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II. ABSTRACT 

 

A full appreciation of the extent and significance of acid sulfate soils (ASS) in Australia's 

inland environments has only recently been realised, in contrast to ASS in Australia’s 

modern-day coastal zones, which have been well studied over the last four decades. 

Investigations into the inland ASS systems of the Murray-Darling Basin (MDB), 

Australia's largest river system, did not occur with any intensity prior to 2006. A number of 

key knowledge gaps exist concerning the occurrence, properties and behaviour of inland 

ASS systems in the MDB. These knowledge gaps, combined with the ecological and 

economic significance of the MDB, and the potential for environmental and infrastructure 

degradation through ASS acidification, provided the incentive for this research project.  

 

The main objective was to advance the understanding of inland ASS in the MDB. This was 

achieved by answering two key research questions: 

 

What is the prevalence and distribution of ASS with hypersulfidic and sulfuric 

materials in the floodplain wetlands of the MDB? 

 

What are the dominant geochemical pathways taken following freshwater 

reflooding of inland ASS containing sulfuric materials and the timescales of 

impact? 

 

The first research question was answered through a regional assessment of ASS in the 

MDB and represents the most extensive estimate of the basin-wide occurrence of inland 

ASS in the floodplain wetlands of the MDB thus far. As part of a government funded 

initiative, regional environmental officers collected approximately 7200 wetland soil 

samples, which were then submitted for soil incubation tests. The large number of samples 

requiring analysis, and the need for the rapid and robust classification of hypersulfidic 

materials led to the development of a simplified incubation method (see Chapter 2) . This 

method was found to offer significant improvements over existing incubation methods. 

Firstly, the use of chip-trays as incubation vessels was found to offer many advantages in 

terms of transport, storage and analysis of soil samples compared with soil-slabs. 
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Secondly, the conditional extension of the incubation period resulted in the accurate 

classification of slowly acidifying hypersulfidic materials whist maintaining a minimal test 

length.  

 

Following its development, the simplified incubation method was used to assess the 

acidification potential of ca. 2500 profiles in over 1000 wetlands located throughout the 

MDB (see Chapter 3). The results of pH measurements made before and following soil 

incubation were used to estimate the prevalence and distribution of sulfuric and 

hypersulfidic ASS materials across the MDB. A total of 238 floodplain wetlands, 

representing 23% of the total wetlands assessed, were found to contain soils that severely 

acidified (pH < 4) when oxidised. The number of these soils, the majority of which are 

likely to be hypersulfidic ASS materials, indicates that inland ASS are prevalent in the 

floodplain wetlands of the MDB. As a result, the potential existence of inland ASS should 

be a key consideration for wetland management plans in any floodplain wetland located in 

the MDB.  

 

The distribution of ASS materials in the MDB was investigated by dividing it into 13 

geographical regions, whose boundaries roughly followed hydrological catchment 

boundaries. The distribution of acidification hazard was non-uniform throughout the MDB. 

The geographical regions with the greatest acidification hazard were in the southern MDB, 

downstream of the Murray-Darling confluence, and in catchments on the southern side of 

the Murray River channel in Victoria. The non-uniform distribution of ASS throughout the 

MDB has implications for the successful management of inland ASS in the MDB, whereby 

regions presenting the greatest acidification should receive much greater attention. Overall, 

the development of the simplified incubation method and the extensive broad-scale 

assessment of ASS in the MDB provided policy makers with a valuable screening tool, 

helping them to identify priority wetlands and regions that required more detailed IASS 

investigations.  

 

The second research question was answered through two focused field studies, which 

applied in situ sampling and monitoring techniques to investigate the geochemical 

behaviour of severely acidified inland ASS materials following reflooding by freshwater. 

The reflooding of severely acidified inland ASS by freshwater has been suggested as a 

viable remediation method. However, this hypothesis is based on observations made in 
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coastal ASS systems following reflooding by sea water and had not yet been extensively 

documented in freshwater systems at the commencement of this research project. 

 

In the first study, equilibrium dialysis membrane samplers were used to investigate in situ 

changes to soil acidity and abundance of metals and metalloids following the first 24 

months of restored subaqueous conditions (see Chapter 4) In the second study, mesocosms 

were installed in situ to simulate reflooding and the key geochemical pathways were 

documented through continuous in situ redox monitoring and the use of in situ soil solution 

samplers (see Chapter 5).  

 

In both studies, the strongly buffered low pH conditions of the oxidised sulfuric materials 

and the limited supply of external alkalinity in freshwater systems meant that soil acidity 

persisted for more than 24 months following reflooding. The persisting low pH conditions, 

along with insufficiently reducing redox conditions, and competitive exclusion by 

iron(III)-reducing bacteria were suspected to inhibit sulfate reduction. Following the 

eventual removal of the above limitations it is hypothesised that the lack of readily 

available soil organic carbon will further inhibit sulfate reduction. Under continued 

absence of net in situ alkalinity production, via the formation of reduced inorganic iron and 

sulfur species, observed trajectories indicate that neutralisation of soil acidity may take 

several years. 

 

Small increases in soil pH confined to within 10 cm of the soil-water interface were 

observed after 24 months of subaqueous conditions. Substantial decreases in the 

concentrations of some metals and metalloids were observed to coincide with the small 

increases in soil pH, most likely owing to lower solubility and sorption as a consequence of 

the increase in pH. In the acidic porewaters, aluminium activity was consistent with a 

control by a solid phase aluminium species with stoichiometry Al:OH:SO4 (e.g. jurbanite). 

In the same acidic porewaters, iron and sulfate activity were regulated by the dissolution of 

natrojarosite. Following the establishment of reducing conditions, the reductive dissolution 

of accumulated natrojarosite and schwertmannite phases was responsible for large 

increases in total dissolved iron. The differing physical properties and chemical 

characteristics, such as stored acidity and contaminant concentrations, of dominantly 

clayey soils and dominantly sandy soils, led to contrasting impacts on the transport of 
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solutes following reflooding (diffusive versus advective flow, respectively) and timescales 

of recovery.  

 

A number of key geochemical processes influencing the porewater concentrations of 

acidity, iron, aluminium, and metals and metalloids following reflooding by freshwater 

were observed in these severely acidified inland ASS systems. These physical and 

geochemical processes were summarised in two conceptual hydrogeochemical process 

models, which were used to distil complex information and convey it in a format readily 

understandable to a non-ASS specialist audience. 
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 bgl), (b) reflooded sample (50 cm bgl). Sulfuric cracking clay (Boggy Creek): 

 (c) reflooded sample (20 cm bgl), (d) reflooded sample (50 cm bgl). Fe 

 minerals: natrojarosite (white square), schwertmannite (black triangle), 

 Fe(OH)3-amorph (grey circle), goethite (white triangle), pyrite (cross). 80 

Figure 8. Temporal changes in the saturation index for selected Al minerals during the 

 assessed period. Sulfuric sandy soil (Point Sturt): (a) reflooded sample (20 cm 

 bgl), (b) reflooded sample (50 cm bgl). Sulfuric cracking clay (Boggy Creek): 

 (c) reflooded sample (20 cm bgl), (d) reflooded sample (50 cm bgl). Al 

 minerals: gibbsite (white square), Al(OH)3-amorph (black triangle), jurbanite 

 (grey circle), alunite (white triangle), basaluminite (cross). 81 
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Figure 9. Eh-pH predominance diagram for Fe-S-Na-H2O and Al-S-K-H2O systems. 

 Start (0 days) and end (200 days) points are labelled, each data point between 

 represents a time period of 25 days. Sulfuric sandy soil (Point Sturt): (a) Fe-S-

 Na-H2O reflooded samples, (b) Al-S-K-H2O reflooded samples. Sulfuric 

 cracking clay (Boggy Creek): (c) Fe-S-Na-H2O reflooded samples, (d) Al-S-K-

 H2O reflooded samples. Sampling depths: 20 cm bgl (black circle), 50 cm bgl 

 (white circle). Equilibrium values for solid phases and element concentrations 

 are given in supplementary material. 83 

Figure 10. Conceptual process diagram summarising key geochemical changes following 

 freshwater reflooding of a sulfuric sandy soil (Point Sturt) and sulfuric 

 cracking clay soil (Boggy Creek). (1) Advective piston flow displaces shallow 

 acidity downwards in permeable soils. (2) Displacement of acidic cations 

 (effect weakened by low ionic strength of freshwater vs. tidal marine 

 reflooding). (3) Fe/Al solubility controlled by indicated mineral species. (4) 

 Reductive dissolution of retained acidity phases (i.e. jarosite and 

 schwertmannite). (5) Ground water acid neutralising capacity consumes 

 displaced acidity. (6) Aqueous Fe most stable species (as a result of Fe(III)(s) - 

 Fe2+
(aq) decoupling). (7) Aqueous Fe species precipitate out of solution as 

 Fe(OH)3-amorph. (8) Release of Fe into solution by FeS2 dissolution. (9) 

 Advective flow along air-filled macropores in cracked clay soils immediately 

 following reflooding (mixing with infiltrating surface water displaces acidity 

 downwards). (10) Dissolution of retained acidity phases release acidity; 

 neutralising surface water alkalinity inputs following reflooding and re-

 establishing equilibrium. (11) Continued dissolution of retained acidity phases 

 to maintain equilibrium releases further acidity. (12) Upwards diffusion of 

 acidity consumes surface water alkalinity. (13) Surface water acidifies as a 

 result of continued upwards diffusion of acidity (14) Replenishment of surface 

 water lost through evaporation results in evapoconcentration of alkalinity and 

 neutralisation of surface water acidity. (15) Sulfate reduction in the presence of 

 ferrous iron inhibited by persisting low pH. 85 
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