cases. The maximum response in all cases is for a target of ~3-4° moving at 

velocity of ~ 70-100 (°/s). However, the optimum velocity increases as the target size increases. 

4.4.2 Size Tuning 

Figure 4.8 shows tracking snapshots for each sequence, representative of early, middle and 

late stages of the tracking. In OOBT sequences, our IIT model selects sub-features of the 

large object within its tuning size, and retains that selection throughout the tracking. For 

example, in the Couple sequence the model locks on to the shoes of the pedestrians, in the 

Mountain Bike sequence it focuses on the bike seat and in the Jogging sequence it follows 

the head of the jogger. However, in the sequences belonging to the STNS dataset (Key, Train, 

Pony2, Owl2), where the target is already within the size tuning, it tracks the object itself.  
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Figure 4.8. Snapshots of IIT tracking results in three different frames representing early, middle and late stages 

for each sequence. The red square marks the location of the winning feature in the output of the IIT model. 

The IIT model was designed to mimic size tuning observed in STMD neurons. However, 

recent physiological experiments have observed additional STMD types with peak responses 

for larger objects at ~10° (Wiederman et al., 2013). This raises the intriguing possibility of 

parallel pathways encoding different, broadly-tuned size ranges, which might be combined 

later in the visual pathway for a precise estimate of size (Evans et al., In press). This would 

be analogous to a human’s capability to encode millions of colour wavelengths, with only 

three broadly tuned photoreceptor classes. To explore how individual, size-tuned pathways 
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would respond to input imagery, we varied the model’s size tuning by changing the strong 

spatial centre-surround antagonism at the ESTMD stage (Figure 4.4). Kernel S (small) 

provides a stronger surround antagonism compared to Kernel M (medium, the default 

kernel), hence, the model is selective to smaller features. Kernel L (large) tunes the model 

to larger objects. Figure 4.9 shows how the size tuning range of the model changes with 

different kernels and Figure 4.10 provides examples of the sub-features tracked with 

different kernels. For instance, in the Jogging sequence, the model locks on to the head (3.6°) 

with Kernel M. However, the model is able to select other features, such as, a shoe (Kernel 

S, ~1°) and bike rider’s body (Kernel L, ~7°). 

 

Figure 4.9. The size tuning range of the model changes with the choice of kernel for strong spatial centre-

surround antagonism at the ESTMD stage. With Kernel S the model is selective for small targets and Kernel 

L tunes the model to larger objects. Kernel M provides a trade-off between selectivity to large features and 

small features. The average response of the model was measured for a black target moving against white 

background at velocity of 100 °/s with a facilitation time constant of 40 ms. 
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Figure 4.10. Different kernels for centre-surround antagonism change size tuning of the model and 

consequently sub-features of the target that the model selects for tracking. The red square marks the location 

of the winning feature in the output of the IIT model. 

We measured success rate as the frame percentage where the target is correctly identified by 

the tracker. Target size and orientation could be useful information in some applications. 

However, for our purpose, targets are a small square (i.e. equal to its subsampling resolution) 

and we limit our success metric to correctly locating target position in each frame. For the 

IIT algorithm, if the location of the winning feature was within the ground truth box, it was 

considered a successful detection of the target. 

Figure 4.11 shows box-and-whiskers plots summarizing how the size tuning of the model 

influences the success rate. The central mark (white circle) is median success rate, edges are 

the 25th and 75th percentiles, and whiskers are the non-outlier data range.  
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Figure 4.11. Effect of size tuning on model performance. Tuning to larger objects increases the model success 

rate in the OOTB dataset, however, it diminishes model performance in the STNS dataset. This is because the 

OOTB dataset is biased to large objects, whereas the STNS dataset has small moving targets. 

For the OOTB dataset, which has generally larger targets, the success rate of the model 

increases with a kernel selected for larger objects (Kernel L). In contrast, for the STNS 

dataset which uses small targets deliberately designed to match the relative size of typical 

prey pursued by predatory dragonflies, Kernel S leads to a more robust model performance. 

Kernel M provides a trade-off between selectivity to large features and small features. 

Consequently, the success of the IIT model with Kernel M is between those for Kernel S and 

Kernel L.  For the remaining analysis, we use the result of experiments with Kernel M. 

4.4.3 Facilitation Time Constant 

Our previously published work (Bagheri et al., 2015) show that the optimum facilitation time 

constant varies systematically with image statistics and target velocity, suggesting that a 
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dynamic modulation of time constant would improve target detection. However, in the 

current version of the model rather than implementing a dynamic control system for the time 

constant, we simply used several variants. We also tested the model with a global optimum 

facilitation time constant (τf=400 ms). Figure 4.12 shows the difference between median of 

these two implementations is not significant (less than 1.5%). However, using a global 

optimal time constant (IIT) diminishes the 25th and 75th percentile by ~8% compared to the 

implementation with suboptimal time constant for each data sequence (IIT*). In the 

following sections, we used the results of experiments with optimum time constant for each 

data sequence. 

4.4.4 Benchmarking Success Plot 

In computer vision literature, target detection is typically represented with a bounding box, 

with a common measure for success being a 50% overlap between the ground truth box and 

target bounding box (Wu et al., 2013; Smeulders et al., 2014). Here we scored each frame 

as a success if the bounding box centre was within the ground truth box. Although this 

provides a higher success rate than the common success measure, since our model represents 

the target with a small square, we used this metric to provide a fairer comparison between 

our model and the other engineering models. 

Figure 4.12a shows OOTB dataset results which mainly consists of large targets (see 

Methods 4.3.2.2). The median of IIT*, CT, IVT, LOT and SPT are similar though all fall far 

behind the state-of-the-art trackers such as DSST, KCF and MUSTer. This is unsurprising, 

given our model is designed to track small moving targets in natural scenes, whilst the OOBT 

dataset is composed of many larger objects that are, in effect, false positives for our model 

design. Of interest, is that in the OOBT dataset, the IIT model often tracks smaller 

components of a large object. Whether the combination of parallel size-tuned pathways 

could be utilized to track OOBT objects is currently being investigated.   



Chapter 4. Performance of an Insect-Inspired Target Tracker in Natural Conditions 
 

165 

In comparison to the public dataset, our STNS dataset explores another set of challenges in 

target tracking; small moving targets that are frequently camouflaged against the background 

clutter. In this more challenging set of scenarios, the median performance of all trackers 

(Figure 4.12b) are lower than the OOTB dataset. Although the 75th percentile of our model 

is not as high as other trackers, it has the highest median and 25th percentile showing its 

more robust and reliable performance in the most challenging of these scenarios.    

 

Figure 4.12. Box and whiskers plots for successful target tracking of different algorithms for a) OOTB dataset, 

b) our own dataset (STNS dataset). The white circles represent the median success rate, and the box shows the 
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25th and 75th percentile. The IIT and IIT* present the results with a global optimum time constant and optimum 

time constant for each sequence, respectively. The success of IIT model is the result of experiments with Kernel 

M. 

4.4.5 Precision Plot 

The Precision plot is an evaluation method recently adopted to measure the robustness of 

tracking (Wu et al., 2013; Danelljan et al., 2014; Henriques et al., 2015; Homg et al., 2015; 

Babenko et al., 2011). It shows the percentage of the frames where the Euclidean distance 

between the centre of the tracked target and the ground truth is within a given ‘location error’ 

threshold (Figure 4.13). A higher precision at low thresholds means the tracker is more 

accurate. Precision at a 20 pixel threshold is widely used as a performance benchmark in the 

literature (Wu et al., 2015; Henriques et al., 2015; Babenko et al., 2011). 

 

Figure 4.13. Schematic of the mechanism that is used for calculation of precision. The green arrow (d) shows 

the ‘location error’ between the centre of the ground truth and winning feature. The red arrow (D) shows half 

of the diagonal of the ground truth rectangle which is used for normalization. Therefore, the normalized 

location error is equal to d/D.  

Figure 4.14a shows the precision plot for all trackers both for OOTB and STNS datasets. In 

the OOTB dataset our IIT model has a low precision until the threshold of 11 pixels. 

Nonetheless, its precision catches up to SPT, CT, L1T and IVT, LOT and TLD around the 

threshold of 16 pixels. However, its precision never nears DSST, KCF or MUSTer. In 

contrast, in the experiments with the STNS dataset, the precision of our model exceeds the 
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precision of all trackers at a threshold of 30 pixels. 

The poor precision of our model below the threshold of 16 pixels with the OOTB dataset is 

due to two factors. Firstly, large objects are composed of small contrasting parts, allowing 

our model to lock on to these sub-features of the larger object. The result is robust target 

tracking, but with the location of the tracked feature typically offset from the centre of the 

object. 

The second factor is the subsampling of the input image. In Figure 4.14a the grey rectangular 

area shows the location error thresholds below the average subsampling ratio that is applied 

to the images. This shows our model precision improves as it gets closer to the boundary of 

the grey region. Although subsampling reduces the redundant information in the scene and 

increases the processing speed, it also reduces model spatial resolution – a situation that 

mimics the low spatial acuity of dragonfly compound eyes. However, whether a high spatial 

acuity is necessary or not is generally application dependent. For example, in applications 

such as face tracking and gesture recognition in a crowded scene where the target 

representation is very important, an accurate detection of the target is desirable. Nonetheless, 

in aerial video surveillance where the target motion and ego-motion of the camera are the 

more important components, high spatial acuity is not necessary as long as the tracker detects 

the correct location of the target. 

Although the precision at a 20 pixel threshold has been used for benchmarking in the 

literature, this somewhat arbitrary benchmark threshold does not tell the whole story. A 20 

pixel offset is a relatively large error for tracking a small object (e.g. on the scale of pixels 

themselves), yet may not be at all significant for identifying a large object. Therefore, to 

account for the huge range of target sizes in these image sequences we also normalized the 

location error of the target in each frame by half of the diagonal of the ground truth rectangle 

within that frame (Figure 4.13). Figure 4.14b shows the results of this normalization. Similar 
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to the precision plot in the OOTB dataset our model provides an average level of precision 

compared to other algorithms. However, in the STNS dataset, over the entire upper 1/2 of 

this normalized error threshold (NT) our model is substantially more precise, revealing the 

successful identification of the correct small target location. 

 

Figure 4.14. a) Precision plot for both OOTB and STNS datasets. The grey area shows the location error 

thresholds below the average subsampling ratio that is applied to the images in the IIT model. b) The precision 

of the trackers is normalized by half of the diagonal of the ground truth rectangle. 

4.4.6 Overall Performance 

Table 4.2 provides a descriptive summary of algorithm performance with the OOTB and 

STNS datasets. The average success represents the performance across all videos in each 
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dataset (nOOTB=50, nIIT=25). In addition to the average success rate of the sequences, we also 

calculated the weighted success which shows the percentage of the successful frames out of 

all the tested frames in each dataset (FOOTB=29518, F STNS=27514). This normalization 

accounted for the difficulty of ‘long term’ tracking, where it is easier for the trackers to lock 

on to the target in a short sequence than a long one.  

Since our STNS dataset mainly includes small moving targets within heavily cluttered 

environments, the target is frequently well camouflaged against the background clutter.  

Therefore, it is more difficult for trackers to lock on to the target. This might explain why 

the weighted success of all the engineering algorithms for the STNS dataset are lower than 

their average success (Table 4.2). However, in both datasets, the weighted success of our 

model is higher than its average success. Our facilitation mechanism (based on the recently 

observed facilitatory behaviour of target-detecting neurons (Nordström et al., 2011; Dunbier 

et al., 2011; Dunbier et al., 2012)) builds up slowly in response to targets that move in long 

continuous trajectories, and thus improves target detection as tracking progresses (Bagheri 

et al., 2015). 

Table 4.2. Summary of experimental results on both OOTB dataset and STNS dataset. 

 Performance 

Measure 

Algorithm 

IIT DSST KCF MUSTer CT IVT L1T LOT SPT TLD 

O
O

T
B

 D
a

ta
se

t 

Average  

Success (%) 

52.0 78.3 78.0 89.4 51.0 52.9 45.1 57.1 44.6 55.0 

Weighted  

Success (%) 

60.0 85.0 87.5 94.3 62.8 60.6 51.5 69.3 47.8 70.0 

Precision (20 

px) 

0.56 0.81 0.83 0.92 0.42 0.56 0.44 0.61 0.34 0.62 

Normalized 

Precision 

(NT=1) 

0.78 0.94 0.94 0.99 0.78 0.70 0.74 0.80 0.73 0.80 

S
T

N
S

 D
a

ta
se

t 

Average  

Success (%) 

47.6 41.5 33.2 36.4 37.3 42.7 15.0 40.5 41.9 35.0 

Weighted  

Success (%) 

52.1 34.5 29.9 36.8 32.7 35.8 14.2 40.0 35.9 32.2 

Precision (20 

px) 

0.41 0.44 0.27 0.32 0.29 0.25 0.12 0.37 0.32 0.29 

Normalized 

Precision 

(NT=1) 

0.57 0.51 0.35 0.44 0.37 0.34 0.22 0.44 0.39 0.41 
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Overall, in the experiments with the OOTB dataset, while it does well, the performance of 

our IIT model does not exceed those of classical trackers such as CT, IVT, L1T, LOT, SPT 

and TLD. However, in the STNS dataset, our model outperforms all other trackers in terms 

of average success, weighted success, and normalized precision.  

4.4.7 Processing Speed 

In addition to tracking performance, processing efficiency is a critical concern in target 

tracking applications. Indeed, many trackers are considered impractical in real-time 

scenarios due to the long processing duration required using typical hardware (Yang et al., 

2011; Zhang et al., 2012; Yilmaz et al., 2006). Figure 4.15 shows the calculated processing 

speed for all algorithms using the author-provided MATLAB code. The processing speed is 

consistent with values reported in the original papers of these algorithms. The most 

computationally expensive process that applies to images in the IIT model is the Gaussian 

optical blur in the early visual processing stage. However, previous studies have shown that 

a Gaussian blur can directly be obtained via optics (Brückner et al., 2006; Colonnier et al., 

2015). Likewise, our software implementation of the optical blur built in to biological eyes 

could be readily implemented by using de-focusing optics in robotic applications.   

Therefore, we tested the processing speed of our IIT algorithm both with and without optical 

blur. Even with the processing time required for optical blur the speed of the IIT has the 

second best median among all trackers. However, when we eliminate the processing time 

for optical blur, the IIT model exceeds all other trackers, with an average performance 

approximately 2 times faster than the fastest engineering algorithm (KCF) (note the 

logarithmic scale in Figure 4.15). 
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Figure 4.15. Processing speed of trackers. IIT1 and IIT2 represent the model with and without optical blur 

processing time, respectively. 

4.4.8 Complexity of Algorithms 

Although we presented the processing speed of algorithms for the tested sequences, the size 

of the input image can affect the processing speed of the models. Therefore, to identify how 

the processing time of these algorithms changes as the problem size increases, we 

determined the Big O notation (Bach and Shallit, 1996) for our IIT model as well as some 

of the fastest processing engineering models. The Big O notation characterizes functions 

according to their growth rates. For the IIT model there are two factors that can change the 

processing speed and therefore the complexity of the model. The first one is the size of the 

input image, which mainly affects the processing speed due to the Gaussian optical blur in 

the early visual processing stage. However, as we mentioned in Section 3.7, this optical blur 

can be achieved via hardware rather than software. The other factor is the Field of View 

(FOV) which changes the processing speed after optical blur. Table 3 summarizes the results 

of the complexity analysis. Although the complexity of the IIT model is quadratic in 

response to the changes of input image size, the processing time changes linearly in response 
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to variation of FOV. We should mention that we made no attempt to optimize our MATLAB 

code (e.g. it does not use parallel computation). 

Table 4.3. The computational complexity of algorithms. IIT1 and IIT2 represent the complexity of IIT model 

in terms of change in the size of input image and size of FOV, respectively. 

Algorithm IIT1 IIT2 KCF CT DSST TLD 

Complexity O(n2) O(n) O(n3) O(n) O(n) O(n2) 

 

4.5 Conclusion 

We have demonstrated the robustness and efficiency of a target-tracking algorithm inspired 

directly by insect neurophysiology. As with the dragonfly, our model is particularly suited 

to tracking small moving targets, rather than some of the larger objects within the public 

OOTB dataset. Model performance for this task is improved with different tuning kernel 

weights (Figure 4.4 and Figure 4.11) and in future research we will test the effect of 

integrating parallel, size-tuned sub-systems. This elaboration may improve precision and yet 

still retain the real-time performance inherent in our model approach. Although there is no 

definitive evidence for such parallel processing in insect vision, this processing is well-

supported in human psychophysics experiments (Graham and Nachmias, 1971). How an 

insect integrates the information of these small moving features across the visual field to 

detect larger objects is a question physiologists are currently investigating. Nevertheless, in 

terms of processing speed, our model is one of the best among all the tested trackers, 

mimicking the remarkable efficiency of the insect visual system upon which it is based. As 

such, it may be well suited to applications where efficiency is paramount. 

This is the first time that an insect-inspired target tracking algorithm has been directly tested 

against state-of–the-art engineered systems. One prior study (Shoemaker et al., 2011) 

compared an insect-inspired optic flow processing algorithm with computational optic flow 
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estimates based on Lucas-Kanade equations, both in closed loop simulation. As with our 

own model, their insect inspired system (Shoemaker et al., 2011) was computationally 

highly efficient and with sufficient elaboration was shown to be robust for certain closed-

loop control robotic applications. However, in absolute performance terms, it never 

surpassed the engineered solution. Perhaps the conclusion of our current work is that despite 

the relatively simple feed-forward mechanism we implemented, the performance of our 

system exceeds all other trackers in the scenarios where the target is within its tuning range 

(i.e., when tracking small objects on the scale of the camera resolution). Nonetheless, our 

results show that this performance does not come at the cost of additional processing time 

and the model processes the frames at high speed, especially when the optical blur process 

is obtained via defocusing optics rather than software implementation. 

Our previous modelling efforts suggest that the temporal optima of facilitation mechanism 

varies with respect to the amount of background clutter and target velocity (Bagheri et al., 

2015).  One of the limitations of the current work is that it uses a static facilitation time 

constant. Therefore, we simply used several variants of facilitation time constant to find the 

optimum for each sequence. However, for future robotic applications, an interesting 

extension of the model would be a system which dynamically modulates the facilitation time 

constant during run-time. For instant, a fast processing system such as fuzzy control can be 

exploited to estimate the facilitation time constant using target velocity (as estimated by the 

velocity estimator) and background clutter (e.g. using a simple metric for visual clutter such 

as the one developed by Silk (1995)). Since a fuzzy control system uses a set of logical rules 

to estimate the output, it is well suited for low-cost implementations and would cause very 

little overhead in terms of execution time.
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Here, we tested our algorithm in open-loop, however, animals interact with the target by 

changing eye or body movements, which then modulate the visual inputs underlying the 

detection and selection task (via closed-loop feedback). This active vision system may be a 

key to further exploiting visual information by the simple insect brain for complex tasks 

such as target tracking. Future research will attempt to implement this model along with 

insect active vision gaze-control strategies in a robotic platform to test the performance of 

them together under real-world conditions.
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Chapter 5. An autonomous robot inspired by insect 

neurophysiology pursues moving features in natural 

environments 

 

The ability of animals to deal successfully with complex environments is often the main 

reason to adopt a biologically-inspired approach to engineering problems. This suggests that 

the model designed to emulate biological systems should be tested in natural conditions. In 

the previous chapter I have tested the insect-inspired model in open-loop using videos of 

natural environments. However, since the main purpose of target tracking algorithms is their 

implementation in robotic applications, an open-loop evaluation is not a proper indication of 

model robustness under natural conditions. Closed-loop target tracking is a complicated task 

which requires sensorimotor control and internal models. Moreover, sensory and actuators 

latencies as well as the physical robot dynamics might result in additional effects on the 

stability of the feedback process which can lead to tracking failure. Therefore, in this chapter 

I implement the insect-inspired model on a robotic platform to examine its performance 

under real-world conditions. In addition to its engineering side, this hardware 

implementation allows the exploration of the potential effect of the natural habitat on 

neuronal behaviour.  The supplementary material for this chapter is presented in Appendix 

E.
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5.1 Abstract 

Objective. Many computer vision and robotic applications require the implementation of 

robust and efficient target-tracking algorithms on a moving platform. However, deployment 

of a real-time system is challenging, even with the computational power of modern 

hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or 

conspecifics within cluttered natural environments, illustrating an efficient biological 

solution to the target-tracking problem. Approach. We used our recent recordings from 

‘small target motion detector’ neurons in the dragonfly brain to inspire the development of 

a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow 

build-up of response to targets which move along long, continuous trajectories, as seen in 

our electrophysiological data. To test performance in real-world conditions, we implemented 

this model on a robotic platform that uses active pursuit strategies based on insect behaviour. 

Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range 

of challenging conditions used in our experiments; low contrast targets, heavily cluttered 

environments and the presence of distracters. We show that the facilitation stage boosts 

responses to targets moving along continuous trajectories, improving contrast sensitivity and 

detection of small moving targets against textured backgrounds. Moreover, the temporal 

properties of facilitation play a useful role in handling vibration of the robotic platform. We 

also show that the adoption of feed-forward models which predict the sensory consequences 

of self-movement can significantly improve target detection during saccadic movements. 

Significance. Our results provide insight into the neuronal mechanisms that underlie 

biological target detection and selection (from a moving platform), as well as highlight the 

effectiveness of our bio-inspired algorithm in an artificial visual system.   
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5.2 Introduction 

In recent years, there has been developing interest in the use of mobile robots for applications 

in industry, health and medical services, and entertainment products. Autonomous robots 

gather information about their surrounding environment via sensors (e.g. optical, ultrasonic, 

or thermal sensors), process this information and initiate motor commands to complete 

specific tasks with a self-determined behaviour. Biological systems employ similar sensory-

motor control and autonomy to perform their daily activities. Thus, there is common ground 

in robotics and biology in understanding how such systems function and reverse engineering 

biological systems can provide blueprints for robotics applications. 

Detecting and tracking a moving object against a cluttered background is among the most 

challenging tasks for both natural and artificial vision systems. Recent work has drawn 

inspiration from biological visual systems for the development of robust target tracking 

algorithms.  For example, inspired by bird and fish behaviours, Zheng and Meng (2008) 

developed a population-based search algorithm, called particle swarm optimization (PSO) 

and implemented it in an object tracking algorithm. Zhang et al. (2010) proposed a model of 

target appearance for visual tracking that was inspired by the hierarchical models of object 

recognition in visual cortex (Riesenhuber and Poggio, 1999). Mahadevan and Vasconcelos 

(2013) developed a bio-inspired tracker combining bottom-up centre-surround 

discriminations and a target-tuned top-down saliency detector. Inspired by the fly’s visual 

micro-scanning movements, Colonnier et al. (2015) developed a small-scale artificial 

compound eye, which estimates displacement by measuring angular positions of contrasting 

features. The researchers mounted the eye on a tethered robot and tracked contrasting objects 

(hands) moving over a textured background. More recently, Cai et al. (2016) presented a 

biologically inspired target tracking model which partially mimics ventral stream processing 

in the primate brain.  
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These biologically inspired target tracking studies mainly focus on models of primate vision, 

however, insects provide an ideal group to draw inspiration from within the context of target 

tracking. Many species of flying insects, such as dragonflies, are capable of detecting, 

selecting and chasing tiny prey or conspecifics. This capacity is all the more humbling for 

robotics engineers considering the insects limited visual resolution (~0.5°) and relatively 

small size (brain less than 2 mm wide), light-weight and low-power neuronal architecture 

(Webb et al., 2004). Remarkably, the dragonfly performs this task within a visually cluttered 

surround, in the presence of distracters (Corbet, 1999; Wiederman and O’Carroll, 2013a) 

and with a capture rate greater than 97% (Olberg et al., 2000). Such performance motivates 

the design of an insect-inspired, visual target tracking algorithm for autonomous robot 

control. 

Using intracellular, electrophysiological techniques to record neuronal activity within the 

insect optic lobe, our laboratory has identified and characterized a set of neurons we refer to 

as ‘small target motion detectors’ (STMD) that likely mediate target detection and pursuit. 

These neurons are tuned to the size and velocity of targets, are sensitive to their contrast, yet 

can respond robustly to targets even without relative motion between them and a cluttered 

background (O'Carroll, 1993; Nordström et al., 2006; Nordström and O’Carroll, 2009; 

O'Carroll and Wiederman, 2014, O’Carroll et al., 2011; Wiederman and O'Carroll, 2011). 

Inspired directly by these physiological data, we have developed a nonlinear ‘Elementary-

STMD’ (ESTMD) model for local target discrimination (Wiederman et al., 2008) and have 

implemented this model in a closed-loop target tracking system using a virtual reality (VR) 

environment (Halupka et al., 2011; Bagheri et al., 2014a; Bagheri et al., 2014b; Bagheri et 

al., 2015b). We elaborated (Bagheri et al., 2014a; Bagheri et al., 2015a) this closed-loop 

model to account for recent observations of ‘facilitation’ in STMD neurons (Nordström et 

al., 2011; Dunbier et al., 2011; Dunbier et al., 2012). Facilitation involves the spiking 
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response of these neurons building over several hundred milliseconds as targets move along 

continuous trajectories and resets to their naive state when there are large spatial or temporal 

breaks in the trajectory (Dunbier et al., 2011; Dunbier et al., 2012).  

Using closed-loop simulations against cluttered natural scenes, we predicted that the 

optimum temporal properties of facilitation is dependent on the degree of background clutter 

and the purpose of the pursuit (i.e. predation or mating) (Bagheri et al., 2015a). We also 

showed that facilitation not only improves pursuit success, it enhances the ability to ‘attend’ 

to one target in the presence of distracters (Bagheri et al., 2015a). Simulations reveal robust 

performance, achieving high prey capture success rates even within complex backgrounds, 

for low contrast targets, or where the relative speed of pursued prey is high (Bagheri et al., 

2015a). We recently benchmarked our model against several state-of-the-art trackers and 

although less computationally expensive, it matched or outperformed them, particularly 

when tracking small moving targets in natural scenes (Bagheri et al., 2015b; Bagheri et al., 

2017).  

Although our model is robust in simulation, the performance in response to uncertainties 

inherent within real environments (e.g. illumination changes, occlusions, and vibration) are 

as yet unknown. Moreover, robotic systems are limited by the sampling rate of their sensors, 

processing and actuators. It is unclear how our algorithm performs on a hardware platform, 

where inclusion of sensors and physical robot dynamics results in additional latency which 

may affect the stability of the feedback process. 

In addition to engineering applications, bio-inspired robots can provide insight into the 

underlying, biological, sensorimotor system. For example, dragonflies must deal with 

turbulent air and vibration during the flight, whilst focusing on the target (Krapp and 

Wicklein, 2008; Collett, 1980). Furthermore, animals use eye or body movements to 

modulate the visual inputs (via closed-loop feedback) (Land, 2015). An important question 
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is how animal saccadic movement or environmental factors change neural responses 

underlying the detection and selection task. Our ability to investigate these questions in the 

biological system is limited, due to the open-loop nature of experiments (i.e. animal must be 

restrained). However, robots provide a suitable alternative to model such sensorimotor 

mechanisms all whilst embedded within real-world environments. 

Here we present an implementation of our recently developed target-pursuit model on an 

autonomous, robot platform. We test the robot in both controlled conditions using an indoor 

environment projected with natural images, and in unstructured outdoor environments. We 

examine the effect of environmental parameters, facilitation and saccadic movement on 

robot performance. Our results show that even under demanding conditions (e.g. complex 

background clutter, illumination variation, presence of distracters, and vibration) our robotic 

implementation performs robustly with a success rate similar to that observed in simulations. 

Moreover, we identify several key principles for optimal performance of such a system under 

real-world conditions. 

5.3 Methods 

Figure 5.1 shows an overview of the hardware implementation of the insect-inspired tracker 

on a Husky A200 (Clearpath Robotics™) platform using ROS, C++ and OpenCV. A 

Blackfly camera (Point Grey Research Inc.) was mounted on the robot to capture video of 

the natural environment.  Further details of hardware are provided in Section 5.3.3. Camera 

output serves as input to the insect-inspired target tracking model which calculates target 

location. The pursuit algorithm uses target location to calculate a ‘saccadic’ turn (short and 

fast yaw turns to change direction of gaze) angle as seen in insect behaviour (Wehrhahn et 

al., 1982; Land and Collett, 1974; Mischiati et al., 2015). The Matlab code for the insect-



5.3. Methods 
 

192 

inspired target tracking model is downloadable via 

https://figshare.com/s/377380f3def1ad7b9d44 (Bagheri et al., 2017). 

5.3.1  Insect-Inspired Target Tracking Model 

The insect-inspired target tracking model is composed of three subsystems: (1) early visual 

processing (2) target matched filtering (ESTMD) (3) position selection and facilitation 

mechanism. Detailed model equations are presented in the Appendix.  

5.3.1.1 Early visual processing 

The optics of flying insects are limited by diffraction and other forms of optical interference 

within the facet lenses (Stavenga, 2003). This optical blur was modelled with a Gaussian 

low-pass filter (full-width at half maximum of 1.4°), which is similar to the optical sampling 

of typical day-active insects (Stavenga, 2003). The average inter-receptor angle (Δφ) 

between photoreceptors can vary from tens of degrees in Collembola to 0.24° in the acute 

zone of the dragonfly Anax junius (Land, 1997). We sub-sampled the captured image at 1° 

intervals as an approximate match for the resolution of day-active flies (Straw et al., 2006), 

balancing acuity with computational efficiency of the algorithm. The green spectral 

sensitivity of the motion pathway in flying insects was simulated by processing only the 

green channel of the RGB imagery (Srinivasan and Guy, 1990). This pre-processing is 

considered as the ‘model input’ to the target tracking algorithm in further analyses. 
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Figure 5.1. Overview of the hardware implementation of the insect-inspired tracking model. The robotic 

platform is a Clearpath Husky robot. A Point Grey Blackfly camera was mounted on the robot to capture input 

imagery. The camera output is processed by the insect-inspired, target-tracking model which calculates the 

target location. The insect-inspired target tracking model includes 1) Early visual processing which mimics the 

response characteristics of optics, photoreceptors and large monopolar cells (LMC) in flying insects. 2) The 

ESTMD stage which includes rectification, fast adaptation and centre-surround antagonism provides a matched 

spatiotemporal filter tuned for small moving targets. 3) The recently observed ‘facilitation mechanism’ is 



5.3. Methods 
 

194 

modelled by building a weighted map (lowpass filter, time constant=τf) based on the predicted location of the 

target in the next sampling time (r'(t+1)). The predicted target location was calculated by shifting the location 

of the winning feature (r(t)) with an estimation of the target velocity vector (v(t)) provided by the Hassenstein-

Reichardt elementary motion detector which was multiplied with sampling time (Ts). The output of ESTMDs 

is multiplied with a low-pass version of a weighted map. The time constant of the facilitation low-pass filter 

controls the duration of the enhancement around the winning feature. The pursuit algorithm calculates the 

saccadic turn angle based on the detected target location and direction of target motion.  

Simulating biological vision (Srinivasan et al.,1982), redundant information was removed 

with neuronal adaptation (temporal high pass filtering) and centre-surround antagonism 

(spatial high pass filtering). We simulated the temporal properties of photoreceptors and the 

1st-order interneurons, the large monopolar cells (LMCs), with a discrete log-normal 

function (G(z)) (Halupka et al., 2011). The filter properties were matched to the temporal 

impulse response observed in LMC recordings (James, 1990). Centre-surround antagonism 

as observed in physiological recordings was modelled by subtracting 10% of the centre pixel 

from the neighbouring pixels (H) which provides a zero DC spatial component. 

5.3.1.2 Target matched filtering (ESTMD stage) 

Rectifying transient cells (RTCs) within the insect 2nd optic neuropil (medulla) exhibit 

processing properties well suited as additional input processing stages for a small target 

motion detection pathway (Wiederman et al., 2008). RTCs exhibit independent adaptation 

to light increment (ON channel) or decrement (OFF channel) (Osorio, 1991; Jansonius and 

van Hateren, 1991). The separation of the ON and OFF channel was modelled by half-wave 

rectification (HWR1). Each channel was processed through a fast adaptive mechanism, with 

the state of adaptation determined by a nonlinear filter that switches its time constant. Time 

constants were ‘fast’ (τFA=3 ms) when channel input is increasing and ‘slow’ (τFA=70 ms) 

when decreasing. This adaptation causes subtractive inhibition of the unaltered ‘pass-

through’ signal. Additionally, we implemented strong spatial centre-surround antagonism, 
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with each channel surround inhibits its next-nearest neighbours (see Wiederman et al. (2008) 

for details). The temporal adaptation reduces responses to background texture, while strong 

surround antagonism conveys selectivity for local edge features (i.e. features that are small 

in the dimension orthogonal to the direction of travel). A second half-wave rectification 

(HWR2) was applied to the output of the strong centre- surround antagonism to eliminate the 

negative values (a thresholding nonlinearity observed in spiking responses). 

In the direction of travel, small targets are characterized by an initial rise (or fall) in 

brightness, and after a short delay are followed by a corresponding fall (or rise). This 

property of small features was exploited by multiplying each contrast channel (ON or OFF) 

with a delayed version of the opposite channel (delayed using a low-pass filter (LPESTMD), 

τESTMD=25 ms) and then summing the outputs. This also confers sensitivity to targets 

independent of the polarity of their contrast against the background. 

5.3.1.3 Integration and facilitation 

Neuron-like soft saturation of ESTMD outputs was modelled with a hyperbolic tangent 

function (S(x)), ensuring all signals lie between 0 and 1. The target location was calculated 

by implementing a simple competitive selection mechanism which chooses the maximum of 

the output values across the visual field. In the insect target-detecting system, there is a 

retinotopic array of small-field STMDs (SF-STMDs) which we hypothesise integrates local 

outputs of a number of underlying ESTMDs (~10°x10° region) (Barnett et al., 2007, 

O’Carroll, 1993).  

A facilitation mechanism as seen in biological STMDs (Nordström et al., 2011; Dunbier et 

al., 2011; 2012) was implemented by building a weighted ‘map’ dependent on the location 

of the winning feature but shifted by a target velocity vector (an estimation of future target 

location). In the insect system, the visual information could be facilitated by a retinotopic 

array of SF-STMDs with overlapping receptive fields. We modelled the spatial extent of the 
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weighted map by a grid of 2D Gaussian kernels (half-width at half maximum of 5°) with 

centres separated by 5° (FG(r')), providing a near optimum spatial size for the facilitation 

mechanism (Bagheri et al., 2015a). This is equal to 50% overlap between receptive fields of 

SF-STMD neurons. The ESTMD output was multiplied with a low-pass filtered (LPFac) 

version of this facilitation map. The facilitation time constant (τf) controls the duration of the 

enhancement around the location of the winning feature. Four different time constants 

(varied in the range 40 to 2000 ms) spanning the typical facilitation time course (~200 ms) 

observed in dragonfly STMDs (Dunbier et al., 2012) were tested in the experiments. 

 

Figure 5.2. The HR-EMD were used to estimate the velocity of the target. HR-EMD employes two spatially 

separated signals (S1, S2) and correlates them after a delay (via a low-pass filter, τHR-EMD=40 ms) resulting in a 

direction selective output (Hassenstein and Reichardt, 1956). Subtracting the two mirror-symmetric sub-units 

yields positive response for the preferred motion direction (in this case left to right) and a negative one in the 

opposite direction (right to left). 

To provide an estimate for the future location of the target, we used the Hassenstein-

Reichardt elementary motion detector (HR-EMD) (Hassenstein and Reichardt, 1956). The 

HR-EMD uses two spatially separated contrast signals and correlates them after a delay 

(Figure 5.2). In our model, the HR-EMD was applied as a 2nd-order motion detector on the 
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ESTMD (1st order motion detector) outputs (via a low-pass filter, τHR-EMD=40 ms) resulting 

in a direction selective output. Although the HR-EMD confounds spatial attributes of the 

target (e.g. size in the direction of travel) it is also tuned to the velocity of the pre-filtered 

‘small targets’ (Wiederman and O’Carroll, 2013b). The output of HR-EMD is positive when 

the target moves from S1 to S2 (Figure 5.2), and negative in the reverse direction. The HR-

EMD was applied in both horizontal and vertical directions to estimate whether the target is 

moving right/up (positive) or left/down (negative). The spatial component of the target 

velocity vector was determined by binning the magnitude of the output of the HR-EMD into 

three equal intervals, to estimate whether the speed of the target is slow, medium or fast 

(Bagheri et al., 2015), a strategy similar to that observed behaviourally in crabs (Nalbach, 

1989). 

5.3.2 Saccadic Pursuit Algorithm 

Flying insects use various pursuit strategies to control their forward velocity and distance, 

whilst fixating the target in the frontal visual field. For example, a male housefly uses a 0° 

‘tracking’ strategy to chase another fly, resulting in complex looping pursuit paths 

(Wehrhahn et al., 1982; Land and Collett, 1974). An aerial predator, such as a perching 

dragonfly, uses an ‘interception’ strategy that maintains the prey at a fixed relative bearing 

(Mischiati et al., 2015). Inspired by these strategies, we implemented a hybrid pursuit mode 

(Bagheri et al., 2015a), where the robot initiates a frontal fixation saccade whenever the 

winning feature of the ESTMD output moved more than 5° from the centre of the field of 

view. This strategy keeps the target close to the pole of expansion in the flow-field generated 

by the pursuer’s own progressive motion through the world, i.e., where local background 

image speeds are lowest. The fast adaptation mechanisms in the earlier visual processing 

then enhance target ‘pop out’ against a highly cluttered background during the inter-saccade 

period.  
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5.3.3 Experimental Setup 

The robotic platform was a Husky A200 (Clearpath Robotics™) unmanned ground vehicle 

which uses an open source serial protocol. The development framework for this robot was 

Robot Operating System (ROS). A Blackfly camera (BFLY-U3-13S2C-CS, Point Grey 

Research Inc) with a CS mount 1/3" sensor (53°x100° sized viewport) was mounted on the 

robot to capture videos of the environment (Figure 5.1). Due to technical limitations of the 

camera, video was sampled at 20 Hz to represent the visual field of the robot, which moved 

at a velocity of 0.1 ms-1. Although real-time, our autonomous system operated in a ‘slowed 

down’ environment (limited by the camera frame rate) with tracking of the output target 

location at a corresponding 20 Hz.  Different size and colour foam balls were used as targets 

(see Table I for detailed parameters). The balls were fixed to a thin transparent line, wrapped 

around a motorized driving pulley (Figure 5.3). Two motor speeds were tested, resulting in 

target velocities of either 0.06 ms-1 (‘slow’) or 0.12 ms-1 (‘fast’). The target track was 

mounted at a height which varied between 50-150 cm above the ground. Five idler turning 

pulleys changed the direction of the target path (Figure 5.3). Six different paths were tested 

for each set of environmental and model parameters. The pursuit was scored as a success if 

the robot passed within 1 m of the frontally fixated target, before the target completed one 

cycle.  

Experiments were conducted both in an indoor environment under controlled conditions and 

in unstructured outdoor environments. For indoor experiments, images or videos of natural 

scenes (Figure 5.4a, 5.4b, Movie 1, and Movie 2 of the supplementary material) were 

projected (2 projectors) onto a wall as a backdrop for the target (image statistics, Appendix 

E, Table E1.) Outdoor experiments were conducted in four different locations at different 

times during the day throughout a month. Figure 5.4c shows images of these locations taken 

by the mounted robot camera. 
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Table 5.1. Target size and colours used for different experiments. 

T
a
rg

et
 Colour Black 

Dark 

Grey 

Medium 

Grey 

Light 

Grey 
White 

Diameter 

(mm) 
65 100 65 100 65 100 65 100 65 100 

E
x
p

er
im

en
t Indoor  ✔  ✔  ✔   ✔      

Vibration  ✔  ✔         

Outdoor   ✔   ✔   ✔   ✔   ✔ 

 

 

 

Figure 5.3. Experimental setup. A monofilament fishing line, wrapped around a motorized driving pulley 

moves the target along the track. 

. 
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Figure 5.4. Backgrounds for experiments a) images and b) snapshots of videos of natural environments 

projected onto the wall in indoor experiments. c) Video output of robot showing the environmental conditions 

in each outdoor experimental location. 

5.4 Results 

5.4.1 Indoor Experiments 

5.4.1.1 Effect of facilitation kinetics on pursuit success 

Previous modelling efforts highlighted that optimum temporal parameters for facilitation 

(i.e. the duration of the enhanced region around a selected target) should be dynamically 

modulated based on the amount of background clutter and the target velocity (Appendix E, 

Figure E1 and Bagheri et al., 2015a). To validate simulation results and test our hardware 

implementation, we conducted indoor robotic experiments by projecting the same natural 

images onto the wall (Figure 5.4a).  
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Figure 5.5 shows the pursuit success rate averaged over the four targets used in these 

experiments (varying size and colour , Table 5.1). As in our previous simulations (Figure 

E1),  images that include either naturalistic (‘Botanic’) or urban (‘Forecourt’) clutter, were 

more likely to evoke false positives. In contrast, sparse images (‘Field’) or those composed 

predominantly of straight edges (‘House’), elicited fewer false positives. Consequently, 

Field and House have higher maximum average success rates than Botanic and Forecourt. 

Although projecting images on the wall results in lower contrast background features, we 

observed similar results to those described in our previous virtual-reality simulations  

(Bagheri et al., 2015a). In all but the sparsest scene (Field), as target velocity increased the 

optimal time constant decreases (Figure 5.5, cf. red and green lines). A lower time constant 

is required to ‘keep up’ with the faster moving target. Additionally, the robot experiments 

show that the optimal facilitation time constant changes across background images. At either 

target speed, pursuit success improves with a longer time constant in cluttered images 

(Botanic and Forecourt), compared to sparser images (Field and House). This reveals that a 

longer facilitation time constant enhances the region around a camouflaged target for a 

longer duration, thus permitting reaquisition. 
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Figure 5.5. Pursuit success of indoor experiments against projected natural scenes for two target velocities 

(0.06 ms-1, 0.12 ms-1) with changes in facilitation time constant (±95% CI, adjusted Wald, n=24) across target 

contrasts ranging from high to low (Table 5.1). As expected, the robot has a higher pursuit success when 

tracking targets against less cluttered scenes (e.g. Field). These results show that the optimum facilitation time 

constant varies, dependent on both target velocity and the background scene. 

5.4.1.2 Sensitivty to Vibration 

A challenge for visual target-tracking from a mobile platform is dealing with motion blur 

and uncertainty in target location arising from environmental forces (e.g. wind) and vibration 

(Irani et al., 1992). To quantify the effect of vibration, we tested the robot on two artificially 

created, uneven surfaces (Figure 5.6a) and compared the results with a flat surface. The first 

(‘Surface 1’) includes numerous small obstacles (up to 30 mm) taped to the floor to generate 

brief bumps, whilst Surface 2 includes both bumps and 15 mm to 30 mm stones randomly 

scattered.   
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Figure 5.6. Vibration sensitivity. a) Two artificially created uneven surfaces that were used to quantify the 

effect of vibration on model performance. b) Spectral density of target displacement in the output of camera, 

resulting from heave/pitch and yaw vibration of the robot. 

Figure 5.6b shows the spectral density of the surface-induced target displacement (robot 

heave/pitch and yaw) in the output of the camera. The target location in the input image was 

determined manually which results in low amplitude noise (stationary robot). The Flat 

Surface condition provides a baseline measure of vibration and disturbances arising from 

robot components (torque timing belt and wheel tread). Surface 1 causes high amplitude 

transient events in heave/pitch but does not have any significant effect on yaw. Surface 2 

induced significant mid-frequency (1-3 Hz) vibration on both heave/pitch and yaw motion.  
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Figure 5.7 shows that pursuit success varies for different surfaces. Surface1 slightly reduces 

the robot efficacy compared to Flat Surface (~ 8% at optimum time constant) due to the low 

frequency disturbances. However, as the difficulty of the surface increases (Surface 2) the 

effect of vibration becomes more prominent. The motion blur and uncertainties in target 

location caused from significant yaw events results in up to 25% reduction of pursuit success 

compared to Flat Surface. Interestingly, the optimum facilitation time constant decreases for 

Surface 2, meaning that a faster facilitation mechanism is required to keep up with the 

frequent changes of target location in the camera output.  

 

Figure 5.7. Effect of vibration on robot performance. Presence of uneven surfaces degrades performance 

(±95%CI, adjusted Wald, n=12). For Surface 2, a shift towards shorter time constants permits the model to 

withstand sudden changes in target location arising from robot vibration. 
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5.4.2 Outdoor experiments 

We were able to control environmental parameters (i.e. illumination, clutter, vibration) in 

our indoor experiments and test their effect on robot performance. However, natural 

environments are very dynamic and the pursuer must deal with these challenges. To examine 

model performance in unstructured environments, we set our robot to run autonomously in 

several outdoor locations. An example of the robot footage as well as a video output of robot 

can be seen in supplementary material (Supplementary Movie 3 and Movie 4, respectively). 

Examples of robot trajectories in the experiments are shown in Appendix E, Figure E2. 

5.4.2.1 Contrast Sensitivity in Open-loop Simulations 

Illumination has a significant impact on the appearance of surfaces, as specular reflections 

and shadows change. This imposes an additional challenge when testing the influence of 

model parameters on target-tracking success in unstructured environments and elucidating 

causes of pursuit failure. One way to deal with this problem is to investigate correlations 

between target contrast and model performance.  

To measure the contrast sensitivity of our model, we simulated an immobilized pursuer 

viewing targets of varying contrast drifting horizontally against a white background (for 550 

ms). The data (Figure 5.8a) show that the addition of facilitation substantially increases 

model contrast gain. With a fast facilitation mechanism (τf=40 ms), the target contrast 

required to evoke 50% maximal response (C50) is very low (~0.15). However, as the time 

constant increases the sensitivity to low contrast targets decreases, such that C50 for the most 

sluggish facilitation time constant (τf=2000 ms) is 0.38. The C50 increases to approximately 

0.42 for the non-facilitated model and the model never reaches the maximum response. In 

all cases, the model does not respond to targets with contrasts equal or lower than 0.1. 
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Figure 5.8. Contrast sensitivity of the model a) Open-loop model response increases as target contrast increases 

(purple line). The addition of facilitation (at various time constants) increases contrast sensitivity. However, 

there is a hard threshold at a target with contrast of 0.1. b) Targets of varying contrast were preceded by either 

a low (blue), medium (red) or high (black) contrast primer. Facilitation increases model contrast sensitivity 

and threshold. 

The addition of a facilitation mechanism clearly increases the contrast sensitivity, but is the 

strength of this enhancement dependent on the strength of the facilitating (priming) target? 

To answer this question, we started the simulation with a stimulus of a low (0.2), medium 

(0.5) or high (1) contrast (primer) and varied the stimulus contrast after 200 ms (Target in 

Figure 5.8b). Figure 5.8b shows the average model responses to the tested target contrasts 

for a 20 ms interval immediately after priming. 

Facilitation mechanisms with a short time constant build up faster and elicit higher 

responses. In the presence of a primer, facilitation builds prior to the contrast variation, thus 

improving the minimum contrast sensitivity (the model responds to a target contrast of 0.1). 

Interestingly, the low and medium contrast primer elicit a higher response than the high 

contrast primer, as also observed in physiological experiments (personal communication). 

This peculiarity of the contrast sensitivity functions observed in both modelling and 

physiology, emerges from the combined effects of fast temporal adaptation (ESTMD stage) 

and facilitation. 
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5.4.2.2 Contrast Sensitivity in Closed-loop Robotic Experiments 

Targets in natural scenes vary in contrast which may induce an attentional ‘switch’ to a false 

positive in the scene, consequently resulting in pursuit failure. Figure 5.9a shows box-and-

whiskers plots summarizing the average target contrast during pursuits (CT, n=120). The 

central mark (red line) is median of average contrast, edges are the 25th and 75th percentiles, 

and whiskers are the non-outlier data range. Using our robotic platform, we quantified the 

effect of target contrast in closed-loop pursuits. Average target contrast during pursuits (CT, 

Figure 5.9a) at the model input stage (following optical blur) were segmented into 5 bins 

and plotted against pursuit success (Figure 5.9b). Unsurprisingly, high contrast targets result 

in high capture success (~100% at 0.4-0.5 CT). When target contrast is low, changes in 

facilitation time constant have little effect, due to detection failure. The largest effect of 

facilitation time constant is when target contrast is greater than 0.3. However, unlike the 

results of our contrast sensitivity (Section 5.4.2.1) a shorter time constant is not necessarily 

beneficial. This reflects the effect of target velocity and background image statistics on the 

optimum facilitation time constant (Section 5.4.1.1). 

The robot can succeed during pursuit of low contrast targets (CT< 0.1), albeit at a low rate 

(~10%). Because target contrast changes during pursuits (dependent on background and 

overall illumination), it is feasible that facilitation builds in response to a high contrast target 

and ‘locking-on’ to a target that decreases in contrast later in the pursuit (Section 5.4.2.1, 

Figure 5.8b).  
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Figure 5.9. Effect of contrast on closed-loop robotic target tracking. a) The range of average target contrast 

during experiments (CT, n=120). Although illumination, and therefore target contrast, changes during 

experiments, the median of average contrast is similar for different experimental parameters (i.e. time constant 

and target velocity). b) The average target contrast during pursuits were organized into 5 bins with 0.1 contrast 

intervals and the percentage of successful pursuits in each bin was calculated. The error bars show the deviation 

of contrast from the centre of each bin. 

5.4.2.3 Overall Performance  

Figure 5.10 shows the 2D histograms of input imagery statistics in outdoor robotic 

experiments and Table 5.2 summarizes the overall performance of our robot with the 

optimum time constant for each target velocity (slow and fast). Clutter was measured using 

the method developed by Silk (1995). Despite the very challenging conditions in our 

experiments (low contrast in highly cluttered backgrounds) our robot is capable of detecting 

the target in ~42% and ~36 % of the frames for the slow and fast target respectively. The 

more successful detection of the slower target is due to the size and velocity tuning properties 

of our algorithm, which is optimally tuned to target sizes of ~3-4° moving at velocity of ~ 
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70-100 °/s (Bagheri et al., 2017). The maximum pursuit success of our autonomous robot is 

56.7%, similar to our previously reported simulation results against images with comparable 

statistics (i.e. Library, Forecourt, and Botanic, see Bagheri et al. (2015a), Appendix E Table 

E1, and Figure E1).  Impressively, this close similarity in the results is despite the challenges 

that exist in real-world conditions compared to the idealized simulation signal. This 

illustrates the robustness of this model when dealing with real-world challenges such as 

illumination variation, occlusions, presence of distracters and direct sunlight. 

 

Figure 5.10. 2D histogram of input imagery statistics in outdoor experiments showing a) background clutter 

and target contrast b) the target size and velocity in the video output of the camera. Our size and velocity tuned 

model responds optimally to targets of ~3-4° moving at a velocity of ~ 70-100 (°/s) (Bagheri et al., 2017). 
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Table 5.2. Summary of experimental results for the optimum facilitation time constants. 

Measure 
Target Speed 

Slow Fast 

Average Target Contrast 0.24 0.26 

Average Background Clutter 0.28 0.27 

Total Number of Frames 147828 110103 

Successful Frame (%) 41.9 36.4 

Pursuit Success (% ±95%CI, adjusted Wald, n=120) 56.7±8.7 44.2±8.7 

Average Successful Pursuit Time (s) 52 64 

 

5.4.2.4 Effect of Internal Models on Target Detection 

During flight, insects make saccadic head movements to keep their target at a specific 

angular position on the eye (Wehrhahn, et al., 1982; Land and Collett, 1974, Mischiati et al., 

2015). However, these saccadic movements cause frequent and substantial displacement of 

the retinal image. Thus, the movements require an anticipatory shift of visual attention from 

the pre-saccadic to post-saccadic locations. Such prediction and planning, essential to the 

high-performance control of behaviour, require internal models. It was recently discovered 

that flying insects rely on such internal models to guide actions (Mischiati et al., 2015; Kim 

et al., 2015). 

We tested the effect of internal models on target tracking by feeding video captured by the 

robot camera (n=20) into an open-loop version of our target tracking model. The closed-loop 

robotic implementation allows predictive feed-forward relocation of the facilitation map to 

the post-saccadic location based on motor outputs. However, such information is unknown 

to the open-loop model, thus requiring both detection of the target and establishment of 

facilitation at the new post-saccadic location. Figure 5.11a shows that the median of 

successful detection in the open-loop system drops to 48% compared to 59% in the closed-
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loop scenario, thus showing the essential role of internal models in target detection in 

tracking. 

 

Figure 5.11. a) Effect of internal models on target detection. The closed-loop model predicts the new location 

of facilitation mechanism during saccades based on motor outputs while the open-loop model does not include 

the internal model of the sensorimotor system. b) Facilitation mechanism enhances the contrast sensitivity and 

therefore target detection in the presence of background clutter and distracters. The 200 ms and 500 ms primed 

facilitation mechanism increases successful detection of the target compared to un-primed closed-loop 

experiments. 

5.4.2.5 Facilitation and Attention 

Previously, we proposed a role for facilitation in the selective attention (Bagheri et al., 

2015b) observed in dragonfly CSTMD1 neurons (Wiederman and O’Carroll, 2013a). This 

selection could be induced by a facilitation mechanism increasing contrast sensitivity around 

one target (Section 5.4.2.1), concomitant with surround suppression. We tested the effect of 

increased contrast sensitivity on target detection and tracking in natural environments and in 

the presence of distracters by using the model in open-loop. We used video imagery captured 

from the robot camera (n=10) in which the model struggles to detect the target in the early 

stages but locks on to it later during the pursuit (e.g. supplementary material, Movie 4). 
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These videos served as input to the open-loop simulations. Prior to the start of these 

simulations, we allowed the facilitation to build up in the initial target location for either 200 

or 500 ms (primed). This was implemented by artificially feeding the target location in the 

first frame as the future location of the target (r'(t+1) in Figure 5.1) to the facilitation 

mechanism. We measured the successful target detection within the frames prior to the 

model lock-on to the target. Figure 5.11b shows the difference between the primed (open-

loop) and un-primed (closed-loop robotic experiments) model. The 200 ms and 500 ms 

primed facilitation increase the median of successful target detection to 29% and 34% 

compared to 3% in un-primed scenarios. These results show that presence of facilitation can 

direct the attention to target location irrespective of the presence of other distracters. 

5.5 Discussion 

Our recent benchmarking study (Bagheri et al., 2017) demonstrated that when tracking small 

moving targets in natural scenes (using open-loop simulations), our insect-inspired model 

exhibits robust and efficient performance, outperforming state-of-the-art tracking 

algorithms. The success of these simulations led us to test the efficacy and robustness of our 

autonomous hardware platform, within a complex, natural environment. Our data show that 

this system can effectively handle noise from a variety of sources (e.g. vibration, 

illumination) and can successfully track targets despite the challenging experimental 

conditions, such as, low target contrast, heavily cluttered environments and the presence of 

distracters.  

5.5.1 Facilitation Time Constant 

Using closed-loop simulations we previously showed that the optimum choice of facilitation 

time constant depends on both target velocity and background clutter (Bagheri et al., 2015a). 

The results of our closed-loop robotic experiments suggest a similar relationship. Here we 
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used several variants of facilitation time constant to find the optimum. In future robotic 

development, we aim to dynamically estimate the facilitation time constant, using real-time 

estimates of target velocity and background clutter. Given the efficiency of our model 

(Bagheri et al., 2017) such a dynamic modulation may increase the robustness of pursuit 

without affecting the stability of the feedback process. However, from a physiological 

perspective, determining whether STMD neurons use such a dynamic modulation requires 

further experimentation. 

5.5.2 Velocity Estimation 

We predicted the target’s future location using an estimate of current target velocity, because 

our most recent physiological data indicates such a velocity dependency (unpublished 

observations). Rather than calculate a continuous velocity range, we used an HR-EMD 

model to categorize the target velocity into either ‘slow’, ‘medium’, or ‘fast speed’. Similar 

banding into separate channels (temporal frequency) has been observed to underlie velocity 

estimation in crabs (Nalbach, 1989). Although the output of HR-EMD is a function of the 

velocity of the moving stimulus, this relationship is not monotonic and has a strong 

dependence on spatial structure and contrast of the stimulus. These shortcomings have led 

to elaborations of the original HR-EMD (Zanker et al., 1999; Rajesh et al., 2005; Brinkworth 

and O'Carroll, 2009). We hypothesised that our model’s coarse spatial size of the facilitation 

matrix (15° by 15° area) would accommodate errors resulting from the texture dependency 

of the HR-EMD. However, in future work we will incorporate improved velocity estimator 

methods, derived from our developing understanding of the physiological system. Such 

methods may include elaborated HR-EMD or time-of-travel models (Vanhoutte et al., 2017; 

Roubieu et al., 2013; Viollet et al., 2014) and we will test their impact on the target tracking 

model 
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5.5.3 Effect of Vibration on Target Tracking 

Whether flying, walking, or swimming, animals maneuvering in natural environments must 

deal with forces and vibration from uneven terrian or turbulence (in air or water). Vibration 

can impair the acquisition of information (e.g., by the eyes), the outcome of motor command 

of information (e.g., head or body movements) or the complex central processes that relate 

input sensory information to the output motor command.  

The results show that our model can robustly track targets even in the presence of vibration. 

As vibration-induced target displacement increases (e.g. Surface 2 in Figure 5.6a), a shorter 

facilitation time constant (on the order of 100-400 ms) improves the robustness of tracking. 

This match for the physiologically measured facilitation time (on the order of 300-500 ms) 

reported in our earlier work (Nordström et al., 2011; Dunbier et al., 2011; Dunbier et al., 

2012) might reflect the evolution of a facilitation time constant in flying insects that allows 

them to deal with turbulent air and movement of the head induced by wing movements, 

while tracking prey or conspecifics.   

The effect of vibration on vision may be decreased by reducing its transmission to the head 

/ compound eye. Studies of fly behavior show that they control their direction of flight along 

with gaze through short, fast saccadic movements where head and body turn independently 

(Van Hateren and Schilstra, 1999). This uncoupling of the eye from its support enables the 

insect to maintain the orientation of the gaze even when disturbances occur which affect its 

body. Moreover it reduces the temporal blurring effects and may promote ‘popout’ of a target 

against a background as a result of the high-pass filtering at early stages of visual processing. 

Future robotic efforts will investigate the effect of such ‘active vision’ on handling vibration. 
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5.5.4 Internal Models 

Most animals with good vision show a pattern of stable fixations with fast saccades that shift 

gaze direction (Land, 1999; Land and Collett, 1997; Findlay and Gilchrist, 2003). An 

essential component of successful target tracking is the ability to distinguish self-induced 

motion (such as rotation of the visual field caused by saccadic movement) from those 

imposed by the environment (e.g. vibration). When an insect drifts from its flight trajectory 

(due to environmental factors), the optomotor response maintains aerodynamic stability and 

compensates the animal’s deviation from its initial flight trajectory (governed by an inner-

loop control system). However, performing voluntary manoeuvres by the insect requires 

interaction between the control of visual reflexes (inner-loop) and other visually guided 

behaviours (outer-loop), otherwise the animal would be trapped by its inner-loop control 

system (von Holst and Mittelstaedt, 1950). The question is how the inner-loop optomotor 

pathway and an outer-loop pathway involved in chasing behaviour may interact? Although 

different interactions between inner-loop and outer-loop are proposed, recent studies 

(Mischiati et al., 2015; Kim et al., 2015) support a method postulated by von Holst and 

Mittelstaedt (1950). von Holst and Mittelstaedt (1950) proposed that with each motor 

command to initiate a voluntary locomotor turn, a copy of the motor command is sent to the 

visual system (efference copy), a concept similar to forward models in human motor control. 

An important feature of forward modelling is that system outputs modulate sensory 

processing. Therefore, the visual system is not a feed-forward model driven by the sensory 

input alone, rather motor outputs are required to predict expected visual input. Our results 

show a significant improvement in target detection and tracking when an internal model is 

compared to a feedforward model. However, implementation of internal models remains an 

uncommon approach in artificial vision systems. 
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5.5.5 Dynamics of the Robot 

Dragonflies are light, swift and agile animals with flights speeds up to 6.8 m/s (Dean, 2003). 

Robust detection of targets at such high velocities requires a temporal resolution close to 

what is observed in flying insect photoreceptors (100-300 Hz) (Niven et al., 2007). In the 

current study, robot and target velocities were limited due to the low temporal frequency of 

the camera. That is, the slow-moving, ground-based robotic platform does not deal with the 

same level of dynamic energy and motion control difficulties as experienced by dragonflies. 

However, the ground-based platform allowed us to address algorithmic questions and avoid 

the complexities associated with unmanned aerial vehicles (UAVs).  

Given the robust performance of our model under real-world conditions, its high processing 

speed and low computational complexity (Bagheri et al., 2017), we will now turn to a UAV 

platform with a high-speed camera and field-programmable gate array (FPGA). To account 

for the faster dynamics of both predator and prey, we will modify (and test) tuning 

parameters accordingly. For integration of the stability and guidance of the UAV, an inner-

loop control system can be exploited to constantly maintain the UAV’s attitude in 

conjunction with its aerodynamic stability by compensating for any deviations in roll, pitch, 

and yaw. However, during a saccadic movement the outer-loop simply can change the set 

point of the inner-loop control system allowing performance of intended flight manoeuvres 

while keeping the inner-loop control active. 

Implementation of the model on a UAV with high-speed camera should permit tracking of 

targets at high velocities. This would allow us to increase the level of noise in the input 

imagery (due to increase in dynamic energy of the robot) and test question such as the effect 

of noise reduction in the early visual processing on the model performance. Here, our choice 

of the time constants for filters replicated parameters observed in day-active insects, 

however with our robotics platform we will be able to implement a wider range of time 
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constants, such as those observed in nocturnal animals. Thus, our future robotic efforts will 

attempt to develop a robust fast-moving, UAV platform as well as permit us to address 

further comparative, physiological questions. 

5.6 Conclusion 

While the results of our recently developed insect-inspired target tracking model (Bagheri 

et al., 2015a) provide insight into insect neurophysiology, our understanding of animal 

sensorimotor systems is still limited. Experiments require directly linking neural circuits and 

behaviour, however, during physiological recordings our insect is restrained with wax and 

can only experience imposed, open-loop stimuli. To model sensorimotor systems, it is 

necessary to accurately represent the physical interaction of the animal and the environment 

which is very complex to model in simulations. To the best of our knowledge, this is the first 

time that a target tracking model inspired by insect neurophysiology has been implemented 

on an autonomous robot and tested under real-world conditions. We not only reveal robust 

model performance, but also provide insight into how insects’ neuronal systems may handle 

varying challenges during target tracking and pursuit. That is, our hardware implementation 

provides a platform for better understanding the sensorimotor system of the insect as well as 

a prototype for engineering applications. 
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Chapter 6. Conclusions and Future Work 

 

In this thesis I have presented an insect-inspired model for tracking small moving targets 

within visually cluttered surrounds.  I have tested the robustness and efficiency of this target-

tracking algorithm both in simulations and robotic experiments. The data clearly show that 

this model provides robust detection of varying target contrast against a wide range of 

backgrounds. My direct comparison between this model and state-of-the-art engineering 

trackers show that when tracking small moving targets in natural scenes, this model exhibits 

robust performance, outperforming the best of the current tracking algorithms. However, the 

results show that this performance does not come at the cost of additional processing time. 

The main reason behind the fast processing speed of my model is reducing the resolution of 

the input image to 1°. However, the question is whether reducing the image resolution results 

in cutting out the necessary information and therefore, decreasing the accuracy of the 

computational model? Or using high resolution images only overloads the computational 

model with redundant information and slows down the processing speed? How much 

information is necessary? The fact that many animals only have a small high resolution area 

in their eyes (e.g. fovea, acute zone) and low resolution vision elsewhere within their field 

of view might provide the proof of the concept that high-resolution vision is not necessarily 

optimal. Although I have not tested the effect of resolution of input image on the accuracy 

of the model it would be an interesting question for future research. 

As I mentioned in the introduction of this thesis, I used a ground-based robotic platform for 

hardware implementation to maintain the focus of my research on the key algorithmic 

questions rather than engineering problems associated with UAVs. However, target tracking 

in a 3-dimensional world introduces additional challenges in motion control and pursuit 

strategy. Furthermore, the tight weight budget in UAVs imposes additional constraints on 
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the choice of processors and camera.  Recent advances in development cameras integrated 

with field-programmable gate array (FPGA) provide a light-weight and high-performance 

solution for this purpose. Translation of this insect-inspired model to a UAV platform is 

currently under development in our research group.  

Besides the potential of this algorithm for artificial visual systems and robotic applications, 

it allowed us to gain insight into insect neurophysiology.  The concluding remarks of the 

current work and potential future works are summarized in the following sections.    

6.1 Facilitation  

Over the course of this study the understanding of CSTMD1’s facilitatory behaviour has 

increased through both my simulations and experiments.  The results presented here include 

the effect of facilitation on target detection and tracking within natural environments. These 

results suggest that inclusion of facilitation in our closed-loop model substantially improves 

pursuit success. However, my results show that the choice of facilitation time constant 

depends on various factors such as target velocity and background clutter. These results are 

contrary to a fundamental basis of control theory where reducing the phase delay to reach 

the steady-state mode is desirable. However, natural conditions are highly dynamic and 

perhaps steady-state mode does not exist for an insect during pursuit. From these 

observations arises the question as to whether a dynamic facilitation time constant would 

improve target tracking and pursuit success. From modelling and robotic experiment 

perspective, such a dynamic modulation can be exploited with a fuzzy control system. 

However, whether CSTMD1 neurons use a dynamic mechanism requires further 

physiological experiments to address these questions more directly.  

The recent electrophysiological recordings of CSTMD1 neurons within our laboratory 

reveals enhancement in front of the moving target, and suppression in the surround. 
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Although, the model of facilitation that I implemented here emulates enhancement in the 

direction of target motion and the asymmetry in onset/offset time course as observed in 

CSTMD1 neurons, it does not explain the inhibitory response of these neurons. However, 

this inhibition might play a key role in suppressing false positives arising from background 

clutter, thus improving target detection. Therefore, further modelling is required to 

investigate the effect of inhibition on target tracking and pursuit. 

6.2 Parallel Computation 

STMD neurons are tuned to small objects, with peak responses to an optimum target size of 

1.6°×1.6° (Wiederman et al., 2008). The model I presented here was designed to mimic size 

tuning observed in STMD neurons. However, during the pursuit the image size of the target 

in the retina increases as the insect approaches its target. Therefore, further neuronal 

processing is required to detect a large object and finalize prey capture. 

My modelling effort to vary the size selectivity of the ESTMD model (Chapter 4) shows the 

possibility of parallel pathways encoding different, broadly-tuned size ranges, which might 

be combined later in the visual pathway. Recent observation of unidentified STMD type 

neurons with peak responses for larger objects at ~10° (Wiederman et al., 2013) also 

provides support for this hypothesis. Parallel processing is well-supported in human 

psychophysics experiments (Graham and Nachmias, 1971). Moreover, parallelism has been 

extensively employed in engineering to provide high-performance computing and reduce 

power consumption. It is possible that the same parallel computation is employed by the 

low-powered brain of insects to process highly complex visual inputs. Another intriguing 

possibility is that other neurons, such as the ‘looming’ system observed in the locusts (Rind 

and Simmons, 1992; Rind and Bramwell, 1996), could be recruited when the target is larger 
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than optimal for an STMD. However, further electrophysiological and neuroanatomical 

experiments are required to investigate how insects track large objects. 

6.3 Attention 

The study by Wiederman and O’Carroll (2013) shows that CSTMD1 neurons competitively 

select one target in the presence of distracters. Their results show that competition is key 

because the attended target changes between trials. They suggested that the variability in the 

attended target is either due to the modulation of the underlying target salience over trials, 

or a higher-order mechanism of bias (Desimone, 1998). Within this concept, the facilitatory 

behaviour of CSTMD1 neurons suggest an interesting role for the first possibility. The 

results I present in this thesis support a possible role for facilitation in selective attention. 

These results could be indicative of a bottom-up attention mechanism emerging from a 

competitive process occurring at a lower level in STMD pathway.  

This selective attention would be an essential component of a control system for target 

pursuit. The selection mechanism I implemented here is just a simple form of ‘winner-take-

all-network’. However, such a sophisticated trajectory prediction in insects and other 

animals undoubtedly involves additional processes.  Therefore, an interesting extension to 

the current tracker would be a model of selective attention (such as Shoemaker et al.  (2013) 

model) which can increase the robustness of the model in the presence of distractors.   

6.4 Active Vision 

Many animals use eye, head or body movement to shift the direction of gaze. Active gaze 

fixation and stabilization may provide the key to an efficient target tracking system. Active 

gaze control can reduce the computational process and resources required to extract relevant 

visual information from the environment by fixing gaze on a given moving feature and 

enabling areas of interest to be examined at the desired resolution without the cost of 
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uniformly high resolution sensing (Cannons, 2008). Inspired by insect gaze fixation 

strategies we developed a novel fixation algorithm. Instead of just trying to keep the target 

perfectly centred on its field of view, our system locks on to the background and lets the 

target move against it. This reduces distractions from the background and gives time for 

underlying nonlinear spatiotemporal filtering inherent to the ESTMD pathway to work. It 

then makes small movements of its gaze and rotates towards the target to keep the target 

roughly frontal. 

One of the weaknesses of the robotic implementation I used here is that the camera was 

mechanically coupled to the robot. Therefore, strong disturbances such as an uneven surface 

could easily perturb the body, and hence the camera. In freely flying insects, active gaze 

stabilization mechanisms reduce the effect of disturbances such as vibrations, wind gusts, or 

body jerks (Chan et al., 1998; Hengstenberg, 1988; Miles and Wallman, 1993; Schilstra and 

Van Hateren, 1998; Zeil eta al., 2008). A similar mechanism is employed by vertebrates via 

vestibulo–ocular reflexes (VOR) to hold the gaze still in space when the head turns (Huterer 

and Cullen, 2002). On a robotic platform, a pan-tilt-zoom (PTZ) mechanism could be used 

to implement such uncoupling of the camera from its supports. This PTZ mechanism is 

currently under development in our group. 

6.5 Final Remark 

I should mention that the model I presented here lacks certain aspects of insect vision as well 

as computer vision models that I discussed in detail in Chapter 1. This model does not 

account for the learning and classification process involved in target selection and tracking. 

Despite this shortcoming, this model shows successful detection and tracking of moving 

targets in very challenging scenarios. This recalls the question that I discussed in the 

introduction of this thesis (Section 1.3.2); what kind of cues insects use for target 
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discrimination? Do they simply have a ‘hard-wired’ system which only tracks the targets 

that coincide with the correct size and velocity tuning range? Or are they capable of learning 

and using top-down information to classify moving objects? My results show that the pursuit 

success of the model significantly decreases as the clutter of the background increases. 

However, insects such as the dragonfly have shown remarkable pursuit success (greater than 

97%) in heavily cluttered environments (Olberg et al, 2000). Therefore, there is a great 

possibility that insects use learning and classification processes in these more challenging 

scenarios to discriminate targets from similar distractors that exist in the environment.  

Moreover, the version of the insect-inspired model that I presented here does not include the 

complex feedback processes that exist in biological visual systems (Section 1.6). 

Investigating the computational mechanism of these feedback processes is the future 

direction of our lab. 

The investigation of biological target detection and tracking is a vast scientific area which is 

experiencing a significant growth and breakthroughs from both an electrophysiological and 

a modelling perspective. This thesis is only the beginning of an exciting field of research to 

find solutions for engineering problems and answers for physiological questions. Further 

understanding of such a remarkable system will emerge from future endeavours. 
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Appendix A. Supplementary Material for Chapter 2 
 

 

Figure A.1. Overview of the bio-inspired, target-pursuit model and simulation environment a) The closed 

loop model includes a virtual reality environment used to navigate both pursuer and target (i). The early visual 

processing stage simulates insect spectral sensitivity, optical blur and low resolution sampling of the insect 
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visual system (ii). Selectivity for small moving targets is generated with the ESTMD stage (iii). The 

‘facilitation mechanism’ is modelled by multiplying the output of ESTMDs with a delayed version of a 

weighted map (lowpass filter, time constant=τf) based on the current location of the winning feature but offset 

in the direction of the target’s movement (iv). The saccadic pursuit algorithm (v) calculates the pursuer turn 

angle inspired by insect’s pursuit strategy. b) Four natural images used as backgrounds in the pursuit 

simulations. c) When two targets are simulated to test competitive selection, both move in symmetrical paths 

with the second distracter target introduced 100 ms after the first target. 
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Figure A.2. Velocity Estimator. To confer sensitivity to targets independent of the polarity of their contrast 

against the background, we added an equivalent operation in parallel, multiplying each contrast channel (ON 

or OFF) with a delayed version of the opposite polarity (delayed using a low-pass filter, τ=25 ms) and then 

summing the outputs. The Hassenstein-Reichardt (HR) EMD correlates two spatially separated contrast signals 

(S1, S2) and correlates them after a delay (via a low-pass filter) resulting in a direction selective output [1]. 

Subtracting the two mirrored symmetric sub-unit yields positive response for the preferred motion direction 

(in this case left to right) and a negative one in the opposite direction (right to left). The output of a HR-EMD 

to a discrete target of constant width in the direction of motion increases with target velocity up to an optimum 

dependent on the delay filter time constant [2]. Due to this known relationship, the HR-EMD may also be used 

to approximate the magnitude velocity of a moving object [3]. However, the angular size of the target changes 
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during the pursuit, therefore, the output of the HR-EMD is segmented into three intervals to estimate the range 

of target angular velocity magnitude. This velocity vector is used to shift the facilitation matrix in the direction 

of travel of the ‘winning’ feature. 

 

Figure A.3. Distribution of capture time for the simulations with |Vt|/|Vp|=3/4 

 

 

 

 

 

 

 

 

 

 

 



 Appendix A. Supplementary Material for Chapter 2 
 

237 

Table A.1. Target intensities used for simulations against different backgrounds and the mean intensity of each 

background. For each image, two target intensities were below and two above mean luminance. The maximum 

or minimum target luminance was adjusted based on an initial set of simulations over a larger range of target 

intensities for image. This allowed us to select targets with a low enough average contrast to reduce prey 

capture success well below 100% in non-facilitated trials and thus provide a basis for comparison of the 

improvement following facilitation for the most easily detected targets for each image.  The two additional 

lower contrasts were selected to give approximately the same success rate in non-facilitated pursuits for 

different images.    

Background Target Intensities  

(green channel, 8-bit) 

Mean of Background   

(green channel, 8-bit) 

Image A 0, 25, 204, 255 92 

Image B 51,77, 230, 255 130 

Image C 0, 51, 204, 255 110 

Image D 0, 25, 204, 230 98 

 

Text A.1. Early Visual Processing 

The optics of flying insects are limited by diffraction and other forms of optical interference 

within the facet lenses [4]. This optical blur was modelled with a Gaussian lowpass filter 

(full-width at half maximum of 1.4°), which is similar to the optical sampling of typical day-

active insects [4]. Further sub-sampling of the captured image (at 1° intervals) represented 

the average inter-receptor angle between photoreceptors [5]. The green spectral sensitivity of 

the insect motion pathway was simulated by processing only the green channel of the RGB 

imagery [6].  

In biological vision, redundant information is removed with neuronal adaptation (temporal 

high pass filtering) and centre-surround antagonism (spatial high pass filtering), both of 

which follow the inherent low-pass sampling properties of the photoreceptors. We simulated 

the temporal properties of photoreceptors and the 1st order interneurons, the large monopolar 
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cells (LMCs), with a discrete log-normal function [7]. The filter properties were matched to 

the temporal impulse response observed in LMC recordings [8]. Weak centre-surround 

antagonism as observed in physiological recordings, was modelled by subtracting (10% of 

the centre pixel) from the nearest neighbouring pixels. 

Text A.2. Rectifying transient cells (RTCs)   

Rectifying transient cells (RTCs) within the insect 2nd optic neuropil (medulla) exhibit 

processing properties well suited as additional input processing stages for a small target 

motion detection pathway [9]. RTCs exhibit independent adaptation to light increment (ON 

channel) or decrement (OFF channel) [10, 11]. To simulate the temporal processing of RTCs, 

we separated ON and OFF channels via temporal high pass filtering (τ=40 ms) and half-wave 

rectification. Each channel was processed through a fast adaptive mechanism, with the state 

of adaptation determined by a nonlinear filter that switches its time constant [7, 9]. This 

adaptation state causes subtractive inhibition of the unaltered ‘pass-through’ signal. 

Additionally, we implemented strong spatial centre-surround antagonism, with each channel 

surround inhibiting its next-nearest neighbours. This strong surround antagonism conveys 

selectivity for local edge features. 

Text A.3. Input: Clutter Measure 

To measure background clutter, we used the metric developed by Silk [12]. This method 

measures image clutter by convolving the image with an average kernel, which was chosen 

to be approximately the same size as the target [13]. The clutter value, CM, is calculated by 

the following formula: 

𝐶𝑀 = 1
𝑁⁄  (∑ ∑ (𝑏𝑖,𝑗 − 𝐵̅𝑖,𝑗)

2

𝑗𝑖
)

1
2⁄

 

 

(S1) 
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where b is the value of the i,j pixel before convolution, 𝐵̅ is the mean of the box centered at 

pixel i,j and N is the number of boxes convolved over the whole image. 

Text A.4. Input: Target Contrast Measure  

To measure how the target differs from the background at each time step of the pursuit in 

the input (after optical blur), we used the magnitude of a weighted signal-to-noise ratio 

(WSNR):   

𝑊𝑆𝑁𝑅 = 𝑤(𝑑) |
𝐼𝑡−𝐼𝑏̅

𝜎𝑏
| , (S2) 

The weighing function w(d) represents the effect of target angular size on its detectability 

against background. 𝐼𝑡 represents the target intensity, 𝐼𝑏̅  and σb respectively are the mean 

value and standard deviation of the next nearest neighbors of the background to the target 

point, d is the distance between target and the pursuer, and w(d) is defined as: 

𝑤(𝑑) =
1

2
+

1

2
tanh (𝑎 +

𝑏

𝑑
), (S3) 

 

where a and b are chosen based on the target size selectivity of the model. 

Text A.5. Output: Target Discriminability Measure 

To determine the discriminability of the target at the output stage, we defined a metric which 

measures the difference between target value and false positives: 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚 =
𝑀−𝑁

𝑀
𝑒(𝐼𝑡−𝐼𝑚𝑎𝑥−𝜎𝐼𝑏

)
, (S4) 

where M is the total number of background pixels, N represents the number of background 

pixels with equal or higher values than the target (stronger false positives), It is the target 

intensity, Imax is the maximum intensity of the background pixels, and 𝜎𝐼𝑏 is the deviation of 

stronger false positives from target value, given by: 

𝜎𝐼𝑏 = √∑ 𝑛𝑖(𝐼𝑡 − 𝐼𝑖)2𝐼𝑚𝑎𝑥
𝐼𝑖=𝐼𝑡

. 
 

(S5) 
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where ni is the number of pixels with the intensity of Ii. Based on this metric, the maximum 

possible discriminability (e) happens when no false positive is detected and It is at its 

maximum (1), and whenever the target is the winner at the output, the discriminability value 

is greater than 1. Due to half-wave-rectifications in the ESTMD stage the background in the 

output of ESTMD model is black (0 value) and the target and any false positives has a value 

greater than 0. Therefore, it would work for both dark and light targets. 

Text A.6. Robustness Metric 

The robustness metric represents the real performance of the model as a percentage of the 

ideal performance. The minimum criterion for an acceptable performance of the model is a 

successful pursuit. However, a higher target discriminability during the pursuit indicates a 

more robust performance. Therefore, for a sample size with N successful pursuits, we 

measured the performance of the model as: 

∑𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑁

𝑖=1

 

 

(S6) 

where 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average discriminability in corresponding duration of the pursuit. The 

ideal performance of the model occurs when all the simulations within the data set is 

completed successfully with a maximum target discriminability (e) throughout the pursuit. 

Using the Equation S6 the ideal performance of the model for a sample size of M would be 

𝑀×𝑒. Therefore, the robustness metric for a sample set is:   

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
∑ 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑁
𝑖=1

𝑀×𝑒
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Appendix B. A Biologically Inspired Facilitation 

Mechanism Enhances the Detection and Pursuit of 

Targets of Varying Contrast 
 

Zahra M. Bagheri, Steven D. Wiederman, Benjamin S. Cazzolato, Steven Grainger 

The University of Adelaide, Adelaide, Australia 

 

David C. O'Carroll 

Department of Biology, Lund University, Lund, Sweden 

 

Abstract— Many species of flying insects detect and chase prey or conspecifics within a 

visually cluttered surround, e.g. for predation, territorial or mating behaviour. We modelled 

such detection and pursuit for small moving targets, and tested it within a closed-loop, virtual 

reality flight arena. Our model is inspired directly by electrophysiological recordings from 

‘small target motion detector’ (STMD) neurons in the insect brain that are likely to underlie 

this behavioral task. The front-end uses a variant of a biologically inspired ‘elementary’ 

small target motion detector (ESTMD), elaborated to detect targets in natural scenes of both 

contrast polarities (i.e. both dark and light targets). We also include an additional model for 

the recently identified physiological ‘facilitation’ mechanism believed to form the basis for 

selective attention in insect STMDs, and quantify the improvement this provides for pursuit 

success and target discriminability over a range of target contrasts. 

Keywords— Target tracking, feature detection, biological image processing, visual 

processing, salience. 
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I. INTRODUCTION  

The dragonfly is an aerobatic predator capable of visually detecting small, moving prey, 

often against a cluttered background. Remarkably, the dragonfly performs this task even in 

the presence of distracting stimuli, such as swarms of prey and conspecifics [1,2]. From an 

engineering perspective, our ability to build an artificial vision system that can emulate such 

feature discrimination from a moving platform is poor [3], particularly compared to the small 

size, light-weight and low-power neuronal architecture that underlies insect behaviour [4].  

Our approach to developing an engineered solution to this problem is to model the neuronal 

pathway likely to underlie pursuit behaviour. We use intracellular, electrophysiological 

techniques to record from ‘small target motion detector’ (STMD) neurons, in response to the 

presentation of various visual stimuli. We have shown that these neurons are size selective, 

velocity tuned, contrast sensitive and respond robustly to targets, even without relative 

motion between them and a cluttered background [5-7]. These physiological data have 

inspired the development of a computational model (MATLAB / Simulink) that effectively 

provides a matched spatiotemporal filter for the detection of moving targets in natural 

scenery [8-10]. We refer to this model as the ‘elementary small target motion detector’ 

(ESTMD) and have recently elaborated it to include a virtual reality front-end and to 

simulate closed-loop pursuits based on known chase behaviours of flying insects [11]. 

One type of dragonfly STMD neuron, CSTMD1, exhibits a higher-order property we term 

‘facilitation’. The spiking activity of CSTMD1 builds over time in response to targets that 

move through long, continuous trajectories [12]. This enhancement in response to successive 

stimulation (i.e. facilitation) encodes the trajectory of the target and is reset when there are 

local breaks in the trajectory path [13]. We hypothesize that such a neuronal facilitatory 

mechanism underlies the robust pursuits of prey (over 97% success rate) observed in the 

dragonfly [14].  
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We recently showed that inclusion of a simple form of slow facilitation in a dark-target 

selective ESTMD model based on known physiological properties of STMDs [15, 16], 

enhances detection and pursuit of dark contrasting targets. However, in a natural 

environment, targets will have different changing target contrast polarity (light or dark) 

dependent on the corresponding background at any moment during the pursuit. In this paper 

we developed new metrics to test robustness under these conditions for a model modified to 

respond to both contrast polarities. We tested whether the inclusion of facilitation 

differentially improves capture success across a range of target luminances, and examined 

trade-offs between the time-constant of the facilitation mechanism and model performance 

over a range of relative pursuer and target speeds. 

II. METHODS 

A. Virtual-Reality Front-End 

Figure B.1 illustrates the Virtual Reality (VR) arena used as the front-end for our bio-

inspired target detection and pursuit control algorithm which was implemented in the 

Simulink 3D  
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Figure B.1. a) Virtual Reality Environment b) a model of random target trajectory in 2D c) target trajectory in 

3D d) From top to bottom shows the rendered images A, B, C, and D respectively. 

animation toolbox (Mathworks Inc.). Within a cylindrical arena (of radius 6 m), we 

generated randomized paths with biologically plausible constraints on ‘saccadic’ turn angles 

[17]. We tested five different velocities ranging from 4 ms-1 to 16 ms-1 for a 40 mm sized 

‘prey’, with the ‘pursuer’ moving at a velocity of 8 ms-1. The target start location was at 

least 4 m away from the pursuer (angular size<0.6°). We varied target contrast in different 

simulations by altering target luminance across a range of intensities, i.e. RGB values from 

0 (black) to 255 (white). 

Pursuit simulations were repeated 50 times with randomized three dimensional paths. We 

simulated pursuits in four different panoramic natural scenes (Images A, B, C, D in Figure 

B.1 d) rendered onto the cylindrical wall of the VR world. If prey approached to close 

proximity (50 cm) of this wall, we initiated a ‘saccade’ away from the VR boundary (Figure 

B.1 b). Although all of these images had 1/f power spectra, a statistical property of natural 

images [18], they varied in the amount of background ‘clutter’ in the scene (Figure B.1d).  
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Video was sampled from a 40°x98° sized viewport to represent the visual field of the 

predator and thus served as inputs to the detection, facilitation and pursuit algorithm. 

B. Elementary Small Target Motion Detection 

We modeled the optical blur of the compound eye (limited primarily by diffraction) with a 

Gaussian function of full-width at half maximum of 1.4° [19]. Insect motion sensitive 

pathways are primarily sensitive to green light, so we selected only the green channel of the 

RGB input images [20]. The filtered image was then sampled at 1°, based on the measured 

inter-receptor angle of the fly visual system [21]. The output of this stage is considered as 

the ‘model input’ to the target detection algorithm in further analyses. 

Early visual processing (photoreceptors and 1st order interneurons) were simulated with 

spatiotemporal bandpass filtering, matched to properties observed in insect vision [22]. A 

2nd model for an ‘elementary’ small target motion detector (ESTMD) was then 

implemented, based on the response properties of rectifying, transient cells as observed in 

several insect species [23,24]. Transient ON and OFF contrasts are separated via temporal 

high pass filtering (τ=40 ms) and half-wave rectification. These independent ON and OFF 

channels are processed through a fast adaptive mechanism, with the state of adaptation 

determined by a nonlinear filter. This filter switches its time constant. Time constants are 

‘fast’ (τ=3 ms) when channel input is increasing and ‘slow’ (τ=70 ms) when decreasing. This 

adaptation state causes subtractive inhibition of the unaltered ‘pass-through’ signal. The 

result of this complex, nonlinear filtering is the signalling of ‘novel’ transient contrast 

changes (of a particular channel phase, ON or OFF) with the suppression of fluctuating 

textural variations.  

Both of the ON and OFF channels then undergo further strong center-surround antagonism, 

selectively tuning the model to targets with small angular extent (orthogonal to the direction 



Appendix B. A Biologically Inspired Facilitation Mechanism Enhances the Detection and 
Pursuit of Targets of Varying Contrast 

251 

of travel). Sensitivity to both dark and light targets is provided by delaying and multiplying 

each contrast channel (ON or OFF) with a delayed version of the opposite polarity (delayed 

using a low-pass filter, τ=25 ms). This also conveys selectivity for objects that are small in 

the dimension matching the direction of travel, since a small feature will usually be 

characterized by an initial rise (or fall) in brightness at each point that it passes across, 

followed a corresponding fall (or rise) after a short delay. The output image undergoes non-

linear saturation using a hyperbolic tangent function. This serves to ensure all signals lie 

between 0 and 1. Then the maximum is determined as the target. 

An alternative model for direction-selective ‘elementary motion detectors’ (EMDs) is the 

Hassenstein-Reichardt (HR) detector [25]. Two spatially separated contrast signals are 

correlated after a delay (via a low-pass filter). EMDs are inherently direction sensitive, but 

confer no selectivity for small targets. While neither model alone accounts for all observed 

properties of STMDs, we recently showed that cascading the two maintains core STMD 

properties but with direction-selective outputs [26]. As outlined in Figure B.2 we cascaded 

the outputs of an ESTMD model with an EMD (the ‘Reichardt Correlator’) to provide a 

measure of the direction in which targets moved. 

C. Target Pursuit 

In the model variant without facilitation, closed loop pursuit was directed towards the target 

location determined from the maximum output of the array of local ESTMDs. The pursuit 

strategy implemented was ‘saccadic tracking’ as observed from male houseflies, where 

heading is calculated from the error angle between target and the central axis of the pursuer’s 

gaze [27,28]. We implemented re-centring towards the target, only when it moved 5°. This 

strategy promotes target ‘pop-out’ by permitting the spatiotemporal filters to ‘fade away’ 

(high-pass) the more distant background. A successful pursuit was defined as a target 
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captured in less than 2 s within 1.2 m distance from the pursuer and the target had to be the 

winner in the output for more than 50% of the last 6 ms of the tracking. 

D. Facilitation 

We implemented facilitation by building a weighted ‘map’ dependent on the location of the 

winning feature but shifted by the target velocity vector (provided by the cascaded ESTMD-

EMD). We multiplied the ESTMD model output with a low-pass filtered version of this 

‘facilitation map’. The role of the low pass filter time constant here is to control the kinetics 

with which the facilitation matrix enhances the area around the winning feature. We tested 

nine different time constants (40-2000 ms) to obtain an optimum facilitation and investigated 

the effect of this lowpass filter time constant on the model performance. 

  

Figure B.2. The block diagram of the closed-loop simulation in MATLAB/Simulink includes; (1) Early visual 

processing (2) Target matched filtering (3) Added directionality from a Reichardt correlation of the ESTMD 

output (4) Saccadic Pursuit algorithm. 
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E. Evaluation 

1) Input: Target Contrast Measure 

To measure how our target differs from background at each time step of the pursuit in the 

input (after optical blur), we used magnitude of a weighted SNR (WSNR). The weighing 

function w(d) represents the effect of target angular size on its detectability against 

background: 

𝑊𝑆𝑁𝑅 = 𝑤(𝑑) |
𝐼𝑡−𝐼𝑏̅

𝜎𝑏
| ,                  (B1) 

where It represents the target intensity, Ῑb is the mean value of the next nearest neighbours 

of the background to the target point, d is the distance between target and the pursuer, and 

w(d) is defined as: 

𝑤(𝑑) =
1

2
+

1

2
tanh(𝑎 +

𝑏

𝑑
),                              (B2) 

and a and b are chosen based on the target size selectivity of the model. 

2) Output: Target Discriminability Measure 

To determine the discriminability of the target at the output stage, we defined the following 

metric: 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚 =
𝑀−𝑁

𝑀
𝑒(𝐼𝑡−𝐼𝑚𝑎𝑥−𝜎𝐼𝑏

)
,         (B3) 

where M is the total number of background pixels, N represents the number of background 

pixels with equal or higher values than the target, It is the target intensity, Imax is the 

maximum intensity of the background pixels, and 𝜎𝐼𝑏 is the deviation of background pixels 

with higher value than the target value, given by: 

𝜎𝐼𝑏 = √∑ 𝑛𝑖(𝐼𝑡 − 𝐼𝑖)2𝐼𝑚𝑎𝑥
𝐼𝑖=𝐼𝑡

.            (B4) 
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where ni is the number of pixels with the intensity of Ii. Based on this metric, the maximum 

possible discriminability is e, and whenever the target is the winner at the output, the 

discriminability value is greater than 1. 

III. RESULTS 

We ran multiple simulations to determine whether the ESTMD model could successfully 

discriminate targets of either contrast polarity in various natural scenes. Moreover, to 

optimize the facilitation mechanism, we examined the effect of time constant on the model 

performance (Figure B.2) for a variety of target velocities. Additionally, we tested the 

effectiveness of running closed-loop simulations with and without the facilitation 

mechanism (for the same path and initial condition). 

Figure B.3 shows the success of target pursuit averaged over target intensities versus target 

velocity and lowpass filter time constant for all four images (45,000 simulations in total). 

Unsurprisingly, success varies between the images, as expected from their varying degrees 

of background clutter. However, interestingly, the optimum lowpass filter time constant 

changes in different images. In more cluttered backgrounds, the pursuit success improves 

with a higher time constant whilst in the easier images (i.e. Image B) the trend is reversed. 

One possible explanation for this shift in optimum time constant is that there is frequent 

camouflaging in the more cluttered backgrounds and the higher time constant leads to 

enhancement of the area of target disappearance for a longer time. Consequently, the model 

is able to discriminate the target again and pursue it successfully.   

A further 5000 randomized trials were simulated without the facilitation. Figure B.4 shows 

the success of target pursuits at five target intensities (50 randomized paths at each intensity) 

for a target velocity of 6 ms-1 (3/4 pursuer velocity) at the optimum time constant of each 
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image. This figure reveals that the ESTMD algorithm is capable of detecting both dark and 

light contrasting targets.  

Expectedly, as target intensity is increased or decreased away from the mean background, 

pursuit success improves. However, since the target detection depends more on local contrast 

rather than global contrast, the lowest success pursuit does not happen at the exact mean of 

the background. In three of the images even in the low contrast scenarios (trough of the 

curves), the addition of facilitation mechanism improves pursuit success by 2-4%. 

Nonetheless, as the failure in successful pursuit is almost entirely due to target detection 

rather than pursuit, this improvement is not significant for these cases. Overall, improvement 

from facilitation ranges from 0% to 34% in the best-case scenario (for a white target against 

image A). This figure suggests that the best improvement given by addition of facilitation 

happens in a more cluttered environment (i.e. Image A) where the model by itself fails to 

track the target due to its repetitive disappearance.   
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Figure B.3. Average success of target pursuit over target intensities with respect to target velocity 

and lowpass filter time constant. 

Figure B.5 shows three examples of pursuit simulations which the non-facilitated pursuit 

fails whilst the facilitated case results in successful target capture. In all examples, input 

target contrast improves throughout the duration of the pursuit since the target moves to the 

locations that are more optimal with respect to the size tuning inherent in the ESTMD model. 

In Example 1 the non-facilitated simulation pursuit fails rapidly, while addition of 

facilitation reduces pursuit failure and leads to successful target capture. In both Example 2 

and 3, the loss of the target in the un-facilitated case is not due to model failure for target 

detection per se, but rather due to the concurrent detection of distracting (stronger) false 

positive features. The addition of facilitation boosts the local response in the vicinity of the 

previously tracked target, maintaining a crude form of ‘attentional’ focus on the initial target 

in the presence of such distracters. 
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Figure B.4. Pursuit success over a range of target intensities (green channel) from black to white. The small 

squares on the ‘Target Intensity’ axis indicate the mean of the background green channel for the image 

represented with the same colour. 
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Figure B.5. Examples of target discriminability over the duration of a pursuit at both (a) the input stage (optical 

blur) and (b) at the ESTMD output. The red dashed line indicates that the target is the current ‘winner’. 

IV. DISCUSSION 

We have demonstrated the efficacy of a target detection and pursuit algorithm inspired 

directly by insect neurophysiology, with potential future applications for an artificial vision 

system. Our data show clearly that an elaborated version of the ESTMD model incorporating 

summation of feature detectors for both dark and light contrasting targets provides robust 

detection of varying target intensities (of both light and dark) against a wide range of 

backgrounds, rivalling the remarkable sensitivity for low contrast targets of the insect visual 

system upon which it is based [29]. Despite this, success inevitably declines as the target 

approaches the mean intensity of the background. 

Although successful in improving target discriminability and successful pursuit, the 

facilitation mechanism that we have implemented is still a crude approximation to that 

observed in physiological recordings.  Future research will attempt to elucidate the 

properties of the neuronal architecture that underlies facilitation and we will attempt to 
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encapsulate this more completely in further model variants.  However, even with this 

‘simple’ approximation, we see substantial improvement of both target pursuit success and 

discriminability over a range of intensities compared with the un-facilitated case. 
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Abstract— Many computer vision tasks require the implementation of robust and efficient 

target tracking algorithms. Furthermore, in robotic applications these algorithms must 

perform whilst on a moving platform (egomotion). Despite the increase in computational 

processing power, many engineering algorithms are still challenged by real-time 

applications. In contrast, lightweight and low-power flying insects, such as dragonflies, can 

readily chase prey and mates within cluttered natural environments, deftly selecting their 

target amidst distractors (swarms). In our laboratory, we record from ‘target-detecting’ 

neurons in the dragonfly brain that underlie this pursuit behavior. We recently developed a 

closed-loop target detection and tracking algorithm based on key properties of these neurons. 

Here we test our insect-inspired tracking model in open-loop against a set of naturalistic 

sequences and compare its efficacy and efficiency with other state-of-the-art engineering 

models. In terms of tracking robustness, our model performs similarly to many of these 

trackers, yet is at least 3 times more efficient in terms of processing speed.  
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I. INTRODUCTION  

Many target tracking algorithms have been developed over the last decade for a diverse range 

of applications, e.g. surveillance, human assistance robots, wildlife monitoring and smart 

cars. An ideal visual tracker accounts for different problems such as illumination changes, 

rapid changes in target appearance, non-smooth target trajectories, occlusion and 

background clutter. Many engineering methods developed for target tracking simplify these 

scenarios, ensuring a more tractable tracking problem. Moreover, these methods involve 

complex computation (e.g. particle filters), that require large, high-powered processors. 

Consequently, these solutions are often impractical in real-time applications, particularly 

where probability is desirable. These issues highlight the need for an alternative and more 

efficient approach to solving at least a subset of the target tracking problems.  

Studies of insect visual systems suggest there is a solution contained within a ‘simple’ 

neuronal architecture (~ 1 million neurons). For example, the dragonfly is a remarkable 

aerial predator which detects, selects and then chases prey or mates within a visually 

cluttered surround even in the presence of other distracting stimuli, such as swarms of prey 

and conspecifics [1], [2]. The dragonfly performs this task despite its light-weight and low-

power brain and its low-resolution visual system (acuity of ~1°). The neuronal algorithms 

behind such a robust and efficient target tracking behaviour (the envy of engineers) is 

currently being elucidated by our lab and other neuroscientists in the field.  

Our approach to engineering a solution to this target tracking problem is to model the 

neuronal pathway that underlies the dragonfly pursuit behaviour. We record from ‘small 

target motion detector’ (STMD) neurons of the insect lobula in response to different visual 

stimuli. These neurons are size selective, velocity tuned, contrast sensitive, and respond 

robustly to small moving targets even in the presence of background motion [3-6]. Inspired 
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by such electrophysiological recordings from STMD neurons, we previously developed an 

algorithm for local target discrimination [7]. This ‘elementary’ small target motion detector 

(ESTMD) model provides nonlinear spatiotemporal matched filtering for small moving 

targets embedded in natural scenery [7]. Recently, we elaborated this model to include the 

recent observations of response ‘facilitation’ [8,9] (a slow build-up of response to targets 

that move on long, continuous trajectories) [10-14]. We implemented this elaborated model 

in a closed-loop target tracking system that uses an active saccadic gaze fixation strategy 

inspired by insect pursuit behaviour [10-14]. Using this closed-loop model we showed that 

facilitation improves the robustness of pursuit [14]. We also investigated the effect of 

different environmental variables (background clutter, target contrast, target velocity) and 

model parameters (spatial and temporal components of facilitation) on pursuit success. Our 

model predicted an optimal, dynamic behaviour for a temporal component of facilitation that 

was dependent on background clutter [14]. 

Although our model showed robust performance in a constrained virtual-reality 

environment, natural conditions such as illumination changes, local flicker and target 

occlusion could affect model behaviour. In this paper we test the robustness of our model in 

open-loop, using videos recorded from natural scenes [15]. This allows us to compare the 

processing speed and tracking performance of our insect-inspired model with several state-

of-the-art engineering algorithms. 

II. METHODS 

A. Dataset 

We used 15 different image sequences downloaded from a publicly available dataset [15]. 

These sequences had different lengths ranging from 80 to 3000 frames (with an average of 
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558 frames). Figure C.1 shows a snapshot of these videos at the midpoint of each sequence. 

All of these videos included camera motion. 

 

Figure C.1. A single frame ‘snapshot’ of the videos [15] used to test both the performance of our insect-

inspired model as well as other previously published tracking models [23-28]. 

B. Insect-Inspired Target Tracking Model 

Figure C.2 shows an overview of the insect inspired target tracking model implemented in 

MATLAB. The optics of insect compound eyes are limited by diffraction of the facet lenses 

[16]. We modelled this optical blur with a Gaussian function of full-width at half maximum 

of 1.4° [16]. We selected only the green channel of the RGB input to simulate the sensitivity 

of typical insect motion sensitive pathways to green light [17]. Further sub-sampling was 

applied to the blurred image to model the average inter-receptor angle between 

photoreceptors [18]. In biological systems, early visual processing by the photoreceptors 

themselves and 1st order interneurons remove redundant information in space and time, 

using neuronal adaptation and center-surround antagonism. These properties of visual 

system were simulated with spatiotemporal bandpass filtering matched to properties 

observed in insect vision [19]. 
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Figure C.2. The overview of the insect-inspired target tracking algorithm. This model is composed of three 

main subsystems: i) early visual processing, ii) target matched filtering (ESTMD) and iii) integration and 

facilitation of ESTMD outputs. 

The ESTMD subsystem starts with modelling the response properties of rectifying, transient 

cells as observed in several insect species [20, 21] by separating the ON and OFF contrasts 

via temporal high pass filtering (τ=40 ms) and half-wave rectification [7]. These independent 

ON and OFF channels were further processed through a fast adaptive mechanism. The state 

of adaptation was determined by a nonlinear filter which switches its time constant [7, 11]. 

Time constants are ‘fast’ (τ=3 ms) when channel input is increasing and ‘slow’ (τ=70 ms) 

when decreasing. This adaptation state causes subtractive inhibition of the unaltered ‘pass-

through’ signal. Additionally, we implemented strong spatial centre-surround antagonism, 

with each channel surround inhibiting its next-nearest neighbours. This strong surround 

antagonism conveys selectivity for local edge features. Sensitivity to both dark and light 

targets was provided by multiplying each contrast channel (ON or OFF) with a delayed 
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version of the opposite polarity (via a low-pass filter, τ=25 ms) and then summing the outputs 

[12-14]. The neuron-like soft saturation of each resulting ESTMD was modeled with a non-

linear saturation using a hyperbolic tangent function. This serves to ensure all signals lie 

between 0 and 1. A simple form of the competitive selection observed in dragonflies [2] was 

modeled by choosing the maximum ESTMD output as the target location. 

The slow build-up of facilitation as observed in several dragonfly STMD neurons [8,9] 

permits the extraction of the target signal from noisy (cluttered) environments. This 

facilitation mechanism was modeled by building a weighted ‘map’ dependent on the location 

of the winning feature but shifted by the target velocity vector [14]. The directional 

component of this velocity vector was provided using a traditional bio-inspired direction 

selective model; the Hassenstein-Reichardt elementary motion detector (HR-EMD) [23]. 

The HR-EMD uses two spatially separated contrast signals and correlates them after a delay 

(via a low-pass filter). Additionally, the output of the HR-EMD was segmented into three 

equal intervals to estimate the range of the spatial component of the target velocity [14]. We 

multiplied the ESTMD model output with a low-pass filtered version of this ‘facilitation 

map’ (Figure C.2). The time constant of this filter controls the duration of the enhancement 

around the predicted location of the winning feature. 

C. Benchmarking Algorithms 

To establish the computational efficiency of our insect-inspired tracker (IIT) model, we 

compared its performance with six recent highly-cited algorithms for which code is publicly 

available. For a fair comparison with respect to processing speed we chose MATLAB 

implementations of these algorithms. 

1- Incremental visual tracker (IVT) [24] proposes an adaptive appearance model which 

stores the latest eigenvectors of the target image and deletes the old observations. 
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2- L1-minimization Tracker (L1T) [25] employs sparse representation by L1 to provide 

an occlusion insensitive method. This method ignores the target image samples with 

small probabilities to reduce the cost of computation associated with L1 minimization.  

3- Locally Orderless Tracker (LOT) [26] proposes a joint spatial-appearance adaptive 

mechanism to calculate the extent of local disorder in the target. This allows the 

algorithm to track both rigid and non-rigid targets. 

4- Super Pixel Tracker (SPT) [27] embeds a discriminative classifier in super pixel (group 

of pixels which have similar characteristics) clustering to handle changes in scale, 

motion and occlusion. 

5- Tracking, Learning and Detection (TLD) [28] is ranked as one of the most resilient 

available trackers. It combines a discriminative learning method with a detector and an 

optical flow tracker.   

6- Compressive Tracking (CT) [29] proposes an appearance model based on features 

extracted in the compressed domain.  

All models were tested in Matlab (R2012b) on the same PC with an Intel i7 3770 CPU (3.4 

GHz) and 16 GB RAM. The location of a target bounding box in the initial frame was 

provided for the benchmark algorithms. Likewise, in the initial frame, we biased our IIT 

model toward the location of the target by allowing the facilitation to build up in the target 

region for 40 ms prior to the start of the experiment. 
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III. RESULTS 

Comparing the robustness of different target tracking algorithms is a challenging task since 

different metrics could be analysed (e.g. scale, shape representation). Here we limit our 

measure of tracking robustness to correctly locating the target position in each frame. We 

used different metrics to compare the robustness of the algorithms as well as the processing 

speed of the trackers. 

A. Success Plot 

The engineering algorithms represent the target with a bounding box. Therefore, we scored 

each frame as a successful detection of the target if the centre of the bounding box was within 

the ground truth box. Similarly, for our IIT algorithm, if the location of the winning feature 

was within the ground truth box it was considered a successful detection of the target.  

Figure C.3 shows the box-and-whiskers plots summarizing the success of all 7 trackers for 

the 15 different test sequences. On each box, the central mark is the median success rate, the 

edges of the box are the 25th and 75th percentiles, and the whiskers extend to the most 

extreme data points that are not considered outliers (n=15). The IVT algorithm has the 

highest median which shows it was capable of correctly locating the target in all frames in 

half of the sequences. However, the 25 percentile and lowest value are at 30% and 5% 

respectively, indicating a lack of flexibility of this model under certain circumstances. 

Among all algorithms, TLD performs more reliably under different conditions (i.e. it has the 

highest 25th percentile). Unlike our ‘simple’ feed-forward computations, these trackers 

contain several complexities (as described in the method section). Despite this difference, 

the median of our algorithm (IIT) indicates a performance on par with these other algorithms. 

Additionally, our model has the lowest inter-quartile range (distance between the 25th and 
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75th percentiles) showing that our model can perform as robustly as the state-of-the-art 

engineering algorithms under different natural conditions. 

 

Figure C.3. Box and whiskers plot for successful target tracking of different algorithm for all 15 different 

image sequences. 

B. Precision Plot 

The Precision plot is an evaluation method recently adopted to measure the robustness of 

tracking [15, 30, 31]. It shows the percentage of the frames where the Euclidean distance 

between the center of the tracked target and the ground truth is within a given ‘location error’ 

threshold. Figure C.4 shows the precision plot for all trackers. A higher precision at low 

thresholds means the tracker is more accurate. 

Figure C.4 shows that our algorithm (IIT) has the best precision at the threshold of zero. 

Between thresholds of 0 and 10 pixels its precision increases rapidly, however is still below 

the ultimate precision of TLD, L1T and IVT. The main reason behind this behaviour is likely 

the size selectivity of our model; i.e., it is tuned to small sized objects. Large objects are 

composed of small parts allowing our model to lock on to these sub-features of the larger 

object. The result is effective target tracking, but with the location offset from the centre of 
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the object. Our model’s precision increases, catching up to those of other algorithms in the 

threshold range of 10 and 20 pixels. By a location error threshold of 20, our IIT exceeds the 

precision of all trackers except TLD. The precisions at the 20 pixel threshold widely used as 

a performance benchmark in the computer vision literature [15], [30], [31] are given as the 

representative precision score in Table C.1. 

 

Figure C.4. Precision plot for all 15 sequences. 

C. Overall Performance 

Table C.1 provides a descriptive summary of performance averaged across all 15 videos. In 

addition to the average success rate of the 15 sequences, we also calculated the weighted 

success which shows the percentage of the successful frames out of all the 8374 tested 

frames. This normalization accounted for the difficulty of ‘long term’ tracking, where it is 

easier for the trackers to lock on to the target in a short sequence than a long one.  

Table C.1 shows that the average success for our model is below that of TLD and IVT and 

close to LOT and L1T. However, when it comes to weighted success, our model takes second 

place, indicating very good long term tracking performance. Our facilitation mechanism 

(based on the recently observed facilitatory behaviour of target-detecting neurons [8,9]) 
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builds up slowly in response to targets that move in long continuous trajectories, thus 

improves target detection as tracking progresses. 

Table C.1. Summary of experimental results on the 15 video dataset. 

Performance 

Measure 

Algorithm 

IIT IVT L1T LOT SPT TLD CT 

Average 

Success (%) 
62.7 74.0 63.8 62.2 55.6 74.5 56.6 

Weighted 

Success (%) 
73.0 62.3 57.6 34.4 24.6 86.9 48.7 

Precision   

(20 px) 
0.53 0.46 0.53 0.01 0.21 0.70 0.50 

D. Processing Speed 

Although comparable in tracking performance, our model excels in processing efficiency, a 

critical concern in target tracking applications. Indeed, many trackers are considered 

impractical in real-time scenarios due to their long processing duration. Figure C.5 shows 

the processing speed of the tested algorithms, with the IIT exceeding all other trackers (note 

the logarithmic scale). Our model performs approximately 12 times faster than IVT and TLD 

and 3 times faster than CT. 
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Figure C.5. Processing speed of trackers.  

IV. CONCLUSION 

We have demonstrated the robustness and efficiency of a target tracking algorithm inspired 

directly by insect neurophysiology. Our data clearly shows that this model can perform 

robustly under natural conditions. Despite the relatively simple mechanism we implemented, 

the robustness of our model can compete with the state-of-the-art engineering trackers. A 

limitation of our model is that it was primarily designed to detect and track small moving 

targets. Therefore, it only tracks larger objects composed of smaller moving parts (within 

the size tuning range of our model). This limits its overall performance robustness compared 

with the best of the engineered trackers (such as TLD). Nevertheless, in terms of processing 

speed, our model outperforms all of the engineering trackers, mimicking the remarkable 

efficiency of the insect visual system upon which it is based. As such, it may be well suited 

to applications where efficiency is paramount. 

Here, we tested our algorithm in open-loop, however, active vision may be a key to 

exploiting visual information by the simple insect brain for complex tasks such as target 

tracking. Future research will attempt to implement this model along with insect active 
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vision system in a robotic platform to test the performance of them together under real-world 

conditions.  
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Appendix D. Supplementary Material for Chapter 4 
 

               

Figure D.1. Process of calculating facilitation matrix (this is referred to as FG(r’) in Fig.1). The estimated 

location of the target in the next frame is the input to this process. The weight of each STMD in the facilitation 

matrix was calculated by Gaussian kernels 𝑔(𝑥|𝜇𝑖, 𝜎
2) = 𝑒( − 0.5 ( 𝑥 − 𝜇𝑖)

2  / 𝜎2 ) in both horizontal and vertical 

direction. x and y refer to estimated column and row of the target, µi={0, 5, 10, 15, 20, 25, ...} is the mean and 

σ is the standard deviation. Noting that the full-width at half maximum is desired to be 5°, the standard deviation 

of the Gaussian is therefore 𝜎 =
5

2√2𝑙𝑛2
 which provides 50% overlap between neighbouring small-field STMDs. 

Jk,h is a k×h all-ones matrix.  r and c represent the number of rows and columns in the output of ESTMD, 

respectively. The output of each stage is shown for x(t+1)=39 and y(t+1)=12. 
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Appendix E. Supplementary Material for Chapter 5 
 

Table E.1. Statistical properties of the images which were used both in closed-loop simulations and indoor 

robotic experiments. The clutter is calculated using the method developed by Silk (1995). 

Background 

Mean of 

Background   

(green channel, 8-

bit) 

Background 

Clutter 

Field 130 0.15 

House 110 0.21 

Library 98 0.27 

Botanic 92 0.3 

Forecourt 97 0.28 
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Figure E.1. Results of closed-loop simulations against natural images modified from Figure 4 of Bagheri et 

al. (2015a). Pursuit success averaged over a range of target intensities for different background images 

(illustrated in Figure 4a), reveal higher pursuit success (%) for less cluttered scenes (i.e., Field and House). 

These results show that the optimum facilitation time constant varies dependent on both target velocity and the 

background scene. 
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Figure E.2. Top view (xy) of the robot trajectory in a) successful and b) unsuccessful experiments. The y-axis 

is aligned with the robot wheels at the start of experiment and (x,y)=(0,0) represent the robot position at t=0. 

The markers show the robot and target positions within 4 s time intervals. In the unsuccessful experiments the 

target is kept frontally fixated for a while, however, later during the pursuit the target drifts from the centre of 

field of view as the model cannot detect the target successfully. 
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Movie 1. ‘Backyard’ video which was projected onto the wall in indoor experiments. 

Movie 2. ‘Park’ video which was projected onto the wall in indoor experiments. 

Movie 3. An example of the robot footage robot autonomously tracking target in outdoor 

environment. 

Movie 4. Video output of robot autonomously tracking target in outdoor environment. The 

purple square marks the location of the winning feature detected by the robot. 

Appendix: Mathematical Equations for the Insect-Inspired Target 

Tracking Model 

1) Spatial Gaussian Blur 

The optical blur of the compound eye of flying insects is modelled by a Gaussian function 

(full-width at half maximum of 1.4°) (Stavenga, 2003): 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒(−(𝑥−𝜇)2 (2𝜎2))⁄  , (E1) 

where µ and σ are the mean and standard deviation respectively. Given that the desired full-

width at half maximum is 1.4° (Δρ=1.4), the standard deviation of the Gaussian is: 

𝜎 =
∆𝜌

2√2ln2
 . (E2) 

2) Temporal Bandpass Filtering of Early Visual Processing 

The band-pass temporal properties of early visual processing were simulated with a discrete 

log-normal transfer function (Halupka et al., 2011): 

𝐺(𝑍) =
0.0001𝑧7 − 0.0011𝑧6 + 0.0052𝑧5 − 0.017𝑧4 + 0.0439𝑧3 − 0.0574𝑧2 + 0.1789𝑧 − 0.1524

𝑧8 − 4.333𝑧7 + 8.685𝑧6 − 10.711𝑧5 + 9.0004𝑧4 − 5.306𝑧3 + 2.1448𝑧2 − 0.5418𝑧 + 0.0651
 

(E3) 
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where G(z) is the transfer function of the 8th order temporal filter in the z-domain (sampling 

time Ts =1 ms). 

3) Spatial Highpass Filtering of Early Visual Processing 

The weak centre-surround antagonism was modelled by convolving the image with kernel 

H: 

𝐻 =

[
 
 
 
−1

9⁄
−1

9⁄
−1

9⁄

−1
9⁄

8
9⁄

−1
9⁄

−1
9⁄

−1
9⁄

−1
9⁄ ]
 
 
 

  . 

 

 

(E4) 

4) Half-wave Rectifications of the ESTMD  

The separation of the ON and OFF channel was modelled by half-wave rectification 

(HWR1): 

𝐻𝑊𝑅1 = {
𝑂𝑁 = {

𝑥 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

𝑂𝐹𝐹 = {
−𝑥 𝑖𝑓 𝑥 < 0
0 𝑖𝑓 𝑥 ≥ 0

  . 

 

(E5) 

A second half-wave rectification was applied to the output of the strong centre-surround 

antagonism to eliminate the negative values: 

𝐻𝑊𝑅2 = {
𝑥 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

  . 
(E6) 

5) Centre-surround Antagonism of the ESTMD 

Strong spatial centre-surround antagonism was applied by convolving each independent 

channel with CSA kernel: 
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𝐶𝑆𝐴 =

[
 
 
 
 
−1 −1 −1 −1 −1
−1 0 0 0 −1
−1 0 2 0 −1
−1 0 0 0 −1
−1 −1 −1 −1 −1]

 
 
 
 

 . 

 

(E7) 

6) ESTMD Lowpass Filter: 

A discrete first order low-pass filter (τESTMD=25 ms, Ts=1 ms) were used to delay each 

contrast channel (ON or OFF) 

𝐿𝑃𝐸𝑆𝑇𝑀𝐷(𝑧) =
𝑧+1

51𝑧−49
 . (E8) 

7) Saturation: 

The neuron-like soft saturation of ESTMD outputs was modeled with a hyperbolic tangent 

function: 

𝑠(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥  . (E9) 

8) Facilitation Lowpass Filter: 

To mimic the slow build-up of the response of CSTMD1 neurons the ESTMD output was 

multiplied with a low-pass filtered version of this facilitation map (Ts=1 ms).  

𝐿𝑃𝐹𝑎𝑐(𝑧) =  
𝑧 + 1

(1 +
2𝜏𝑓

𝑇𝑠
) 𝑧 + (1 −

2𝜏𝑓

𝑇𝑠
)

 , 
(E10) 

we varied the time constant of this discrete low-pass filter (facilitation time constant, τf) in 

the experiments. 
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Appendix F. Moment of Inertia Metric 
 

In Chapter 3, to provide a metric to represent pursuit success (combining both efficiency and 

efficacy) at different time constants, was calculated as the first moment of area around the 

axis perpendicular to x=2 and y=0 (which we refer to this axis as z') in Figure 3.2 and Figure 

F1. This means that higher frequency of success at shorter capture time yields a higher 

moment of inertia. For this purpose, the x-axis is normalized by the maximum simulation 

time (2 s) and the y-axis is divided by the total number of simulations for each time constant 

(200 simulations), giving a performance metric of 

 𝐼𝑧′ = ∑ (√(
2 − 𝑥

2
)
2

+ (
𝑦

200
)
2

∆𝐴) 

 

(F1) 

where Iz’ is the first moment of area around z' (ʘ), and ΔA represents the area of each small 

element under the curve.  

 

Figure F.1. Distribution of capture time for simulations with target-pursuer velocity ratio (|Vt|/|Vp|) of ¾ 

(facilitation time constant=133 ms). z' (the dot) is the axis emerging from the page at x=2 and y=0. 
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Appendix G. STNS Dataset 
 

 

Figure G1. A single frame ‘snapshot’ of the videos in STNS dataset. The red rectangle shows the target 

bounding box.  
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Figure G1. (continued) A single frame ‘snapshot’ of the videos in STNS dataset. The red rectangle shows the 

target bounding box.  
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Figure G1. (continued) A single frame ‘snapshot’ of the videos in STNS dataset. The red rectangle shows the 

target bounding box.  

 

 




