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ABSTRACT
Software developers often reuse code from online sources such
as Stack Overflow within their projects. However, the process of
searching for code snippets and integrating them within existing
source code can be tedious. In order to improve efficiency and
reduce time spent on code reuse, we present an automated code
reuse tool for the Eclipse IDE (Integrated Developer Environment),
NLP2TestableCode. NLP2TestableCode can not only search for Java
code snippets using natural language tasks, but also evaluate code
snippets based on a user’s existing code, modify snippets to im-
prove fit and correct errors, before presenting the user with the
best snippet, all without leaving the editor. NLP2TestableCode also
includes functionality to automatically generate customisable test
cases and suggest argument and return types, in order to further
evaluate code snippets. In evaluation, NLP2TestableCode was ca-
pable of finding compilable code snippets for 82.9% of tasks, and
testable code snippets for 42.9%.

CCS CONCEPTS
• Software and its engineering → Software libraries and
repositories.

KEYWORDS
Crowd-generated code snippets, Stack Overflow, Optimisation

1 INTRODUCTION
Among software developers, reusing code snippets from the In-
ternet is a common occurrence, with 79% of developers reporting
that they copied code from the popular programming question and
answer site Stack Overflow (SO) [14] for use in their own projects
within the last month [1]. While the benefits of this kind of code
reuse are hard to quantify, case studies have previously observed a
return of investment of up to 400% [9]. With 19 million questions
and 29 million answers as of March 2020 [6], Stack Overflow is
one of the most popular resources for code snippets; however, due
to their crowd-sourced nature, the quality of code snippets varies,
with only 8.41% of answers containing compilable code [20]. This
makes the process of integrating code snippets time-consuming;
time that could be spent writing code is instead spent correcting
compiler errors.

Existing code reuse tools like NLP2Code [4] and Blueprint [3]
automate the process of searching for code snippets within the
editor; however, snippets are inserted as-is and developers must
still make changes in order to integrate them into existing source
code. On the other hand, tools like CSNIPPEX [20] and Jigsaw [5]
automate code corrections and integration, but rely on a developer

to supply a code snippet. As it stands, no existing tool attempts to
automate the entire code reuse process, nor assist developers with
testing code from online sources.
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Figure 1: NLP2TestableCode’s process, from task to snippet.

To address these issues, we employ a combination of methods
from data-driven search-based software engineering (DSE) [12],
resulting in NLP2TestableCode, a plug-in for the Eclipse IDE that
(1) uses natural language tasks to search for relevant Java code
snippets from a database of SO threads, (2) integrates code snippets
by making changes based on existing source code, (3) corrects com-
piler errors and (4) provides automated testing tools to find working
snippets. By automating all of these individual parts of the code
reuse process, NLP2TestableCode aims to improve productivity
and free up developers for other work. Because context switching
has been shown to have a negative effect on productivity [19], we
implement NLP2TestableCode as an in-editor tool that reduces the
need to switch between the IDE and web browser.

The process, from task to inserted snippet, can be seen in Figure 1.
Users begin by entering a natural language task where they would
like to insert a snippet. Using this task, the plug-in will find relevant
SO threads to extract code snippets from. For each code snippet, a
version of the user’s code with this snippet inserted is constructed
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(a) Snippet

Alternatively, you can use an Ints method from the Guava library:
import com.google.common.primitives. Ints ;
import java . util .Optional ;
This makes for a concise way to convert a string into an int:
int foo = 0;
foo = Optional . ofNullable (myString)

.map(Ints :: tryParse )

. orElse (0);

(b) Copy and Paste
public class Main{

public static void
main(String [] args ){

import com.google.common.primitives. Ints ;
import java . util .Optional ;

int foo = 0;
foo = Optional . ofNullable (myString)

.map(Ints :: tryParse )

. orElse (0);
}

}

Figure 2: Example code snippet adapted from a SO post [21] and the result after being inserted into an existing file.

then compiled. Snippets that successfully compile are added to
the final set of processed snippets, while non-compilable snippets
undergo the code correction process. Here, NLP2TestableCode at-
tempts to integrate, correct specific compiler errors and delete lines
from snippets to reduce the number of errors. When snippets com-
pile, or are finished being processed, they are added to the set of
processed snippets, which is sorted by number of errors. The first
snippet, the one with the least compiler errors, will be inserted into
the user’s code. From here, users can optionally test the retrieved
set of snippets, being provided with input and output type sugges-
tions and a default JUnit test case to customise. The ordering of
snippets is then updated based on number of passed tests, changing
the inserted snippet if necessary.

Table 1: Comparison of NLP2Code and NLP2TestableCode.

Plug-in Snippets
Retrieved

Tasks with
Compilable

Snippets

Tasks with
Testable
Snippets

NLP2Code 355 21.3% 0%
NLP2TestableCode 6,954 82.9% 42.5%

We measured NLP2TestableCode against 47 tasks and compared
these results to NLP2Code. A summary of this comparison is pre-
sented in Table 1, NLP2TestableCode is capable of presenting users
with compilable code snippets for 82.9% of sample tasks, while in-
creasing the number of compilable snippets out of the total retrieved
from 4.7% to 29.3% snippets using code correction approaches.

The public GitHub repository for NLP2TestableCode is available
at: https://github.com/Brittany-Reid/nlp2testablecode

2 MOTIVATING EXAMPLE
Consider a typical code reuse situation where a developer would
like to find an example Java code snippet illustrating how to convert
a string into an integer. First, the developer would need to search
for snippets; in this case the developer enters the query "How to
convert string to int in Java" into their search engine. The first
Stack Overflow thread returned for this query has 44 answers, each

containing a code snippet. A developer cannot insert, integrate and
test every snippet within a reasonable time, instead they must rely
on additional information such as votes and comments, or their
own programming knowledge to select suitable snippets.

import com.google.common.primitives. Ints ;
import java . util .Optional ;
public class Main {

public static void main(String [] args ){
+ String myString;
+ myString = "empty";

int foo = 0;
foo = Optional . ofNullable (myString)

.map(Ints :: tryParse )

. orElse (0);
}

}

Figure 3: The snippet in Figure 2 modified to compile.

Figure 2a shows an example SO answer and the embedded snip-
pet within. The first step to integrating this snippet is to copy and
paste it into an existing file. The result of this copy and paste can be
seen in Figure 2b. In this state the file will not compile; the import
statements are not in the correct place and the variable myString
is missing a declaration. To correctly integrate this snippet, the
developer must make a series of changes to correct these problems,
including moving the import statement to the start of the file and
inserting a declaration and definition for myString. The resulting
compilable snippet can be seen in Figure 3.

In contrast, using NLP2TestableCode only requires a developer
to enter their task within Eclipse, after which they will be pre-
sented with set of snippets modified for them and sorted by best fit.
NLP2TestableCode is able to automatically move import statements,
fix common syntax errors like missing semi-colons and add missing
variable declarations.

3 RELATEDWORK
Similar tools that help developers find online code snippet within
their IDE include NLP2Code [4], Blueprint [3], Seahawk [15],
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Prompter [17] and Bing Developer Assistant (BDA) [25]. There
has also been much research into using neural networks to map
natural language to code snippets [24][23]. While some in-editor
tools attempt to evaluate the quality or fit of code snippets, such as
NLP2Code’s use of SO vote counts to rank snippets and Prompter’s
ranking system that takes into account existing code [16], none
focus on automating the entire code reuse process, including the
integration of code snippets.

Research into automated code corrections on Stack Overflow
snippets has found that the number of compilable Java snippets
could be improved from 1% to 3.02% through simple code fixes,
such as adding missing semi-colons [22]. Tools like Jigsaw [5] and
CSNIPPEX [20] explore approaches to automated code correction
and integration. Jigsaw is a plug-in for Eclipse that can take a code
snippet and modify it in order to integrate it within an existing
project, while CSNIPPEX takes a Stack Overflow URL and attempts
to generate a compilable file from the snippet by correcting compiler
errors using Eclipse’s Quick Fix functionality [7]. However, neither
of these tools aid the user in finding snippets.

µSCALPEL [2] is an automatic code transplant tool that uses ge-
netic programming and testing to transplant code from one program
to another. Using test cases to define and maintain functionality,
small changes are made to the transplanted code, and code that
does not aid in passing tests can be discarded, reducing the code
to its minimal functioning form. µSCALPEL is limited in that it is
designed to transplant code from one working program to another,
not example code like that found on Stack Overflow.

4 APPROACH
NLP2TestableCode undergoes a multistage process to take a natural
language task and insert into the user’s code the snippet that best
fits. These steps include retrieving relevant code snippets from a
database of Stack Overflow threads, evaluating code snippets within
the context of a user’s existing code, modifying snippets that do
not compile through the use of integration, targeted fixes and line
deletion and then finally sorting the processed set of snippets and
inserting the best snippet. NLP2TestableCode is implemented as a
plug-in for Eclipse that functions in a single window, and users can
cycle through processed snippets as they become available. This
cycling replaces the currently inserted snippet with the next best,
allowing a user access to more than a single chosen snippet.

An optional testing stage is included to further evaluate snippets.
When evaluation and correction is complete, compilable snippets
are processed to determine possible argument and return types
for testing. This type information is used to suggest test input and
output, then used to construct both a customisable skeleton JUnit
test case and testable functions from code snippets. After testing,
snippet ordering is updated based on passed tests and the inserted
snippet is updated with a new best if necessary.

4.1 Using Natural Language Tasks to Find
Relevant Snippets

Searching for code snippets effectively is a crucial aspect of au-
tomating the code reuse process. Fortunately, code snippets on
Stack Overflow are surrounded by natural language questions, ex-
planations and comments. The challenge of mapping tasks to code

Figure 4: Task suggestions through content assist.

snippets is ensuring that as many relevant snippets are retrieved
as possible.

Online searches like the one used in NLP2Code [4], with a hard-
coded limit of 12 snippets per task, are restricted by the time re-
quired to download each Stack Overflow thread. To address this,
NLP2TestableCode uses an offline SO database, pre-filtered to only
include threads tagged with Java, and is capable of retrieving hun-
dreds of snippets in less than a second. The size of this filtered
dataset is 6.84GB, containing 1.5 million questions and 2.5 million
answers.

Stanford’s CoreNLP [10] is used to lemmatise queries and ques-
tion titles, reducing their words to common forms. Stop words like
the, an and is are removed, using a list from NLTK [18] for Python,
along with the word java, as threads are already filtered by language.
Each word in a processed title is added to a database, associated
with a list of threads with that word in the title; similarly, processed
query words are used to retrieve those same sets of threads.

Users simply enter a task where they would like a snippet to be
inserted, either by selecting a task from the suggestions presented
through Eclipse’s content assist feature, based on NLP2Code’s [4]
task suggestion functionality, or by ending a custom task with a
questionmark.With the selected task, the plug-in will begin the pro-
cess of searching, evaluating and fixing snippets. Combined, these
features enable users to integrate code from SO into an existing file
without having to leave the editor.

4.2 Evaluating Code Quality
NLP2TestableCode presents the user with the ‘best’ snippet from
the total set of retrieved snippets for a given task. Because the plug-
in aims to reduce the amount of manual integration work, snippets
should be evaluated based on how well they integrate within the
user’s existing code, with the snippet requiring the least work to
integrate being presented to the user first. To do this, snippets and
the user’s existing code are combined at the point of task entry, then
this code is compiled to count errors. An example of this combined
code can be seen in Figure 5.

By compiling snippets within the context of a user’s existing
source code, NLP2TestableCode can apply a context sensitive anal-
ysis of each snippet. The logic is that snippets which integrate well
within existing code should produce less errors than those that do
not. By ranking snippets by compiler errors, snippets that best fit
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class Main{
public static void main(String [] args ){

+ public static void main(String [] args ){
+ int result = Integer . parseInt (args [0]);
+ }

}
}

Figure 5: A snippet, highlighted, inserted into existing code.

existing code can be shown to the user before others. This also
means that the set and ordering of compiling snippets can change
based on insertion location and surrounding code. Likewise, using
compiler errors as a measure of quality enables snippets containing
syntax errors or missing elements to be ranked lower than those
without errors. The snippet highlighted in Figure 5 is an example
of an otherwise correct snippet that contains elements that would
cause it to fail to compile when inserted into an already existing
main function. However, a snippet that contains only the inner
statement would compile with no errors.

Because NLP2TestableCode preforms many compiles, it employs
the use of an in-memory compiler to reduce compile time. By using
in-memory compilation, no files are written to the disk during
evaluation. The plug-in makes use of the Eclipse Compiler, the
same compiler used within the IDE to underline compiler errors
and warnings; because of this the Eclipse Compiler is better suited
to compiling incomplete or incorrect code.

4.3 Code Correction and Integration
Most code snippets on Stack Overflow do not compile when in-
serted as-is. Using a range of automatic code correction techniques,
NLP2TestableCode is able to improve the number of compilable
snippets and reduce the amount of integration work required from
users. All snippets that contain compiler errors are sent through
the code correction process. Changes to snippets are only accepted
if they decrease the number of compiler errors.

4.3.1 Automatic Integration. Snippets on Stack Overflow are writ-
ten for example purposes and thus snippets range from single
statements to full classes with multiple functions. Depending
on the insertion location, these elements may be unnecessary
and during manual integration be removed or shifted around.
NLP2TestableCode is capable of handling a subset of these instances
automatically, ‘snippetising’ larger pieces of code.

Firstly, all snippets have any import statements extracted during
initial processing. These import statements are stored separately
from the rest of the snippet, to be inserted into their correct loca-
tion when required. Without separating import statements, many
snippets would have them inserted in incorrect locations.

Frequently SO answers wrap example code within potentially
unnecessary classes and functions. Many of these class and method
declarations can be removed without altering a snippet’s function-
ality. Snippets are parsed to determine if they contain a class or
function. Where snippets contain more than a single class and/or
function, they are skipped; these are a more complex case the plug-
in currently cannot handle. Classes that contain fields are also

ignored, assuming that a snippet that includes fields is demonstrat-
ing their usage in some way, and that the class itself is part of the
snippet’s functionality.

NLP2TestableCode handles the simple case of inserting snippets
that contain a main function into an existing main function. This is
considered a simple case because the arguments of both functions
will be the same. The function declaration can simply be removed
along with the closing bracket. After the integration process has
been preformed, snippets are compiled and the changes are only
kept if they reduce compiler errors. This ensures that the integration
process improves the correctness of a snippet.

4.3.2 Targeted Fixes. Many snippets on SO contain syntax errors,
missing imports and undeclared variables that a developer would
typically need to manually correct in order to integrate a snippet.
NLP2TestableCode addresses these common compiler errors with
targeted fixes, and can insert missing semi-colons and other tokens,
find missing import statements, add variable declarations for un-
defined variables and remove error causing tokens. Compiling a
snippet generates a list of diagnostic objects for each error, that
contain error codes, location information and error messages. Using
both error codes and information within error messages, targeted
fixes can be applied to a snippet. The plug-in attempts to fix each
error once, and if the fix reduces the number of errors, the changes
to the snippet are accepted. Because one fix can sometimes resolve
multiple errors and in order to avoid skipping any errors, previously
processed errors must be stored and used to recalculate the next
error to process.

The plug-in is capable of looking through packages on the
Eclipse project classpath to solve missing import statements. It
is not uncommon for type names to be used by multiple pack-
ages, which makes determining the correct one to use a challenge.
In this case, the plug-in prefers classes that belong to packages
in the default Java library. This allows common packages like
java.util.List to be preferred over less common alternatives
like com.sun.tools.javac.util.List.

When undefined variables are found, the plug-in utilises Java-
Parser [8] to analyse usage and determine a type. For example, in
the line of code var = "some text"; the variable var can be
assumed to be of type String by the value it is being assigned. This
type information is then used to define and assign a default value
to the variable. If no type can be determined through usage, the
plug-in brute forces common types such as Integer, Character,
String, Boolean, Double, Long and Float.

4.3.3 Line Deletion. NLP2TestableCode’s final stage of code correc-
tion is line deletion. The aim of line deletion is to reduce a snippet
into its optimal form through small changes. Line deletion uses a
local search algorithm, detailed in Algorithm 1. The current best,
Sbest , is initialised with the unmodified snippet. For each loop over
the snippet, lines are deleted in order starting at the bottom of a
snippet and each deletion is accepted if it does not increase the
number of errors. A snippet is continuously looped over until no
more changes can be made.
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Algorithm 1: Deletion Algorithm (Local Search)
Sbest ← Initial snippet;
done← f alse;
while done == f alse do

done← true;
line← Sbest .length;
for int j =0 to Sbest .length − 1 do

if Sbest (line).Deleted then
line ← line − 1;
continue

Scurrent ← Sbest ;
Scurrent .Delete(line);
errors← Compile(Scurrent );
if errors <= Sbest .Errors then

Sbest ← Scurrent ;
done← f alse;

line ← line − 1;
return Sbest ;

4.4 Automated Testing
NLP2TestableCode automates the testing process by integrating
JUnit. After retrieving a set of snippets, a user can choose to test
these snippets without leaving the current file. The plug-in provides
recommendations for argument and return types, and using a given
set of argument and return types can generate a default JUnit test
case. This test case is inserted into the open file where a user can
customise it, and with the press of a button use this test case to
test the set of compiling snippets. After testing is complete, the
inserted snippet updates with the new best. This testing process
also requires transforming snippets into testable functions with
input and output.

4.4.1 Suggesting Argument and Return Types. An important part
of automating the testing process is being able to identify from a
piece of code, which variables could be input and which output.
By analysing compilable code snippets, the plug-in can attempt to
guess appropriate input and output types. The plug-in does two
things: it assumes that the last line of code in a snippet must be
relevant to the functionality in some way, and analyses this line for
a possible return argument, while it also looks at the variable decla-
rations within a snippet to guess arguments. From these variables,
the type information is extracted and used to provide suggestions
for testing. This can be seen in the snippet in Figure 6, the last
variable being assigned, foo, will be chosen as output, while the
variable myString will be selected as input. From these variables,
the types String and int will be extracted, to be used as a type
suggestion for a argument and return value.

If a user chooses to test a set of retrieved snippets, the return and
argument type suggestions will be generated and displayed to the
user. The user can also choose to insert their own type information.
This type information, as well as the number of arguments, is used
to construct both a testable function from a snippet, but also a
skeleton JUnit test case. The test case’s default input is generated
using JavaParser’s default type value information. An example JUnit
test case for the types String and int can be seen in Figure 7.

Output

Input String myString = "empty";

int foo=0;

foo = Optional . ofNullable (myString)
.map(Ints :: tryParse )
. orElse (0);

Argument: String
Return: int

Figure 6: How a snippet is processed for input and output.

@Test
public void JUnitTest (){

assertEquals ( snippet ( "empty"), 0);
}

Figure 7: An automatically generated JUnit test case.

4.4.2 Building a Testable Function. Informed by the provided argu-
ment and return type information, the plug-in attempts to generate
from each snippet a function with input and output that can be
tested. This process is similar to the one used to suggest argument
and return types from variables, but with added information. In-
stead of looking at all variables, this search only looks for variables
of the given type and number. The last variable of a specified type
is accepted as the return, then variables that match argument types
are searched for starting at the beginning of the snippet. Where
not enough variables of the given types can be found, a testable
function is unable to be generated.

public static int snippet ( String myString){
int foo = 0;
foo = Optional . ofNullable (myString)

.map(Ints :: tryParse )

. orElse (0);
return foo ;

}

Figure 8: Snippet from Figure 6 converted into a function.

4.4.3 Testing. The plug-in uses JUnit to run the user’s test case on
the generated testable function. Both the JUnit test case and the
testable function are combined into a compilable class file, and this
code is run in a separate process. Running the code in a separate
process allows the plug-in to effectively kill the process if it times
out, for example if the code contains an infinite loop. If code runs
without errors and passes the test case, the snippet is marked as
passing, and ranked above all non-passing snippets.

5 EVALUATION
NLP2TestableCode was evaluated against 47 sample tasks, refer-
enced in the appendix. These tasks are a subset of the total 101
tasks from the original NLP2Code user study [4] for which users
used NLP2Code’s auto-complete feature. We chose to evaluate
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NLP2TestableCode against the same set of tasks because they are a
representation of the types of tasks real users would find helpful.

5.1 How many code snippets can our approach
retrieve?

In order to maximise the number of retrieved snippets per task,
different processing techniques for keywords were compared. The
initial number of retrieved snippets without the use of lemmatiza-
tion and removal of stop words was 2,832. We also measured the
effects of both lemmatisation using CoreNLP and stemming using
the Porter stemming algorithm [11]. Stemming is the process of re-
moving word endings, such as "-ing", "-ed" and "s", to reduce a word
to a common form, or its stem. Unlike lemmatisation, stemming
does not analyse word context or use dictionary look ups, meaning
lemmatisation typically outperforms stemming. However, it has
been noted that tools like CoreNLP can misinterpret technical lan-
guage, like that used when discussing software development [13],
because they are trained on more general data. For this reason,
comparing both results is necessary.

Table 2: Comparison of total retrieved snippets.

Omit Stop
Words?

No Processing Stemming Lemmatisation

No 2832 4100 5091
Yes 3464 5646 6954

Table 2 shows the effect different keyword processing tech-
niques(no processing, stemming and lemmatisation) and the omis-
sion of stop words have on the total number of code snippets re-
trieved from the Stack Overflow database. The initial 2,832 snippets
could be increased to 4,100 using stemming and 5,091 using lem-
matisation. The use of stop words further increases the number of
retrieved snippets for all processing techniques, with the highest
number of snippets being 6,954 using lemmatisation and omitting
stop words, with at least one code snippet for all 47 tasks. These
results show that despite its limitations, lemmatisation is still more
effective than stemming on programming related tasks, and based
on these results we chose to implement it within NLP2TestableCode.

5.2 How many code snippets are compilable?
Wemeasured the number of compilable snippets before any changes
in order to provide a benchmark for the results of code corrections.
Each retrieved code snippet was inserted into an empty class and
main function before being compiled. Because the results of com-
piling snippets are dependant on a user’s existing code, we chose
a simple case like this to represent inserting a snippet into some
existing structure while avoiding errors caused by, for example,
duplicated pre-existing variables.

The number of snippets that compile without changes was 327,
out of 6,954 total code snippets. For all 47 tasks, 24 have at least a
single compilable snippet. The per task breakdown of compilable
snippets can be seen in Figure 9, with tasks sorted in descending
order based on their final number of compilable snippets after
correction.

Figure 9: The initial number of compilable snippets per task.

5.3 What are the most common error types?

Figure 10: 10 most common compiler errors in snippets.

We compiled the initial set of code snippets and recorded the
types of error codes generated, along with the number of occur-
rences per error. Each error code generated by the Eclipse compiler
corresponds to a constant variable in the Eclipse IProblem inter-
face that provides a short description of the error. This information
was used to inform what errors should be the focus of our targeted
fixes, in an effort to maximise their effect.

Figure 10 shows the 10 most common error types generated dur-
ing the compilation attempt on the initial unmodified set of snippets.
Many of these are parsing errors, such as missing semi-colons or
incorrectly placed elements, while others include undeclared vari-
ables and types. The non-specific ‘parsing error’ and ‘cannot be
resolved’ errors make up a large portion of errors and generate com-
piler messages indicating that these are used when a more specific
error cannot be found, for example, the ‘cannot be resolved’ error
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can be triggered by both variables and type names, likely when this
is ambiguous.

5.4 How many code snippet can our approach
make compilable?

In order to determine the effects of each fix, the number of com-
pilable snippets were recorded after each stage of code correction.
Again, code snippets were inserted into an empty main function
within an empty class before being compiled.

Figure 11: The per task breakdown of compilable snippets
after integration in pink, compared to the initial number in
black.

5.4.1 Integration. Figure 11 shows the improvement in number of
compilable snippets after the integration step. The total number
of compilable snippets was increased from the initial 327 to 470.
This is considerable considering how limited the integration tools
within NLP2TestableCode are; currently we only handle moving
import statements to the top of the file and removing empty classes
and duplicate main functions. These results indicate that the use
of these structures surrounding example code is common enough
that ’snippetising’, or reducing unnecessary classes and functions
down to their containing statements, can have a non-small effect
on the number of compilable snippets.

5.4.2 Targeted Fixes. The use of targeted fixes alongside integra-
tion increased the number of compilable snippets from 470 to 968.
The per task breakdown can be seen in Figure 12, compared to the
number of compilable snippets after integration only. After these
fixes, the total number of errors fell considerably, from initially
34,427 errors and 34,002 after the integration step, to 21,514 errors.

5.4.3 Line Deletion. Different line deletion configurations were
tested, based on the order of line deletion, number of loops over the
snippet and acceptance criteria, to determine which configuration
maximised the number of compilable snippets. The order of deletion

Figure 12: Compilable snippets after targeted fixes com-
pared to after integration.

can impact results because often a line has dependencies on other
parts of code; for example, deleting a variable declaration before
deleting usage or assignment of this variable will generate errors.
Similarly, only accepting deletions when they reduce the number
of compiler errors, compared to a less-strict acceptance criteria of
no increase in errors, can change results and the number of deleted
lines considerably.

Figure 13: Compilable snippets per deletion algorithm

Figure 13 shows the results for each of eight different deletion
algorithms based on three options; single or multiple loops over the
snippet, strict or non-strict acceptance and descending or ascending
order of line deletion. These results exclude empty snippets. In all
cases, deleting lines from the bottom up results in more snippets
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than the same configurationwith descending order deletion. Inmost
cases the multiple loop options and non-strict options outperform
their alternatives, besides from the descending order, non-strict
algorithm which results in 1,612 compilable snippets compared
to 1,828 for the single loop alternative and 1,729 snippets for the
strict alternative. The non-strict, descending order, multiple loop
algorithm outperforms all other algorithms and, because of this, is
the algorithm implemented in NLP2TestableCode.

The final number of compilable snippets after deletion is 2,037,
a 522.9% increase from the initial number of compilable snippets.
Figure 14 shows the final per task break down of compilable snippets
compared to only integration and targeted fixes, with 39 out of 47
tasks having at least one compilable snippet.

Figure 14: The per task increase in compilable snippets after
deletion.

5.5 How many code snippets can our approach
generate type suggestions for?

All compilable snippets were run through the type suggestion pro-
cess. NLP2TestableCode was able to generate at least one type
suggestion for 20 tasks, and type suggestions for 316 snippets. This
means that at least 20 out of 47 tasks are testable, 51.3% of the
39 tasks with at least one compilable snippet. User supplied tests
may make this number larger as the algorithm that searches for
matching variables is less strict; for example, the type suggestion
algorithm requires at least one argument. Examples of the types
of suggestions generated for sample tasks are listed in Table 3. In
these cases, the algorithm was capable of generating appropriate
suggestions.

6 CONCLUSIONS AND FUTUREWORK
NLP2TestableCode’s results are promising for the future of auto-
mated code reuse. The approaches investigated may be limited, but
their effect on the number of code snippets that could be made to

Table 3: Example of type suggestions generated for tasks.

Task Arguments Return

split string by whitespaces String String[]
convert string to integer String int
convert uppercase to lowercase char char

integrate is considerable. NLP2TestableCode shows that there is a
large amount of improvement in the quality of SO snippets that can
be achieved through simple fixes. In our evaluation over 47 tasks,
we found that the number of snippets that compile when inserted
into an existing piece of code could be increased from 327 to 2,037,
and that for 51.3% of tasks, at least one type suggestion could be
generated.

Based on our results, more comprehensive code correction and
integration tools would likely only serve to further the number
of compilable snippets. There is also room to improve the snippet
search algorithm, as currently we only map task keywords to Stack
Overflow question titles.

Currently the type suggestion algorithm is limited in that it must
find at least one argument type and one return type – we cannot
test void functions or functions without arguments. In addition
to this, the type suggestion algorithm often suggests too many
argument types, because it will select all variables besides the last
one, which is used for the return. It could also be interesting to look
at natural language information within tasks to determine testing
types. Similarly, we could investigate better ways to automatically
generate JUnit test cases and their automatic input and output
values.

In the future, evaluating NLP2TestableCode through a user study
similar to the one preformed for NLP2Code, would allow us to
validate if the new features are useful to developers. This could
include evaluating the usefulness of aspects like the highest ranked
snippets, the automatic changes made to snippets, type suggestions,
automatically generated test cases and the testing process.
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7 APPENDIX
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