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Abstract 

 

Bovine colostrum provides essential nutrition for newborn calves, and contains not only 

nutrients and growth factors but also various immune and bioactive components that impart 

passive immunity to help neonates resist infection during the first days of their life. The main 

objectives of this project were 1) to determine if different calves that receive identical 

colostrum from the same cow will absorb the colostrum components equally, 2) to 

investigate whether calves fed colostrum and transition milk pooled from cows 0-4 days 

postpartum receive adequate passive immunity, and 3) to explore whether immune-related 

microRNAs in the colostrum are absorbed by neonate calves. 

 

For this project, 35 Holstein-Friesian bull calves were randomly allocated into three groups. 

Group A calves were fed colostrum from their own dam and Group B calves were fed foster 

cow colostrum. Group A and B calves were paired and received identical colostrum from 

each milking of the Group A dams for 3 days. The Group C calves were fed only one bottle 

of pooled colostrum (2 L), and then bulk tank milk thereafter.  

 

The components in dam colostrum were higher than the pooled colostrum (except lactose), 

and consequently, the Group A calves that received their own dam colostrum for 3 days had 

a higher total serum protein and IgG concentration during the first week after birth than the 

Group C calves that received only one bottle of pooled colostrum. The paired Group A and 

B calves that received identical colostrum had similar levels of serum protein and IgG, 

although the levels in the Group B calves were slightly lower than the Group A calves. The 

Group C calves had less serum protein and IgG than the Group A and B calves, but did have 

adequate passive immunity transfer based on the accepted threshold (> 10 g/L IgG). Only 

two calves, one in Group B and one in Group C, did not receive adequate IgG. So no 

differences were detected in the proportion of calves that had failure of passive immunity 

transfer (FPIT) in the three calf Groups based on the IgG threshold. 

 

MicroRNAs were in high concentrations in dam and pooled colostrum as well as in the calf 

blood based on RNA sequencing. There were 296 known miRNAs and 7 novel microRNAs 

identified in the colostrum. There was only 4 in total of 303 miRNAs detected in dam 
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colostrum that showed higher levels than pooled colostrum. The pathway analysis of the top 

100 highly expressed microRNA in the colostrum indicated that the microRNAs in the 

colostrum were more related to mammary gland function than calf passive immunity or 

development. In the calf blood, there were 1,004 known miRNAs and 194 novel microRNAs 

identified. Calves were born with complex microRNAs and at high levels. There were only 

22 microRNAs differentially expressed between day 0 before colostrum feeding and day 1 

after the calves received colostrum. Of these 22 miRNAs, three miRNAs had higher levels 

at day 1 after two colostrum feeds. However, there was no evidence that the microRNAs in 

the dam colostrum were absorbed into the calf blood.  

 

Immune-related microRNAs, namely miR-142-5p, miR-150, miR-155, miR-181a, and miR-

223, in dam colostrum were shown to decrease steadily within 1 week postpartum by RT-

qPCR. The levels of some of these microRNAs in the calf blood differed during the first 7 

days after birth. Some microRNAs were high at birth and day 1 after birth, and then declined 

(miR-150 and miR-223). Other microRNAs increased by day 1 after birth, and then 

decreased thereafter (miR-155 and miR-181a). Overall, the results suggest that the calves 

are synthesizing most of their own microRNAs, and the microRNAs are not absorbed from 

the colostrum into their blood. 

 

In conclusion, calves appear to absorb colostrum components equally. So it is possible to 

provide calves adequate passive immunity using a single bottle of pooled colostrum if the 

pooled colostrum is of reasonable quality and fed shortly after birth. While most colostrum 

components are absorbed by the calves, the microRNAs are an exception. 



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 1 

 

 

 

 

 

 

 

 

Chapter 1 

Introduction and literature review 

 

 

 

 

 

 



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 2 

 
 

 

Chapter 1. Introduction and literature review 

 

 

List of tables 

Table 1.1. Composition of colostrum, transition milk and milk of Holstein cows. ............... 5 

Table 1.2. Different methods for measuring immune components in colostrum. ................. 7 

Table 1.3. Threshold for the failure of passive immunity transfer in calves. ........................ 9 

Table 1.4. IgG concentrations (mg/mL) in Holstein colostrum from the first three milking 

postpartum. .......................................................................................................................... 11 

Table 1.5. Least squares mean of IgG concentration and mass and colostrum volume by 

lactation. ............................................................................................................................... 12 

Table 1.6. High abundance protein fraction (HAP) found in MFGM. ................................ 12 

Table 1.7. Low abundance protein fraction (LAP) of colostrum. ........................................ 13 

Table 1.8. Advantages and disadvantages of miRNA quantification technology. .............. 16 

Table 1.9. MicroRNAs concentrations in bovine colostrum and mature milk. ................... 19 

Table 1.10. Immune-related miRNA reads in colostrum and mature milk. ........................ 20 

Table 1.11. Immune-related miRNAs in colostrum and milk. ............................................ 20 

Table 1.12. Role of miRNAs in immune cell populations. .................................................. 21 

 
List of figures 

Figure 1.1. Main components in colostrum and milk. ........................................................... 4 

Figure 1.2. Components of the host defence system in milk and colostrum. ...................... 11 

Figure 1.3. Generation of mature miRNAs. ......................................................................... 14 

Figure 1.4. Number of miRNA species identified in bovine colostrum and mature milk by 

Solexa sequencing. ............................................................................................................... 18 

Figure 1.5. Number of miRNA species identified in bovine colostrum and mature milk by 

microarray analysis. ............................................................................................................. 18 

  



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 3 

 
 

 

1.1. Introduction 

Bovine colostrum is produced by the mammary gland of the cow during the last weeks of 

pregnancy and is available during the first few days following parturition (Langer, 2009; 

Puppel et al., 2019). Colostrum not only includes nutrients and growth factors, but also 

contains a variety of immune components such as immunoglobulin, lactoferrin, lysozyme, 

lactoperoxidase, immune-related microRNAs (miRNAs), immune cells, cytokine, etc. which 

help the neonate resist infection (Hernandez-Castellano et al., 2014; McGrath et al., 2016; 

Godden et al., 2019; Puppel et al., 2019).  

 

Most newborn mammals receive immunity from their mother via the placenta and colostrum; 

bovine newborn animals, however, only receive immunity by consuming colostrum. This is 

because ruminants have a synepitheliochorial placenta with eight membranes separating 

fetal blood from the maternal circulation (Barrington and Parish, 2001; Castro et al., 2011) 

that prevent the transfer of immunoglobulins from the dam to calf during pregnancy. 

Therefore, calves have little or no passive immunity when they are born (Barrington and 

Parish, 2001; Castro et al., 2011). Newborn calves receive passive immunity after birth by 

the absorption of immune proteins, primarily immunoglobulin G (IgG), from colostrum 

through the gut. The gut only remains “open” for the absorption of these components for 

approximately the first 24 hours after birth (reviewed by Godden et al. (2019)). To resist 

pathogens during the first weeks of life, newborn calves must receive a sufficient quantity 

of good quality colostrum as soon as possible after birth. 

 

If calves receive too little colostrum prior to the gut closure, or if the colostrum quality is 

poor, without sufficient immunoglobulins, this may result in a failure of passive immunity 

transfer (FPIT), which is correlated with increased calf morbidity and mortality (Barrington 

and Parish, 2001; Moran, 2002; Furman-Fratczak et al., 2011; Vandeputte et al., 2011). 

Avoiding FPIT and ensuring good calf health is critical to maximize profits for the dairy 

cattle industry. Thus, investigating the colostrum components that can be transferred to 

newborn calves is very important. 
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1.2. Literature review of bovine colostrum  

1.2.1. Bovine colostrum composition 

Bovine colostrum is the initial milk produced by the female cattle and the first nutrition for 

newborn calves. It provides key nourishment to the neonate and helps protect newborn 

mammals against pathogens. Bovine colostrum has been reported to be produced for up to 4 

days (Dzik et al., 2017), 5 days (Moran, 2012), or to 5 or 7 days (Moran, 2002; Marnila and 

Korhonen, 2011b) after calving. In fact, bovine colostrum gradually changes into transition 

milk and subsequently to mature milk during the first 5 days postpartum (Van Hese et al., 

2020). 

 

Colostrum provides essential nutrients for the newborn, including proteins, fats, lactose, 

water, vitamins and minerals, but it also contains other vital factors that are crucial for 

growth and health (Figure 1.1 and Table 1.1). These colostrum components change over the 

first few days postpartum and the initial colostrum has a very different composition from the 

mature milk collected after day 4 post-partum. Colostrum collected at the first milking is the 

most crucial and contains the highest levels of components, such as protein, fat and IgG. 

These components decrease dramatically during the first few days of lactation though, so the 

colostrum collected after 24 hours to day 4 postpartum is often referred to as transition milk. 

In general, colostrum contains less lactose and more fat, protein, peptides, dry matter, ash, 

vitamins, minerals, hormones, growth factors, nucleotides and cytokines than milk (Marnila 

and Korhonen, 2011b; McGrath et al., 2016). Cow colostrum at calving contains, on average, 

24.2% total solids, 13.5% total protein, 11.9 whey proteins, 8.0% fat, 1.9% lactose, 1.0% 

ash, 32.3 mg/mL IgG and 3.2 mg/mL IgM (Abd El -Fattah et al., 2012). 

 

 
Figure 1.1. Main components in colostrum and milk. EGF: epidermal growth factor; IGF: 

insulin-like growth factor; TGF: transforming growth factor. Source: Adapted from Gauthier 

et al., 2006; McGrath et al., 2016; Godden et al., 2019; Puppel et al., 2019.   

Colostrum components

Nutrients

(e.g. proteins, fat, 
carbohydrates, minerals, 

vitamins….)

Growth factors

(e.g. EGF, IGF-I, IGF-II, 
TGF-β1, TGF-β2, ...)

Immune factors

(e.g. immunoglobulins, 
lactoferrin, lysozyme, 

lactoperoxidase, immune cells, 
immune-related miRNAs…)
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Table 1.1. Composition of colostrum, transition milk and milk of Holstein cows. 

 

 

Parameter 

Colostrum 
Transition milk 

(milking postpartum) 
Milk 

1 2 3 6 

Specific gravity 1.056 1.040 1.035 1.032 

Total solids (%) 23.9 17.9 14.1 12.9 

Fat (%) 6.7 5.4 3.9 4.0 

Total protein (%) 14.0 8.4 5.1 3.1 

+ Casein (%) 4.8 4.3 3.8 2.5 

+ Albumin (%) 6.0 4.2 2.4 0.5 

+ Immunoglobulin (%) 6.0 4.2 2.4 0.09 

+ IgG (g/100 mL) 3.2 2.5 1.5 0.06 

Lactose (%) 2.7 3.9 4.4 5.0 

IGF-1 (µg/L) 341 242 144 15 

Insulin (µg/L) 65.9 34.8 15.8 1.1 

Ash (%) 1.11 0.95 0.87 0.74 

Calcium (%) 0.26 0.15 0.15 0.13 

Magnesium (%) 0.04 0.01 0.01 0.01 

Zinc (mg/100mL) 1.22 - 0.62 0.30 

Manganese (mg/100mL) 0.02 - 0.01 0.004 

Iron (mg/100mL) 0.2 - - 0.05 

Cobalt (µg/100g) 0.5 - - 0.10 

Vitamin A (mg/100mL) 295 190 113 34 

Vitamin E (mg/g fat) 84 76 56 15 

Vitamin B12 (mg/100mL) 4.9 - 2.5 0.6 

Folic acid (mg/100mL) 0.8 - 0.2 0.2 

Choline (mg/mL) 0.7 0.34 0.23 0.13 

Source: Godden et al. (2019) 

 

1.2.2. Colostrum and milk fractions 

Colostrum and milk are complex fluids, which can be separated by centrifugation into 

different fractions (lipids, skim milk and cells) (Alsaweed et al., 2015a). The skimmed 

colostrum fraction contains two protein sub-fractions, soluble and insoluble (Hernandez-
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Castellano et al., 2014).  The fat fraction (known as the milk fat globule membrane; MFGM) 

of bovine colostrum appears to play a special role in transferring passive immunity from the 

dam to the neonate. MFGM are globules that contain proteins, glycoproteins, and various 

fats within a lipid membrane; it is secreted by the epithelial cells of the mammary gland 

(Fong et al., 2007). MFGM is an important fraction because it is rich in bioactive proteins 

(Mather, 2000; Affolter et al., 2010). Moreover, microRNAs were found in all three different 

fractions of milk (cell, skim milk and lipids), however, the highest miRNA concentration 

found in the cell and lipid fractions (Alsaweed et al., 2015b).  

 

1.2.3. Colostrum quality 

The quality of colostrum is usually evaluated by measuring the immunoglobulin 

concentration. It has been classified as excellent, good, moderate and poor if 

immunoglobulins were > 90; 65 – 90; 40 – 65 and < 40 g/L, respectively (Moran, 2002). For 

field conditions, it is general agreed that colostrum can be considered as high quality if the 

IgG concentration is above 50 g/L (McGuirk and Collins, 2004; Baumrucker et al., 2014; 

Bartier et al., 2015). There are many factors that affect the concentration of the immune 

components in colostrum, including breed, individual genetics, diet, the age of dam, parity, 

the lactation period, environment and management (Godden et al., 2019). Cows that are 

vaccinated at drying off will produce colostrum that can provide resistance to the specific 

pathogens targeted by the vaccine (Moran, 2002).  

 

There are many different on-farm tools to test colostrum quality as well as laboratory assays 

to quantify IgG in colostrum (Table 1.2). It is difficult to measure IgG on-farm as most 

assays to measure IgG directly in colostrum are expensive and time consuming. Brix 

refractometry has been proposed as an accurate on-farm tool to estimate colostrum IgG 

(Quigley et al., 2013; Morrill et al., 2015; Cabral et al., 2016). Bovine colostrum is 

considered high quality if the Brix % is > 18-23% which equates to > 50 g/L of IgG (Quigley 

et al., 2013; Bartier et al., 2015; Morrill et al., 2015). In a meta-analysis by Buczinski and 

Vandeweerd (2016), the authors classified good quality colostrum as greater than 22 Brix % 

and poor quality colostrum as less than 18 Brix %.  
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Table 1.2. Different methods for measuring immune components in colostrum. 

Method References 

Colostrum – on farm tools  

Hydrometers, weight of first milking colostrum; 

and electronic refractometer 
(Chigerwe and Hagey, 2014) 

Colostrometer  (Cabral et al., 2016) 

Optical refractometer 
(Quigley et al., 2013; Morrill et al., 2015; 

Cabral et al., 2016) 

Brix digital refractometer (Weaver et al., 2000; Quigley et al., 2013)  

Colostrum – laboratory assays  

Enzyme-linked immunosorbent assays (ELISA) (Arthington et al., 2000) 

Radial immunodiffusion assays (RIA) (Arthington et al., 2000) 

Radial immunodiffusion (RID) (Quigley et al., 2013; Elsohaby et al., 2017) 

Transmission infrared (IR) spectroscopy (Elsohaby et al. 2017) 

Turbidimetric immunoassay (Quigley et al., 2013) 

 

1.2.4. Passive immunity transfer 

In 1892, based on various experiments, Paul Ehrlich defined the concept of passive and 

active immunity, and published a paper that demonstrated immunised mice transferred 

immunity to newborn pups in utero and in the milk (Silverstein, 1996; Wheeler et al., 2007). 

Ehrlich compared the neonatal immunity of mice born from an immunized father and a non-

immunized mother with mice born from a non-immunized father and an immunized mother. 

He concluded that immunity in newborn animals is owed to the transfer of immunity from 

the mother (Silverstein, 1996). 

 

Newborn animals have the unique ability to absorb protein and macromolecules during first 

24 to 36 hours, as the gastrointestinal tract is still permeable. Thereafter, the gut closes and 

macromolecules can no longer pass the intestinal barrier. The time of closure differs between 

species. Calf gut closure occurs approximately 24 hours after birth but can vary depending 

on the time of the first feed (Stott et al., 1979). Newborn calves have little or no passive 

immunity and require the passive transfer of immunity from the dam in order to adapt to 
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their new external environment (Godden, 2008). Most research on colostrum has focused on 

immune function, as colostrum has an essential role in building immunity in newborn calves. 

 

Failure of passive immunity transfer (FPIT) occurs if insufficient good-quality colostrum is 

consumed soon after birth. Calves with FPIT are 4 times more likely to die and have twice 

a greater risk of infection (Moran, 2002), and 2-times greater odds of pneumonia (Virtala et 

al., 1999). In general, calves have increased morbidity and mortality if there is FPIT 

(Barrington and Parish, 2001; Furman-Fratczak et al., 2011; Vandeputte et al., 2011). Factors 

that affect the successful passive immunity transfer in calves include the colostrum quantity, 

quality, timing of feeding colostrum, age of the dam, parity, the presence of the dam, as well 

as colostrum management (Weaver et al., 2000; Jaster, 2005; Dawes and Tyler, 2007; 

Godden, 2008; Costa et al., 2017).  

 

Receiving good quality colostrum is crucial to ensure that sufficient immunoglobulin can be 

absorbed into the circulation of the neonate. To avoid failure of passive immunity transfer, 

calves should receive 10% to 12 % body weight of colostrum with at least 50 g/L of IgG 

within a few hours of birth (McGuirk and Collins, 2004; Bartier et al., 2015; Godden et al., 

2019). As it is difficult to measure IgG on-farm, it has been suggested that calves should 

receive 3 to 4 L of colostrum at their first feed (Moran, 2002; McGuirk and Collins, 2004; 

Godden et al., 2019). Other authors investigating the transfer of passive immunity to calves 

fed different colostrum volumes at different times after birth have suggested specific 

colostrum volumes and specific feeding times (Williams et al., 2014). For instance, Osaka 

et al. (2014) recommended that calves consume ≥ 3 L of colostrum with IgG concentration 

> 40 mg/mL within 6 h after birth and Jaster (2005) suggested that calves should receive 2 

L of high quality colostrum at birth and every 12 hours to maximize the absorption of IgG 

from colostrum into calf blood. 

 

Failure of passive immunity transfer is most commonly detected in calves by measuring IgG 

in the calf serum or by estimating the total serum protein using refractometry 24 hours after 

birth. Thresholds for FPIT indicators can vary depending on factors such as the environment, 

infection level, and breed (Vandeputte et al., 2011) (Table 1.3). However, the generally 

accepted thresholds for FPIT in calves are defined as less than 10 g/L of serum IgG at 24 - 
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48 hours postpartum (Weaver et al., 2000; Godden et al., 2019), less than 52 g/L of total 

protein (TP) in serum (McGuirk and Collins, 2004; Cuttance et al., 2017b), or as less than 

8.1 - 8.5 Brix % (Hernandez et al., 2016; Godden et al., 2019). Lombard et al. (2020) 

suggested that the serum IgG levels ≥ 25.0, 18.0–24.9, 10.0–17.9, and < 10 g/L of IgG are 

categorized as excellent, good, fair, and poor, respectively. 

 

Table 1.3. Threshold for the failure of passive immunity transfer in calves. 

Indicators Threshold of FPIT Reference 

Serum IgG  

< 10 g/L at 24 h after birth 

(Weaver et al., 2000; McGuirk 

and Collins, 2004); Godden et al. 

(2019); (Oliveira et al., 2019) 

<16 g/L at 24 h after birth Vandeputte et al. (2011) 

20-25 g/L at 24 h after birth Chigerwe et al. (2015) 

Serum total 

protein  

< 52 g/L at 24 h after birth 
McGuirk and Collins (2004); 

(Trotz-Williams et al., 2008) 

58 – 63 g/L at 24 h after birth Chigerwe et al. (2015) 

< 51 g/L at 24 h after birth Godden et al. (2019) 

Total solid by 

Brix 

refractometer 

< 8.1 Brix % at 24 h after birth Godden et al. (2019) 

< 8.5 Brix % at 24 h after birth Hernandez et al. (2016) 

GGT activity 

< 200 IU/L at day 1; 100 IU/L at day 4; 

75 IU/L at day 7; or 50 IU/L at day 14 

after birth 

Parish et al. (1997) 

200 IU GGT/L at 1 day after birth Perino et al. (1993) 

100 IU GGT/L at 2 days after birth Hogan et al. (2015) 

250 IU GGT/L for calves less than 5 

days old and 210 IU GGT/L for GGT 

calves 5–8 days old 

Cuttance et al. (2017a)  

 

1.2.5. Immune components in colostrum 

There are many immunologically active components in colostrum that can protect newborn 

animals passively against infection including immunoglobulins, lysozyme, cytokines, 

lactoferrin, different types of immune cells, such as leukocytes, and immune-related 
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miRNAs. All of these can be absorbed by the newborn calf when the gut epithelium is open 

during the first days of life. 

 

1.2.5.1. Proteins 

The total protein in the colostrum of cows is at highest at first milking after parturition but 

then declines dramatically. Total protein concentration in bovine colostrum a few hours after 

parturition is between 15 and 26%, approximately three times greater than blood plasma 

protein in the cow (Smith, 1946). The average total protein in bovine colostrum within 1 day 

postpartum is 11% to 17%, which is roughly three times higher than in milk depending the 

season of calving, parity, dry period, time to colostrum collection (Dunn et al., 2017; Godden 

et al., 2019). Cow colostrum contains 130 g/kg protein, whereas there are 33 g/kg protein in 

mature milk (reviewed by Langer (2009)). Immune proteins account for 50 – 60% of the 

total protein in colostrum and 85 – 90% of the total protein in colostrum whey (Smith, 1948). 

 

a. Immunoglobulins 

The most important immune protein in colostrum is immunoglobulin (Ig) which is a Y-shape 

protein generated mainly by the plasma B cells. Immunoglobulins provide the neonate with 

protection from specific pathogens when they are passed from the dam via colostrum (Hurley 

and Theil, 2011). There are five types of immunoglobulin, IgA, IgD, IgE, IgG and IgM. The 

type and amount of the immunoglobulin subclasses in colostrum differ between species, 

breed of the dam. While IgA is a main immunoglobulin in human colostrum, IgG is the 

predominant immunoglobulin in bovine colostrum (Hurley and Theil, 2011). 

Immunoglobulins in bovine colostrum are predominantly IgG1 and IgG2 and account for 

80% of the immunoglobulins (Bourne, 1977; Shivley et al., 2018; Godden et al., 2019). 

 

In bovine colostrum, the IgG1 is derived mainly from blood, with transport across mammary 

alveolar cells, and IgG2 is either derived from blood or is synthesised in the mammary gland 

(Gapper et al., 2007). Immunoglobulins from the mammary gland are transferred to 

colostrum by the mammary epithelial cells (Wheeler et al., 2007) (Figure 1.2). 

Immunoglobulins are stable in the gastrointestinal tract of neonate, and are absorbed into the 

vascular system of the newborn animals when the gut is open and promote protection against 

specific pathogens (Hurley and Theil, 2011). Total immunoglobulin concentration, 
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particularly IgG differs between cattle breeds, the parity, milking number or milking time 

postpartum (Oyeniyi and Hunter, 1978; Kehoe et al., 2011) (Tables 1.4 and 1.5).   

 

 

 

Figure 1.2. Components of the host defence system in milk and colostrum.  

Source: Wheeler et al. (2007) 

 

 

Table 1.4. IgG concentrations (mg/mL) in Holstein colostrum from the first three 

milking postpartum.  

Lactation cow beginning 

(n) 

IgG in colostrum from 

Initial milking 

(0h) 

Second milking 

(12h) 

Third milking 

(24h) 

Mean SE Mean SE Mean SE 

First (28) 29.8 2.4 23.5 2.3 14.3 2.0 

Second (22) 30.5 3.3 22.4 3.0 11.4 1.8 

Third (10) 33.9 3.4 26.6 3.3 16.8 3.2 

Fourth – seventh (11) 41.6 6.1 36.3 5.6 24.9 3.9 

First – seventh (71) 32.4 1.8 25.4 1.6 15.4 1.3 

Note: Values are different (P<0.01) between 3 times milking by Student’s t-test. 

Source: Oyeniyi and Hunter (1978) 
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Table 1.5. Least squares mean of IgG concentration and mass and colostrum volume 

by lactation. 

Measure Lactation 

1 2 3 4+ SEM 

n 172 130 94 93  

IgG (mg/mL) 83.5b 92.9b 107.4a 113.3a 3.8 

IgG 532.8c 579.0bc 619.6ab 690.2a 28.2 

Volume (L) (1) 6.2 6.1 6.8 6.5 0.5 

n = 507 Holstein colostrum samples in total. a-c Means in the same row with different superscripts 

differ (p<0.05). (1) n = 466, first-milking colostrum volume was not known for 41 samples.  

Source: Kehoe et al. (2011) 

 

b. Other proteins (Non-specific immunological substances) 

Proteomics is the study of proteins, often in complex biological samples, and combines 

techniques, such as two-dimensional gel electrophoresis and mass spectrometry, to analyse 

hundreds of different proteins at the same time (Hernandez-Castellano et al. (2014). 

Proteomics has been used to identify the various proteins in colostrum and milk. The most 

immunologically active proteins in colostrum are found in the MFGM and can be classified 

as high abundance proteins (HAP) or low abundance proteins (LAP). There are 7 HAP in 

MFGM that are involved in immunity (Mather (2000); Table 1.6). The LAP can be classed 

into 8 immune related categories (Hernandez-Castellano et al., 2014) (Table 1.7). 

 

Table 1.6. High abundance protein fraction (HAP) found in MFGM. 

Proteins Roles Amount in colostrum 

Mucin-1  

(MUC-1) 

Present in epithelial cells from different organs 

Protects body surface from physical damage or 

microorganism 

40 mg/L 

Xanthine 

dehydrogenase/ox

idase (XDH/XO)   

Immunomodulator Goat: 2.77 mg/mL 

Cow: 2 mg/mL 

Sheep: 2.3 mg/mL 

Lactoferrin Binds and transports iron ions 

Provides antimicrobial activity (bactericide and 

fungicide) 

Increases in most inflammatory reactions 

Camel: 5.1 mg/mL 

Cow: 0.84 mg/mL 

Goat: 3.09 mg/mL 

Sheep: 1.56 mg/mL 

Caseins  

(αs1, αs2, β and ƙ) 

Have a role in pathogen defence 

Stimulate the innate immune system 

ofmammary gland and prevent udder infections 

 

Source: adapted from Mather (2000) and Hernandez-Castellano et al. (2014) 
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Table 1.7. Low abundance protein fraction (LAP) of colostrum. 

Proteins Roles Amount in colostrum 

Plasmin Prevents thrombosis by dissolution of blood 

clots.  

Migrates the neutrophils to infection sites 

Cow: 0.49 µg/mL (in 

colostrum > 10 times in 

milk) 

Serum amyloid A 

(SAA) 

Essential role in the innate immune system 

Participates in acute phase of inflammation 

SAA-3 is involved host defence 

SAA-3 concentration: 

Cow: 267.45 µg/mL (in 

colostrum > 10 times in 

milk) 

Sheep: 62.83 µg/mL 

Fibrinogen Binds integrins in the immune cells 

(monocytes and macrophages) 

 

Trypsin inhibitor 

(TI) 

α1-antitrypsin 

Reduces biologically active trypsin  

Protects against the proteolytic cleavage and 

help neonates to absorb immune components  

 

Lipopolysaccharide

-binding protein 

(LBP) 

Generated during infections with Gram-

negative bacteria 

Cow: 0.85 mg/mL 

Antimicrobial 

peptides (AMPs) 

Inactivate infectious agents  

Defensins Adapts immune response  

β-defensin family members are often found in 

mammary epithelial cells during mastitis 

 

Cathelicidin family Part of innate immune defence   

Source: adapted from Hernandez-Castellano et al. (2014) 

 

1.2.5.2. MicroRNAs (miRNAs) 

a. Definition and history of miRNA 

MicroRNAs are single-strand molecules with 19 to 24 nucleotides that were first reported 

by Rosalind Lee and colleagues in the worm Caenorhabditis elegans (Lee et al., 1993). They 

described 22-61 nucleotide lin-4 RNAs that do not encode a protein but do contain sequences 

that can bind the 3’ untranslated region (UTR) of target mRNA and prevent transcription or 

initiate mRNA degradation. These lin-4 RNAs were found to play an important role in early 

larval development of the worm Caenorhabditis elegans (Lee et al., 1993). Subsequent 

studies defined an entire new class of RNAs, which are small like lin-4, and do not encode 

proteins. These so-called microRNAs (miRNAs) have regulatory functions by controlling 

gene expression post-translationally (Lee and Ambros, 2001).  
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Many miRNAs have been identified and have been shown to be involved in regulating a 

range of biological processes in many animal species, from stem cell differentiation, immune 

response, metabolism of cholesterol and insulin, development of neurogenesis and 

haematopoiesis, to cardiac and skeletal muscle development (Wienholds and Plasterk, 2005; 

Williams, 2007; Liu et al., 2010; Wang et al., 2013). MicroRNAs also implicated in oocyte 

maturation and the early stages of embryonic development (Wang et al. (2013) and apoptosis 

(Bartel, 2004). However, many of the functions of miRNAs remain unknown. The standard 

nomenclature system for miRNA is the prefix “miR” followed by a dash and a number, 

which indicates order of naming (Appendix 1).  

 

b. Generation of mature miRNAs 

MicroRNAs are transcribed from miRNA genes and three stages are required for their 

processing to maturation (Wang et al., 2013) (Figure 1.3).  

 

Figure 1.3. Generation of mature miRNAs.  

Source:  Liang et al. (2015b) 

 

The first stage is the transcription of the miRNA gene to create the primary miRNA (pri-

miRNA), which is processed in the second stage to a 70 nucleotide pre-miRNA with a stem-
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loop structure. The last stage occurs when the pre-miRNA in nucleus is transported to the 

cytoplasm and is cleaved by RNase III Dicer to form the mature miRNA (around 22 

nucleotides), which represses translation.  

 

Depending on the degree of complementarity between the miRNA and its target mRNA, 

there are three mechanisms whereby miRNAs can affect gene expression: translational 

repression of mRNA, direct mRNA cleavage and mRNA de-adenylation (Wang et al., 2013) 

(Figure 1.3). While the functions of most miRNAs are unknown, microRNAs have been 

predicted to regulate the expression of up to 30% of the protein coding genes by binding to 

the corresponding mRNA (Wienholds and Plasterk, 2005; Izumi et al., 2012). 

 

c. MicroRNA quantification 

MiRNA quantification can be achieved by microarray analysis, quantitative RT-PCR (qRT-

PCR) and Next Generation sequencing (NGS) (Table 1.8). Microarray assays can be 

hampered by cross-hybridization preventing the identification of individual members of 

miRNAs sequence families or mutant variants of miRNAs, whereas qRT-PCR methods are 

more precise. However, both these methods are limited to a pre-selected subset of miRNAs. 

In comparison with the other two approaches, NGS is expensive but produces an 

unprecedented amount of data including the identification of new miRNA following 

bioinformatic analysis.  

 

d. MicroRNAs in colostrum and milk 

MicroRNAs have been shown to be stored in exosomes within the colostrum and milk of 

cattle (Chen et al., 2010; Hata et al., 2010; Izumi et al., 2012; Izumi et al., 2015; Sun et al., 

2015), pig (Gu et al., 2012b), rat (Izumi et al., 2014) and humans (Zhou et al., 2012). These 

exosomes are endosome-derived membranous vesicles found in various body fluids that can 

mediate intercellular communication (Zhou et al., 2012; Sun et al., 2013; Sun et al., 2015; 

Ross et al., 2016). Exosomes are tiny membrane vesicles (~40-100 nm in diameter) and are 

released into the extracellular environment from a variety of different cells (Qin and Xu, 

2014).  
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Table 1.8. Advantages and disadvantages of miRNA quantification technology. 

Technology Advantages Limitations 

qPCR 
Current gold standard for sensitivity 

and specificity 
No genome-wide coverage 

Microarray 
Commercially available reagents  

Genome-wide coverage 

Specific probes 

Specialized equipment 

Lack of reproducibility between 

platforms 

NGS (Next-

Generation 

sequencing) 

Genome-wide coverage 

Multiple samples may be run in 

parallel 

Promotes novel miRNA discovery 

Can detect polymorphisms 

Complicated, non-standardized data 

analysis 

Isothermal 

amplification 

No need to themocyling equipment 

Can improve existing qPCR, 

microarray, and NGS methods 

Disadvantages are technique specific 

(see below) 

Exponential 

amplification 
High sensitivity 

May require a nicking enzyme, which 

complicates primer design 

Rolling circle 

amplification 

1 primer 

Can be optimized for linear or 

exponential amplification 

Requires 2 enzymes (polymerase and 

ligase) 

Initial denaturation not performed at 

room temperature 

Duplex-

specific 

nuclease signal 

amplification 

High specificity Enzyme is not readily available 

Hybridization 

chain reaction 

Near-infrared 

technology 

No polymerase 

No autofluorescence 

Minimal photobleaching 

No treatment of sample before or after 

the test 

Linear amplification only 

Lanthanide probes are not yet 

commercially available and must be 

optimized 

Near-infrared 

technology 

No autofluoresence  

Minimal photobleaching  

No treatment of sample before or after 

the test 

Lanthanide probes are not yet 

commercially available and must be 

optimized 

Source: Moody et al. (2017) 
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Over the last decade, many miRNAs have been identified which are stable in colostrum and 

milk (Chen et al., 2010; Izumi et al., 2012; Sun et al., 2013). MicroRNAs are very stable in 

harsh conditions. Baddela et al. (2016) investigated miRNA stability by boiling at 100°C for 

10 min, storing at 4°C for 24 h, and subjecting milk to repeated freezing and thawing and 

there was no loss of exosomal miRNA. In another study, Izumi et al. (2012) tested the 

stability of milk miRNA and determined that milk miRNAs were resistant to acidic 

conditions and RNase treatment.  

 

The number of miRNAs detected in colostrum and milk depends on the method of miRNA 

assay, however, most studies have found that the number of different miRNA types and 

levels are higher in colostrum than in milk (Chen et al., 2010; Izumi et al., 2012; Sun et al., 

2013). For instance, there were 230 known miRNAs in colostrum, 213 known miRNAs in 

mature milk, and 198 miRNAs in both bovine colostrum and milk found by Solexa 

sequencing (Chen et al., 2010) (Figure 1.4); 100 miRNAs are found in bovine colostrum, 53 

miRNAs in mature milk and 51 miRNAs were detected in both colostrum and milk by 

microarray analysis (Izumi et al., 2012) (Figure 1.5). Many miRNAs are found in both 

bovine colostrum and milk, but have higher levels in colostrum (e.g. miR-24, miR-30d, miR-

93, miR-106a, miR-181a, miR-200a and miR-451) (Chen et al., 2010; Sun et al., 2013). The 

unique expression of miRNAs in milk can provide novel indicators of the quality of milk 

and milk-related products, and seven miRNAs have been suggested as markers for quality 

control of bovine milk (miR-26a, miR-26b, miR-200c, miR-21, miR30d, miR-99a, and miR-

148a) (Chen et al., 2010). 
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Figure 1.4. Number of miRNA species identified in bovine colostrum and mature milk 

by Solexa sequencing.  

Blue circle: colostrum (7 days postpartum). Pink circle: mature milk (9 months postpartum). 

Source: Adapted from Chen et al. (2010) 

 

 

 

 

Figure 1.5. Number of miRNA species identified in bovine colostrum and mature milk 

by microarray analysis.  

Blue circle: colostrum (within 3 days postpartum). Pink circle: mature milk (after 8 days 

postpartum). Source: Adapted from Izumi et al. (2012) 
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Table 1.9. MicroRNAs concentrations in bovine colostrum and mature milk. 

miRNA species Colostrum(molar/mL) Mature milk(molar/mL) 

let-7b 2.40 ± 0.11 x 10-12 3.21 ± 0.47 x 10-12 

miR-16 1.09 ± 0.21 x 10-12 6.03 ± 1.00 x 10-13 

miR-18a 3.18 ± 0.38 x 10-15 7.94 ± 1.65 x 10-16 

miR-19a N/A 4.11 ± 0.90 x 10-14 

miR-20a 6.78 ± 2.07 x 10-13 6.72 ± 1.03 x 10-13 

miR-21 4.48 ± 0.26 x 10-14 3.05 ± 0.49 x 10-14 

miR-24 5.70 ± 0.26 x 10-14 1.37 ± 0.20 x 10-14 

miR-27a 7.52 ± 0.39 x 10-14 7.26 ± 0.63 x 10-14 

miR-29a 1.75 ± 0.02 x 10-13 8.04 ± 1.34 x 10-14 

miR-30d 1.74 ± 0.12 x 10-13 2.83 ± 0.43 x 10-14 

miR-31 5.39 ± 0.70 x 10-15 4.21 ± 1.02 x 10-15 

miR-32 1.95 ± 0.03 x 10-14 1.07 ± 0.17 x 10-14 

miR-93 2.36 ± 0.25 x 10-13 3.25 ± 0.36 x 10-14 

miR-100 1.14 ± 0.03 x 10-15 2.17 ±0.31 x 10-15 

miR-106a 3.51 ± 0.24 x 10-13 8.47 ± 1.63 x 10-14 

miR-125b 9.70 ± 2.87 x 10-16 N/A 

miR-142-5p 6.41 ± 0.705 x 10-15 N/A 

miR-146a 2.14 ± 0.12 x 10-14 3.18 ± 0.45 x 10-14 

miR-150 2.64 ± 0.09 x 10-14 4.05 ± 0.38 x 10-14 

miR-155 7.83 ± 0.27 x 10-15 1.42 ± 0.10 x 10-14 

miR-181a 7.88 ± 0.74 x 10-14 1.64 ± 0.18 x 10-14 

miR-200a 3.97 ± 0.25 x 10-13 9.21 ± 1.31 x 10-14 

miR-210 2.84 ± 0.06 x 10-14 4.40 ± 1.10 x 10-14 

miR-214 N/A 3.77 ± 0.54 x 10-14 

miR-221 2.70 ± 0.07 x 10-14 7.33 ± 1.67 x 10-14 

miR-223 7.05 ± 0.24 x 10-13 7.66 ± 1.02 x 10-13 

miR-451 2.07 ± 0.42 x 10-13 1.05 ± 0.26 x 10-14 

Molar abundance of each miRNA was calculated on the standard curve from different concentration 

of synthetic miR-16. Source: Sun et al. (2013) 
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Table 1.10. Immune-related miRNA reads in colostrum and mature milk. 

Immune related miRNA Solexa reads in mature milk Solexa reads in colostrum 

miR-155  110 121 

miR-181a 1,023 6,255 

miR-142-5p  69 204 

miR-223 407 5,650 

miR-146a  4 2 

miR-150 123 1,232 

Source: Chen et al. (2010) 

 

In addition to embryonic development, miRNAs have been shown to play important roles 

mammary gland and adipose tissue function. They have been implicated in the regulation of 

production traits such as milk yield, milk quality and response to diseases including mastitis 

and Johne’s disease (Do et al., 2018). Many miRNAs in milk and colostrum related to 

immune function have been also detected (Table 1.11 and 1.12) (Matukumalli, 2006; 

Sonkoly et al., 2008; Chen et al., 2010; Dilda et al., 2012; Izumi et al., 2012; Sun et al., 2013; 

Oh et al., 2015).  

 

Table 1.11. Immune-related miRNAs in colostrum and milk. 

Species Immune-related miRNAs Reference 

Bovine 
miR-155, miR-181a, miR-142-5p, miR-223, miR-146a,  

miR-150 
Chen et al. (2010) 

Bovine 

Let-7b, miR-16, miR-18a, miR-19a, miR-20a, miR-21, miR-

24, miR-27a, miR-29a, miR-30d, miR-31, miR-32, miR-93, 

miR-100, miR-106a, miR-125b, miR-142-5p, miR-146a, 

miR-150, miR-155, miR-181a, miR-200a, miR-210, miR-

214, miR-221, miR-223, miR-451 

Sun et al. (2013) 

Bovine 
miR-15b; miR-27b; miR-34a; miR-106b; miR-130a; miR-

155; miR-223 
Izumi et al. (2012) 

Bovine  miR-9, miR-125b, miR-155, miR-146a and miR-223,  Dilda et al. (2012) 

Goat, 

human and 

dairy cattle 

miR-146; miR-150; miR-155; miR-181a; miR-223 Na et al. (2015) 

Human 
miR-181a, miR-181b, miR-155, miR-17, miR-92a, miR-

125b, miR-146a, miR146b, miR-223, let-7i, and miR-150 
Zhou et al. (2012) 
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Table 1.12. Role of miRNAs in immune cell populations. 

 

Source: Liang et al. (2015b) 

 

Different miRNAs have different immune functions. For instance, miR-181a and miR-223 

have been implicated in establishing and maintaining the immune cells, while miR-146 is 

involved in innate immunity and miR-155 regulates central elements of the adaptive immune 

response. MicroRNAs, like miR-203 and miR-146, are implicated in immune-mediated 

Immune cell MiRNAs Functions 

T cells 

miR-17, miR-146 T-cell differentiation 

miR-181a 
Enhances T cell receptor signalling by targeting 

protein 

miR-181a, miR-9 CD4+ T cell activation 

miR-17-92 CB8+ T cell activation during viral infections 

miR-29 Suppress Th1 cell responses 

miR-126 Supress Th2 responses 

miR-326, miR-301 Increase h17 cell responses 

miR-10 Increase Treg cell population 

B cells 

miR-150, mi-34a 
Inhibit B cell differentiation from pro-B cells to 

pre-B cells 

miR-155 
Inhibit activation of B cells present in germinal 

centres 

Monocytes/ 

Macrophages 

miR-146a, miR-155, 

miR0342, miR-338, miR-

17-92 

Inhibit differentiation of monocytes 

Dendritic cell 

(DC) 

miR-221, miR-222 Decrease plasmacytoid DCs population  

miR-21, miR-34a, Inhibit monocyte-derived DCs differentiation 

miR-148, miR-152 

Decrease expression of MHC class II on 

conventional DCs and decrease DC-medicated 

CD4+ T cell activation 

Natural killer 

cells (NK) 

miR-150 Increase natural NK population 

miR-181 Induce NK cell development 

miR-30, miR-27, miR-

378, miR-223 
Increase NK cytotoxic activity 
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diseases, and miR-196 is implicated in viral immune escape and anti-viral defence (Sonkoly 

et al., 2008). A study by Dilda et al. (2012) revealed that miR-9, miR-125b, miR-146a, miR-

233, and miR-155 were closely related with inflammation after stimulation of bovine 

monocytes with lipopolysaccharide and S. aureus enterotoxin B. MicroRNA-142-5p and 

miR-223 may be up-regulated by infections because they were highly expressed in cows 

with mastitis and could be potential biomarkers for the early detection of bacterial infection 

of the mammary gland (Sun et al., 2015; Cai et al., 2018). 

 

MicroRNA-155 (miR-155) appears to be necessary for normal immune function, as mice 

lacking this miRNA are immunodeficient (Rodriguez et al., 2007). MicroRNA-155 regulates 

many genes including chemokines, cytokines and transcription factors in CD4+ cells. Other 

microRNAs have been shown to modulate the innate immune system, such as miR-223 

which is involved in the adaption of responses to pathogens, and miR-146, which affects 

essential elements for inflammation. MicroRNA-181a is implicated in the development of 

both B and T lymphocytes (Sonkoly et al., 2008). The levels of most of the miRNAs change 

over the course of lactation and the miRNA targets and their function remain largely 

unknown (Floris et al., 2016). 

 

1.2.6. Effects of colostrum components on calf health, growth, fertility and production 

Of all the components in bovine colostrum, the main focus has been on IgG because of the 

obvious effects of immunoglobulins on neonate passive immunity. IgG is the 

immunoglobulin at highest concentration in bovine colostrum and the concept of failure of 

passive immunity transfer (FPIT) is based on the IgG concentration in the neonatal calf 

blood. If neonatal calves have more than 10 g/L of IgG in their serum 24 hours after birth 

they are considered to have received sufficient passive immunity transfer, which helps 

protect them from pathogens (Weaver et al., 2000; Barrington and Parish, 2001; Godden et 

al., 2019; Oliveira et al., 2019). As measuring of IgG is difficult, total serum protein is often 

used as an indicator of FPIT with a threshold of 52 g/L total protein (Weaver et al., 2000; 

Cuttance et al., 2017a).  

 

Studies on IgG, and total protein in calf blood have considered whether the calf received 

maternal colostrum, colostrum placer, colostrum supplement (Quigley et al., 2001; Jones et 
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al., 2004), pasteurized and non-pasteurized colostrum (Armengol and Fraile, 2016), cell-free 

colostrum (Langel et al., 2016), heat-treated or unheated colostrum (Gelsinger and 

Heinrichs, 2017). In general, neonatal calves fed maternal colostrum had higher levels of 

IgG in their serum within the first few hours of life and greater passive immunity than those 

receiving colostrum supplement and colostrum replacer (Quigley et al., 2001; Fidler et al., 

2011; Priestley et al., 2013). Other factors affecting IgG or total protein concentration 

included colostrum volume, the timing of colostrum feeding, and the type of colostrum, 

milking time, parity and method of feeding (Franklin et al., 2003; Jaster, 2005; Chamorro et 

al., 2017; Godden et al., 2019). Calves that received colostrum with high IgG levels or a 

large colostrum volume soon after birth had higher total protein and IgG in their blood than 

those receiving small volumes of poor colostrum a long time after birth (Jaster, 2005; 

Conneely et al., 2014). Interestingly, it has been observed that calves fed colostrum by bottle 

had higher total protein than calves that suckled from their dam (Franklin et al., 2003). 

 

In addition to the link between different types of colostrum and passive immunity, the 

relationship between different sources of colostrum and health, growth and future production 

of calves has been investigated (Furman-Fratczak et al., 2011; Priestley et al., 2013; 

Chamorro et al., 2017; Lago et al., 2018). Calves that received pasteurized colostrum had 

significantly decreased morbidity and mortality in comparison with calves that received non-

pasteurized colostrum for 21 days after birth (Armengol and Fraile, 2016). Feeding heat-

treated colostrum reduces potential pathogens in the calf intestine (Malmuthuge et al., 2015). 

Heat-treating colostrum does not seem to prevent it stimulating an immune response to 

pathogens, although the average daily gain for 35 days was higher in the calves fed unheated 

rather than heat-treated colostrum (Gelsinger and Heinrichs, 2017). Calves that received 

colostrum and milk from their dams had higher plasma total protein, immunoglobulin G and 

insulin-like growth factor-1 than those receiving bulk milk which correlated with a greater 

body weight (Schiessler et al., 2002). Good passive immune transfer has been also associated 

with earlier first insemination, meaning earlier puberty (Furman-Fratczak et al., 2011). 

 

Even if calves receive colostrum from the same source, there are other factors that may affect 

passive immunity transfer in calves and growth performance, in particular the volume of the 

colostrum. A significant difference in weight gain has been reported in calves receiving 

higher colostrum volumes (Faber et al., 2005). In addition, the manner by which calves 
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receive colostrum has an effect on social behaviour as an adult. Suckled calves receiving 

colostrum from their dam had a positive effect on the daily gain and better social behaviour 

compared to those fed colostrum from a bucket without their dam present (Krohn et al., 

1999). 

 

Proteins with anti-microbial activity are present in colostrum, such as lactoferrin, mucin-1 

and plasmin. Pakkanen and Aalto (1997) found bovine lactoferrin, for example, can inhibit 

the growth of several kinds of bacteria by binding with iron, which is important for the 

growth of microbes. It is not known if the presence of these proteins in colostrum is to reduce 

bacterial growth in the colostrum or if the transfer of these immune proteins from the dam 

to newborn calf has a beneficial effect on the calf. 

 

MicroRNAs are stable in colostrum and raw milk (Chen et al., 2010; Sun et al., 2013). The 

miRNAs are present in microvesicles in colostrum, where they are at a higher concentration 

than in milk (Chen et al., 2010; Sun et al., 2013; Izumi et al., 2015; Sun et al., 2015), and 

may be transferred from the colostrum to neonates (Sun et al., 2013). However, a more recent 

study has suggested that miRNAs are not all readily transferred from colostrum to newborn 

calves (Kirchner et al., 2020).  

 

1.3. Gaps in knowledge 

Research since the 19th century has confirmed the role of colostrum in neonate health and 

has explored different colostrum fractions and components, but the primary focus has been 

on the immunoglobulins. Other immune components in colostrum may affect calf health and 

in the long term such as growth and production, but these have not been fully explored. In 

particular, the research carried out to-date has not explored the miRNA profiles in individual 

cow colostrum and pooled colostrum, and whether these miRNAs are absorbed by the 

neonate calves. It is also not known if different calves can absorb the same amount of 

nutrients and immune components from the same colostrum source or if there are any 

differences should calves receive colostrum from their own dam or from another cow. 
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1.4. Objectives and hypothesis 

The hypotheses tested in this research were: 

1) Calves will absorb equal amounts of the components in colostrum whether or not 

that colostrum is from their own dam or a different cow. 

2) If colostrum is fed shortly after birth, then poorer quality pooled colostrum will still 

provide adequate passive immunity for neonate calves. 

3) MicroRNAs in the colostrum will be absorbed by neonate calves. 

4) MicroRNAs in the colostrum will have immune-related functions in the calves. 

To test these hypotheses, the goal of this research was 1) to investigate the main components 

in individual cow colostrum, pooled colostrum and bulk tank milk, and 2) to study the 

transfer of these components from different colostrum sources. The specific colostrum 

components that were investigated were protein, lactose, fat, IgG concentration, GGT, and 

immune-related miRNAs. The specific objectives were: 

 

Objective 1: Quantify colostrum components, including total solids, total protein, IgG, fat 

and lactose in colostrum from individual cows, pooled colostrum and bulk tank milk and 

measure the transfer of these components into calf blood for one week after birth in calves 

fed colostrum from three sources. 

 

Objective 2: Determine the relationship between the colostrum components and calf blood 

parameters one week after birth. 

 

Objective 3: Investigate the miRNA profile of dam colostrum and pooled colostrum by Next 

Generation sequencing (NGS), and explore the transfer of miRNA to newborn calves before 

and after receiving their own dam colostrum, foster cow colostrum and pooled colostrum. 

 

Objective 4: Quantify specific immune-related miRNAs (namely, miR-142-5p, miR-150, 

miR-155, miR-181a and miR-223) in individual cow colostrum, pooled colostrum, bulk tank 

milk and the transfer of these miRNAs to calves fed their own dam, foster dam colostrum 

and pooled colostrum. 
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Chapter 2. Experiment design and general methods 
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2.1. Experimental design  

This study, funded by Davies Research Centre, The University of Adelaide and all animal 

experiments were approved by the Animal Ethics Committee (S-2017-060) prior to the start 

of animal work. Thirty-five Holstein Friesian bull calves, born from 18th February 2018 to 

1st March 2018, were obtained from a farm with 1800 healthy cows in Mount Gambier, 

South Australia.  

 

Cow and calf management at birth  

Calves were born singletons to multiparous Holstein dams in the same milking group of a 

single farm with 1800 cows. The cows were kept as a cohort and had similar genetics, 

environment, nutrition and parity (2 to 4). The birth information was recorded, specifically 

calving difficulty score (Table 2.1), calf ID, cow ID, and time of birth. Calves were taken 

from their dam after being licked clean (about 30 min after birth), but not allowed to suckle, 

and were scored for calf vigour (1 = weak, 2 = lazy, 3 = vigorous, 4 = very vigorous) and 

health (Based on Calf Vitality sheet from the University of Guelph, Canada, 

https://www.progressivedairycanada.com/downloads/2012/09/0912ca_lee_vigor.pdf).  

 

Table 2.1. Calving ease scoring system (6 point scale). 

Score Code Description 

1 Unassisted Cow calved unassisted/no difficulty 

2 Easy pull One person without mechanical assistance 

3 Hard pull Two people without mechanical assistance One person with 

mechanical assistance 

4 Surgical assistance Veterinary intervention required 

5 Mal-presentation E.g. breech 

6 Elective surgical Surgical removal of calf before cow had opportunity to calve 

 

The calving ease score of all calves in this study was 1 or 2, so that the dam colostrum 

volume and quality or the vitality of the calves should not have been affected by a difficult 

birth. The calves were randomly block allocated to 3 groups (the first calf was allocated in 

Group A (tagged as A1, the second and third calf were tagged as B1 and C1, respectively) 

(Figure 2.1). Three calves (A1, B1 and C1) were placed in the same pen. Group A dams 

were tagged with necklace numbered 1 to 12 corresponding to their calves, then kept for 

https://www.progressivedairycanada.com/downloads/2012/09/0912ca_lee_vigor.pdf
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three days postpartum for colostrum collection. Newborn calves were weighed by using 

portable animal weight scales and crate (kg), and then the calf girth was measured using a 

tape measure (cm). The Group A calves were fed colostrum from their own dam and Group 

B calves were fed colostrum from one of the group A cows. The Group C calves were fed a 

single bottle of pooled colostrum (2 L) obtained from the dairy’s other cows 0 to 4 days post-

partum. All calves were offered ad lib calf concentrate, lucerne or medic, and water from 

day 1. Calves were blood sampled prior to feeding (within 4 hours of birth, day 0) and again 

on days 1, 2, 3 and 7 after birth. 

   

 

Figure 2.1. Experimental design.  
 

Each pair of Ai and Bi calves was fed colostrum from the same cow (cowi) for 3 days after 

birth and then bulk tank milk from day 4 to 7 after birth. Group C calves were fed 1 bottle 

(2 L) of pooled colostrum and then bulk tank milk thereafter until day 7 after birth. 

 

 

The dams of Group A calves were milked within 2 hours post-partum using a portable 

milking machine for the first milking. Thereafter, the cows were milked in the dairy using a 

rotary milking parlour from the 2nd to 7th milking every 12 hours and the individual colostrum 

collected. The dam colostrum from each Group A cow was measured for volume, samples 

kept for analysis and the remaining colostrum divided into bottles for the Group A and B 

calves and tags with cow number using a permanent marker. All Group A and B calves were 

fed 5% of the birth weight of dam colostrum twice a day until day 3 by bottle with a calf 

teat. Pooled colostrum was collected from approximately 100-120 dairy cows 0-4 days 

Dam colostrum

Group A

n = 12 calves

Fed their own dam’s 
colostrum (3 days)

Group B

n = 12 calves

Fed foster cow's 
colostrum (3 days)

Pooled colostrum 

Group C

n = 11 calves

Fed 2 L of pooled colostrum at first feed, 

then bulk tank milk for 3 days
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postpartum once per day for Group C calves, which was given for the first feed (2 

L/calf/feed) using a bottle with a calf teat. It is a frequent practice for Australasia dairy farms 

to pool colostrum and transition milk from cows 0-4 days postpartum to feed the newborn 

calves (Denholm et al., 2017; Cuttance et al., 2018; Phipps et al., 2018). All calves were fed 

the first time within 4 hours after birth and second feed was approximately 12 hours after 

birth. The bulk tank milk was collected from dairy cows more than 5 days postpartum twice 

daily to be fed to Group C calves from 2nd feed until day 7 after birth and Group A, B calves 

from day 4 to 7 after birth. Bulk tank milk was fed 2 L per calf per feed twice daily using a 

drinking bucket. The sample of colostrum, pooled colostrum and bulk tank milk were 

collected into sterile 50 mL-tubes and then assayed for total solids using a Brix refractometer 

immediately after milking. 

 

The volume of colostrum fed to calves each feed was 5% birth weight every 12 hours being 

the practice followed on many dairy farms (Cummins et al., 2016; Cuttance et al., 2018; 

Phipps et al., 2018; Abuelo et al., 2019; Inabu et al., 2019). The group C calves replicated 

the protocol used by many Australian commercial dairy farms (Vasseur et al., 2010; Vasseur 

et al., 2012; Cummins et al., 2016).  

 

2.2. Sampling 

2.2.1. Colostrum and milk samples 

The dam colostrum (n = 12) from Group A cows was sampled twice daily until 3 days 

postpartum, and pooled colostrum, bulk tank milk were collected from the commercial dairy 

twice daily during collection time from 18th February 2018 to 8th March 2018. These 

colostrum and milk samples were immediately assayed for total solid by Brix refractometer, 

which is a digital optical refractometer DBR-1 (Starr Instruments, Dandendong, VIC, 

Australia). The Brix refractometer measured proteins, carbohydrates, and other soluble 

molecules. Additional colostrum, milk samples were collected into four sterile 50 mL-tubes, 

frozen at -20oC, then transported on dry ice to The University of Adelaide, Roseworthy 

Campus and stored at -80oC until analysed. 
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2.2.2. Cow blood and calf blood samples 

Cows were blood sampled within 2 hours after parturition. Calves were blood sampled 

within 4 hours after calving (day 0), at days 1, 2, 3, and 7 after birth. Blood was drawn from 

the jugular vein using BD vacutainer (BD-Plymouth. PL6 7BP, UK) with multi-sample 

needles 20G or 18 G depending on calf age, into 6 mL – BD vacutainers with no 

anticoagulants (red-top tube), 6 mL – BD vacutainers with heparin (green-top tube) and 6 

mL- BD vacutainers with EDTA (purple-top tube). Depending on calf age and the purpose 

of the sample at each time point, 6 mL or 10 mL was collected. 

 

Fresh whole blood was collected into a vacutainer without anticoagulant and a drop was 

immediately absorbed onto an Accu-check Performa test strip. The glucose concentration 

was determined using a glucose meter (Accu-check Performa, Roche Diabetes Care, Basel, 

Switzerland). 

 

Serum was separated from blood with no anticoagulants by allowing the blood to clot for 45 

to 60 min at 4 °C then centrifugation (2000 x g, 5 min at room temperature). Serum samples 

were immediately tested for total soluble protein concentration (TP-R) by the digital 

refractometer (Digital Refractometer, ATAGO, Saitama, Japan) with a measurement range 

for protein from 0 to 12 g/100 mL. The leftover serum was stored at -20oC, transported to 

the University of Adelaide, Roseworthy Campus and stored at -80oC until analysed for total 

protein by refractometer, total protein by Bradford assay and IgG concentration.  

 

Plasma was prepared from fresh blood with heparin anticoagulant (green-top tubes) at the 

time of collection by centrifugation at 2000 x g for 15 minutes at room temperature. Plasma 

samples were initially stored at -20oC, transported for to the University of Adelaide, 

Roseworthy Campus and stored at -80oC until analysed for GGT activity levels. 

 

One mL of whole blood from the EDTA (purple-top) tubes for RNA extraction, was mixed 

with 3 mL Trizol LS reagent (Catalog Numbers 10296010 and 10296028, Invitrogen, 

Thermo Fisher scientific) and incubated at room temperature for 20 minutes then frozen at -

20oC. The sample in Trizol LS was transported to the University of Adelaide, Roseworthy 

Campus and stored at -80oC until analysed for miRNA.  
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2.3. Colostrum and blood assay 

2.3.1. Colostrum total solids measured by Brix refractometer  

The concentration of the soluble solids, which include sugar, salts, proteins and acids 

(Brix%), in colostrum and milk samples, was measured in fresh colostrum and milk 

immediately after collection using a digital optical refractometer DBR-1 (Starr Instruments, 

Dandendong, VIC, Australia) with a measurement range of Brix 0 to 50%. The Brix 

refractometer was zeroed using ultrapure water (Milli Q). 

 

2.3.2. Nutrient colostrum components  

Protein (%), fat (%) and lactose (%) were determined using a Fourier-transform mid-infrared 

(FT-MIR spectrometer, Foss Analytics) at the National Herd Development Co-operative 

(Kyabram VIC 3620, Australia).  

 

2.3.3. Total protein by Bradford assay (TP-B) (g/L) 

Total protein in colostrum, pooled colostrum, bulk tank milk and calf serum was assayed in 

a 96 well-plate using a Quick Start Bradford Protein assay kit following the manufacturer’s 

instructions (Quick Start, Bio-Rad Laboratories, Inc., USA). The colostrum samples (10 µL) 

at days 1, 2 and 3, pooled colostrum and bulk tank milk were diluted with ultrapure water at 

a ratio of 1:100 and colostrum at day 0 was diluted at a ratio of 1:200 or 1:300. The diluted 

samples (5 µL) were mixed with Coomassie Brilliant Blue G-250 dye (250 µL) and colour 

change was measured using a Benchmark Plus microplate spectrophotometer (Bio-Rad 

Laboratories, Inc., USA) at 595 nm (OD595). The total protein by Bradford assay (TP-B) in 

the samples was calculated based on a standard curve for a serial dilution of bovine serum 

albumin.  

 

Total protein in the calf serum was assayed by the same Bradford assay for colostrum and 

bulk tank milk samples. Before adding to a 96-well plate, serum samples (5 µL) were diluted 

in ultrapure water at a ratio of 1:100.  

 

2.3.4. IgG concentration (g/L)  

Immunoglobulin G concentration in colostrum, pooled colostrum, and bulk tank milk was 

quantified by a sandwich ELISA (enzyme-linked immunosorbent assay) in 96-well plates 
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(Coat Nunc F96 Maxisorp plates, Thermo-Fisher Scientific) using bovine gamma globulin 

(Bio-Rad Laboratories, Inc., USA) serially diluted for a standard curve (Appendix 2). Two 

bovine IgG specific antibodies (Life Technologies, USA), goat anti-bovine IgG antibody 

unconjugated, affinity purified (Novex Cat. #A18753) and goat anti-bovine IgG antibody 

conjugated with horseradish peroxidase (HRP), affinity purified (Invitrogen Cat. #18751). 

The colostrum samples from days 0 and 1 and the pooled colostrum samples were diluted in 

0.05% Tween 20-PBS solution as appropriate (Appendix 2). The 3,3',5,5'-

tetramethylbenzidine substrate (Ultra TMB-ELISA, Thermo Fisher Scientific) was added 

and the plates incubated at room temperature in the dark for 15 minutes before the reactions 

were stopped by the addition of 0.1 M H2SO4. Antibody binding was measured as the 

enzymatic colour change at 450 nm using a Benchmark Plus microplate spectrophotometer 

(Bio-Rad Laboratories, Inc., USA). The IgG concentrations in samples were calculated 

based on the standard curve.  

 

Serum IgG was assayed by ELISA using the same protocol as for colostrum and milk, 

however, serum samples were diluted in 0.05%T-PBS solution at a ratio of 10-4 (calf serum 

day 0), or 10-6 for other time-points (days 1, 2, 3, 7). 

 

2.3.5. Calf glucose concentration (mmol/L) 

A drop of fresh whole blood was immediately absorbed onto an Accu-check Performa test 

strip after collection into a vacutainer without anticoagulant, and the glucose concentration 

was determined using a glucose meter (Accu-check Performa, Roche Diabetes Care, Basel, 

Switzerland). 

 

2.3.6. Gamma-glutamyltransferase activity (GGT) (U/L) 

Calf plasma was analysed for GGT activity using a kinetic colour test with a Beckman 

Coulter analyser (Coulter Manufacturing Company, Brea, CAL, USA) at the Veterinary 

Diagnostic Laboratory, The University of Adelaide, Australia. 

 

2.3.7. Serum total protein by refractometer (TP-R) (g/L) 

A digital refractometer with measurement range for protein from 0 to 12 g/100 mL (Digital 

Refractometer, ATAGO, Saitama, Japan) was used to determine total protein (TP-R) 
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concentration in the calf serum at days 0, 1, 2, 3 and 7 after birth. Serum was tested 

immediately after collection. The protein refractometer was zeroed using ultrapure water 

(Milli Q).  

 

2.4. MicroRNA analysis  

2.4.1. MicroRNA extraction 

a. MicroRNA extraction using miRNeasy Mini Kits 

Total RNA from colostrum and calf blood samples was extracted for miRNA sequencing by 

using miRNeasy Mini Kits (cat. No. 217004, Qiagen). Briefly, 250 µL of colostrum/calf 

blood mixed well with 750 µL Trizol LS (duplicate for each sample in order to increase 

RNA yield for miRNA sequencing). The mixed samples were incubated the homogenate at 

room temperature (15 - 25 oC) for 5 minutes. Chloroform (140 µL) was added, mixed for 15 

seconds, incubated at room temperature for 3 minutes, and centrifuged for 15 minutes at 

12,000 x g at 4 oC (~11,000 rpm). After centrifugation the samples were separated in 3 

phases, and the upper aqueous phase was carefully transferred to a new collection tube. Then 

700 µL of 100% ethanol was added and mixed thoroughly by pipetting. Up to 700 µL of the 

sample, including any precipitate, was pipetted into an RNeasy Mini column within a 2 mL 

collection tube, and the column was centrifuged at ≥ 8000 x g (10,500 rpm) for 20 second at 

room temperature. This step was repeated for the remainder of the samples, including the 

duplicate tubes of each sample. RWT Buffer (700 µL) was added into the RNeasy Mini 

column, centrifuged for 20 second at ≥ 8000 x g (10,500 rpm), and the flow-through was 

discarded. Then, Buffer RPE (500 µL) was pipetted onto the RNeasy Mini column and 

centrifuged for 20 second at ≥ 8000 x g (10,500 rpm), and the flow-through was discarded. 

This washing step with buffer RPE was repeated but the column was centrifuged for 2 

minutes at ≥ 8000 x g (10,500 rpm) and the flow-through was discarded. The RNeasy Mini 

column was placed into a new 2 mL collection tube and centrifuged at full speed (14,000 

rpm) for 1 min to further dry membrane. The RNeasy Mini column was transferred to a new 

1.5 mL collection tube and RNase-free water (30 µL) directly added onto the RNeasy Mini 

column membrane, which was then centrifuged for 1 minute at ≥ 8000 x g (10,500 rpm) to 

elute. Note that the buffer RWT with 30 mL ethanol (96 - 100%) added and the buffer RPE 

with 44 mL ethanol (96-100%) added were stored at room temperature (15 – 25 oC) before 

starting the extraction steps. 
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b. MicroRNA extraction using Trizol LS reagent 

Total RNA for RT-qPCR was extracted by using the Trizol LS method, according to the 

manufacturer’s protocol with some modifications as detailed to increase RNA yield and 

quality. One µL of cel-miR-39-3p (5 pM/µL) (mirVana, miRNA mimic, ID: MC10956, Cat# 

4464066, Lot# AS027ZX4) was added to a mix of colostrum (or milk or blood) and Trizol 

LS reagent with a ratio of sample in Trizol LS of 1:3 (250 µL sample: 750 µL Trizol LS). 

The sample and Trizol LS reagent was mixed well and incubated 5 minutes at room 

temperature. Chloroform (0.2 mL) was added into the sample for lysis, and incubated for 2-

3 minutes at room temperature before centrifugation for 15 minutes at 12,000 × g (~10,500 

rpm) at 4°C. The mixture separated into a lower red phenol-chloroform, interphase, and a 

colorless upper aqueous phase. The aqueous phase containing the RNA was transferred to a 

new tube by angling the tube at 45° and pipetting the solution out. Isopropanol (0.5 mL) was 

added to the aqueous phase, shaken, and incubated for 10 minutes. Sample was centrifuged 

for 10 minutes at 12,000 × g (~10,500 rpm) at 4°C. The total RNA precipitate formed a white 

gel-like pellet at the bottom of the tube and the supernatant was discarded with a 

micropipettor. The pellet was re-suspended in 1 mL of 75% ethanol, centrifuged for 5 

minutes at 7500 × g (~ 8,500 rpm) at 4°C, and the supernatant was discarded. The sample 

tube was centrifuged for 1 minute at 8500 × g (~ 10,500 rpm) at 4°C, and then the RNA 

pellet was vacuum or air dried for 5–10 minutes. The pellet was resuspended in 50 μL of 

RNase-free water by pipetting up and down, and the tube was placed immediately on ice. 

 

2.4.2. MicroRNA profiling by Next Generation sequencing (NGS) 

MicroRNA was extracted from dam colostrum (n = 4), pooled colostrum (n = 4), and calf 

blood from three calf Groups (A, B and C) (n = 4 per each group) before and after consuming 

colostrum (day 0 and day 1) using a miRNeasy Mini Kit (cat. No. 217004, Qiagen) as 

described in section 2.4.1a. The samples that had total RNA concentration of 1 μg in a 

maximum of 10 μL volume (1 ng per sample) with an OD 260/280 from 1.6 – 2.0 were used 

for the RNA library preparations if they were also deemed to be sufficient quality from Tape 

Station and Bioanalyzer analyses. The microRNAs were sequenced by using a NEXTflex 

small RNA-seq Kit v3, (Illumina, Bio scientific Corporation, USA) by ACRF Cancer 

Genomics Facility, SA Pathology, Adelaide, South Australia, as detailed in Chapter 5.  
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2.4.3. MicroRNA quantification by quantitative reverse transcription polymerase chain 

reaction (RT-qPCR) 

Five different immune-related miRNAs, miR-142-5p, miR-150, miR-155, miR181a and 

miR-223, were quantified in colostrum days 0, 1, 2 and 3, pooled colostrum, bulk tank milk, 

cow blood at 2 hours postpartum and calf blood days 0, 1, 2, 3 and 7 by quantitative reverse 

transcription polymerase chain reaction (RT-qPCR) using Caenorhabditis elegans cel-miR-

39 as an internal standard for quantification.  

 

Total RNA in colostrum, milk and whole blood was extracted using Trizol LS (Invitrogen, 

Catalog Numbers 10296010 and 10296028) as described in section 2.4.1b. Cel-miR-39-3p 

(5 picomole/µL) (mirVana, miRNA mimic, ID: MC10956, Cat# 4464066, Lot# AS027ZX4) 

was used as an exogenous control by adding 1 µL to the colostrum, milk or calf blood before 

starting the extraction steps. After total RNA isolation, the concentration and quality of total 

RNA were assessed by Nanodrop. All samples that had a ratio of A260/280 ranged from 1.6 

to 2.0 were used for RT-qPCR. Total RNA was first transcribed into complementary DNA 

(cDNA) by using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystem, 

product P/N 4366596 and 4366597, USA). The cDNA was then diluted at a ratio of 1:10 

with RNase-free water and used as the template for the qPCR reaction. The cDNA from the 

cel-miR-39-3p was used for the standard curve. Quantitation using real-time PCR was 

performed by using Corbett Robotics CAS Robotics4 v4.9.1 system to load the PCR reagents 

into Gene-Disc 100 well rings, and the PCR ring was placed into a thermal cycler (Rotor-

Gen 6000, Corbett Research, 2 PLEX). The reagents used for qPCR step were from TaqMan 

Universal Master Mix II, no uracil-N-glycoslyase (UNG) kit (Applied Biosystems) and all 

steps followed the protocol of the manufacturer with some modifications for the template 

amount. The details are described in Chapter 6. 

 

2.5. Statistical and bioinformatics analyses 

Statistical analyses were carried out in R (R version 3.6.3) and SAS (version 9.4). The details 

of the statistical analyses are provided in each chapter as appropriate. MicroRNA profiles 

and miRNA expression data were analysed by using a bioinformatics pipeline as described 

in Chapter 5. 
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Chapter 3. Colostrum source and passive immunity transfer in dairy bull calves 

 

This chapter is a paper published in Journal of Dairy Science: 

 

Do T. Hue, Rebel Skirving, Tong Chen, John L. Williams, Cynthia D. K. Bottema, and Kiro 

R Petrovski. Colostrum source and passive immunity transfer in dairy bull calves. 

Journal of Dairy Science 104(7):8164-8176. DOI:https://doi.org/10.3168/jds.2020-19318. 
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Colostrum source and passive immunity transfer in dairy bull calves 

 

Do T. Hue,1,2 Rebel Skirving,1,3 Tong Chen,1 John L. Williams,1,4 Cynthia D. K. Bottema,1* 

and Kiro Petrovski1 

 

SUPPLEMENTARY FILE S1 

 

Supplementary Methods  

* Bull calf selection and birth measurements. At birth, all birth information was recorded 

including calving difficulty score (Supplementary Table 1), calf ID, cow ID, and time of birth. 

Calves were taken from dam after licked clean (about 30 min after birth), but not allowed to 

suckle and scored for calf vigour (1 = weak, 2 = lazy, 3 = vigorous, 4 = very vigorous) and 

health (Supplementary Figure 1). The calves were randomly allocated to 3 groups in 6 blocks. 

The first calf was allocated in Group A and tagged as A1 and the first calves allocated in Groups 

B and C were tagged as B1 and C1, respectively. Three calves (A1, B1 and C1) were placed in 

the same pen. Only the Group A cows were tagged with necklace as number 1 to 12, sprayed 

with paint to be distinguished from other cows on the dairy, and kept for three days postpartum 

for milking. Newborn calves were weighed by using portable animal weight scales and crate 

(kg), and measured for girth by using tape measure (cm). Blood samples were taken and the 

calves given their first feeding of colostrum within 4 hours of birth. 

 

*Calf feeding. Pairs of Group A and B calves were fed identical colostrum from the same 

milking of the dam of the Group A calf. The Group A dams were first milked within 2 hours 

postpartum and then milked again within 10 hours postpartum. The Group A and B calves were 

fed 5% of their birth weight within 4 hours after birth and another 5% of their birth weight 

within 12 hours of birth. Thereafter, the pairs of Group A and B calves were fed identical 
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colostrum from the same milking of the dam of the Group A calf twice per day (5% of their 

birth weight/feeding) for 3 days, and then were fed bulk tank milk twice per day (2 

L/calf/feeding) for 4 days. The Group C calves were only fed 1 bottle of “pooled” colostrum 

for their first feeding (2 L) and then were fed bulk tank milk twice per day (2 L/calf/feeding) 

for 7 days. The “pooled” colostrum was the colostrum and transition milk collected from the 

other cows on the dairy 0-4 days postpartum. All calves were fed by nipple bottles until 3 days 

after birth and nipple buckets from day 4 to 7 after birth. All calves were given ad lib access to 

calf concentrate, lucerne or medic, and water from the beginning. 

 

*Colostrum, pooled colostrum and bulk tank milk samples. The Group A dams were first 

milked using a portable milking machine and then twice daily in the dairy. The colostrum and 

transition milk was collected for 3 days postpartum and the volume was measured. Dam 

colostrum was dispensed into bottles for 2 calves (Group A and B calves) based on calf birth 

weight (5% birth weight per feed) and each bottle clearly marked for the Group A and Group 

B calves with tags. Pooled colostrum was collected from the other dairy cows 0-4 days 

postpartum once per day for the first feeding of the Group C calves. The bulk tank milk was 

collected from dairy cows more than 5 days postpartum twice daily for feeding the Group C 

calves from their second feeding until day 7 after birth and for feeding the Group A and B 

calves from day 4 to 7 after birth. The samples of dam colostrum, pooled colostrum and bulk 

tank milk were collected into sterile 50 mL-tubes and total solids were measured by using Brix 

refractometer immediately after milking. The samples were frozen at -200C, transported on dry 

ice and stored at -800C for remaining analyses. 

 

Calf blood sample samples. Calf blood was collected at day 0 (within 4 hours after birth, before 

any feeding) and day 1, 2, 3 and 7 after birth. The blood samples were taken into 2 red cap 
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vacutainer tubes (no coagulant) for serum and 2 green vacutainer tubes (heparin) for plasma. 

The glucose concentration was measured in whole blood immediately after blood collection. 

Total protein was measured by refractometry immediately after serum collection. The 

remaining serum and plasma were frozen at -20oC, transported on dry ice and stored at -800C 

for further analyses.  

 

Calf health measurements. Calf health was monitored from birth until 7 days after birth by Dr 

Rebel Skirving from Gambier Vets, Mount Gambier, SA 5290, Australia. All illnesses were 

recorded including no or slow drinking, coughing, diarrhea, fever, and respiratory problems. If 

symptoms appeared, then these symptoms and temperatures were monitored twice daily, and 

treated as required.    

 

 

Supplementary Tables 

 

Supplementary Table S1. Calving ease scoring system (6 point scale). 

Score Code Description 

1 Unassisted Cow calved unassisted/no difficulty 

2 Easy pull One person without mechanical assistance 

3 Hard pull Two people without mechanical assistance One 

person with mechanical assistance 

4 Surgical assistance Veterinary intervention required 

5 Mal-presentation E.g. breech 

6 Elective surgical Surgical removal of calf before cow had 

opportunity to calve 
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Supplementary Table S2. Descriptive statistics and comparison of the components in 

calf blood within 7 days after birth (Least Squares Means with Standard Errors (LSM ± 

SE), letter superscripts indicate significant differences of P < 0.05). 

 

Component 1 Time 

point 2 

Group A 

 (n=12) 

Group B 

(n=12) 

Group C 

(n=11) 

All calves 3 

(n = 35) 

Glucose 

(mmol/L) 

Day 0 3.8 ± 0.3 4.1 ± 0.3 3.6 ± 0.3 3.8x ± 0.2 

Day 1 6.8 ± 0.3 6.6 ± 0.3 7.3 ± 0.3 6.9z ± 0.2 

Day 2 6.5 ± 0.3 6.4 ± 0.3 6.8 ± 0.3 6.6z ± 0.2 

Day 3 6.2 ± 0.3 6.4 ± 0.3 6.6 ± 0.3 6.5yz ± 0.2 

Day 7 5.7 ± 0.3 6.0 ± 0.3 6.2 ± 0.3 6.0y ± 0.2 

GGT (U/L) Day 0 10.8 ± 155.8  11.0 ± 155.8 13.3 ± 162.8 11.7x ± 94.8 

Day 1 1511.0a ± 155.8 1580.1a ± 155.8 783.1b ± 162.8 1271.4y ± 94.8 

Day 7 234.8 ± 155.8  231.0 ± 155.8  146.4 ± 162.8  200.8x ± 94.8 

TP-R (g/L) Day 0 40.5 ± 1.9 39.6 ± 1.9 41.1 ± 1.9 40.4x ± 1.2 

Day 1 60.9a ± 1.9 59.3a ± 1.9 52.4b ± 1.9 57.1y ± 1.2 

Day 2 60.0a ± 1.9 58.6ab ± 1.9 54.4b ± 1.9 57.3y ± 1.2 

Day 3 60.2a ± 1.9 57.8ab ± 1.9 53.5b ± 1.9 56.8y ± 1.2 

Day 7 57.8a ± 1.9 55.5ab ± 1.9 51.8b ± 1.9 54.7y ± 1.2 

TP-B (g/L) Day 0 55.0 ± 3.3 52.1 ± 3.3 50.1 ± 3.4 53.2x ± 1.9 

Day 1 78.6 ± 3.3 74.5 ± 3.3 76.6 ± 3.4 75.8z ± 1.9 

Day 2 64.1 ± 3.3 57.7 ± 3.3 63.3 ± 3.4 61.2y ± 1.9 

Day 3 76.8 ± 3.3 70.9 ± 3.4 68.4 ± 3.4 71.7z ± 2.0 

Day 7 62.1 ± 3.3 64.0 ± 3.3 65.1 ± 3.4 63.1y ± 1.9 

IgG (g/L) Day 0 0.3 ± 2.9 0.3 ± 2.9 0.2 ± 3.0 0.3x ± 2.0 

Day 1 27.9a ± 2.9 26.4a ± 2.9 15.5b ± 3.0 23.4z ± 2.0 

Day 2 35.0a ± 2.9 25.7b ± 2.9 15.5c ± 3.0 25.1z ± 2.0 

Day 3 23.6a ± 2.9 19.5ab ± 3.0 11.8b ± 3.0 18.1y ± 1.5 

Day 7 36.7a ± 2.9 29.0a ± 2.9 14.7b ± 3.0 26.5z ± 2.0 
a,b,c

  LSM within each time point with a different superscript letter are significantly different (P < 0.05)  
  x,y,z

  LSM within an “All calves” column with a different superscript letter are significantly different (P < 0.05)  
1 

GGT = gamma-glutamyl transferase; TP-R = Total protein by refractometer; TP-B = Total protein by Bradford 

assay; IgG = immunoglobulin G;  
2 

Day 3, Group B had 11 samples instead of 12 samples. 
3 All calves = Group A + Group B + Group C calves; Group A = calves fed own dam colostrum, Group B = calves 

fed foster cow colostrum, Group C = calves fed one bottle of pooled colostrum 
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Supplementary Table S3. Frequency and proportion of calves in each Group categorized by serum IgG levels on day 2 after birth 

(Lombard et al., 2020). 1,2 

 

 Frequency Proportion (%) P-values of pairwise comparisons 

Category 1 
Group A 

(n = 12) 

Group B 

(n = 12) 

Group A 

(n = 12) 

Group B 

(n = 12) 

Group C 

(n = 11) 

Group C 

(n = 11) 

Groups 

A & B 

Groups 

A & C 

Groups 

B & C 

Excellent 9 8 75.0 a 66.7 a 9.1 b   1 1.000 0.003 0.009 

Good 1 0 8.3 0.0 18.2 2 1.000 0.590 0.217 

Fair 2 3 16.7 b 25.0 ab 63.6 a 7 1.000 0.036 0.099 

Poor 0 1 0.0 8.3 9.1 1 1.000 0.478 1.000 

a,b
  Means within a row of a category proportion with different superscripts differ (P < 0.01), comparing pairwise by using 2 x 2 tables with Fisher’s exact test. 

1 Categories based on Lombard et al. (2020) where calf serum immunoglobulin G (IgG) levels of  ≥ 25.0, 18.0–24.9, 10.0–17.9, and < 10 g/L of IgG at 24-48 hours are classified 

as excellent, good, fair, and poor, respectively. 
2 Group A = calves fed own dam colostrum; Group B = calves fed foster cow colostrum; Group C = calves fed one bottle of pooled colostrum.
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Supplementary Figures 

 

 

Supplementary Figure S1. Scoring system to assess calf health at birth. (Based on the 

Calf Vigor Scoring System from the University of Guelph, Canada; 

https://www.progressivedairycanada.com/downloads/2012/09/0912ca_lee_vigor.pdf, 

accessed February 2018). 
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Chapter 4 

Predicting colostrum and calf blood components 

based on refractometry 

 

  



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 62 

 
 

 

 

Chapter 4. Predicting colostrum and calf blood components based on refractometry 

 

 

This chapter is a paper published in Journal of Dairy Research:  

 

Do T.  Hue, John L. Williams, Kiro R Petrovski and Cynthia D. K. Bottema. Predicting 

colostrum and calf blood components based on refractometry. Journal of Dairy 

Research 88(2):194-200. DOI:10.1017/S0022029921000340. 
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SUPPLEMENTARY FILE 

 

Supplementary Methods 

 

Enzyme-linked immunosorbent assay for immunoglobulin G (IgG) concentration 

The immunoglobulin G (IgG) concentration in the individual cow colostrum, pooled colostrum and 

bulk tank milk samples was quantified by enzyme-linked immunosorbent assay (ELISA) in 96-well 

plates (Coat Nunc F96 Maxisorp plates, Thermo-Fisher Scientific) using two bovine IgG specific 

antibodies (Life Technologies, USA), affinity purified goat anti-bovine IgG antibody unconjugated 

(Novex Cat. #A18753) and affinity purified goat anti-bovine IgG antibody conjugated with 

horseradish peroxidase (HRP Invitrogen Cat. #18751). The pooled colostrum samples and individual 

cow colostrum samples from days 0 and 1 were diluted in 0.05% Tween 20-PBS solution at a ratio 

of 1:106, while the bulk tank milk samples and the individual cow colostrum samples from days 2 

and 3 were diluted at a ratio of 1:105. Bovine gamma globulin (Bio-Rad Laboratories, Inc., USA) was 

used as the standard, with serial dilutions (0; 6.3; 12.5; 25; 37.5; 50; 75; and 100 ng/mL). 3,3',5,5'-

tetramethylbenzidine (TMB) substrate (Ultra TMB-ELISA, Thermo Fisher Scientific) was added and 

the plates were incubated at room temperature in the dark for 15 minutes before the reactions were 

stopped with the addition of 0.1 M H2SO4. Antibody binding was measured as the enzymatic colour 

change at 450 nm using a Benchmark Plus microplate spectrophotometer (Bio-Rad Laboratories, Inc., 

USA). The IgG concentrations in samples were calculated based on the standard curve. Calf serum 

IgG concentration was determined using the same ELISA as the colostrum samples, however, calf 
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serum samples were diluted in 0.05% Tween 20-PBS solution with at a ratio of 1:104 for day 0 and a 

ratio of 1:106 for days 1 and 7. 

 

Bradford assay for total protein concentration 

Total protein in the individual cow colostrum, pooled colostrum, and bulk tank milk was assayed in 

a 96 well-plate using a Quick Start Bradford Protein assay kit following the manufacturer’s 

instructions and bovine serum albumin for the standard curves (Quick Start, Bio-Rad Laboratories, 

Inc., USA). The individual cow colostrum samples from days 1, 2 and 3, pooled colostrum and bulk 

tank milk were diluted with ultrapure water at a ratio of 1:100 and the individual cow colostrum from 

day 0 was diluted with a ratio of 1:200 or 1:300. The diluted samples (5 µL) were mixed with 

Coomassie Brilliant Blue G-250 dye (250 µL) and the colour change was measured using a 

Benchmark Plus microplate spectrophotometer (Bio-Rad Laboratories, Inc., USA) at 595 nm 

(OD595). The total protein by Bradford assay (TP-B) in the samples was determined based on the 

standard curve. Calf serum total protein was measured by Bradford assay (TP-B) as described above 

except the serum was diluted with ultrapure water at a ratio of 1:100. 
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Supplementary Table S1. Estimated IgG, total protein and lactose in colostrum based on regression 

formulae from Brix refractometer measurements. 

 

Brix% 

IgG (g/L) Total protein (g/L) Lactose (%) 

IgG (g/L) = -103.1 + 10.9 x 

Brix % 

R2 = 0.80, P < 0.001 

TP-B (g/L) = -61.6 + 8.8 x 

Brix % 

R2 = 0.85, P < 0.001 

Lactose (%) = 5.7 – 0.2 x 

Brix % 

R2 = 0.78, P < 0.001 

12 27.7 44.0 3.3 

13 38.6 52.8 3.1 

14 49.5 61.6 2.9 

15 60.4 70.4 2.7 

16 71.3 79.2 2.5 

17 82.2 88.0 2.3 

18 93.1 96.8 2.1 

19 104.0 105.6 1.9 

20 114.9 114.4 1.7 

21 125.8 123.2 1.5 

22 136.7 132.0 1.3 

23 147.6 140.8 1.1 

24 158.5 149.6 0.9 

25 169.4 158.4 0.7 
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Supplementary Figure S1. Linear regression between total solids measured by Brix refractometry 

(Brix %) and IgG (g/L) (a), total protein by Bradford assay (g/L) (b), protein % (c), and lactose % (d) 

in individual cow colostrum day 0 and 1 postpartum and pooled colostrum samples (n = 29). R2 = 

coefficient of determination, r = correlation. P-value for all panels (a, b, c, d) < 0.001. 
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(c) 

 

 

 

Supplementary Figure S2. Linear regression between total protein by Bradford assay (TP-B) (g/L) 

and IgG (g/L) (a), protein % by FT-MIR (b), and lactose % by FT-MIR (c) in colostrum collected 

within 1 day postpartum and pooled colostrum samples (n = 29). R2 = coefficient of determination, r 

= correlation. P-value for all panels (a, b, c) < 0.001. 

  



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 78 

 
 

 

 

 

(a) 

 

(b) 

 

 

Supplementary Figure S3. Linear regression between serum total protein by refractometer (TP-R) and 

serum IgG (a), and plasma GGT (b) in calf blood measured within one week postpartum. R2 = 

coefficient of determination, r = correlation. P-value for all panels (a, b) < 0.001. 

  



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 79 

 
 

 

 

 

(a)  

 

(b)  

 

 

Supplementary Figure S4. Linear regression between serum IgG and plasma GGT in calf blood using 

data from day 1 (n=35) (a), and data combined from days 0, 1 and 7 (n = 105) (b). R2 = coefficient 

of determination, r = correlation. P-value for all panels (a, b) < 0.001. 
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Chapter 5 

MicroRNA profile of colostrum and calf blood 

from Next Generation sequencing (NGS) 
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Chapter 5. MicroRNA profile of colostrum and calf blood from Next Generation 

sequencing (NGS) 
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5.1. Introduction 

 

MicroRNAs (miRNAs) are short non-coding RNAs, which range around 22 nucleotides in 

length (Bartel, 2004; Izumi et al., 2012; Sun et al., 2015). First reported by Rosalind Lee and 

colleagues in the worm Caenorhabditis elegans (Lee et al., 1993), miRNAs are found both 

intra- and extra-cellularly, including the body fluids of humans and animals (Chen et al., 

2012; Alsaweed et al., 2015a), and milk is a rich source of miRNA (Sun et al., 2013; 

Alsaweed et al., 2015b). MicroRNAs play an important regulatory role in gene expression 

by binding to the 3’-untranslated regions (3’-UTR) of target mRNAs which results in mRNA 

cleavage, translational repression, or mRNA de-adenylation (Bartel, 2004; Chen et al., 2010; 

Wang et al., 2013). Many miRNAs have been identified and shown to be involved in various 

biological processes, including stem cell differentiation, immune responses, cholesterol and 

insulin metabolism, neurogenesis, haematopoiesis, cardiac and skeletal muscle growth, 

oocyte maturation and early stage embryonic development (Wienholds and Plasterk, 2005; 

Williams, 2007; Liu et al., 2010; Wang et al., 2013). The functions regulated by most 

miRNAs are unknown, but miRNAs have been predicted to regulate the expression of up to 

30% of the protein coding genes by binding to the corresponding mRNA (Wienholds and 

Plasterk, 2005; Izumi et al., 2012). 

 

There are several methods to identify and quantify miRNAs in samples, including qPCR, 

microarray, near-infrared technology, isothermal amplification and Next Generation 

Sequencing (NGS) (Moody et al., 2017). Next Generation Sequencing provides the most 

precision (Moore et al., 2016) and has several advantages over other methods (Moody et al., 

2017). A key feature of NGS is the ability to sequence millions of molecules simultaneously 

in one lane of a sequencer to explore the expression profiles of miRNAs comprehensively 

and efficiently (Eminaga et al., 2013). Although Next Generation Sequencing is more 

expensive than other methods, it produces an unprecedented amount of data, including the 

identification of novel miRNA and polymorphism detection (Moody et al., 2017).  

 

Bovine colostrum and milk contain high concentrations of miRNAs, including immune-

related miRNAs (Chen et al., 2010; Hata et al., 2010; Cai et al., 2018). MicroRNAs are 

stored in exosomes within the colostrum and milk (Chen et al., 2010; Hata et al., 2010), and 

hence, are very stable even under harsh conditions, such as extreme temperatures, freeze-
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thaw cycles, low pH and RNase treatment (Chen et al., 2008; Izumi et al., 2012). Therefore, 

miRNAs in exosomes may avoid degradation in the gastrointestinal tract (Benmoussa et al., 

2016; Liao et al., 2017) and may be transferred to other cells (Hata et al., 2010; Liao et al., 

2017). Milk derived miRNAs may enter the systemic circulation of newborns and exert 

immune and developmental functions.  

 

To examine the possibility that miRNAs are transferred from colostrum, the miRNA profiles 

in the dam colostrum and pooled colostrum were determined by NGS. The microRNA 

profiles of whole blood samples from the three calf Groups, which received colostrum from 

different sources during first 3 days of their life, were also obtained and compared to 

establish whether the miRNA in the colostrum had been transferred to the calves. 

 

5.2. Materials and methods 

5.2.1. Materials 

The experimental design and samples were as described previously (Chapter 2). However, 

not all samples were sequenced for miRNA. Only 12 calf blood samples from days 0 and 1, 

and the corresponding 4 dam colostrum day 0 samples and 4 pooled colostrum samples were 

chosen for miRNA-sequencing by NGS (Table 5.1, Appendix 3). 

 

Table 5.1. Colostrum and calf blood samples for miRNA sequencing. 

Samples Group A calf Group B calf Group C calf 
Total 

(n) 

 n ID calf n ID calf n ID calf  

Calf blood day 0 4 A1, A2, A4, A10 4 B1, B2, B4, B10 4 C3, C5, C8, C11 12 

Calf blood day 1 4 A1, A2, A4, A10 4 B1, B2, B4, B10 4 C3, C5, C8, C11 12 

Dam colostruma 4 Dam 1, 2, 4 & 10   4 

Pooled 

colostrumb     4 Pool 3, 5, 8 &11 4 

Total 12  8  12  32 

Calves (Group A, B, C) were fed colostrum from the corresponding colostrum source (e.g. dam #1 

colostrum fed to calves A1 and B1, pooled colostrum #3 fed to calf C3) 

aDam colostrum taken within 2 hours postpartum and fed to the corresponding pairs of Group A and 

B calves (i.e., colostrum from Cow #1 fed to calf A1 and B1). 

bPooled colostrum was a mix of colostrum and transition milk from other cows day 0 - 4 postpartum 

and fed to the corresponding Group C calves (i.e.,, pooled colostrum #3 to fed calf C3). 
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5.2.2. Methods 

MicroRNA levels in the colostrum and blood samples were quantified in 5 steps with the 

bioinformatic analysis being the last but longest step (Figure 5.1).  

 

Figure 5.1. Workflow of miRNA sequencing experiment.  

 

Step 1. Total RNA extraction 

A miRNeasy Mini Kit was used to purify total RNA, including miRNAs, from the colostrum 

and calf blood samples. The samples were extracted by the miRNeasy Mini Kit quick-start 

protocol (cat. No. 217004, Qiagen), according to the manufacturer’s instructions. The total 

RNA collected from 250 µL of colostrum or calf blood, as recommended by the protocol, 

was low for miRNA sequencing. To increase the total RNA yield, 500 µL of each sample 

was extracted in 2 duplicate tubes of 250 µL each (as detailed in Chapter 2).  

 

Step 2. RNA quality check 

The total RNA concentration was quantified with a NanoDrop ND-1000 (Supplied and 

Service by BIOLAB, ThermoFisher) and the OD260/280 ratio was used to determine the 

RNA purity, a ratio of ~2.0 is generally accepted as “pure” for RNA. The integrity of the 

total RNA was then assessed using a RNA ScreenTape assay (Agilent Technologies, 

Hewlett-Packard-StraBe 8, 76337 Waldbronn, Germany).  

 

The samples that had a total RNA concentration of 1 µg in a maximum of 10 µL volume (1 

ng per sample) with OD 260/280 range from 1.6 to 2.0 were used for the RNA library 

preparation. The miRNA quality and integrity were verified using an Agilent Bioanalyzer 

(Agilent 2100 Bioanalyzer, Version 1.2) with Small RNA Bioanalyzer chips (Small RNA 

Analysis 6 - 150 nucleotides) prior to library preparation (Appendix 3).  
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c. Library construction 

The miRNA sequencing library was prepared using NEXTflex Small RNA-Seq kits v3 (Bioo 

Scientic Corporation, 7050 Burleson Road, Austin, Texas 78744, USA) for Illumina-

compatible Next-Generation Sequencing following the manufacturer’s recommendations. 

The NEXTflex™ Small RNA-Seq Kit v3 has been optimized and validated using total RNA 

(1 ng per sample). Library construction was performed using 3’ and 5’ adapter ligated RNA, 

which was reverse transcribed to generate cDNA, then the cDNA was amplified (14 cycles 

of PCR) (Figure 5.2). The standard protocol suggested 12-18 cycles for input amounts 2 g-

200 ng, and therefore, PCR amplification was performed with 14 cycles for both the blood 

and colostrum samples. Following PCR, the products were analyzed by TBE-PAGE gel 

electrophoresis and Agilent Bioanalyzer HS DNA Assay for small RNA. 

 

Figure 5.2. Small RNA sample preparation for miRNA sequencing library 

construction. 

From NEXTflex™ Small RNA-Seq Kit v3 manual, Bioo Scientific Corporation, 2015. 
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Step 4. Deep sequencing 

Following the construction of the miRNA library, sequencing was carried out on an Illumina 

NextSeq 500 System by the Australian Cancer Research Foundation (ACRF) Cancer 

Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South 

Australia. The average read length was 75 bp and the target number of reads was 22 million 

per sample.  

 

Step 5. Bioinformatic analysis 

The raw reads in FASTQ file were processed using a bioinformatic pipeline that consisted 

of seven steps (Table 5.2).   

 

Table 5.2. Steps for bioinformatic miRNA analysis. 

Step Content 

5.1 Initial check of raw reads using FastQC report 

5.2 Data filtering and trimming 

5.3 Data alignment to cattle genome 

5.4 Data alignment to miRNA databases 

5.5 Removal of non-miRNA sequences 

5.6 Differential miRNA expression analysis  

5.7 Pathway analysis after target prediction 

 

The raw read provided as FASTQ file of 4 lines for each sequence (Figure 5.3). The first 

line contained “@” and unique sequence identifier, the 2nd line was the nucleotide sequence 

of the given identifier, the 3rd line was the “+” symbol and sometime with the sequence 

identifier again, and the 4th line was quality score of the sequence for each position that 

specified the probability that the nucleotide call was wrong for each nucleotide in the read 

sequence. Missing nucleotides in the sequence were denoted by the character “N”.  
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Figure 5.3. Example of FASTQ format for raw reads. 

 

Step 5.1. Initial check of raw reads using FastQC report 

The initial step was performed by checking raw data quality using the FastQC report. The 

FastQC report provided a graph and summary of raw data quality as follows: 

- Basic statistics, including filename, number of sequences and sequence length, 

- Per base sequence quality of each position in read, 

- Per tile sequence quality on the sequencing chip, 

- Per sequence quality score: plot gives the number of sequence at each mean quality score,  

- Per base sequence content,  

- Per sequence GC content,  

- Per base N content,  

- Sequence length distribution,  

- Sequence duplication levels, and 

- Over-represented sequences. 

The report provided a quick check regarding problems to address before starting further 

analysis. Each sample was inspected for the number of reads sequenced, their lengths, read 

quality and presence of adapters. Other details reported by the FastQC software were also 

visually inspected. 

 

Step 5.2. Data filtering and trimming 

This step was performed to eliminate reads of low quality, remove the adapter sequences, 

and trim the poly-N sequences. The reads of mean quality scores ≤ 25 were removed (Huse 

et al., 2007) using Prinseq (version 0.20.4). The Cutadapt (version 1.9.1) was used to remove 

the 3′ adapter and the sequences downstream, including the barcode (Figure 5.4). Finally, 

the four random bases that appeared immediately 5' and 3' of the target sequence were also 
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removed (Figure 5.4). The trimmed reads with the length of 17–28 nucleotides were selected 

using Prinseq (version 0.20.4) (Figure 5.5). 

 

 
Figure 5.4. Example of raw read with adapter, target miRNA, and barcode sequence. 

3' adapter sequence was TGGAATTCTCGGGTGCCAAGG and target miRNA contained 17 to 28 

nucleotides. 

 

 

 

Figure 5.5. Example of cleaned reads (17 to 28 nucleotides) after trimming and filtering 

adapter and random nucleotides.  

 

Step 5.3. Data alignment to cattle genome 

BWA software (version 0.7.17) was used to align the trimmed reads to the cattle genome (a 

combination of the UOA_Angus_1 (GCA_003369685.2) and the X chromosome from 

UOA_Brahman_1 (GCF_003369695.1), (Low et al., 2019; Rosen et al., 2020) (Figure 5.6). 

The flag setting of -n 1 -o 0 –e 0 –k 1 was used following the protocol from Ziemann et al. 

(2016) (Figure 5.7). After alignment with the cattle genome, SAMtools (version 1.10) was 

used to sort the aligned BAM files. 
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Figure 5.6. Details of cattle databases used for the bovine genome alignment.  

From https://www.ncbi.nlm.nih.gov/assembly/GCA_003369685.2/, and 

https://www.ncbi.nlm.nih.gov/assembly/GCF_003369695.1/, for Angus and Brahman 

respectively, accessed November, 2020.  

 

 

 

-n 1: 1% uniform base error rate if FLOAT 

-o 0: no gap open 

–e 0: no gap extensions 

–k 1: maximum edit distance of the seed 

Figure 5.7. Flag setting for alignment with cattle genome (-n 1 -o 0 –e 0 –k 1).  

 

 

Step 5.4. Data alignment to miRNA databases 

To identify the miRNAs, the sequences were aligned to miRNAs in two databases, miRBase 

and RumimiR. miRBase is a mammalian miRNA database of published conserved miRNA 

sequences with annotation. The last update of miRBase was Release 22.1 in October 2018 

https://www.ncbi.nlm.nih.gov/assembly/GCA_003369685.2/
https://www.ncbi.nlm.nih.gov/assembly/GCF_003369695.1/
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with 38589 entries. RumimiR is a ruminant miRNA database, which was last updated in 

January, 2020, with a total of 6560 bovine miRNAs and a total of 19847 ruminant miRNAs 

(RumimiR, 2020).  

 

First, the sequences were aligned against the miRNA precursors and mature conserved 

mammalian miRNAs in the miRBase (http://www.mirbase.org/) using the Perl script of 

miRDeep2.pl. MicroRNA precursors was used for novel miRNA prediction and only mature 

miRNAs were studied in this project. The reads that matched miRNAs in miRBase were 

classified as known miRNAs (Figure 5.8). Any reads that did not match the conserved 

miRNAs in miRBase were designated as potentially novel miRNAs. To avoid the limitation 

of using just one miRNA database, the miRNAs designated as potentially novel were then 

aligned to the miRNA in the RumimiR database (http://rumimir.sigenae.org/). Those 

miRNAs that still did not align to the known miRNAs in RumimiR were classified as novel 

herein as they were not found in either miRNA database.  

 

http://www.mirbase.org/
http://rumimir.sigenae.org/
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Figure 5.8. Example of sequences, mature read counts and miRNA information for 

each miRNA.  

 

 

Step 5.5. Removal of non-miRNA sequences 

According to the manual of miRDeep2, only the known and novel sequences with randfold 

P-values < 0.05 are true miRNA. Therefore, only these sequences were retained. To avoid 

biasing the analyses with rare or spurious reads, the remaining miRNAs were also filtered 

by retaining only those miRNAs with a minimum of five counts in at least four blood samples 

or two colostrum samples.  

 

These sequences were then aligned to the ARS-UCD1.2 (GCF_002263795.1) reference 

genome (https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1/) for non-coding 

https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1/
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RNA. Any RNA sequences that had a query coverage > 90 and a bitscore > 30 were classified 

as other types of non-coding RNAs (Table 5.3) and removed. The remaining known and 

novel miRNAs were used for further analysis described below. 

 

Table 5.3. List of potential other non-coding RNAs.  

No Non-coding RNA Abbreviation 

1 Long non-coding RNAs lncRNA 

2 Miscellaneous RNA misc_RNA 

3 Mitochondrial ribosomal RNA Mt_rRNA 

4 Mitochondrial transfer RNA. Mt_tRNA 

5 Ribosomal RNA rRNA 

6 Small Cajal body-specific RNAs scaRNA 

7 Small nucleolar RNA snoRNA 

8 Small nuclear RNA snRNA 

9 Small RNA sRNA 

 

Step 5.6. Differential expression (DE) of miRNA analysis 

The differential expressed miRNA analysis was performed for the mature known bovine 

miRNA, identified during the RumimiR database alignment, using a customized R script. 

The linear models (limma package) (Ritchie et al., 2015) and edgeR (version 3.11) packages 

(Robinson et al., 2010; Robinson and Oshlack, 2010) were mainly used to do the analysis. 

The trimmed mean of M (TMM) method was used for normalization of the miRNA 

expression of the known bovine miRNA and implemented in the R Bioconductor package 

edgeR as proposed by Robinson et al. (2010). This method gives the proportion of counts 

for a specific target across all samples. If a miRNA is present in the same proportion across 

all samples, it will be deemed as not being differentially expressed (Tam et al., 2015).  

 

The linear models (limma package) were used to compare the differential expression of 

miRNAs for different colostrum sources (dam vs pooled colostrum), and calf blood at 

different time-points (day 0 vs day 1). The P-values were adjusted for multiple tests and 

miRNA expression differences were considered significant if the adjusted P-value (or Q-

values) < 0.05 and the |log2 fold change| > 1. The small sample size of four calves per Group 
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prevented multiple testing for miRNA differential expression comparisons between the three 

calf Groups for each time-point. 

 

Step 5.7. Target prediction and pathway analysis 

The prediction of the mRNAs that are targeted by known or novel miRNAs is based on 

comparisons between the sequences of mature miRNAs and the sequences of mRNA 

candidate gene targets. MicroRNA binds to the 3' UTR of their mRNA target, which triggers 

the repression of translation or the degradation of the mRNA depending on the 

complementarity between the target and the miRNA (Motameny et al., 2010). The ‘seed’ 

region, positions from 2 to 7 (or 8) from the 5’-end of the miRNA, and the 3’-UTR of the 

mRNA are important for miRNA–mRNA interactions (Lewis et al., 2003; Vejnar and 

Zdobnov, 2012) and have been found in 73% of studies (Vejnar et al., 2013) (Figure 5.9). 

 

 

Figure 5.9. miRNA seed region.  

 

Four main approaches can be taken to explore the interaction between a miRNA and its 

mRNA target based on a thermodynamic, a probabilistic, an evolutionary or a sequence 

based point of view (Vejnar and Zdobnov, 2012). Tools have been created using each of 

these four approaches to predict miRNA target sites, including miRmap, TargetScan, PITA, 

PicTar, miRanda, RNAhybrid, DIANA-microT, ElMMo, and PACMIT (Vejnar and 

Zdobnov, 2012).  

 

In this study, the target genes of the differentially expressed (DE) miRNAs in day 0 and day 

1 calf blood and the top 100 most highly expressed miRNAs in colostrum were predicted 

using miRmap v1.1 (https://mirmap.ezlab.org/app/) developed by Vejnar et al. (2013). The 

top 100 most highly expressed miRNAs in colostrum were the 100 miRNAs with the highest 

numbers of normalized reads. The database of miRNA target genes was downloaded from 

the miRmap website (https://mirmap.ezlab.org/downloads/mirmap201301e/) on December 

https://mirmap.ezlab.org/app/
https://mirmap.ezlab.org/downloads/mirmap201301e/


Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 95 

 
 

 

2020, file name “mirmap201301e_bostau_targets_1to1_pt.csv.xz”). The potential target 

genes of the top 100 miRNAs most highly expressed across samples in colostrum and the 22 

DE miRNAs in calf blood between day 0 and day 1 were identified by mapping the miRNAs 

with the predicted target gene database. When predicting targets, it is important to consider 

that one mRNA molecule might contain several binding sites for one or more miRNAs or 

that a single miRNA might regulate several mRNAs. Prior to pathway analysis, target genes 

were ranked based on the miRmap score and miRmap score with a threshold chosen based 

on the number of selected targets. Although the thresholds varied between the miRNAs, the 

miRmap scores of selected targets were all above 75. 

 

For the pathway analysis of the top 100 most expressed miRNAs in colostrum, the 20 target 

genes with the highest ranking based on miRmap score > 90 were selected for each miRNA. 

For the pathway analysis of the 22 miRNAs in calf blood differentially expressed between 

day 0 and day 1, the 20 highest ranked genes were selected for each miRNA based on the 

miRmap scores > 84. 

 

After the target genes were predicted, the Entrez gene ID from the cattle genome was 

collected for the predicted target genes, and Gene Ontology (GO) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway analyses were performed using the limma R 

package. Gene Ontology (http://www.geneontology.org/) is a classification system for gene 

functions that contains three main ontologies: cellular component, molecular function and 

biological process (Ozdemir, 2020). The GO term was considered enriched if the adjusted P 

value is < 0.05. KEGG is a database resource for understanding high-level functions and 

utilities of biological systems (http://www.genome.jp/kegg/). A KEGG pathways analysis 

was performed to test the statistical richness of the target gene candidates. 

 

5.3. Results  

5.3.1. Quality analyses 

After extraction, the total RNA was analysed for quality. All samples had a ratio of 

A260/A280 from 1.6 to 2.0 (Appendix 3) and were acceptable for the next step of miRNA 

sequencing. The TapeStation results showed that all calf blood samples had high RIN values 

(9.3 to 9.9), whereas colostrum samples had lower RIN values (4.8 to 7.7) (Appendix 3). 

http://www.geneontology.org/
http://www.genome.jp/kegg/
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The results from Bioanalyzer indicated that small RNA was present in all the blood and 

colostrum samples, and the miRNA concentrations were between 3,153 - 24,736 pg/μL. This 

accounted for 8 – 100% of small RNA based on the results from the small RNA 6 - 150 

nucleotides chip (Appendix 4). MicroRNA accounted for a higher percentage of the small 

RNAs in the colostrum samples (59 to 67%), whereas in the blood samples, there was a large 

variation in the proportion of miRNA (8 to 100% of the small RNAs) (Figure 5.10 and 

Appendix 4).  

  

The number of target reads was 22 million reads, but this target was only achieved for the 

blood samples, which had nearly three-fold more raw reads than the colostrum samples 

(Figure 5.11 and Table 5.4). The average raw reads of calf blood was 30 million reads (range 

from 20 to 42 million reads), whereas the average for the colostrum samples was 11 million 

reads (range from 4 to 14 million reads) (Table 5.4). The lower number of reads for the 

colostrum samples was presumably because the total RNA from colostrum was of poorer 

quality with much lower RIN values than the total RNA from the blood samples.  

 

 
Figure 5.10. Example of Bioanalyzer results for a blood sample.  

FU= fluorescence unit; nt = nucleotide. 
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Figure 5.11. Number of raw reads for blood and colostrum samples.  

Blue line = target number of reads of 22 million. 

 

 

Table 5.4. Average of raw reads in different sets of samples. 

 Sample 
Average of raw 

reads 
Minimum Maximum 

Sample library 
Colostrum (n = 8) 10,823,712 4,238,887 14,266,062 

Calf blood (n = 24) 29,972,016 19,568,252 41,608,477 

Colostrum 

source 

Dam colostrum (n = 4) 12,625,624 10,699,779 14,266,062 

Pooled colostrum (n = 4) 9,021,801 4,238,887 12,502,948 

Calf blood at 

time-point 

Day 0 ( n = 12) 30,452,056 21,558,248 37,066,316 

Day 1 (n = 12) 29,491,976 19,568,252 41,608,477 

Calf blood in 

different groups 

Group A (n = 8) 26,524,194 21,450,116 32,153,611 

Group B (n = 8)  30,929,922  27,539,044  35,811,166 

Group C (n = 8)  32,461,932  19,568,252   41,608,477   
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The first step of bioinformatics pipeline was to check the quality of the raw reads based on 

the FastQC report. As indicated in the initial FastQC file, despite concerns regarding total 

RNA quality for the colostrum samples, all samples provided sufficient good quality reads 

for further analyses. 

 

5.3.2. Identification of miRNAs 

After the reads were filtered, trimmed and clean reads mapped with the cattle genome, the 

sequences were aligned with miRBase database (annotated miRNA from mammals). There 

were 11,258 unique sequences found in total with 1,806 sequences identified as known 

miRNAs and 9,452 sequences predicted as novel miRNAs (Table 5.5). A unique sequence 

was counted only once even if the sequence appeared in many samples or appeared many 

times in a single sample. Some of these unique sequences with low numbers of reads may 

be spurious, and therefore, only sequences with minimum of 5 reads in 4 blood samples or 

2 colostrum samples were retained for further analyses. This filter greatly reduced the 

number of sequences, as only 10% of sequences were retained (1,296 sequences).  

 

Table 5.5. Number of unique sequences after miRNA identification steps. 

Steps Known Novel Total 

Sequences after miRBase alignment 1,806 9,452 11,258 

Sequences after filtering for minimum 5 counts in at least 4 

blood or 2 colostrum samples 
558 738 1,296 

Sequences after removing other non-coding RNA 558 640 1,198 

Sequences after RumimiR alignment of 640 novel miRNAs 

(from miRBase) 
558 + 446 194  

Number of miRNAs after alignment with both databases 1,004 194 1,198 

Unique sequences = sequences were counted only once even if they appeared in many samples or 

many times in one sample. 

 

All filtered sequences were then mapped against the ARS-UCD1.2 reference for non-coding 

RNA to identify any sequences that were not miRNA but represented other types of small 

RNA (e.g., lncRNA, mtRNA, rRNA; Table 5.3). This step eliminated 77 of the novel 

sequences. So after removing non-coding RNAs, there were 558 known and 661 novel 
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sequences identified from miRBase. Lastly, a final check of the miRBase using a BLAST 

search determined that 21 sequences of the 661 novel miRNAs were actually known, and 

the final number of miRNAs identified as novel from miRBase was 640 sequences. 

 

However, the last version of miRBase was released in October 2018 (Release 22). So in 

order to update the miRNA alignment, the 640 novel sequences were also mapped against 

the RumimiR database, which was last released in January 2020. Of the 640 miRNAs 

identified in the miRBase alignment as novel, 446 miRNAs were classified as known 

miRNAs from the RumimiR alignment. Thus, after the alignment to both databases, there 

were 1,004 known miRNAs and 194 novel miRNAs for total number of 1,198 unique 

miRNAs found in the blood and colostrum samples. Most of the miRNA sequences were 20 

to 23 nucleotides long, with 22 nucleotides being most common (42% in total of miRNAs) 

(Figure 5.12).  

 

 

Figure 5.12. Distribution by length of miRNAs in all samples (n=32). 
 

 

 

5.3.3. MicroRNA in colostrum and blood samples 

There were four times more miRNAs in the blood samples than in the colostrum samples 

(1,198 vs 303, respectively). Of the 303 miRNAs found in colostrum, only one miRNA was 

not found in the blood. Thus, nearly all of the miRNAs detected in the colostrum were also 

detected in the blood (302 of 303 colostrum miRNAs) (Figure 5.13).  
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Figure 5.13. Number of miRNAs in calf blood and colostrum samples. 

 

While 1,004 and 296 known miRNAs were found in calf blood and colostrum samples 

respectively, only 194 and 7 were identified as novel in calf blood and colostrum samples, 

respectively (Table 5.6). Consequently, there was a higher proportion of novel miRNA in 

the blood samples than the colostrum samples (16% vs 2%, respectively). 

 

Table 5.6. Known and novel miRNAs in colostrum and calf blood samples.  

 Known 

miRNA 

(miRBase) 

Novel miRNA in 

miRBase, but known 

miRNA in RumimiR 

Total 

known 

miRNA 

Novel 

miRNA 

 

Total 

miRNA 

 

Calf blood (n = 24) 558 446 1,004 194 1,198 

Colostrum (n = 8) 246  50 296 7 303 

Overlapping 

miRNA between 

blood & colostrum 

246 49 295 7 302 

Total miRNA 558 447 1,004 194 1,198 

Based on alignments with miRBase database (release 22, October 2018) and RumimiR database 

(updated January 2020) 

 

5.3.4. MicroRNA expression profile in colostrum 

Of the 303 miRNAs found from colostrum, 98% were known (Table 5.7). The majority of 

these miRNAs were found in both the dam and pooled colostrum samples (230 miRNAs, 
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76% of total) (Table 5.7 and Figure 5.14). This was despite the dam colostrum being 

collected from the individual Group A dams at day 0 (within 2 hours post-partum) and the 

pooled colostrum being a mix of colostrum and transition milk from many cows days 0-4 

postpartum.  

 

Table 5.7. Number of miRNAs in dam versus pooled colostrum sources.  

 Known 

miRNA 

(miRBase) 

Novel miRNA for 

miRBase, but known 

miRNA in RumimiR 

Total 

known 

miRNA 

Novel 

miRNA 

Total 

miRNA 

 

Dam colostrum 

(n = 4) 
224 40 264 5 269 

Pooled colostrum 

(n =4) 
226 33 259 5 264 

Overlapping miRNA  204 23 227 3 230 

Total miRNA in 

colostrum (n = 8) 

246  50 296 7 303 

Based on alignments with miRBase database (release 22, October 2018) and RumimiR database 

(updated January 2020). 

 

 

Figure 5.14. Number of miRNAs in dam and pooled colostrum samples.  

Dam colostrum was from the individual Group A dams and the pooled colostrum was a mix of 

colostrum and transition milk from many cows 0-4 days postpartum. (n = 4 samples per colostrum 

source). 

 



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 102 

 
 

 

 

5.3.5. MicroRNA differential expression between colostrum sources 

Only four miRNAs had significantly different read counts between the dam and pooled 

colostrum sources, miR-19b, miR-193b, miR-378 and miR-345-5p (Table 5.8). Of these 

miRNA, miR-19b and miR-378 were the more highly expressed (Table 5.9). Interestingly, 

four miRNAs had higher numbers of reads in the dam colostrum than in the pooled colostrum 

(Table 5.9). That is, their levels decreased during the lactation period. 

 
Table 5.8. MicroRNAs differentially expressed between dam and pooled colostrum. 

miRNA log2FC 

Average  

Expression t P-Value 

Adjusted  

P-Value 

bta-miR-378 1.33 9.95 5.55 8E-05 0.02 

bta-miR-19b 1.38 11.56 5.52 9E-05 0.02 

bta-miR-345-5p 1.32 7.10 5.28 1E-04 0.02 

bta-miR-193b 1.53 5.57 4.77 3E-04 0.04 

n = 4 per colostrum source, log2FC = log2 fold change, t = moderated t-statistic. 

 

Table 5.9. MicroRNA read counts of the miRNA differentially expressed between dam 

and pooled colostrum. 

Dam colostrum Pooled colostrum 

Sample 

ID 

miR-

19b 

miR-

193b 

miR-

345-5p 

miR-

378 

Sample 

ID 

miR-

19b 

miR-

193b 

miR-

345-5p 

miR-

378 

CB25 83,487 1,671 3,841 30,040 CB29 11,453 272 587 3,509 

CB26 50,272 467 1,599 10,239 CB30 14,158 203 1,074 5,277 

CB27 40,340 785 2,049 12,602 CB31 17,449 297 597 6,320 

CB28 25,477 511 1,531 11,676 CB32 9,291 80 284 2,881 

Average 49,894 859 2,255 16,139 Average 13,088 213 636 4,497 

 

 

5.3.6. MicroRNA profiles in calf blood 

The number of miRNAs in calf blood samples was similar between the day 0 (within 4 hours 

after birth and before being fed) and day 1 (24 hours after birth and 2 feeds) (Table 5.10). A 

total of 1132 miRNAs were present in both the day 0 and day 1 calf blood samples (94%) 
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(Figure 5.15). The majority of miRNA overlapped between the three calf Groups at both day 

0 and day 1 (63% and 65%, respectively) (Figure 5. 16). 

 

 

Figure 5.15. Number of miRNAs identified in blood collected from all calves at day 0 

and day 1. (n = 12 samples for each time point). 

 

 

Table 5.10. Number of known and novel miRNAs identified in blood collected from all 

calves at day 0 and day 1.  

 

Known 

miRNA 

(miRBase) 

Novel miRNA 

for miRBase, but 

known miRNA in 

RumimiR 

Total 

known 

miRNA 

Novel 

miRNA 

Total 

miRNA 

Calf blood day 0 (n = 12) 540 437 977 186 1,163 

Calf blood day 1 (n = 12) 545 430 975 192 1,167 

Overlapping day 0 & day 1 527 421 948 184 1,132 

Day 0 only 13 16 29 2 31 

Day 1 only 18 9 27 8 35 

Total miRNAs in calf blood 

(n = 24) 
558 446 1,004 194 1,198 

Based on alignments with miRBase database (release 22, October 2018) and RumimiR database 

(updated January 2020). 
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a. Day 0 

 

b. Day 1 

 

 

Figure 5.16. Number of miRNAs in three calf Groups identified from blood collected 

at day 0 and day 1. Group A = calves received own dam colostrum, Group B = calves received 

colostrum from one Group A dam, Group C = calves received one bottle of pooled colostrum. n = 4 

samples from each Group at each time point.  

 

 

 

5.3.7. Differential microRNA levels in calf blood over time 

To investigate the levels of miRNA in the calf blood after they received colostrum, the calf 

blood samples from day 0 and day 1 were analysed, and the number of reads for 22 miRNAs 

differed significantly (Table 5.11). Of these 22 miRNAs, 19 miRNAs were lower in the day 

1 blood samples than in the day 0 blood samples. The three miRNAs that were higher in the 

day 1 blood samples were let-7a-3p, miR-12042 and miR1260b (Table 5.12). These miRNAs 

may have been transferred from the colostrum to calf blood by day 1 or the expression of 

these three miRNAs by the calf may have increased after birth. Of note, let-7a-3p, miR-

12042 and miR1260b were not in the list of the top 100 most highly expressed miRNA in 

the dam and pooled colostrum (Appendix 5.1-5.3) and they were not in the list of the 100 

most highly expressed miRNAs in calf blood on day 0 and day 1 (Appendix 5.4-5.5). 
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Table 5.11. MicroRNAs with different levels between day 0 and day 1 calf blood.  

miRNA log2FC 

Average 

Expression t P-Value 

Adjusted  

P-Value 

bta-miR-424-5p -1.83 1.30 -9.32 7E-10 3E-07 

bta-miR-143 -1.68 6.86 -8.81 2E-09 5E-07 

bta-miR-145 -1.71 1.63 -8.22 9E-09 1E-06 

bta-miR-195 -1.05 2.45 -8.02 1E-08 2E-06 

bta-miR-122 -2.73 2.22 -7.64 3E-08 3E-06 

bta-miR-497 -1.32 1.68 -6.34 9E-07 3E-05 

bta-miR-450b -1.42 2.03 -5.89 3E-06 8E-05 

bta-miR-455-5p -2.34 -2.40 -5.54 7E-06 2E-04 

bta-miR-10b -1.46 3.82 -5.55 7E-06 2E-04 

bta-miR-100 -1.13 1.37 -5.03 3E-05 5E-04 

bta-let-7a-3p 1.42 3.02 4.98 3E-05 6E-04 

bta-miR-503-5p -2.11 -2.71 -4.85 5E-05 7E-04 

bta-miR-125a -1.14 2.85 -4.69 7E-05 1E-03 

bta-miR-193a-3p -2.04 -1.60 -4.31 2E-04 2E-03 

bta-miR-12034 -2.42 -2.27 -3.85 7E-04 6E-03 

bta-miR-455-3p -1.55 -0.83 -3.75 9E-04 7E-03 

bta-miR-1260b 1.18 3.22 3.77 8E-04 7E-03 

bta-miR-196a -1.07 -2.72 -3.24 3E-03 2E-02 

bta-miR-205 -1.65 -0.11 -3.33 3E-03 2E-02 

bta-miR-450a -1.15 0.54 -3.27 3E-03 2E-02 

bta-miR-12042 1.04 -2.66 2.80 9E-03 5E-02 

bta-miR-1 -1.39 1.44 -3.01 6E-03 3E-02 

n = 12 for each time-point; log2FC = log2 fold change, t = moderated t-statistic)  
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Table 5.12. MicroRNA levels of let-7a-3p, miR-1260b and miR-12042 in calf blood at 

day 0 and day 1 and in the corresponding colostrum samples.  

Animal 

ID 

Day 0 calf blood Day 1 calf blood Corresponding colostrum 

let-7a-

3p 

miR-

1260b 

miR-

12042 

let-7a-

3p 

miR-

1260b 

miR-

12042 

let-7a-

3p 

miR-

1260b 

miR-

12042 

A1 312 238 2 286 417 2 1848 4619 6 

A2 97 161 1 303 1290 6 1243 1522 0 

A4 83 171 2 439 756 10 2436 5062 0 

A10 85 99 6 528 307 6 1039 2853 0 

B1 101 111 0 4196 371 7 1848 4619 6 

B2 90 114 1 343 449 8 1243 1522 0 

B4 94 137 6 240 516 7 2436 5062 0 

B10 101 243 7 290 262 6 1039 2853 0 

C3 43 128 1 197 171 6 854 1585 0 

C5 133 74 2 189 538 4 1504 1930 0 

C8 39 88 0 219 97 1 962 1538 6 

C11 87 64 4 272 131 5 497 550 0 

Average 105 136 3 625 442 6 1412 2810 2 

Units = number of reads 

 

5.3.8. Relationship between miRNAs in day 0 colostrum and calf blood  

In order to better assess whether any miRNAs were transferred from the colostrum to calf 

blood, the correlations between miRNA in day 0 colostrum and miRNA in day 1 calf blood 

were calculated (Table 5.13). There were only three miRNAs that had increased levels in 

calf blood by day 1 (let-7a-3p, miR-1260b, miR-12042) and might have been absorbed. All 

correlations between the miRNAs in day 1 calf blood and miRNAs in corresponding 

colostrum were low. This suggests that miRNAs in calf blood were not likely to be absorbed 

from the colostrum and the calves themselves are producing these miRNAs.  
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Table 5.13. Correlations between miRNAs in colostrum and in calf blood.  

  

 Corresponding colostruma  

Methodb let-7a-3p miR-1260b miR-12042 miR-345-5p 

Day 0 

calf 

blood  

let-7a-3p  Spearman 0.45    

miR-1260b Pearson  0.49   

miR-12042 Spearman   -0.54  

Day 1 

calf 

blood 

let-7a-3p Spearman 0.30    

miR-1260b Spearman  0.32   

miR-12042 Spearman   -0.40  

a Only the levels of those miRNA that were significantly higher at day 1 vs day 0 were analysed. 

b Pearson correlation was used if both variables were parametric data. Spearman correlation was 

calculated if one or two variables were non-parametric data. 

n = 12 samples 

 

5.3.9. MicroRNA target prediction and pathway analysis 

In general, miRNAs are conserved between species, however, the same miRNAs may not 

have the same functions in different species (Van Hese et al., 2020). To understand the 

functions of the miRNAs in colostrum and their potential effects in the calf, the target genes 

for the top 100 most highly expressed miRNA in colostrum were predicted and a pathway 

analysis for the predominant miRNA target genes was performed. The top 100 most highly 

expressed miRNA were the 100 miRNAs with the highest number of normalized reads. In 

the addition, to understand the function of the miRNA in the calves after birth, the 22 

miRNAs that had different levels between the day 0 and day 1 calf blood samples were 

examined.  

 

The target genes for the 100 most highly expressed miRNAs across all colostrum samples 

(Appendix 5.1) were predicted by miRmap, and then Gene Ontology (GO) and KEGG 

analyses of the target genes were performed. The GO terms have unique identifiers and are 

organized hierarchically with ‘child’ terms (in the bottom of graph) being more specialized 

than their ‘parent’ terms. Among all the GO terms with a P < 0.05, there were 220 items 

which were found across all of the three main ontologies: biological process with 162 terms, 

cellular component with 33 terms, and molecular function with 25 terms (Figure 5.17 and 

Figure 5.18, Appendix 5.6). Many of these specific terms have the roles in the mammary 
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gland (e.g. ATP binding, bone development, protein and calcium iron regulation, transport, 

membranes), and some may have a role in development (e.g. bone and digit morphogenesis). 

Pathway analysis using the KEGG database only identified two pathways (P < 0.05) for the 

top 100 most highly expressed miRNAs in colostrum as being significant (autophagy and 

shear stress) (Table 5.14).  

 

Table 5.14. KEGG analysis of 100 most abundant miRNAs in colostrum. 
 

GO ID Pathway N DE P.DE fdr 

path:bta04140 Autophagy - animal 139 19 5E-05 0.02 

path:bta05418 

Fluid shear stress and 

atherosclerosis 140 18 2E-04 0.03 

N = total number of genes related to the term; DE = number of genes in in the dataset for this term; 

P.DE = P-value; fdr= false discovery rate. 

 

 

To investigate the 22 miRNAs that had significantly different levels between the day 0 and 

day 1 calf blood, 20 target genes for each of the 22 miRNAs were examined for their 

biological roles using the GO pathway analysis (Figure 5.19). There were 2 terms involved 

in biological processes and 10 terms involved in cellular components, particularly 

membranes and organelles. There were no significant pathways identified for the 22 

miRNAs differentially expressed between the day 0 and day 1 calf blood from the KEGG 

pathway analysis. 
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Figure 5.17. GO pathway analysis of the top 100 most highly expressed miRNAs in colostrum (Part 1).  
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Figure 5.18. GO pathway analysis of top 100 most highly expressed miRNAs in colostrum (Part 2).
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Figure 5.19. Pathway analysis of 22 miRNAs with different levels between day 0 and 

day 1 calf blood. 

 

 

5.4. Discussion 

The length of miRNAs found in the present study was between 17-25 nucleotides and 42% 

of the miRNAs were 22 nucleotides in length. Other studies involving milk and mammary 

gland miRNA reported similar size ranges (18-25 nt, Cai et al. (2018); 18-30 nt, Chen et al. 

(2010); 16-33 nt, Ozdemir (2020), 18-30 nt, Li et al. (2012b)) with 22 nucleotides being the 

most frequent length of miRNA (Li et al., 2012b; Cai et al., 2018).  

 

The origin of bovine colostrum miRNAs is not known, and they may be derived from the 

cow blood, the mammary gland or both. As the miRNA in the blood of the dams was not 

sequenced, the origin of the miRNA found in their colostrum miRNA cannot be determined. 

However, in a human milk miRNA study, Alsaweed et al. (2016) found that some human 

milk miRNAs were more likely to be produced by the mammary gland as they were not 
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detected in maternal blood. Interestingly, the number of miRNAs in blood was four times 

higher than that in colostrum. This also suggests the origin of colostrum miRNA and blood 

miRNA are different, as the mammary gland secrets many fewer types of miRNAs.  

 

5.4.1. MicroRNA profile of colostrum 

The total number of miRNAs identified in the dam and pooled colostrum (303) was lower 

than found in previous studies (Do et al., 2017; Cai et al., 2018; Ozdemir, 2020), although 

the number varies depending on the method of identification and the bioinformatic analysis 

used (Table 5.15).  

 

Table 5.15. MicroRNA numbers in bovine colostrum and milk in previous studies. 

Sample 
Known 

miRNAs 

Novel 

miRNAs 
Method Reference 

Milk (healthy vs mastitis) 492 980 miRNA sequencing (Cai et al., 2018) 

Raw Milk 245  Solexa sequencing (Chen et al., 2010) 

Milk 53  microarray (Izumi et al., 2012) 

Colostrum 100  microarray (Izumi et al., 2012) 

Colostrum 230  Solexa sequencing Chen et al. (2010) 

Bovine colostrum and milk 475 283 miRNA sequencing (Do et al., 2017) 

Bovine colostrum and milk 545 260 miRNA sequencing (Ozdemir, 2020) 

 

 

In this study, a total of 296 known miRNAs and 7 novel miRNAs were detected in the 

colostrum. The number of novel miRNAs found was much lower than previous studies, 

possibly because previous studies only mapped with the miRBase database (Do et al., 2017; 

Hou et al., 2017; Cai et al., 2018; Ozdemir, 2020) and not the recently updated RumimiR 

database. The number of known miRNAs was similar to a previous miRNA sequencing 

study of colostrum (Chen, et al. 2010), but the number was less than other studies that 

included both colostrum and mature milk (Do et al., 2017; Cai et al., 2018; Ozdemir, 2020). 

In this study, great care was taken to remove any potentially spurious data, so that only 

miRNAs with a minimum of five counts in at least four blood samples or two colostrum 

samples were retained. This step may miss low abundance sequences, such as reads detected 
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in only one sample, and this could also explain the differences in the number of miRNAs 

found in other studies (Do et al., 2017; Cai et al., 2018; Ozdemir, 2020). 

 

The miRNA profile is dependent on the lactation period. Of the 303 miRNAs found in 

colostrum, 76% overlapped between the dam colostrum and the pooled colostrum. This 

proportion is similar to some previous studies that compared colostrum with mature milk but 

not all other studies. For example, 198 of the 213 miRNAs found in milk overlapped with 

the 230 miRNAs found in colostrum (81% of total miRNA detected) (Chen et al., 2010). On 

the other hand, in a microarray analysis, only 50% of the detected miRNA overlapped 

between milk and colostrum (Izumi et al., 2012). This will be depend on the probes selected 

though, which are likely to be for the most abundant miRNA.  

 

Most of the colostrum components reduce steadily during lactation (McGrath et al., 2016; 

Godden et al., 2019). If miRNA had the same trend, then the miRNA levels in the dam 

colostrum would be expected to be higher than in pooled colostrum because the pooled 

colostrum in this study was a mixture of colostrum and transition milk from cows 0-4 days 

postpartum. However, there was only 4 miRNAs in the total of 302 detected miRNAs which 

were differentially expressed between dam and pooled colostrum, as the level of 298 

miRNAs did not differ between dam and pooled colostrum. Hence, most of the miRNA did 

not appear to change immediately postpartum.  

 

Most studies to-date have examined changes the miRNA profiles over the lactation period 

by focusing on differences between colostrum and mature milk rather than temporal changes 

in the colostrum composition over time postpartum. In a study by Do et al. (2017), the 

authors analysed bovine milk exosome miRNAs and found that the greatest difference in 

miRNAs was between day 1 colostrum and day 170 milk, where 338 miRNAs had different 

levels, while the levels of only 86 miRNAs were found to differ between day 1 colostrum 

and day 7 milk. The authors did not find any differences miRNA between day 170 and day 

230 milk (Do et al., 2017). In another study comparing Holstein milk (2-4 months 

postpartum) with colostrum (days 1 and 2 postpartum), 120 miRNAs had increased levels in 

the milk and 112 miRNAs had lower levels in the milk (Ozdemir, 2020). In the Doğu 

Anadolu Kirmizisi cattle breed, Ozdemir (2020) found 208 miRNAs with higher levels in 
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milk (2-4 months postpartum) and 214 with lower levels in the milk compared to colostrum 

(days 1 and 2 postpartum). 

 

Although the numbers of miRNA found in these previous studies differ, a greater 

concentration of miRNAs has been consistently found in colostrum compared to milk. In a 

study by Chen et al (2010), 108 of the 116 miRNAs had higher levels in colostrum than in 

milk. In the present study, only four miRNAs were found to have significantly different 

levels between dam and pooled colostrum. However, all four miRNAs had higher levels in 

colostrum compared with pooled colostrum. This low number of miRNAs that were found 

to be differentially expressed herein is most likely because dam colostrum was compared 

with pooled colostrum which will differ less than colostrum and mature milk.  

 

The change of miRNA over the lactation period presumably reflects the transformation of 

the roles of these miRNAs in different biological processes and functions over time, in either 

the mammary gland or the calves. As these roles of the miRNAs would not be expected to 

alter much in the first few days postpartum, there may be little difference predicted in 

miRNA present. It would be of interest to expand the miRNA sequencing in this study to 

examine the miRNA expression in the dam colostrum at day 1, day 2, day 3 and day 7 to 

better define the transition of the miRNA profile. 

 

In addition to the lactation period (Do et al., 2017; Hou et al., 2017; Ozdemir, 2020), there 

are other factors that may affect the miRNA profile in colostrum and milk (Van Hese et al., 

2020).  These include the environment (Colitti et al., 2019), nutrition, health status (Cai et 

al., 2018), species or breed (Ozdemir, 2020). Other factors may also affect the miRNA 

profile, such as parity and dam age, but these have yet to be studied (Van Hese et al., 2020). 

In order to understand the significance of miRNA in colostrum and milk, all of these factors 

should be investigated more thoroughly.  

 

Ozdemir (2020) also found many of the immune-related miRNAs were higher in colostrum 

compared to milk, including bta-miR-130b, bta-miR-15b, bta-miR106a, and bta-miR-223. 

The higher level of immune-related miRNAs in colostrum than in milk was also found by 

Izumi et al. (2012) and by Sun et al (2013) in qPCR experiments. Herein, there were four 
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miRNAs at higher levels in the dam colostrum than the pooled colostrum (miR-19b, miR-

193b, miR-345-5p, and miR-378). Most studies examining miRNA function have been in 

humans and unfortunately, these studies provide little clue as to the role of these miRNA in 

colostrum. High levels of miR-19b have been suggested as a potential biomarker for non-

small cell lung cancer (Wu et al., 2014) and diabetic cardiomyopathy (Copier et al., 2017). 

Changes in miR-19b levels have also been associated with lymph node metastasis (Wu et 

al., 2014). MicroRNA-345-5p has been implicated in acute myeloid leukemia in humans as 

the decreased expression of miR‐345‐5p facilitates leukemia cell proliferation and apoptosis 

by targeting AKT1/2 (Ying et al., 2019). MicroRNA-378 has been proposed as a novel non-

invasive biomarker in gastric cancer (Liu et al., 2012). In cattle, microRNA-193b inhibits 

bovine adipose cell proliferation and promotes apoptosis by targeting the Acyl-CoA 

synthetase short-chain family member 2 (ACSS2) (Kang et al., 2020). 

 

Based on the pathway analysis of the top 100 most highly expressed miRNAs across all 

colostrum samples identified in this study, most are involved in various cellular processes, 

including organelles and Golgi membranes, calcium balance, cellular transport and energy, 

or in endothelial cell development and mammary gland function. However, there were 

immune functions in the pathways identified and some individual immune-related miRNAs 

were found amongst the colostrum miRNAs. Cai et al. (2018) observed that less than 10% 

of target genes of all miRNAs in Holstein milk were involved in immune system processes 

though.  

 

5.4.2. MicroRNA profile of neonate calf blood 

A large number of miRNAs were found in the calf blood from day 0 and day 1 (1,163 and 

1,167 miRNAs, respectively), of which 94% overlapped between these two time-points 

(1,132 miRNAs). Yet when the levels of these miRNAs were compared between day 0 and 

day 1, only 22 miRNAs were found to have significantly different levels. This indicates that 

calves are born with a complex miRNA profile that does not change substantially after initial 

feeding of colostrum. Of the 22 miRNAs, three of the miRNAs had higher levels in the day 

1 blood samples compared to the day 0 blood samples (let-7a-3p, miR-1260b and miR-

12042). Nevertheless, the low correlations between the levels of these miRNAs in calf blood 
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day 1 and the corresponding colostrum suggest that these miRNAs were up-regulated after 

birth rather than being absorbed from colostrum.  

 

Most studies have focused on the miRNA profiles in bovine colostrum and milk (Chen et 

al., 2010; Izumi et al., 2012; Hou et al., 2017; Cai et al., 2018), and only one study has 

considered miRNA absorption by calves (Kirchner et al., 2020). Kirchner et al. (2020) found 

that only three miRNAs of the top 15 most highly expressed miRNAs in colostrum exosomes 

were significantly increased in the calf blood after feeding colostrum (miR-200-a/b/c 

family). However, the authors explained the significant increase of miR-200a/b/c in the calf 

as differential expression instead of absorption from colostrum because of the role of the 

miR-200-a/b/c family in the processing of signals.  

 

The pathway analyses of the 22 miRNAs with significantly different levels in the calf blood 

between day 0 and day 1 indicated that the target genes of these miRNAs are mainly involved 

in cell membranes. The three miRNAs (let-7a-3p, miR-1260b and miR-12042) found at 

higher levels in calf blood at day 1 after two feeds are also related to cellular functions. The 

functions of let-7a-3p and miR-1260b have been explored in humans but these studies have 

focused on cancer and other human diseases. A high level of miR-1260b is closely related 

with lymph node metastasis, venous invasion, and promotes the early-stage metastasis of 

colorectal cancer (Liu et al., 2016). Let-7a-3p has a role in the inhibition of neurotensin 

receptor 1, which plays an important part in cell proliferation and invasiveness of 

glioblastoma and induces intrinsic apoptosis (Dong et al., 2017). The let-7 miRNA family 

members though may affect IgA level in the digestive tract of the piglet (Chen et al., 2014). 

These miRNAs may be related to cell growth in neonates, but further studies are required to 

interpret their roles. Unfortunately, until the bovine target genes of these miRNAs have been 

identified, it is difficult to draw conclusions.  

 

5.5. Summary and Conclusion 

Both colostrum and calf blood contained a large number of miRNAs, but the number of 

different miRNAs in the calf blood was 4-fold higher than in colostrum. There were 303 

miRNAs detected in colostrum (296 known and 7 novel miRNAs). A similar miRNA profile 

was found in dam and pooled colostrum with 76% of the miRNAs expressed in dam 
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colostrum also found in pooled colostrum. There were only four miRNAs which had 

significantly different levels between dam and pooled colostrum, and these four miRNAs 

were higher in dam colostrum. The top 100 most highly expressed miRNAs in colostrum 

were involved in several biological processes, but mainly contribute to cellular and 

mammary gland functions rather than functions that might benefit the newborn calf, such as 

immunity. 

 

The total number of miRNAs found in calf blood was 1,198 miRNAs (1,004 known and 194 

novel). The majority of these miRNAs (94%) were detected in the calf blood samples from 

both day 0 and day 1, and only 22 miRNAs had significantly different levels between the 

two time points. Pathway analysis of these 22 miRNAs indicated that these miRNAs were 

involved mostly in cell membranes and growth. Of these 22 miRNAs, three miRNAs had 

higher levels at day 1 after two colostrum feeds (let-7a-3p, miR-1260b and miR-12042), but 

these levels in the calf blood were not correlated with the levels in the corresponding 

colostrum. These findings suggest that miRNAs in the colostrum are not likely to be 

absorbed by the calves to any great extent.  
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Chapter 6. Quantification of immune-related miRNAs in colostrum and newborn calf 

blood by RT-qPCR 
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6.1. Introduction 

Bovine colostrum provides nutrients and immunologically active factors that are essential 

for newborn calves (McGrath et al., 2016; Godden et al., 2019). In addition to nutrients and 

immune factors, such as immunoglobulins, lactoferrin and cytokines, cow milk and 

colostrum contains large concentrations of microRNA (miRNA) (Chen et al., 2010; Izumi 

et al., 2012; Cai et al., 2018). MicroRNAs regulate a wide range of biological processes, 

including immune function (Wienholds and Plasterk, 2005; Williams, 2007; Liu et al., 2010; 

Wang et al., 2013). However, whether these miRNA in the colostrum provide an immune 

function for neonate mammals is an open question. 

 

In colostrum and milk, microRNAs are packaged in exosomes and are very stable (Chen et 

al., 2010; Hata et al., 2010). A study by Izumi et al. (2012) demonstrated that milk miRNAs 

are stable even under harsh conditions, including 37 oC for > 1 hour, acidic pH and in the 

presence of RNase. This stability suggests that colostrum miRNAs may be able to avoid 

degradation in the gastrointestinal tract and could be potentially absorbed in the intestine 

(Izumi et al., 2012).  

 

The miRNA sequencing results in this study (Chapter 5) and elsewhere (Do et al., 2017; 

Kirchner et al., 2020) have confirmed that bovine colostrum, milk and calf blood contain 

many different types of miRNAs, including immune related miRNAs. For the past 20 years, 

immune-related miRNA has been a hot topic in human research. In fact, the tumour-related 

miRNAs and immune-related miRNAs found in the serum of cancer patients, but not in 

normal serum, have been used as biomarkers (Chen et al., 2008). Concentrations of 

circulating miRNAs in the blood of humans and other animals are high and very stable (Chen 

et al., 2008; Mitchell et al., 2008; Chen et al., 2012). It has not been clear though whether 

the miRNAs detected in neonate calf blood are produced by the calves themselves or are 

absorbed from the colostrum and milk.  

 

The miRNA sequencing results (Chapter 5) suggest that miRNAs are not absorbed to any 

great extent by the calves. However, as the miRNA sequencing may not be sufficiently 

sensitive to detect the absorption of miRNA from the colostrum by the calves, this question 

was also investigated by RT-qPCR. Five immune-related miRNAs at various concentrations 
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in the colostrum were selected for further study (miR-142-5p, miR-150, miR-155, miR-181a 

and miR-223). These immune-related miRNAs have been reported previously to be present 

in both colostrum and milk (Chen et al., 2010; Sun et al., 2013). Their assessment as being 

“immune-related” in these studies is based on their synthesis in immune cells and their 

connection with various disease states (Appendix 6). Using blood samples from the 35 calves 

and the corresponding colostrum samples, these five immune-related miRNAs were 

quantified individually to determine whether they are absorbed by the neonate calf from the 

colostrum or produced by the calves themselves. 

 

6.2. Materials and methods 

6.2.1. Materials 

The animals, experimental design and methods are as described in Chapter 2. The samples 

used for miRNA quantification by RT-qPCR included the dam colostrum from days 0, 1, 2 

and 3 (n = 12 cows), the pooled colostrum (n = 5 samples), the bulk tank milk (n = 25 

samples), and the calf blood from days 0, 1, 2, 3 and 7 (n = 35 calves).  

 

6.2.2. Samples 

Calf blood samples were collected within 4 hours of birth before feeding (day 0) and on days 

1, 2, 3 and 7. Blood was drawn from the jugular vein of the calves into 6 mL BD vacutainers 

with EDTA, and immediately inverted gently 10 times to mix with the anticoagulant. Then 

1 mL of whole blood from EDTA vacutainers was aliquoted into 3 mL of Trizol LS reagent 

(Catalog Numbers 10296010 and 10296028, Invitrogen, Thermo Fisher Scientific). The 

blood and Trizol LS reagent were mixed by pipetting, incubated at room temperature for 20 

minutes, and frozen at -20oC. The samples were then transported on dry ice to The University 

of Adelaide, Roseworthy Campus for storage at -80oC until analysed. 

 

Colostrum and milk samples were collected as described in Chapter 2. Colostrum and milk 

were thawed completely at room temperature prior to miRNA extraction, then 250 µL were 

added to 750 µL of Trizol LS reagent, mixed, incubated at room temperature for 20 minutes 

before RNA extraction. 
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6.2.3. RT-PCR 

Five immune-related microRNAs (miR-142-5p, miR-150, miR-155, miR-181a and miR-223 

Table 6.1) were quantified by RT-qPCR (Figure 6.1), using the C. elegan miRNA, cel-miR-

39-3p, as an internal control for quantitation.  

 

Table 6.1. Sequences of internal control (miR-39-3p) and five miRNAs.  

miRBase ID 

miRBase 

Accession 

Number 

Sequence 

length 
Mature miRNA Sequence 

Assay 

ID 

cel-miR-39-3p MIMAT0000010 22 UCACCGGGUGUAAAUCAGCUUG 000200 

hsa-miR-142-5p MIMAT0000433 21 CAUAAAGUAGAAAGCACUACU 000465 

bta-miR-150 MIMAT0003845 23 UCUCCCAACCCUUGUACCAGUGU 006586 

hsa-miR-155 MIMAT0009241 23 UUAAUGCUAAUCGUGAUAGGGGU 002623 

bta-miR-181a MIMAT0003543 24 AACAUUCAACGCUGUCGGUGAGUU 005861 

hsa-miR-223 MIMAT0000280 22 UGUCAGUUUGUCAAAUACCCCA 002295 

Source: Thermo Fisher (https://www.thermofisher.com, accessed on 15/10/2018. 

 

 

Figure 6.1. Workflow for miRNA quantification by RT-qPCR. 

 

6.2.3.1. RNA preparation 

Total RNA, including miRNA, was extracted from both colostrum and blood samples using 

Trizol LS (Catalog Numbers 10296010 and 10296028, Invitrogen, Thermo Fisher scientific). 

Cel-miR-39-3p (5 picomole/µL) (mirVana, miRNA mimic, ID: MC10956, Cat# 4464066, 

Lot# AS027ZX4) was used as an exogenous control by adding 1 µL to the colostrum, milk 

or calf blood before starting the extraction steps. All steps followed the manufacturer’s 

protocol with some modifications as detailed in Chapter 2, Section 2.4.1.b. The 

concentration and quality of total RNA were assessed by a NanoDrop ND-1000 (Supplied 

and Service by BIOLAB, ThermoFisher). All samples that had a ratio of A260/280 in the 

range from 1.6 to 2.0 were used for RT-qPCR, and any sample of lower quality was re-

extracted. 

Total RNA 
extraction

RNA 
quality  
check

cDNA 
synthesis + 
RT-PCR

Normalization
Data 

analysis

https://www.thermofisher.com/
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6.2.3.2. RT-PCR steps 

The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed 

in 5 steps on the high quality RNA samples as follows: 

 

Step 1: Dilution of total RNA for reverse transcription (RT) reaction 

Total RNA of good quality was diluted with ultra-pure water for the reverse transcription 

(RT) reaction. Total RNA from calf blood was diluted to approximately 2 ng/µL and the 

total RNA from the colostrum/milk samples was diluted to approximately 10 ng/µL.  

 

Step 2: RT reaction 

Total RNA was first transcribed into complementary DNA (cDNA) using the TaqMan 

MicroRNA Reverse Transcription Kit (Applied Biosystem, product P/N 4366596 and 

4366597, USA). The reagents in this kit convert total RNA into cDNA when used with 

specific miRNA primers supplied with the TaqMan MicroRNA assay (Table 6.1). cDNA for 

each sample was synthesized in duplicate. Briefly, a master mix for RT reaction was 

prepared and added to the reaction tubes (14 µL/tube), followed by 1 – 2 µL of diluted 

sample total RNA depending on the starting concentrations of the sample (Table 6.2). Each 

15-µL RT reaction consisted of 14 µL (or 13 µL) master mix and 1 µL (or 2 µL) RNA sample 

depend on sample type.  

 

Table 6.2. Reverse transcription reagents. 

RT components 
RNA from 

Calf blood sample 

RNA from 

Colostrum/milk sample 

Master mix 

Pooled RT primer* 

 

6 µL 

 

6 µL 

dNTP mix (100mM total) 0.3 µL 0.3 µL 

10 x RT buffer 1.5 µL 1.5 µL 

Multiscribe RT enzyme (50 U/µL) 1 µL 1 µL 

RNase inhibitor (20 U/ µL) 0.2 µL 0.2 µL 

RNase free water 5 µL 4 µL 

Total master mix/reaction 14 µL 13 µL 

Diluted total RNA 
1 µL of 

2 ng/ µL [total RNA] 

2 µL of 

10 ng/ µL [total RNA] 

* Pooled RT primer = 5 µL of each RT primer (miR-39-3p, miR-142-5p, miR-150, miR-155, miR-

181a, miR-223) + 470 µL of RNase-fee water.  
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A negative reverse transcription control (NC-RT) was included by adding 2 µL of ultra-pure 

water instead of diluted total RNA and was synthesized at the same time as the samples. The 

program for RT reaction was 30 minutes at 16oC, 30 minutes at 42oC, 5 minutes at 85oC and 

5 minutes at 4oC. 

 

To prepare the miR-39-3p for the qPCR standard curve, the miR-39-3p cDNA was 

transcribed following above RT steps and concentration of cDNA was calculated to 1.948 x 

1011 copies/µL (Appendix 7). 

 

Step 3: Dilution of cDNA for qPCR 

The cDNA prepared from each of the samples was diluted at a ratio of 1:10 with RNase-free 

water and used as the template for the qPCR reaction. The miR-39-3p standard cDNA was 

diluted in serial 10-fold dilutions to create a standard curve (Table 6.3). Each dilution was 

aliquoted into Eppendorf tubes and stored at -80oC. Aliquots were thawed once for use to 

avoiding repeated multiple freeze-thaw cycles. The cDNA for the standard curve was 

amplified at the same time as the samples for each PCR amplification. cDNA from the 

standard solution (7.12 µL) was added in the PCR tube to a final volume of 15 µL, and the 

final concentration was determined from the standard curve. 

 

Table 6.3. Dilutions of qPCR standards for standard curve. 

Standard solution Concentration 

(copies/ µL) 

Standard cDNA 

added to PCR 

Final standard 

concentration 

(copies/ µL) 

Standard solution (SC1) 194,800,000,000    

SC2 (SC diluted 1: 102) 1,948,000,000  7.12 924,650,667  

SC3 (SC diluted 1:103) 194,800,000  7.12 92,465,067  

SC4 (SC diluted 1:104) 19,480,000  7.12 9,246,507  

SC5 (SC diluted 1:105) 1,948,000  7.12 924,651  

SC6 (SC diluted 1:106) 194,800  7.12 92,465  

SC7 (SC diluted 1:107) 19,480  7.12 9,247  

SC = Standard curve solution 
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Step 4: qPCR 

Quantitation by real-time PCR was performed using a Corbett Robotics system (CAS 

Robotics 4 v4.9.1) to load the PCR materials into Gene-Disc 100 well rings, and the PCR 

ring was placed into a thermal cycler (Rotor-Gen 6000, Corbett Research, 2 PLEX). The 

reagents used for qPCR step were from TaqMan Universal Master Mix II, no uracil-N-

glycoslyase (UNG) kit (Applied Biosystems) and all steps followed the protocol of 

manufacturer with modifications for the template amount. A negative reverse transcription 

control (NC-RT) was included in all RT-qPCR samples to test for contaminating DNA.  

 

Briefly, a PCR master mix was prepared by mixing 7.5 µL of TaqMan Universal Master Mix 

II, no UNG 2x and 0.38 µL of TM primer 20X for each reaction. The master mix was added 

into each well of the ring, and the cDNA template was added to a final volume of 15 µL 

(Table 6.4). The cycle for PCR included 3 steps of 40 cycles as below:  

Hold: 95oC for 10 minutes  

Cycling: 95oC for 15 seconds, then 60oC for 60 seconds  

Melting: ramp from 55 - 85oC,   

The melting temperature was raised by 1 degree with each step. There was a 90 second pause 

for pre-melting conditioning at the first step but the pause was reduced to 5 seconds for each 

step thereafter. The fluorescence was measured at 470 - 510 nm, and the gain was optimized 

prior to the melting. 

 

Table 6.4. PCR reagents.  

Reagents 
Standard solution 

Amount/tube (µL) 

Sample 

Amount/tube (µL) 

TagMan master mix, no UNG 7.5 7.5 

TM primer (specific primer) 0.38 0.38 

Ultra-pure water 0 1.12 

Template 

7.12 

Serial dilution of cDNA of 

(miR39-3p) 

6 

Diluted (1:10) cDNA of 

sample 

Total volume 15 15 
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Step 5: Normalization 

To determine the original miRNA concentration, two steps of normalization were carried 

out using the Rotor-Gen 6000 software and equation.  

 

First normalization: miR-39-3p was used for normalization in every PCR run. The negative 

control from the RT reaction and a negative control for the PCR were included with the 

samples in every PCR run to ensure there was no contamination at either the RT or qPCR 

steps. The standard curve from each run was used to assess technical variation, and if there 

was large variation in the standard curve, the run was repeated. A positive control, which 

was pooled total RNA from many samples, was included in each PCR run as a reference to 

compare between runs (Table 6.5). 

 

Table 6.5. Copy number of positive control for qPCR. 

miRNAs Positive control (copies/µL) 

miR-39-3p 29,126,698 

miR-142-5p 298,685 

miR-150 564,873 

miR-155 80,857 

miR-181a 29,259 

miR-223 29,824,376 

 

The first normalization step used Rotor-Gene 6000 software (Corbett, Life Science, 

Australia). Standard curves, which had a high R2 (R2 = 0.99) and efficiency in the range 0.9 

– 1.1 and a good correlation between triplicates, were used for all runs. Results from the first 

10 cycles of real-time amplification were removed from the analysis, and “auto Threshold” 

was used to obtain the baseline.  

 

Second normalization 

After obtaining the copy number from the software, the second step of normalization was to 

calculate the original miRNA concentration based on the cel-miR-39-3p concentration added 

at the RNA extraction step plus the RNA and cDNA dilutions for the RT and PCR, 
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respectively. The copy number of miRNAs in the sample was computed in the Excel based 

on RT-qPCR workflow (Figure 6.2). 

 

Figure 6.2. RT-qPCR workflow.  

“A” in the step 1 is the dilution factor when diluting total RNA for RT reaction; “B” in the 

step 5 is the miRNA concentration (copies/µL) from software after first normalization. 

 

The equations for the calf blood samples and colostrum samples were as follows: 

Calf blood sample: [miRNA at step 1] = 
𝐵 𝑥 10 𝑥 15 

6  
 𝑥 𝐴 

Colostrum sample: [miRNA at step 1] = 
𝐵 𝑥 10 𝑥 15 

6 𝑥 2 
 𝑥 𝐴 

Where:  

[miRNA at step 1]: miRNA concentration at step 1 

        A is dilution factor when diluting total RNA for RT reaction 

       B is copy number from software after normalization  

 

As the miRNA assay was performed with separate RT and PCR assays, there were two 

different efficiencies for the assay. Therefore, using the concentration of cel-miR-39-3p 

(2.922 x 1012 copies) (Appendix 7) added to each sample prior the RNA isolation step, the 

final concentration of starting miRNA for each sample was calculated by following formula: 

 

[Original miRNA] = 
2.922 x 10^12 copies 𝑥 [𝑚𝑖𝑅𝑁𝐴 𝑎𝑡 𝑠𝑡𝑒𝑝 1]

[𝑚𝑖𝑅−39 𝑎𝑡 𝑠𝑡𝑒𝑝 1] 
  

Where:  

[miRNA at step 1]: miRNA concentration at step 1 

[original miRNA]: original miRNA concentration in sample 

Step 1

Dilute total RNA 
for RT

at a ratio

(1:A) 

to 2ng/µL (blood 
samples) or 

10ng/µL 
(colostrum/milk)

Step 2

RT reaction

Blood RNA 

(2ng/µL): added 1µL 

into 15µL RT tube

Colostrum/milk RNA 

(10 ng/µL): added 

2µL into 15µL RT 

tube

Step 3

Dilute 
cDNA for 

qPCR

at 1:10 ratio

Step 4

qPCR step

Added 6µL 
of cDNA in 
15µL-qPCR 

tube

Step 5

Normalization

1. Use software 

of Rotor-Gen 

6000: get B 

copies/µL

2. Use equation

get original 

copies/µL
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6.2.3. Statistical analysis 

All statistical analyses were conducted using two software packages, SAS version 9.4 

(Statistical Analysis Software, Cary Inc. USA) and R (R version 3.6.3). The concentrations 

of five miRNAs (miR-142-5p, miR-150, miR-155, miR-181a and miR-223) in the dam 

colostrum, pooled colostrum and bulk tank milk were compared by a mixed linear model 

using the PROC MIXED procedure in SAS 9.4. The miRNA levels in dam colostrum (n = 

12) over time (days 0, 1, 2 and 3) were compared by the PROC MIXED in SAS with fixed 

effect (time) and random effect (individual dam colostrum), which was a repeated 

measurement.  

 

To compare the miRNA concentration (miR-142-5p, miR-150, miR-155, miR-181a, miR-

223) in the three calf Groups (A, B and C) across time points (days 0, 1, 2, 3, and 7), the 

predicted means of dependent variables were compared using a mixed linear model in R by 

using the asreml package (Gilmour et al., 2015). The fixed effects were group, time point, 

and the interaction between the group and time point, and the random effect was the 

individual calves, which were repeated across time points. In addition, miRNA concentration 

(miR-142-5p, miR-150, miR-155, miR-181a, miR-223) in the 35 calves across time-points 

(days 0, 1, 2, 3 and 7) was analysed by a mixed linear model in R by using the asreml package 

(Gilmour et al., 2015) with one fixed effect (time-point) and random effect (individual 

calves), which were repeated across time points.  

 

Correlations (including Pearson and Spearman correlations) between miRNAs in different 

samples (calf blood, colostrum or cow blood) were calculated based on the distribution of 

data. Normality was determined using Shapiro-Wilk test in the “nortest” package in R. A 

Pearson correlation was calculated if both variables had a normal distribution. The Spearman 

correlation was used if at least one variable was non-parametric. The Spearman correlation 

coefficient is based on the ranked values for each variable rather than the raw data. 

 

6.3. Results 

The samples for the quantifying the five immune-related miRNAs included the dam 

colostrum collected within 2 hours postpartum (day 0) and on days 1, 2 and 3. The dam 

colostrum was fed to their own calf (Group A) and a paired foster calf (Group B). Samples 
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were also taken from the colostrum pooled from several dairy cows days 0-4 postpartum and 

fed to the Group C calves for their first feeding (2 L). In addition, bulk tank milk was 

collected twice daily from the dairy cows more than 5 days postpartum and sampled. The 

bulk tank milk was used to feed the Group C calves from the second feeding until day 7 after 

birth and to feed the Group A and B calves from day 4 to 7 after birth. Blood from the three 

calf Groups were collected after birth and before feeding (day 0) and on days 1, 2, 3 and 7 

after birth.  

 

6.3.1. Immune-related microRNAs in colostrum and milk 

MicroRNA concentration in the colostrum and bulk tank milk was determined by RT-qPCR 

for the five immune-related miRNAs (Figure 6.3, Appendix 8.1). Of the five miRNAs, miR-

223 had the highest levels in all colostrum and milk samples. Both miR-223 and miR-155 

had substantially higher concentrations than the other three miRNAs. In dam colostrum, the 

miR-223 and miR-155 concentration were 67.2 and 2.4 x 109 copies/µL at day 0 postpartum, 

whereas the levels of miR-142-5p, miR-150 and miR-181a were approximately 0.4 - 0.6 x 

109 copies/µL. 

 

Generally, the bulk tank milk had lower levels of all the miRNAs than the colostrum. There 

were significant differences in concentration of miR-142-5p, miR-155 and miR-181a 

between colostrum samples and bulk tank milk (P < 0.05). However, the dam colostrum only 

had higher concentrations of miR-155 than the pooled colostrum (P < 0.05). The pooled 

colostrum was significantly higher than bulk tank milk for the miR-181a concentration (P < 

0.05). There were no significant differences in the miR-150 and miR-223 concentrations 

between dam colostrum, pooled colostrum and bulk tank milk, but the standard errors for 

these two miRNAs were notably very high. 
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(A) 

 

 

(B) 

 

 

(C) 

 

(D) 

 

(E) 

 

 

 

Figure 6.3. Concentration of microRNAs in day 0 dam colostrum (n = 12), pooled 

colostrum (n = 5), and bulk tank milk (n= 25).  

(A) miR-142-5p, (B) miR-150, (C) miR-155, (D) miR-181a, and (E) miR-223. (Mean ± SE). 

Superscripts (a, b) indicate significant differences between least square means (P < 0.05).  

 

6.3.2. Immune-related microRNAs dam colostrum across time-points 

There was a significant difference between miRNA levels across time-points for all five 

miRNAs (P < 0.05). All five immune-related miRNAs in dam colostrum were highest at day 

0 and then decreased 5- to 22-fold by day 3 (Figure 6.4, Appendix 8.2). All miRNAs 

decreased significantly by day 1 (2 to 6-fold) with the exception of miR-181a. The miR-

181a concentrations in the dam colostrum at days 0 and 1 were similar but significantly 
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higher than the levels at days 2 and 3 (P < 0.05). MicroRNA-223 had the highest 

concentration and miR-155 had the second highest concentration compared to the other three 

miRNAs (miR-142-5p, miR-150 and miR-181a) across all time points. 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

 

 

Figure 6.4. MicroRNA concentrations in dam colostrum day 0 to 3 postpartum.  

(A) miR-142-5p, (B) miR-150, (C) miR-155, (D) miR-181a, and (E) miR-223. (Mean ± SE). 

Superscripts (a, b) indicate significant differences between means (P < 0.05). n = 12. 
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6.3.3. Immune-related microRNAs in the three calf groups within a week post-partum 

In order to test whether any of the miRNA were transferred from colostrum to the calves, 

blood samples from all calves were taken at day 0, 1, 2, 3 and 7 after birth and the 

concentrations of the five immune-related miRNAs were measured. MicroRNA-223 had the 

highest concentrations of these miRNA at all time-points, followed by miR-150, miRNA-

142-5p, miR-155 and miR-181a (Table 6.6). The miR-223 levels were 1000-fold greater 

than the miR-181a and miR-155 levels and 100-fold greater than the miR-150 and miR-142-

5p levels. 

 

Table 6.6. MicroRNA concentrations in all calves across time-points within one week 

after birth.  

Time 
miR-142-5p miR-150 miR-155 miR-181a miR-223 

LSM SE LSM SE LSM SE LSM SE LSM SE 

Day 0 22.2z 2.3 68.4x 4.6 10.2y 1.0 3.8y 0.3 5,056.8x 282.7 

Day 1 18.1zw 2.3 75.5x 4.6 17.3x 1.0 8.0x 0.3 5,255.9x 282.7 

Day 2 33.9y 2.3 46.9y 4.6 7.2yz 1.0 0.9zw 0.3 2,153.7y 282.7 

Day 3* 12.9w 2.3 23.5z 4.6 2.7w 1.0 0.2w 0.3 471.6z 286.8 

Day 7 43.5x 2.3 46.4y 4.6 5.1zw 1.0 1.8z 0.3 1,224.9xy 282.7 

Unit: 109 copies/µL, n = 35. 

* Day 3, Group B had 11 samples instead of 12 samples. 

x, y, z, w LSM within a column with a different superscript letter are significantly different (P < 0.05). 

 

a. MicroRNA-142-5p 

The miRNA-142-5p concentration was affected by Group, time and the interaction between 

Group and time (P < 0.05) (Table 6.7, Figure 6.5.A). The concentration of miR-142-5p in 

the calf blood was similar at days 0 and 1, suggesting that miR-142-5p was not absorbed 

from colostrum after two feedings. The level of miRNA-142-5p was higher at day 2 and was 

at the highest level by day 7 compared to other time points (P < 0.05). There were significant 

differences in miR-142-5p concentration (P < 0.05) between three calf Groups at day 7 with 

Group A calves, who were fed their own dam colostrum, having higher levels than Group B 

calves (fed foster cow colostrum) and Group C calves (fed pooled colostrum) (P < 0.05).  
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(D) 

 

(E) 

 

 

 

Figure 6.5. MicroRNA concentrations in three calf Groups within one week after birth.  

(A) miR-142-5p, (B) miR-150, (C) miR-155, (D) miR-181a, and (E) miR-223. (Mean ± SE). 

Superscripts (a, b) indicate significant differences between means (P < 0.05). n = 12 for Groups A 

and B, n = 11 for Group C.  
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Table 6.7. MicroRNA-142-5p in three calf Groups within one week after birth.  

Time 

Group A 

(n = 12) 

Group B 

(n = 12) 

Group C 

(n = 11) 

All calves 

(n = 35) 

LSM SE LSM SE LSM SE LSM SE 

Day 0 22.7 3.7 23.8 3.7 19.9 3.4 22.2z 2.3 

Day 1 17.6 3.7 16.9 3.7 19.9 3.4 18.1zw 2.3 

Day 2 39.3 3.7 27.3 3.7 35.3 3.4 33.9y 2.3 

Day 3* 14.3 3.7 12.5 3.7 11.9 3.4 12.9w 2.3 

Day 7 58.9a 3.7 36.1b 3.7 34.9b 3.4 43.5x 2.3 

Units = 109 copies/µL. 

Group A = calves fed own dam colostrum, Group B = calves fed foster cow colostrum, Group C = 

calves fed only a bottle of pooled colostrum. LSM = least square means, SE = standard error. 

* Day 3, Group B had 11 samples instead of 12 samples. 

a,b,c LSM within a row of each time point with a different superscript letter are significantly different 

(P < 0.05). 

x, y, z, w LSM within an “All calves” column with a different superscript letter are significantly different 

(P < 0.05). 

 

 

b. MicroRNA-150 

The level of miR-150 in the calf blood gradually decreased over time (Table 6.8, Figure 

6.5.B, P < 0.05). The miR-150 concentration was highest at days 0 and 1, then declined by 

days 2, 3 and 7 (P < 0.05). As the miR-150 level in the blood of the calves was high when 

the calves were born (day 0), this suggests that miR-150 may be transferred from their dam 

in utero or that the calves synthesized miRNA themselves prior to birth. This level did not 

increase between day 0 and day 1 (P > 0.05), and there were no differences between the calf 

Groups for any time point. This suggests that the miR-150 in the calf blood was not absorbed 

from the colostrum. 
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Table 6.8. MicroRNA-150 in three calf Groups within one week after birth.  

Time 

Group A 

(n = 12) 

Group B 

(n = 12) 

Group C 

(n = 11) 

All calves 

(n = 35) 

LSM SE LSM SE LSM SE LSM SE 

Day 0 51.3 7.7 72.0 7.7 83.1 8.1 68.4x 4.6 

Day 1 70.2 7.7 77.2 7.7 79.4 8.1 75.5x 4.6 

Day 2 43.0 7.7 50.8 7.7 46.9 8.1 46.9y 4.6 

Day 3* 22.6 7.7 27.3 7.7 20.4 8.1 23.5z 4.6 

Day 7 49.3 7.7 51.5 7.7 37.6 8.1 46.4y 4.6 

Units = 109 copies/µL. 

Group A = calves fed own dam colostrum, Group B = calves fed foster cow colostrum, Group C = 

calves fed only a bottle of pooled colostrum. LSM = least square means, SE = standard error. 

* Day 3, Group B had 11 samples instead of 12 samples. 
x, y, z LSM within an “All calves” column with a different superscript letter are significantly different 

(P < 0.05). 

 

c. MicroRNA-155 

The miR-155 level in the blood of all calves increased significantly from day 0 to day 1 (10 

and 17 x 109 copies/µL, respectively; P < 0.05), then decreased by days 2, 3 and 7 with the 

lowest level at day 3 (Table 6.9 and Figure 6.5.C). The increased level on day 1 suggests 

that calves may have absorbed miR-155 from colostrum. However, if this was the case, then 

the Group A and B calves should have more miR-155 than Group C, as the dam colostrum 

had significantly more miR-155 than the pooled colostrum. There were no significant 

differences in miR-155 levels between the Groups though at any time, including day 1.  

 

Table 6.9. MicroRNA-155 in three calf Groups within one week after birth.  

Time 

Group A 

(n = 12) 

Group B 

(n = 12) 

Group C 

(n = 11) 

All calves 

(n = 35) 

LSM SE LSM SE LSM SE LSM SE 

Day 0 8.8 1.7 9.2 1.7 12.8 1.8 10.2y 1.0 

Day 1 16.0 1.7 15.2 1.7 21.1 1.8 17.3x 1.0 

Day 2 8.6 1.7 5.9 1.7 7.1 1.8 7.2yz 1.0 

Day 3* 3.2 1.7 2.4 1.8 2.5 1.8 2.7w 1.0 

Day 7 5.5 1.7 5.1 1.7 4.7 1.8 5.1zw 1.0 

Units = 109 copies/µL. 

Group A = calves fed own dam colostrum, Group B = calves fed foster dam colostrum, Group C = 

calves fed only a bottle of pooled colostrum. LSM = least square means; SE = standard errors. 

* Day 3, Group B had 11 samples instead of 12 samples. 
x, y, z, w LSM within an “All calves” column with a different superscript letter are significantly different 

(P < 0.05). 
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d. MicroRNA-181a 

The level of miR-181a in the calf blood was lower than the other miRNAs tested. There were 

no significant differences between three calf Groups at any time-points. However, like miR-

150 and miR-155, the miR-181a concentration declined over time (P < 0.05). The highest 

level of miR-181a was at day 1, but decreased thereafter (Table 6.10 and Figure 6.5.D).  

 

The miR-181a level in all calves increased from day 0 (3.8 x 109 copies/µL) to day 1 (8.0 x 

109 copies/µL) after two feedings (P < 0.05). The concentration then declined, reaching the 

lowest concentration at day 3 (0.2 x 109 copies/µL). This suggests that miR-181a could have 

been absorbed from colostrum in the first 24 hours. There was no difference between the 

level of miR-181a in the dam colostrum and pooled colostrum though. Therefore, calf Group 

differences would not be expected and none were observed. 

 

Table 6.10. MicroRNA-181a in three calf Groups within one week after birth.  

Time 

Group A 

(n = 12) 

Group B 

(n = 12) 

Group C 

(n = 11) 

All calves 

(n = 35) 

LSM SE LSM SE LSM SE LSM SE 

Day 0 3.4 0.6 3.0 0.6 5.1 0.5 3.8y 0.3 

Day 1 7.6 0.6 8.0 0.6 8.5 0.5 8.0x 0.3 

Day 2 1.5 0.6 0.6 0.6 0.6 0.5 0.9zw 0.3 

Day 3 0.3 0.6 0.2 0.6 0.2 0.5 0.2w 0.3 

Day 7 2.2 0.6 2.1 0.6 1.2 0.5 1.8z 0.3 

Units = 109 copies/µL. 

Group A = calves fed own dam colostrum, Group B = calves fed foster cow colostrum, Group C = 

calves fed only a bottle of pooled colostrum. LSM = least square means; SE = standard errors. 

* Day 3, Group B had 11 samples instead of 12 samples. 

x, y, z, w LSM within an “All calves” column with a different superscript letter are significantly different 

(P < 0.05). 

 

e. MicroRNA-223 

Of the five immune-related miRNAs examined, miR-223 had the highest concentration in 

colostrum, pooled colostrum, and bulk tank milk as well as in calf blood. In the calf blood, 

the highest levels of miR-223 in the calf blood were at day 0 and 1 (Table 6.11 and Figure 
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6.5.E) and there was no difference in the level between these days (50.57 x 1012 copies/µL, 

and 52.56 x 1012 copies/µL, respectively). The level then decreased in the calf blood with 

the lowest concentration at day 3 (4.72 x 1012 copies/µL). Before receiving colostrum, miR-

223 concentration was very high in calf blood and increased slightly, though not 

significantly, after 2 colostrum feedings (day 1) in the Group A and B calves. This increase 

was not observed in the Group C calves that received 1 bottle of pooled colostrum.  

 

Table 6.11. MicroRNA-223 in three calf Groups within one week after birth.  

Time 

Group A 

(n = 12) 

Group B 

(n = 12) 

Group C 

(n = 11) 

All calves 

(n = 35) 

LSM SE LSM SE LSM SE LSM SE 

Day 0 4,410.7 484.1 4,753.7 484.1 6092.3 505.6 5,056.8x 282.7 

Day 1 4,874.0 484.1 5,650.6 484.1 5241.8 505.6 5,255.9x 282.7 

Day 2 2,578.6 484.1 1,909.6 484.1 1956.5 505.6 2,153.7y 282.7 

Day 3* 473.8 484.1 496.7 505.6 441.0 505.6 471.6z 286.8 

Day 7 1,354.3 484.1 1,269.1 484.1 1035.5 505.6 1,224.9xy 282.7 

Units = 109 copies/µL. 

Group A = calves fed own dam colostrum, Group B = calves fed foster cow colostrum, Group C = 

calves fed only a bottle of pooled colostrum. LSM = least square means; SE = standard errors. 

* Day 3, Group B had 11 samples instead of 12 samples. 

x, y, z LSM within an “All calves” column with a different superscript letter are significantly different 

(P < 0.05). 

 

6.3.4. Immune-related microRNAs in cow blood  

The five immune-related miRNAs were also measured in the Group A dam blood within 2 

hours after parturition (Table 6.12), as the Group A calves may have received the miRNAs 

in utero from their dams. The levels of all the microRNAs were higher in the blood than the 

colostrum with the exception of miR-181a, which was very similar between blood and 

colostrum (~500 x 106 copies/µL). The miR-181a level was the lowest in the blood and 

colostrum. MicroRNA-223 had the highest level in colostrum (67 x 109 copies/µL) and the 

highest level in the cow blood (12,000 x 109 copies/µL). The concentration of miR-150 was 

also much higher in the blood than the colostrum (300 x 109 copies/µL vs 0.6 x 109 
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copies/µL, respectively). There was a 13- and 19-fold difference in concentration between 

blood and colostrum for miR-155 and miR-142-5p, respectively. 

 

Table 6.12. Concentration of five immune-related miRNAs in dam blood within 2 hours 

postpartum.  

miRNAs n Mean SE Min Max 95% CI 

miR-142-5p 12 7.8 2.9 0 35.3 1.5 - 14.1 

miR-150 12 307.7 45.7 99.9 579.5 207.0 - 408.3 

miR-155 12 31.3 7.2 7.10 87.2 15.5 - 47.2 

miR-181a 12 0.5 0.3 0 2.8 0.1 - 1.1 

miR-223 12 12302.3 2266.5 2589.4 26425.6 7313.8 - 17290.7 

Unit = 109 copies/µL. 

SE = standard error. 

 

6.3.5. Correlations of immune-related microRNAs  

a. Day 0 colostrum and cow blood miRNA correlations 

The correlations between the levels of the five immune-related miRNAs in the dam 

colostrum and corresponding dam blood sampled within 2 hours postpartum were not high 

(Table 6.13). These correlations suggest that the synthesis of colostrum miRNA occurs in 

the mammary gland rather than being sourced from the blood. Consequently, the levels of 

miRNA in the blood should not use to estimate the levels of miRNA in the colostrum. 

 

Table 6.13. Correlations between immune-related miRNAs in dam colostrum and 

blood within two hours post-partum.  

Correlation Day 0 colostrum 

miR-142-5p miR-150 miR-155 miR-181a miR-223 

Cow 

blood 

miR-142-5p2 -0.39     

miR-1502  -0.01    

miR-1552   0.29   

miR-181a2    -0.11  

miR-2231     0.01 

1Pearson correlation if both variables were normal distribution. 
2Spearman correlation if any variable was non- normal distribution. (n = 12). 
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b. Cow blood and day 0 calf blood miRNA correlations 

To determine whether miRNAs are transferred from the dam’s blood to calf blood in utero, 

correlations between miRNA levels in the cow blood 2 hours postpartum and day 0 calf 

blood were calculated (Table 6.14). All correlations between immune-related miRNAs in 

dam blood and day 0 calf blood were low and negative, except for miR-155. The correlation 

between miR-155 in the dam blood and miR-155 in Group A calf blood at day 0 was 0.76 

(P = 0.004). This result suggests that only miR-155 in the dam blood may be potentially 

transferred to calf blood during pregnancy via the uterine epithelial cells.  

 

Table 6.14. Correlations between miRNAs in dam blood and day 0 Group A calf blood.  

Correlation Day 0 calf blood 

miR-142-5p miR-150 miR-155 miR-181a miR-223 

Cow 

blood 

miR-142-5p2 -0.16     

miR-1501  -0.30    

miR-1551   0.76   

miR-181a2    -0.30  

miR-2231     -0.15 

1Pearson correlation if both variables were normal distribution. 

2Spearman correlation if any variable was non- normal distribution. (n = 12). 

 

c. Day 0 colostrum and day 1 calf blood miRNA correlations 

Correlations between the miRNA levels in the colostrum fed at day 0 and the respective calf 

blood at day 1 were calculated for both the dam and pooled colostrum (Table 6.15). The 

correlations between the miRNA levels in the day 1 calf blood and the corresponding 

colostrum were low and/or negative. This finding suggests that colostrum miRNAs were not 

absorbed into calf blood. 

  



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 140 

 
 

 

Table 6.15. Correlations between miRNAs in day 1 calf blood and corresponding 

colostrum. 

Correlation Corresponding colostrum 

miR-142-5p miR-150 miR-155 miR-181a miR-223 

Day 1 calf 

blood from 

Group A 

(n=12) 

miR-142-5p1 -0.61     

miR-1502  0.03    

miR-1552   0.11   

miR-181a2    -0.08  

miR-2232     -0.06 

Day 1 calf 

blood from 

Group B 

(n=12) 

miR-142-5p1 -0.12     

miR-1502  -0.03    

miR-1552   -0.03   

miR-181a2    -0.09  

miR-2231     0.04 

Day 1 calf 

blood from 

Group A & B 

(n=24) 

miR-142-5p2 -0.4     

miR-1502  -0.04    

miR-1552   0.03   

miR-181a2    -0.09  

miR-2232     -0.05 

Day 1 calf 

blood  

(n=35) 

miR-142-5p2 -0.23     

miR-1502  -0.01    

miR-1552   -0.19   

miR-181a2    -0.19  

miR-2232     0.12 

1Pearson correlation if both variables were normal distribution. 

2Spearman correlation if any variable was non- normal distribution. 

 

6.4. Discussion 

Studies on immune-related miRNAs have been mainly in humans with only limited studies 

in other species (Zhou et al., 2012; Sun et al., 2013; Huang, 2015; Van Hese et al., 2020) 

and very little research on bovine miRNAs (Izumi et al., 2012; Sun et al., 2013; Cai et al., 

2018). Human miRNA research has focused on cancer as 50% of the miRNA genes are 

located in fragile sites or chromosomal regions related to cancer (Faraoni et al., 2009). As a 

consequence, the target genes of these immune-related miRNAs have been investigated in 
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humans (Karaca et al., 2018) and mice being used as model species for human cancer (Blüml 

et al., 2011; Kramer et al., 2015). 

 

While miRNAs have been identified in a variety of bovine tissues, in addition to colostrum 

and milk, little is known of their functions (Van Hese et al., 2020). Some studies have shown 

differential expression of cow colostrum and milk miRNAs in different environments 

(Colitti et al., 2019), health status (Cai et al., 2018), breeds (Ozdemir, 2020) and lactation 

periods (Do et al., 2017; Hou et al., 2017; Ozdemir, 2020). However, the function of the 

miRNAs in bovine colostrum and milk is not yet known and the miRNA concentrations 

needed for biological effects have not been explored (reviewed by Van Hese et al. (2020)). 

 

In the present study, five milk-borne miRNAs, considered to be immune-related (Chen et 

al., 2010; Izumi et al., 2012; Sun et al., 2013) were quantified to determine if they were 

absorbed from the colostrum by the neonatal calves. These miRNAs are found in both B and 

T cells in the blood and also are present in both bovine colostrum and milk at relatively high 

concentrations (Chen et al., 2010; Sun et al., 2013).  

 

6.4.1. Immune-related miRNAs in colostrum and milk 

The five miRNAs quantified herein had the highest level at day 0, and then dramatically 

decreased over time postpartum. The studies on miRNA quantification in bovine colostrum 

across time postpartum are limited, with most only comparing miRNAs levels in colostrum 

versus mature milk (Do et al., 2017; Ozdemir, 2020).  

 

Of the five miRNAs, miR-223 had the highest level in the colostrum and milk. The 

concentration of miR-223 in the individual dam colostrum, pooled colostrum and bulk tank 

milk were 67.2, 115.6, and 52.4 x 109 copies/µL, respectively, but there was no significant 

difference in miR-223 levels between colostrum and milk. Similar concentrations of miR-

223 in colostrum and in milk were found in a study by Sun et al. (2013). MicroRNA-155 

had the second highest concentration in the colostrum and milk. High concentrations of both 

miR-223 and miR-155 have been reported in the colostrum of goats and humans (Na et al., 

2015) and in bovine mammary tissue (Wang et al., 2012). 
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The higher levels of miR-223 and miR-155 in both colostrum and milk compared to other 

miRNAs is presumably the result of  higher expression levels of miR-233 and miR-155 in 

the mammary gland tissues during lactation (Li et al., 2012a; Wang et al., 2012; Hou et al., 

2017; Van Hese et al., 2020). MicroRNA-223 and miR-155 are two of only 13 miRNAs for 

which expression increases in bovine mammary tissue in the lactation period compared to 

the dry period (Wang et al., 2012). This suggests that the miRNA profiles in colostrum and 

milk are related to miRNA expression in the mammary gland rather than being derived from 

the cow’s blood.  

 

However, the origin of miRNA in colostrum or milk is not known and could be from active 

secretion by epithelial cells of the mammary gland or by passive transfer from the cow’s 

serum (Chen et al., 2010). Different colostrum components are secreted by different 

mechanisms. While some proteins are synthesised directly in the mammary gland, others are 

transferred from cow’s blood, such as IgG (reviewed by Hou et al. (2017)). In particular, 

IgG1 is derived mainly from blood, with transport across mammary alveolar cells (Gapper 

et al., 2007). The low correlations between the levels of the miRNAs in the dam blood and 

the levels of the miRNAs in the colostrum herein suggest that these miRNAs are more likely 

to be produced in the mammary gland. In humans, Alsaweed et al. (2016) concluded that 

milk miRNAs primarily originate from the mammary epithelium and the maternal blood 

only has a small contribution because the authors found unique miRNAs that only appear in 

milk and were not detected in the maternal blood. In a study in goats, Li et al. (2012a) also 

concluded that milk miRNAs originate from the mammary gland cells. They observed that 

13 miRNAs (let-7a, -7b, 7c, 7f, 7g, miR-21, 230a, 2103, 2107, 2143, 2148a, 2320 and 2423-

5p) in the top 20 most expressed miRNAs in the mammary gland were also among the top 

20 most expressed miRNAs in raw milk. 

 

The dam colostrum had significantly higher levels of miR-142-5p, miR-155 and miR-181a 

than the bulk tank milk. Significant differences between colostrum and milk for these 

miRNAs have been reported previously (Izumi et al., 2012; Sun et al., 2013). MicroRNA-

155, miR-181a, and miR-223 had higher concentrations in bovine colostrum than in mature 

milk based on quantitative PCR analysis (Izumi et al., 2012). MicroRNA-181a was also one 

of 7 miRNAs that had a higher copy number in colostrum than in milk based on Solexa 
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sequencing results (6.11 fold change) (Sun et al., 2013). There are only a few studies on the 

miRNA profile differences between colostrum and milk thus far (Do et al., 2017; Hou et al., 

2017; Ozdemir, 2020). These previous studies have shown differential expression of miRNA 

with different numbers of miRNAs up-regulated and down-regulated in colostrum compared 

to milk. In general though, more miRNAs have higher levels in colostrum compared to in 

milk. For example, 108 miRNAs of 116 miRNAs were up-regulated in colostrum compared 

to mature milk in a study by Chen et al. (2010). Many immune-related miRNAs in Holstein 

colostrum were also higher than in milk, including miR-130b, miR-15b, miR106a, and miR-

223, in a study by Ozdemir (2020).  

 

Despite miRNAs being present in high concentrations in colostrum and milk, the functions 

of many miRNAs are not well delineated yet. Many miRNAs are considered to be immune-

related because they are abundantly expressed in immune cells and/or play a role in 

lymphocyte development and cell generation (Vigorito et al., 2013; Xu et al., 2016; Shrestha 

et al., 2017; Yuan et al., 2018). However, some miRNAs have been shown to directly 

regulate cytokine levels and immune cell function (Sun et al., 2013). For example, miR-106a 

has been found to regulate IL-10 expression in humans, and Il-10 is known to be a key 

orchestrator of the immune system (Sharma et al., 2009).  

 

Evidence of other miRNA being immune-related is based on the level of their expression 

being associated with health status. For instance, miR-142-5p and miR-223 levels are 

elevated in colostrum if the cow has mastitis (Cai et al., 2018). Naeem et al. (2012) found 

that three miRNAs (miR-181a, miR-16, and miR-31) were approximately 3- to 5-fold lower 

and miR-223 was approximately 2.5-fold higher in mammary tissues of cows with mastitis. 

Although these studies found the differential expression of miR-142-5p, miR-181a and miR-

223 in cows with mastitis, to date, their purpose in the mammary gland has not been defined 

(Naeem et al., 2012; Cai et al., 2018).  

 

The question is whether these miRNAs in colostrum and milk could be functional in the 

neonate. Strong evidence that microvesicles (exosomes) are able to deliver miRNAs or 

mRNA to cells is available (Skog et al., 2008; Zhang et al., 2010; Sun et al., 2013). Sun et 

al. (2013) showed that after incubation of mature milk or colostrum-derived vesicles 
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containing seven miRNAs, the concentration of three of the miRNAs (miR-106a, miR-181a 

and miR-451) increased significantly in macrophage cells, while the other miRNAs levels 

were unchanged. Sun et al. (2013) concluded that structure of the colostrum exosomes is 

important for transferring miRNAs from exosomes into cells. Exposing the macrophage cell 

line RAW264.7 to the miRNA containing exosomes increased in IL-1β production and 

decreased in IL-10, and these effects were blocked by miRNA inhibitors (Sun et al., 2013). 

Therefore, exosomes containing miRNAs can deliver miRNA to cells and those miRNAs 

can have an effect on cell function, as demonstrated in this case with an immune-related 

response.  

 

6.4.2. Immune-related miRNAs in calf blood at birth 

The results herein indicate that calves are born with the five immune-related miRNAs in 

their blood (miR142-5p, miR-150, miR-155, miR-181a and miR-223). The calves either 

received these miRNAs from their dams during pregnancy or these miRNAs were 

synthesized by calves themselves. The synepitheliochorial bovine placenta structure 

separates the maternal circulation and the fetal blood stream. However, the migration of fetal 

chorionic binucleate cells (BNC) is fundamental to the development of ruminant placenta, 

particularly the uterine epithelial cells (Wooding, 1992). These cells may be involved in the 

transfer of miRNAs between the dam and calf, and this may have been the source of the 

miRNA detected. 

 

A relationship between miRNAs in fetus and their dam blood has been reported previous 

cattle studies (Pigati et al., 2010; Ioannidis and Donadeu, 2016), as miR-155 and miR-26a 

were found at high levels in the bovine embryos and also were highly expressed in their 

dam’s blood at early pregnancy (day 16) (Ioannidis and Donadeu, 2016). In a cattle cloning 

study, De Bem et al. (2017) found that decreased exosomal-miRNAs in maternal blood at 

21 days of gestation was correlated with the miRNA profile of the embryos.  

 

To examine the relationship between miRNAs in fetus and maternal blood, the level of the 

five immune-related miRNAs was determined in the dam blood within 2 hours postpartum 

and in the calf blood within 4 hours postpartum. Only miR-155 was found to be correlated 

(r = 0.76, P = 0.004). Therefore, the transfer or absorption of maternal miRNA by the fetus 
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may not be a general phenomenon. The level of miR-155 was lower than miR-150 and miR-

223 in the dam blood at 2 hours postpartum, so a concentration effect is not likely to be the 

cause. Rather, the transfer or absorption of miRNA by the fetus may be selective if it is 

occurring. 

 

The release of miRNAs from cells into blood and milk can be selective. For example, 

malignant mammary epithelial cells produce and release miR-451 and miR-1246, but these 

miRNAs are retained in non-malignant mammary epithelial cells (Pigati et al., 2010). In 

another example, miR-106a, miR-181a and miR-451 in vesicles were shown to be 

transferred to milk somatic cells in in vitro culture but other miRNAs were not transferred 

(Sun et al., 2013). This suggests that the transfer of miRNAs can be selective although the 

mechanisms involved have not been yet delineated. Further studies examining the miRNA 

profiles of fetuses, newborns and their dams would provide a clearer picture of which 

miRNA are transferred and their likely functions. 

 

In the case of miR-155 where there was a correlation between the levels in the calf blood 

and the dam blood, it was not obvious if there was a transfer from the dam blood to the fetus 

or from the fetus to the dam. The origin of the circulating miRNAs in the maternal blood can 

be from the bovine placenta (De Bem et al., 2017) and the bovine placenta is derived from 

the embryos (Hossain et al., 2014). The ability of bovine embryos to synthesise miRNAs 

and to transfer these to the blood of their dams via the placenta has been shown in a study of 

cloned cattle (Hossain et al., 2014). MicroRNA expression was analysed from blastocysts, 

from day-16 elongated embryos generated by nuclear transfer in vivo or artificial 

insemination, and from bovine placentas at day 50 and day 225 of pregnancy. A large 

number of miRNAs in placentas derived from nuclear transfer or in vivo produced embryos 

were deregulated compared to artificial insemination groups (Hossain et al., 2014). This 

suggests that miRNAs produced by embryo could be transferred to the blood of their dam 

via placenta. Further study of miRNA transfer during pregnancy is needed to fully 

understand the mechanism. 
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6.4.3. Immune-related miRNAs in calf blood after receiving colostrum 

The miRNAs are present in all fractions of colostrum and milk (exosomes, whey and cells). 

Most of the miRNAs are found in exosomes, which are very stable under a range of 

conditions, including high temperatures, RNase digestion and low pH (Chen et al., 2008; 

Izumi et al., 2012). Therefore, colostrum miRNAs in exosomes are likely to be protected 

from digestion in gastrointestinal tracts of neonates, and the structure of exosomes may help 

the transfer of the miRNAs to the cells (Sun et al., 2013). However, there are only limited 

studies on miRNA absorption in newborns after consuming colostrum (Kirchner et al., 

2020). Smythies and Smythies (2014) suggested that miRNAs packaged in exosomes in the 

gut can be taken up by dendritic cells and transported to mesenteric lymph nodes, but the 

mechanisms of this transport have not been investigated further.  

 

The results from the present study indicate that at day 1, the level of two of the five miRNAs 

(miR-155 and miR-181a) increased significantly from day 0 (P < 0.05) and then decreased 

steadily after day 2. The significant increase in the miRNAs at day 1 may be explained either 

by miRNA absorption from colostrum or by the increased expression in the calves. Notably, 

there were no significant differences between the three calf Groups for miR-155 and miR-

181a for any time point within 7 days after birth. This was despite the Group A and B calves 

receiving much larger amounts of miRNAs from the colostrum than the Group C calves, and 

suggests that there was an increase in expression rather than absorption from the colostrum. 

 

The amount of miR-155 in the dam colostrum was higher than in the pooled colostrum and 

in the bulk tank milk (P < 0.05). The levels of two other miRNAs were also significant higher 

in dam colostrum than bulk tank milk (miR-142-5p and miR-181a; P < 0.05). However, there 

were no significant differences in any miRNA concentrations between three calf Groups 

after feeding colostrum at any time-points within 7 days after birth. Group A and B calves 

received dam colostrum twice per day for 3 days postpartum, which was far more than the 

Group C calves which received only 1 bottle pooled colostrum and then bulk tank milk for 

3 days after birth. Therefore, the lack of differences between Groups with different colostrum 

feeding regimens also suggest that miRNAs were not transferred from colostrum.  
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Finally, the correlations between the levels of the miRNAs in all the colostrum samples and 

the levels in the corresponding day 1 calf blood were low. Again, these correlations suggest 

that the calves are synthesizing the miRNA themselves rather than absorbing the miRNA 

from the colostrum. The increase in miR-155 and miR-181a at day 1 is most likely to be the 

result of increased synthesis after birth. 

 

Unlike the other miRNAs, only miR-142-5p concentration in calf blood increased after day 

2 and reached its highest level at day 7. The level of miR-142-5p at day 7 in the Group A 

calves, which received their own dam colostrum, was higher than that in Group B and Group 

C calves (P < 0.05). This finding does not imply that miR-142-5p was absorbed in calves 

after feeding. MiR-142-5p was higher in colostrum than in bulk tank milk. If miR-142-5p 

absorption occurs, this level should be higher in day 1 after the calves received colostrum 

rather than at day 7 after receiving bulk tank milk. Interestingly, the correlation between 

miR-142-5p levels in the Group A calf blood at day 1 and miR-142-5p levels in their own 

dam colostrum at day 0 was moderate but negative (r = -0.61). This might suggest a 

relationship between the miR-142-5p in the colostrum and miR-142-5p in the calves but the 

results do not suggest absorption. 

 

The conclusion that miRNAs are not widely absorbed from colostrum into neonate calf blood 

is similar to that of Kirchner et al. (2020), who reported that only three miRNAs of the top 

15 most common miRNAs (miR-200 a/b/c family) were significantly increased in calf blood 

after feeding colostrum. They examined several time points after feeding (1, 3, 6 and 9-12 

hours), but were unable to show an increase in any other miRNA levels in the calf blood by 

RT-qPCR. Kirchner et al. (2020), therefore, also concluded that there was no significant 

uptake of dietary miRNAs.  

 

The five immune-related miRNAs studied here, whether synthesized or absorbed, may have 

a functional effect in the newborn calves in regulating their immune competence. These five 

miRNAs are involved in many biological processes, but most importantly, they are all key 

to the development of the immune system (Appendix 6), which is immature in newborn 

calves (Vigorito et al., 2013; Huang et al., 2015; Yuan et al., 2018). Therefore, one may 

postulate that these immune-related miRNA are present at high levels because they have a 
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role in immune system development. Unfortunately, due to the low number of calves in the 

present study, there was not sufficient power to show a relationship between the level of the 

miRNAs in the calves and their health status in the 7 days after birth. A longitudinal study, 

therefore, comparing newborn miRNA with long-term health effects would be of interest.  

 

The functions of miRNAs in the calf blood have not been fully investigated, especially 

during the first days of their life. However, miRNAs are involved in the intestinal epithelium 

development (reviewed by Van Hese et al. (2020)), and the potential regulatory role of 

miRNAs in the development of gastrointestinal tract (GIT) neonate calves has been 

examined in one study (Liang et al. 2014). Liang et al. (2014) analysed mucosal miRNAs 

from birth to 42 days in dairy calves. They found that variation in miRNA expression in the 

GIT samples may reflect both changes in immune cell populations and the miRNA 

production within specific cell populations. In particular, miR-143 was abundant at all time-

points and targeted genes involved rapid tissue development. Most of the temporally 

differentially expressed miRNAs found in the small intestine had putative target genes 

involved in the development of the mucosal immune functions including miR-146, miR-191, 

miR-33, miR-7, miR99/100, miR-486, miR-145, miR-196 and miR-211, etc. (Liang et al., 

2014). The functions of some of these miRNAs are related to mucosal immune system 

development in newborn cattle (Liang et al., 2015a), which may affect the gut microbiome. 

The expression of miR15/16, miR-29 and miR-196 are positively correlated with the copy 

number of the 16S rRNA gene of Bifidobacterium or Lactobacillus species (Liang et al., 

2014). MicroRNA-155 was significantly upregulated in the mid-jejunum and ileum at day 7 

of age compared to 3 h postpartum, which is consistent with an increased inflammatory 

response during the first week of life (Liang et al., 2014). It is highly likely that an important 

function of many of these microRNAs relates to the regulation of microbiome development 

in the growing calf. This area deserves greater discussion and research. 

 

6.5. Summary and Conclusion 

Of the five immune-related miRNAs examined (miR-142-5p, miR-150, miR-155, miR-181a 

and miR-223), two were abundant in colostrum and bulk tank milk (miR-223 and miR-155). 

Dam colostrum had significantly higher levels than bulk tank milk for miR-142-5p, miR-

155 and miR-181a, but only miR-155 concentration was significant different between the 
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dam colostrum and pooled colostrum. All five miRNAs had a similar trend in colostrum, as 

they were the highest level at day 0 and then decreased dramatically after day 1 (P < 0.05). 

The concentrations of miRNAs in colostrum were lower than in cow blood and calf blood 

(100 to 1000-fold), and miR-223 had the highest level in both calf and cow blood compared 

to other four immune-related miRNAs.  

 

Calves were born with high levels of the immune-related miRNAs in their blood and there 

were no significant differences in miRNA levels between the three calf Groups at birth or 

after they were fed different colostrum (dam vs pooled colostrum). In addition, only low or 

negative correlations were found between the levels of the miRNAs in the colostrum and the 

miRNA levels in calf blood at day 1, these results imply that these miRNAs were not 

transferred from colostrum to the calf. The studies on miRNA absorption from colostrum 

and milk are extremely limited though and miRNA absorption should be further explored by 

quantifying more miRNAs in larger numbers of neonates using RT-qPCR. 

 

Given the low number of calves per Group, other results should be verified as well. For 

instance, it is not evident why miR-142-5p increased by day 7 and whether this was a result 

of colostrum and milk consumption or the result of immune system development. The high 

correlation between miR-155 in dam blood and day 0 Group A calf blood also suggests the 

possible selective transfer of this miRNA during pregnancy, but again, this needs 

confirmation. Finally, further studies of miRNA, such as miR-155, on the effect of cow 

health or vaccination status on the miRNA levels in offspring is warranted. At this point, 

there is little to no information on the functions of miRNAs in neonates. Thus, further studies 

focused on the effects of miRNAs in newborn calves, particularly, on calf immune system 

development, are genuinely needed. 
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7.1. Introduction 

 

A large number of studies on bovine colostrum have investigated colostrum components 

such as nutrients, growth factors and immune components (reviewed by (Uruakpa et al., 

2002; McGrath et al., 2016; Godden et al., 2019). Many of these have focused on individual 

components, such as immunoglobulins or specific proteins, and only a few studies have 

examined miRNAs, especially immune-related miRNAs (reviewed by Van Hese et al. 

(2020)).  The aim of this study was to examine the main components of colostrum and their 

absorption into the calf blood (e.g., IgG, protein, lactose and fat as well as miRNA). The 

questions to be addressed were whether these components are absorbed equally by calves 

fed different colostrum from different sources and whether there was similar transfer of the 

different components. 

 

To address these questions, various components (total solids, total protein, lactose, fat, IgG 

and miRNAs, including immune-related miRNAs) were quantified in colostrum from 

different colostrum sources, specially colostrum collected within 2 hours after calving and 

colostrum pooled from cows up to 4 days post calving. The transfer of components from the 

colostrum into neonate calf blood were measured on days 1, 2, 3 and 7 after birth in three 

calf Groups. The Group A and Group B calves were paired and received colostrum from one 

of the Group A dams twice daily for 3 days after birth and then bulk tank milk until day 7. 

The Group C calves received only one bottle (2 L) of pooled colostrum after birth, as 

frequently practiced in Australia and New Zealand. The pooled colostrum was a mix of 

colostrum and transition milk from multiple cows days 0-4 postpartum. After the initial 

pooled colostrum feeding, the calves were fed bulk tank milk until day 7. 

 

7.2. Components in colostrum and milk 

Dam and pooled colostrum components 

With the exception of lactose, the dam colostrum, collected within 2 hours after birth, had 

higher concentrations of all components than the pooled colostrum and the bulk tank milk 

(Chapter 3). As expected, lactose had an inverse relationship with the levels of the protein 

components (Chapter 4). The pooled colostrum was lower quality with less IgG, total protein 

and total solids than the dam colostrum because it was a mixture of colostrum and transition 
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milk from multiple cows day 0 to 4 postpartum. The bulk tank milk was even lower as it was 

from multiple cows 5 or more days postpartum (Chapter 4).  

 

Colostrum is considered to be of good quality if the concentration of IgG is greater than 50 

g/L or the total solids are higher than 18 Brix % (Morrill et al., 2015). Therefore, although 

the pooled colostrum had lower total solids, total protein and IgG than the dam colostrum (P 

< 0.05), the quality of pooled colostrum in this study was still classified as good based on 

the concentrations of the total solids (19.4 Brix %) and IgG (90.5 g/L). Consequently, it was 

not surprising that there were no differences in calf morbidity between colostrum types in 

this study (Chapter 3). To assess the effects on health resulting from differences in colostrum 

quality, a greater number of calves would be required. Nevertheless, there was sufficient 

difference in the quality of the dam and pooled colostrum to allow comparisons of colostrum 

component absorption. 

 

There was a small difference in the miRNA profiles of the dam colostrum and pooled 

colostrum based on miRNA sequencing (Chapter 5). The miRNA profile changed little 

during the 4 days postpartum, with 76% of the total unique miRNAs detected overlapping 

between the dam colostrum collected within 2 hours postpartum and the pooled colostrum 

from cows 0-4 days postpartum. Of the 303 unique miRNAs detected in the colostrum, only 

four miRNAs had a significantly different level in the dam vs pooled colostrum. These four 

miRNAs (miR-19b, miR-193b, miR-345-5p and miR-378) were all at higher levels in dam 

colostrum compared to pooled colostrum.  

 

Several immune-related miRNAs of specific interest (miR-142-5p, miR-150, miR-155, miR-

181a and miR-223) were analysed by miRNA sequencing (Table 7.1) and by RT-qPCR 

(Chapter 6). The levels of these five immune-related miRNAs were not significantly 

different between the dam and pooled colostrum based on the miRNA sequencing data 

(Table 7.1), and this was confirmed for four of the miRNA by RT-qPCR. However, 

quantification by RT-qPCR revealed that the level of miR-155 was higher in the dam 

colostrum than in the pooled colostrum. The difference in the results for miR-155 may be 

explained by the methods and number of samples analysed. RT-qPCR is a more sensitive 

method and more samples were assayed by RT-qPCR (12 dam colostrum and 5 pooled 
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colostrum samples) than by miRNA sequencing (4 dam colostrum and 4 pooled colostrum 

samples).  

 

Table 7.1. MicroRNA differentially expressed between day 0 dam colostrum and 

pooled colostrum.  
 

miRNA log2FC 

Average 

Expression t P-Value 

Adjusted 

P-Value 

bta-miR-150 0.83 5.90 2.04 0.06 0.37 

bta-miR-142-5p -0.91 9.36 -2.74 0.02 0.20 

bta-miR-181a -0.02 11.59 -0.08 0.94 0.97 

bta-miR-223 -1.26 10.27 -2.95 0.01 0.16 

bta-miR-155 0.01 7.77 0.04 0.97 0.98 

Dam colostrum collected within 2 hours postpartum from individual cow, pooled colostrum collected 

from multiple cows days 0-4 postpartum.  

n = 4 per colostrum source, log2FC = log2 fold change, t = moderated t-statistic 

 

Colostrum components across time-points 

Colostrum components (particular, total solids, total protein and IgG) in the dam colostrum 

were highest concentrations at day 0 and decreased rapidly between day 0 to 3 postpartum 

(Chapter 3), which is similar to results from previous studies (Dunn et al., 2017; Godden et 

al., 2019). However, there is virtually no literature regarding the miRNA concentrations in 

bovine colostrum from 0 to 72 hours post-partum. Five immune-related miRNAs in dam 

colostrum were measured every 24 hours within 3 days postpartum in this study to address 

this gap (Chapter 6). The miRNA trend was similar to other colostrum components, with the 

highest level at day 0 (2 hours postpartum) and followed by a dramatic decrease after day 1. 

This trend has been also observed for pig colostrum miRNA (Gu et al., 2012a). Remarkably, 

as mentioned above, the miRNA levels in the day 0 dam colostrum and the pooled colostrum 

were very similar as measured by miRNA sequencing or by RT-qPCR with only a few 

exceptions (miR-19b, miR-193b, miR-345-5p, miR-378, and miR-155). This suggests that 

the miRNA profile and their expression are slower to change than the other components, 

which were significantly different between the dam and pooled colostrum (e.g protein %, 

lactose %, total solids, total protein and IgG concentrations) (Chapter 3).  
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Colostrum and milk components 

As the levels of the colostrum components declined sharply over time postpartum, it was not 

surprising that the levels of the components were significantly different between the 

colostrum and mature milk (Chapter 3). The miRNA concentration was an exception. While 

most components (total solids, total protein and IgG) in the colostrum were significant higher 

in the dam colostrum than the bulk tank milk (Chapter 3), some miRNAs had similar levels 

in both (Chapter 6). Three of the five immune-related miRNAs, as measured by RT-qPCR, 

had higher concentrations in the dam colostrum than in the bulk tank milk (miR-142-5p, 

miR-155 and miR-18a), but the other two miRNAs had the same levels (miR-223 and miR-

150) (P > 0.05). The miRNA in the bulk tank milk was not sequenced herein, so the 

difference in miRNA profiles between these two sources are not known though.  

 

The miRNA profile during lactation is likely to reflect the change of biological function in 

the mammary gland from colostrum production to mature milk production (Do et al., 2017; 

Hou et al., 2017; Ozdemir, 2020. However, the miRNA can be also related to the health 

status of the cow. Cai et al. (2018) found that the two of miRNA quantified herein are at 

higher levels in milk of cows with mastitis (miR-223 and miR-142-5p), suggesting these 

miRNAs may be involved in the response to the infection. These differentially expressed 

miRNAs could be used as biomarkers for health status. 

 

Colostrum components are produced by different mechanisms. Proteins are directly 

synthesised in the mammary gland or transferred from cow blood. IgG is transported from 

the dam blood via the mammary gland to milk, whereas IgA is synthesized by the plasma 

cells of mammary gland (summary by Hou et al. (2017)). Studies in human (Alsaweed et al., 

2016), tammar wallaby (Modepalli et al., 2014) and goat milk (Li et al., 2012a) suggest that 

milk miRNA originates from the mammary gland, although the origin of miRNA in bovine 

colostrum has not been studied. There were low correlations between the levels of the 

miRNAs in the dam blood within 2 hours postpartum and the day 0 colostrum, as measured 

by RT-qPCR (Chapter 6). This suggests that miRNAs in colostrum are not transferred from 

the cow blood but are more likely to be produced in the mammary gland. The analysis of the 

top 100 most highly expressed miRNAs in the colostrum also suggests this may be the case. 

The pathway analyses determined that these abundant miRNAs were involved mostly in 
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mammary functions such as the development of cells, membranes and organelles, and the 

regulation of energy and calcium.  

 

7.2. Immune components in newborn calves at birth 

The immune components that are transferred from the dam via colostrum to newborn calves 

are crucial for the survival of the calves during the first weeks after birth. All the immune 

components present in the calf blood at birth have not yet been fully analysed. Many studies 

have shown that calves have very little immunoglobulin in their blood at birth (Godden et 

al., 2019; Van Hese et al., 2020), however, there are few studies of other components such 

as immune-related miRNAs.  

 

Many components in blood of newborn calves are at very low concentrations prior to 

colostrum consumption (e.g. glucose, total protein, IgG and GGT) (Chapter 3). This is 

because the bovine placental structure prevents the transfer of proteins from the dam to 

foetus during pregnancy (Barrington and Parish, 2001; Castro et al., 2011). Two indicators 

of passive immunity transfer and colostrum ingestion (IgG and GGT) were found to be low 

in the newborn calves studied. The average of IgG concentration in calf blood at birth was 

0.3 g/L (range of 0 to 1.7 g/L) and GGT activity was 11.7 U/L (range of 6.2 to 26.2 U/L).  

 

In contrast, many miRNAs were detected in calf blood at day 0, before feeding (Chapter 5). 

This indicates that calves are born with a complex profile of miRNAs, many of which are at 

high levels. Whether these miRNAs are transferred from the dam to the fetus in utero via 

the blood supply or whether they are synthesized by the fetus is not known and was 

investigated herein. The correlations between the miRNA levels in the dam blood 

immediately postpartum and the calf blood at birth were low, with the exception of miR-155 

(r = 0.76, P = 0.004) (Chapter 6). Hence, the transfer of miRNA between the blood of the 

dam and fetus may be selective. This is consistent with findings from other studies (Pigati et 

al., 2010; Ioannidis and Donadeu, 2016), where the authors have also suggested that if 

miRNA transfer occurs, then it is specific for particular miRNAs. It is also possible that 

miRNA can be transferred from the fetus to the dam, as there is growing evidence that the 

embryo or fetus communicates with the dam via miRNA that is transferred to the blood of 

the dam via the placenta (Hossain et al., 2014; De Bem et al., 2017).  
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7.3. Immune components transferred via colostrum 

Comparison of calf absorption between time-points 

The different colostrum components (namely total protein, IgG, GGT, and glucose) were 

absorbed into the calf blood after the calves received colostrum (Chapter 3). However, only 

total protein, measured by refractometer, and the IgG concentration were significantly 

different between calves fed their own dam colostrum and those fed a single bottle of pooled 

colostrum. There were high correlations between day 0 colostrum IgG and total solids (Brix 

%) with day 1 calf blood IgG (r = 0.74, r = 0.71, respectively) (Table 7.2). Slightly lower 

correlations were found between total protein (TP-B) in day 0 colostrum and day 1 calf 

serum IgG (r = 0.66). The results indicate that the amount of total protein and IgG in 

colostrum is directly related to their absorption by calves. Therefore, the absorption of total 

protein and IgG by calves can be reasonably estimated from the Brix % or IgG measured in 

colostrum (Chapter 4).  

 

Table 7.2 . Relationship between components in colostrum at first feeding (day 0) and 

the components in the blood of the corresponding calf at day 1.  

Day 0 colostrum 

component1  

Day 1 calf blood 

component1  

Pearson correlation 

(r) 

P-value 

Total solids TP-R 0.69 <0.001 

Total solids TP-B 0.28 0.100 

Total solids IgG 0.74 <0.001 

Total solids GGT 0.64 <0.001 

TP-B TP-R 0.54 0.001 

TP-B TP-B 0.30 0.081 

TP-B IgG 0.66 <0.001 

TP-B GGT 0.42 0.110 

IgG TP-R 0.59 <0.001 

IgG TP-B 0.32 0.058 

IgG IgG 0.71 <0.001 

IgG GGT 0.43 0.009 

1Total solids = Brix refractometer; TP-R = total serum protein measured by refractometer; TP-B = 

total protein measured by Bradford assay; GGT = gamma-glutamyl transferase activity; IgG = 

immunoglobulin G. n = 35 samples. 
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A similar relationship was not observed between the colostrum miRNA levels and the day 1 

calf blood miRNA levels (Chapters 5 and 6). Instead, the results suggest that the bulk of 

miRNAs in the colostrum are not absorbed into the newborn calf. The miRNA profile in the 

calf blood had only minor changes between birth and 24 hours after two feeds. There were 

only four miRNAs out of the 1,198 total unique miRNAs that had higher levels in the calf 

blood on day 1 compared to day 0. The low correlations of these four miRNAs in calf blood 

day 1 and their levels in the corresponding colostrum suggest that miRNAs were not 

absorbed from the colostrum. 

 

Absorption of five selected immune-related miRNAs was also compared in the calf blood 

between day 0 and day 1 by miRNA sequencing (Table 7.3) and RT-qPCR (Chapter 6). The 

levels of all five immune-related miRNAs were not different between day 0 and day 1 as 

measured by miRNA sequencing (Table 7.3). As their concentration did not increase, it 

would suggest that they were not absorbed. However, miRNA sequencing is not at sensitive 

as RT-qPCR. For sequencing data, any differential expression will not be perceived as being 

significant if less than 1-fold (e.g. miR-150 and miR-142-5p, Table 7.3). Therefore, the 

concentration of the five immune-related miRNA was also verified by RT-qPCR and two of 

these miRNAs (miR-155 and miR-181a) showed an increased concentration in the calf blood 

on day 1 (P < 0.05). Nevertheless, there were low correlations between these two miRNA 

levels in the day 1 calf blood and the corresponding colostrum, again suggesting that these 

five miRNAs were not absorbed into the calf blood from the colostrum. 

 

Table 7.3. MicroRNA differential expressed in calf blood between day 0 and day 1. 

miRNA log2FC 

Average 

Expression t P-Value 

Adjusted 

P-Value 

bta-miR-150 0.50 8.71 3.12 0.00 0.03 

bta-miR-142-5p 0.66 11.93 2.84 0.01 0.05 

bta-miR-181a 0.12 11.16 1.62 0.12 0.28 

bta-miR-223 0.10 10.71 0.91 0.37 0.57 

bta-miR-155 0.09 5.70 0.76 0.46 0.65 

 Significance for differential expression: adjusted P-value < 0.05 and |log2FC| > 1. 

log2FC = log2 fold change, t = moderated t-statistic, n = 12 samples per time point 
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To support the idea that miRNAs in colostrum are not absorbed into the calf blood, the 

miRNA levels in the three calf Groups, which received colostrum from different sources, 

were also compared over a longer period (Chapter 6). The Group A and Group B calves 

received dam colostrum for three days and the Group C calves received only one bottle of 

pooled colostrum and then bulk tank milk. As a consequence, the Group C calves received 

much less miRNA than the Group A and B calves. However, there was no significant 

difference in the levels of four of the five immune-related miRNAs (miR-150, miR-155, 

miR-181a and miR-223) between the three calf Groups at any time-points within one week 

postpartum. The exception was the miR-142-5p level, which differed between three calf 

Groups at day 7. The level of miR-142-5p increased for all 35 calves by day 7, but the miR-

142-5p level at day 7 in the Group A calves was significantly higher than Group B and Group 

C calves. The question is whether miR-142-5p was absorbed from colostrum and/or milk. 

Although the calves from three Groups received different colostrum for the first three days, 

all the calves received bulk tank milk from day 4 to 7 after birth and the concentration of 

miR-142-5p in bulk tank milk was significantly lower than colostrum. This implies the 

increase in the miR-142-5p in the calf blood is unlikely to be caused by absorption from the 

colostrum or milk. The results once again suggest that the five immune-related miRNAs in 

colostrum and milk were not absorbed by the calves, even over a longer timeframe (one 

week postpartum). 

 

Relationship between IgG and immune-related miRNAs 

Immunoglobulin, particular IgG, is the main immune component in colostrum that is 

transferred in calf blood after colostrum consumption. Previous studies have established 

serum IgG as an indicator of passive immunity transfer (Buczinski et al., 2018; Godden et 

al., 2019). In order to examine the relationship between IgG and immune-related miRNAs, 

correlations between these parameters were calculated (Figure 7.1). 
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Figure 7.1. Correlations between IgG and immune-related miRNAs from day 0 to 7 

after birth. 

 

The correlations between IgG and the immune-related miRNAs in calf blood within 7 days 

after birth were low. The low correlations between IgG and the miRNAs confirmed that 

while IgG was transferred to calf blood, the miRNAs were not readily transferred from 

colostrum to calf blood.  

 

Notably, with the exception of miR-142-5p, there were high correlations between all pairs 

of the other four miRNAs. Correlations between the pairs of the four miRNAs (miR-150, 

miR-155, miR-181a and miR-223) were high (ranging from 0.6 – 0.75). The highest 

correlation was between miR-150 and miR-223 (r = 0.75), the two miRNAs with the highest 

concentrations in calf blood. These four miRNAs had the same trend after birth, with high 

concentrations at days 0 and 1 after birth, but then decreasing steadily thereafter. This finding 

suggested that these four miRNAs may be downregulated in calf blood after birth. 

 

Surprisingly, these five immune-related miRNAs were at their lowest levels at day 3, the 

same time point during the first week after birth when the IgG concentration was also at the 

lowest. Some studies have shown a relationship of immunoglobulins and immune-related 

miRNAs. MicroRNA-150 has been shown to significantly affect antibody production, 

particularly levels of immunoglobulins of various classes (Xiao et al., 2007). The 

immunoglobulin concentration, especially the IgA level, in miR-150 knock-out mice serum 



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 161 

 
 

 

was significantly higher than control (Xiao et al., 2007). In another mouse study, the IgG 

levels were significantly decreased with 80% of total anti-collagen IgG antibodies reduced 

in mice that were miR-155-deficient compared to wild-type mice (Blüml et al., 2011). 

 

In summary, the protein and IgG in the colostrum were absorbed markedly by the calves 

within 24 hours, and the highest concentration of IgG in the calf blood was at 48 hours. 

Thereafter, the concentration of serum protein and IgG declined, and at the same time, their 

levels in the colostrum also decreased. These results are identical to most other published 

studies and are not surprising since gut closure begins in calves roughly 36 – 48 hours after 

birth (McGrath et al., 2016; Godden et al., 2019). However, this was not the case for the 

miRNA in the colostrum, as the results indicate that the miRNAs in colostrum were not 

generally absorbed into the calf blood. The only other study to consider miRNA absorption 

from colostrum or milk in calves also failed to detect large scale uptake of dietary miRNAs 

(Kirchner et al., 2020).  

 

It is possible though that the miRNA absorption from colostrum is not being detected 

because of the timescale. In a study on the absorption of miRNA from cow milk in humans, 

miR-29b and miR-200c were shown to be absorbed into human plasma after the cow milk 

was consumed, as the levels increased depending on quantity of cow milk consumed (Baier 

et al., 2014). However, the levels only increased in a 6-hour period after the milk 

consumption, and then, these miRNA levels decreased to baseline by 24 hours. Interestingly, 

the concentration of runt-related transcription factor 2 (RUNX2), which is a target of miR-

29b, increased 31% in the blood mononuclear cells after milk consumption compared with 

the baseline (Baier et al., 2014). This indicates that the increase of miRNA in blood may 

have a physiological effect although the increase in the blood was short lived.  

 

The rapid uptake of the miRNA and quick return to baseline levels suggests that the timing 

for blood sample collection may be important to detect such changes. This may explain why 

only three of the 1,198 unique miRNAs found in calf blood increased after colostrum 

feeding. The absorption of colostrum miRNAs herein may not have been observed if the 

increase is not apparent by 24 hours as the calf blood was only collected once a day. 

However, Auerbach et al. (2016) did another study to validate the results from Baier et al. 
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(2014) in which a selection of the original samples from Baier et al. (2014) were analysed 

using arrays, RT-qPCR and sequencing. The results showed that there were not significant 

differences in miR-29b or miR-200c at any time points, and the authors concluded that the 

cow milk miRNAs were not absorbed into the circulation of humans. To resolve this 

discrepancy, experiments investigating miRNAs levels in newborn calves every hour within 

24 hours after feeding could be useful.  

 

In addition, a trial investigating potential miRNA absorption should be extended for a longer 

period of time. In a pig study by Gu et al. (2012a), 13 immune-related miRNAs were detected 

at higher levels in colostrum than in milk, and 12 of these miRNAs were also found at higher 

concentrations in colostrum-fed piglets rather than in mature milk-fed piglets at 4 days after 

birth. The authors speculated that these immune-related miRNAs in milk were being 

transferred into the piglets. Similarly, in a study on tammar wallaby, Modepalli et al. (2014) 

quantified  four highly expressed milk miRNAs (miR-148, miR-22, miR-141 and miR-30a) 

in pouch young at different time-points of their early life (day 30, 80, 130, 150) and in 

weaned juveniles. The authors found significant higher levels of these miRNAs in pouch 

young before weaning than in the juveniles, and they concluded that miRNAs may be 

absorbed through the wallaby premature gut system and transferred into the newborn blood. 

There are several possible explanations for the apparent inconsistency between the results 

from piglets (Gu et al., 2012a) and tammar wallabies (Modepalli et al., 2014) versus the 

calves (herein and Kirchner et al. (2020)). These explanations include: 1) disparities in the 

specific miRNAs that were measured as these were all different between the studies and 

there may be selective transfer, or 2) gastrointestinal species differences between 

monogastrics and ruminants may allow miRNA absorption from milk-born exosomes in 

piglets and wallabies, but not in calves. However, at this point, calves are functionally 

monogastric. However, another possibility is that there is differential expression of miRNA 

because the neonates are more developed (e.g. pouch young vs juvenile wallabies). In the 

case of the piglets, which were assessed at 4 days after being fed colostrum or milk, it is well 

established that colostrum promotes better neonate immune and gut development than milk 

(Yang et al., 2015; Li et al., 2020). Therefore, these differences in the piglet miRNA profiles 

may reflect differential expression as a result of a more developed immune system in the 

colostrum-fed piglets and do not represent absorption differences. To resolve which of these 
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hypotheses might best explain the discrepancies between the piglet, wallaby and calf studies, 

a more detailed investigation of the miRNA profile of neonates over time correlated with 

their milk-born miRNA intake should be undertaken in several species.  

 

The finding that many of the miRNA species are not absorbed through the gastrointestinal 

mechanisms may suggest that they play a role in the development of the gastrointestinal tract 

or microbiome of the calf. As such, the miRNA may be involved in an indirect pathway for 

controlling the developmental physiology of the calf and this should be considered in future 

experiments. 

 

7.4. Lactocrine hypothesis 

Colostrum has been shown to promote gastrointestinal tract and immune development in 

neonate calves better than either transition milk or bulk tank milk (Yang et al., 2015). 

Colostrum has been also shown to improve reproductive development in both male and 

female piglets in comparison to colostrum replacer (Yan et al., 2006; Rahman et al., 2014). 

These observations have led to the so-called “lactocrine hypothesis” (Bartol et al., 2008; 

Bartol et al., 2017), which is the theory that colostrum contains bioactive factors that can 

affect the long-term development of neonate animals. The components in colostrum 

responsible for this development are not known. 

 

Colostrum contains many potential bioactive factors that may affect the neonate long-term 

development. Yan et al. (2006) have postulated that relaxin is the bioactive component in 

the piglet reproductive tract development. However, colostrum contains many other 

potential bioactive components, particularly growth factors and hormones (e.g. epidermal 

growth factor, betacellulin, insulin-like growth factor, transforming growth factor, anti-

Müllerian hormone) (Baumrucker and Blum, 1993; Blum and Hammon, 2000; Tripathi and 

Vashishtha, 2006; Yang et al., 2015; Novo et al., 2017; Van Amburgh, 2017). Other potential 

maternally important bio-factors in colostrum include cells, miRNA and other proteins 

(Marnila and Korhonen, 2011a; Gonzalez and Santos, 2017; Van Hese et al., 2020).  

 

Given that colostrum may have long-term effects on the neonate calf, it is vital that calves 

can absorb the colostrum components equally well as demonstrated in the comparison of the 

absorption by the Group A and Group B calves. This ensures that if the colostrum is good 
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quality and has high levels of IgG, then similar amounts of IgG will be absorbed. The data 

herein also indicate if the IgG levels are high, then the levels of total solids and total protein 

will be also high and lactose levels will low (Chapter 4). Lactose intolerance is a cause of 

bovine neonatal diarrhoea (Olchowy et al., 1993), so low lactose in colostrum is better for 

newborn calves. Therefore, refractometry allows the assessment of not only the quality of 

colostrum in terms of IgG but other nutrients as well. Presumably, any other colostrum 

components, such as hormones and other bioactive factors, will also have high levels if the 

colostrum is good quality.  

 

However, although the results herein suggest that neonate calves will absorb nutrients from 

colostrum equally well, there is some evidence that maternal colostrum is superior to foster 

dam colostrum for neonate development (Stewart and Diekman, 1989). In a study by Stewart 

and Diekman (1989), they cross-fostered newborn piglets, as is common practice in the pork 

industry, to standardise the size of the litters. The authors observed that the cross-fostered 

piglets did not grow as well as those piglets that remained with their dams. This would 

indicate that the maternal source of the colostrum may be important.  

 

The effects of maternal colostrum and foster dam colostrum on calves has not been examined 

previously. The study herein did not have a large number of calves fed dam colostrum 

(Group A), foster cow colostrum (Group B) or pooled colostrum (Group C) and differences 

in development over the course of 7 days are unlikely to have been observed. It is intriguing 

though that while there were no significant differences in the levels of the various blood 

components between Group A and Group B calves, the levels in the Group B calves were 

consistently in between the Group A and Group C calves. This may suggest that there is a 

subtle distinction between the maternal colostrum and foster cow colostrum in absorption. 

However, the absorption of colostrum components and their effects need to be studied in a 

greater number of calves over a longer timeframe to test this hypothesis. A power calculation 

based on the data herein indicates that greater than 35 animals per Group may be required to 

discern any absorption and health differences between calves receiving maternal and foster 

cow colostrum. 
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7.5. Conclusions 

Calves are born with very low immune factors and protein concentration in their blood but 

with high levels of miRNAs, especially immune-related miRNAs. The data suggest that 

miRNAs are not transferred between dam and fetus in utero in general, but hint that there 

may be possible selective transfer (e.g. miR-155). Thus, further study with more immune-

related miRNAs or differentially expressed miRNA between dam blood and the blood of 

their foetus would be interesting. 

 

After receiving colostrum, the levels of total protein, IgG and GGT increased dramatically 

by day 1. The amount of colostrum protein, lactose, GGT and IgG absorbed within 48 hours 

by the calves depended on their levels in colostrum. There were no significant differences 

between the ability of calves to absorb these components from different sources as there was 

no significant differences between the calves that received colostrum from their dam or a 

foster cow. Nevertheless, there is a possibility that calves absorb the components better from 

their own dam, as there was consistently higher IgG and protein in the serum of calves that 

received colostrum of their own dam than the foster calves receiving colostrum from another 

cow. To explore this possibility, a much larger dataset is required.  

 

Calves fed lower quality pooled colostrum for a shorter time had significant lower total 

protein and IgG concentrations than calves that received better colostrum for 3 days, 

however, all calves had sufficient transfer of passive immunity. Unlike the other colostrum 

components, most of miRNAs in colostrum did not appear to be absorbed in calves after 

colostrum consumption. Further studies with a greater sample size and sampling every hour 

within 24 hours after birth would confirm that the miRNAs are being selectively transferred 

and are not being globally absorbed. 

 

In terms of industry outcomes, the Brix and serum protein refractometers were shown to be 

good, accurate and easy tools for use on-farm to assess colostrum quality and transfer of 

passive immunity, respectively. The level of IgG in colostrum was highly correlated to the 

amount of total solids, total protein and lactose in the colostrum. Therefore, if the level of 

IgG in colostrum is high, then total solids and total protein will be also high and lactose will 

be low, providing a good diet as well as the transfer of passive immunity for newborn calves. 
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It was also found that the transfer of passive immunity can be adequate if the calves are fed 

only a single bottle of pooled colostrum collected from cows day 0 – 4 postpartum and then 

bulk tank milk. However, it is necessary to ensure adequate passive immunity transfer by 

providing the calves with the colostrum soon after birth and by harvesting the pooled 

colostrum from cows on day 0 and day 1 postpartum to guarantee good quality.  
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Appendix 1. Nomenclature of miRNA. 
 

Nomenclature Explanation 

“miR” and “mir” - “miR” refers to mature form of the miRNA 

- “mir” refers to the pre-miRNA and the pri-miRNA 

The first three letters 

signify the organism 

- hsa-miR-124 is a human (Homo sapiens) miRNA  

- oar-miR-124 is a sheep (Ovis aries) miRNA 

- bta-miR-155 is a cattle (Bos taurus) miRNA 

A letter after the number 

in the suffix is used to 

differentiate among 

multiple members of the 

same family 

 

miRNA with nearly identical sequences except for one or 

two nucleotides are annotated with an additional lower case 

letter. 

Example: 

hsa-miR-181a: aacauucaACgcugucggugAgu 

hsa-miR-181b: aacauucaUUgcugucggugGgu 

Additional number is 

given after the full name 

Pre-miRNAs, pri-miRNAs and genes that lead to 100% 

identical mature miRNAs but that are located at different 

places in the genome. 

For example, the pre-miRNAs hsa-mir-194-1 and hsa-mir-

194-2 lead to an identical mature miRNA (hsa-miR-194) 

but are from genes located in different genome regions 

-3p or -5p suffix 

(or an asterisk following 

the name) 

When two mature microRNAs originate from opposite 

arms of the same pre-miRNA and are found in roughly 

similar amounts, they are denoted with a -3p or -5p suffix. 

Example, miR-142-5p (from the 5' arm) and miR-142-3p 

(from the 3' arm) 

However, the mature microRNA found from one arm of the 

hairpin is usually much more abundant than that found 

from the other arm, in which case, an asterisk following the 

name indicates the mature species found at low levels from 

the opposite arm of a hairpin.  

For example, 



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 170 

 
 

 

miR-56 (the predominant product) and miR-56* (from the 

opposite arm of the precursor) 

Older convention sometimes used miR-142-s and miR-

142-as. 

mir-1 vs Mir-1 The miRNAs encoding genes are also named using the 

same three-letter prefix according to the conventions of the 

species gene nomenclature. For example, the official 

miRNAs gene name is “mir-1 in Caenorhabditis 

elegans and Drosophila, and Mir-1 in Rattus norvegicus 

Exceptions let-7 and lin-4 because of historical reasons 

Source: (Griffiths-Jones et al., 2006; miRBase, 2020) 
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Appendix 2. Protocol for bovine IgG quantification by ELISA. 
 

a. Reagent and materials 

• Nunc F96 Maxisorp plates (Thermo #442404) 

• Coating buffer (Carbonate bicarbonate buffer, pH 9.6): 3.03 g Na2CO3
 + 6 g NaHCO3

 + 

1 L MilliQ dH20, pH 9.6 

• Goat anti-bovine IgG non-conjugated antibody (Novex #A18753) 

• Goat anti-bovine IgG antibody conjugated with horseradish peroxidase (HRP) (Novex 

#A18751) 

• Gelatine 

• Phosphate Buffered Saline (PBS): 1.16 g Na2HPO4 + 0.1 g KCl + 0.1 g K3PO4 + 4 g 

NaCl + 500 mL MilliQ dH20, pH 7.4.  

Phosphate Buffered Saline (PBS), pH 7.4 (Sigma P3813, Lot SLBR1026V) was diluted by 

using a packet with a liter at 25oC and stored at room temperature. 

• TWEEN 20 

• IgG protein standard solution (Bovine Gama Globulin, Bio-Rad Laboratories, Inc., 

USA, serial dilution (0; 6.3; 12.5; 25; 37.5; 50; 75; and 100 ng/mL)). 

• TMB ELISA substrate (Ultra TMB-ELISA Thermo #34028; TMB = 3,3',5,5'-

tetramethylbenzidine) 

• Stop reagent: 0.1 M H2SO4 

Solutions 

• 0.05% Tween 20 in PBS (0.05% PBS-Tween 20) 

5 µL Tween 20 + 9995 µL PBS  

• 5% gelatine in 0.05% PBS-Tween 20 

5 g gelatine + 95 mL 0.05% PBS-Tween 20 

Dissolve by placing in microwave and mixing well, just prior to blocking step, place in 

microwave for 10 secs and mix well again so gelatine is not set 

• Stop reagent: 0.1 M H2SO4 

Stock solution of Sulfuric Acid is calculated to be 17.822 M based on a density of 1.84 

g/mL, a formula weight of 98.08 g/mol, and a concentration of 95% w/w. To make a 0.1 

M solution, slowly add 0.561 mL of your stock acid solution to 100 mL deionized water. 
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b. Plate preparation 

• Step 1.  Dilute the 1st antibody (Goat anti-bovine IgG non-conjugated antibody (Novex 

#A18753), 1 µg/mL) at a ratio 1:8000 by adding 1 µL of the 1st antibody to 8 mL of 

carbonate bicarbonate coating buffer. Add 50 µL of diluted antibody to each well of 

Coat Nunc F96 Maxisorp plates (Thermo #442404). 

• Step 2. Incubate plate @ 370 C for 1 hr (plate was covered). [Note: plates can be stored 

@ 40 C for up to one week.] 

• Step 3. Wash wells 3 to 5 times with 0.05% PBS-TWEEN 20 by filling each well 

completely using a squirt bottle. Flick out 0.05% PBS-TWEEN 20 and tap plate 3 times 

upside down on absorbent paper between washes. [Note: allow the plates to dry and 

store @ 40 C for up to one week]. 

• Step 4. Block non-specific binding with 5% gelatine in 0.05% PBS-TWEEN 20 by 

adding 280 µL /well using Multichannel-pipette. 

• Step 5. Incubate plate for 1 hr @ 370C (plate was covered). 

• Step 6. Wash wells at least 3 times with 0.05% PBS-TWEEN 20. Plates are ready for 

use.). [Note: plates can be stored @ 40 C for up to one week.] 

 

c. Standard curve and sample preparation 

The standard curve is made using Bovine Gamma Globulin (BGG) (Bio-Rad Laboratories, 

Inc., USA) serially diluted 0; 6.3; 12.5; 25; 37.5; 50; 75; and 100 ng/mL from BGG 

1mg/mL and 0.05% PBS-Tween 20 as follows: 

SC (1000 ng/mL) = 10 µL of BGG 1mg/mL + 10 mL of 0.05% PBS-Tween 20  

SC1 (100 ng//mL) = 1 mL of SC                   + 9 mL of 0.05% PBS-Tween 20 

SC2 (75 ng/mL) = 2 mL of SC1                    + 1 mL of 0.05% PBS-Tween 20 

SC3 (50 ng/mL) = 5 mL of SC1                    + 5 mL of 0.05% PBS-Tween 20 

SC4 (37.5 ng/mL) = 2 mL of SC3                 + 1 mL of 0.05% PBS-Tween 20 

SC5 (25 ng/mL) = 3 mL of SC3                    + 3 mL of 0.05% PBS-Tween 20 

SC6 (12.5 ng/mL) = 3 mL of SC5                 + 3 mL of 0.05% PBS-Tween 20 

SC7 (6.3 ng/mL) = 3 mL of SC6                   + 3 mL of 0.05% PBS-Tween 20 

SC8 (0 ng/mL) = 0.05% PBS-Tween 20 

Standard solutions were prepared and aliquoted into Eppendorf tubes and stored at -20oC. 



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 173 

 
 

 

The samples (10 µL) were diluted in 0.05% PBS-Tween 20 solution at a ratio of 10-3 first 

(10 µL of sample + 10mL of 0.05% PBS-Tween 20, then further diluted as appropriate, as 

below: 

Samples Dilution factor 

Calf serum day 0 10-4 

Calf serum day 1, 2, 3, 7 10-6 

Colostrum day 0, 1; Pooled colostrum 10-6 

Colostrum day 2, 3 10-5 

Bulk tank milk 10-4 

 

d. ELISA steps 

1. 50 µL of standards, diluted samples were added to a pre-prepared plate. 

2. The plate was incubated for 60 minutes at room temperature (25oC). 

3. Wells were washed at least 3 times with 0.05% PBS-TWEEN 20 

4. 50 µL/well of goat anti-bovine IgG antibody conjugated with horseradish 

peroxidase were added per well (HRP) (Novex #A18751) 

[Note: dilute HRP-conjugated antibody 1/8000 in 0.05% PBS-TWEEN 20 before use. 

1 µL of HRP + 8 mL of 0.05% PBS-Tween 20] 

5. The plate was incubated for 60 minutes at room temperature (25oC). 

6. Wells were washed 3 times with PBS/0.05% TWEEN 20 

7. TMB substrate (Ultra TMB-ELISA Thermo #34028; TMB = 3,3',5,5'-

tetramethylbenzidine) was added in plate (50 µL/well).  

[Note: 5mL of TMB/plate was placed in room temperature 15 minutes before adding to 

place]. 

8. Plate was covered with foil and the reaction was allowed to proceed at room 

temperature until desired colour (~ 15 min). 

9. 50 µL/well of 0.1 M H2SO4 was added to stop the reaction. 

10. Absorbance was measured @ 450 nm 5 min after adding stop reagent. 

11. The standard curve was plotted, and sample concentrations calculated from the 

standard curve. 
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Appendix 3. Sample details and total RNA quality for miRNA sequencing. 
 

No 

miRNA 

ID 

ID animal-date 

 Sample 

Total RNA 

concentration 

(ng/ul) 

A260/ 

A280 

RIN 

value 

1 CB1 A1-d0 Blood 102.9 1.6 9.7 

2 CB2 A1-d1 Blood 125 1.7 9.3 

3 CB3 A2-d0 Blood 114.3 1.7 9.6 

4 CB4 A2-d1 Blood 124.5 1.8 9.7 

5 CB5 A4-d0 Blood 83.3 1.7 9.5 

6 CB6 A4-d1 Blood 122.5 1.7 9.7 

7 CB7 A10-d0 Blood 117.3 1.8 9.5 

8 CB8 A10-d1 Blood 81.2 1.7 9.4 

9 CB9 B1-d0 Blood 124.1 1.8 9.6 

10 CB10 B1-d1 Blood 112.6 1.8 9.4 

11 CB11 B2-d0 Blood 90.7 1.6 9.7 

12 CB12 B2-d1 Blood 89.6 1.6 9.4 

13 CB13 B4-d0 Blood 104.6 1.8 9.4 

14 CB14 B4-d1 Blood 130.4 1.8 9.7 

15 CB15 B10-d0 Blood 121.6 1.8 9.9 

16 CB16 B10-d1 Blood 86.5 1.8 9.4 

17 CB17 C3-d0 Blood 140.6 1.8 9.8 

18 CB18 C3-d1 Blood 106.7 1.7 9.7 

19 CB19 C5-d0 Blood 83.3 1.9 9.6 

20 CB20 C5-d1 Blood 133.2 1.9 9.6 

21 CB21 C8-d0 Blood 147.4 1.8 9.8 

22 CB22 C8-d1 Blood 127.4 1.9 9.4 

23 CB23 C11-d0 Blood 119.2 1.8 9.5 

24 CB24 C11-d1 Blood 105 1.7 9.3 

25 CB25 Colostrum-cow 1-d0 Colostrum 109.4 1.9 5.9 

26 CB26 Colostrum-cow 2-d0 Colostrum 127.2 1.9 6.3 

27 CB27 Colostrum-cow 4-d0 Colostrum 187.1 1.8 4.8 

28 CB28 Colostrum-cow 10-d0 Colostrum 89.5 1.9 5.4 

29 CB29 Batch15 (PC3) Colostrum 40.6 2.0 7.5 

30 CB30 Batch16 (PC5) Colostrum 83.3 1.9 7.5 

31 CB31 Batch18 (PC8) Colostrum 97.1 1.8 7.0 

32 CB32 Batch19 (PC11) Colostrum 129.3 1.8 7.7 

d0 = day 0; d1= day 1; PC = Pooled colostrum 
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Appendix 4. Bioanalyzer results and the raw reads. 
 

N

o 

miRNA 

ID Sample 

Small RNA 

Concentration 

[pg/μl] 

miRNA 

Concentration 

[pg/μl] 

 % 

miRNA 

in total 

small 

RNA 

Raw reads 

1 CB1 Blood 25,233 4,270  17  32,153,611  

2 CB2 Blood 5,833 5,713  98  22,130,399  

3 CB3 Blood 38,462 4,958  13  25,088,029  

4 CB4 Blood 36,032 5,331  15  29,036,315  

5 CB5 Blood 24,293 4,301  18  29,062,586  

6 CB6 Blood 24,020 4,508  19  31,714,248  

7 CB7 Blood 26,973 4,150  15  21,558,248  

8 CB8 Blood 118.9 118.9  100  21,450,116  

9 CB9 Blood 6,443 3,376  52  30,607,207  

10 CB10 Blood 24,199 5,576  23  31,875,301  

11 CB11 Blood 3,667 3,421  93  27,783,675  

12 CB12 Blood 8,221 8,178  99  27,539,044  

13 CB13 Blood 13,367 13,095  98  33,215,636  

14 CB14 Blood 20,737 19,436  94  29,168,282  

15 CB15 Blood 134,692 13,630  10  35,811,166  

16 CB16 Blood 130,133 21,585  17  31,439,064  

17 CB17 Blood 241,316 20,829  9  31,364,109  

18 CB18 Blood 122,809 16,481  13  35,067,285  

19 CB19 Blood 107,084 11,318  11  28,951,309  

20 CB20 Blood 138,914 19,722  14  33,306,930  

21 CB21 Blood 157,164 12,668  8  32,762,776  

22 CB22 Blood 125,431 14,883  12  19,568,252  

23 CB23 Blood 8,528 3,968  47  37,066,316  

24 CB24 Blood 4,089 3,153  77  41,608,477  

25 CB25 Colostrum 14,886 9,986  67  13,916,975  

26 CB26 Colostrum 20,709 13,415  65  11,619,678  

27 CB27 Colostrum 40,879 24,736  61  14,266,062  

28 CB28 Colostrum 12,996 8,250  63  10,699,779  

29 CB29 Colostrum 12,334 7,561  61  11,485,288  

30 CB30 Colostrum 10,787 6,362  59  12,502,948  

31 CB31 Colostrum 13,333 8,682  65  7,860,082  

32 CB32 Colostrum 13,919 9,270  67  4,238,887  
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Appendix 5. Supporting results from microRNA sequencing. 
 

Appendix 5.1. Top 100 highly expressed miRNAs in colostrum. 
 

No miRNA 

Average of 

read count No miRNA 

Average of 

read count 

1 bta-miR-30a-5p  1,265,238  51 bta-miR-151-3p  10,771  

2 bta-miR-21-5p  387,591  52 bta-miR-223  10,473  

3 bta-let-7a-5p  350,276  53 bta-miR-378  10,318  

4 bta-miR-26a  212,399  54 bta-miR-339a  10,285  

5 bta-let-7f  181,575  55 bta-miR-339b  10,285  

6 bta-miR-2285t  139,794  56 bta-miR-15b  9,843  

7 bta-miR-451  136,365  57 bta-miR-374b  9,800  

8 bta-miR-148a  135,208  58 bta-miR-98  9,785  

9 bta-let-7b  122,953  59 bta-miR-2284x  9,678  

10 bta-let-7g  92,446  60 bta-miR-2284x  9,678  

11 bta-miR-200a  79,407  61 bta-miR-2284y  9,644  

12 bta-miR-30e-5p  68,103  62 bta-miR-2285av  9,644  

13 bta-miR-30d  66,465  63 bta-miR-2285av  9,644  

14 bta-miR-200c  55,189  64 bta-miR-2285av  9,644  

15 bta-miR-26b  54,229  65 bta-miR-574  9,243  

16 bta-miR-99a-5p  52,148  66 bta-miR-29a  8,645  

17 bta-miR-92a  49,766  67 bta-miR-423-5p  7,338  

18 bta-miR-30f  44,098  68 bta-miR-6524  7,297  

19 bta-miR-30b-5p  43,148  69 bta-miR-183  7,126  

20 bta-miR-27b  41,568  70 bta-miR-20a  6,842  

21 bta-miR-186  40,624  71 bta-miR-429  6,738  

22 bta-let-7c  36,983  72 bta-miR-140  6,719  

23 bta-miR-200b  34,860  73 bta-miR-148b  6,490  

24 bta-miR-19b  31,491  74 bta-miR-1246  6,260  

25 bta-miR-22-3p  31,022  75 bta-miR-6119-5p  6,135  

26 bta-miR-141  30,783  76 bta-miR-652  6,074  

27 bta-miR-101  27,927  77 bta-miR-17-5p  5,887  

28 bta-miR-181a  27,210  78 bta-miR-125b  5,766  

29 bta-miR-25  26,056  79 bta-let-7e  5,608  

30 bta-miR-93  25,602  80 bta-miR-32  5,357  

31 bta-miR-182  24,796  81 bta-miR-142-5p  5,356  

32 bta-miR-23a  22,844  82 bta-miR-15a  5,254  

33 bta-let-7i  22,800  83 bta-miR-425-5p  5,244  

34 bta-miR-24-3p  21,733  84 bta-miR-181b  4,661  

35 bta-miR-103  20,697  85 bta-miR-152  4,388  
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36 bta-miR-191  20,469  86 bta-miR-96  4,329  

37 bta-miR-23b-3p  19,901  87 bta-miR-486  4,068  

38 bta-miR-10174-3p  19,901  88 bta-miR-532  4,042  

39 bta-let-7d  19,569  89 bta-miR-3613a  4,020  

40 bta-miR-16b  19,093  90 bta-miR-660  3,934  

41 bta-miR-16a  17,391  91 bta-miR-146a  3,764  

42 bta-miR-30c  17,161  92 bta-miR-342  3,550  

43 bta-miR-27a-3p  16,404  93 bta-miR-361  3,362  

44 bta-miR-320a  14,754  94 bta-miR-221  3,329  

45 bta-miR-374a  14,752  95 bta-miR-125a  3,197  

46 bta-miR-106b  14,260  96 bta-miR-28  3,174  

47 bta-miR-151-5p  13,285  97 bta-miR-7  3,128  

48 bta-miR-423-3p  13,147  98 bta-miR-146b  3,120  

49 bta-miR-144  12,948  99 bta-miR-362-5p  2,854  

50 bta-miR-363  12,693  100 bta-miR-2285bf  2,724  
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Appendix 5.2. Top 100 highly expressed miRNAs in dam colostrum. 
 

No miRNA 

Average of 

read count No miRNA 

Average of 

read count 

1 bta-miR-30a-5p  1,445,459  51 bta-miR-151-3p  12,077  

2 bta-miR-21-5p  437,968  52 bta-miR-223  8,013  

3 bta-let-7a-5p  293,931  53 bta-miR-378  16,139  

4 bta-miR-26a  237,576  54 bta-miR-339a  14,955  

5 bta-let-7f  192,097  55 bta-miR-339b  14,955  

6 bta-miR-2285t  194,405  56 bta-miR-15b  11,782  

7 bta-miR-451  228,838  57 bta-miR-374b  11,834  

8 bta-miR-148a  159,995  58 bta-miR-98  11,317  

9 bta-let-7b  160,604  59 bta-miR-2284x  10,086  

10 bta-let-7g  99,069  60 bta-miR-2284x  10,086  

11 bta-miR-200a  93,680  61 bta-miR-2284y  10,041  

12 bta-miR-30e-5p  77,814  62 bta-miR-2285av  10,041  

13 bta-miR-30d  66,848  63 bta-miR-2285av  10,041  

14 bta-miR-200c  57,367  64 bta-miR-2285av  10,041  

15 bta-miR-26b  62,283  65 bta-miR-574  13,755  

16 bta-miR-99a-5p  67,832  66 bta-miR-29a  9,541  

17 bta-miR-92a  57,963  67 bta-miR-423-5p  7,911  

18 bta-miR-30f  56,536  68 bta-miR-6524  10,262  

19 bta-miR-30b-5p  59,248  69 bta-miR-183  8,267  

20 bta-miR-27b  48,968  70 bta-miR-20a  9,494  

21 bta-miR-186  50,851  71 bta-miR-429  6,989  

22 bta-let-7c  41,096  72 bta-miR-140  9,726  

23 bta-miR-200b  40,145  73 bta-miR-148b  8,632  

24 bta-miR-19b  49,894  74 bta-miR-1246  8,340  

25 bta-miR-22-3p  38,650  75 bta-miR-6119-5p  7,283  

26 bta-miR-141  32,707  76 bta-miR-652  6,520  

27 bta-miR-101  34,234  77 bta-miR-17-5p  8,025  

28 bta-miR-181a  31,341  78 bta-miR-125b  7,222  

29 bta-miR-25  32,700  79 bta-let-7e  6,810  

30 bta-miR-93  32,772  80 bta-miR-32  5,495  

31 bta-miR-182  32,817  81 bta-miR-142-5p  4,856  

32 bta-miR-23a  28,757  82 bta-miR-15a  7,210  

33 bta-let-7i  27,038  83 bta-miR-425-5p  6,529  

34 bta-miR-24-3p  23,466  84 bta-miR-181b  5,987  

35 bta-miR-103  26,255  85 bta-miR-152  5,909  

36 bta-miR-191  25,846  86 bta-miR-96  6,105  

37 bta-miR-23b-3p  25,572  87 bta-miR-486  6,692  
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38 bta-miR-10174-3p  25,572  88 bta-miR-532  5,137  

39 bta-let-7d  23,734  89 bta-miR-3613a  4,459  

40 bta-miR-16b  23,352  90 bta-miR-660  4,545  

41 bta-miR-16a  19,332  91 bta-miR-146a  4,666  

42 bta-miR-30c  21,358  92 bta-miR-342  4,711  

43 bta-miR-27a-3p  17,793  93 bta-miR-361  3,725  

44 bta-miR-320a  21,520  94 bta-miR-221  4,148  

45 bta-miR-374a  14,697  95 bta-miR-125a  4,292  

46 bta-miR-106b  19,897  96 bta-miR-28  3,507  

47 bta-miR-151-5p  14,952  97 bta-miR-7  3,952  

48 bta-miR-423-3p  16,824  98 bta-miR-146b  3,990  

49 bta-miR-144  18,319  99 bta-miR-362-5p  3,900  

50 bta-miR-363  16,576  100 bta-miR-2285bf  3,107  
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Appendix 5.3. Top 100 highly expressed miRNAs in pooled colostrum. 
 

No miRNA 

Average of 

read count No miRNA 

Average of 

read count 

1 bta-miR-30a-5p  1,085,017  51 bta-miR-151-3p  9,466  

2 bta-miR-21-5p  337,215  52 bta-miR-223  12,932  

3 bta-let-7a-5p  406,621  53 bta-miR-378  4,497  

4 bta-miR-26a  187,223  54 bta-miR-339a  5,614  

5 bta-let-7f  171,052  55 bta-miR-339b  5,614  

6 bta-miR-2285t  85,184  56 bta-miR-15b  7,905  

7 bta-miR-451  43,892  57 bta-miR-374b  7,766  

8 bta-miR-148a  110,420  58 bta-miR-98  8,253  

9 bta-let-7b  85,303  59 bta-miR-2284x  9,270  

10 bta-let-7g  85,824  60 bta-miR-2284x  9,270  

11 bta-miR-200a  65,134  61 bta-miR-2284y  9,248  

12 bta-miR-30e-5p  58,391  62 bta-miR-2285av  9,248  

13 bta-miR-30d  66,083  63 bta-miR-2285av  9,248  

14 bta-miR-200c  53,011  64 bta-miR-2285av  9,248  

15 bta-miR-26b  46,176  65 bta-miR-574  4,731  

16 bta-miR-99a-5p  36,464  66 bta-miR-29a  7,750  

17 bta-miR-92a  41,569  67 bta-miR-423-5p  6,765  

18 bta-miR-30f  31,660  68 bta-miR-6524  4,333  

19 bta-miR-30b-5p  27,048  69 bta-miR-183  5,986  

20 bta-miR-27b  34,167  70 bta-miR-20a  4,190  

21 bta-miR-186  30,397  71 bta-miR-429  6,487  

22 bta-let-7c  32,871  72 bta-miR-140  3,711  

23 bta-miR-200b  29,575  73 bta-miR-148b  4,349  

24 bta-miR-19b  13,088  74 bta-miR-1246  4,179  

25 bta-miR-22-3p  23,395  75 bta-miR-6119-5p  4,986  

26 bta-miR-141  28,858  76 bta-miR-652  5,627  

27 bta-miR-101  21,620  77 bta-miR-17-5p  3,749  

28 bta-miR-181a  23,080  78 bta-miR-125b  4,311  

29 bta-miR-25  19,413  79 bta-let-7e  4,406  

30 bta-miR-93  18,431  80 bta-miR-32  5,218  

31 bta-miR-182  16,775  81 bta-miR-142-5p  5,856  

32 bta-miR-23a  16,930  82 bta-miR-15a  3,298  

33 bta-let-7i  18,562  83 bta-miR-425-5p  3,960  

34 bta-miR-24-3p  20,000  84 bta-miR-181b  3,335  

35 bta-miR-103  15,140  85 bta-miR-152  2,866  

36 bta-miR-191  15,092  86 bta-miR-96  2,553  

37 bta-miR-23b-3p  14,230  87 bta-miR-486  1,444  
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38 bta-miR-10174-3p  14,230  88 bta-miR-532  2,948  

39 bta-let-7d  15,404  89 bta-miR-3613a  3,581  

40 bta-miR-16b  14,835  90 bta-miR-660  3,324  

41 bta-miR-16a  15,450  91 bta-miR-146a  2,862  

42 bta-miR-30c  12,965  92 bta-miR-342  2,389  

43 bta-miR-27a-3p  15,016  93 bta-miR-361  3,000  

44 bta-miR-320a  7,989  94 bta-miR-221  2,511  

45 bta-miR-374a  14,808  95 bta-miR-125a  2,101  

46 bta-miR-106b  8,624  96 bta-miR-28  2,841  

47 bta-miR-151-5p  11,617  97 bta-miR-7  2,304  

48 bta-miR-423-3p  9,470  98 bta-miR-146b  2,250  

49 bta-miR-144  7,577  99 bta-miR-362-5p  1,808  

50 bta-miR-363  8,810  100 bta-miR-2285bf  2,341  
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Appendix 5.4. Top 100 highly expressed miRNAs in calf blood day 0. 
 

No miRNA 

Average of 

read count No miRNA 

Average of 

read count 

1 bta-miR-451  13,536,419  51 bta-miR-374a  43,422  

2 bta-miR-144  3,556,660  52 bta-miR-19b  40,717  

3 bta-miR-16b  1,149,948  53 bta-miR-140  35,957  

4 bta-miR-26a  810,998  54 bta-miR-24-3p  35,221  

5 bta-miR-101  775,410  55 bta-miR-223  34,205  

6 bta-miR-16a  752,518  56 bta-let-7d  33,277  

7 bta-miR-30e-5p  558,957  57 bta-miR-22-3p  31,604  

8 bta-miR-21-5p  544,833  58 bta-miR-185  27,466  

9 bta-miR-486  423,833  59 bta-miR-410  26,002  

10 bta-miR-106b  335,528  60 bta-miR-127  24,415  

11 bta-miR-25  324,347  61 bta-miR-151-3p  22,956  

12 bta-miR-93  321,293  62 bta-miR-194  21,800  

13 bta-let-7f  305,119  63 bta-miR-505  21,401  

14 bta-miR-15a  290,276  64 bta-miR-221  21,033  

15 bta-miR-15b  287,208  65 bta-miR-199b  20,766  

16 bta-miR-92a  283,448  66 bta-miR-342  20,527  

17 bta-let-7g  234,214  67 bta-miR-19a  20,475  

18 bta-miR-191  224,215  68 bta-miR-128  19,901  

19 bta-let-7a-5p  207,509  69 bta-miR-2285bc  19,108  

20 bta-miR-425-5p  176,864  70 bta-miR-380-3p  19,002  

21 bta-let-7i  174,028  71 bta-miR-493  18,497  

22 bta-miR-186  150,006  72 bta-miR-652  17,960  

23 bta-miR-411a  126,416  73 bta-miR-27a-3p  17,730  

24 bta-miR-339a  98,117  74 bta-miR-148a  16,876  

25 bta-miR-339b  98,116  75 bta-miR-411b  16,730  

26 bta-miR-494  91,643  76 bta-miR-29c  16,245  

27 bta-miR-32  90,482  77 bta-miR-382  16,036  

28 bta-miR-30d  83,766  78 bta-miR-154c  15,619  

29 bta-miR-142-3p  83,429  79 bta-miR-23a  14,291  

30 bta-miR-379  82,711  80 bta-miR-2285bf  13,756  

31 bta-miR-26b  80,020  81 bta-miR-30b-5p  12,942  

32 bta-miR-17-5p  73,646  82 bta-miR-301a  12,890  

33 bta-miR-151-5p  70,465  83 bta-miR-23b-3p  12,608  

34 bta-miR-381  69,702  84 bta-miR-10174-3p  12,608  

35 bta-miR-369-3p  68,555  85 bta-miR-361  12,598  

36 bta-miR-199c  67,594  86 bta-miR-484  12,311  

37 bta-miR-199a-3p  67,591  87 bta-miR-363  11,809  
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38 bta-miR-20a  66,704  88 bta-miR-107  11,537  

39 bta-miR-18a  60,906  89 bta-miR-99a-5p  11,270  

40 bta-miR-487b  60,387  90 bta-miR-423-5p  10,972  

41 bta-miR-142-5p  58,860  91 bta-miR-331-3p  10,962  

42 bta-miR-30c  57,745  92 bta-miR-2419-5p  10,114  

43 bta-miR-148b  56,347  93 bta-miR-495  9,614  

44 bta-miR-6119-5p  54,086  94 bta-miR-2284aa  9,610  

45 bta-miR-27b  50,614  95 bta-miR-2284aa  9,610  

46 bta-miR-98  50,205  96 bta-miR-2284z  9,610  

47 bta-miR-376e  49,838  97 bta-miR-1468  9,285  

48 bta-miR-423-3p  45,937  98 bta-miR-222  9,111  

49 bta-miR-103  44,268  99 bta-miR-376b  9,090  

50 bta-miR-181a  43,879  100 bta-miR-409a  9,067  
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Appendix 5.5. Top 100 highly expressed miRNAs in calf blood day 1. 
 

No miRNA 

Average of 

read count No miRNA 

Average of 

read count 

1 bta-miR-451  11,047,332  51 bta-miR-98  48,157  

2 bta-miR-144  3,407,894  52 bta-miR-140  45,737  

3 bta-miR-26a  941,400  53 bta-miR-19b  45,310  

4 bta-miR-16b  887,662  54 bta-miR-185  45,164  

5 bta-miR-101  796,228  55 bta-miR-223  43,736  

6 bta-miR-16a  713,657  56 bta-miR-24-3p  41,308  

7 bta-miR-486  689,025  57 bta-miR-22-3p  39,894  

8 bta-miR-30e-5p  675,660  58 bta-let-7d  39,373  

9 bta-miR-21-5p  484,707  59 bta-miR-151-3p  37,189  

10 bta-miR-25  415,538  60 bta-miR-127  36,710  

11 bta-miR-92a  388,323  61 bta-miR-2285bc  32,264  

12 bta-miR-93  375,579  62 bta-miR-221  29,681  

13 bta-let-7f  318,238  63 bta-miR-410  29,069  

14 bta-miR-106b  292,760  64 bta-miR-342  28,948  

15 bta-let-7g  290,824  65 bta-miR-505  28,675  

16 bta-miR-15b  279,568  66 bta-miR-128  27,182  

17 bta-miR-191  256,442  67 bta-miR-380-3p  23,718  

18 bta-miR-15a  240,088  68 bta-miR-382  23,550  

19 bta-let-7a-5p  226,536  69 bta-miR-199b  22,789  

20 bta-let-7i  211,269  70 bta-miR-194  22,629  

21 bta-miR-425-5p  206,791  71 bta-miR-148a  22,600  

22 bta-miR-142-5p  197,564  72 bta-miR-493  21,775  

23 bta-miR-186  197,124  73 bta-miR-652  21,651  

24 bta-miR-339a  133,442  74 bta-miR-154c  20,770  

25 bta-miR-339b  133,441  75 bta-miR-423-5p  20,451  

26 bta-miR-494  128,733  76 bta-miR-2285bf  20,129  

27 bta-miR-411a  117,465  77 bta-miR-19a  19,515  

28 bta-miR-30d  114,791  78 bta-miR-363  18,826  

29 bta-miR-142-3p  110,429  79 bta-miR-484  17,674  

30 bta-miR-379  97,471  80 bta-miR-27a-3p  17,211  

31 bta-miR-6119-5p  93,497  81 bta-miR-411b  16,976  

32 bta-miR-487b  91,898  82 bta-miR-29c  16,706  

33 bta-miR-151-5p  88,748  83 bta-miR-2284x  15,949  

34 bta-miR-32  85,183  84 bta-miR-2284x  15,949  

35 bta-miR-369-3p  81,739  85 bta-miR-2284y  15,908  

36 bta-miR-381  79,836  86 bta-miR-2285av  15,908  

37 bta-miR-17-5p  69,929  87 bta-miR-2285av  15,908  
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38 bta-miR-26b  69,689  88 bta-miR-2285av  15,908  

39 bta-miR-30c  65,406  89 bta-miR-361  15,903  

40 bta-miR-148b  65,080  90 bta-miR-99a-5p  15,608  

41 bta-miR-376e  65,079  91 bta-miR-1468  15,300  

42 bta-miR-103  64,417  92 bta-miR-107  14,833  

43 bta-miR-423-3p  63,919  93 bta-miR-331-3p  14,417  

44 bta-miR-181a  62,540  94 bta-miR-23b-3p  14,348  

45 bta-miR-374a  60,572  95 bta-miR-10174-3p  14,348  

46 bta-miR-20a  58,120  96 bta-miR-23a  13,944  

47 bta-miR-199c  56,783  97 bta-miR-2419-5p  13,462  

48 bta-miR-199a-3p  56,780  98 bta-miR-150  13,317  

49 bta-miR-27b  52,217  99 bta-miR-487a  12,218  

50 bta-miR-18a  50,746  100 bta-miR-30b-5p  11,733  
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Appendix 5.6. GO pathway of Top 100 most abundant miRNAs in colostrum (220 

significant GO terms).  
Ont = ontologies (CC = cellular component, BP = biological process, MF = molecular function). N 

= total number of genes related to the term; DE = number of genes in the dataset for this term; P.DE 

= p-value; fdr= false discovery rate. 

   

No GO ID Term Ont N DE P.DE fdr 

1 GO:0110165 cellular anatomical entity CC 4574 343 7.3E-19 1.0E-14 

2 GO:0005575 cellular_component CC 4657 346 2.1E-18 1.5E-14 

3 GO:0008150 biological_process BP 4425 325 3.0E-16 1.4E-12 

4 GO:0005622 intracellular CC 3544 269 9.4E-15 3.3E-11 

5 GO:0009987 cellular process BP 3968 292 2.1E-14 5.2E-11 

6 GO:0065007 biological regulation BP 2379 198 2.2E-14 5.2E-11 

7 GO:0043229 intracellular organelle CC 3020 235 7.0E-14 1.4E-10 

8 GO:0043226 organelle CC 3194 245 8.2E-14 1.5E-10 

9 GO:0050789 

regulation of biological 

process BP 2191 183 2.1E-13 3.3E-10 

10 GO:0016020 membrane CC 2141 179 3.8E-13 5.4E-10 

11 GO:0003674 molecular_function MF 3794 274 2.1E-12 2.6E-09 

12 GO:0005488 binding MF 2967 225 4.3E-12 5.1E-09 

13 GO:0050794 

regulation of cellular 

process BP 2025 167 9.0E-12 8.5E-09 

14 GO:0043227 

membrane-bounded 

organelle CC 2816 215 8.2E-12 8.5E-09 

15 GO:0005737 cytoplasm CC 2802 214 9.0E-12 8.5E-09 

16 GO:0043231 

intracellular membrane-

bounded organelle CC 2477 192 4.3E-11 3.8E-08 

17 GO:0051179 localization BP 1316 118 1.2E-10 1.0E-07 

18 GO:0051234 establishment of localization BP 1065 100 3.1E-10 2.4E-07 

19 GO:0016021 

integral component of 

membrane CC 1170 106 6.7E-10 5.0E-07 

20 GO:0006810 transport BP 1040 97 8.4E-10 6.0E-07 

21 GO:0031224 

intrinsic component of 

membrane CC 1207 107 1.9E-09 1.3E-06 

22 GO:0009653 

anatomical structure 

morphogenesis BP 445 53 2.6E-09 1.7E-06 

23 GO:0012505 endomembrane system CC 1004 93 2.7E-09 1.7E-06 

24 GO:0043168 anion binding MF 737 74 4.5E-09 2.6E-06 

25 GO:0009887 

animal organ 

morphogenesis BP 145 26 9.8E-09 5.5E-06 

26 GO:0032501 

multicellular organismal 

process BP 1326 112 1.1E-08 6.2E-06 

27 GO:0043167 ion binding MF 1629 130 2.1E-08 1.1E-05 

28 GO:0051716 cellular response to stimulus BP 1359 113 2.3E-08 1.2E-05 

29 GO:0048856 

anatomical structure 

development BP 1028 91 3.6E-08 1.8E-05 

30 GO:0032502 developmental process BP 1123 97 4.2E-08 2.0E-05 

31 GO:0048468 cell development BP 331 41 5.7E-08 2.6E-05 

32 GO:0050896 response to stimulus BP 1764 136 7.6E-08 3.4E-05 
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33 GO:0006811 ion transport BP 361 43 8.4E-08 3.6E-05 

34 GO:0009888 tissue development BP 331 40 1.6E-07 6.7E-05 

35 GO:0005794 Golgi apparatus CC 319 39 1.7E-07 6.9E-05 

36 GO:0030001 metal ion transport BP 167 26 1.9E-07 7.5E-05 

37 GO:0070838 divalent metal ion transport BP 90 18 3.4E-07 1.3E-04 

38 GO:0048869 

cellular developmental 

process BP 717 67 3.7E-07 1.4E-04 

39 GO:0072511 

divalent inorganic cation 

transport BP 91 18 4.0E-07 1.5E-04 

40 GO:0006812 cation transport BP 243 32 4.1E-07 1.5E-04 

41 GO:0061061 

muscle structure 

development BP 113 20 6.1E-07 2.1E-04 

42 GO:0005515 protein binding MF 1383 109 6.2E-07 2.1E-04 

43 GO:0030154 cell differentiation BP 699 65 6.7E-07 2.1E-04 

44 GO:0048731 system development BP 788 71 6.6E-07 2.1E-04 

45 GO:0098588 

bounding membrane of 

organelle CC 472 49 7.4E-07 2.3E-04 

46 GO:0007275 

multicellular organism 

development BP 920 79 1.0E-06 3.2E-04 

47 GO:0023052 signaling BP 1065 88 1.2E-06 3.7E-04 

48 GO:0007154 cell communication BP 1086 89 1.5E-06 4.4E-04 

49 GO:0006816 calcium ion transport BP 80 16 1.5E-06 4.4E-04 

50 GO:0008152 metabolic process BP 2823 191 1.8E-06 5.0E-04 

51 GO:0071944 cell periphery CC 859 74 2.0E-06 5.7E-04 

52 GO:0051641 cellular localization BP 493 49 2.6E-06 7.1E-04 

53 GO:0065008 

regulation of biological 

quality BP 759 67 2.8E-06 7.4E-04 

54 GO:0019222 

regulation of metabolic 

process BP 1203 95 3.2E-06 8.3E-04 

55 GO:0007517 muscle organ development BP 66 14 3.2E-06 8.3E-04 

56 GO:0002064 epithelial cell development BP 42 11 4.2E-06 1.1E-03 

57 GO:0031090 organelle membrane CC 1021 83 4.7E-06 1.2E-03 

58 GO:0097367 

carbohydrate derivative 

binding MF 591 55 4.8E-06 1.2E-03 

59 GO:0042221 response to chemical BP 787 68 4.9E-06 1.2E-03 

60 GO:0005886 plasma membrane CC 834 71 5.0E-06 1.2E-03 

61 GO:0031982 vesicle CC 510 49 6.7E-06 1.5E-03 

62 GO:0048729 tissue morphogenesis BP 100 17 7.4E-06 1.7E-03 

63 GO:0071704 

organic substance metabolic 

process BP 2565 173 7.5E-06 1.7E-03 

64 GO:0031410 cytoplasmic vesicle CC 484 47 7.7E-06 1.7E-03 

65 GO:0097708 intracellular vesicle CC 484 47 7.7E-06 1.7E-03 

66 GO:0060537 muscle tissue development BP 71 14 8.0E-06 1.7E-03 

67 GO:0030855 epithelial cell differentiation BP 111 18 8.0E-06 1.7E-03 

68 GO:0006464 

cellular protein modification 

process BP 847 71 8.5E-06 1.7E-03 

69 GO:0036211 protein modification process BP 847 71 8.5E-06 1.7E-03 

70 GO:0044238 primary metabolic process BP 2377 162 8.8E-06 1.8E-03 
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71 GO:0048518 

positive regulation of 

biological process BP 1105 87 9.7E-06 1.9E-03 

72 GO:0060255 

regulation of 

macromolecule metabolic 

process BP 1105 87 9.7E-06 1.9E-03 

73 GO:0016192 vesicle-mediated transport BP 308 34 1.0E-05 2.0E-03 

74 GO:0070887 

cellular response to 

chemical stimulus BP 578 53 1.1E-05 2.1E-03 

75 GO:0048523 

negative regulation of 

cellular process BP 827 69 1.3E-05 2.5E-03 

76 GO:0048519 

negative regulation of 

biological process BP 938 76 1.4E-05 2.5E-03 

77 GO:0035637 

multicellular organismal 

signaling BP 18 7 1.4E-05 2.5E-03 

78 GO:0046903 secretion BP 211 26 1.6E-05 3.0E-03 

79 GO:0007165 signal transduction BP 994 79 1.8E-05 3.3E-03 

80 GO:0006807 

nitrogen compound 

metabolic process BP 2202 150 2.1E-05 3.6E-03 

81 GO:0043412 

macromolecule 

modification BP 901 73 2.0E-05 3.6E-03 

82 GO:0051649 

establishment of localization 

in cell BP 360 37 2.1E-05 3.6E-03 

83 GO:0045446 

endothelial cell 

differentiation BP 19 7 2.1E-05 3.6E-03 

84 GO:0080090 

regulation of primary 

metabolic process BP 1032 81 2.2E-05 3.7E-03 

85 GO:1901564 

organonitrogen compound 

metabolic process BP 1599 115 2.3E-05 3.8E-03 

86 GO:0042592 homeostatic process BP 348 36 2.3E-05 3.8E-03 

87 GO:0036094 small molecule binding MF 717 61 2.4E-05 3.9E-03 

88 GO:0043170 

macromolecule metabolic 

process BP 2070 142 2.5E-05 4.1E-03 

89 GO:0045177 apical part of cell CC 79 14 2.9E-05 4.6E-03 

90 GO:0051171 

regulation of nitrogen 

compound metabolic 

process BP 995 78 3.3E-05 5.2E-03 

91 GO:0048513 animal organ development BP 544 49 3.7E-05 5.6E-03 

92 GO:0017076 purine nucleotide binding MF 514 47 3.6E-05 5.6E-03 

93 GO:0031323 

regulation of cellular 

metabolic process BP 1059 81 5.4E-05 8.3E-03 

94 GO:0060429 epithelium development BP 188 23 5.6E-05 8.4E-03 

95 GO:0050793 

regulation of developmental 

process BP 435 41 5.7E-05 8.6E-03 

96 GO:0010468 

regulation of gene 

expression BP 755 62 5.8E-05 8.6E-03 

97 GO:0019538 protein metabolic process BP 1329 97 6.1E-05 8.9E-03 

98 GO:0046777 protein autophosphorylation BP 22 7 6.2E-05 8.9E-03 

99 GO:0044260 

cellular macromolecule 

metabolic process BP 1710 119 6.9E-05 9.8E-03 

100 GO:0051246 

regulation of protein 

metabolic process BP 558 49 6.9E-05 9.8E-03 

101 GO:0032555 

purine ribonucleotide 

binding MF 513 46 7.0E-05 9.8E-03 
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102 GO:0048747 muscle fiber development BP 16 6 7.4E-05 1.0E-02 

103 GO:0055002 

striated muscle cell 

development BP 30 8 7.6E-05 1.0E-02 

104 GO:0032553 ribonucleotide binding MF 515 46 7.7E-05 1.0E-02 

105 GO:0014706 

striated muscle tissue 

development BP 66 12 8.2E-05 1.1E-02 

106 GO:0003158 endothelium development BP 23 7 8.5E-05 1.1E-02 

107 GO:0016043 

cellular component 

organization BP 1190 88 8.6E-05 1.1E-02 

108 GO:0043269 regulation of ion transport BP 109 16 8.7E-05 1.1E-02 

109 GO:0098805 whole membrane CC 371 36 8.9E-05 1.2E-02 

110 GO:0055085 transmembrane transport BP 330 33 9.8E-05 1.2E-02 

111 GO:0034220 ion transmembrane transport BP 234 26 9.7E-05 1.2E-02 

112 GO:0055001 muscle cell development BP 31 8 9.8E-05 1.2E-02 

113 GO:0035639 

purine ribonucleoside 

triphosphate binding MF 490 44 9.7E-05 1.2E-02 

114 GO:0071310 

cellular response to organic 

substance BP 432 40 1.0E-04 1.3E-02 

115 GO:0032413 

negative regulation of ion 

transmembrane transporter 

activity BP 11 5 1.0E-04 1.3E-02 

116 GO:0061337 cardiac conduction BP 11 5 1.0E-04 1.3E-02 

117 GO:0034763 

negative regulation of 

transmembrane transport BP 17 6 1.1E-04 1.3E-02 

118 GO:0032879 regulation of localization BP 493 44 1.1E-04 1.3E-02 

119 GO:0002070 epithelial cell maturation BP 3 3 1.2E-04 1.4E-02 

120 GO:0072189 ureter development BP 3 3 1.2E-04 1.4E-02 

121 GO:0044267 

cellular protein metabolic 

process BP 1186 87 1.3E-04 1.5E-02 

122 GO:0000902 cell morphogenesis BP 148 19 1.3E-04 1.5E-02 

123 GO:0008144 drug binding MF 451 41 1.3E-04 1.5E-02 

124 GO:0071840 

cellular component 

organization or biogenesis BP 1238 90 1.3E-04 1.5E-02 

125 GO:0001503 ossification BP 80 13 1.4E-04 1.6E-02 

126 GO:0010033 

response to organic 

substance BP 544 47 1.4E-04 1.6E-02 

127 GO:0043271 

negative regulation of ion 

transport BP 18 6 1.6E-04 1.8E-02 

128 GO:0007267 cell-cell signaling BP 255 27 1.6E-04 1.8E-02 

129 GO:0051239 

regulation of multicellular 

organismal process BP 547 47 1.6E-04 1.8E-02 

130 GO:1904063 

negative regulation of cation 

transmembrane transport BP 12 5 1.7E-04 1.9E-02 

131 GO:0035091 phosphatidylinositol binding MF 42 9 1.7E-04 1.9E-02 

132 GO:0051049 regulation of transport BP 326 32 1.7E-04 1.9E-02 

133 GO:0044237 cellular metabolic process BP 2462 159 1.8E-04 1.9E-02 

134 GO:0031399 

regulation of protein 

modification process BP 341 33 1.8E-04 1.9E-02 

135 GO:0097178 ruffle assembly BP 7 4 1.8E-04 1.9E-02 

136 GO:0046872 metal ion binding MF 1083 80 1.9E-04 2.0E-02 

137 GO:0030003 cellular cation homeostasis BP 105 15 2.0E-04 2.0E-02 
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138 GO:0048878 chemical homeostasis BP 206 23 2.2E-04 2.3E-02 

139 GO:0070509 calcium ion import BP 19 6 2.2E-04 2.3E-02 

140 GO:0048522 

positive regulation of 

cellular process BP 990 74 2.3E-04 2.3E-02 

141 GO:0003824 catalytic activity MF 1396 98 2.3E-04 2.3E-02 

142 GO:0072359 

circulatory system 

development BP 207 23 2.4E-04 2.4E-02 

143 GO:0043169 cation binding MF 1091 80 2.4E-04 2.4E-02 

144 GO:0097159 

organic cyclic compound 

binding MF 1245 89 2.5E-04 2.5E-02 

145 GO:0034762 

regulation of 

transmembrane transport BP 96 14 2.5E-04 2.5E-02 

146 GO:1901363 

heterocyclic compound 

binding MF 1229 88 2.6E-04 2.5E-02 

147 GO:0034766 

negative regulation of ion 

transmembrane transport BP 13 5 2.7E-04 2.5E-02 

148 GO:0000166 nucleotide binding MF 606 50 2.7E-04 2.5E-02 

149 GO:1901265 

nucleoside phosphate 

binding MF 606 50 2.7E-04 2.5E-02 

150 GO:0005634 nucleus CC 1437 100 2.7E-04 2.6E-02 

151 GO:0055074 calcium ion homeostasis BP 75 12 2.9E-04 2.7E-02 

152 GO:0033993 response to lipid BP 145 18 2.9E-04 2.7E-02 

153 GO:0006873 cellular ion homeostasis BP 109 15 3.0E-04 2.7E-02 

154 GO:0045732 

positive regulation of 

protein catabolic process BP 36 8 3.0E-04 2.8E-02 

155 GO:0000139 Golgi membrane CC 146 18 3.1E-04 2.9E-02 

156 GO:0055080 cation homeostasis BP 122 16 3.3E-04 3.0E-02 

157 GO:0010646 

regulation of cell 

communication BP 581 48 3.4E-04 3.0E-02 

158 GO:0034330 cell junction organization BP 99 14 3.5E-04 3.0E-02 

159 GO:0031529 ruffle organization BP 8 4 3.5E-04 3.0E-02 

160 GO:0060306 

regulation of membrane 

repolarization BP 8 4 3.5E-04 3.0E-02 

161 GO:0042733 

embryonic digit 

morphogenesis BP 8 4 3.5E-04 3.0E-02 

162 GO:0051926 

negative regulation of 

calcium ion transport BP 8 4 3.5E-04 3.0E-02 

163 GO:0042995 cell projection CC 443 39 3.5E-04 3.0E-02 

164 GO:0030134 

COPII-coated ER to Golgi 

transport vesicle CC 8 4 3.5E-04 3.0E-02 

165 GO:0030554 adenyl nucleotide binding MF 398 36 3.5E-04 3.0E-02 

166 GO:0032268 

regulation of cellular protein 

metabolic process BP 520 44 3.6E-04 3.1E-02 

167 GO:0005856 cytoskeleton CC 520 44 3.6E-04 3.1E-02 

168 GO:0023051 regulation of signaling BP 583 48 3.7E-04 3.1E-02 

169 GO:0072507 

divalent inorganic cation 

homeostasis BP 77 12 3.7E-04 3.1E-02 

170 GO:0003008 system process BP 311 30 3.7E-04 3.1E-02 

171 GO:0046914 transition metal ion binding MF 283 28 3.8E-04 3.2E-02 

172 GO:0005783 endoplasmic reticulum CC 255 26 3.8E-04 3.2E-02 
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173 GO:0120036 

plasma membrane bounded 

cell projection organization BP 214 23 3.9E-04 3.2E-02 

174 GO:0098771 inorganic ion homeostasis BP 124 16 4.0E-04 3.2E-02 

175 GO:0032410 

negative regulation of 

transporter activity BP 14 5 4.0E-04 3.2E-02 

176 GO:0007507 heart development BP 78 12 4.2E-04 3.4E-02 

177 GO:0010628 

positive regulation of gene 

expression BP 373 34 4.4E-04 3.5E-02 

178 GO:0098655 

cation transmembrane 

transport BP 176 20 4.4E-04 3.5E-02 

179 GO:0005768 endosome CC 216 23 4.4E-04 3.5E-02 

180 GO:1900027 

regulation of ruffle 

assembly BP 4 3 4.6E-04 3.6E-02 

181 GO:0060644 

mammary gland epithelial 

cell differentiation BP 4 3 4.6E-04 3.6E-02 

182 GO:1901020 

negative regulation of 

calcium ion transmembrane 

transporter activity BP 4 3 4.6E-04 3.6E-02 

183 GO:1903170 

negative regulation of 

calcium ion transmembrane 

transport BP 4 3 4.6E-04 3.6E-02 

184 GO:0071702 organic substance transport BP 559 46 4.9E-04 3.8E-02 

185 GO:0006875 

cellular metal ion 

homeostasis BP 91 13 5.1E-04 3.9E-02 

186 GO:0098660 

inorganic ion 

transmembrane transport BP 178 20 5.2E-04 3.9E-02 

187 GO:0007010 cytoskeleton organization BP 246 25 5.2E-04 3.9E-02 

188 GO:0006941 striated muscle contraction BP 30 7 5.2E-04 3.9E-02 

189 GO:0030879 

mammary gland 

development BP 30 7 5.2E-04 3.9E-02 

190 GO:0048705 

skeletal system 

morphogenesis BP 30 7 5.2E-04 3.9E-02 

191 GO:0003007 heart morphogenesis BP 39 8 5.4E-04 3.9E-02 

192 GO:0048736 appendage development BP 22 6 5.4E-04 3.9E-02 

193 GO:0060173 limb development BP 22 6 5.4E-04 3.9E-02 

194 GO:0051247 

positive regulation of 

protein metabolic process BP 304 29 5.5E-04 4.0E-02 

195 GO:0007389 pattern specification process BP 59 10 5.7E-04 4.1E-02 

196 GO:0050790 

regulation of catalytic 

activity BP 439 38 5.8E-04 4.1E-02 

197 GO:0007155 cell adhesion BP 234 24 5.8E-04 4.1E-02 

198 GO:0001885 

endothelial cell 

development BP 15 5 5.7E-04 4.1E-02 

199 GO:0051656 

establishment of organelle 

localization BP 70 11 6.0E-04 4.2E-02 

200 GO:0086003 

cardiac muscle cell 

contraction BP 9 4 6.1E-04 4.3E-02 

201 GO:0060350 

endochondral bone 

morphogenesis BP 9 4 6.1E-04 4.3E-02 

202 GO:0048583 

regulation of response to 

stimulus BP 709 55 6.2E-04 4.3E-02 

203 GO:0050801 ion homeostasis BP 142 17 6.4E-04 4.5E-02 

204 GO:0070161 anchoring junction CC 117 15 6.4E-04 4.5E-02 
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205 GO:0005829 cytosol CC 662 52 6.5E-04 4.5E-02 

206 GO:0034765 

regulation of ion 

transmembrane transport BP 82 12 6.7E-04 4.6E-02 

207 GO:0042175 

nuclear outer membrane-

endoplasmic reticulum 

membrane network CC 279 27 6.8E-04 4.6E-02 

208 GO:0005524 ATP binding MF 382 34 6.8E-04 4.6E-02 

209 GO:0016740 transferase activity MF 458 39 6.8E-04 4.6E-02 

210 GO:0032559 

adenyl ribonucleotide 

binding MF 397 35 6.8E-04 4.6E-02 

211 GO:0032940 secretion by cell BP 182 20 6.8E-04 4.6E-02 

212 GO:0007399 

nervous system 

development BP 323 30 6.9E-04 4.6E-02 

213 GO:0055065 metal ion homeostasis BP 106 14 7.1E-04 4.7E-02 

214 GO:0022610 biological adhesion BP 238 24 7.4E-04 4.9E-02 

215 GO:0010604 

positive regulation of 

macromolecule metabolic 

process BP 618 49 7.5E-04 4.9E-02 

216 GO:0014070 

response to organic cyclic 

compound BP 144 17 7.5E-04 4.9E-02 

217 GO:0030659 

cytoplasmic vesicle 

membrane CC 144 17 7.5E-04 4.9E-02 

218 GO:0006874 

cellular calcium ion 

homeostasis BP 72 11 7.6E-04 4.9E-02 

219 GO:0090130 tissue migration BP 72 11 7.6E-04 4.9E-02 

220 GO:0009893 

positive regulation of 

metabolic process BP 667 52 7.7E-04 4.9E-02 
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Appendix 5.7. GO pathway of 22 miRNAs differentially expressed between calf blood 

day 0 and day 1.  
Ont = ontologies (CC = cellular component, BP = biological process, MF = molecular function). N 

= total number of genes related to the term; DE = number of genes in the dataset for this term; P.DE 

= p-value; fdr= false discovery rate. 
 

N

o GO_ID Term Ont N DE P.DE fdr 

1 GO:0005575 Cellular component CC 4657 121 8.0E-08 3.7E-04 

2 GO:0110165 

cellular anatomical 

entity CC 4574 119 1.0E-07 3.7E-04 

3 GO:0016020 membrane CC 2141 70 3.7E-08 3.7E-04 

4 GO:0012505 endomembrane system CC 1004 42 5.6E-08 3.7E-04 

5 GO:0016021 

integral component of 

membrane CC 1170 45 2.0E-07 5.8E-04 

6 GO:0031224 

intrinsic component of 

membrane CC 1207 45 4.9E-07 1.1E-03 

7 GO:0031090 organelle membrane CC 1021 40 6.6E-07 1.3E-03 

8 GO:0043227 

membrane-bounded 

organelle CC 2816 79 2.4E-06 4.2E-03 

9 GO:0008150 Biological process BP 4425 110 4.5E-06 6.9E-03 

10 GO:0009987 cellular process BP 3968 101 4.9E-06 6.9E-03 

11 GO:0043226 organelle CC 3194 84 1.3E-05 1.7E-02 

12 GO:0042175 

nuclear outer membrane-

endoplasmic reticulum 

membrane network CC 279 16 2.3E-05 2.8E-02 
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Appendix 6. Functions of five immune-related miRNAs. 

 

MicroRNA-142-5p 

MicroRNA-142-5p is a regulator of a range of biological processes, including embryonic 

development, homeostasis, various diseases, cancer and immune tolerance (Shrestha et al., 

2017). Although miR-142 is expressed in many tissues, recent studies suggest that it is a key 

regulator of cell fate in the hematopoietic system (Shrestha et al., 2017). MicroRNA-142 is 

an abundantly expressed in immune cells or cells of hematopoietic origin, and plays a critical 

role in development and homeostasis of lymphocytes (Kramer et al., 2015). The miR-142 

family has 2 members (miR-142-3p and miR-142-5p) that are derived from opposite strands 

of a precursor (Kramer et al., 2015).  

 

One target gene of miR-142-5p is Suppressor Of Cytokine Signaling 1 (SOCS1). MicroRNA-

142-5p regulates macrophage profibrogenic gene expression in chronic inflammation by 

silencing the SOCS1 gene. Consequently, the level of miR -142-5p is increased in patients 

with liver cirrhosis and idiopathic pulmonary fibrosis (Su et al., 2015) and in patients of 

chronic antibody mediated rejection (Danger et al., 2013). Interestingly, miR-142-5p is 

found to be more highly expressed in the milk from mastitis cows compared to the milk of 

healthy cows, and therefore, miR-142-5p may be a potential biomarker for early detection 

of bacterial infection in mammary glands (Sun et al., 2015; Cai et al., 2018). 

 

MicroRNA-150 

MicroRNA-150 is considered to be a lymphopoietic-specific miRNA and studies have 

shown that miR-150 functions as a major regulator in determining the fate of haematopoietic 

stem/progenitor cells in both lymphoid and myeloid lineages (Xu et al., 2016). In addition, 

miR-150 acts as a tumor suppressor in malignant lymphoma (Watanabe et al., 2011). MYB, 

FLT3, EGR2 are important target genes of miR-150 in acute myeloid leukemia and 

lymphoma (Watanabe et al., 2011; Xu et al., 2016). 

 

The top predicted target of miR-150 is the MYB proto-oncogene transcription factor (MYB 

or c-Myb) gene, which is important for lymphocyte development and required for the B1 

cell generation (Xiao et al., 2007). MicroRNA-150 exerts its effects on hematopoiesis by 

targeting MYB (Huang et al., 2015). In a study on transgenic mice, over-expression of miR-



Ph.D thesis                                                    Transfer of colostrum components in newborn calves 

 

 

Hue Thi Do 195 

 
 

 

150 caused reduced MYB levels, while B cells that are deficient in miR-150 showed higher 

levels of MYB (Xiao et al., 2007).  

 

MicroRNA-150 is present in high concentrations in both mature B and T cells and natural 

killer cells (Huang et al., 2015). However, miR-150 is also highly expressed in progenitor B 

cells (Fernando et al., 2012), preventing B cell differentiation from pro-B cells to pre-B cells 

(Sonkoly et al., 2008; Fernando et al., 2012; Liang et al., 2015) 

 

MicroRNA-155 

MiRNA-155 is a miRNA with multiple functions as it has an important role in various 

physiological processes, including haematopoietic lineage differentiation, immunity, and 

inflammation, as well as various pathological states, including cancer, cardiovascular 

diseases and viral infections (Faraoni et al., 2009). MicroRNA-155 is believed to target 

hundreds of genes (Faraoni et al., 2009). In the immune system, miR-155 can shape the 

transcriptome of activated myeloid and lymphoid cells to control different biological 

functions such as inflammation and immunological memory (Vigorito et al., 2013).  

 

The miR-155 is involved in the normal immune function of both human B and T 

lymphocytes (Karaca et al., 2018). If miR-155 is deficient, the modulation of the T helper 

(Th)1/Th2 balance is affected and the number of germinal centre B cells is reduced (Karaca 

et al., 2018). In addition, miR-155 inhibits the activation of B cells present in the germinal 

centres and the differentiation of monocytes (Liang et al., 2015). A mouse study, (Blüml et 

al., 2011) concluded that miR-155 is involved in both adaptive and innate immune reactions 

leading to autoimmune arthritis. In mice that are miR-155 deficient, antigen-specific T cells 

are significantly reduced and interleukin-17 (IL-17) and IL-22 levels are decreased (Blüml 

et al., 2011). 

 

MicroRNA-181a 

The miR-181 family includes four members (miR181a, miR-181b, miR-181c and miR-

181d), which have a few hundred identified mRNAs as their targets (Seoudi et al., 2012). 

MicroRNA-181a is involved in haematopoiesis and is a potential biomarker for both solid 

tumours and haematological tumours (Seoudi et al., 2012).  
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MicroRNA-181a has been implicated in the development of both B and T lymphocytes 

(Sonkoly et al., 2008) as miR-181a has been shown to have a role in B and T cell 

differentiation when ectopically expressed in hematopoietic stem/progenitor cells (Chen et 

al., 2004). If miR-181a is over-expressed in hematopoietic stem and progenitor cells, then 

the number of B cells increases (Fernando et al., 2012). MicroRNA-181a also enhances T 

cell receptor signalling by targeting protein and CD4+ T cell activation (Liang et al., 2015). 

Furthermore, miR-181a is related to T cell sensitivity and is involved in the inflammatory 

response of macrophages  

 

MicroRNA-223 

MicroRNA-223 functions as a key modulator of the differentiation and activation of myeloid 

cells, particularly neutrophils and macrophages (Yuan et al., 2018). MicroRNA-223 affects 

myeloid cell development and influences the maturation, proliferation and activation of 

granulocytes (Johnnidis et al., 2008) by enhancing granulopoiesis and inhibiting macrophage 

differentiation (Yuan et al., 2018). MicroRNA-223 directly targets multiple myeloid 

differentiation transcription factors to regulate this myeloid differentiation (Yuan et al., 

2018).  

 

MicroRNA-223 is also involved in T cell differentiation (Sonkoly et al., 2008) and is a 

negative regulator of neutrophil proliferation and activation (Lindsay, 2008). MicroRNA-

223 is more highly expressed in milk from cows with mastitis compared to normal cows, so 

it may be potential biomarker for early detection of bacterial infection of the mammary gland 

(Sun et al., 2015; Cai et al., 2018) or sepsis in humans (Wang et al., 2010).  
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Appendix 7. Standard solution for RT-qPCR. 

The miRNA cel-miR-39-3p is found in Caenorhabditis elegans and is not present in 

mammals. Thus, cel-miR-39-3p was used as a standard curve for qPCR and for 

normalization to correct for any technical variation during the RNA isolation, RT and 

qPCR. All steps to prepare cDNA of cel-miR-39-3p were performed as with the samples, 

however, instead of adding 1 µL of diluted total RNA, 1 µL of cel-miR-39-3p was added. 

 

Cel-miR-39-3p concentration used for RT-qPCR was 5 picomole/µL, which is equivalent 

to 36.3 ng/ µL (using conversion from https://www.promega.com/a/apps/biomath/), and 

equal to 2.922 x 1012 copies/ µL (based on the conversion from 

http://www.scienceprimer.com/copy-number-calculator-for-realtime-pcr) or following 

formula: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑝𝑖𝑒𝑠 =  
𝑋 𝑥 6.022 𝑥 1023 

𝑁 𝑥 𝑎 𝑥 1 𝑥 109 
 

 

Where: X = amount of amplicon (ng) 

N = length of dsDNA, ssDNA or RNA amplicon 

a (g/mole) = average mass of 1 bp dsDNA, or ssDNA, or RNA 

(a = 660 for dsDNA, a = 330 for ssDNA, a = 340 for RNA) 

 

One µL of 5 picomole/µL cel-miR39-3p was used as the starting material for the RT 

reaction, giving a cDNA concentration of cel-miR39-3p of 2.922 x 1012 copies in a total 

RT reaction volume of 15 µL or 1.948 x 1011 copies/ µL.  

 

After generating cDNA of miR-39-3p, this standard cDNA solution of miR-39-3p was 

diluted in serial 10-fold dilutions (Table 6.3). Each dilution was stored in multiple 

Eppendorf tubes for long-term use while avoiding repeated multiple thawing. The cDNA 

for the standard curve was amplified as the same time as the samples for every PCR 

amplification, but the template added to the PCR was different from the samples to ensure 

the standard curve covered all the sample concentrations. cDNA from the standard solution 

(7.12 µL) was added in the PCR tube to get final volume 15 µL, and the final concentration 

was determined from the standard curve. 
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Appendix 8. Supporting results for RT-qPCR. 
 

Appendix 8.1. Concentration of immune-related miRNAs in colostrum and milk.  
 

miRNAs Dam colostrum day 0 

(n = 12) 

Pooled colostrum 

(n = 5) 

Bulk tank milk 

(n = 25) 

 LSM SE LSM SE LSM SE 

miR-142-5p 402.1a 84.3 398.4ab 130.5 131.4b 58.4 

miR-150 618.9 149.7 174.6 231.9 274.1 103.7 

miR-155 2,399.2a 301.5 1,125.4b 467.1 179.6b 208.9 

miR-181a 451.2a 72.3 491.4a 112.0 31.7b 50.1 

miR-223 67,190.0 19,940.0 115,600.0 30,890.0 52,430.0 13,820.0 

Unit = 106 copies/µL. 

LSM = least square means, SE = standard errors. 

a,b LSM within a row with different superscripts differ (P < 0.05). 
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Appendix 8.2. Immune-related miRNAs in dam colostrum day 0 to 3 postpartum.  
 

miRNAs Day 0 (n = 12) Day 1 (n = 11) Day 2 (n = 12) Day 3 (n = 12) 

LSM SE LSM SE LSM SE LSM SE 

miR-142-5p 402.1a 50.4 129.0b 52.7 31.3b 50.4 28.6b 50.4 

miR-150 488.8a 56.9 78.0b 71.7 34.1b 68.7 105.2b 68.7 

miR-155 2036.2a 171.2 695.3b 216.0 424.6b 206.8 412.3b 206.8 

miR-181a 483.7a 56.9 379.2a 71.7 138.8b 68.7 21.6b 68.7 

miR-223 97970.0a 11240.0 44470.0b 14180.0 15030.0b 13570.0 11950.0b 13570.0 

Units = 106 copies/µL. 

LSM = least square mean, SE = standard error.  

a,b LSM within a row with different superscripts differ (P < 0.05). 
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Appendix 9. Evidence of poster presentations at international conferences. 

 

Appendix 9.1. 7th International Symposium on Animal Functional Genomics and 

Functional Annotation of Animal Genomes Workshop 2018. 
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Appendix 9.2. 37th International Society for Animal Genetics Conference 2019.
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