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SUMMARY

1. Background

This thesis is based on ideas drawn from classical probabilistic number
theory, from the work of Novoselov [2], and from the relevant work on
algebraic number fields.

Classical probabilistic number theory (as described in Elliott [1], for ex-
ample) is concerned with the distribution of arithmetic functions on the ring
of (rational) integers, Z. Two well known results in this area are the Hardy-
Ramanujan and the Erdés-Wintner theorems. The Hardy-Ramanujan the-
orem states that, in some sense, every integer n has about loglogn prime
divisors, and the Erdos-Wintner theorem gives conditions under which ad-
ditive functions have limiting distributions. The original proofs of both
results were subsequently considerably simplified by using a result known
as the Turan-Kubilius inequality. Although results in this field have a def-
inite probabilistic flavour, it has not proved easy to establish them by a
direct appeal to the theory of probability.

Novoselov [2] developed a probability space which provides a natural
framework for developing results of probabilistic number theory from results
of probability. For example, using standard results from probability theory
and some arithmetic estimates (which amount to the Turdn-Kubilius in-
equality) he obtained the Hardy-Ramanujan and Erdés-Wintner theorems.

Many of the results of probabilistic number theory have been generalized
to results concerning the distribution of additive functions on the ideals
of the ring, D, of integers of an algebraic number field (see Prachar [3],
for example). However, work in this area has not used a probabilistic
framework as fully as in the classical case of Z.

2. Aims

The aim of this thesis is to set up a space for probabilistic number theory
in algebraic number fields analogous to that of Novoselov (2] for Z and to
apply his approach to develop analogues in D of the Hardy-Ramanujan and
Erdos-Wintner theorems. We endeavour to produce as much as possible
without the use of sieve results.

§.
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3. Contents

Chapter 1 of this thesis is an introduction to the background outlined
above, and Chapter 2 gathers together some preliminary material. In Chap-
ter 3 we obtain an analogue of the Turdn-Kubilius inequality in D. For this
purpose we estimate the number of elements of an ideal which lie in a
multiple of the fundamental domain of D (viewed as a lattice).

In Chapter 4 we construct a probability space (2, containing D, using
two different approaches. One approach is analogous to that in Novoselov
[2]. The other views {2 as the product of the completions of D with respect
to its non-Archimedean valuations and this enables us to simplify some
proofs.

In" Chapter 5 we prove versions of the Hardy-Ramanujan and Erdos-
Wintner theorems for additive functions on the principal ideals of D. Some
examples are discussed.

In Chapter 6 we consider additive functions on all the ideals of D
(not just the principal ideals). We prove Prachar’s version of the Hardy-
Ramanujan theorem (see Prachar [3]) by using the results of Chapter 5
and the correspondence between the ideals of D in a given class and certain
elements of D.
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CHAPTER 1
INTRODUCTION

This thesis combines ideas from three areas : firstly, classical probabilis-
tic number theory, secondly, the probabilistic framework for probabilistic
number theory developed by Novoselov [1], and thirdly, the work of various
authors on probabilistic number theory in algebraic number fields.

In this introductory chapter we will discuss, briefly, some typical results
in these areas and their history. We then discuss this thesis itself. We will
rely heavily, in Section 1 below, on the excellent historical introduction to
* classical probabilistic number theory given in Elliott [1].

1. Classical Probabilistic Number Theory.

Let us begin with some definitions (which will apply throughout the
introduction only). For a set A4 of real numbers and an integer n > 1 we
let

Vn{m:meA}=%#{m:1§m_<_nandm€f1} (1)

be the frequency of integers from 1 to n which are in A (as usual # denotes
the number of elements in a finite set).

A function f from the positive integers Z*, to the real numbers IR, is
called additive if, for any relatively prime positive integers m and n, we
have

f(mn) = f(m) + f(n). (2)

Furthermore, f is called strongly additive if, in addition to property (2)
above, we have for all primes p and positive integers r,

) = £p). | (3)

Such functions are completely determined by their values on prime powers.
If f is additive we have

f(n)=2_ (@), (4)

pTiln



where the sum is over the prime powers which exactly divide n; and if f is
strongly additive, '
f(r) =2 f(m)- (5)
pin !

Many of the usual functions of number theory are additive (for ex-
ample w(n), the number of prime divisors of n) or are closely related to
additive functions (positive multiplicative functions are exponentials of ad-
ditive functions). A problem of long standing interest is to determine the
behaviour of these additive functions for large values of n in some average
sense (this behaviour, hopefully, being smoother than that of the func-
tion). One of the earliest, non-trivial, results in this direction was proved
by Hardy and Ramanujan [1],in 1917. Among other things they established
the following result.

Classical Hardy-Ramanujan Theorem

Let 8(n) be a function of n such that 6(n) — co as n — oo. Then

vo{m : |w(m) —loglogn| > 6(n),/loglogn} (6)

tends to zero as n — oo.

This result may be interpreted as saying that almost all integers n have
log logn prime divisors. It was proved by an arithmetic method, by estab-
lishing a precise upper bound for the number of integers from 1 to n, with a
given number of prime divisors. The result is of an essentially probabilistic
nature, resembling the Law of Large Numbers in probability theory.

In 1934, Turan gave a new proof of the Hardy-Ramanujan Theorem by
way of the estimate

S|

> (w(m) —loglogn)? < ¢;loglogn, (7)
m=1

(c1 independent of n). The argument Tur4n used was similar to that used to
obtain the Tchebycheff inequality in probability theory. The result (7) was
later extended by Kubilius and there are now a wide class of results, like
(7), called Turdn-Kubilius inequalities. For example, we have the following
(see Elliott [1] Chapter 4 for a proof),



A Classical Turan-Kubilius Inequality
Let f be a strongly additive real function and, for n > 1 put

amy = o2

p<n P
B(n) = ;@— (8)

where the sums are over primes < n. There is a constant ¢; (independent

of n and f) such that

% S (F(m) — A(n))* < caB(n).

m=1

The next major result was proved in 1938 by Erd6s [1] (and the converse
by Erdds and Wintner[1] in 1939).

Classical Erdos-Wintner Theorem
Let f be an additive function and suppose the following two series con-
verge:
fp £ ()’
> D ral

where

[ ) 1) <1
'””‘{1p i€ [£(p)] > 1.

Then, there is a left-continuous function F, such that

F(A) = lim vo{m: f(m) < A} (10)

for every A at which F is continuous. (The converse also holds).
Furthermore, F is continuous for all ) if and only if the following series

diverges,
D,

f()#o P

1



This theorem was, also, proved using no probability theory as such, but
the series that are required to converge in (9) are similar to those that
are required to converge in the Three-Series Theorem of Kolmogorov in
probability theory (see Chapter 2 Section 3 below).

The next fruitful observation was provided by Kac. It is this: “Whether
an integer n is divisible by a prime p is independent of whether it is divisible
by a different prime q”. Using this notion, in 1940 Erdds and Kac [1] proved
the following.

Classical Erdos-Kac Theorem

Let f be a strongly additive real function such that |f(p)] < 1 for all
primes p. Let A(n) and B(n) be as defined in (8) above. If B(n) — oo as
n — oo then for each real A,

vn{m : f(m) — A(n) < A\\/B(n)}

converges to

A 2
\/—2—/ e'“’ /2 dw (11)
T J—o0

as n — O0.

The functions A(n) and B(n) can be interpreted as, respectively, the
expectation and variance of f, and the similarity of the above result to
the Central Limit Theorem of probability is clear. Erdés and Kac proved
their result by using the Central Limit Theorem and a sieve inequality of
the type developed by Brun in the 1920’s (for studying the distribution of
primes).

Due to the similarity of all the above results with results in probability
theory, many authors have attempted proofs using the tools of that theory
as much as possible. To put the matter into its historical perspective, we
should note that the first axiomatic foundation for probability theory to be
widely accepted, had only been presented by Kolmogorov in 1933.

An obvious choice for a probability measure on subsets A, of Z, is the
density of A,

m(A) = lim v {m : m € A}, (12)
(when this exists). This choice embodies the idea of Kac, for if p # ¢ are



primes,
| 1
m(m : plm and ¢g|m) = — = n(m : p|m) w(m : ¢g|m).

Unfortunately, 7 is not a probability measure and we cannot use the theory
of probability directly. (Among its many short comings, = is not countably
additive. For example 7(U,{n}) = n(Z*) = 1 but ¥, 7({n}) = 0).

In work of the 1950’s, Kubilius dealt with this difficulty by constructing
an appropriate finite probability space, in which truncated additive func-

tions,
> f),

p<r, pln

could be studied by using independent functions in that space. Kubilius
improved and extended all of the classical results of probabilistic num-
ber theory described above, as well as proving many new results. The
monograph, Kubilius [1], in which these researches are presented, is still a
standard work and, in many areas, is not superseded by Elliott [1].

An essential result needed by Kubilius in the construction of the finite
probability space has become known as the “Fundamental Lemma of Ku-
bilius”. It is essentially a sieve inequality and was proved by using the sieve
method developed in the 1940’s by Selberg. The general form of this in-
equality is a little cumbersome to state here (see Kubilius [1], Lemma 1.6),
but the following simple version (taken from Philipp [1], Lemma 5.1.1)
shows the nature of the result.

Fundamental Lemma of Kubilius

Let r = r(IN) be any integer valued function of the integer N, with
logr/logN — 0as N — oo, and let 2 = p; < --- < p; < r be the primes
not exceeding r. If a4, -+, o are non-negative integers such that

pixl"'ptat< VN1

then

#{L<m < N:pflm, i=1,---,t}



N 1 —log N
- - - =41 —
IR Ll(l p){ +O<exp(361ogr>)}’

with an absolute O-constant.

A different approach to the problem of interpreting (12) as a probability
measure and using probability theory was developed by Novoselov in the
early 1960’s. We will discuss this approach in the next section.

For a full discussion of the extensive further developments of probabilis-
tic number theory in the 1960’s and 1970’s see Elliott [1].

2. Novoselov’s Space.

In a series of papers, Novoselov constructed a probability space {2, which
seems to be a natural one for proving results of probabilistic number theory
(like the theorems of Hardy-Ramanujan, Erdos-Wintner and Erdos-Kac
above). See, especially, Novoselov [1], and the references contained there.
Another exposition is given in Babu [1].

Novoselov’s space is the completion of Z with respect to a metric topol-
ogy in which the basic open sets are the arithmetic progressions. This space
is equivalent to the following space:

Q=1[%Z,,
)

which is the Cartesian product of the completions, Z,, of Z with respect
to the p-adic valuations. (This equivalence is a special case of the results
of Chapter 4, Section 4 below). £ has a normalized Haar measure P, and
we can therefore use the results of probability theory directly.

In the space Q, it is easy to extend the usual notion, in Z, of divisibility
by a prime p. If x € Q we say pl|x if the p-th component of x is non-zero
and has p-adic valuation < 1/p. In this case the set {x € Q : p|x} has
probability 1/p and the idea of Kac is easy to formalize. For, if p # ¢ are
primes,

P(x € Q: plx and glx) = P(x € Q: plx)P(x € 2 : glx).

In this way the probability measure P mimics the density function 7. It is
now possible to establish some of the results quoted in the last section by



a direct appeal to the theory of probability. As an example, we outline, for
strongly additive functions, Novoselov’s proof of the Erdés-Wintner Theo-
rem (see Novoselov [1], Proposition 46).

A strongly additive function f may be extended to a function on 2 by

defining a new function, _ _
Fx) =2 Fo(x) (13)
»

where

= 32 i

There is no a prior: guarantee that T(;g) will even converge, because it is
possible that p|x for infinitely many primes p. However, the functions 71,()5)
are independent functions on 2 (in the probabilistic sense) and the conver-
gence of the series in (9) is exactly what is needed to apply Kolmogorov’s
Three Series Theorem to the functions Tp(}g). In this way Novoselov de-
duced that f(x) converges almost everywhere on 2. He also showed that
the distribution function of f(x),

Plx € 9: Flx) < M),
coincides precisely with the density,
w(m : £(m) < ),

and the Erdos-Wintner Theorem (sufficiency part) was proved. Novoselov
made use of a few arithmetic estimates (which amount to the Turédn-
Kubilius inequality) but no sieve results were used. Because of this, he
obtained no more than a special case of the Erdés-Kac Theorem (see Ex-
ample 2 of Section 6 in Novoselov [1]). Some sort of sieve result seems
essential in obtaining the Erdés-Kac Theorem (see Elliott {1], Chapters 3
and 12). In this context, it is interesting to quote Mackey [1] ( see page 40):
“Tt is almost certainly true that the results of Kac and his collaborators can
be deduced from this observation (that the functions _fp are independent)
and the known properties of independent functions.”, (my parenthetical
comment). It appears that Mackey underestimated the difficulty of the



transition between density results and the probability P. Perhaps, “almost
* certainly” should be interpreted in the technical sense.

Several authors have made use of the ideas of Novoselov in further stud-
ies. Notable among these is Babu (see [1], [2] and the references listed
there).

3. Probabilistic Results in Algebraic Number Fields.

Many of the results of Section 1 have been extended to results about
the ring of integers D, of an algebraic number field. A natural frequency
to use here is

Vn{I:.TEA}z%#{I:N(I)SnandIEA} (14)

which counts the number of ideals Z, of D, with norm no larger than n,
which lie in a set A of ideals.

In 1952, Prachar [1] proved a version of the Hardy-Ramanujan Theorem
for ideals. This was later extended by Fluch [1] as follows.

Ideal Hardy-Ramanujan Theorem

Let w(Z) be the number of prime ideals dividing the ideal 7 and suppose
that 6(n) — oo as n — oco. Then,

vn{Z : |w(T) — loglog n| > 6(n)y/loglogn}

tends to zero as n — oo.

de Kroon [1] investigated additive functions restricted to the princi-
pal ideals of D (see Chapter 2 Section 1 below, for a definition of these
functions), and, in particular, investigated an analogue of the Erdés-Kac
Theorem. However, his paper does not seem to provide a firm probabilistic
foundation for his results (see Chapter 5 Section 1 below, for a discussion
of this).

An alternative definition of frequency to that in (14) is used by Rieger
[2]. For a set A, of algebraic integers, let

v;{d:dE.A}zi-#{defD:|dl<n1/’andd€A} (15)



where |d| < n'/* means that each conjugate of d is, in absolute value, smaller
than n!/* (s being the degree of the number field). Using this definition of
frequency, Rieger proved an Erdés-Kac type result:

v {deD: |d <n¥* w(d)—loglogn < Ay/loglogn}

C3 A —w2/2
— Tor /_ N e dw
as n — oo, for a constant c3, where w(d) is the number of prime divisors
of the principal ideal generated by d. (See Satz 2 of Rieger [2], where an
estimate of the rate of convergence is also given).

Both Rieger and de Kroon used analogues of classical sieve methods
in D. (Rieger [1], Satz 14 is a Selberg sieve inequality and de Kroon [1],
Lemma 1 is a Brun sieve inequality similar to the fundamental Lemma of
Kubilius). Several authors have studied sieve results in algebraic number
fields for their own sake (for example see Rieger [1], Schaal [1] and Wilson
).

As far as I am aware, no author has proved an Erdos-Wintner theorem
in D.

In each case, the proofs of the aforementioned extensions of classical
results to D are analogous to the original proofs in Z. In general, work in
this area has not used a probabilistic framework as fully as in the case of

Z.

4. This Thesis.

The aim of this thesis is to set up a space for probabilistic number
theory in algebraic number fields analogous to that of Novoselov [1] in Z,
and to apply his approach to develop analogues of the Hardy-Ramanujan
and Erdos-Wintner Theorems in D. We endeavour to produce as much as
possible without the use of sieve results.

In Chapter 2 we gather together some preliminary material. We firstly
review some of the standard results about algebraic number fields and then
establish a few arithmetic estimates for the distribution of prime ideals.
Finally, we collect the probability theory we need.

In Chapter 3 we obtain an analogue of the classical Turan-Kubilius
inequality (as stated in Section 1 of this introduction) for additive functions



on the ideals of D. For this purpose we estimate the number of elements of
an ideal which lie in a multiple of a fundamental domain of D (viewed as a
lattice in IR®, where s is the degree of D).

In Chapter 4 we construct a probability space 2, containing D, using two
different approaches. These approaches are the analogues of the two ways of
constructing Novoselov’s space discussed in Section 2 of this introduction.
We then establish the equivalence of these two spaces from a topological
and measure point of view.

In Chapter 5 we prove versions of the Hardy-Ramanujan and Erdos-
Wintner Theorems for additive functions restricted to the principal ideals
of D. Some examples are discussed.

In Chapter 6 we consider additive functions on all the ideals of D. We
prove the Ideal Hardy-Ramanujan Theorem by using the results of Chap-
ter 5 and the correspondence between ideals of D, in a given class, and
certain elements of D. We then discuss a version of the Turan-Kubilius in-
equality for ideals and the consequent improved version of the Ideal Hardy-
Ramanujan Theorem. Some speculations about directions of further study
are then given.

Finally, a word about notation and presentation. We will use the O-
notation of Landau freely and, occasionally, the <-notation of Vinogradov.
The symbol # will always mean the number of elements in a finite set.
Theorems, corollaries and lemmas are numbered consecutively within a
chapter (thus, Corollary 4.3 would follow Lemma 4.2 in Chapter 4). Within
a chapter, a numbered line is referred to as, say, (12) and a numbered line
in another chapter is referred to as, say, (2.4) (if we want line (4) of Chapter
2). The symbol M will be used to mark the end of a proof.
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CHAPTER 2
PRELIMINARIES

In this chapter we will collect some definitions, notations and results
needed for our later work. Standard definitions and basic results of ideal
theory and algebraic number theory will be taken from Stewart and Tall
[1] (especially from Chapters 2 and 5). Results on probability will mainly
be taken from Halmos [1] and Rényi [1].

The notation introduced here will remain throughout the the-
sis.

1. Algebraic Number Fields.

Let Z and IR denote, respectively, the sets of integers and real numbers.

Let IK be a fixed algebraic number field of degree s, that is, a
finite extension of the field of rational numbers, of degree s.

Let D be the ring of integers of K, that is, the set of complex
numbers in IK which are the zeros of monic polynomials with coefficients
in Z. The elements of D are called algebraic integers and the elements
of Z rational integers.

There are s distinct one-to-one ring homomorphisms which map IK
into the complex numbers and which are the identity on rational num-
bers. These maps are the conjugate maps and they either map K into
IR or occur in complex conjugate pairs. We list them as

01,02, 101'1)0'1'1+1,Er1+17 Tt 70'r1+r275r1+'r2

where 0;(IK) C IR for ¢ = 1,---,7r, only, and the bar denotes complex
conjugation. We then have

s =11+ 2r;.

For a € IK we define the norm map from KK to IR by

L]

N(a) = [[ oi(a). (1)

=1

11



We note that if a € D is an algebraic integer then N(a) € Z; and also that
the following multiplicative property holds: for a, b € K

N(ab) = N(a)N(b).

If 7 is any non-zero ideal of D with Z # D then 7 has a decomposition
into the product of prime ideals

T=P...px

where ay,---,a, are positive rational integers and this decomposition is
unique except for the order of the factors ( we may also write D itself as
PO).

Throughout this thesis P and Q (with or without subscripts)
will denote prime ideals.

If 7 and £ are ideals we say

LITHI =LK
for some ideal K, and note that
L|T if and only if Z C L.
The distinct cosets of 7 in D,
D/I={ay+7Z,---,a:+ 71},

say, form a finite additive group and each algebraic integer d € D belongs
to one and only one a; + 7 for : = 1,---,t. We call

{(11,"',043}

a set, or system, of representatives mod Z, and if d belongs to a; +7
we say that d is congruent to a; mod I .

The number, ¢, of such representatives mod Z is denoted by the norm
of T, N(I), that is,

N(I) = #(D/1).
For d € D, we let <d> denote the principal ideal of D generated by
d. The new concept of norm generalizes that in (1) since

N(<d>) = IN(d)|

12



and for ideals Z and £ of D,
N(ZL) = N(I)N(L).

We need a few results on ideals. We will always assume an ideal is a
non-zero ideal of D.

Lemma 2.1

i) (Chinese Remainder Theorem). Let Py, - -, P, be distinct prime ide-
als. Let ay,- - -, o, be non-negative rational integers and by, - - -, b, elements
of D. Then there is an algebraic integer d € D such that

d—biE'Pf”

forall: =1,--- n.

ii) If P is a prime ideal of D then P contains exactly one rational prime
p and
N(P)=p"

for some .integer nwith 1 <n <s.
If T is any ideal of D then N(Z) € T.

iii) There are at most s prime ideals of given norm, 1.

Proof

i) See Goldstein [1], Theorem 2.2.13 or Narkiewicz [1], Corollary 3 to
Proposition 1.6.

ii) See Stewart and Tall [1], Theorem 5.11.

1ii) This result is easily deduced from the index equation of ramification
theory (see Goldstein [1], Theorem 5.1.3 or Narkiewicz [1], Theorem 4.1)
but to avoid introducing notation unnecessary in the sequel we present a
proof here.

From part ii) we may as well assume t = p” for a rational prime p and
1<n<s. Let
<p>= P ... P (2)

be the decomposition of <p> into prime factors with ej,---,e, > 1. As
p € P; for each i, = 1,---,r then part ii) gives N(P;) = p/ for some

13



1 < f; < s. Thus, if we take norms in (2) we have

p° =p% fiteterfr

and therefore, as e;f; > 1 for i = 1,---,r, we have r < s. Finally, if P is
any prime ideal with N(P) = p™ then p € P and so P is one of the prime
factors in (2) and there are at most s of these.

We now introduce the concept of integral basis. Any (non-zero) ideal
T of D (including D itself) has an integral basis with s elements. That is,
there exist by,---,b, € T such that any d € 7 can be expressed uniquely as

d=oa1b+ -+ asb, (3)

for ay,---, a5 € Z.

Suppose di,---,d, is an integral basis for D. We define the discrimi-
nant of D (or IK) to be the square of the determinant of the matrix formed
by taking the conjugates of the basis,

§ = (det[o:(d;)])*

where 7,57 = 1,---,8. The discriminant, é, is a non-zero rational integer
which is independent of the choice of basis d;,---,ds of D.

It is possible to choose an integral basis for an ideal Z which is not too
large compared with N(Z).

Lemma 2.2

There is a real number ¢ > 0, dependent on IK, such that if Z is any
ideal of D, then 7 has an integral basis b,---, b, with

|o:(b;)] < eN(T)'/ (4,7 =1,---,5).

Proof

The important point here is that ¢ is independent of the ideal Z chosen.
Rieger [1] gives the reference Hasse [1], page 406, but the result is not
explicitly stated there. However, it is contained in the more general result

14



of Mahler (1] (see Theorem 1) where a constant ¢ is produced which depends
explicitly orn the degree, s, the number of complex conjugates, r, and the
discriminant, § (see equations (26) and (4) of Mahler [1]) (see also Luthar
[1] and McFeat [1]).

Finally, in this section we introduce the concept of additive functions.
We say two (non-zero) ideals Z, £ are relatively prime if their prime
factorizations have no common factors (that is if P|Z then Pf £ and vice-
versa,).

Let f be a function from the set of ideals of D to the real numbers. We

say that f is additive on the ideals of D if, for relatively prime ideals
T and C,

f(ZL) = £(T) + £(£). (4)

For such an f we may write,

f@ =% f(P) (5)

PriT

where P7||Z means P"|T but P! [ I. We say that f is strongly additive
on the ideals of D if, as well as (4) above, we have

f(P") = f(P) (6)

for any prime ideal P and positive integer r. In this case we have

fZ) =3 f(P). (7)

PIT

Equations (5) and (7) could be taken as defining additive and strongly
additive functions. Note that from (4) we have f(D) = 0 for additive
functions f.

We say a function h from the ideals of D to IR is multiplicative if
R(ZL) = h(T)h(L)
for relatively prime ideals, 7 and £. We have an equation like (5) above,

h(T) = T h(P").

PrilT
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These concepts of additive, strongly additive and multiplicative func-
tions are the most natural to consider. They agree with the classical defi-
nitions (see Chapter 1 Section 1) when s = 1 and D = Z, since all ideals
of Z are principal and we may identify an element of Z with the ideal it
generates. In an algebraic number field IK it is possible for an algebraic
integer d € D not to have a unique factorization and therefore the natural

objects to consider for the definition of additive functions, and so on, are
the i1deals of D.

2. Some Arithmetic Estimates for Prime Ideals of D.

Lemma 2.3
Let 2z > 2 and X > 3 be real numbers. Then:
i)
1
> ——= =loglogz + O(1),
n(Pz NV (P)

where the sum runs over all prime ideals P with N(P) < z. (A similar
convention will apply when such sums are used later.)

ii) Let € > —1. There is a constant c. dependent only on € and s such that

z1+c
> N(P) <ec ;
N{P)<s log 2z
i)
. y 1/2 i 1/2
<\ 2o —) ( e ) = 0(1).
X (N{P)§X= N(P) n@yexs N(P)! Y
iv)

1/2
1 1
5 ( >, ) = 0(1),

o, NPIW@<xs N(PY T N(Q)

where the double sum runs over all ordered pairs of prime ideals (P, Q)

with P # @ and N(P)N(Q) < X°. (A similar convention will apply when

such sums are used later.)
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In each of the above inequalities the constant implied by the O-notation
depends on K but not on X or z.

Proof

1) In fact a stronger result is true. For some constant B, dependent on
K,

1 1
> W-loglogz+B+O(ng-).

N(P)<z

This result is proven in Narkiewicz [1} (Lemma 9.2). Alternatively see Fluch
[1] or de Kroon [1].

ii) We use the corresponding result for rational primes (see Prachar [2]
Satz 4.2): For some constant ¢, dependent on ¢,

1+4¢

Sp<ds (8)

i ;
o log =

(For € = 0 this is a weak form of the Prime Number Theorem.)
From Lemma 2.1 parts ii) and iii) we have, upon grouping prime ideals
of norm a prime, a prime square and so on,

T NPF<sI Y P (9)

N(P)<z =1pigz

Suppose, firstly, that € > 0. Then for p in the above sum we have
p’¢ < z¢ and so

Y ONPY < s Y1

N{P)<= =1 pics
< 22571 < sl z (10)
é log z

(this last inequality from (8) with e = 0).
On the other hand if —1 < € < 0, then p/* < p*for j =1,---,s and so
(9) becomes, again using (8),

zl+c

Z N(P)c S SZZPC S s2l

c. i
N{P)<= prdd log 2

17



Combining this with (10) gives the result for any € > —1.

iii) We let z = X* and use part i)‘ (combining main and error term) and
part ii) with e = 2/s — 1 > —1. We then see that the left hand side of iii) is

1 @\
= s 1/2
O(X(loglogX ) (logX’)

_ loglog X* 172 B
=0 ( (—logX’ ) = 0(1).

All O- constants depend on IK but not on X.

iv) If N(P)N(Q) < X* then one factor, N(P) say, is < X2, Let S
denote the double sum in iv). We have, crudely,
1

> —— -
peq, NPW@)<xs N(P) T N@Q)

<2 % 1 1

—z/8 E —2/s"
- N(P)<Xs/I? N(P)l o N(Q)<X*/N(P) N(Q)l Y

We first estimate the inner sum of (11) using part ii) with z = X*/N(P)
and € = 2/s — 1, and using the fact that N(P) < X*/2 implies

S =

(11)

s

X
> 3/2‘
log ——N('P) > log X
We obtain,
(Xa)2/3 1 1
S=0\| 17— ' d
(logXW N(’P)ZS:X’ﬂ N(’P)1‘2/3 N(’P)2/s
and, hence, using part 1),
loglog X*/?
Ju— 2 _—
S=0 ( X log X2

Finally, then,

[2
1 loglog X*/2\ '

18



which establishes iv). All O-constants depend on IK but not on X.
This completes the proof of Lemma 2.3.

We now introduce the following convention: A sum » , over all
P
prime ideals, will mean the limit as z — oo of the partial sums, Z .

N(P)<z

3. Some Probability.

Let © be any probability space with o-field B and measure P such that
P(Q)=1.

A collection £ of real-valued measurable functions on {2 is independent

if for any finite sub-collection ¢1,--+,g, € £ and real numbers Ay,-:-, A,
we have
Pz € Q:g1(z) < Ap,- -+, gnlz) < AR)
=PlzeQ:q1(z) <A Plz € Q: gu(z) < Ap). (12)
For a real-valued measurable function g on €, the expectation of g is
E(g) = /n gdP.

The main results we will need from probability theory are contained in
the following two lemmas.

Lemma 2.4

1) (Tchebycheft’s Inequality). For any real-valued measurable function
g on §) and for any real A > 0,

Pz e 0 lg(@)| 2 N) < B,

il) (Kolmogorov’s Three Series Theorem). Let {gx} be a sequence of
independent functions on 2. Let

° _ k(:v) lfl k(:z:)l <1
i@ ={ 6 Tt
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Then, the series

3 oi(a)

k=1
converges almost everywhere (a.e.) on Q if and only if the following three
series converge:

S Pz € Q: |gi(@)| > 1),

k=1

> E(9%),
k=1

> (E((g0)") ~ (B(gD)*)-

k=1

Proof
i) This is a special case of Rényi [1], Theorem 2.11.1.

il) See Halmos [1], Theorem E of Section 46.
|

Let {gx} be a sequence of real-valued measurable functions on 2. We
say that g; converges in probability to g and write

gi(z) = g(a)
if, for every A > 0,
P(z € Q: |gi(z) — g(z)| > A1) — 0 _ (13)

as k — oo. .
A function G : R — IR is called a distribution function if it is non-
decreasing and is left continuous, that is, for any A

G(\) = cEr& G(A —e¢),
and if it is normalized, that is

lim GO) =1, lim G()=0. (14)
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A real-valued measurable function g on Q is purely discrete if it takes,
almost everywhere, only a ¢ountable set of values. That is, if for some
countable set A C IR,

P(zef:g(z)e A)=1.

Lemma 2.5 (Lévy)

Let {gx} be a sequence of independent and purely discrete functions on
Q such that

[e ]
g9() = 3 _ gi(x)
k=1
converges almost everywhere on 2. Define the maximum jump of g; to be

Ji = sgp P(z € Q: gi(z) = A).

Then the distribution function of g, P(z € Q : g(z) < A), is continuous for
all A if and only if

01— )

=1
diverges.

Proof
See Elliott [1], Lemmas 1.22 and 1.18 or Lévy [1], Theorem XIII.
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CHAPTER 3

LATTICE ESTIMATES AND
THE TURAN-KUBILIUS INEQUALITY

This chapter is mainly devoted to obtaining an extension of the classi-
cal Turén-Kubilius inequality (see Chapter 1 Section 1 above) to one for
strongly additive functions on the ideals of the algebraic integers D (of
fixed number field IK). This inequality will provide one of the tools used in
Chapter 5 to link the frequency of additive functions with the probability
spaces to be developed in Chapter 4. We will prove this inequality in Sec-
tion 4, below, by using the argument of Elliott[1] (Chapter 4) and a main
estimate (Theorem 3.3 below) which gives the number of a special set of
representatives mod <n> (that is, modulo the principal ideal generated by
a rational integer n) which lie in an ideal, Z. In Sections 2 and 3, below,
we will view ideals as lattices in IR® and the special representatives as the
lattice points inside a parallelotope in IR’. We use a volume estimate, to
be discussed in Section 1 below, for the number of such points to prove
Theorem 3.3, the main estimate.

The following notation will remain throughout this chapter.

i) For an s X s real matrix D = [d;;],
|D| = max{|dj;| : 4,5 =1,--+,s}.
Note that then, for any s X s matrices, D; and Da,
|D1D2| < s|D1|| Dl
ii) For a vector u in IR’ with components uy,-- -, us,

||| = y/u? +--- + u2 = Euclidean length of u.

1) Z° is the integer lattice in IR”.
iv) OB denotes the boundary of a set, B, in IR’.

v) V4(B) denotes the s-dimensional volume of a set, B, in IR’.
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1. Lattice Points in Parallelotopes.

Let M be an s X s real matrix with row vectors my,---,m,. Let L be
a parallelotope in IR’ determined by M. Specifically, let

L = {ueR°:-1/2<m;-u<1/2,i=1,---,5}
= {ueR: Mue(-1/2,1/2] x --- x (=1/2,1/2]}.

We suppose that detM # 0 and note that L has s-dimensional volume

1

Vi(L) = | det M|

Furthermore, any parallelotope
{U’ €R”: |m1u| < )‘i, i=1,"',8}

with Ay, -+, As positive real numbers has s-dimensional volume

AP VEERD W

|detM|
Now we proceed to estimate the number of lattice points of an arbitrary
translation of Z*® which lie in L. The argument is similar to that of Lang
[1] (see Chapter 5 Section 2, especially Theorem 2) but we will be more
concerned with parallelotopes in IR’ and with the exact nature of any O-

constants. A more detailed version of the argument of Lang [1] is found in
Marcus [1] (in the proof of Lemma 2 in Chapter 6).

Theorem 3.1

Let 8 > 0 be a given real number and M areal sXx s non—siﬁgular matrix
such that

|M| < B,
where |M| is as defined by i) above. Let L be the parallelotope

{ueR :-1/2<m;-u<1/2,i=1,---,s}

23



where my,- -+, m, are the rows of M and let, for a € R’
A=a+7ZZ°

be any arbitrary translation of the integer lattice in IR’. Then the number
of points, #{A N L}, of A lying in L satisfies '

|M|
| det M|

#IANLY = e | <7

where v = max{2°t1s2,2°*15(1/2 + s8)°"" } does not depend on M or on a.

Proof
For each b € A let

Co={b+y:y€e(0,1] x---x(0,1}}

be the half-open box of volume one in IR’ determined by b. If b€ ANL
then C}, either lies in the interior, int L, of L or intersects the boundary, 0L,
of L. Therefore we have

#{beA:C,CintL} < V(L) < #{beA:C,CintL}
+ #{beA:CyNOL # ¢}.

Clearly, #{ANL} is also bounded by the terms on the left and right of this
inequality and so we have

|#{ANL}-V,(L)| < #{b€A:CoNIL # ¢}
Vi(UCy: b€ A,CyN AL # ).

It

The diameter of any C} is 1/s and so if C, N AL # ¢ the Euclidean distance
d(u,dL) of any point u € C} to &L can be no greater than +/s.
Therefore

[#{AN L} = Vo(L)| < Vo(E)

where
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E = {u € R’:d(u,0L) <+/s}.

We know that V(L) = 1/|det M| and so it remains to estimate V,(E).
We recall that the perpendicular (that is smallest) distance from any
point y € IR’ to the hyperplane m; - u = A is

Imi -y — Al
[l
and so, suppose that we expand the parallelotope L up and down in the

direction perpendicular to each bounding hyperplane m; - u = +£1/2 by a
distance /s. That is, we consider two new parallelotopes,

LT = {u:|m,~-u|§1/2+\/g||mi||,i=1,"',3}7
L~ = {U:Imf°u|-<—1/2_\/;|lmi”ai=15"'a5}'

It is easy to check that parallel faces of L and L* (and of L and L™ when
L~ # ¢) are /s apart. It is also easy to see that

ECLt.

The estimate of V,(E) involves two possible cases.

Case 1: Suppose that L is narrow in the direction perpendicular to one
of its bounding hyperplanes - the hyperplane m; - u = 1/2 without loss of
generality. So in this case we suppose

1
S]] =V ®

It then follows that any point of L is within /s of the hyperplane
my - u = 1/2 or the hyperplane m; - v = —1/2, and we have

LCECL*.
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Therefore
Vi(E) £ V(L)

2°(1/2 + |lmallV/5)(1/2 + [Imallv/s) - - - (1/2 + [Im,|[v/s)
| det M|

We estimate the first factor above, 1/2 + ||m;||+/s, by using (1) and also
|lmal| < v/s|M]|, and the other factors by using
Therefore we obtain,

22.2s|M|(1/2 + sB)*!

Vi(E) < TR 2

Case 2: Here we suppose that each bounding hyperplane of L, m; - u =
+1/2 ( = 1,---,s) is far from the origin. That is we suppose, for each
i=1,---,s, that

T >V ©)
so that L~ has a positive volume and
ECLY\L.
Therefore _
Vo(E) < V(L) = V(L")
We write |

|lmf] = max{|[mall,-- -, [[m.[}

and, calculating the volumes V,(L*) and V,(L™), we see that

V() < g g (/2 +IImlIV) = (1/2 = llmil3)).
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The bracketed term above has the form a® — b = (a — b)(a® ! + ba*~2 +
-+- 4+'5°71) where a — b = 24/s||m|| and by (3), 0 < b < a < 1. Therefore

we obtain

28
< 2

2s+ls2|M|
—_— : 4
| det M| ’ )

Vs(E)

since ||m|| < /5 |M].
Finally, combining (2) and (4) we obtain, in either Case 1 or Case 2,
the estimate

|M]|

Vi(E) < T Tdet M|

where
y= ma.x‘{2’+132, 23+13(1/2 + Sﬂ)s—l}

which depends only on 3 and s.
This completes the proof.

We note that it is possible to express this result as

#{AN L} = Vy(L) + O(V;-1(9L)),

where V,_; is (s —1)-dimensional volume. Examination of the proof of Case
2, above, also shows that we did not use the condition |M| < f and so the
theorem remains true if we replace this condition by the conditions

1
2{|my||

> s (i=1,--,9),

and use v = 2°*152, These conditions express the fact that each bounding
hyperplane of L is further from its centre than the diameter of a unit cube.
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2. Standard Representatives and the Constant K.

Let d,,--+,d, be an integral basis of the algebraic integers D.
Suppose n > 1 is a rational integer and <n> is the principal ideal of D
generated by n. It is easy to see that the algebraic integers

bizndi (i=1>""3)a
form an integral basis for <n> and the n® non-zero elements
arpdy + -+ - + agds (i =1,---,n, i=1,--+,3), (5)

are a system of representatives mod <n>. We call these the standard
representatives mod <n> with respect to the basis d,,-:-,d, of D.
It is important to note that these representatives cannot be zero.
Unless otherwise stated the phrase “representatives mod<n>" will always
refer to these standard ones.

Results similar to the above are true more generally. If 7 is an ideal of
D there is a “triangular” integral basis of Z:

ty = c11dy

iy = cqdy + cado
t, = cCady+ -+ cssds

where the c;; are rational integers and ¢;; > 0 (4,5 = 1,-- -, s). The algebraic
integers

aydy + -+ + a,d, (s =1,---,¢4, 1=1,---,8),

are a system of representatives mod Z and the number of these is N(7) =
€11€22 * - * C55. For a proof of these assertions about 7 see, for example, Weiss
[1] Proposition 4-8-16 (Weiss uses a; = 0,-- -, ¢;; — 1 but this is irrelevant).

In our future work we will only be interested in standard representatives
mod <n> and not in the more general situation.
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It is possible to limit the size of any ideal which contains a standard
representative mod<n>. '

Lemma 3.2

Let dy,---,d, be an integral basis of D, £ an ideal of D and n > 1 a
rational integer. Suppose that £ contains a standard representative mod
<n> with respect to dy,---,ds, that is, an element of the form

d=oydy + -+ a,d,, (6)
where a; € {1,---,n} fori =1,---,s. Then

N(L) £ Kn’
where

K=sJ"2>21 (M
and
J =max{|oi(d;)| : 5,5 =1,---, 8}
is the maximum modulus of the conjugates of the basis elements.

Proof
From (6), since d # 0 and d € £ we have

N(£) < N(<d>)= ][ o)

=1

< II2° lesllods)l
i=1 =1
< (snJ).

We note that J > 1 (and in fact J > 1 unless each of d,-- -, d, is a root
of unity, see Narkiewicz [1] Theorem 2.1).
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3. The Main Estimate.

In this section we assume the results of Stewart and Tall {1] about the

embedding of algebraic numbers in Euclidean space (especially Chapters 6,
8 and Chapter 9 Section 2).
We write, as in Chapter 2,

S-_—T'1+2’I‘2

and list the conjugate functions in a fixed order as

01y 530715014190 r1415 " * "y Ory 4725 Ory4ma

where 01,---,0,, are real and the rest complex (the bar denotes complex
conjugation).
We may embed IK in IR’ by the following map : for a € IK let

U(a) = (ul, oty Urg s Urg 41, Urg 41,0 7 aur1+1'2av7'1+1'2)
where

U; = O'i(a) if i=1,---,7r,
= Re(oi(a)) if i=ri+1,---,r 47y,
vy = Im(a,-(a)) if i=ri4+1,---,7y + 1.

The map o is a ring homomorphism with the extra property that for
a € K and a rational number r,

o(ra) = ro(a).

An integral basis dy, - - -, d, for D becomes, under o, a basis 0(d;), - -, 0(d;)
for IR’ over IR. Also, under o the algebraic integers D become the lattice
o(D) generated by o(d;),---,0(ds). That is, the lattice,

o(D) ={ono(d)+-- -+ aso(ds): e, €Z,i=1,---,5}

whose fundamental domain,
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H={tjo(d)+ - +t0(ds):0<t; <1, =1,---,5} (8)

has volume
V.(H) = 27"2|8|"

where § is the discriminant of IK. (Stewart and Tall [1] have 0 < ¢; < 1
above but this is irrelevant). The standard representatives mod<n> with

respect to dy, - - -, d,, for a rational integer n > 1, become the points in the
lattice o(D) of the form

aro(dy)+---+a0(ds) © (ai=1,---,n,i=1,--+,5)

that is the elements of (D) in nH.

Furthermore, if 7 is an ideal of D with integral basis by,:--,b; then T
maps to a sublattice of o(D) which is generated by o(b1), -, 0(bs) and
whose fundamental domain has volume

272 |§" 2N (T). (9)

We call this sublattice o(T).
We are now ready to state our main estimate.

Theorem 3.3

Let dy,---,d, be an integral basis of D and H the fundamental domain
for the lattice o(D) in R* defined by

H={tio(ld))+ - +t0(d,):0<t; <1,i=1,---,5}.

Let n be a positive integer and let Z be an ideal of D such that the lattice
o(Z) in IR’ intersects nH in at least one point. (So #{o(Z) N nH}, which
denotes the number of such points, is also the number of elements of 7

which are standard representatives mod<n> with respect to dy,---,d, in
the sense of definition (5) above.) Then

#{o(T)NnH} = erz) +0 (N—(%lfl,> ,
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where the O-constant depends on the basis dj, - - -, ds of D and the constant
¢ from Lemma 2.2 but not on n or Z. '

Proof
Choose an integral basis by, - - -, b, for Z such that

o:(b;)] < eN(T)'", hj=1,-+,8),
J

where c is the constant in Lemma 2.2 (and is therefore independent of I).
Define two s X s real matrices,

T = [o(b), - ,a(bs)],

A = [o(dr), - -,0(d,)],

where vectors are written as columns and dy,---,d, is the given integral
basis for D.

We note that T maps Z°, the integers of R’, onto the lattice o(Z) and,
by (9) above,

| det T| = V,(fundamental domain of o(Z)) = 27"2|6|"/*N(Z).

Also, as each element of T is ;(b;), or the real or imaginary part of such,
for some 7 and j, we have

IT| < ecN(T)°.

Furthermore, A maps the unit cube ¢/ = (0,1] x --- x (0,1] of IR’ onto H
and so, as above ) .

|det A| = 2772|6]"/.
We wish to estimate
#{nH 0 o(D)} = HT(nAU) N Z7),
so we let L be the parallelotope T-1nAU in IR®. That is,

L={u:Muel},
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where M = %A‘IT. Now, using the special property of our basis by, -, bs,

S

M| = 2ja7 T < LAy
n n

< ~|ATeN(T)"* (10)
and also |det T| N(T)
e
| det M] = n®| det A| T pe (11)

From our hypothesis and Lemma 3.2 we have N(Z) < Kn® (with K as in
Lemma 3.2.) Therefore, from (10),

|M| < s|A7|cK/®

and consequently we can use Theorem 3.1 with 8 = s|A~!|cK'/* (we note
that U is a translation of (—1/2,1/2] x --- x (—=1/2,1/2] and this theorem
is independent of any translation). Therefore, using Theorem 3.1 and then
(10) and (11) we obtain,

oL 1M
N@)' = 7 [det M|
vs]|AYeN(T)!/°
nN(I)/n*

,ns—l

N(I)l—l/s :

[#{nH No(I)} -

= ys|ld7ec.

This proves the result with O-constant of (see Theorem 3.1)
s|A7 c. max{2°+1s?, 221 5(1/2 + s*| At KY/*)*1} (12)

which is dependent only on s, ¢ and the integral basis dy,---,d; of D and
not on n or 7.

|
4. The Turan-Kubilius Inequality.

We are now ready to state the main result of this chapter.
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Theorem 3.4 (Turan-Kubilius Inequality)

Let dy,---,d, be an integral basis for D, and K be the constant from
Lemma 3.2, namely

K = (S max{|cr,-(d,-)| : 7”.7 = 1a et ’3})8'

Let f be a real-valued strongly additive function on the ideals of D (see
(2.4) and (2.6)) and define for rational integers n,

_ £P)
A(f)n) - N('p)ESKm N(P)

o (f(P))?
B(lf,n) - N('p)ZSKn-! N(P)

(as usual P denotes prime ideals). Then, there is a constant ¢’ which
depends on dy,---,d,, on K and on the constant ¢ from Lemma 2.2 (but
not on n or f) such that , for n > 3,

%Z(f(<d>) — A(f,n))" < ¢B(f,n)

where the sum is over all d € D which are standard representatives mod<n>
with respect to dy,---,d, (as defined by (5) in Section 2 above) or, equiv-
alently, over all d € D such that o(d) € nH (where H is the fundamental
domain for D in IR’ defined by (8) in Section 3 above).

Proof

The proof proceeds as in Elliott [1] (Lemma 4.1). We use A and B as
abbreviations for A(f,n) and B(f,n). We let, during this proof,

P
denote the sum over prime ideals P with N(P) < Kn® and also

P#Q
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denote the double sum over all pairs of pr1me ideals (P,Q) with P # @
and N(P)N(Q) < Kn°.

Firstly we assume f is a non-negative function.

We need to estimate the sum

S = (f(xd>)— A)’ = Edj (f(<d>))? - 2A; f(<d>) +n’A%  (13)
d

Since f is strongly additive and d # 0 in any sum we may write

fld>)= 3 f(P)=> f(P)

Pl<d> deP

and, consequently, the first sum in (13), above, is

S1 = E(Zf(p))

= Z(Z(f(’P)) + Y f(P(Q)) (14)
deP P#Q,dePQ

We use Lemma 3.2 and interchange the order of summation to obtain, using
the notation introduced above,

Z (PN 1)+ 3 (F(PI(Q) 3 1)

deP P#£Q dePQ

Now we use our main estimate, Theorem 3.3, with Z = P and then with
7 = PQ to obtain, with O-constants independent of f and n,

S, < n® ( (Z (f(7’1))1/8)

N(P)
JPY(Q) - f(PY(Q)
+;§2 NPNQ) T -0 (gb (N(P)N(Q))‘“"”))' (%)

We now examine the two O-terms in (15). Firstly,

. 2 i 2 1/s
Lo (P _ s (f(P) N(P)

nG’ N(p)V 7 N(P) n

< K'*B (16)
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because for P in the sum, N (77)1/ * < K'*n. Secondly, using the Cauchy-
Schwarz inequality, '

Ly-__f(PI@Q)
niza (N(P)N(Q))' /"

1/2 1/2
PN @) L[ e s
= (’Pz:#? N(P)N(Q) ) "('P%@ (N(P)N (Q))l_m)
< (BY)"o(v), "

where in the last step we have used Lemma 2.3 iv) with X = K*/*n. (Note
that K > 1). The O-constant in (17) will depend only on K and s. We
substitute (16) and (17) into (15) and estimate the remaining double sum
in (15) by A? to obtain

S; < n°(A4? 4+ O(B)). (18)

In a similar way we may estimate the second sum in (13) using Theorem

3.3. We obtain,
S, = AZf(<d>)_AZ (f(P)2_1)

Substituting this estimate and (18) into (13) we obtain,
S Sl — 252 —+ n’A2
P)
< n*|O(B)+A*—24% + ( L) )+A2). 19
(o) > T (19
We see that the A% terms cancel and we may estimate the second O-term

in (19) by the Cauchy-Schwarz inequality in a way similar to the proof of
(17). We obtain, for this term,

A f(P)
n; N(,P)l—l/s

(T )

= BO(1),
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where in the last step we have used Lemma 2.3 iii) (with X = K'/*n). Sub-

stituting this estimate into (19) we obtain, for an O-constant independent
of n and f,
S < n*0O(B),

which proves the Turdn-Kubilius inequality in the present case (where f is
non-negative).
For a more general, real, f we proceed as in Elliott [1] and write

f(Z) = 9(T) - h(T)
where g and h are strongly additive, non-negative functions defined by
_JfP) i f(P)20
9(7’)‘.{ 0 i f(P)<O

and
] 0 if f('P) >0
AP ‘{ _(P) i F(P)<o0.

We may use the Turan-Kubilius inequality, just proven, for g and h to
obtain it for f since

A(f,n) = A(g,n) — A(h,n)

and
B(f,n) = B(g,n) + B(h,n).
This completes the proof.

We need the following Corollary in Chapter 5.

Corollary 3.5

Let dy,---,ds, K, f, A(f,n), B(f,n) and H be as in Theorem 3.4. Let
n > m > 3 be integers and A > 0 a real number. Then

%#{dED:a(d)EnH and | E f(P) > A}

N(P)>Km*,deP

< (AU, ) = ACF,m))? + 35(B(f,m) — B(f,m)),
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where ¢’ is the constant from Theorem 3.4.
Instead of counting o(d) € nH we could, equivalently, count the d € D
which are standard representatives mod<n> with respect to dy,---,d,.

Proof

From the triangle inequality, the left hand side of the desired inequality
can be estimated as

< S 4#{d: o(d) € nH and [hn(<d>) = A(fym) + A(f,m)| > A/2)

1
+F#{d :0(d) € nH and |A(f,n) — A(f,m)| > A/2} (20)
where, for ideals 7,
h(D)= 2. f(P)
N(P)>Kme,P|T
We note that h,, is strongly additive and since n > m,
hm(P) f(P)
Ahyn) = =B v AP
" N(P)<Kn*® N(P) Km*<N(P)<Kn? N(P)
= A(fa TL) - A(f, m)
Similarly _
B(hm,n) = B(f,n) — B(f,m).
To estimate the first term in (20), above, we use the Tchebycheff inequality
(Lemma 2.4, i)) on the finite space of n® elements d € D with o(d) € nH

(or the n® standard representatives mod<n>), and then use Theorem 3.4
on the function h,,. Thus, the first term in (20) is

1
< (A/2) Z(hm(<d>)—A(f,n)+A(f,m))
< ;C(B(f,n)—B(f,m))- (21)

The second term in (20) is easier to estimate. Again we use the Tchebycheff
inequality to estimate the second term of (20) as

< 5 Z(A(f,n) A(f,m))”
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= S(Axfn) - A, m)) (22)

Substituting (21) and (22) into (20) gives the desired result.
|

It is possible to prove the Turén-Kubilius inequality for additive (and
not just strongly additive) functions f. In this case A(f,n) and B(f,n)
should be replaced by

f(PT)
C(f,n) = Eitien
(f ) N('PéKn’ N(PT)

and

| (f(P7))’
D(f,n) = E .
(o) N(PT)<Kn? N(PT)

The constant ¢’ will not be the same as in Theorem 3.4 but will still only
depend on dy,---,d,, K and c.
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CHAPTER 4

THE POLYADIC INTEGERS
OF AN ALGEBRAIC NUMBER FIELD

In this chapter we will discuss an extension of the ring of integers, D,
of a fixed algebraic number field IK, to form a metric probability space. In
Sections 1 and 2 properties of the P-adic completions of IK are stated and
used to construct a space, 2, which is the Cartesian product of these. In
Section 3, a special topology with the ideals of D as basic open sets around
0 is used to give another complete space D. Both spaces are completions of
D and both have probability measures. In Section 4 the equivalence of D
and Q from a topological and measure theoretic point of view is established.
Section 5 deals with the independence of functions on 2 and shows how to
extend an additive function to 2.

Once the equivalence of the spaces Q and D has been established we
shall call both the space of polyadic integers of K, and use which ever
formulation is most useful in any given circumstance.

We will assume the basic results of ideal theory (as in Stewart and Tall
[1]) and take the necessary properties of P-adic valuations from Goldstein
[1] especially from Chapter 3, Sections 1 and 2 (Note that Goldstein devel-
ops P-adic valuations from ideal theory). Taylor [1] and Halmos [1] supply
the necessary properties of the Haar measure and measurable functions and
Dugundji [1] basic topological ideas.

1. Basic Properties of the P-adic Valuation.

Let P be a prime ideal of D and d € D a non-zero algebraic integer
of IK. We may write the principal ideal generated by d as a non-negative -
power of P times a finite product of positive powers of other prime ideals,

<d>= POP{1Py2 - P,
and then define the P-adic value of d as,

ldlp = 1/N(P)".
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This defines a non-Archimedean valuation on D (once we set [0]p = 0)
which easily extends to K. '

In the topology induced by the metric d(a,b) = |a — blp, KK is Hausdorff
and the field operations are continuous - that is, IK is a metric field (and
consequently D a metric ring).

We may complete IK with respect to the P-adic valuation to obtain the
complete field Kp.
Define

Dp = {z€Kp:|z|p <1},

P = {:vele:|w|p<1}

and let 7 € Dp be such that |r|p = 1/N(P) (any element of P\P? will do).
The following results are proven in Goldstein [1] (see Theorems 9,12,13,14
and 21 of Chapter 3 Section 1):

a) Every ideal of Dp is of the form P% (@ > 0 a rational integer).
Furthermore, P~ = w*Dp so that Dp is a principal ideal domain.

b) Dp is the closure of D and P of P in the P-adic topology.

¢) Dp is a compact open subring of IKp and all its ideals P* are compact
and open.

d) The factor rings Dp/P" and D/P* are isomorphic and so Dp [P is
finite (with N(P)“ elements).

e¢) Any element z € Dp can be expressed uniquely in series form as
T = ijwj, b € A,
g=l

where | > 0 and A is a system of representatives mod P (that is of the
cosets of D/P in D). Furthermore, if b # 0, |z|p = 1/N(P)".

f) In Dp, the P-adic valuation takes only the values 1/N(P)*(a > 0)
that it takes in D.
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g) The set {z € Kp : |z|p < 1/N(P)*} = P* is open, closed and
compact (this is contained in b) and c) above). -

The set Dp is called the set of P-adic integers of K and, since it
is a compact metric group (under addition), it has a unique, translation -
invariant, complete, normalized measure (the Haar measure) on a o-field
containing the Borel sets of Dp (that is, containing the o- -field generated by
the open sets of the topology). This measure we will call Mp . Note
that by the normalization, Mp(Dp) = 1.

The next lemma gives the measure of a typical ball in the topology.

Lemma 4.1

Let o > 0 be a rational integer and a € Dp, then
Mp(z € Dp : |z —alp < 1/N(P)*) = 1/N(P)%.

Proof

Firstly note that we may as well assume a = 0 by the translation invari-
ance of the Haar measure, Mp. The set in question is then P° and we seek
Mp(P”). By result d) mentioned above, we may write Dp as the disjoint
union of cosets of P°,

D‘p —_—'faU(ag +_’ﬁa)U---U(at +5a)’

where t = N(P)~.

The Haar measure, Mp, is translation invariant and so each of the
cosets in the above union has the same measure which therefore must be
1/t because Dp has total measure 1.

|
2. The Polyadic Integers of IK - First Version.

We take the Cartesian product of the countably many P-adic spaces,
Dyp, to define the space of polyadic integers of IK ,

Q=][D».
P
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In this definition a fixed order of the prime ideals: P,,P,,---
is assumed and we write x € Q as x = (p,).

This space, §2, we endow with the product topology and note that, from
Tychonoff’s Theorem, it is compact because each Dp is compact. Further-
more, it 1s a metric ring with the metric inducing the product topology.

One such metric may be briefly described as follows. Let

dP.'(x'PnyPi) b min{l/ia pri — Yp; |'Pi}'

This metric induces the P;-adic topology on Dp;. Now set
D(x, }f) . st.}p{dp'-(.’r‘p.. yYP;) }-

D is a metric inducing the product topology on Q. (See Dugundji [1]
Chapter IX, Corollaries 3.3 and 7.3 for details).

We can now say that {2 has a Haar measure and that this is the same as
the product measure inherited from the Dp (the Borel o-field on § being
the product o-field). We call this measure M .

As in Lemma 4.1 we find the measure of a typical ball in the topology.
Firstly we need a definition.

Let Z be an ideal of D and Py, P, - - - the list of prime ideals above. For

certain non-negative integers ay,---,a; (some of which may be zero) we
have
Z="P.--PM
For x = (zp,) € Q we say,
Ilx if |zp,|p, K 1/N(P;)* foreach i=1,---,1L (1)

Lemma 4.2
For any ideal Z of D,

M(x € Q: I|x) = 1/N(Z).
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Proof

Write Z = Py --- P as above. The desired measure can be calculated
as a product measure using Lemma 4.1 since

eQ:Ilx} =P x P2 X - X P x Dp,y,, X Dpyyy X -+

Therefore,

MxeQ:Ilx) = f_[MP.-(fia‘)

=1

=IINEy = yN@)

Many other measure theoretic and topological properties of {2 can also
be proven by this product technique, but at times it is easier to consider 2
as the completion of D with respect to a certain metric. This is the aim of
the next two sections.

The space, (2, defined above is closely connected with the ring of adeles
of IK. (See Goldstein [1], Chapter 3 Section 2). The formulation is topo-
logically much simpler, however, as we are taking the product of compact
spaces and so the resulting space is also compact. The completions of IK for
Archimedean valuations (which are basically those defined as the absolute
value of conjugates of algebraic numbers) do not appear in our product
space.

3. The Polyadic Integers of K - Second Version.

The construction which we will now give is an adaptation of that of
Novoselov [1] (as amplified in Babu [1]) to the integers of IK (in place of
the rational integers). More topological details will be included as the space
to be constructed here is not as familiar as that considered in Section 2.

The collection of sets

{a +Z:a € D and 7 an ideal of D},
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may serve as a basis for a topology on D (that is, define open sets as the
unions of such sets) because any element d € D is in such a set (d € d+ D)
and the intersection of two such sets, if it is not empty, contains a third (if
de(a+Z)N(b+7Z') we check that d+IZ' C (a +Z) N (b+ I")).

Let the topology generated by this basis be A/ . We now have a
topological space (D, ) which is second countable (that is, has a countable
basis) because the set of algebraic integers and the set of ideals are both
countable. It is also possible to show that this space is regular and hence,
by Urysohn’s Theorem, metrizable, but it is useful to exhibit the metric
directly (compare with Babu [1}, Chapter 1 Section 2).

We list the non-zero ideals of D in some arbitrary, but fixed, order:
D,13,13---. For two algebraic integers a,b € D define

* ¥(a—b,T,
d(a’ b) = Z ( 211. )
n=2

where

{0 if cez
‘I’(C’I)—{1 if cgT.

Theorem 4.3

The function d(a,bd) is a translation invariant metric which generates
the topology A. With this metric, D is a metric ring,.
Proof

Clearly d(a,b) is translation invariant as

dla+c,b+c)=> \Il(a-*-C;nb_c,In)

n=2

= d(a,b).

Only two of the defining properties of a metric are non-trivial to check.

Suppose that d(a, b) = 0, then ¥(a—b,Z,) = 0forall 7, and soa—b € T,
for all Z,,. Hence a — b = 0.

Now, note that if ¥(a—c,Z,) = 1 then one of ¥(a—b,7,) or ¥(c—b,T,)
equals 1 (for if both equal zero then a —b € Z,, and ¢ — b € T,, which implies
a—c €1,). Hence,
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U(a—c¢,TI,) ¥ (a—-b,T,) + ¥(c—b,T,),

which gives the triangle inequality for d(a, b).
Now we must show that the open balls of D,

B(a,€) = {z € D:d(a,z) < €}

give the same topology as the basis {a+Z}. To do this we must check that
each topology is finer than the other.

Firstly, let ¢ € B(a, €) so that d(c,a) < e. Choose an integer [ such that
1/2' + d(c,a) < e, |

and let

I=1y---Ti41.
Then, for z € c+ Z,

dz,0)= 3. &Eﬁzﬁ <1/2,

n={+4+2 2

and so
d(z,a) < d(z,c)+ d(c,a)
< 1/2' 4+ d(c,a) < e.

Therefore,

ce€c+IC B(a,e)

and so the topology generated by {a + Z} is finer than that generated by
the open balls.

The converse conclusion is easier to prove and so the topologies are the
same.

To show that D is a metric ring we need to show that if a, — a and
b, — b (as n — o0) with respect to the metric d then a,b, — ab and
an £ b, = a+ b (as n — o0). This follows easily from the following lemma
which, in view of the equality of the topologies just discussed, is a trivial
restatement of the fact that ideals are open sets containing O.
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Lemma 4.4

Let {a,} be a sequence of elements in D.
i) If a, — 0 as n — oo then for any ideal £ there is an integer Ny, such
that a, € £ when n > N,.

ii)Conversely: If for every ideal £ there is an integer Ny such that a, € £
when n > Ny, then a, — 0 as n — oo.

This completes the proof of Theorem 4.3.
|

We now have a metric space (D,N) which we can complete. We will
show D is totally bounded. It then follows that the completion, D is totally
bounded and so, compact.

Lemma 4.5

D is totally bounded. That is, for every e > 0, there is a finite covering
of D by balls of radius e.

Proof
Let [ be a positive integer such that 1/2! < € and put Z = Z5- - Zj44.
We may write, for some elements {a;,---,a;} of D,

D=(a1+I)U(az+T)U---U(a:+ I).

If b€ D then b € a + T for some a € {a;,---,a;}, so that b € a + T; for
each 1 = 2,--+,l+ 1. Therefore d(b,a) < 1/2' < € and so b € B(a,¢).
Therefore 4

D = B(ay,€) U---U B(ay,e¢).

We can now say that D has a unique, normalized, complete transla-
tion invariant Haar-measure on a o-field containing its Borel sets. This
measure we call P .

Throughout the rest of this section we assume we have a fixed ideal, Z,

of D and that
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{al""’at}

is a system of representatives mod I (where t = N(Z) ), so that we may
write D as the disjoint union of cosets,

D=(a1 +I)UU(at +I)
We now proceed to find the measure of a typical basic open set, a + I.

Lemma 4.6

If ¢ € D, there is a unique a € {ai,--,a:} such that

:1:€a+f,

where 7, the completion of Z, is an ideal of D. We call a the unique
representative of £ mod T from {a,,---,a;}.

The result may be expressed by saying D/Z is isomorphic to D/Z (com-
pare result d) of Section 1).

Proof

It is easy, using limits, to check that 7 is an ideal of D.
Suppose that {z,} is a sequence of elements of D with z, — z as
n — 00. Since

{z,:n>21}C(a1 +T)U---U(a: + I),

there is an a € {a1,---,a;} and a subsequence {z,,} of {z,} such that for
all ng, z,, € a+ 7. Let us say

Tpy, = 0+ in,, in, €T.

The space D is compact and so the sequence {i,,} has a convergent
subsequence which converges to, say, i € Z. We can then say that {z,,}
has a subsequence converging to @ + :. This subsequence should also, of
course, converge to z. Therefore £ = a + ¢ for some i € 7.
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As for uniqueness: Suppose a and a’ are representatives of z mod Z. It
then follows that @ — a’ € 7 and so there is a sequence {i,} of elements in
7 such that i, — (a — a’) — 0 as n — co. According to Lemma 4.4, there is
an Np such that i, — (a — @') € T when n > Ny. We know that ¢, € 7 and
so a — a’ € T which means that a = o/, since a,a’ € {a;,---,a:}.

This completes the proof.

Lemma 4.7
For any a € D,

P(z € a+I) = 1/N(T).

Proof

This result should be compared with Lemmas 4.1 and 4.2.
Lemma 4.6 allows us to write D as the disjoint union of cosets of Z,

D=(m+I)U(az +T)U---U(a; + 1),
where t = N(Z). As in the Proof of Lemma 4.1 we note that each of these
cosets has the same measure, which must therefore be 1/t = 1/N(Z).

In later chapters we use properties of D (and Q) to establish results
about the frequency of certain sets of algebraic integers. The following
Lemma shows the connection between these concepts.

Lemma 4.8

Let g be a real valued function on D which is periodic mod Z (that
isif t —y € T then g(z) = ¢g(y)) and let A be a set of real numbers. For any

system of representatives {a;,---,a:} mod Z, where t = N(Z), we have,
1
P A = —— ;2 ; =1,---,t
(g((L‘) € ) N(I)#{a’J g(aJ) € A)] ) ’ }’
e

Jo@dP = Flate) + -+ gla)).
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These expressions are independent of the particular choice of represen-
tatives mod Z. '

Proof

As in Lemma 4.7 we may write D as the disjoint union of cosets and
we notice that on each coset a; +Z, g takes the constant value g(a;). This
means that ¢ is measurable and the two desired equations easily follow.

We have seen that the two spaces Q and D have properties in common
(compare Lemma 4.7 with Lemmas 4.1 and 4.2) and, in fact, they are
equivalent spaces. That is to say, there is a map ¢ : D — Q such that both
¢ and ¢! are ring homeomorphisms which preserve measure. The maps
¢ and ¢~! preserve ring, topological and measure properties. The proof of
this equivalence is the object of the next section.

4. The Equivalence of  and D.

We need a few topological and measure theoretical notions.

Let A;(¢ = 1,2) be two topological rings with measure (that is, A4; has
a basis for a topology T; in which the ring operations are continuous, and
a measure M; with o-field F;).

Let ¢ : A; — A; be a ring homomorphism. We say:

¢ is measure preserving if for any B € F;, we have ¢ }(B) € Fy and
M(B) = My(¢7(B)),

¢ is a homeomorphism if ¢ is invertible and both ¢ and ¢! are contin-
uous (it suffices to check this at 0),

¢ is uniformly continuous if for any basic open set U C A; containing
0, there is a basic open set V' C A; containing 0 so that, when a —b € V
we have ¢(a) — ¢(b) € U.

This last definition is taken from Husain [1] (see Definition 3 of Section
22).

We also need some notation. Let

Q =]Dp,
P
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A = {(d,d,--): d € D}, the diagonal of [[D,
' P

Tp = the P-adic topology restricted to D,
T = the product of the P-adic topologies, Tp, on H'D, restricted to A,
P

N = the topology on D generated by the basis {a + Z} as described in
Section 3,

¢ : D — A be the map ¢(d) = (d,d,---).

Lemma 4.9 (Strong Chinese Remainder Theorem)
A is dense in 2.

Proof

Let z = (zp;) be an element of 2. We need only show that any basic
open set around z contains an element of A. Such a basic open set may be
described as

U=UyxUyx - x Ui xDp,, X Dpyy X -+,

where, for certain non-negative integers ay,- -+, a; (some of which may be
zero), we have for each 1 = 1,---,1

Ui={z € Dp, : |z — zp;|p; < 1/N(P:)*}.

We know that D is dense in any Dp and therefore for each 7 = 1,-- -, there
is an algebraic integer d; € D such that,

|di — zp;|p; < 1/N(P;)™.

From the Chinese Remainder Theorem (see Lemma 2.1) there is a single
algebraic integer d € D such that, foreach 1 = 1,---,1

|d — di|p;, < 1/N(Pi)*>.

Therefore, remembering that the P-adic valuations are non-Archimedean,
for each ¢ = 1,---,1 we have,
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ld —zpilp; < max{|d—di|p;, |d: — 2p,|p;}
< 1/N(P;)*.
We now have d € U; (1 = 1,---,1) and hence (d,d,---) € U.
|
It 1s clear that both ¢ and ¢! are ring isomorphisms but topological

properties are also preserved.

Lemma 4.10 _
¢ is a uniformly continuous map from (D, N) onto (A, 7T),
#7! is a uniformly continuous map from (A, 7) onto (D, N).

Consequently, ¢ is a homeomorphism.

Proof

Let U be a basic open set around 0 in 7. For some non-negative integers
ai,- -+, We may write,

U={(d,d,-):|dp, <1/N(P)*,i=1,---,1}.

Now set
I ="PPy2.-- P
Then

¢~ (U)

{deD:|dlp, <1/N(P)%,i=1,---,1}
{deD:deP,i=1,---,1}
=7

which is a basic open set around 0 in V.

This proves the continuity of ¢. In fact as ¢ is invertible we also have
U = ¢(Z) and this is enough to show the uniform continuity of ¢, for if
a—b €T then ¢(a) — ¢(b) = d(a —b) € U.

The proof that ¢! is uniformly continuous is similar.
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Now, we complete D with respect to N to get D and A with respect to
T to obtain Q (by Lemma 4.9): '

Lemma 4.11

¢ extends to a ring isomorphism from D to © which again is a homeo-
morphism.

Proof

For convenience, we remember that the topologies of D and A are gen-
erated by metrics and so from Dugundji [1] (Chapter XIV Theorem 5.3), ¢
can be extended to a homeomorphism from D to €.

The ring isomorphism properties of ¢ come from its continuity. For
example, if z,y € D we have ¢, — z and y, — y as n — oo for some
sequences {z,} and {y,} in D. Thus,

¢(z +y) = ¢(lim (zn + yn)) = Um ¢(zn + yn)

= 7}1_{{)10 ¢($n) + nll’rgo ﬁb(yn) = ¢($) + ¢(y)

In fact the extension is defined in terms of such limits. Note that for this
extension procedure to work, ¢ and ¢~! have to be uniformly continuous.
Dugund;ji [1] has an example where the extension of a homeomorphism is
not a homeomorphism.

|
The last Lemma tells us that we can regard D and Q as topologically
the same and the next tells us that they are the same in measure.
Lemma 4.12
The ring homeomorphisms ¢ and ¢!, from Lemma 4.11, are measure
preserving on Borel sets.
Proof

We shall prove the result for ¢ as the proof for ¢! is the same.

Let B be a Borel set of (2. It then follows, because ¢ is continuous, that
#~1(B) is a Borel set in D and so ¢ is measurable.

Consider the function defined on Borel sets, B, of Q by
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L(B) = P(¢7(B))

where P is the Haar measure on D. It is easy to check that this is a
translation invariant, normalized measure (that is L(2) = 1) because ¢!
is an isomorphism and P has these properties. By uniqueness, then, L must
be the Haar measure, M, on the Borel sets of £2. Thus, for Borel sets, B,
of Q,

M(B) = P($7(B)).

Thus we have shown that we may regard Q and D as the same space
from a measure and topological point of view and we call both the space
of polyadic integers of IK. From now on, we will identify these
two spaces when convenient, and use whichever formulation is
most suitable in any given circumstance. We will use P for the
measure on 2.

It is also worth noting that the two concepts Z|x (as defined by (1) in
Section 2, above) and € T (where 7 is the closure of Z in D) coincide
because they are defined topologically.

Lemma 4.13

Let T = P{*--- P and let x € Q with x = ¢(z) for z € D. Then Tlx if
and only if z € T.
Proof

Consider the following open set,

U={z€Q:|zm|p, <1/N(P)*,i=1,---,1}.

- There is a sequence of elements {x,} = {(zn,Zn, )} of A converging to x
by Lemma 4.9.

Suppose Z|x. Then x € U and so x, € U for n > some Np. In that case
T|x» and so z, € T for n > Ny. Therefore as
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z=¢7(x) = lim ¢7(xx) = lim 2,

we have z € T.
The reverse conclusion is similar (note that U is closed).

5. The Extension of Additive Functions to Q.

Suppose we have a sequence {gp} of Borel measurable functions from
to the reals which are almost everywhere finite and with the property that,
for any x € Q, the value of gp(x) depends only on zp, the P-th component
of x. In other words, the value of gp(x) is “independent” of all coordinates
of x except zp. As we might suspect we have the following result.

Lemma 4.14

The functions {gp} described above are independent functions on the
probability space Q (in the sense of (2.12)).
Proof

For any prime ideal P, we may define, unambiguously, a function from
Dp to the real numbers by

hp(zp) = gp(x),

where x is any element of 2 with a P-th component of zp.
Suppose we have n functions from the sequence {gp} and n real numbers
A1, , An. For notational convenience we suppose that these functions are

gpys- -+, 9p, ( the proof being similar in other cases).
Let

U= {}5 efl: gp,()g) < Al,"',an(X) < An}

and, for: =1,---,n, let
S; = {zp; € Dp; : hp(zp,) < Ai}-

It is easy to see that
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U=Slx"'XSnXD‘Pn+1X"'
and, for ¢ = 1,---,n that
{XEQ:gPi(}S)SAi}=D'P1x"'XD‘P,‘_lXS,'XDPH_IX'--.

Therefore, using P for the measure on (2,

PU) = ﬁMPi(Si)

= ﬁP(;; € Q:gp(x) < XN),

1=1
which gives the independence of the functions gp,, -+, gp,.

We will now concentrate on a real valued additive function, f,
on the ideals of D (see (2.4)). We may write, for any ideal Z,

f@) = > f(P")

Pr||T

where P"||T means that PT|Z but P11 fT.

In Q the concept P7||x is defined also. Let P be a prime ideal and x € Q.
Let the P-th component of x be zp. If zp # 0 we say, using (1) in Section
2 above,

Prllx if Plx but P Yx
or equivalently
Plls i |eplp =1/N(P)". (2)

It is important to note that P(x € Q : zp = 0) = 0 and so, for almost all

x € §2, P7||x for some r > 0. We now define some functions on § associated
with f. We define,
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fp(x) = {f(Pr) ﬁ Z:D;IE’O. (3)

Note that for almost all x € £, fp(x) is given by f(P") for some r. If
PO||x, then fp(x) = f(D) = 0 and alsoif d = (d,d,---), for non-zero
d € D, then

fr(d) = f(P7) if Pr|| <d>.

We also define, using the convention introduced in Chapter 2 Section 2,
Fx) =2 Fr(x) (4)
P
and note that, for non-zero d € D,

2 f(P7) = f(<d>).

Prl||<d>

For a general x €  there is no guarantee that the series f(x) will
converge because there may be infinitely many primes P that divide x. In
the next theorem we show that f(x) converges almost everywhere (a.e.) on

Q2 under certain growth conditions on f(P). The proof follows Novoselov
[1] Proposition 486.

Theorem 4.15

Let f be a real valued additive function on the ideals of D (in the sense
of (2.4)) and suppose the two series below converge:

Zf(P)

N(P)
and
F' (P
o
where
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, P i |f(P) <1
-”m={1 i [f(P)| 2 1.

Then

Fx) =2 Fr(x)
P
converges a.e. on {} where Fp(x) is defined by (3) above. Furthermore, for
non-zero d € D, we have f((d,d,---)) = f(<d>).
Proof

The second assertion has already been proven.

For x € Q we saw in (2) and (3), above, that f5(x) depends only on zp,
the P-th component of x, and so by Lemma 4.14, the functions {fp} are
independent (trivially they are measurable). Kolmogorov’s Three Series
Theorem (see Lemma 2.4) tells us that f(x) converges a.e. if and only if
the following three series converge: |

n;P@eawﬁunzu
ii) > E(fp),
P
mg}m@@%—wﬁmﬁ,
where

is the truncated function associated with f»(x). We may say that if P"||x,

o n _ sormes _ J F(PT) i |F(PT) <1
fp(:s)—f(P)—{ 0 i |f(PT)] > 1.

ﬁwz{ﬁwﬁlﬁwkl
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The convergence of the three series above will follow from the convergence
of the two series in the hypothesis once ‘we have established the following
three equations. For O-constants not dependent on P we have:

) () = )40 (53

N "0 \we)
0 2@ =S o (55).

1 i : .
ry 5+ 0 (===) if P >1
vi) Px€Q:|fp(x)|21)= { g(P) . (N(‘P) ) " |f(. )l
N('P)2 otherwise.

The proofs of these equations are similar. We will prove vi) and iv).
From Lemma 4.2 we have (denoting measure on Q by P)

P(fp)l21) = > PreQ:P|x)
P21
1 1

yrs NP N(P)™H
If |f(P)|=1 then r =1 is included in this sum and so

= r>1 1 1
| ATl NPT N(P)2+|f<7§.>1W<1_W)
< 2 .
- N(PY

On the other, hand if | f(P)| < 1 then r =1 is not included and we just get
P(|fp(x)| > 1) = O(1/N(P)?). This proves vi).

The proof of iv) is similar,

~ ) 1

- %w (N(lpf)’
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since |f°(P7)| < 1.
We now turn our attention to proving the convergence of the three series
i), ii) and iii). From vi) we have

;P(IT’P(}S)l > 1)

- If(%:l>l <F(1?) o (N(;) )) " If(g):kl (N(1P)2>
o) N(P) <0 (S w7y

The first term here is

) (P))’
s NP

which is bounded (it is bounded above by the second series of the hypothe-
sis). The second term is trivially bounded. This establishes the convergence
of series 1). Next, from iv) we have

- f°(P) ( 1 )
E(fp) = _—
5 HU7) ZN(P) % NPy
73
1£(P)l<1
since fo(P) = f(P) for |f(P)| < 1 and f°(P) = 0 otherwise. This last
series also converges by the convergence of the series in the hypothesis.
This gives the convergence of ii).
The convergence of iii) follows in a similar manner.
This completes the proof of Theorem 4.15.

||
Later we will use the previous theorem to establish the Erdos-Wintner

Theorem which says that, given the convergence of the two series in Theo-
rem 4.15, the additive function f has a limiting distribution ( in a sense to
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be made precise). The Erdés-Wintner Theorem will be proven by extend-
ing f to Q (via Theorem 4.15) and using the connection between frequency
and measure on () (as expressed by Lemma 4.8 for example).
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 CHAPTER 5
LIMITING DISTRIBUTION OF ADDITIVE FUNCTIONS

In this chapter we will combine the two previous areas of study, the
arithmetic estimates on D and the space {2, to prove some results about
the distribution of additive functions defined on the set of ideals of D. In
Section 1 we will define a concept of frequency with respect to an integral
basis of D and prove several versions of the Hardy-Ramanujan Theorem in
the set of algebraic integers, D (see Chapter 1 Section 1 for the classical
version). In Section 2 we will introduce a special sequence of numbers
{N,} which will provide a tool for transferring frequency concepts to the
probability space . Several lemmas connecting these concepts will be
established. In Section 3 we will prove an analogue of the theorem of
Erdos-Wintner for D (see Chapter 1 Section 1 for the classical version).

The results and proofs will be adapted from those found in Novoselov
[1] and Babu [1] for the case s = 1 and D = Z with some simplifications
as noted. Some probabilistic results will be taken from Rényi [1].

1. Frequency and the Hardy-Ramanujan Theorem.

Let dy,---,ds be an integral basis for D and n a positive rational integer.
Let R C D be the collection of standard representatives mod<n> with
respect to the basis dy,- -, d; as defined in (3.5). That is

R={adi+ - +ads: 0s=1,---,n,1=1,---,8} (1)

For a polyadic integer z € § we let (in accordance with Lemma 4.6)
R,(z) be the unique standard representative of * mod <n> with
respect to d,, -+, d,, that is R,(z) is the unique element of R such that

¢ — Ru(z) € <n> (2)

where <n> is the closure of <n> in 2. Note that R,(z) # 0.
We define the frequency of A C D with respect to d,,+-+,d, as
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va(A) = %#{d cR:de A}
- %#{a(d) enHNo(D):de A} (3)

where H is the fundamental domain for o(D) in IR® as defined by (3.8). We
also define the upper and lower densities of A C D with respect to
d,,+++,d; as

m(A) = limsupry(A)
x(A) = liminfwv.(A) (4)

and when these both exist and are equal we speak of the density of
A C D with respect to d,,+--,d,,

m(A) = lim v,(A).

The set function 7 has some of the properties a probability measure
should have. For example, if A and C are disjoint subsets of D for which
7(A) and 7(C) exist, then 7(AUC) exists and equals m(A)+(C). In other
words, 7 is finitely additive. However, 7 is not countably additive and,
even worse, 1t is possible to find (even in the case s = 1 when D = Z) two
sets A and C for which 7(A) and 7(C) exist but 7(4ANC) and 7(AUC) do
not (see Kubilius [1] p.23 or Babu [1] Chapter 1 Section 1). This means
the subsets of D for which 7 is defined do not even form a field of sets.
To use the techniques of probability theory, therefore, we need to find a
probability space with a measure P which mimics 7 in some sense. This'is
the reason for constructing the space §2 in Chapter 4 (Lemma 4.8 already
shows how the frequency v, is connected with measure and integral). The
paper de Kroon [1] seems to ignore these points. For example, to prove his
results he uses the Central Limit Theorem with the “probability measure”

. #{IeE:N@T)<z}
AE) =l = N D) < )

where F is a set of ideals of D. As we saw above, even in the case s =1
when D = Z, this function is not well behaved.
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Already we are in a position to prove a Hardy-Ramanujan Theorem in
D. We will present two proofs because this further illustrates the connection
between v, and the measure P on the space of polyadic integers, 2, of
K, and shows that the Turdn-Kubilius inequality (Theorem 3.4) can be
regarded as a sort of Tchebycheff inequality and the functions A(f,n),
B(f,n) in that inequality as a mean and variance.

Theorem 5.1 (Hardy-Ramanujan )

Let dy,---,d, be an integral basis for D. There is a constant ¢/, depen-
dent upon dy, - - -, d, such that, for all strongly additive functions, f, on the
ideals of D (as defined by (2.6)), for all rational integers n > 3 and real
numbers A > 0 we have

vl d: [f(<d>) — A = 0B} < 5,

where A(f,n) and B(f,n) are as defined for the Turan-Kubilius inequality
(Theorem 3.4) and v, is the frequency with respect to dy, - - ,d, (as defined

in (3)).

Furthermore, if 8(n) is any function of n such that 6(n) — oo asn — oo,

then

vo{d:|f(<d>) — A(f,n)| = 8(n)y/B(f,n)} =0
as n — oo.
Proof

We use A and B as abbreviations for A(f,n) and B(f,n).

Version 1: We use the Tchebycheff inequality (see Lemma 2.4) on the
finite space of standard representatives mod<n> (as defined in (1)) and
then the Turdn-Kubilius inequality (see Theorem 3.4). Therefore,

vold: |f(<d>) A2 WEB} € g3 (f(<d>) - A’
d
< g By

Here the sum is over the d which are standard representatives mod<n> .

64



Version 2: For z € Q let R,(z) denote the unique standard representative
of £ mod <n> with respect to dj,---,d, as in (2) above. Define

fale)=" 3. f(P),
P|<Rn(z)>
and
gn(z) = fa(z) — A.
From the Tchebycheff inequality on the polyadic space ) we get
B1)\2 | g2(@)ap.

We note that f,(z), g.(z) and g2(z) are periodic mod <n> in the sense of
Lemma 4.8 and so, from that lemma (with Z =<n>),

vld lould)] > AWEB} € =2 — 3 62(d) (5)
d

P(z € Q: |ga(z)] = WB) <

where the sum is over the standard representatives d mod <n> as in (1).

For such a d we have R,(d) = d and so
ga(d)= 3, f(P)— A= f(<d>) - A.

Pl<d>
We substitute this into (5) and again use the Turdn-Kubilius inequality to
obtain the first result.
The second result comes from putting A = 9(n).

The second version of the proof above is the analogue in D of the argu-
ment in Novoselov 1] (see Example 1 of Section 6) for the rational integers.
Our proof is a little neater, however, as we have isolated the Turan-Kubilius
inequality and Novoselov develops the relevant estimates as he needs them
during the proof.

The case w(Z) = )1, the number of prime ideals dividing Z, holds
CoPIT
special interest. In this case we have, from Lemma 2.3,

A(w,n) = Bw,n) = >

1
——— =loglogn® + O(1), (6)
n@yzkne V(P)
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(where we have absorbed K into the O-constant). We may obtain a more
classical version of the result of Theorem 5.1 as follows.

Corollary 5.2

Let the notation of Theorem 5.1 apply. There are constants ¢” and n,
depending on the basis dy,---,d, of D, such that, for any n > n, and real
A >0,

1"
va{d : lw(<d>) — loglogn’| > Ay/loglogns } < %

Also, if (n) — oo as n — oo, then

va{d: Jw(<d>) — loglogn®| > 6(n)/loglogn* } — 0

as n — o0.

Proof

In view of the estimates in (6) we may choose n, such that for n > n,,

Vioglogn® —1/21/B(w,n) 2 |4(w,n) — loglog .
Firstly suppose A > 1. If we have a d € D such that,
lw(<d>) — loglogn’| > A\/logl—ogn_’,
then, for n > n,,
lw(<d>) — A(w,n)| > |w(<d>)—loglogn’| — |A(w,n) — loglogn?|
> X \/loEog n* — |A(w,n) — loglogn®|)
> A/2-1/B(w,n).

Therefore, using the Hardy-Ramanujan Theorem just proven,

vo{d: |w(<d>) —loglogn’®| > Xy/loglogn* }

IA

vp{d: lw(<d>) — A(w,n)| > A/2-4/B(w,n)}

Cc

(A/2)*

IA
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If A <1 then 1/)X? > 1 and it suffices to choose ¢” = 1. Therefore, the
first result is proven with ¢” = max{1,4c'}. It is possible to improve this
constant by improving the “1/2” in the first inequality of the proof. This
would require increasing n, however.

The second result comes from putting A = 6(n).

Much stronger versions of Corollary 5.2 exist. For example, see Rieger
[2] (a discussion of this result is in Chapter 1 Section 3, above).

2. The Sequence {N;} and some Frequency Results.

Let {IN;} be a fixed sequence of positive rational integers with
the following properties:

i) N < Niga,
1) Ngy1/Ni — 1 as k — oo,

iii) Ny — 0 in Q as k — oo (that is, for any ideal T there is a k, such
that <N;>C T for all k > k,).

For example, we may choose the sequence defined in Novoselov (1] or
Babu [1]:

Ni = (k —s(n) +n+2)n!

if s(n) < k < s(n + 1) where s(n) = 12 + 22 4 - -- + n?%. The properties 1)
and ii) above are easy to check, and we note that for each rational integer
n, there is a k, such that n|Ny for all k¥ > k,.. If we then choose n to be in
the ideal T (n = N(Z) for example) we have <N,>C<n>C T for k > k.
This gives property iii) above.

We now define a set of measurable functions on 2, the space of polyadic
integers of IK with probability measure P.

Let dy,---,ds be an integral basis for D and let & be the set of mea-
surable functions, g, from  to IR such that

(R, (z)) 5 g(z), (7)
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where &> denotes convergence in probability (see (2.13)) and R, () is the
representative of  mod<N;> with respect to dj, - - -, d, in the sense of (2),
above. The set S clearly depends on the particular choice of basis dy,---,d,
but our major result (see the Erdds-Wintner Theorem 5.7, below) is valid
for any choice of basis. It can also be shown (along the lines of Novoselov
[1] Proposition 10) that the set S does not depend on the particular choice
of the sequence {N,} with the properties i), i) and iii) above. We have the
following extension of Lemma 4.8.

Lemma 5.3

Let dy,---,d, be an integral basis for D. Let h(d) be any non-negative
function from D to the real numbers, and A any set of real numbers. Then

lim sup 51; > h(d) = lixkn sup/ h(Rn,(z))dP
N—+00 P —00

and
7(d : h(d) € A) =limsup P(z € Q : h(Rn,(z)) € 4),
k—oo

where Z denotes the sum over the standard representatives mod <n >

d

with respect to dy,---,d, as defined in (1) above and 7 is as in (4) above.
Furthermore, the above equations will still hold if we replace limsup

with liminf and 7 with 7.

Proof

Suppose that Ny < n < Ngy1. Therefore, the standard representatives
mod< N > are also standard representatives mod <n>, which are also
standard representatives mod<Ni41>. (In the language of (3.8) we have,
N H CnH C Ni41H). Therefore,

() T Srce0 < mneo < (52) gy 25 )

dp k+1 dk+1

where Z, Z, Z denote summation over the standard representatives
dy 4 dpp
mod<Ny>, <n>, <Nj41> respectively.
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Now, h(Rp,(z)) is periodic mod<N;> in the sense of Lemma 4.8 and
so, from that lemma, '

o ) = [ (R ()P,

The same expression holds with k + 1 in place of k. If we substitute these
expressions into the above inequality and take lim sup we obtain the first
result.

The second result is proven the same way (or use the first result on the
characteristic function of {d : h(d) € A}).
The corresponding results with liminf and x are proved similarly.

The following results are of a more probabilistic nature and are proven

in exactly the same way as in Novoselov [1] or Babu [1] for the case s =1
and D = Z.

Lemma 5.4

Let dy,---,d, be an integral basis for D and S the corresponding set of
measurable functions (see (7) above). Then '

i) If { g }is a sequence of functions in S and g is a real-valued measurable
function on 2, then any two of the following implies the third:

a) gn 4 g,
b) g €S,
c) Im7(d: |g(d) — ga(d)| > A) =0,
for all A > 0, where T is as in-(4) above. '

ii) S is closed under arithmetic operations. That is, if b, g € S and
a,b € R then the following are also in S: ah + bg, gh, a+ h and h/g (this
last provided g is bounded away from 0 on Q).

Proof

See Novoselov [1], Propositions 7 and 15 or Babu [1] Lemmas 1.5, 1.6
and 1.7.
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Part i) of this Lemma tells us that, for functions in S, 7 mimics the
probability P on Q. The next lemma gives the fundamental connection
between the probability P on Q and the limiting frequency of functions on

D.

Lemma 5.5

Let g be a real-valued measurable function on © and let, for real A,
G(\) =Pz € Q:g(x) < A).

Let di,---,d, be an integral basis for D and S the corresponding set of
measurable functions (see (7) above).
If g € S then
G(A) = lim vp{d: g(d) < A}

for any point A, of continuity of G. Here v, denotes the frequency with
respect to dy,- - -, ds as in (3) above. In other words, functions in S have
limiting distributions on D which equal their distribution functions on Q.

Proof

For g € § we have g(Rn,(z)) il g(z) and so we have convergence of
distribution functions (see Rényi [1] Theorem 4.2.1),

Jim P(z € 2 g(Br(2) < V) = GO,
if ) is a point of continuity of G. From Lemma 5.3, as 7 = x, then
Jim vald: 9(d) < A}

exists and equals G()) for such a .
||

The above lemma provides a criterion for deciding whether a function
on  has a limiting distribution, in some sense, when restricted to D (re-
member ) is the completion of D). Usually the problem is the other way
around. We start with a function defined on D and ask when it has a lim-
iting distribution on D. The above lemma could be used, were it possible
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to extend our function on D to a measurable function on 2 and guarantee
that the extension is in S. In the next section we will describe one possible
extension and explore its consequences.

3. The Erdos-Wintner Theorem.

We recall some definitions. Let f be a real-valued additive function on
the ideals of D (as in (2.4)). Let z € £ and let P be a fixed prime ideal.
As in Chapter 4 Section 5 we put zp for the P-th component of z, and we
say,

Pllz if |:13'plp =1/N(P) (8)
and ‘

T . f(,Pr) if ’PTHIE,
fr(e) = { 0 if zp = 0. (9)

Lemma 5.6

Let dy,---,d, be an integral basis for D and S the corresponding set of
measurable functions (as defined in (7)). For any finite collection Qy,---,@x
of prime ideals,

fo (@) + -+ fo.(z) €S.

Proof

From Lemma 5.4 part ii) it suffices to show that fp(z) € S for any
prime ideal P.
Let = € Q and suppose that P7||z for some r > 0 (which is the case for

almost all z € ). From the definition of the sequence {N;} we may find a
k, such that

<N>C P when k > k.
Thus, since Ry, (z) = (Rn,(z), Ry, (z),---) €  and
z — Ry, (z) € <Ni>
we have, for k > k,

l:vp — RN,‘(:I:)|,, < 1/N(P)T+1 < |.’13‘p|7,.

71



The P-adic valuation is non-Archimedean so we have, for k > k,,

|lzplp = |Rni(2)lp = 1/N(P),
and therefore PT||Rn,(z). Thus, for k > k,,

Fr(2) = Fp(Ru,(2)).
This means that f,(Rnx,(z)) tends point-wise to fp(z) for almost all z € O
which, in turn, implies convergence in the probability measure P (see Rényi

[1], Theorem 4.2.4). Therefore fp(z) € S.
|

We are now ready for the major result of this chapter.

Theorem 5.7 ( Erdés-Wintner )

Let f be a real-valued additive function on the ideals of D (as in (2.4)).
Suppose the following two series converge:

£P)
2 NPy’

GG
LNy (10)

where

, fP) 1P <1
f(Py= { 1 P> 1

Then, f has a limiting distribution on the principal ideals of D. That is,
there is a distribution function F' (in the sense of (2.14)) such that, for any
integral basis d;,---,ds of D and any point of continuity A, of F', we have

F(A) = lim vp{d: f(<d>) < A}

where v, is the frequency with respect to dy,-- -, d, as defined in (3) above.
Furthermore, F' is continuous for all A if and only if the following series
diverges,
1
ot 11
L i (1)

F(P)#0
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Proof

The proof is modelled on Babu [1], Theorem 1.1.
For z € Q2 put

flz) = ;Tp(w)- (12)

Theorem 4.15 gives the convergence of f a.e. on  and for non-zero d € D,
we have f(d) = f(<d>). Let

F(\) =Pz €Q:Flz) <)) (13)

and let dy,- - -,d, be an integral basis for D and S the corresponding set of
measurable functions defined by (7) above. We will show f € S and then
Lemma 5.5 gives the first result.

To show f € S it is sufficient, by Lemmas 5.6 and 5.4 part i) and using
the fact that a.e. convergence implies convergence in probability, to show
that for any A > 0,

m(d: | f(d)— Y fr(d)]>A)—>0 (14)
N(P)<Kme
as m — oo, where T is the upper density with respect to dy,---,d; as

defined by (4) above, and K is the constant from Lemma 3.2.
Define a strongly additive function f* on the ideals of D by

(D=3 f(P)
PIT
and sets W, Y,, by

w = {P:|f(P)| 21},

Y, = {d€D: either d € P? for some P with N(P) > Km’
or d € Q for some Q € W with N(Q) > Km’}.

It can be seen that for d € Y,¢, the complement of Y;,, we have

f )= > Fd] = If(<d>)- > f(P)

N(P)<Km® N(P)<Km?,deP

= > ™l

N(P)>Kms?,deP
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Therefore, for integers n > m > 0 and real A > 0, we have

v{d: [ f(d)— 30 Fr(d)|>A}

N(P)XKm*
<v{d:deYy}+v{d:deY:and |f(d)— D Fp(d)| > A}
N(P)<Km’
Svp{d:deY,}+v{d: | o 1 (P)| > AL (15)

N(P)>Km?,deP

The second term in (15) is easy to estimate. Using Corollary 3.5 and
noting that f*(P) = f(P), so that (in the notation of that corollary),
A(f*,n) = A(f',n), B(f*,n) = B(f',n) and so on, we have the second
term of (15)

2

< A 0 - A m)) + S5 (B m) — B m). (16)

=%

For the first term in (15), we use Lemma 3.2 and then Theorem 3.3 (on
T = P? and then 7 = Q € W and combining main and error terms) to
obtain

vp{d:deY,} < 2 v {d:d e P
Kms<N(P)<VEn®

+ ) vafd:d € Q}

Kms<N(Q)<Kn*,QeW

il 1
< —_— —
Km’<N%5m N(P)2 Km"<N(Q§S:Kn-',QeW N(Q)

< ¥ ;
Km2<N(P) N(P)? Kms<N(Q) N(Q)

where in the last step we have used (f’(Q))2 =1 for Q € W. The constant
implied by <« does not depend on P, Q, n or m.

We use estimates (16) and (17) in (15) and let n — co and then m — oo.
The convergence of the series (10) in the hypothesis gives (14) and the first
part of the theorem is proven.
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To prove the second assertion we use Lévy’s Theorem (see Lemma 2.5).
The measurable functions fp(x) are purely discrete, independent, and
take the values f(P") with probability N(lp), (1 — N(I,P)) . The maximum

jump of fp(z) can be seen to be,

5o [ 1HOUEY) it £(P) = 0
P 7\ 1=1/N(P) + O(1/N(P)?) if f(P)# 0.
Therefore Y (1 — Jp) diverges if and only if »_ 1/N(P) diverges. From
L f(P)#£0

Levy’s Theorem, then, the second result follows.
This completes the proof of Theorem 5.7.

We now discuss a few examples of the application of this theorem. They
are adapted from the examples in Elliott [1] Chapter 5, pages 188-189.
Let {(Z) denote the norm sum of the finite number of divisors of the

ideal 7,
¢(T) =3 _N(L).

LT
This function is multiplicative because N(L) is multiplicative, and we have
@)= II ¢(P)
Pr||T

where

: r+1 _
(P = 14 N(P) +--+ NPy = H=

We examine the additive function f(T) = log(¢(Z)/N(Z)). We have, for
any prime ideal P,
1+ N(P) i
<
N(P) T N(P)
and so the two series (10) of Theorem 5.7 converge and the series (11)

diverges. We put z = ¢ and deduce that, for any integral basis dy, - -, d,
of D the function

0< f(P) =log

F'(z) = lim v {d: {(<d>) < z|N(d)|}
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exists and is continuous for all z > 0. Furthermore, we have the same limit
function F', no matter what the choice of dy,- -, d, may be.

A further example may be provided by using an analogue of the Euler
totient function,

e(T)= IT «(P")
PriiT
where

p(P") = N(P) — N(P) .
Again, using Theorem 5.7, we deduce that

F'(2) = lim va{d: p(<d>) < z[N(d)[}

exists, is continuous for all z > 0, and is independent of the choice of basis
dy,---,ds of D.

The above examples show that, if h(Z) is a multiplicative function on
the ideals of D, then, as log |h(Z)| is additive, we can deduce some informa-
tion about the distribution of A(Z) and the Erdos-Wintner Theorem gives
criteria for the existence of a limiting distribution of A(Z). There are many
general results of this sort. For example we have the following (compare

with Babu [1] Theorem 6.2).
Corollary 5.8

Let h be a positive real multiplicative function on the ideals of D, such
that for some p > 1 the series

1 log?h(P) log h(P)
LNE) & NP) ' % NP)

converge, where Y denotes the sum over P with 1/p < h(P) < g and Y
2 1

denotes the sum over the remaining P. Then % has a distribution function
of the sort described in Theorem 5.7.
Proof

Put f(Z) = logh(Z). The Erdés-Wintner Theorem gives f € S and

then b = ef € S for any possible S.
|
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In this chapter we have been examining the distribution of additive
functions f(Z) in terms of their behaviour on principal ideals. That is, we
have been investigating for sets of reals numbers, A, the frequency

—4{d: f(<d>) € A},

where the d which are counted are of a special sort (standard representatives
mod <n>). There are many results concerning the distribution

SR N(D) < 2, £(T) € A)

of f among all its ideals. It is possible to prove some results of this sort
using the methods of this chapter. This is discussed in the next chapter.
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CHAPTER 6
SOME EXTENSIONS

In this chapter we present some extensions of the results of the previous
chapters and consider some further directions of possible research. In Sec-
tion 1 we will prove a Hardy-Ramanujan Theorem for a general bounded
set in IR’. Then, we will turn our attention to obtaining results for the dis-
tribution of additive functions on all the ideals of D (not just the principal
ones). For this purpose, in Section 2 we will present some known results
concerning the correspondence between ideals of D in a given ideal class
and certain special elements of D. In Section 3 we will prove Prachar’s
version of the Hardy-Ramanujan Theorem (see Theorem 6.2 below). In
Section 4 we will discuss a Turdn-Kubilius inequality for ideals and a con-
sequent strengthening of Theorem 6.2, below. We will then indicate some
possible areas of future research.

1. The Hardy-Ramanujan Theorem for Bounded Sets in R”’.

Let dy,- -+, d, be an integral basis for D and K the constant correspond-
ing to dy,---,ds as defined in Lemma 3.2. As in Chapter 3 Section 3, let
H = H(dy,--+,d;) be the fundamental domain for (D) in IR* defined by

H(dy, -+ ,ds) ={tio(di)+ - +ts0(dy): 0<t; <1, 1=1,---,s}. (1)

Let f be a real-valued additive function on the ideals of D. In accordance
with Theorem 3.4 we put

ol = _ ()
A = Afm) = S

| (f(P))’
B(n) = B(f,n) = Mo 2
( ) (f ) N('P%Kna N(p) ()

In Theorem 5.1, above, we showed that, if f is strongly additive, and
H = H(dy,---,d,) is as in (1), then

% #{d € D:o(d) € nH and |f(<d>) — A(n)| > 6(n)\/B(n) }
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tends to zero as n — oo for any unbounded function 8(n), of n. We wish
to replace the fundamental domain H with a more general subset of IR’.
Theorem 6.1

Let dy,---,d, be an integral basis for D and f a strongly additive func-
tion on the ideals of D (as defined in (2.6) and (2.4)). Let E be any bounded
subset of IR® and 6(n) any real-valued function of n such that 6(n) — oo
as n — oo. Then, there is a real number g > 0, which depends on E and
dy,---,d, but not on n, 6 or f such that,

1 1 /
. — >
-#{d € D:o(d) € np™'E and |f(<d>) — A(n)| = 6(n) B(n)}
tends to zero as n — oo, where A(n) and B(n) are as in (2) above.

Proof
Let I be a subset of {1,---,s}. Using the notation in (1) above, let

H;=H(d;,---,d})
where

di =

1

d  ifiel
—d; ifigl.

Since o(d;),--,0(d,) is a basis for IR® over R, any y € IR’ can be written
in the form

y=to(d)+---+ tyo(d,). (3)

If such a point, y, belongs to the “quadrant” of IR® with ¢; > 0 (for ¢ € I)
and t; < 0 (for 7 ¢ I) it belongs to pHp for some p > 0, where Hj is
the closure of H;. The set E is bounded and so, there exists a positive g,
depending on E and d, - -, d,, such that

EcuUHr
1
and, therefore,

nutE C UnE = U(nHI U nJr), (4)
I I
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where
Jr=H;\H; = {y € Hr : (3) holds with some ¢; =0, 1 =1,---,s}.

Counting points, we have,

L #{deD: o(d) € ny and |f(<d>) — A(m)] 2 O(n)y/B(n)}
< %#{d € D:o(d) € nHy and |f(<d>) — A(n)| = 6(n)y/B(n)}
+nl; #{deD:o(d) € nJy). (5)

By applying the Hardy-Ramanujan Theorem (Theorem 5.1) with the basis
d},---,d:, defined above, we see that, for some c¢; depending on di,---,d;
(but not on n, f or §) the first term on the right of (5) is

(6(n))*

Furthermore, from the definition of J; we see that the lattice points in nJ;
are of the form (3), above, with ¢;, = 0,---,nif¢ € [ and t; = —n,---,0if
1 ¢ I, and somet; =0(¢ =1,:--,s). The number of such points is

<

(6)

< s(n+ 1) (7)

If we substitute (6) and (7) into (5) and let n — co we get the required
result with nHy in place of nuy~'E. Finally, we use (4) and sum over the
2° possible subsets I, to get the desired result.

It is possible to use this result to obtain Prachar’s version of the Hardy-
Ramanujan Theorem (see Theorem 6.2 below), but we need a way of deduc-
ing results about ideals of D from results about elements of D. A method
for doing this, developed by Hecke, is described in the next section.

2. A Fundamental Domain for Units.

For this section we will assume some basic results about ideal classes,
fractional ideals and fundamental units for D. In particular, we use the
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finiteness of the number of ideal classes and of the number of roots of unity
in D. All relevant results may be found in Chapters 9 and 12 of Stewart
and Tall [1].

Let w be the number of roots of unity of D, C a fixed ideal class and £
a fixed (integral) ideal in the inverse class C~'. In that case, we have the
following one-to-one correspondence:

For each (integral) ideal T € C there is a unique principal ideal <d>C £
such that TL =<d> and, conversely, for each <d>C L there is a unique
(integral) ideal T = L7'<d>€ C (where L' = {y € KK : yL C D} is
the inverse fractional ideal of £). Note that if T corresponds to <d> then
N(Z) < z if and only if |N(d)| < N(£)=.

In Section 3 below, we will want to count the number of 7 € C with
certain properties. This will be accomplished by counting the number of
d € L corresponding to Z, but, since d € £ is determined from <d>C L
only up to multiplication by units, we need the concept of a fundamental
domain for multiplication by units.

From this point on we will identify D with its embedding o(D),
which is a lattice in R°. Therefore, we will write D for o(D) and regard
d € D as being a lattice point and an ideal as a sublattice.

We can define a norm on IR’ which agrees with the usual one on D as
follows. For y € IR’ of the form,

Y= (U‘la Ty Uryy Ury 41 Urg 41, 070 )uT1+T27vT1+T2)

we define

N(y) =Ur-- “n(uzﬁl + v31+1) ik (u12'1+1'2 + v72‘1+r2)'

Let (1, ,(rtr—1 be a fundamental system of units of D and let U
be the free multiplicative group generated by them. Then, every unit of
D is of the form up where u € U and p is a root of unity, so that, U is
isomorphic to the factor group of the group of units modulo the group of
roots of unity in D.

There is a set T C IR®, whose construction will be described later, with
the following properties:
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a) For each non-zero d € D, there is a unique 7 € T such that d = ur
for some unit v € U.

b) 2T =T for every z > 0.
c) If we put T(2) = {r € T : |N(r)| £ z} we have,

T(z) = 2/°T(2).

d) T(1) = {r € T : |N(7)| £ 1} is bounded.

Property a) says that T is a fundamental domain for multiplication by
units in U. In view of these properties and the one-to-one correspondence
discussed earlier, we have the following one-to-w correspondence (where w
is the number of roots of unity).

Main Correspondence

Let C be an ideal class and £ a fixed integral ideal in the inverse class
C~'. Let T C IR’ have the properties a) to d) above and let z > 0.

For each (integral) ideal 7 € C with N(Z) < z, there are w corresponding
points d € D such that,

de LN (N(L)2)*T(1).

Conversely, for each d € LN(N(L)2)Y/*T(1), there is a unique (integral)
ideal 7 € C with N(Z) < z.
In this correspondence, IL =<d> .

We shall now briefly outline a method for constructing a set, T', with
properties a) to d) above. A fuller discussion is given in Marcus [1}, Chapter
6 (and for a more compact discussion see Lang [1], Chapter 6, Section 3).
Given this construction, it is not difficult to obtain the properties a) to d)
above.

Consider the following log map from IR** (the points in IR’ with non-zero
coordinates) to IR™*"2, For y € IR* of the form,

y= (ul, oy Uy Uy 41, Urg 415y Uy gy vT1+1'2)7
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define
log y= (lla R lr1+7‘2)’

where
| s e
l,' OgW 1fZ=1,- c,T1
2 4 o2
= 'T;:r—1(4_)—|t;'/% ifi'=7‘1+1,"',’l"1+1‘2.
)

Under this map, any point in IR*® maps to the hyperplane in IR™ "2 defined
by

ll +---+ lr1+r2 =0. (8)
Furthermore, the units of D (viewed in IR’) map to a lattice in the hyper-
plane (8) and the fundamental units, (1,--+,{r4r,—1, map to a basis for

this lattice over Z. We take a fundamental domain, F', for this lattice of
units in the hyperplane (8), and set

T={reR"”:logr € F}

which is the pre-image of F' under the log map. As we said before, the
properties a) to d) above are not difficult to check for this choice of T

3. An Ideal form for the Hardy-Ramanujan Theorem.

Let f be a function on the ideals of D and z > 0 a real number. We
define two new summatory functions associated with f,

' fP)
A(z) =
( ) N(?Z)<z N(P)

/ (f(P)*
B(z) = 9
@ = & W) )

(so in the notation of (2) above, B(n) = B'(Kn®) and A(n) = A'(Kn?)).

In this section we will assume that f has the following prop-
erties:
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i) f is strongly additive,
it) |f(P)| £ 1 for any prime ideal P,
iii) B'(2) — oo as z — oo,
(the constant 1 in ii) could be replaced by any other positive constant).

Suppose m(z) is a positive function of z, such that

o),

— a>0as z— oo. (10)

If we use the estimate

> N—(l'P_) = loglog z + O(1)

N(P)<=z

from Lemma 2.3 and properties i), ii) and iii) above, we obtain for m(z) as
in (10), and for any constant K > 1, the following estimates:

iv) A'(K(m(2))°) = A'(z) + O(1) as z — oo,

o —B0)
B(K(m(2)))

—1asz— oo,

vi) For any ideals T and £ of D,
IF(ZL) = f(D)] < Y 1 =w(L).
PIC

In these equations the O-constants depend on the field IK and the constant
K but not on z or f.

We are now ready to prove a version of the Hardy-Ramanujan Theorem
in ideal form (see also Section 4 below).

Theorem 6.2

Let f be a strongly additive function on the ideals of D such that

|f(P)| < 1 for all prime ideals and B'(2) — oo as z — co. Let 9(z)
be any increasing function of real z such that ¥(z) — oo as z — oo. Then,

%#{I: N(T) < z and |f(Z) — A'(2)| > ¥(2)\/ B'(2) }

tends to zero as z — oo, where A'(2) and B'(z) are as defined in (9) above.
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Proof

Let C be any ideal class and L a fixed integral ideal in the inverse class
C~!. Let T be a fundamental domain for units as described in Section 2.
In view of the correspondence discussed in Section 2 we have,

%#{I €C: N(Z) < z and |f(T) — A'(2)] = ¥(2)/B'(2)}
= %#{d € LN pT(1): |f(L7 <d>) — A'(2)| = ¥(z)/B'(2)}, (11)

where p = (N(L£)z)"/*.
Therefore, it suffices to show that the right hand side of (11) tends to
zero as z — 0o, and then to sum over the finite number of ideal classes, C.
Let d,---,d, be any integral basis of D and K the corresponding con-
stant (defined by Lemma 3.2). The set T'(1) is bounded, so let p be the
positive constant from Theorem 6.1 corresponding to T'(1) and di,---,d,.
Define the integer valued function,

m(z) = [up] + 1 = [u(N(L)2)*] +1. (12)

We have

g%))s_,usN(ﬁ)>0asz—>00,

and the estimates in iv), v) and vi) above apply. Using these estimates and
an argument similar to the proof of Corollary 5.2, it follows that, to show
the right hand side of (11) tends to zero it suffices to show that

—#{d€ LNpT(): |f(<d>) — A(m)| 2 1/2-$()Bm)}  (13)

tends to zero as z — oo, where A(m) = A'(Km?®), B(m) = B'(Km*) and
we have written m for the integer function m(z). (The details are messy
but not difficult).

We now need to show (13) tends to zero. We will use Theorem 6.1 with
an appropriately chosen (n).
Define

B(n) = 1/2 - ((n — 1)* =" N(£)™).
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It then follows, from (12), that 8(m(z)) < 1/2 - 4(z) because % is in-
creasing. Also, from (12), p < m(2)p~! and the properties of T give
pT(1) C m(2)u~"T(1).

Therefore, we see that (13) is

< 7-711- #{d € LNmu~'T(1) : |f(<d>) — A(m)| = 8(m)W/B(m)}. (14)

We now let z — oo, then, as m(z) — oo and m(z) is integral valued,
Theorem 6.1 implies that (14) tends to zero. As noted, this means that
(13) and (11) tend to zero and the proof is complete.

|
Specializing to the function
wT)=>1
PIz

we obtain, as in Corollary 5.2, the following result.

Corollary 6.3

Let 1(2) be an increasing function of real z, such that ¥(z) — oo as
z — 00. Then, as z — oo,

1

- : < — >

~ #{T: N(T) < z and |w(T) — loglog z| > ¥(2)y/loglog 2 }
tends to zero.

This result was originally proved by Prachar [1] (in the case of the
function ¥(z) = (loglog 2)®, € > 0). See also Fluch {1].

4. The Distribution of Functions on all Ideals -
Some further Results and Speculations.

In Theorem 6.2 above, we have presented a rather round-about proof of
Prachar’s Hardy-Ramanujan Theorem for ideals, but the proof does show
how results for the distribution of functions on principal ideals (of the
sort in Chapter 5) could be converted into results for the distribution on
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all the ideals. However, the method is rather ad hoc. An attempt to
prove an Erdos-Wintner Theorem for all ideals from Theorem 5.7, by this
method, strikes several problems (for example in Theorem 5.7 we need B (2)
bounded as z — o). It may be more profitable to start from scratch and
to construct a probability space, like that of Chapter 4, with a probability
measure that mimics the distribution of ideals. That is, if we have a set
A of ideals of D, the probability should be connected with, for real 2, the
frequency '

%#{I:N(I) <zand T € A}.

As a first step in this general direction, we will now indicate how to prove
a Turan-Kubilius inequality for ideals.

Let C(z) denote the number of ideals of D of norm no larger than 2.
The following result is well known (see Marcus [1] Chapter 6, Theorems 39
and 40, or Lang [1] Chapter 6, Theorem 3). For an O-constant dependent
on the field IK and a positive field constant ¥,

C(z) = #{T : N(T) < z} = xz + O(z'"1/). (15)

We should note that x is explicitly given in terms of other field constants.

From (15) the following simple extensions can be deduced. If £ is a
fixed ideal,

#{Z:N(T) < zand L|T} = C(z/N(L))
and, consequently,

C(z)

2 1-1/s
#{IT:N(Z)< zand EII}=M+O ((m) ) . (16)

In (16) the O-constant depends only on the field K.
If we use (16) and (15) and exactly the same argument as we used to
establish Theorem 3.4, we obtain the following.

Theorem 6.4 (Ideal Turdn-Kubilius Inequality)

Let f be a strongly additive function on the ideals of D, A'(z) and B'(z)
be defined by (9) above, and let C(z) be defined by (15) above. Then, for
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z > 3, we have,

S (F@-4() = 0((z+C()B(2)

N(I)<=z
= 0 (zB’(z)) ,

where the constants implied by the O-notation depend on K but not on f
or z.

|
From this we can prove a strengthening of Theorem 6.2 (compare with

Fluch [1]).

Theorem 6.5 (Ideal Hardy-Ramanujan Theorem)

Let f be a strongly additive function on the ideals of D, let A'(2) and
B'(z) be as defined in (9) above and let A > 0. There is a constant ¢,
dependent on IK but not on f or A, such that for all z > 3,

_#{1 N(T) <z and [f(Z) - A(2)| 2 WB'(2)} < 55

Proof

The argument proceeds as in Theorem 5.1 (first proof). We use the
Tchebycheff inequality on the finite set of ideals Z, with N(Z) < z, and
then Theorem 6.4. Thus,

#{T: N(T) <z and |f(T) - A'(2)| 2 WB'(2) }

1 ' 2
S yre 2 (D -46)

Encouraged by these results, we could try to construct a probability
space, of the type mentioned at the start of this section, for the distribu-
tion of functions on all ideals. There are some problems in obtaining, for
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example, the appropriate analogues of the results in Section 2 of Chapter
5, but this seems to be a fruitful area for ongoing résearch.

Finally, it would be desirable to obtain a generalized Erdos-Kac Theo-
rem (see Chapter 1, Section 1) in two senses. Firstly, to obtain a version
for the distribution of additive functions among principal ideals (compare
with Rieger [2], discussed in Chapter 1, Section 3 above). We have set up
the appropriate probability space in this thesis and with the correct sieve
results (like those used in Rieger [1]) this should be possible. Sieve results,
however, are beyond the scope of this thesis. Secondly, we could hope to
deduce an Erdds-Kac Theorem for distribution among all ideals, given that
we could construct a new, appropriate, probability space (as mentioned
above). This is another area for future work.
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