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Abstract

Small target detection in sea clutter remains a challenging problem for radar operators as the

backscatter from the sea-surface is complex, involving both time and range varying Doppler

spectra with strong breaking waves which can last for seconds and resemble targets. The goal

of this thesis is to investigate two different time frequency wavelet transforms to filter the sea

clutter and improve target detection performance.

The first technique looks at an application of stationary wavelet transforms (SWT) to improve

target detection. The SWT decomposes a signal into different components (or sub-bands) which

contain different characteristics of the interference (clutter + noise) and target. A method of

selecting the sub-band with the most information about the target is then presented using an

‘entropy’ based metric. To validate the SWT detection scheme, real radar data recorded from

both an airborne and a ground based radar systems are analysed. A Monte-Carlo simulation

using a cell averaging constant false alarm rate detector is implemented to demonstrate and

quantify the improvement of the new scheme against unfiltered data.

The second technique utilises a sparse signal separation method known as basis pursuit

denoising (BPD). Two main factors contribute to the quality of the separation between the

target and sea-clutter: choice of dictionary that promotes sparsity, and the regularisation (or

penalty) parameter in the BPD formulation. In this implementation, a tuned Q-factor wavelet

transform (TQWT) is used for the dictionary with parameters chosen to match the desired

target velocity. An adaptive method is then developed to improve the separation of targets

from sea-clutter based on a smoothed estimate of the sea clutter standard deviation across

range. A new detection scheme is then developed and the detection improvement is

demonstrated using a Monte-Carlo simulation.

Page ix



Page x



Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other

degree or diploma in my name, in any university or other tertiary institution and, to the best

of my knowledge and belief, contains no material previously published or written by another

person, except where due reference has been made in the text. In addition, I certify that no part

of this work will, in the future, be used in a submission in my name, for any other degree or

diploma in any university or other tertiary institution without the prior approval of the University

of Adelaide and where applicable, any partner institution responsible for the joint-award of this

degree.

I give permission for the digital version of my thesis to be made available on the web, via

the University’s digital research repository, the Library Search and also through web search

engines, unless permission has been granted by the University to restrict access for a period of

time.

I acknowledge the support I have received for my research through the provision of an

Australian Government Research Training Program Scholarship.

18 January 2018

Signed Date

Page xi



Page xii



Acknowledgments

My PhD journey has been the experience of a life time. From the beginning, I have been very

fortunate to be surrounded by many wise and supportive mentors. Their counsel has enhanced

my PhD journey making it smoother and very satisfying.

Firstly, I wish to sincerely thank my supervisors, Dr Brian W.-H. Ng and Dr Luke Rosenberg for

this enormous opportunity and for entrusting me to undertake this complex project. With their

guidance, encouragement, enthusiasm, and support throughout my research, I have become a far

more skilled researcher. Their expertise lifted my understanding of both theory and application.

Thank you both also for taking time off to assist and guide my work, even after-hours when we

were often at different time zones and thanks to your families for their forbearance. I am very

fortunate to have you both on my team.

Thank you to Dr. Luke Rosenberg‘s wife, Dr. Kathrine Rosenberg, for letting me stay at their

beautiful home during a conference in Crystal City, Arlington, USA and for hosting meetings

at your home in Adelaide on various occasions. It was a pleasure to spend time with you and

your children (Tahlia, Liam and Nicholas).

I would also like to thank the Defence Science and Technology (DST) Group for the PhD

scholarship and various other funding throughout the project including travelling support. My

thanks also go the University of Adelaide for the facilities and helpful staff.

With additional funding from the DST Group and the Adelaide University Graduate centre, I

was able to experience a 3-month research program at the University College London (UCL)

in London. At UCL, I had the privilege to work with Professor Hugh Griffiths, Dr Matthew
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Ãk Reconstructed WT approximate sub-band

Ae Antenna aperture effective area

b Translation parameter of a continuous wavelet transform (CWT)

B Signal bandwidth

b0 Integer number relating to time shift

β TQWT high-pass scaling parameter

βbi Bistatic angle

c Speed of light

Cψ Admissibility condition function

∆t Time interval

∆ω Frequency interval

Dk WT detail sub-band at scale (or level) k

D̃k Reconstructed detail sub-band at level k

e Unknown noise (or error term)

E Complex-value backscatter

Eb Entropy (absolute value) of a reconstructed sub-band with zero mean

Ei In-phase backscatter component

Eq Quadrature backscatter component

η Constant (used for determining penalty parameter)

F Target fluctuation

f (t) Time domain signal or function

F(ω) Spectal or frequency domain signal

Page xix



Symbols

fc Filter cut-off frequency

fr Received target frequency

ft Transmitting (or carrier) frequency

G Antenna gain

γ Threshold

γb Maximum entropy of reconstructed sub-band: b

Γ(.) Gamma function

ga Impulse response of the analysis high-pass filter

Ga z-domain impulse response of the analysis high-pass filter

gs Impulse response of the synthesis high-pass filter

Gs z-domain impulse response of the synthesis high-pass filter

Gr Antenna (receiving) directive gain

Gt Antenna (transmitting) directive gain

g(xq) Probability density function (PDF) of the data xq

H0 Interference only hypothesis

H1 Target with interference hypothesis

ha Impulse response of the analysis low-pass filter

Ha z-domain impulse response of the analysis low-pass filter

hs Impulse response of the synthesis low-pass filter

Hs z-domain impulse response of the synthesis low-pass filter

HHk High-pass filtering along row and column (or detail) sub-band of the 2 dimensional (2D)

stationary WT (SWT) at level-k

H̃Hk Reconstructed HHk sub-band at level-k

HLk High-pass filtering along row and low-pass filtering along column (or vertical) sub-band

of the 2D SWT at level-k

H̃Lk Reconstructed HLk sub-band at level-k

H(X) Entropy of a discrete random variable, X

j Imaginary unit of a complex-value function or signal

k Constant (decomposition level of discrete wavelet transforms (DWT))

kr Influence factor due to Rayleigh component

K Constant (target Swerling case)

Kν(.) Modified Bessel Function

L Loses in radar equation (including two-way propagation loss)

L1 Finite absolute value

L2 Finite energy

Page xx



Symbols

lq Lower limits of a histogram bin

〈 〉 Average value or mean operator

〈 , 〉 Inner product

λ Penalty parameter

λ0 A constant offset for the penalty parameter

λc Wavelength

LHk Low-pass filtering along row and high-pass filtering along column (or horizontal) sub-

band of the 2D SWT at level-k
˜LHk Reconstructed LHk sub-band of the 2D SWT at level-k

LLk Low-pass filtering along row and column (or approximate) sub-band of the 2D SWT

L̃Lk Reconstructed LLk sub-band of the 2D SWT

lq Lower limits of a histogram bin

M Sample in slow time (pulses or looks)

Mr Sample in fast time (or in range)

µω Mean frequency

µt Mean time

ν Shape parameter of a PDF

‖·‖1 `1-norm, the sum of absolute values of the vector elements

‖·‖2 `2-norm, the sum of the element squares and referred to as the ‘energy’

ω Angular frequency

P( ) Probability density function

PA Interference PDF

pc Mean clutter power

Pd Probability of detection

Pfa Probability of false alarm

pn Thermal noise mean power

pq Probability of a histogram bin

pr Rayleigh mean power from the K+Rayleigh model

Pr Radar received signal power

ψ Wavelet function

Ψ Fourier transform of ψ

φ Scaling function

Φ Matrix (or dictionary) corresponding to the TQWT

Pt Radar transmitted power

PT Interference and target PDF

Page xxi



Symbols

Q Q-factor of TQWTs

QE Number of histogram bin interval

R Radial distance

R Signal residue after Basis Pursuit Denoising (BPD)

R Real number

R+ Real positive number

r Redundancy factor of TQWTs

Rr Receiving range from a target

Rt Transmitting range to a target

s Summation of the target power

S Target SIR over M pulses in square law detector

σr Standard deviation at range bin rth

t Fast time

t0 Time delay for a reflected target

AT Transpose of a vector or matrix A

Tw Width of the window function

uq Upper limits of a histogram bin

v Target velocity

Vk Vector subspace at scale k

σ Radar cross section

W f CWT coefficients

Wk Wavelet subspace at scale k

wq Width of the histogram bin for the qth term (bin)

x Input signal (or radar backscatter)

X Target signal after BPD

X(ω) Frequency domain of signal x

x0 Variance of speckle radar return with zero mean

xr Rayleigh mean power

y Speckle envelope

Y Radar echoes consisting of target X and residue R
y Under-determined linear system

Y(ω) Frequency domain of signal y

z Radar backscatter intensity

Z Integer

Page xxii



List of Figures

2.1 Principle of radar operation and detection. . . . . . . . . . . . . . . . . . . . . 10

2.2 Block digaram of a monostatic radar system . . . . . . . . . . . . . . . . . . . 11

2.3 Maritime radar platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Fitting of K+noise and K+Rayleigh distributions on real radar data . . . . . . . 19

2.5 This illustrates target detection based on amplitude or intensity. . . . . . . . . . 20

2.6 Target distributions of the 4 Swerling cases . . . . . . . . . . . . . . . . . . . 22

2.7 Cell-averaging CFAR detection algorithm . . . . . . . . . . . . . . . . . . . . 23

2.8 Beech 1900C aircraft used for the Ingara sea-clutter trials. . . . . . . . . . . . 25

2.9 Demonstration of a trial geometry . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Ingara range / time intensity images . . . . . . . . . . . . . . . . . . . . . . . 26

2.11 Ingara range / frequency images . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.12 Geometry of the NetRAD radar trial for three different “bistatic” angles . . . . 28

2.13 NetRAD HH polarised data recorded at a 60◦ bistatic angle . . . . . . . . . . . 29

2.14 The PSD for the monosatic and bistatic NetRAD data . . . . . . . . . . . . . . 29

3.1 Time frequency resolution of the STFT . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Time frequency resolution of the WT . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Signal analysis using two channel filter banks . . . . . . . . . . . . . . . . . . 40

3.4 Multi-level decomposition of the DWT and sub-band frequencies . . . . . . . . 40

3.5 Multi-level signal reconstruction of the DWT . . . . . . . . . . . . . . . . . . 41

3.6 Signal decomposition block diagram using the 2D DWT . . . . . . . . . . . . 42

3.7 Two level image decomposition using the 2D SWT . . . . . . . . . . . . . . . 43

3.8 Stationary multi-level analysis and synthesis filtering . . . . . . . . . . . . . . 43

3.9 Tuned Q-factor wavelet transform using analysis and synthesis filter banks. . . 44

3.10 Multi-level decomposition of the TQWT . . . . . . . . . . . . . . . . . . . . . 45

Page xxiii



List of Figures

3.11 Filter frequency response of a sub-band . . . . . . . . . . . . . . . . . . . . . 46

3.12 The TQWT wavelet and filter responses . . . . . . . . . . . . . . . . . . . . . 47

4.1 Three levels of 1D SWT analysis and synthesis filtering . . . . . . . . . . . . . 53

4.2 One level signal decomposition and reconstruction using a 2D SWT . . . . . . 54

4.3 Impulse responses of the analysis and synthesis low- and high-pass Daubechies-

4 wavelet filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Data decomposition with sub-band isolation and reconstruction . . . . . . . . . 56

4.5 The reconstructed sub-band bandwidth . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Time and frequency domain representations after sub-band isolation and

reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 PDF fitting of the interference using K and K+Rayleigh distributions . . . . . . 59

4.8 Range/time data for the HH polarisation with a simulated stationary and moving

target after the 1D SWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Reconstructed sub-bands using the 2D SWT . . . . . . . . . . . . . . . . . . . 61

4.10 PDF fitting of the 4 SWT reconstructed sub-bands . . . . . . . . . . . . . . . . 62

4.11 2D SWT of the HH polarisation with two injected targets . . . . . . . . . . . . 64

4.12 PDFs of the original data and the reconstructed sub-bands of the 1D SWT . . . 65

4.13 PDF separation for the original data and the 2D reconstructed sub-bands . . . . 66

4.14 The probability of detection using the original and 1D reconstructed sub-bands 68

4.15 Required SIR for the HH polarisation measured at Pd = 0.5 using the 1D SWT

detection scheme with variation of the target velocity from 0 to 4.3 m/s . . . . . 70

4.16 The probability of detection using the original and 2D SWT reconstructed sub-

bands of the HH polarisation for stationary and moving targets with the Pfa of

10−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.17 Required SIR for the HH polarisation measured at Pd = 0.5 using the 2D SWT

detection scheme with variation of the target velocity from 0 to 4.3 m/s . . . . . 71

4.18 The mean separation for targets (SIR = 10 dB) after the SWT processing . . . . 74

4.19 One sided frequency spectrum of the 3-level reconstructed sub-bands and

combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.20 Entropy variation of the data with an injected target . . . . . . . . . . . . . . . 77

Page xxiv



List of Figures

4.21 Maximum entropy variation with a Swerling-0 target . . . . . . . . . . . . . . 78

4.22 Maximum entropy variation with a Swerling-1 target . . . . . . . . . . . . . . 79

4.23 Entropy sub-band indication scheme . . . . . . . . . . . . . . . . . . . . . . . 80

4.24 Sea clutter PDFs of the selected reconstructed sub-bands . . . . . . . . . . . . 81

4.25 CCDF of the selected reconstructed sub-bands . . . . . . . . . . . . . . . . . . 82

4.26 The probability of detection and number of selected sub-bands using a

Swerling-0 target for the HH polarisation . . . . . . . . . . . . . . . . . . . . 83

4.27 The probability of detection and number of selected sub-bands using a

Swerling-1 target for the HH polarisation . . . . . . . . . . . . . . . . . . . . 84

4.28 The probability of detection and number of selected sub-bands using a

Swerling-0 target for the VV polarisation . . . . . . . . . . . . . . . . . . . . 86

4.29 The probability of detection and number of selected sub-bands using a

Swerling-1 target for the VV polarisation. . . . . . . . . . . . . . . . . . . . . 87

4.30 Required SIR for the HH polarisation measured at Pd = 0.5 using the 1D SWT

detection scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Illustration of NetRAD trial for three bistatic angles: 60◦, 90◦ and 120◦ . . . . 91

5.2 NetRAD horizontally polarised monostatic data at βbi = 60◦ . . . . . . . . . . 92

5.3 NetRAD horizontally polarised bistatic data at βbi = 60◦ . . . . . . . . . . . . 93

5.4 Average PSD for both monostatic and bistatic configurations . . . . . . . . . . 93

5.5 One sided frequency spectrum of the multi-level reconstructed sub-bands . . . 95

5.6 NetRAD data PSD after sub-band isolation and reconstruction using an SWT . 96

5.7 Entropy sub-band indication scheme . . . . . . . . . . . . . . . . . . . . . . . 97

5.8 Maximum entropy variation with a Swerling-0 target as a function of SIR. . . . 98

5.9 The probability of detection and the number of selected sub-bands for the HH

polarisation: monostatic βbi = 60◦ . . . . . . . . . . . . . . . . . . . . . . . . 99

5.10 The probability of detection and the number of selected sub-bands for the HH

polarisation: bistatic βbi = 60◦ . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.11 The probability of detection and the number of selected sub-bands for the VV

polarisation: monostatic βbi = 60◦ . . . . . . . . . . . . . . . . . . . . . . . . 102

5.12 The probability of detection and the number of selected sub-bands for the VV

polarisation: bistatic βbi = 60◦ . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Page xxv



List of Figures

6.1 The approximate behaviour of functions |x| and x2 used . . . . . . . . . . . . 112

6.2 Ingara radar backscatter with HH polarisation . . . . . . . . . . . . . . . . . . 114

6.3 BPD output using a low Q-factor TQWT . . . . . . . . . . . . . . . . . . . . . 115

6.4 BPD output using a high Q-factor TQWT . . . . . . . . . . . . . . . . . . . . 116

6.5 Signal separation, X, for λ = 0.5 and λ = 1 . . . . . . . . . . . . . . . . . . . 118

6.6 Range bin STD, σr, and the averaged STD, σ̃r . . . . . . . . . . . . . . . . . . 119

6.7 BPD output using different sets of adaptive penalty parameters . . . . . . . . . 120

6.8 Energy ratio after BPD for η = 0, 2 and 4 . . . . . . . . . . . . . . . . . . . . 121

6.9 Scatter plot of the energy ratio at γ = −60 dB for each range bin with HH

polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.10 Scatter plot of the energy ratio at γ = −60 dB for each range bin with VV

polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.11 Detection performance of Swerling-0 targets with HH and VV polarisations . . 125

6.12 Detection performance of Swerling-1 targets with HH and VV polarisations . . 126

6.13 Scatter plot of the energy ratio at γ = −60 dB for each range bin with HH and

VV polarisations using a high Q-factor TQWT. . . . . . . . . . . . . . . . . . 126

6.14 Detection performance of Swerling-0 targets using a high Q-factor TQWT with

HH and VV polarisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.15 Detection performance of Swerling-1 targets using a high Q-factor TQWT with

HH and VV polarisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.1 The probability of detection for the original and 1D reconstructed sub-band . . 139

A.2 Required SIR using the 1D SWT detection scheme with variation of the velocity

from 0 to 4.3 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3 The probability of detection for the original and 2D reconstructed sub-band . . 141

A.4 Required SIR using the 2D SWT detection scheme with variation of the velocity

from 0 to 4.3 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Page xxvi



List of Tables

2.1 Douglas sea state definition in metric units . . . . . . . . . . . . . . . . . . . . 14

4.1 K and K+Rayleigh distribution parameter estimates of the original and 1D

reconstructed sub-bands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 K and K+Rayleigh estimated parameters of the 2D SWT sub-bands. . . . . . . 63

4.3 Relative difference in means between interference and target plus interference

of stationary and moving targets using the 1D SWT . . . . . . . . . . . . . . . 67

4.4 Relative difference in means between interference and target plus interference

of stationary and moving targets using the 2D SWT . . . . . . . . . . . . . . . 67

4.5 Required SIR for a Pd = 0.5 - stationary and moving target with 1D SWTs . . 69

4.6 Required SIR for a Pd = 0.5 - stationary and moving target with 2D SWTs . . 72

4.7 Shape parameter estimate for the reconstructed sub-bands . . . . . . . . . . . . 81

5.1 Detection improvement for monostatic and bistatic HH polarised data . . . . . 101

5.2 Detection improvement for monostatic and bistatic VV polarised data . . . . . 104

6.1 BPD results for mean separation and energy ratios with different TQWT

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Summary of BPD detection improvements (minimum required SIR) when

measured at Pd = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Page xxvii



Page xxviii



Chapter 1

Introduction

T
HIS introductory chapter provides a brief overview of current maritime

radar research challenges and common techniques for target detection in

sea-clutter. Signal processing methods using time-frequency techniques

are outlined. Chapter summaries and contributions of the thesis are then given.
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1.1 Overview

1.1 Overview

Radar is an acronym for Radio Detection And Ranging which was initially used to detect

objects and measure their range. It was originally invented during World War II for defence

purposes such as an early warning and surveillance using radio (or electromagnetic) waves as a

replacement for visual detection [84, 104, 107, 124]. Radar is able to detect targets in a dark

environment and at longer distances which is not possible with optical sensors. With modern

and advanced electronic technology, radar has been further developed for other defence

purposes such as missile guidance, target classification and imaging in real time. For the

civilian domain, radar has become an important and commonly used technology with

applications including weather forecasting, vehicle speed measurement, air traffic control and

self-driving cars. It is also used in space exploration and in the health care industry for fall

detection [7, 57].

For surveillance of the seas and oceans, radar can be used for emergency search and rescue

operations, tracking people smugglers, measuring sea conditions and coastal monitoring.

Moreover, ship navigation is made safer with this type of radar especially when travelling at

night or in limited invisibility. It is also very important for defence purposes in a country such

as Australia which is surrounded by sea.

The recorded radar echoes from an illuminated patch of the sea surface is known as sea-clutter.

The sea-surface consists of various components including breaking waves, wind waves and

gravity waves or swell. The dynamic variation of the surface components and the interactions

between the sea-surface and the incident electromagnetic waves are complex. Moreover, various

components in the measured radar echoes can exhibit target-like characteristics. Therefore,

detection of small targets in sea-clutter can be challenging and is still an active research area

[4, 47, 64, 87, 124].

In maritime radar operations, target detection is typically implemented in either the range / time

or range / frequency domains. Detection in the range / time domain does not require phase

information and is known as non-coherent detection, while detection in the range / frequency

domain utilises the phase information and is known as coherent detection. Due to sea-surface

variations, the frequency (Doppler) spectrum of sea-clutter spreads broadly and varies in range.

As a result, non-coherent detection is more commonly used for maritime radar target detection.

In non-coherent detection, a detection is declared if the radar backscatter is greater than a set

threshold. The threshold is usually adaptive and the desired false alarm rate is constant. A

common and widely used non-coherent detection scheme is a sliding window cell-averaging
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false alarm rate (CA-CFAR) algorithm, whose threshold is varied with the local clutter around

the cell under test. To determine the threshold in the CA-CFAR algorithm, an amplitude

statistical model (expressed as a probability density function (PDF)) is often used to represent

the background radar backscatter. A well-matched model enables a more accurate setting of

the threshold and can achieve the desired false alarm level. If there is a mismatch, the detection

scheme will perform badly with targets being missed or the number of false alarms becoming

too high. In this case, maritime radar target detection can be unreliable [4, 87, 94, 119, 124].

There have been many efforts to accurately model the PDF of the background sea-clutter. Some

common models include the log-normal [113], Weibull [44] and K-distribution [52]. However,

in many cases, they are still unable to capture the high magnitude and long tail components of

the sea-clutter [93].

The main contributor to the long tail in the sea-clutter PDF is sea-spikes [87]. Sea-spikes are

characterised by high intensity returns caused by breaking waves on top of the sea-surface.

There are two types of breaking waves: some lasting for a short time before disappearing and

others persisting for seconds. Those belonging to the second type are commonly mistaken

for targets as they exhibit many of the same characteristics [64, 87, 124]. This thesis proposes

different approaches to improve maritime radar target detection. Time-frequency methods based

on wavelet transforms are used to process the sea-clutter prior to performing target detection, to

reduce the impact caused by sea-spikes and to improve the detection performance.

1.2 Thesis Motivation

The sea-surface fluctuates with changes in the environment due to wind, currents and other

naturally occurring phenomena. The sea-clutter characteristics therefore vary with time,

resulting in non-stationary returns.

To improve the performance of small target detection in non-stationary sea-clutter, a number of

signal processing techniques have been investigated. These include frequency [88, 127], joint

time-frequency [28,35,37,75,77] and fractal analysis [13,14,63,69]. In the frequency domain,

fast moving targets can easily be distinguished and detected. However, the sea-clutter has a

broad Doppler spectrum which can mask the target [88, 127].

The non-stationary nature of sea-clutter has led researchers to use joint time-frequency analysis

for target detection. Time-frequency analysis methods include the short time Fourier transform

(STFT) [46], wavelet transform (WT) [26, 67, 68, 72] and the Wigner-Ville distribution [118,
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130]. The short time Fourier transform processes small segments in time with a fixed window.

The wavelet transform, on the other hand, uses window functions that vary with frequency and

represents a signal at different scales (resolutions). The wavelet transform can then be used to

filter unwanted components in the signal while preserving the important information [68, 81].

These properties make the wavelet transform more suitable for analysing non-stationary sea-

clutter [29]. Wavelet transforms have been used for signal processing in various applications

to extract time-frequency information of non-stationary signals [27, 67, 76]. In radar signal

analysis, the WT has been used to suppress interference and enhance small target detection [29,

39, 112, 114, 121, 133].

Another method which has been used to enhance sea-clutter target detection is the fractal

analysis. Fractals are associated with the geometrical properties of sea-surface. They were first

introduced for radar signal analysis by Lo et al. [63] who proposed that the sea surface can be

represented by a fractal set. The method has since been studied further to gain a theoretical

basis for the use of the fractals in radar data analysis [12–14]. The fractal dimension of a time

series is estimated either using the box dimension or through spectral analysis. The fractal

dimension results in variation if there is a target present in the clutter. By setting an

appropriate threshold, the target can be detected when the fractal dimension decreases below a

certain level [69]. However, the variation of the fractal dimension is quite small when the

target is present and variation of fractal dimensions may also be caused by sea-spikes.

Based on the previous research, wavelets offer a more promising method among the

time-frequency representations. In this thesis, various wavelet transforms will be used to

improve target detection performance in sea-clutter.

1.3 Thesis Outline and Contributions

The goal of this thesis is to use time-frequency analysis with wavelets to improve detection

performance of small targets in sea-clutter. In order to develop an effective detection scheme,

the differences in sea-clutter and target characteristics must be well understood. Chapter 2

provides an overview of the different components of sea-clutter and how they relate to the

sea-surface components. A conventional detection method is then outlined as a benchmark for

comparing the new schemes. In Chapter 3, different time-frequency methods are then described.

The new detection schemes are presented in Chapters 4-6 using real radar data from two

different radar systems. The first technique uses stationary wavelet transforms (SWT). Once

applied to the data, the components of the interference and target (if present) generally have
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different distributions across sub-bands. By isolating and reconstructing the sub-band with the

strongest signal to interference ratio (SIR), we can improve the detection performance.

Radar target detection in the maritime domain requires the returned backscatter from the target

to be distinguishable from the background interference (sea clutter and noise) [124]. Over a

short time period, targets typically have a constant radial velocity. Sea clutter on the other hand

varies with the environmental conditions and contains a complex time and range varying

Doppler spectrum. The second detection technique uses a resonance based sparse signal

separation, which has recently been applied to this problem with promising

results [36, 43, 75, 77]. Achieving good separation of the target relies on two main factors: an

appropriately chosen transform that encourages a sparse representation and the regularisation

(or penalty) parameter in the optimisation algorithm. In this work, a resonance based

transform, the tuned Q-factor wavelet transform (TQWT), is used as the dictionary with its

oscillation tuned to match different target characteristics [99, 100]. Following on from related

work [75], we choose appropriate parameters for a target and look further at the selection of

the penalty parameter. An adaptive method is proposed to improve the separation of targets

from sea-clutter based on a smoothed estimate of the sea clutter standard deviation across

range. A new detection scheme is developed and a Monte-Carlo simulation is used to

demonstrate the detection improvement.

The main contributions of this thesis are:

• Stationary wavelet transform sub-band detection
A novel method that highlights different components (or sub-bands) of the data is

developed. By isolating and reconstructing different sub-bands of the SWT, the SIR of

the target is improved. A sub-band selection scheme using ‘entropy’ as a metric is then

implemented to select the sub-band with the most information about the target. The new

detection scheme is then validated with real radar data and a large detection

improvement is achieved over unprocessed data. A comparison of performance using

both 1 dimensional (1D) and 2 dimensional (2D) SWTs is also performed. It is found

that the 1D SWT provides better relative detection performance than the 2D SWT. This

contribution is investigated and demonstrated in Chapter 4.

• Bistatic detection analysis using stationary wavelet transforms
We apply the SWT detection scheme developed in Chapter 4 to simultaneously compare

the monostatic and bistatic data with different ‘bistatic angles’. The improved detection

results using a different radar system confirms the robustness of the scheme. The analysis

and required modifications to the scheme are demonstrated in Chapter 5.
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• Sparse signal separation using a tuned Q-factor wavelet transform
We develop a novel detection scheme based on a sparse signal separation technique

using a tuned Q-factor wavelet transform (TQWT). The sparse signal separation is

achieved using a method known as basis pursuit denoising (BPD), where a TQWT is

used as the dictionary with parameters chosen to match the desired target velocity. An

adaptive method is developed to improve the separation of targets from sea-clutter based

on a smoothed estimate of the sea clutter standard deviation across range. A detection

scheme is then demonstrated using a Monte-Carlo simulation. This contribution is

presented in Chapter 6.

1.4 Chapter Summaries

• Chapter 2 - Maritime Radar Background
This chapter describes the operation of maritime radar and the different components of the

sea-clutter. The PDFs of both sea-clutter and targets are discussed and the non-coherent

cell averaging constant false alarm rate (CA-CFAR) detection scheme is outlined. The

chapter also includes details of two radar data sets. The first was recorded by the Defence

Science and Technology (DST) Group using the Ingara radar system on two consecutive

trials in 2004 and 2006. The second data set was collected in 2010 by a team from the

University College London (UCL) and the University of Cape Town (UCT) using the

NetRAD radar system. The data from those systems and trials are used for testing the

proposed detection methods.

The main contribution of the chapter is to present a condensed summary of the
relevant background on maritime radar, sea-clutter analysis and modelling, a
conventional CFAR detection algorithm and the radar data sets.

• Chapter 3 - Time Frequency Analysis
This chapter provides a description of relevant time-frequency analysis techniques

including the Fourier transform, short time Fourier transform, wavelet transform and the

tuned Q-factor wavelet transform. The Fourier transform is suitable for analysing

stationary signals, but is not suitable for non-stationary sea-clutter. Instead,

time-frequency analysis techniques such as wavelet transforms should be used.

Similarly, the tuned Q-factor wavelet transform can tune the window function to a

desired shape and fluctuation, offering better analysis of the non-stationary signal.
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The main contribution of the chapter is to provide a condensed summary of the
relevant background on time-frequency techniques used in the subsequent chapters.

• Chapter 4 - Target Detection in Sea-Clutter Using Stationary Wavelet Transforms
This chapter investigates target detection using both 1D and 2D SWTs. Each

decomposition level of the SWT produces multiple sub-bands which can highlight or

suppress different features of the sea-clutter. The chapter also explores and incorporates

information across different levels of the SWT decomposition to further improve the

detection performance. To determine which sub-band contains the most information

about a target, an efficient indication scheme using entropy is proposed. The scheme is

used to guide the choice of sub-bands in the proposed detector. A Monte-Carlo

simulation is used to demonstrate the detection improvement.

The main contribution of this chapter is the development of a new detection scheme
using SWTs. The first part investigates the detection performance using 1D and 2D
SWTs. The second part of the chapter proposes a scheme for selecting which wavelet
sub-band contains the most information about the target without prior knowledge
of the target velocity. The new scheme provides improved detection performance
over the unprocessed data with a range of target velocities.

• Chapter 5 - Target Detection in Bistatic Radar Sea Clutter Using Stationary Wavelet
Transforms
In this chapter, the new SWT detection method derived in the previous chapter is modified

to suit the NetRAD bistatic radar data. The chapter also gives a comprehensive analysis

and detection comparison between monostatic and bistatic data from the NetRAD system.

The main contributions of this chapter are to examine the robustness of the SWT
detection scheme on different data sets and to provide an analysis of detection
performance from both monostatic and bistatic data.

• Chapter 6 - Target Detection in Sea Clutter Using Resonance Based Sparse Signal
Separation
In this chapter, a resonance-based sparse signal separation method using the TQWT is

introduced. Using appropriate parameters of the TQWT matched to the target velocity,

the chapter investigates the impact of the regularisation (or penalty) parameter in the BPD

algorithm. An adaptive penalty parameter is then proposed which dynamically adapts to

the sea-clutter. A large improvement in the detection is demonstrated with a Monte-Carlo

simulation.
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The main contribution of this chapter is the development of a new detection scheme
based on a resonance based sparse signal separation algorithm with an adaptive
penalty parameter. Using Monte Carlo simulations, the new scheme shows improved
detection performance.

• Chapter 7 - Conclusion
This chapter summarises the main contributions and achievements presented in the thesis.

Future work to further improve small target detection in sea-clutter is also described.
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Chapter 2

Maritime Radar
Background

T
HIS chapter provides background to the thesis and covers an overview of

radar, the different characteristics of sea-clutter, sea-clutter modelling and

a non-coherent detection method known as the cell-averaging constant

false alarm rate algorithm. The chapter also includes details of two radar data

sets. The first was collected by the Defence Science and Technology Group using

the Ingara radar system on two consecutive trials in 2004 and 2006. The second

data set was collected in 2010 by a team from the University College London, UK

and the University of Cape Town, South Africa using the NetRAD radar system.

The data from these two radar systems are used for testing the proposed detection

methods.
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Chapter 2 Maritime Radar Background

Radar applications include remote sensing, air-traffic control, law enforcement and highway

safety, ship safety and navigation, emergency search and rescue and space operations [104].

For surveillance or remote-sensing applications, radars typically operate between 1-18 GHz

which is in the microwave frequency region [59, 84, 104].

2.1.2 Radar System Block Diagram

A basic block diagram of a radar is shown in Figure 2.2. It consists of an antenna, transmitter,

receiver, duplexer and signal processing / detection processor [59]. The RF energy is emitted

by the transmitter through the antenna into free space. The duplexer, which contains a

circulator or transmit/receive (T/R) switch, isolates the operation between the system

transmitter and receiver. The receiver amplifies and samples the received signal via an

analogue to digital converter. The output is then fed into the signal processor and detection

stage. The focus areas of this thesis are the blocks shaded in grey.

Transmitter 

Receiver

Duplexer 

Signal 
Processor  

Detection and 
Measurement  

Figure 2.2. Illustration of the major elements in a monostatic radar system. The elements

highlighted in dark grey are the focus areas of this thesis.

2.1.3 Radar Range Equation

The radar range equation is used to determine the returned power. The received signal power,

Pr, is given by [104, 124]:

Pr =
PtGt

4πR2
t
× 1

L
× σ

4πR2
r
× Ae (2.2)

where the term PtGt
4πR2

t
is the power density (or power per unit area) at distance Rt from the

radar and Pt is the transmitted power with gain Gt. The term L covers all losses in the radar

and the two-way propagation loss. The term σ
4πR2

r
is the effective scattering of the target radar

cross section (RCS) σ. The RCS of an object is commonly a complex function of aspect angle,

Page 11



2.2 Maritime Radar and Sea Clutter

frequency, and polarisation [28, 64, 84]. And finally, Ae is the effective area where the power is

collected at the receiving antenna.

For a radar having wavelength λc and antenna aperture effective area Ae (in square metres), the

antenna gain is given by:

Gt =
4π

λ2
c

Ae. (2.3)

The radar equation for monostatic radar having a common antenna for both transmitting and

receiving then becomes:

Pr =
PtG2

t λ2
c σ

(4π)3R4L
. (2.4)

2.1.4 Doppler Shift

For a monostatic radar, the transmitter and receiver are at the same location and do not move

with respect to one another. If a scatterer in the radar illuminated area travels with velocity

v towards the radar, then the radar transmitted frequency ft and received frequency fr has the

relation:

fr =

(
1 + v/c
1− v/c

)
ft, (2.5)

which is known as the Doppler shift [84].

2.2 Maritime Radar and Sea Clutter

Maritime radars can be airborne or operated from a cliff top or a surface-ship as shown in

Figure 2.3. For defence purposes, they are used to safeguard the coastline and detect people

smugglers, illegal fishing and drug runners. For the civil operations, they are used primarily for

shipping navigation to avoid collisions with other vessels and for search and rescue operations.

The dielectric constant of sea water is high and depending on the radar operating frequency,

the reflections from the sea are generally strong. The sea-surface backscatter has been

extensively studied to gain insights of its complex nature. However, the analysis is difficult due

to unpredictable changes of the sea-surface.

2.2.1 Sea Surface Components

Sea clutter is influenced by the evolving nature of the ocean surface and the environment [64,94,

124]. The main components can be categorised into gravity waves and capillary waves [94,124].
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Table 2.1. Douglas sea state in metric units. The table is reproduced from [94].

Sea state Description Wave Height Wind Speed Fetch Duration

(m) (m/s) (km) (h)

1 Smooth 0.0-0.3 0.0-3.1 - -

2 Slight 0.3-0.9 3.1-6.2 93 5

3 Moderate 0.9-1.5 6.2-7.7 222 20

4 Rough 1.5-2.4 7.7-10.3 278 23

5 Very rough 2.4-3.7 10.3-12.9 370 25

6 High 3.7-6.1 12.9-15.4 556 27

7 Very high 6.1-12.7 15.4-25.7 926 30

8 Precipitous >12.2 >25.7 1296 25

2.2.2 Sea Surface Normalised Radar Cross Section

The sea clutter is generally characterised by the normalised radar cross section (NRCS). The

NRCS will vary depending on the grazing-angle, wind direction, sea-state, radar frequency and

waveform. Since the sea-clutter is always present in maritime radar operations, it is important

to understand the characteristics of the clutter returns in order to develop effective signal

processing strategies and detection schemes.

Sea-Surface Scattering Models

The characteristics of radar backscatter are greatly influenced by the sea surface components

and there has been a number of theoretical models proposed to describe them. Capillary waves

are typically associated with Bragg resonance which occurs when the radar wavelength matches

the wavelength of the surface waves. However, this model does not explain the effects of the

swell and breaking waves [124].

The two-scale composite surface model is an extension to this model and is based on geometric

and perturbation theory which comprises both large and small scale components of the surface

roughness [48, 116, 132].

To justify the two-scale model, Valenzuela and Laing [115] proposed a physical description of

the sea-surface using hydrodynamic models. Their explanation was that short gravity and

capillary waves are superimposed on longer wavelength gravity waves, with the scattering

changing with the local surface slope relative to the radar.
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Sea Spikes

A number of theories have been proposed to understand the dynamics of sea-clutter having

non-Bragg scattering [38, 54, 61, 128]. Commonly, this type of scattering is referred to as sea

spikes which are primarily associated with breaking waves. Ward et al. [124] describe sea

clutter with spiky behaviour as having three main types of scattering events: Bragg

resonant-scattering, whitecap scattering and specular (burst) scattering. The whitecap

scattering often lasts for seconds and is referred to as ‘persistent’ sea spikes, while specular

scattering often appears for a short period of time and is referred to as ‘discrete’ sea-spikes.

Moreover, the specular sea-spikes are likely to have a narrow Doppler spectrum and be

stronger in the horizontal polarisation when looking into the waves.

Another definition by Lee [60] is that there are three possible factors contributing to non-Bragg

scattering. The first includes a wave which is about to break and has a much longer wavelength

than the Bragg resonance wave. The second is when there is a breaking wave and the return is

large. The last factor is due to attenuation in the VV polarisation caused by Brewster angle

damping which results in the HH polarisation having a greater contribution than multipath

scattering and shadowing from large wave crests over wave troughs.

2.3 Probability Distribution

For a coherent radar, the backscatter is captured in complex form with in-phase and quadrature

components. However for non-coherent detection, the phase information is lost because only

the envelope (or magnitude) of the received signal is used. When implementing the detection,

a statistical (or probability density function (PDF)) model is commonly used to represent the

sea-clutter amplitude or intensity distribution [124].

There have been a number of models presented in the literature with different degrees of success

[90] including the Rayleigh, Log-normal, Weibull, K, Pareto and K-distribution with a Rayleigh

component (K+Rayleigh). The radar return from many small structures is referred to as speckle.

Together with the thermal noise, the radar return is defined by a Gaussian distribution:

P(Ei, Eq|x0, pn) =
1

π(x0 + pn)
exp

[
−(E2

i + E2
q)

x0 + pn

]
−∞ ≤ Ei, Eq ≤ ∞ (2.6)

where x0 is the speckle mean power and pn is the thermal noise power and Ei and Eq are the

in-phase and quadrature samples at the receiver. The envelope of the returned components is
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E =
(

E2
i + E2

q

) 1
2 and is represented by a Rayleigh distribution:

P(E|x0, pn) =
2E

x0 + pn
exp

[
−E2

x0 + pn

]
; 0 ≤ E ≤ ∞ (2.7)

where the average value of E is 〈E〉 =
√

π(x0+pn)
2 and the mean square is 〈E2〉 = x0 + pn.

Typically a square law is used for the detection analysis where the power (or intensity), z = E2

is used and the speckle distribution becomes exponential,

P(z|x0, pn) =
1

x0 + pn
exp

[
− z

x0 + pn

]
0 ≤ z ≤ ∞. (2.8)

In many detection schemes, the performance generally improves by summing the intensity over

a number of pulses or looks. If we assume M is the number of independent looks, then

z =
M

∑
m=1

y2
m. (2.9)

The received power is then characterised by a gamma PDF,

P(z|x0) =
zM−1

(x0 + pn)MΓ(M)
exp

[
− z

x0 + pn

]
(2.10)

where Γ(.) is the gamma function.

2.3.1 Compound K-Distribution

The K-distribution was first introduced by Jakeman and Pusey [52] in 1976 in the field of lasers

and later Ward [123] applied the model to sea-clutter in 1981. The distribution consists of

two main components contributing to the sea-surface fluctuations. The first is speckle, the

scattering from small structures on the sea surface. The second component is texture and is

related to the swell and long gravity waves. The speckle is commonly described as resulting

from many random scatterers which exhibit Gaussian statistics [124]. The PDF of these returns

is modelled by a Rayleigh distribution in the magnitude domain or an exponential distribution

in the intensity domain as shown in Equation (2.8). For a K-distribution, the texture x0, is

modelled by a gamma distribution,

P(x0) =
bν

Γ(ν)
xν−1

0 exp(−bx0), b, ν > 0 (2.11)
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where ν is the shape, b = ν
pc

is the scale and pc is the mean clutter power. If thermal noise is

ignored (pn = 0) then the K-distribution is given by

P(z) =
∫ ∞

0
P(z|x0)P(x0)dx0 (2.12)

=
2b

ν+1
2 z

ν−1
2

Γ(ν)
Kν−1

(
2
√

bz
)

. (2.13)

where Kν−1(.) is the modified Bessel Function of the second kind with order ν − 1. For the

K-distribution of sea-clutter with thermal noise, the overall PDF becomes:

P(z) =
2zbν

Γ(ν)

∫ ∞

0

xν−1
0 exp(−bx0)

x0 + pn
exp

(
−z

x0 + pn

)
dx0, −∞ < z < ∞ (2.14)

However in many cases, the model does not fit the data well in the tail of the distribution which

is possibly due to the existence of sea-spikes [4, 31, 42, 89, 94, 124]. Other distributions have

therefore been proposed including the KA [73], KK [31, 91], K+Rayleigh [93] and Pareto [42,

89] with different degrees of improvement.

2.3.2 K+Rayleigh Distribution

Rosenberg et al. [93] extended the K+noise distribution to capture both noise and any extra

Rayleigh components. Moreover, the K-distribution with Rayleigh component (K+Rayleigh

distribution) is shown to represent the data extremely well for medium grazing angle clutter

compared to both the Pareto and the K-distribution plus noise. The experimental results are

illustrated in [93]. The K+Rayleigh distribution has an additional Rayleigh component, pr,

with the speckle mean given by x0 = xr + pr. Equation (2.8) can then be written as

P(z|xr) =
1

xr + pn + pr
exp

[
−z

xr + pn + pr

]
. (2.15)

To calculate the compound integral in Equation (2.13), the integration is then performed with

the modified speckle mean level xr instead of the speckle, x0. The scale br =
νr
pc

where νr > 0

shape of the K+Rayleigh distribution. The PDF of the K+Rayleigh distribution has no closed-

form expression and is solved by integrating Equation (2.13) with respect to the modied speckle

mean level, xr instead of the total speckle x0.

The influence of the extra Rayleigh component can be measured by computing the ratio of the

mean of the Rayleigh component to the mean of the gamma distributed component of the clutter

(pc) and is defined by

kr =
pr

pc
. (2.16)
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2.3.3 Parameter Estimation

For the K-distribution, the parameters to estimate are the scale and shape. A high shape

parameter implies that the data is less spiky [35, 124]. Various methods can be used to estimate

the shape parameter including constrained maximum-likelihood (ML) [1, 56], a least squares

model fit, method of moments (MoM) [124] and zlogz [15]. The least squares and

constrained ML estimators are computationally slow, while the MoM method is

computationally fast and simple but may be inaccurate if the estimated shape parameter is

small [15]. The zlogz estimator was shown to have a faster computation time than the

constrained ML and least squares method. Moreover, the zlogz method is more accurate than

MoM technique. Note that the zlogz estimator will be used in the thesis with a least squares

model fit used in some cases when the zlogz returns a negative shape due to an insufficient

number of samples.

The zlogz estimator for the shape of K+noise distribution is determined by numerically solving

the following equation for ν̂ [15, 97]:

〈z log z〉
〈z〉 − 〈log z〉 − 1

M
=

eν̂/CNRGν̂+1(ν̂/CNR)
1 + 1/CNR

(2.17)

where 〈 〉 is the mean operator, CNR is the clutter to noise ratio and G() is the generalised

exponential integral function. For the case when noise power is unknown, pn = 0 and the

shape in Equation (2.17) becomes an effective shape [15],

〈z log z〉
〈z〉 − 〈log z〉 − 1

M
=

1
ν̂

. (2.18)

The parameter estimation of the K+Rayleigh distribution requires the sum of the noise power

and Rayleigh power to be estimated in addition to the shape. In Equation (2.17), the CNR is

substituted with the clutter to noise plus Rayleigh power, CNRr, using the following relationship

for the distribution moments:

CNRr =
pc

pn + pr
=

1
1√
ν̂rr + 1

(2.19)

where

r =
M〈z2〉

(M + 1)〈z〉2 . (2.20)

The shape parameter of the K+Rayleigh can now be numerically computed from

Equation (2.17). Note that if the noise mean power is not known, the clutter power can be
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estimated by pc = 〈z〉 − ̂(pn + pr), where the noise plus Rayleigh mean power is estimated

using the moment relationship in [124].

For illustration, the K, K+noise and K+Rayleigh distributions are fitted to the HH polarisation

of the Ingara radar outlined in Section 2.5.1. The original data is denoted by the blue line, while

the K, K+noise and K+Rayleigh distributions are denoted by the red, black-dot and magenta

lines respectively. It can be observed that the K+Rayleigh distribution fits better than the K

and K+noise distributions, especially in the tail region. The K and K+noise distributions are

similar and almost sit on top of each other. In this case, the noise has minor impact on the K

distribution fitting. For this result, K and K+noise distribution shapes are estimated as 2.9 and

2.7 respectively. For the K+Rayleigh fit, the shape is 0.5. The noise mean power was determined

from the radar data when the transmitter was turned off and is given by pn = −36.6 dB. After

the K+Rayleigh fit, the residual Rayleigh mean power, pr = −24.6 dB and the ratio of the

Rayleigh mean power to the mean of the data, kr = 0.5.

Figure 2.4. Illustration of K+noise and K+Rayleigh distributions fitted to the Ingara HH

polarisation: (—) original data, (—) K, (-·-) K+noise and (- - -) K+Rayleigh distribution.

Page 19





Chapter 2 Maritime Radar Background

denote the PDF of the interference and target. As shown in Figure 2.5, if γ is the threshold, we

can express the probability of detection as,

Pd(γ) = Prob(z > γ|H1)

=
∫ ∞

γ
PT(z) dz (2.21)

and the probability of false alarm

Pfa(γ) = Prob(z > γ|H0)

=
∫ ∞

γ
PA(z) dz. (2.22)

Pfa(γ) is also known as the complementary cumulative distribution function (CCDF).

A constant RCS can be represented by a Swerling case 0 or Marcum model whose magnitude is

constant for all time [124]. A common target fluctuation is defined by the chi-square distribution

[103, 124]:

P(s|S, K) =
sF−1

Γ(F)

(
F
S

)F
exp

(
−Ks

S

)
(2.23)

where the parameter F is defined as the target fluctuation parameter, s, is the sum of the target

powers normalised by the local clutter-plus-noise power and S is M times the average signal to

interference ratio (SIR) in a square law detector [90]. Note that the original Swerling models

represented the target alone and were not normalised by the local clutter-plus-noise [124].

Equivalent Swerling models for the fluctuating target can be derived by varying the value of F:

• Swerling case 1: F = 1

• Swerling case 2: F = M

• Swerling case 3: F = 2

• Swerling case 4: F = 2M

Some Swerling cases share similar characteristics. For cases 1 and 2, the target has a Rayleigh

(or exponential in power) fluctuation representing several objects/reflectors fluctuating

independently. This is the case when the target is relatively large, compared to the radar

wavelength [109]. The RCS of Swerling case 1 has a slow fluctuation and is assumed to be

constant during a single scan (group of pulses) with changes from scan to scan. The Swerling

case 2, on the other hand, has a fast fluctuation which varies from pulse to pulse. For cases 3
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Figure 2.6. Target Swerling PDFs for the number of looks M = 10 and three values of target

SIR (S = -5 dB (top), S = 0 dB (middle), and S = 5 dB (bottom)): (—) case 1, (-·-) case 2,

(- - -) case 3, (—) case 4 [90].

and 4, the target models are represented by a chi-square distribution with 4 degrees of freedom

and the target RCS is less random, compared to the first two cases. The target RCS is large in

these cases with many small reflectors [18, 71, 109].

The distributions of the 4 Swerling cases representing the target RCS fluctuation are shown in

Figure 2.6 for the number of looks, M = 10, and three different values of target SIR: -5 dB

(top), 0 dB (middle) and 5 dB (bottom). The Swerling-1 and Swerling-2 are denoted by blue

and red dash-dot lines while the Swerling-3 and Swerling-4 are denoted by black dash and green

lines. The distribution of the Swerling-2 and 4 are narrower due to the fast changes of the target

RCS. When the target SIR increases, the distributions shift to the right.

2.4.2 Constant False Alarm Rate Detection

In the previous discussion, a fixed threshold has been used to achieve the specified probability

of false alarm. However, interference levels vary making it more difficult to achieve a constant

false alarm rate. To overcome this, the radar detector has to adapt to the environment in real

time which may be achieved by varying the threshold adaptively.
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The direct measurement in the second method gives a more accurate estimation of the desired

Pfa and the detection performance. However, it requires analysis when there is no target in the

data block. The model fitting method is used for target detection in the medium grazing angle

data in Chapter 4, while the second method is implemented in Chapters 5 and 6. The choice

of the methods does not greatly impact the detection performance because the selected model

used in the detection generally characterises the interference very well [93].

2.4.3 Monte-Carlo Simulation

Radar detection performance is generally measured via analysis of the probabilities of detection

and false alarm in various interference scenarios [90]. However, often this is not possible and

Monte-Carlo simulation is instead used to evaluate the performance. To quantify the detection

performance, the Monte-Carlo simulation is implemented by injecting a simulated target into a

number of range bins of the data. At each iteration, the target SIR is varied over a defined range

with the detection performance determined in relation to the SIR variation.

2.5 Experimental Data

In the thesis, two experimental data sets are used. The first data set was collected at medium

grazing angles using the Ingara radar system developed and maintained by the Defence Science

and Technology (DST) group, Australia [25, 58]. The second data set comes from the NetRAD

radar system [4, 5, 47, 85].

2.5.1 Ingara Sea Clutter Data

The Ingara radar is an X-band system operated with a pulse repetition frequency (PRF) of

575 Hz and a 200 MHz bandwidth, giving 0.75 m range resolution. During the trial, the radar

antenna was housed beneath a Beech 1900C aircraft as shown in Figure 2.8. The trials were

conducted in two distinctly different regions to achieve a range of environmental conditions.

The first ‘sea clutter trial’ (SCT04) was located 100 km to the South of Port Lincoln at the edge

of the South Australian continental shelf over an 8 day period in 2004. The second ‘maritime

sea-clutter trial’ (MAST06) occurred in 2006 in littoral and open ocean conditions near Darwin

in the Northern territory.

During the trial, radar backscatter was collected over 360◦ of azimuth and between 15◦ and 45◦

in grazing as shown in Figure 2.9. The aircraft flew around a nominated point of interest in an
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Figure 2.8. Beech 1900C aircraft used for the Ingara sea-clutter trials.

anti-clockwise direction while the radar beam was continuously illuminating the same patch of

sea-surface.

Figure 2.9. Demonstration of a trial geometry where the data is collected in a circular spotlight

mode [25].

The dataset used in this thesis is dual polarised data from the 2016 trial. It comprises two

subsequent runs where the radar first transmitted with a horizontal (H) polarisation and then

with a vertical (V). Both runs received both H and V simultaneously. Prior to analysis of

the sea-clutter, pre-processing was applied to the received backscatter. This included hardware
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corrections, motion compensation, correction for grazing angle variation, elevation beampattern

removal, and data calibration [82]. The mean noise power of the radar was also measured when

the transmitter was turned off. Then to obtain the equivalent noise level post-processing, a new

signal was created with the same dimension as the clutter plus noise and pre-processed the same

as the clutter plus noise.

Figure 2.10. Ingara range / time intensity images: HH (top left), VH (top right), VH (bottom left)

and VV (bottom right).

For illustration, a 2 s data block has been chosen from the upwind direction covering 430 m

with grazing angles between 30.5◦− 35.5◦. Figures 2.10 and 2.11 show the data: HH (top left),

VH (top right), VH (bottom left) and VV (bottom right). Figure 2.10 shows the variation of the

data in the range / time intensity domain. Figure 2.11 shows the variability in the power spectral

density (PSD) or Doppler spectrum for a coherent pulse interval (CPI) of 64 pulses.

It can be observed that that the backscatter intensities appear strong especially in the VV

polarisation. Sea-spikes on the other hand appear as strong white lines and are more

predominantly seen in HH polarisation. In the PSD domain, the sea-spikes vary in range and

some spread almost the entire data bandwidth.
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Figure 2.11. Ingara range / frequency images (dB): HH (top left), VH (top right), VH (bottom

left) and VV (bottom right).

2.5.2 NetRAD Bistatic Sea Clutter Data

The Ingara radar previously described is a monostatic system where the transmitter and receiver

share a common antenna. When more than one receiving antenna is used, the system is known

as a bistatic or multistatic system. There has been a considerable interest in bistatic radar over

the past decade to see if it offers potential advantages over monostatic radar [4, 47, 64].

The NetRAD is a multistatic radar system developed by a team from the University College

London (UCL), UK and the University of Cape Town (UCT), South Africa. It is a

ground-based pulsed-Doppler coherent multistatic system consisting of three identical radar

nodes [4]. Multistatic operation required the transmitter and receiver antennas to be situated

apart. Therefore, GPS disciplined oscillators (GPSDOs) and a 5 GHz wireless link were used

for synchronisation and data communication [95, 96]. The radar has a centre frequency of

2.4 GHz, a 45 MHz bandwidth and 1 kHz pulse repetition frequency (PRF). The radar system

can operate with either horizontal or vertical polarisations.

The data used in this thesis was recorded during a series of trials in October 2010 on the coast of

South Africa near the Cape Point area. The wind direction was from the North with a speed that

increased during the trials from 10.18 m/s to 12.3 m/s, while the wave height varied between
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Figure 2.13. Illustration of NetRAD HH polarised data recorded at 60◦ bistatic angles for

both monostatic (top) and bistatic (bottom). The bright spots in both configurations are

corresponding to breaking waves on the sea surface.

Figure 2.14. The PSD for the first 0.12 second of the monostatic and bistatic NetRAD data

shown in Figure 2.13.
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sea structure with sea waves moving toward the bistatic receivers. Some breaking waves are

also seen as bright white in the data and appear at multiple range bins. These bright colour

components are observed throughout the data in both monostatic and bistatic data sets.

2.6 Conclusion

In this chapter, the fundamentals of maritime radar have been introduced. The important aspects

of sea-clutter were outlined, including sea-spikes which exhibit the same characteristics as a

target, and cause problems in radar target detection. The chapter also described the conventional

detection algorithm using a CA-CFAR scheme. Two methods were discussed to determined the

threshold multiplier, one based on modelling the sea clutter distribution while the other is based

on direct measurement of the processed data. Monte-Carlo simulation was also presented as a

technique to measure the detection performance.

The final part of the chapter described two different data sets. The first was recorded from

an aeroplane at medium grazing angles while the second data set was recorded at low grazing

angles using a bistatic radar system. These two data sets are used for the analysis and validation

of the new detection algorithms in this thesis.
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Chapter 3

Time Frequency Analysis

T
HIS chapter outlines the background theory of time-frequency analysis

in preparation for their application in later chapters. A number of

time-frequency techniques are discussed including the short time Fourier

transform and various types of wavelet transforms. The main signal processing

techniques for analysing sea-clutter are then outlined.
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3.1 Introduction

One of the earliest and still widely used methods for signal analysis is the Fourier transform.

For the case of radar signal processing, the Fourier transform underpins a wide range of

applications. It is used for imaging to reveal signal spectral components embedded within the

radar returns and can be useful for target detection. By employing Doppler processing for

sea-clutter, different sea-clutter characteristics can be studied in the frequency domain.

Any target present in the radar backscatter can be distinguished from the clutter if its amplitude

is sufficiently high compared to the surrounding data or it moves at a faster velocity relative to

the clutter. However, the target is often located in the endo-clutter region and it is difficult to

distinguish from the clutter.

Due to the motion of sea-surface components, the sea-clutter can vary considerably over time

and range as shown in Figure 2.11 in Chapter 2. Moreover, clutter statistics at the edges of the

clutter spectrum are particularly non-Gaussian and vary from range bin to range bin [92,93,124]

resulting in sea-clutter that is range and time varying.

To better analyse and understand sea-clutter, we need analytical tools that compute the

frequency spectrum as time evolves; these techniques are generally known as time-frequency

transforms. Some examples of time-frequency transforms include the short time Fourier

transform and various wavelet transforms. They are discussed in this chapter as they are

relevant to the target detection schemes in later chapters.

In this chapter, we will start by looking at the Fourier transform in Section 3.2 and the short time

Fourier transform in Section 3.3. The chapter then looks at the continuous wavelet transform

and the discrete version with the concept of multi-resolution analysis in Section 3.4. A non-

decimated version of the discrete wavelet transform, namely the stationary wavelet transform,

is then studied in Section 3.4.4. Finally, the tuned Q-factor wavelet transform is outlined in

Section 3.5 and the conclusion of the chapter is given in Section 3.6.

3.2 Fourier Transform

The Fourier transform is widely used for signal analysis in many engineering and scientific

applications. It decomposes any signal into a set of sinusoids at different frequencies by

transforming the original time domain signal f (t) to the spectral or frequency domain F(ω),

F(ω) =
∫ ∞

−∞
f (t) exp (−jωt) dt, (3.1)
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where ω = 2π f is the angular frequency. The inverse Fourier transform reconstructs the

original signal from the spectral domain, and is defined as

f (t) =
1

2π

∫ ∞

−∞
F(ω) exp (jωt) dω. (3.2)

The Fourier transform pair f (t) and F(ω) are constrained by the uncertainty principle which

states that if a signal is confined to a time interval ∆t of f (t) then its Fourier transform is

confined to the small frequency interval ∆ω of F(ω) according to

∆2
t ∆2

ω ≥
1
4

(3.3)

where

∆2
t =

∫ ∞
−∞(t− µt)2| f (t)|2 dt∫ ∞

−∞ | f (t)|2 dt
,

∆2
ω =

∫ ∞
−∞(ω− µω)2|F(ω)|2 dω

2π
∫ ∞
−∞ |F(ω)|2 dω

and µt and µω are the mean time and mean frequency, respectively. It is thus impossible to have

arbitrarily fine resolution in both frequency and time domains simultaneously. Improvement

in one domain necessarily comes at a detriment to the other. Time-frequency transforms have

therefore been introduced to enable different representations of the data and to trade-off time

and frequency resolution. Some examples of time frequency transforms include the short-time

Fourier transform and the wavelet transform. They are outlined in the subsequent sections.

3.3 Short Time Fourier Transform

The short-time Fourier transform (STFT) was first introduced by Gabor [46] and is a standard

approach to analysing signals with time-varying frequency components. The STFT takes small

time segments, over which the signal can be assumed stationary and applies a Fourier transform.

The operation is defined as

STFT (t, ω) =
∫

f (t
′
)w(t

′ − t) exp
(
−jωt

′
)

dt
′

(3.4)

where f (t
′
) is the original time signal and w(t

′ − t) is the window function shifted by t ≤ Tw

(Tw is the width of the window function). The squared magnitude of the STFT is the power

spectral density of the signal in the localised time window. By applying the method over many

segments, the results are shown in a 2D representation or ‘spectrogram’.
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Figure 3.1. Time frequency resolution (or plane) of the STFT. The time and frequency

resolution are fixed in both time and frequency. Left: good time resolution, right: good frequency

resolution.

Window functions in a STFT have a fixed width in time and frequency which limits the

obtainable time-frequency resolution. Due to the uncertainty principle, a fine resolution in time

(small time window) necessarily implies coarse resolution in frequency (large frequency

window) and vice versa [23]. Figure 3.1 shows the trade off between frequency and time

resolution. When analysing a signal with a discontinuity or chirp and fast changing spectral

content, it is difficult to specify an appropriate window size with a constant window. To

overcome this disadvantage, wavelet transforms with different scales can be used

instead [27, 68, 108]. This allows a window width that adapts to the bandwidth of the analysed

signal.

3.4 Wavelet Transform

Wavelet transforms (WT) are another widely used time-frequency representation [27, 68, 72,

108]. The WT has been used for signal processing in various applications to obtain compact

representations of non-stationary signals. They have an ability to represent signals at multiple

scales, or resolutions, with different time windows, thus offering a very different partitioning of

the time frequency plane compared with the traditional Fourier transform and STFT [26]. For

WTs, the analysing functions are dilated (to achieve frequency localisation) and shifted (time

localisation) versions of the same template function, called the wavelet function ψ(t).
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Figure 3.2. Time frequency resolution (or plane) of the WT. The tiling resolution varies with

frequency contents: finer frequency resolution for lower frequencies.

3.4.1 Continuous Wavelet Transform

For continuous time signals, the WT is a set of inner products between the dilated and shifted

wavelet functions and the signal. The continuous wavelet transform (CWT) of a signal

f (t) ∈ L2(R) is defined as

W f (a, b) = 〈 f (t), ψa,b(t)〉

=
∫ ∞

−∞
f (t)ψ∗a,b(t) dt (3.5)

where 〈 , 〉 and ∗ denote the inner product and complex conjugate, respectively. ψ is the wavelet

function, whose scaled and shifted versions are described by

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
, (3.6)

where the parameter b ∈ R is the translation and a ∈ R+ is the dilation (or scale) parameter.

Translation represents a time shift, while dilation or scale relates to the frequency.

In Equation (3.6), the width of the mother wavelet is controlled by the scale a. By reducing

the value of a, the width in time is shorter and therefore ψa,b covers a wider frequency range

and similarly when a is increased, the width is longer. As shown in Figure 3.2, the time and

frequency scales of the wavelet transform are different. However, the area of the boxes remain

the same, satisfying the uncertainty principle in Equation (3.3). The 1√
a term is included in the

equation to ensure that the wavelet functions have the same energy at all scales.
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For ψ to be a valid wavelet and to ensure perfect reconstruction, it must meet the admissibility

condition:

Cψ =
∫ +∞

−∞

|Ψ(ω)|2

|ω| dω < ∞, (3.7)

where Ψ represents the Fourier transform of the wavelet. A corollary of Equation (3.7) is

Ψ(0) =
∫ +∞

−∞
ψ(t)dt = 0. (3.8)

The signal can then be reconstructed back to time domain via an inverse continuous wavelet

transform,

f (t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
W f (a, b)ψa,b(t)db

da
a2 (3.9)

The CWT in Equation (3.5) has a bandpass characteristic where the wavelet function ψ has a

bandpass impulse response. In addition, the value of |Ψ| in Equation (3.7) decreases rapidly for

|ω| → 0 and |ω| → ∞ [70]. To cover the whole frequency spectrum of the signal, an infinite

number of wavelet functions are used for the decomposition. However, for a finite number of

scales, there always exists a low frequency region of the signal which cannot be represented by

the wavelet functions. When a lower bound in the wavelet analysis is implemented, a scaling

function, φ(t) (or low-pass filter) is introduced to capture the low-frequency region [27, 67,

76]. This scale function is complementary to the wavelet function and must also satisfy the

admissibility condition, ∫ +∞

−∞
φ(t)dt = 1. (3.10)

3.4.2 Discrete Wavelet Transform

The CWT is highly redundant and is computationally slow [27, 79]. One option to overcome

this is to use a discrete version of the CWT [79]. For the discrete wavelet transform (DWT), the

parameters a and b of the wavelet function in Equation (3.5) are discretised:

a ≡ ak
0 and b ≡ ak

0mb0; for k, m ∈ Z

where a0 and b0 are a pair of integers with a0 > 1 and b0 > 0 [27]. The widths of the same

wavelet function vary with different k values where k is known as the decomposition level or

scale in the DWT. The wavelet function in Equation (3.6) then becomes:

ψk,m(t) = a−k/2
0 ψ(a−k

0 t−mb0). (3.11)
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The wavelet transform is usually implemented with the dyadic scaling factor (a0 = 2 and

b0 = 1),

ψk,m(t) = 2−k/2ψ(2−kt−m) (3.12)

and the set of DWT coefficients Dk(m) for the signal f (t) is defined as

Dk(m) = 〈 f (t), ψk,m(t)〉. (3.13)

The coefficients Dk(m) represent the signal f (t) in the transform domain with respect to the

wavelet ψk,m(t) using dyadic scaling. In this thesis, we only consider orthogonal wavelets,

with the wavelet function ψk,m(t) also used for signal reconstruction. For a given set of DWT

coefficients Dk(m), the wavelet signal reconstruction of any signal spanning L2(R) is given by:

f (t) =
∞

∑
k=−∞

∞

∑
m=−∞

Dk(m)ψk,m(t). (3.14)

In practice, the infinite scales are truncated and f (t) is approximated by a series of scaling

functions φk,m(t). Let Vk, k ∈ Z be the subspaces containing low-pass signals. As k increases,

Vk corresponds to a coarser approximation and the summation of subspaces at coarser

resolutions result in a more detailed resolution:

Vk = Vk+1 ⊕Wk+1, (3.15)

where ⊕ is a direct sum and Wk+1 is the wavelet subspace which fills in the missing detail in

between Vk and Vk+1. The sequence of subspaces Vk satisfy the following properties.

(i) A nested sequence of subspaces:

· · · ⊂ Vk+1 ⊂ Vk ⊂ Vk−1 ⊂ · · · . (3.16)

(ii) A scaling property: if a signal f (t) is scaled by a factor of two (i.e. f (t) → f (2t)), the

scaled signal f (2t) is an element of a larger subspace and vice versa:

f (t) ∈ Vk ⇔ f (2t) ∈ Vk−1. (3.17)

(iii) Signal approximation: the projection of a signal f (t) ∈ L1(R) onto the subspace Vk

produces a sequence of functions or sub-bands, fk(t). The signal f (t) is then

approximated by the sequence fk(t),

lim
k→−∞

fk(t) = f (t), f (t) ∈ L2(R), fk(t) ∈ Vk (3.18)
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Using the scaling property in (ii), one can show that the subspace Vk is spanned by scaled and

time-shifted versions of the scaling function φ(t),

Vk = span{φ(2−kt−m), m ∈ Z}. (3.19)

Therefore, the sub-band signals fk(t) ∈ Vk at a scale k are given by

fk(t) =
∞

∑
m=−∞

Ak(m)φk,m(t) (3.20)

where Ak(t) = 〈 f (t), φk,m(t)〉 and φk,m is given by

φk,m(t) = 2−k/2φ(2−kt−m). (3.21)

The overall missing details are the summation of subspaces between successive scales:

L2(R) = · · · ⊕W−1 ⊕W0 ⊕W1 ⊕ · · · (3.22)

where

Wk = span{ψ(2−kt−m), m ∈ Z}, k ∈ Z (3.23)

is the detail (or wavelet subspace) at scale k.

In practice, the DWT coefficients of the signal f (t) are commonly computed using two-channel

filter banks via the scaling φk,m(t) and wavelet ψk,m(t) functions. For illustration, assume that

k = 0 is the finest resolution of the signal f (t) and the projection of the signal onto φ0,m(t) or

φ(t−m) ∈ V0, m ∈ Z is the linear combination of the next coarser subspaces: V0 = V1⊕W1

from the definition given in Equation (3.15). The relation between the scaling and wavelet

functions for k = 0 are characterised by

φ0,m(t) =
∞

∑
n=−∞

ha(2n−m)φ1,m(t) +
∞

∑
n=−∞

ga(2n−m)ψ1,m(t), m, n ∈ Z (3.24)

where ha(n) are the coefficients of the scaling function and act as a low pass filter, while ga(n)

are the coefficients of the wavelet function which behaves as a high pass filter. In this case, the

wavelet function ψ(t) is generated from the iterative filtering with ha(n) and ga(n).
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If a known sequence A0(m) are the scaling coefficients of the discrete-time signal representing

the function f (t),

f (t) =
∞

∑
m=−∞

A0(m)φ0,m(t)

=
∞

∑
m=−∞

A0(m)

(
∞

∑
n=−∞

ha(2n−m)φ1,m(t) +
∞

∑
n=−∞

ga(2n−m)ψ1,n(t)

)

=
∞

∑
n=−∞

∞

∑
m=−∞

A0(m)ha(2n−m)︸ ︷︷ ︸
A1(n)

φ1,m(t) +
∞

∑
n=∞

∞

∑
m=−∞

A0(m)ga(2n−m)︸ ︷︷ ︸
D1(n)

ψ1,m(t).

(3.25)

This is the first level decomposition using the DWT. The first term represents the low-resolution

approximation where A1 is the approximate sub-band of the signal at the first level. The second

term contains the detail of the signal and hence D1 is referred to as the detail sub-band.

For a k-level decomposition, the nested subspace of the function f (t) is given by V0 = Vk ⊕
Wk ⊕Wk−1 ⊕ · · · ⊕W1. This is known as multi-resolution analysis where the very coarse

approximation is iteratively refined as shown in Equation (3.25). In this case, the approximate

sub-band is further decomposed using the same set of analysis filters. Figure 3.4 shows the

multiple level of a DWT (top) and its frequency band (bottom). Each sub-band maintains half

of the frequency band of the previous sub-band. By extending the previous discussion, it can be

shown that the set of approximation Ak and detail Dk sub-bands are computed as follows:

Ak(n) =
∞

∑
m=−∞

Ak−1(m)ha(2n−m), (3.26)

Dk(n) =
∞

∑
m=−∞

Ak−1(m)ga(2n−m), (3.27)

where k = 0, 1, 2, · · · , K. The transform depth K is a user-chosen parameter and depends on the

application. The wavelet Dk(n) and approximate Ak(n) sub-bands are successively computed

from Ak−1(n). For a K-level decomposition, there will be K detail and one approximate sub-

band.

To achieve perfect reconstruction, ga(n) and ha(n) are complementary which means that the

information which is not maintained in one is stored in the other and the frequency bands of any

decomposed signals are divided into low- and high-frequency signals as shown in the bottom

part of Figure 3.3. Aliasing caused by the overlapping region is designed to have opposite phase

and are cancelled out in the reconstruction.
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Figure 3.3. Signal analysis using two channel filter banks (top) with the sub-band frequency

band (bottom). A1 and D1 are the approximate and detail sub-bands, respectively and fs is the

sampling frequency.
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Figure 3.4. Multi-level decomposition of the DWT and sub-band frequencies using two channel

filter banks. K is the level of decomposition and fs is the sampling frequency.

The reconstruction process of the DWT is analogous to the decomposition. The sets of DWT

coefficients are filtered in reverse,

Ak(m) =
∞

∑
n=−∞

Ak+1(n)hs(m− 2n) +
∞

∑
n=−∞

Dk+1(n)gs(m− 2n), (3.28)

where hs(n) and gs(n) are the low-pass and high-pass synthesis filters, respectively.

For discrete time systems, the samples are obtained by sampling the signal f (t) which is

assumed to be ‘finest’ approximation of the continuous function. For DWT analysis, the
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convention is to use the samples of the signal as the wavelet coefficients at the intrinsic scale,

i.e. f (nts) = A0(m). While this relationship is strictly not true as the scaling functions are

usually not interpolating functions, the approximation nevertheless retains the desirable

time-frequency properties of the wavelet transform.

Equation (3.28) is the generalised DWT signal reconstruction. Figure 3.5 illustrates the multi-

level reconstruction of the DWT. The coefficients of the approximate AK and detail DK sub-

bands are up-sampled and then fed to the synthesis filters, low-pass hs(n) and high-pass, gs(n),

respectively. Summing the two outputs at each level exactly reproduces the finest scale signal

at the previous level. This can be iterated through multiple levels.

AK-1

AK

DK

A0

hs(n) 

gs(n)2

2

hs(n) 

gs(n)2

2

hs(n) 

gs(n)2

2DK-1
A1

D1

Figure 3.5. Multi-level signal reconstruction of the DWT using two channel synthesis filter

banks.

3.4.3 2D Discrete Wavelet Transform

The 1D discrete wavelet transform can also be extended to 2D wavelet analysis. The concept is

widely used for image manipulation concerning storage, de-noising, digital forensics and

circulation over the internet where the size of the image is important. The 2D DWT, illustrated

in Figure 3.6 is computed by performing 1D DWTs along rows and columns of the 2D

signal [67]. A one-level 2D DWT produces coefficients which are grouped into 4 separate

sub-bands (approximation, horizontal, vertical and diagonal). To avoid confusion, the one level

approximate sub-band in the 2D DWT is labelled LL1, the horizontal sub-band is denoted by

LH1 while vertical and diagonal sub-bands are denoted by HL1 and HH1, respectively.

The coefficients in the approximate sub-band LL1 is a lower resolution version of the original

2D data and is equivalent to applying a low-pass filter along the rows and columns of the data.

The LL1 sub-band contains the majority of the energy for most data sources. It follows that
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omitting the coefficients of this sub-band during reconstruction will cause the biggest

distortion to the original data. The horizontal sub-band LH1 is the result of applying a

low-pass filter along the rows and then a high-pass filter along the columns, so it emphasises

high frequency information along the columns and removes them from the rows. Visually, this

results in horizontal edges appearing more pronounced. Similarly, due to the different

application of low-pass and high-pass filters along the rows and columns, the vertical HL1

sub-band leads to an emphasis of vertical edges while HH1 emphasises diagonal edges.

Note that due to the downsampling process in the DWT computation, the sizes of the 4 sub-

bands are reduced to half of the original size in both dimensions. For example, if we have an

(N × N) matrix or image, then each of the 4 sub-bands has a size of (N
2 ×

N
2 ). This is shown

in Figure 3.7.

ha(n) 2

ga(n) 2

ha(n) 2

ha(n) 2

ga(n) 2

ga(n) 2

LL1

LH1

HL1

HH1

Data

Figure 3.6. Signal decomposition block diagram using the 2D DWT. ha(n) and ga(n) are

complementary low- and high-pass filters, respectively.

3.4.4 Stationary Wavelet Transform

Downsampling in the DWT leads to a non-expansive representation, which is crucial for

storage-sensitive applications such as image compression. However, reducing the sampling

rate can potentially create problems such as aliasing and may create undesirable artefacts when

the signal is reconstructed from processed coefficients [105]. To avoid the problem, a

non-decimated version of the wavelet transform, the stationary wavelet transform (SWT), can

be used [80, 105]. The time-invariant properties in a non-decimated wavelet transform is

important for statistical analysis and applications such as detection or parameter estimation of

electroencephalogram (EEG) signals [20].
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Figure 3.7. Two level image decomposition using the 2D SWT: Approximation sub-band (LL),

horizontal detail sub-band (LH), vertical detail sub-band (HL) and diagonal sub-band (HH).
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Figure 3.8. Stationary multi-level analysis and synthesis filtering: Ha(z), Ga(z), Hs(z) and

Gs(z) are the frequency response of the low- and high-pass analysis and synthesis filters,

respectively.

The computation of the SWT is similar to the DWT, where the two sets of filters are applied to

the data to produce two sub-bands. The change of sampling rates are discarded during

decomposition and reconstruction as shown in Figure 3.8 and as a result, the two sub-bands

contain the same number of samples as the original data. Although the sampling rates of the

data remain the same, the SWT retains the key multi-resolution property by upsampling the

k-th level analysis filters by a factor 2k. The four filters (ha, ga, hs and gs) are represented by

their equivalent transfer functions, Ga, Ha, Gs and Hs in the z-domain.
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The downside of this approach is that it carries higher computational cost and produces a

redundant representation of the original data [80]. The 2D version of the SWT is analogous to

the 2D DWT, in separately applying the equivalent filters along rows and then columns.

3.5 Tuned Q-factor Wavelet Transform

The tuned Q-factor wavelet transform (TQWT) is a fully-discrete transform which retains the

perfect reconstruction property and can be implemented with fast Fourier transforms (FFT).

With an adjustable Q-factor in the TQWT, some additional advantages are achieved over the

DWT. The TQWT is able to sample the time-frequency plane more densely in both time and

frequency and can achieve higher frequency resolution with a high Q-factor [100]. It is exactly

invertible and is a fully-discrete approximation of the CWT. The dyadic WTs (e.g. DWT) have

a fixed, low Q-factor, while the TQWT allows a user to vary the Q-factor to suit an analysed

signal.

Similar to the DWT, the tuned Q-factor wavelet transform (TQWT) is implemented using two-

channel multi-rate low- and high-pass filter banks, denoted by Ha(z) and Ga(z), respectively

[100]. As shown in Figure 3.9, the filtered signal goes through a process of time scaling. If

fs is the sampling rate of the analysed signal x, then the low-pass scaling (LPS) produces the

A1 sub-band with sampling rate α fs and preserves only the low frequency components of the

signal. For high-pass scaling (HPS), the high frequency component of the analysed signal is

preserved and the D1 sub-band has sampling rate β fs.

HPS 1/β

LPS 1/α

HPS β

LPS αHa(z)

Ga(z)

Hs(z)

Gs(z)

Analysis Synthesis

A1

D1

A1

D1

Data

D1

A1
~

~

Data

Figure 3.9. Tuned Q-factor wavelet transform using analysis and synthesis filter banks. A1 and

D1 are the approximate and detail sub-bands while Ã1 and D̃1 are its reconstruction; Ha, Ga, Hs

and Ga are the low- and high-pass analysis and synthesis filter responses, respectively and α

and β are the low- and high-pass scaling factors, respectively.
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To ensure that TQWT will not be overly redundant, the scaling factors, α and β are chosen to

satisfy the condition,

0 < β ≤ 1 and 0 < α < 1.

To achieve perfect reconstruction and for the filter responses to be well localised (or

oversampled), the scaling factors must satisfy

α + β > 1 (3.29)

and then the reconstructed approximate Ã1 and detail D̃1 sub-bands are combined,

Y(ω) = YÃ1
(ω) + YD̃1

(ω) (3.30)

= X(ω).

For a multi-level decomposition using the TQWT, the two channel filter bank is iteratively

applied to the low-pass channel of the analysed signal. The 3-level decomposition of the TQWT

is illustrated in Figure 3.10. The TQWT detail sub-band is denoted by Dk(n) where 1 ≤ k ≤ K

for a K-level decomposition. The first detail sub-band D1(n) is the result of high-pass filter.

The sampling rate of the sub-band at level-k is βαk−1 fs [100]. If one performs K-levels of

decomposition, there are (K + 1) sub-bands (i.e K detail and one approximate sub-band).

TQWT
Level-1 TQWT

Level-2 TQWT
Level-3

Data
D1

D2

D3

A3

Figure 3.10. Multi-level decomposition of the TQWT for a 3 level decomposition: D1, D2 and

D3 are the detail sub-bands and A3 is the approximation sub-band at level-3.

In the TQWT, varying α and β will also change the filter frequency responses. This is an

advantage where one can tune the bandpass of the filter to a desired frequency range of interest

for analysing a signal. The scaling parameters can also be expressed as:

β =
2

Q + 1
and α = 1− β

r

where r = β/(1− α) is the oversampling rate (or redundancy) of the wavelet transform. The

Q-factor is defined in terms of its centre frequency, fc, and bandwidth, B, of the filter response,

Q =
fc

B
. (3.31)
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As shown in Figure 3.11, the response is non-zero in the interval f1 = 1
2(1− β)αk−1 fs and

f2 = 1
2 αk−1 fs. The centre frequency, fc, at level-k is approximately the average of f1 and f2,

fc =
1
2
( f1 + f2)

= αk−1 fs

(
2− β

4

)
(3.32)

and the null to null bandwidth, B, is given by

B =
1
2
( f2 − f1)

=
1
4

βαk−1 fs. (3.33)
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ud
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αk-1
22

αk-1(1- β) fs
2

Frequency (Hz)

fs fs

Figure 3.11. Filter frequency response of a sub-band representing the bandpass spectrum

of a filter. The spectrum is limited by an interval with centre frequency, fc. fs is the sampling

frequency.

In summary, the TQWT requires three important parameters. The Q-factor determines the

‘oscillatory’ nature of the wavelet. It can be varied to suit different properties of the analysed

signal. For a low Q-factor, the wavelets (or filters) characterise non-sustained oscillations (broad

spectrum) while a high Q-factor leads to the wavelet being more oscillatory and better able to

characterise a signal with a narrow spectrum. Figure 3.12 illustrates the wavelet in the time

domain (bottom row) with its frequency response (top row). For Q = 1, the transform becomes

the second derivative of a Gaussian (Mexican hat wavelet) as shown in Figure 3.12 (bottom left)

and resembles the dyadic WT. A high Q-factor implies that the wavelet is highly oscillatory. In

the extreme limit, as Q approaches ∞, the result is a pure sine wave [100].

The second parameter is the redundancy factor (r > 1) which controls the frequency transition

of the wavelet filters. Greater values of r mean the frequency response of the neighbouring

sub-band filter has a greater amount of overlap [99, 100]. The third parameter is K which is

the number of levels the TQWT is decomposing. For a K-level decomposition, there will be K

detail and one approximate sub-band.

Page 46



Chapter 3 Time Frequency Analysis

Figure 3.12. The TQWT wavelet and filter responses using parameters (left: Q = 1, r = 3 and

K = 3) and (right: Q = 4, r = 3 and K = 15).

3.6 Conclusion

In this chapter, various time-frequency transforms have been discussed. The Fourier transform

is a versatile tool which is suitable for stationary signals. However, many naturally occurring

signals such as radar sea-clutter are non-stationary. To facilitate better analysis of these types

of signals, time-frequency tools such as wavelets can be used.

The DWT is desirable for many applications such as image processing because of its fast

computation and multi-resolution properties. However, downsampling in the DWT leads to a

shift-variant transform which can potentially produce artefacts. To avoid these problems, a

shift-invariant transform, the SWT, was proposed as an alternative.

The final part of this chapter outlined another time-frequency transform, namely the TQWT.

The tuneable Q-factor of the TQWT allows a user to adjust the resonance of the wavelet to the

desired frequency for a target. This unique property cannot be achieved with the conventional

dyadic WT.

Page 47



Page 48



Chapter 4

Target Detection in Radar
Sea Clutter Using

Stationary Wavelet
Transforms

T
HIS chapter investigates target detection in medium grazing angle X-

band sea-clutter using 1D and 2D stationary wavelet transforms (SWT).

The SWT decomposes a signal into a series of sub-bands which highlight

or suppress different features of the non-stationary sea-clutter. Once they have

been individually reconstructed back to the data domain, both the amplitude

statistics and their relative detection performance are investigated. To determine

which reconstructed sub-band contains the most information about the target,

an indication scheme using an ‘entropy’ based metric is proposed. A Monte-

Carlo simulation using a cell-averaging constant false alarm rate algorithm is then

implemented to demonstrate and quantify the detection improvement.
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4.1 Introduction

In maritime radar target detection, a good statistical representation of the backscatter is

important to both minimise false detections and maximise the probability of detection.

However, the radar backscatter may contain sea-spikes which can last for seconds and cause

false detections [64, 87, 124]. One potential solution to this problem is through the use of

time-frequency representations. The goal of this chapter is to investigate how a particular

time-frequency technique, the wavelet transform (WT) can potentially reduce the impact of

sea-spikes on target detection and improve the detection performance.

There have been a number of studies into the use of WTs to improve target detection in sea-

clutter. Ehara et al. [39] proposed two methods to improve the signal to noise ratio (SNR) of

the radar echo return. The first is based on the idea that given an optimal scale, the wavelet

function can approximate a matched filter and therefore improve target detection. The second

method extends this idea by integrating a small range of wavelet coefficients around the optimal

scale. This method provides more robustness and was shown to improve the SNR even further.

Ball and Tolley [9] proposed an automatic algorithm to determine the optimal scale parameter,

which required searching for the peak in the continuous WT coefficients, followed by a de-

noising procedure around the optimum scale. They achieved an average SNR improvement

of up to 10 dB when compared to a conventional matched filter. Zhang et al. [133] also used

WTs for radar target detection and found that removing some of the high frequency ‘detail’

wavelet coefficients is effective in reducing the noise of radar echoes and thus improve detection

performance. In this approach, the discrete wavelet transform (DWT) sub-bands suffer from

reduced detail (resolution), so the authors applied an independent component analysis to the

wavelet coefficients to improve the performance. However, with a single simulation and limited

experimental details, it is unclear whether this approach is effective for a broader range of

signals. Another wavelet-based approach was proposed by Davidson et al. [29], who used

a continuous WT to identify the dominant scatterers in a given scenario. The authors then

applied a ‘persistence’ statistic to detect slow-moving targets from the surrounding backscatter.

Wavelets have also found their way into radar image processing, based on their de-noising

ability. Jangal et al. [53] used a DWT and subsequent selective reconstruction (by ignoring

some sub-bands) to process range Doppler images of a high-frequency surface wave radar and

suppress interference.

In contrast to the existing wavelet-based schemes, this chapter investigates target detection in

medium grazing angle X-band sea-clutter using 1D and 2D stationary wavelet transforms

(SWT). One level of the SWT produces a series of sub-bands which represents different
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features of the non-stationary sea-clutter. Once they have been individually reconstructed back

to the data domain, both the amplitude statistics and their relative detection performance are

investigated. Higher levels of the SWT decompositions are then explored to further improve

the detection performance. To determine which sub-bands contain the most information about

the target, an indication scheme based on ‘entropy’ is proposed.

To quantify the detection improvement, a Monte-Carlo simulation using a cell-averaging

constant false alarm rate algorithm (CA-CFAR) is implemented. The comparisons between

processed and unprocessed data are investigated with both HH and VV polarisations. To

demonstrate robustness of the detection scheme, different target velocities and amplitude

fluctuations are also investigated.

This chapter is organised as follows. Section 4.2 outlines the Ingara data used for the

experiment and Section 4.3 provides background on the SWT. An analysis of both 1D and 2D

SWTs is then provided in Section 4.4. Section 4.5 compares the detection performance using

both mean separation and a Monte-Carlo simulation using the CA-CFAR algorithm. The

multi-level decomposition of the SWT is then investigated in Section 4.6. Section 4.7 defines

‘entropy’ and proposes a sub-band indication scheme to select the sub-band with the most

information about the target. Section 4.8 demonstrates the detection performance with the

proposed scheme. Finally, a summary of the chapter is given in Section 4.9.

4.2 Ingara Data Set

A short summary of the data is outlined here while more detail of the data and trial can be

found in Section 2.5.1. The Ingara medium grazing angle sea-clutter data set was collected by

the Defence Science and Technology (DST) Group in 2004 and 2006 [25]. During the trials,

the backscatter was collected over 360◦ of azimuth and between 15◦ − 45◦ in grazing. The

X-band radar had a pulse repetition frequency (PRF) of 575 Hz and used a 200 MHz bandwidth

giving 0.75 m range resolution. At a slant range of 3.4 km and with a 1◦ two-way 3 dB azimuth

beamwidth, the azimuth resolution was approximately 63 m.

For the experiment in this chapter, the dual polarised data set has been chosen from the 2006

trial with a Douglas sea state between 4 and 5. The polarisation is horizontal and a coherent

processing interval (CPI) of 128 pulses (or 0.2 s) is chosen from the upwind direction covering

430 m with grazing angles between 30.5◦ − 35.5◦.
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4.3 Stationary Wavelet Transform

This section provides a short review of the SWT with further details provided in Chapter 3.

Wavelet transforms have been used for signal processing in various applications to obtain

compact representations of non-stationary signals. They have the ability to represent signals at

multiple scales, or resolutions, with an adaptive time window, thus offering a different

partitioning of the time frequency plane compared to techniques such as the short time Fourier

Transform [27,68,117]. The analysing functions in wavelet transforms are dilated (by factor a)

and shifted (in time by b) versions of the same wavelet function ψ(t),

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
. (4.1)

A valid wavelet function must have a bandpass spectrum (zero average), and is thus a set of

oscillations over a limited duration in the time domain. The SWT is a translation-invariant

transform [74, 80, 105]. It is a non-decimated transform, and has been used successfully in

applications which may be sensitive to artefacts that arise from the more popular, decimated

version of the WT [20, 74, 80].

High level analysis of the SWT separates the non-stationary sea-clutter data into different sets

of detail (projections onto wavelet functions, ψa,b(t)) and approximation (scaling function)

coefficients, called sub-bands. Each of these coefficients corresponds to a unique region of the

time-frequency plane. It is reasonable to expect interference and target returns would produce

different distributions of coefficients, thus allowing them to be separated in the coefficient

domain.

The SWT signal decomposition algorithm is commonly implemented as cascaded two-channel

filter banks, with each filter bank consisting of a pair of complementary low-pass and high-pass

filters. The filter bank at level k > 0 accepts the approximation sub-band at level k− 1 as an

input and produces detail (Dk) and approximation (Ak) sub-bands at the outputs of the high- and

low-pass filters, respectively. The data input is equivalent to the A0 sub-band, with subsequent

levels:

Ak(n) =
∞

∑
m=−∞

ha(n−m)Ak−1(m), (4.2)

Dk(n) =
∞

∑
m=−∞

ga(n−m)Ak−1(m), (4.3)
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where ha(n) and ga(n) are the impulse responses of the low- and high-pass filters. The process

can be reversed to perform reconstruction by

Ak(n) =
∞

∑
m=−∞

hs(n−m)Ak+1(m) +
∞

∑
m=−∞

gs(n−m)Dk+1(m) (4.4)

where hs and gs are the low- and high-pass synthesis filters, respectively. Since the SWT is a

discretised transform, it follows that the dilation factor in Equation (4.1) is a = 2k and the time

index of the analysed signal is b = 2km. The decomposition and reconstruction processes are

illustrated in Figure 4.1.

D3

A3

D2

D1 Gs(z)

Hs(z)

Gs(z
2)

Hs(z
2)

Gs(z
4)

Ga(z
2)

Ha(z
2)

Data

Ga(z
4)

D1

D2

D3

A3Analysis

Synthesis
Data

Figure 4.1. Three levels of 1D SWT analysis (top) and synthesis filtering (bottom).

Ha(z), Ga(z), Hs(z) and Gs(z) are the transfer functions or z-transform of the complementary

analysis and synthesis low- and high-pass filters ha(n), ga(n), hs(n) and gs(n), respectively.

Breaking waves can be physically large and their corresponding radar backscatter can spread

over more than one range bin. Moreover, the backscatter is correlated in both range and time.

A 2D SWT is computed by performing 1D transforms along rows and columns separately, as

illustrated in Figure 4.2. The result after low-pass filtering is the approximate sub-band (or a

lower resolution version) of the original 2D data. For high level decompositions of a 2D SWT,

the approximate sub-band is further decomposed in the same manner as the first level. Further

explanation of the 2D SWT is given in Chapter 3.
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Row Column Column Row
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Figure 4.2. Block diagram of the first level signal decomposition and reconstruction using a 2D

SWT. Ha(z), Ga(z), Hs(z) and Gs(z) are the transfer functions of the complementary analysis

and synthesis low- and high-pass filters ha(n), ga(n), hs(n) and gs(n), respectively.

4.3.1 Wavelet Selection

Application of the SWT requires selection of a mother wavelet function (or filter). A set of filters

{ha, ga, hs, gs} must be designed together to achieve perfect (error-free) reconstruction. The

literature describes numerous sets of wavelet filters, each designed to satisfy different properties

[3, 68, 111, 112]. Some popular wavelets include Daubechies, Morlet, Mexican hat, Meyer,

Biorthogonal and Symlets [27, 68].

Different filters can reveal specific information of a particular signal [3, 68]. A comprehensive

survey of the performance of different wavelets is beyond the scope of this thesis. Instead,

the popular Daubechies-4 wavelet is chosen for the analysis of the radar backscatter, based on

earlier work [53, 62, 112, 121]. The impulse responses for the corresponding filters are shown

in Figure 4.3. Wavelets of this family are characterised by short finite impulse response (FIR)

filters in the corresponding 2-channel filter bank. One advantage of short FIR filters is reduced

ringing which helps with localising fluctuating targets in slow-time and is computationally fast.
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Figure 4.3. The impulse responses of the analysis and synthesis low- and high-pass

Daubechies-4 wavelet filters {ha, ga, hs, gs}.

4.3.2 Sub-band Reconstruction

The SWT decomposition performed on the data leads to a number of different sub-bands. The

components of the interference and target (if present) generally have different distributions of

SWT coefficients across sub-bands. This implies that one or more sub-bands have a stronger

signal to interference ratio (SIR) than the original data. It is based on this observation that we

propose the use of a subset of SWT sub-bands for target detection. In order to combine the

information from this subset, we perform a reconstruction back to the original time domain,

choosing to retain only those selected sub-bands. This is equivalent to using zero inputs for the

rejected sub-bands in the synthesis algorithm.

The sub-band isolation and reconstruction procedure is illustrated in Figure 4.4. The

approximate reconstructed sub-band, denoted by Ã1, is the result of low-pass filter and the

detail reconstructed sub-band, denoted by D̃1, is the result of high frequency sub-band. In the

frequency domain, the first level decomposition can be interpreted as general low- and

high-pass filtering. Figure 4.5 shows the frequency bandwidth of the two reconstructed

sub-bands. The Ã1 reconstructed sub-band retains the low frequency part, while the D̃1

reconstructed sub-band contains the high frequency part of the data spectrum.
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Figure 4.4. Data decomposition with sub-band isolation and reconstruction using the 1D SWT:

Ã1 and D̃1 are the approximate and detail reconstructed sub-bands of the original data.

A1
~ D1

~

fs
2

A
m
pl
itu
de

Frequency (Hz)

Figure 4.5. The reconstructed sub-band bandwidth from Figure 4.4: low-pass reconstructed

sub-band Ã1 and high-pass reconstructed D̃1. fs is the signal sampling frequency and fs
2 is the

corresponding Nyquist frequency.

4.4 Sea Clutter Analysis Using SWTs

In this section, both 1D and 2D SWTs are applied to the Ingara sea-clutter using the sub-band

isolation and reconstruction method. Various characteristics of sea-clutter are then investigated.

The section also illustrates the impact of the SWT with and without a target.

4.4.1 1D SWT Implementation

The first example is a 1D SWT decomposition of the complex (in-phase and quadrature) radar

backscatter along range. A single level SWT using the Daubechies-4 wavelet is investigated.

The data has a CPI of 128 pulses or time history of about 0.2 seconds. Each of the resultant

sub-bands are then isolated (i.e. by setting the others to zero) and individually reconstructed to
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Figure 4.6. Time and frequency (power spectral density (PSD)) domain representations after

sub-band isolation and reconstruction of the HH polarisation.

the data domain. As a result, two sub-bands are achieved: approximate and detail reconstructed

sub-bands denoted by Ã1 and D̃1, respectively. For visualisation, Figure 4.6 shows an example

of the 1-level decomposition and sub-band reconstruction using the 1D SWT along slow time.

The approximate reconstructed sub-band Ã1 only retains the low frequency part of the data

spectrum while the detail reconstructed sub-band D̃1 contains the high frequency part.

To quantify the changes in the interference, K and K+Rayleigh distributions have been fitted to

the original data and then to each of the reconstructed sub-bands. Figure 4.7 shows these fits

to the HH polarisation: original data (top row), reconstructed sub-bands Ã1 (middle row) and

D̃1 (bottom row). The original data and the reconstructed sub-bands in the time domain are

shown in the first column while their PDFs are shown in the second column with the original

data shown in blue, the K-distribution in red and the K+Rayleigh distribution in black.
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Table 4.1. K and K+Rayleigh distribution parameter estimates of the original and 1D

reconstructed sub-bands.

Model K K+Rayleigh

Polarisation HH HV VH VV HH HV VH VV

Original Data

CNR (dB) 15.0 8.0 10.7 23.0 15.0 8.0 10.7 23.0

kr - - - - 0.5 0.8 0.8 0.8

shape 2.9 8.3 9.2 32.0 0.5 0.2 0.2 1.7

Sub-band Ã1
CNRr (dB) - - - - ∞ -5.9 -6.2 -2.8

shape 3.0 6.1 4.6 50 14.8 0.1 0.07 39.0

Sub-band D̃1
CNRr(dB) - - - - ∞ ∞ ∞ ∞

shape 0.7 0.9 0.9 0.9 0.7 0.9 0.9 0.9

The results from the experiments reveal that the K-distribution has a mismatch in the tail for

each result. The K+Rayleigh distribution, on the other hand, has better fits for the original data

and the two reconstructed sub-bands. Notice that when fitting the K+Rayleigh distribution in

the detail reconstructed sub-band, there is a mismatch or the ”kink” in the curve around -30 dB.

This illustrates that it is hard to represent data with just a few large clutter spikes in it. Despite

the mismatch, the K+Rayleigh distribution is still able to fit the tail of the data very well, which

is important for threshold estimation in a radar detection scheme.

The spikiness of the original data and the reconstructed sub-bands can be implied from the

shape parameters, with higher shape values indicating that the data is less spiky [87, 124]. The

shape parameters are estimated using the zlogz estimator described in Section 2.3.3. Table 4.1

shows the estimated parameters for the 4 polarisations (HH, HV, VH and VV). The Ã1

reconstructed sub-bands typically have larger shape values implying less spiky clutter.

However, the D̃1 reconstructed sub-bands have lower shape values, indicating that the data is

spikier. The results are understandable because the detail reconstructed sub-bands retain the

high frequency components which contain mostly sea-spikes and noise. There are also some

CNRr values which are ∞ due to the noise plus Rayleigh mean power being estimated as 0.

To test the potential impact of the 1D SWT on targets, the sub-band isolation process is

repeated on the data with simulated targets present. They have a constant RCS with a signal to

interference ratio (SIR) of 10 dB. Both a stationary and moving target with a velocity of

2.6 m/s are injected into the HH polarisation at relative ranges 214 m and 230 m, respectively

as shown in Figure 4.8. The stationary target is located at the centre of the clutter region while

the moving target is situated at the exo-clutter of the clutter region (i.e the target moves faster
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Figure 4.7. Original and reconstructed sub-bands (Ã1 and D̃1) are shown on the left and its

corresponding PDFs are shown on the right: the original data (blue) with K-distribution (red)

and K+Rayleigh (black) distribution.

than sea-waves). The stationary target is maintained in the Ã1 reconstructed sub-band image,

while it is not visible at all in D̃1. When the target is moving however, this result switches and

the target is now clearly visible in the D̃1 reconstructed sub-band. The moving target appears

to be stronger (or brighter) than the original unprocessed data.

4.4.2 2D SWT Implementation

To implement the 2D SWT, a series of SWTs using the same Daubechies-4 wavelet are

performed on the 2D radar backscatter in the range / time domain as described in

Section 3.4.4. Following the 2D decomposition, 4 sub-bands (LL1, LH1, HL1 and HH1) are

produced. The LL1 sub-band is the result of low-pass filtering along rows and then columns.

LH1 is the result of low-pass filtering along rows and then high-pass filtering along columns,
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Figure 4.8. Range/time data (top) of the HH polarisation with a simulated stationary and moving

target at radial velocity 2.6 m/s in range bins 214 m and 230 m, respectively. The Ã1 and D̃1

reconstructed sub-bands are shown in the bottom left and right.

HL1 is high-pass filtering along rows and low-pass filtering columns and finally HH1 is

high-pass filtering along rows and then columns.

Each of the resultant sub-bands after decomposition are then isolated and individually

reconstructed back to the data domain. Four reconstructed sub-bands are achieved and denoted

by L̃L1, ˜LH1, H̃L1 and H̃H1. These sub-bands are shown in Figure 4.9 and are known as the

approximate, horizontal, vertical and diagonal reconstructed sub-bands. The figure shows that

each reconstructed sub-band contains some strong components in both range and time. The

reconstructed sub-bands also reveal some features which are not seen in the original data. For

instance, the L̃L reconstructed sub-band (top left of Figure 4.9) shows many strong

components which are not seen in the original data.

Figure 4.10 also shows the fitting of K and K+Rayleigh distributions for the 4 reconstructed

sub-bands. Firstly, these results reveal that the K-distribution fits L̃L1 and ˜LH1 reasonably well,

while there are large mismatches in the tail for H̃L1 and H̃H1. The K+Rayleigh distribution,

on the other hand, fits the data in all sub-bands well.
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Figure 4.9. Reconstructed sub-bands using the 2D SWT: L̃L1, ˜LH1, H̃L1 and H̃H1.

To investigate the variation in the interference after the 2D SWT, the shape parameters are

estimated. Table 4.2 shows the shape parameters of the four reconstructed sub-bands when

fitting the K and K+Rayleigh distributions. It is found that the overall shape parameters in the

L̃L and ˜LH sub-bands are larger than the original data and the H̃L and H̃H sub-bands. With

this analysis, there were some cases when the shape estimates of the K+Rayleigh distribution

using the zlogz estimator produce poor results. In this case, a least square model fit is used to

estimate the shape (see Section 2.3.3 for more detail).

The 2D SWT is also applied to the data with injected targets. The sub-band isolation and

reconstruction procedure is then repeated with the constant target RCS having an SIR of

10 dB. Both a stationary and moving target with a velocity of 2.6 m/s are injected into the HH

polarisation at relative ranges of 214 m and 230 m, respectively. Figure 4.11 shows the original

data (top) and the 4 reconstructed sub-bands. It can be observed that the stationary target is

maintained in the L̃L1 and ˜LH1 reconstructed sub-bands, which are the low-pass sub-bands of

the original data. The target is not visible in both high-pass reconstructed sub-bands: H̃L1 and

H̃H1. When the target is moving this result switches and the moving target is now clearly

visible in the H̃L1 and H̃H1 reconstructed sub-band images. However, both targets smear

vertically across multiple ranges due to the filter processing along columns.
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Figure 4.10. PDF fitting of the 4 SWT reconstructed sub-bands (L̃L1, ˜LH1, H̃L1 and H̃H1): the

interference is represented by blue, while K and K+Rayleigh distributions are shown in red and

black, respectively.

4.5 Detection Comparison Using 1D and 2D SWTs

4.5.1 Mean Separation

One method to measure the potential detection improvement is to calculate the mean difference

between the interference only and the interference with an injected target. A larger mean or PDF

separation indicates that the target is more likely to be successfully detected. In this section, we

measure the mean separation for both 1D and 2D reconstructed sub-bands.

For this exercise, a constant target is injected to all range bins of the HH polarisation. The

PDFs of the data with and without the target are then plotted. Figure 4.12 shows the PDFs of

the original data (top) and Ã1 and D̃1 of the 1D SWT in the middle and bottom, respectively.

Figure 4.13 shows the 2D SWT for the original data (top) followed by the four reconstructed

sub-bands: L̃L1, ˜LH1, H̃L and H̃H, respectively. The blue line denotes the interference only

PDF, the dash red line denotes the stationary target plus interference PDF and the dash-dot black

line denotes the moving target plus interference PDF. Note that for the original data, the PDFs
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Table 4.2. K and K+Rayleigh estimated parameters of the 2D SWT sub-bands.

Model K K+Rayleigh

Polarisation HH HV VH VV HH HV VH VV

Sub-band L̃L1
CNRr (dB) - - - - ∞ -5.4 -5.3 -3.5

shape 3.1 6.8 4.7 50.0 52.0 0.06 0.04 50.0

Sub-band ˜LH1
CNRr (dB) - - - - ∞ ∞ ∞ ∞

shape 0.7 0.8 0.8 0.9 0.7 0.8 0.8 0.9

Sub-band H̃L1
CNRr (dB) - - - - 22.8 ∞ ∞ ∞

shape 0.7 0.9 0.9 0.7 0.7 0.9 0.9 0.7

Sub-band H̃H1
CNRr (dB) - - - - ∞ ∞ ∞ ∞

shape 0.7 0.9 0.9 0.7 0.7 0.9 0.9 0.7

of the stationary and moving targets are identical and for the D̃1, H̃L and H̃H reconstructed

sub-bands, the red lines are on top of the blue lines.

Figure 4.12 shows that the PDF separation for the stationary target is slightly bigger than the

unprocessed data in the Ã1 reconstructed sub-band, while the moving target shows poor

separation. These results are reversed for the D̃1 reconstructed sub-band. There is no

separation for the stationary target (the dash red line sits on top of the blue line) while an

extremely large separation is observed for the moving target. The results demonstrate the

2-channel filtering of the SWT, where the approximate sub-band contains the low frequency

components while the reconstructed detail sub-band contains the high frequency parts. When a

target is not in the filtering bandwidth, the reconstructed sub-band will only contain

interference.

For the 2D SWT case in Figure 4.13, similar results are achieved. The L̃L1 and ˜LH1

reconstructed sub-bands provide similar separation to the unprocessed data for the stationary

target, while the H̃L1 and H̃H1 reconstructed sub-bands provide a large improvement for the

moving target.

To quantify the PDF separation for each sub-band of the 1D and 2D SWTs, the relative

difference in means between the interference and the target plus interference distributions are

computed. Tables 4.3 and 4.4 show the reconstructed sub-band mean separation for both the

1D and 2D SWTs, respectively. The tables reveal that for the stationary target, the biggest

mean separation is observed in the Ã1 reconstructed sub-band while the L̃L1 and ˜LH1
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Figure 4.11. 2D SWT of the HH polarisation with two injected targets for the original data (top)

and the four reconstructed sub-bands. Top target is stationary and bottom target is moving with

2.6 m/s radial velocity.

reconstructed sub-bands are slightly lower than the unprocessed data. For the moving target,

the D̃1 reconstructed sub-band of the 1D SWT performs best followed by H̃H1 and H̃L1 of

the 2D SWT, respectively. Based on this analysis, we expect that the 1D SWT will outperform

the 2D SWT when used for detection.

Page 64



Chapter 4 Target Detection in Radar Sea Clutter Using SWTs

Figure 4.12. PDF separation of the original data and the reconstructed sub-bands of the 1D

SWTs for stationary and moving targets in the HH polarisation. The original data PDF is in

blue while the PDFs of stationary and moving targets with interference are in dash red and

dash-dot black, respectively. For the original data, PDFs of stationary and moving target with

interference are the same.

4.5.2 Monte-Carlo Simulation

To further compare and quantify detection performance using the 1D and 2D SWTs, a non-

coherent detection scheme is investigated with a Monte-Carlo simulation. This is implemented

by repeatedly injecting targets at each range bin of the data. The target SIR is then varied and

the detection scheme is run with an adaptive threshold determined by the CA-CFAR algorithm.

The probability of detection is then determined by counting the number of detections which

cross the threshold. The detection results from the 1D and 2D SWTs are finally compared

against unfiltered data.

For this comparison, two constant RCS targets having radial velocities (0 and 2.6 m/s) are

illustrated. The data used for comparison comprises a CPI of 128 pulses and 200 range bins.

The scheme is applied to each polarisation with HH polarisation being used for the examples.

Results for the other polarisations (HV, VH and VV) are given in Appendix A.
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CA-CFAR Algorithm

A CA-CFAR algorithm is implemented at the output of each detector with the results compared

by looking at the improvement in SIR for a given probability of detection, Pd. It is applied along

range to determine a threshold which adapts to the local clutter in order to maintain a constant

false alarm rate. It is implemented with G = 2 guard bins adjacent to the cell under test to avoid

target self nulling and Mr = 32 range bins to determine the local mean. Refer to Section 2.4.2

for more detail.

Figure 4.13. PDFs for the original data and the reconstructed sub-bands of the 2D SWT for

stationary and moving targets in HH polarisation. The original data PDF is in blue, while the

PDFs of stationary and moving targets with interference are in red and black, respectively. For

the original data, PDFs of stationary and moving targets with interference are the same.
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Table 4.3. Relative difference in means between interference and target plus interference (dB)

of stationary and moving targets using the 1D SWT with a velocity 2.6 m/s. Improvements over

the unprocessed data are shown in bold.

Polarisation HH HV VH VV

Original data 10.4 10.4 10.4 10.4

Ã1 (stationary target) 10.9 11.3 11.3 10.7

D̃1 (stationary target) 0.0 0.0 0.0 0.0

Ã1 (moving target) 1.6 1.8 1.8 1.6

D̃1 (moving target) 21.5 17.4 17.1 24.9

Table 4.4. Relative difference in means between interference and target plus interference (dB)

of stationary and moving targets using the 2D SWT with a velocity of 2.6 m/s. Improvements

over the unprocessed data are shown in bold.

Polarisation HH HV VH VV

Original data 10.4 10.3 10.4 10.4

L̃L1 (stationary target) 9.9 9.6 10.3 8.9
˜LH1 (stationary target) 7.9 8.8 8.2 8.2

H̃L1 (stationary target) 0 0 0 0

H̃H1 (stationary target) 0 0 0 0

L̃L1 (moving target) 1.3 1.8 1.4 1.0
˜LH1 (moving target) 0.9 1.1 1.0 1.0

H̃L1 (moving target) 19.8 15.3 15.7 22.2

H̃H1 (moving target) 17.8 14.5 13.7 21.6

To determine the threshold multiplier, a common technique is to fit a model to the data and

extrapolate to the desired Pfa. Based on the model fits in Figure 4.7 and 4.10, the K+Rayleigh

distribution is used to compute the threshold multiplier [93]. For the detection results here, we

have selected a Pfa of 10−5 which is possible only by extrapolating along the tail of the model.

With the threshold multiplier determined prior to the CA-CFAR, the larger value of P ensures

that the measured false alarm rate for the original data and each of the reconstructed sub-bands

are very close to the desired Pfa.
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Detection using 1D SWTs

Figure 4.14 shows the detection results for the HH polarisation before and after the 1D SWT

detection scheme. The original detection results are shown in blue, while the results for the

approximate and detail reconstructed sub-bands are shown in red and yellow, respectively. It

can be observed that the stationary target (left) is best detected in the approximate reconstructed

sub-band Ã1 while there is a performance loss in the detail reconstructed sub-band, D̃1. The

performance however is reversed for the moving target (right), which is best detected in the D̃1

reconstructed sub-band.

Figure 4.14. The probability of detection using the original and 1D reconstructed sub-bands of

the HH polarisation for stationary and moving targets with a Pfa of 10−5.

For further comparison, the required SIR to achieve a Pd of 0.5 is given in Table 4.5 for all

polarisations. This choice is based on extensive literature which uses this level for comparison.

For each target velocity, the required SIRs for each sub-band and the original data are recorded

with the detection improvements highlighted in bold. Firstly, we can observe that the detection

of a moving target in the D̃1 detail reconstructed sub-bands show a significant improvement of

7.8 and 9.4 dB for HH and VV respectively, while the HV and VH polarisations have an

improvement of 5.4 and 4.6 dB. The approximate reconstructed sub-bands show worse

performance for the moving target case. Secondly, for the detection of a stationary target, the

Ã1 reconstructed sub-bands show an improvement of between 0.6 dB to 1.6 dB over the

conventional detection scheme. The detail reconstructed sub-bands are worse for detection of

the stationary target in this case.
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Table 4.5. Required SIR for a Pd = 0.5 - stationary and moving targets. Improvements are

shown in bold.

Polarisation HH HV VH VV

Original data 13.6 12.5 11.9 11.1

Ã1 (stationary target) 12.3 10.9 10.4 10.5

D̃1 (stationary target) 38.0 37.2 36.3 35.9

Ã1 (moving target) 25.9 24.5 23.9 24.1

D̃1 (moving target) 5.8 7.1 7.3 1.7

The detection using the Monte-Carlo simulation is able to quantify the detection improvement

and confirm the detection analysis using mean separation described in Section 4.5.1. Both

methods demonstrate the 2-channel filtering of the SWT, where the low frequency components

are contained in the approximate sub-band, while the high frequency parts are contained in the

reconstructed detail sub-band. When a target is not in the filtering bandwidth, the

reconstructed sub-band will only contain interference broadly distributed over the frequency

spectrum. This results in the target SIR in the reconstructed sub-band being stronger than the

SIR of the unprocessed data. Thereby, the detection in the sub-band with the target gives a

good detection improvement (i.e the Ã1 reconstructed sub-band provides a better detection of

the stationary target while the D̃1 reconstructed sub-band gives a better detection of the

moving target).

To further investigate the performance of moving targets, the target velocity is varied from 0 to

4.3 m/s. Figure 4.15 shows the detection results when measured at Pd = 0.5 for the original

(unprocessed) data and the 1D SWT (Ã1 and D̃1) for the HH polarisation. The Ã1 reconstructed

sub-band has slightly better detection performance over the unprocessed data for stationary

and slow moving targets, but decreases in performance as the target velocity reaches 1.5 m/s.

Conversely, the D̃1 reconstructed sub-band increases in performance when the target velocity is

higher than approximately 2 m/s. The maximum improvement of 9.4 dB is achieved in D̃1 for

targets moving faster than 2.8 m/s in the VV polarisation. The figure also shows the transition

velocity for the reconstructed sub-bands Ã1 and D̃1 which is approximately between 1.5 m/s

and 2 m/s. This is the region where the target information is split between the sub-bands of

the SWT. As a result, the detection performance in both reconstructed sub-bands is lower than

the unprocessed data. In summary, the analysis of the 1D SWT shows that the approximate

reconstructed sub-band Ã1 can better detect stationary and slow moving targets while the detail

reconstructed sub-band D̃1 can be used for targets moving outside the endo-clutter region.
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Figure 4.15. Required SIR for the HH polarisation measured at Pd = 0.5 using the 1D SWT

detection scheme with the variation of the target velocity from 0 to 4.3 m/s.

Detection using 2D SWTs

The Monte-Carlo simulation is now repeated for the 2D SWT detection analysis. Figure 4.16

shows the Pd results of the stationary and moving targets with a radial velocity of 2.6 m/s for

the HH polarisation. The required SIR to achieve a Pd of 0.5 is shown in Table 4.6 for the

4 polarisations. For the stationary target, the approximate reconstructed sub-band, L̃L1 can

detect a target about 1 dB better than the unprocessed data in all polarisations, except VV. The

results are reversed for the moving target where significant improvement is now achieved in the

reconstructed sub-bands, H̃L and H̃H. The largest improvement over the unprocessed data is

found in VV with 8.8 dB followed by the HH, HV and VH polarisations.

By varying the target velocity, the required SIR for a Pd of 0.5 is shown in Figure 4.17 for

the HH polarisation. Similarly to the previous results, the L̃L1 reconstructed sub-band has

better detection performance for the stationary and slow moving target but then decreases as

the target moves faster than 1.5 m/s. The horizontal ˜LH sub-band performs slightly worse than

the unprocessed data. The diagonal H̃H1 and vertical H̃L reconstructed sub-bands, on the

other hand, show a maximum improvement of approximately 4 and 8 dB, respectively for target

velocities greater than 3 m/s. The target information is again split across sub-bands between

approximately 1.5 m/s and 2 m/s and hence detection performance in this region is lower than

the unprocessed data. There is also an unexpected peak at 1.3 m/s which highlights where

sea-spikes are influencing the results. Note that this phenomenon does not greatly impact the

other polarisations shown in Appendix A. From the detection analysis, the reconstructed L̃L1
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Figure 4.16. The probability of detection using the original and 2D SWT reconstructed sub-

bands of the HH polarisation for stationary and moving targets with the Pfa of 10−5.

sub-band would be selected for the detection of stationary and slow moving targets, with the

H̃L1 reconstructed sub-band for fast moving targets.

Figure 4.17. Required SIR for the HH polarisation measured at Pd = 0.5 using the 2D SWT

detection scheme with the variation of the target velocity from 0 to 4.3 m/s.

Summary of 1D and 2D SWT Detection Results

The results from both the 1D and 2D SWT detection schemes demonstrate significant

improvements over the original data. The D̃1 and H̃L1 reconstructed sub-bands are desirable

for fast moving targets situated outside the endo-clutter region, while the Ã1 and L̃L1

reconstructed sub-bands are suitable for stationary and slow moving targets. Since the 1D
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Table 4.6. Required SIR for a Pd = 0.5 - stationary and moving target. Improvements are

shown in bold.

Polarisation HH HV VH VV

Original data 13.6 12.5 12.3 12.2

L̃L1 (stationary target) 12.8 12.1 11.4 12.6
˜LH1 (stationary target) 15.4 13.7 13.9 13.7

H̃L1 (stationary target) 38.3 37.9 36.7 37.7

H̃H1 (stationary target) 41.3 39.6 40.0 39.7

L̃L1 (moving target) 26.8 26.0 25.3 26.5
˜LH1 (moving target) 29.5 27.6 27.9 27.6

H̃L1 (moving target) 6.0 8.3 7.9 3.4

H̃H (moving target) 8.9 9.8 11.0 5.2

SWT offers slightly better detection performance over the 2D SWT for both stationary and

moving target, the 1D SWT will be used for subsequent analysis.

4.6 Multi-Level SWT Decomposition

The multi-level decomposition of the SWT is achieved by further decomposing the approximate

sub-band. The implementation of a multi-level (or higher level) decomposition using the 1D

SWT is described in Sections 3.4.4 and 4.3. In computing the SWT, the total number of levels

is a user-chosen parameter. In our case, the finite number of pulses places a practical ceiling on

the highest level K in Equations (4.2) and (4.3). In the SWT decomposition, the wavelet filter

impulse responses are up-sampled by 2 at every level of the decomposition. This causes rapid

growth in the length of these filters as the level increases, eventually reaching the length of the

data series. Further decomposition beyond this ceases to produce meaningful sub-bands. More

precisely, if there are M samples in slow-time, and the length of the analysis filters (ha, ga) is

N, then the maximum level K must satisfy

K ≤ log2

(
M
N

)
. (4.5)

For example, using length 8 Daubechies-4 filters with a CPI of 128 pulses implies the SWT is

limited to 4 levels or lower. However, for our analysis in this chapter, we only use 3 levels to

demonstrate the SWT performance. This simplifies the analysis and reduces the computational

burden.

Page 72



Chapter 4 Target Detection in Radar Sea Clutter Using SWTs

When performing the 3-level decomposition of the SWT, 3 detail and 1 approximate sub-bands

are produced in the WT domain. The process of sub-band combination and reconstruction can

then be applied to the data. For instance, we can combine the D1 and D2 sub-bands to produce

a sub-band denoted by D12 which contains the information content of D1 and D2 sub-bands

combined. For the initial analysis, the reconstructed sub-bands used are D̃1, D̃2, D̃3, D̃12, D̃123,

D̃13, D̃23, Ã1, Ã2 and Ã3.

To investigate the performance of these reconstructed sub-bands, the mean separation of the

data with and without an injected constant RCS target is computed. Figure 4.18 shows the mean

separation for a number of reconstructed sub-band combinations using 3 different target radial

velocities: 0, 1.1 and 2.6 m/s. These correspond to the centre, edge of the endo-clutter region

and the exo-clutter (noise only) regions respectively. The mean separation of the original data is

shown in blue and represents a reference level for the analysis. The results for the reconstructed

sub-bands are then ranked and shown by a red line with triangles markers.

For the stationary target, the reconstructed sub-band Ã3 has the biggest mean separation of

5 dB followed by Ã2 and Ã1. When the target has a radial velocity of 1.1 m/s, the reconstructed

combination D̃23 gives the best mean separation of 3 dB, implying that the target Doppler

frequency is located between D̃2 and D̃3. For a target moving with a radial velocity of 2.6 m/s,

the biggest mean separation is shown for the D̃1 reconstructed sub-band and is 11 dB greater

than the original mean separation. In this case, higher levels of the SWT do not improve the

mean separation as there is little target information in the A1 sub-band. Note also that the D̃2

result is quite small, while the combination D̃12 is greater than the original mean separation.

This is due to the majority of information about the target being maintained in D1.

After extensive experimentation, a group of reconstructed sub-bands have been selected for

further analysis and to test the detection performance. A moving target outside the endo-clutter

region will always be present in the D̃1 reconstructed sub-band while a stationary target will

always be located in the Ã1 reconstructed sub-band. Detecting a slowly moving target is more

difficult as it may be present in either the Ã2 or D̃2 reconstructed sub-bands or even have

a Doppler frequency that lies partway between the frequency extent of these sub-bands. If

this happens, it can potentially reduce the detection performance. Therefore to ensure good

detection performance in all cases, we have included combinations of D1, D2 and D3 sub-

bands in our selected group. The frequency bandwidth of the final group of reconstructed

sub-bands are shown in Figure 4.19 and include D̃1, D̃2, D̃12, D̃23 and Ã3. Unfortunately, the

target velocity is not known ahead of time and a method is required to select which sub-band to

use to ensure good detection performance.
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Figure 4.18. The mean separation for targets having an SIR of 10 dB after the SWT processing

with sub-band reconstruction. The blue line is the original data mean separation and the red is

for the reconstructed sub-bands.

4.7 Entropy Sub-band Indicator

4.7.1 Entropy Theory

Entropy is a measure of information and has been widely used to measure system disorder in

statistical analysis [102]. It is also used to measure the global or average uncertainty of random

samples [24,50,120] and has been applied to the problem of detecting targets in clutter. Jia and

Kong [55] applied an entropy statistic to measure the range spread of a target in clutter. Using

simulated data, the entropy detection statistic provided better performance at high SNR when

compared to adaptive range cell integration and M/N detection [51]. Noting that large entropy

values result in targets not being present, Wang et al. has applied entropy for target feature

extraction [122]. The detection performance using entropy was observed to complement the
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Figure 4.19. One sided frequency spectrum of the 3-level SWT reconstructed sub-bands. fs/2

is the signal sampling rate. Top: the plot shows all the 3-level reconstructed sub-bands, middle:

D̃12 reconstructed sub-band is the combination of D1 and D2 sub-bands and bottom: D̃23 is the

combination of D2 and D3 sub-bands.

result using Bayesian detection (i.e. good performance with Bayesian detection resulted in

poor performance with entropy detection and vice versa). Therefore a detection scheme was

proposed using both methods in parallel which produced good overall detection performance.

Guo et al. [49] also employed entropy to measure the randomness after non-coherent integration.

Applied to a simulated dataset, the method demonstrated high probability of detection, but also

produced a high level of false alarms.

For our study, entropy is proposed as a means of determining which reconstructed sub-bands

contain the most information about a target and hence would provide the best detection

performance. The motivation for using entropy is that the target is persistent over time while

the interference returns are more random. The entropy will therefore be different when a target

is present.

The entropy of a discrete random variable, X, is given by

H(X) = −
QE

∑
q=1

∫ uq

lq
g(xq) log g(xq) dxq (4.6)

where g(xq) is the PDF of the data over QE intervals and the lower and upper limits are lq and

uq respectively [120]. Let wq = uq − lq be the width of the histogram bin for the qth term in
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the summation. The bin probabilities can then be written as pq = wqg(xq), giving the final

expression for the entropy,

H(X) = −
QE

∑
q=1

pq log(pq/wq), wq > 0. (4.7)

4.7.2 Entropy Application

To apply the entropy given in Equation (4.7), the PDF of the data is firstly determined for each

range bin using all the slow-time samples in a given CPI. A smaller entropy value is observed

when the distribution has a smaller variance and vice versa. This means that the entropy value

of targets, depending on their distributions, can be smaller or larger than the entropy value of

the interference. To avoid the variation, we define our entropy indicator as the absolute value of

the entropy with zero mean,

Eb(r) = |H(r)− 〈H〉 |, (4.8)

where 〈H〉 is the mean entropy over all range bins. Taking the absolute value of the difference

in equation (4.8) ensures that the entropy values of the reconstructed sub-band b are always

positive.

To demonstrate the entropy variation when a target is present, a constant RCS target is injected

into the data with an SIR of 10 dB. A CPI of 128 pulses and 200 range bins are used for the

experiment. Figure 4.20 shows the entropy variation for each range bin using a single level

SWT. When the target is stationary (top plot), the reconstructed sub-band Ã1 produces a peak

at the target location while the entropy variations in D̃1 sub-band are small across all range bins.

However, when the target moves at a radial velocity of 2.6 m/s (bottom plot), D̃1 shows a high

peak at the target bin and Ã1 shows little variation. These results are consistent with the mean

separation observed in Section 4.6.

Let γb be the maximum entropy variation (peak value) for the reconstructed sub-band, b, defined

by

γb = max
r
{Eb(r)}. (4.9)

The γb values are used as an entropy metric to determine the presence of a target. Figure 4.21

shows the entropy metric for a number of reconstructed sub-bands as the SIR increases. Three

different target velocities (0, 1.1 and 2.6 m/s) are shown with each result baselined by first

determining the entropy indicator from Equation (4.8) over an interference only region and
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Figure 4.20. Entropy variation of the data with an injected target having an SIR of 10 dB at

range bin 100: stationary target (top) and moving target with radial velocity 2.6 m/s (bottom).

then offsetting the measured entropy value. This ensures that the entropy value for each

reconstructed sub-band has a similar level when no target is present. Note that when there is no

target present, the entropy difference is 0.

When the target is stationary, the maximum entropy γÃ3
of the Ã3 reconstructed sub-band has

the highest value followed by γÃ2
and γÃ1

. For the faster moving target at 2.6 m/s, the entropy

metric is maximum for the D̃1 reconstructed sub-band. Lastly, when the target moves at 1.1 m/s,

the combination D̃23 reconstructed sub-band is best. Again, these results consistently match

the mean separation found in Section 4.6. A similar result is achieved when the Swerling-1

fluctuating target is used as shown in Figure 4.22.

4.7.3 Sub-band Indication Scheme

One possible method to perform our sub-band indication is to decompose, isolate and

reconstruct all the sub-bands and then determine the maximum entropy, γ, for each

reconstructed sub-band. Then the reconstructed sub-band with the biggest γ value is selected

for the detection as illustrated in the previous section. However, this method requires

unnecessary computation as some sub-bands may not be required for the final detection.
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Figure 4.21. Maximum entropy variation with a Swerling-0 target as a function of SIR. For a

stationary target, the Ã3 sub-band has the biggest maximum entropy. For a moving target, the

biggest entropy variation is seen in one of the detail sub-bands. For very weak and no target

case, the maximum entropy or entropy difference is zero.

A more efficient method is to compare the entropy variation of the sub-bands after each

decomposition level. This idea is based on an image processing application for selecting the

minimum decomposition level of a natural image [129]. Figure 4.23 shows the sub-band

selection scheme for our detector where the maximum entropy of the reconstructed sub-band

for each level of decomposition is compared. The first step is to compute the Ã1 and D̃1

reconstructed sub-bands after a single level of decomposition and then determine γÃ1
and γD̃1

.

If γD̃1
is greater than γÃ1

, we select D̃1 to perform the detection because the target is no

longer maintained in Ã1. However, if the maximum entropy of D̃1 is less than Ã1, we compute

the next level SWT and compare the maximum entropy of D̃2 and Ã2. This time, if D̃2 is

larger than Ã2, we select the maximum of the three reconstructed sub-bands: D̃2, D̃12 and

D̃23. If Ã2 has the larger entropy, then a further decomposition to Ã3 is performed. For most

cases, this method reduces the computation cost by avoiding the decomposition and

reconstruction of sub-bands which are not necessary.
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Figure 4.22. Maximum entropy variation with a Swerling-1 target as a function of SIR. For a

stationary target, the Ã3 sub-band has the biggest maximum entropy. For a moving target, the

biggest entropy variation is seen in one of the detail sub-bands. For very weak and no target

case, the maximum entropy or entropy difference is zero.

4.8 Detection Performance Using 1D SWTs

To investigate the detection performance of the new detection scheme, the Monte-Carlo

simulation from Section 4.5.2 is repeated here. Variations of both the target fluctuation

(Swerling-0 and 1) and the target radial velocity (0, 1.1 and 2.6 m/s) are given with each result

also showing the proportion of selected reconstructed sub-bands. The data used for

comparison comprises a CPI of 128 pulses, 200 range bins and both HH and VV polarisations.

Note that we are not comparing any coherent detection techniques due to the time and range

varying Doppler spectrum which makes such analysis complicated.

The parameters for the CA-CFAR algorithm are given in Section 4.5.2 with each reconstructed

sub-band requiring a different threshold multiplier. This is also computed by fitting a model to

the data and extrapolating to the desired Pfa. Figure 4.24 illustrates that the K+Rayleigh model

fits both the data and each reconstructed sub-band well. For this experiment, the
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Figure 4.23. Entropy sub-band indication scheme: the entropy of each level sub-band

reconstruction are compared. γ is the maximum entropy of each sub-band used to indicate

the sub-band with the most information about the target.

complimentary cumulative distribution function (CCDF) of the K+Rayleigh distribution is also

shown in Figure 4.25. Interestingly, the longer distribution tails due to the sea-spikes are

mostly confined to the first level detail sub-bands. For this implementation, the desired Pfa is

arbitrarily set to 10−3 for both filtered and unfiltered data. This choice allows for the actual Pfa

to be measured without resorting to extrapolation of the CCDF model. The CNR and shape

parameter for this example are 17.8 dB and 0.7 respectively. The CNRr and shape parameters

for the reconstructed sub-bands are given in Table 4.7.

Three alternative detection cases are now compared. The first uses the unfiltered ‘original’ data

as an input into the CA-CFAR algorithm. The second result uses the ‘best’ SWT reconstructed

sub-band as determined by the mean separation analysis in Section 4.6. These comprise Ã3, D̃23

and D̃1 for targets with radial velocities of 0, 1.1 and 2.6 m/s, respectively. The third case uses

the entropy sub-band indicator to determine the ‘best’ reconstructed sub-band. Ideally, the

performance of this scheme should match the best SWT results from the known sub-band in the

second case.
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Table 4.7. Shape parameter estimate for the reconstructed sub-bands used to determined the

threshold in the detection analysis.

Polarisation HH

Reconstructed Sub-band D̃1 D̃2 D̃12 D̃23 Ã3

CNRr (dB) 18.6 14.5 16.4 17.4 1.4

Shape 0.04 0.03 0.04 0.05 0.1

Figure 4.24. Sea clutter PDFs of the selected reconstructed sub-bands: data (blue) and

K+Rayleigh distribution (red).

4.8.1 HH Polarisation

The first data set used for the detection investigation is the HH polarisation. Figure 4.26 shows

the detection performance (first column) and reconstructed sub-band selections (second

column) for a Swerling-0 target using the three different target velocities. The unfiltered data
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Figure 4.25. CCDF of the selected reconstructed sub-bands: data (blue) and K+Rayleigh

distribution (red).

detection result is shown in blue while the best reconstructed sub-band detection results are

shown in red, magenta and black for the three target velocities. The detection result using the

entropy indicator is plotted in dark green and denoted as ‘eSWT’. For all the comparisons in

this section, the SIR has been compared at Pd = 0.5.

For the stationary target, the detection in the Ã3 reconstructed sub-band has the highest

detection performance and is approximately 6 dB higher than the original result. The eSWT

performance is not as good because the majority of the indicator results are incorrect when the

SIR is below 5 dB. However it still has a 5 dB improvement over the original result. For the

slow moving target, the D̃23 performance is 3 dB above the original, while the eSWT has an

improvement of only 2.5 dB. This is because the indicator is often confused between the D̃2

and D̃23 reconstructed sub-bands as shown in Figure 4.26 (right column, middle). However,

since both of these contain information about the target, there is only a minor impact on the
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achieve the same Pd value as a Swerling-0 target. However, the detection improvements are

almost identical to the Swerling-0 target.
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Figure 4.27. The probability of detection using a Swerling-1 target (first column) for the HH

polarisation.The second column shows the number of times the reconstructed sub-bands are

selected for detection when the entropy sub-band indicator is used.

4.8.2 VV Polarisation

To further investigate the detection performance, the scheme is applied to data from the VV

polarisation. Figure 4.28 shows the detection performance (left column) and the number of
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selected sub-bands (right column) for a Swerling-0 target. For the stationary target, there is an

improvement of about 4 dB over the unprocessed data when a known reconstructed sub-band,

Ã3 is used. For an unknown target velocity (marked eSWT), the entropy sub-band indicator only

selects the correct sub-band when the target SIR is greater than 2.5 dB with an improvement

of approximately 3.5 dB. For the target moving at 1.1 m/s, the best detection result is the D̃23

reconstructed sub-band with an improvement of about 3 dB. The eSWT improvement in this

case is about 2.5 dB. When the target moves at a relative velocity of 2.6 m/s, a significant

improvement of approximately 8 dB is achieved. The detection performance of a Swerling-1

target is then shown in Figure 4.29 and is very similar to the Swerling-0 results.

Overall, the proposed SWT detection works well for both HH and VV polarisations and for both

Swerling-0 and Swerling-1 targets. The detection in VV offers a slightly better performance

compared to the HH polarisation for moving targets but slightly less for stationary targets. The

detection results reflect the differences in the sea-clutter for both polarisations. Moreover, the

sub-band indicator selects the optimal reconstructed sub-band in the majority of cases.

To demonstrate the variation of the detection performance with different target velocities, the

required SIR to achieve a Pd = 0.5 is measured using Monte-Carlo simulation. Figure 4.30

shows the result for the HH polarisation where the blue line is the required SIR for the original

unprocessed data and the red line with circles shows the result using the SWT with the entropy

sub-band indicator. Overall, the eSWT required less SIR to produce the same Pd as the original

detection with a few velocities having higher SIR. These peaks correspond to the transitions of

sub-bands corresponding to PRF/4 (2.1 m/s) and PRF/16 (0.53 m/s) and highlight where the

target indicator has selected the wrong sub-bands.

4.9 Conclusion

This chapter reported on the application of SWTs to target detection in sea-clutter. The process

of sub-band isolation and reconstruction has been proposed to highlight different features of

the sea-clutter and improve target detection. The first part of this chapter described how to

use both 1D and 2D SWTs to analyse sea-clutter. This revealed that by isolating some sub-

bands, the reconstructed sub-bands of the SWT contain less spiky sea-clutter than others. We

also investigated and compared the detection performance of both 1D and 2D SWTs against

unprocessed data using two methods and found that depending on the target velocity, some sub-

bands of the 1D and 2D SWT offered a larger mean separation and better detection compared

Page 85



4.9 Conclusion

Figure 4.28. The probability of detection for Swerling-0 target (first column) for the VV

polarisation and the number of times the reconstructed sub-bands are selected for detection

(second column).

to the unprocessed data. It is also found that the detection using the 1D SWT outperforms the

2D SWT in all target cases.

The second part of the chapter investigated multi-level decomposition and sub-band

reconstruction using the 1D SWT to further improve the detection performance. To

demonstrate the performance of different sub-bands, the mean separation between the

interference and target plus interference was studied for different reconstructed sub-band
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Figure 4.29. The probability of detection for Swerling-1 target (first column) for the VV

polarisation and the number of times which the reconstructed sub-bands are selected for

detection (second column).

combinations. This revealed that the stationary target was better detected in the approximate

sub-band at a higher level decomposition, while a moving target was better detected in one of

the detail reconstructed sub-bands.

Selecting the correct sub-band is key for implementing a practical detection scheme when the

target’s radial velocity is unknown. Entropy was proposed as a means of indicating which

reconstructed sub-band contains the most information about the target. A computationally
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Figure 4.30. Required SIR for the HH polarisation measured at Pd = 0.5 using the 1D SWT

detection scheme with variation of the target velocity from 0 to 3.4 m/s.

efficient scheme was presented based on the maximum entropy at different levels of the SWT

decomposition.

The last part of the chapter used a Monte-Carlo simulation to quantify and compare the detection

improvement against unprocessed data. This analysis revealed that with prior knowledge of the

target’s velocity, the improvement in the required SIR when measured at Pd = 0.5 was between

3 and 7 dB for the HH polarisation and between 2.5 and 8 dB for VV when compared to

unfiltered data. The improvement also varies with the target radial velocity. For the unknown

target velocity case, the entropy indication scheme was able to successfully determine the ‘best’

reconstructed sub-band in the majority of cases and had a similar improvement to the known

target velocity case.
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Chapter 5

Target Detection in
Bistatic Radar Sea Clutter
Using Stationary Wavelet

Transforms

I
N this chapter, the stationary wavelet transform (SWT) detection scheme

is tested with both monostatic and bistatic data from the netted radar

(NetRAD) multistatic radar system. The detection performance is

determined with a Monte-Carlo simulation and a cell averaging constant false alarm

rate detector. The results then confirm the robustness of the SWT detection scheme

across different data sets.
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5.1 Introduction

Multistatic radar systems provide additional degrees of freedom which can potentially improve

our understanding of the environment and improve target detection in spiky sea clutter. Other

benefits include a possible counter to stealthy targets and the potential for utilising passive

receive nodes. The netted radar (NetRAD) multistatic radar system was jointly developed by

the University College London in the UK and the University of Cape Town in South Africa [4].

Since the NetRAD system trials in 2010, researchers have extensively analysed the NetRAD

data to gain a better understanding of the clutter behaviour [6, 45, 86] and develop multistatic

coherent detection techniques [78]. This analysis showed that the bistatic mean reflectivity and

amplitude statistics vary with the bistatic angle, typically having a lower mean backscatter and

being less spiky than the monostatic data [6, 45].

Another potentially useful approach to improve target detection performance is to apply signal

processing methods prior to detection. Existing examples include coherent processing [16, 30,

88, 124], time-frequency processing, [9, 37, 39, 53, 133] and space-time adaptive processing

[83]. In Chapter 4, a novel detection technique using stationary wavelet transforms (SWT) was

presented and applied to sea-clutter collected from an airborne platform [37]. In this chapter,

the technique is applied to both monostatic and bistatic sea-clutter, collected from a cliff top by

the NetRAD radar system. The robustness of this technique using both monostatic and bistatic

data is demonstrated.

This chapter is organised as follows. Section 5.2 gives a description of the NetRAD system, trial

and data sets. The background on SWTs and the detection scheme is briefly described in Section

5.3. Section 5.4 then illustrates and quantifies the detection performance. The conclusions are

given in Section 5.5.

5.2 NetRAD Data

5.2.1 NetRAD System and Trial

NetRAD is a ground-based pulsed-Doppler coherent multistatic radar system consisting of three

identical nodes [4]. For the sea-clutter collections, the radar operated in a bistatic configuration

with two nodes triggered using GPS disciplined oscillators and synchronised through a 5 GHz

wireless link [96]. The radar independently recorded both horizontal and vertical polarisations

with a centre frequency of 2.4 GHz, a 45 MHz bandwidth, 1 kHz pulse repetition frequency

(PRF) and a peak power of 400 W.
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Figure 5.2. NetRAD horizontally polarised monostatic data at βbi = 60◦: (top) time domain,

(middle) PSD, (bottom) averaged PSD.

A detailed study of the mean Doppler spectrum over all monostatic and bistatic collections

has revealed 3 dB widths between 10-20 Hz and centre frequencies up to ± 50 Hz. Figure 5.4

shows the average monostatic (top) and bistatic (bottom) PSDs over range with blue, red dash

and black dash-dot lines representing the bistatic angles, βbi = 60◦, 90◦ and 120◦ respectively.

These spectra appear quite Gaussian-shaped with the monostatic results slightly wider than the

bistatic results. In general there is little difference between them and also between the different

bistatic angles. Note that the monostatic data collected at βbi = 90◦ contains a small peak at

approximately 80 Hz. This appears in only a few range bins and resembles a point target-like

component. This could possibly be an extremely fast wave or a recreational boat in the area at

the time of the trials. To investigate the component further, we looked at later time blocks and

found that the component also exists in the corresponding βbi = 90◦ bistatic data. During the

detection process, the component will mask targets which have less power. It will also influence

the statistics of the sea clutter and cause the threshold to be higher. This will result in missed

detections for weak targets in nearby range bins.
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Figure 5.3. NetRAD horizontally polarised bistatic data at βbi = 60◦: (top) time domain,

(middle) PSD, (bottom) averaged PSD.

Figure 5.4. Average PSD for both monostatic and bistatic configurations with horizontal

polarisation.
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The sea-clutter analysed in the previous chapter were recorded in a side looking configuration

from a moving airborne platform and has a broad Doppler spectrum. In comparison, the

sea-clutter spectrum width of the NetRAD system is much smaller and will require slight

modifications to the SWT detection scheme.

5.3 Wavelet Based Detection Scheme

Full details of the SWT detection scheme and its use on the Ingara medium grazing angle data

are provided in Chapter 4 and the published work [37]. In this section, a brief summary of the

scheme is provided, along with some modifications for the NetRAD data.

5.3.1 Sub-band Isolation

The different time-frequency characteristics of the interference and target implies that some

reconstructed sub-bands have a stronger signal to interference ratio (SIR) than the original data.

Therefore, with careful selection of these sub-bands, we can utilise the reconstructed data to

improve the target detection. In the frequency domain, this can be interpreted as band-pass

filtering.

The exact combination of sub-bands needs to be carefully determined for different radar

systems. Factors that influence the sub-band choice include the PRF and the Doppler

bandwidth of the received signal. For the Ingara data, the sea-clutter Doppler spectrum spans a

larger fraction of the unambiguous frequency band, due to the low PRF and the aircraft motion

causing the antenna beam to broaden. The sub-band isolation and reconstruction was

implemented with the first level detail sub-band, D1 or approximate sub-band A1. However,

for the NetRAD data, the PRF is 1 kHz and the clutter spectrum has 3 dB widths in the range

of 10-20 Hz with a maximum frequency shift of up to ±50 Hz. For SWT processing, half of

the Doppler spectrum is maintained in the approximate sub-band while the other half is

maintained in the detail sub-band. For the higher level SWT analysis, the approximate

sub-band A is further decomposed. Figure 5.5 (top) shows the 4-level decompositions of the

SWT. To reach the edge of the NetRAD clutter spectrum, the SWT must decompose the signal

at least 3 times to reduce the spectral width to 62.5 Hz (i.e. 500/23). In this case, the first

reconstruction will produce the approximate, Ã3 and detail, D̃123 reconstructed sub-bands

where D̃123 is a combination of detail sub-bands D1, D2 and D3 as illustrated in Figure 5.5

(middle). If the target is embedded in the centre of the Doppler endo-clutter region, a further
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Figure 5.6. NetRAD data PSD after sub-band isolation and reconstruction using an SWT: Ã3

and Ã4 are the approximate reconstructed sub-bands of the original data at levels 3 and 4

respectively. D̃123 is the combination of detail sub-bands D1, D2 and D3 while the sub-band D̃34

is the combination of D3 and D4.

To demonstrate the entropy variation, a constant RCS (Swerling-0) target is injected into the

data. Figure 5.8 shows the entropy metric for a number of reconstructed sub-bands as the SIR

increases. Three targets are shown with radial velocities of 0, 1.9 and 6.3 m/s (corresponding

to 0, 31.25 and 101.56 Hz respectively). The target velocities are chosen to be at the centre and

edge of the endo-clutter region and out in the exo-clutter region. When the target is stationary,

the Ã3 sub-band has the highest maximum entropy followed by Ã4. Using the logic shown in

Figure 5.7, the Ã4 reconstructed sub-band is selected. For the higher frequency target, the D̃123

reconstructed sub-band has the highest entropy and is selected (bottom of Figure 5.8). Lastly,

when the target frequency is 31.25 Hz, the D̃34 reconstructed sub-band has the greatest entropy

value followed by D̃4, Ã3 and Ã4. The scheme will select D̃34 over D̃4 because they both

contain the same information.
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Figure 5.8. Maximum entropy variation with a Swerling-0 target as a function of SIR.

determined by counting the number of detections which cross the threshold. For the SWT

scheme, the Daubechies-4 wavelet is used.

5.4.1 HH Polarisation

The first detection results use the HH polarised data. Figures 5.9 and 5.10 show the detection

performance at a bistatic angle of 60◦. The probability of detection for the three target velocities

are shown in the first column as a function of the SIR with the number of times each sub-band is

selected shown in the second column. The original (orig) non-filtered detection result is shown

in blue, while the best reconstructed sub-band detection results are shown in red, green and

black for the three target velocities. The detection result using the entropy indicator is plotted in

magenta and denoted as ‘eSWT’. For all detection comparisons, the required SIR is compared

at Pd = 0.5.

For a stationary target, the best reconstructed sub-band is Ã4, for a target moving with 1.9 m/s,

it is D̃4 and with a velocity of 6.3 m/s, the best result is found in D̃123. When compared to the

unfiltered data, the monostatic results show slightly worse performance for the eSWT due to
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the ineffectiveness of the indicator, while an increase of 0.6 dB is observed for the bistatic case.

However when the target is moving, the eSWT algorithm shows greater improvement. For a

slow target moving of 1.9 m/s, the improvement is 9.4 dB and 11.6 dB for the monostatic and

bistatic cases respectively. When the target moves faster, the eSWT and the best reconstructed

sub-band have the same detection performance. An improvement of 20.9 dB is achieved for the

monostatic case and 19.6 dB for the bistatic case at βbi = 60◦.

Figure 5.9. The probability of detection (first column) and number of selected sub-bands

(second column) for the NetRAD monostatic HH polarisation βbi = 60◦ and a Swerling-0 target.
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Figure 5.10. The probability of detection (first column) and the number of selected sub-bands

(second column) for NetRAD bistatic HH polarisation βbi = 60◦ and a Swerling-0 target.

Table 5.1 summarises the performance improvement for all bistatic angles (60◦, 90◦ and 120◦)

when compared to the unfiltered data. It is now clear that there is only a minor improvement

between 0.1 to 0.6 dB for the stationary target, with the best results achieved using the 60◦

bistatic data. For the slow moving target, the bistatic results typically have a larger

improvement, with a maximum of 15.6 dB at a bistatic angle of 120◦. However, for the slow

moving target using the monostatic 90◦ data, there is a much smaller improvement in the

eSWT when compared to the D̃4 reconstructed sub-band. This is due to the entropy indicator
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selecting an incorrect reconstructed sub-band for the detection (i.e. the reconstructed sub-band

D̃123 is selected for the detection instead of D̃4). This confusion is caused by the interfering

target as discussed in Section 5.2.2.

Table 5.1. Detection improvement for monostatic and bistatic HH polarised data with a

Swerling-0 target. Results are measured at Pd = 0.5 and a probability of false alarm of 10−3.

NetRAD
Monostatic Bistatic

60◦ 90◦ 120◦ 60◦ 90◦ 120◦

Target velocity 0 m/s
Ã4 0.1 0.5 1 0.6 0.2 0.5

eSWT -0.1 0 0.6 0.4 -1.3 0.2

Target velocity 1.9 m/s
D̃4 10.4 11.6 13.2 13.0 6.7 17.2

eSWT 9.4 4.2 11.5 11.6 6.0 15.6

Target velocity 6.3 m/s
D̃123 20.9 18.1 19.0 14.3 12.5 19.6

eSWT 20.9 18.1 19.0 14.3 12.1 19.6

5.4.2 VV Polarisation

The SWT detection scheme is also applied to the VV polarisation. Figures 5.11 and 5.12 show

the detection performance (left column) and the number of sub-bands (right column) of the

monostatic and bistatic configurations at βbi = 60◦. It can be observed that for the stationary

target, the detection improvement of the known reconstructed sub-band is minor and the

detection results from the entropy sub-band indicator become slightly worse for some

configurations due to the sub-band indicator selecting incorrect sub-bands. For the slow

moving target, the best detection results show an improvement of about 11 dB for the

monostatic data and 7.4 dB for the bistatic data, respectively. It is also observed that for the

slow moving target in the monostatic 60◦ data, our indicator seems to fail to select the correct

sub-band as shown in Figure 5.11 (middle right). This maybe due to a strong breaking wave or

another unknown target in the data. When the target moves at higher velocity, the detection

improvement is significant for both the known reconstructed sub-band and the entropy selected

sub-band. The improvements are 17.7 and 18.3 dB for the monostatic and bistatic data,

respectively.
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Figure 5.11. The probability of detection (first column) and the number of selected sub-bands

(second column) for NetRAD monostatic data and VV polarisation: βbi = 60◦ and a Swerling-0

target.

The SWT scheme has also been applied to other bistatic angles for the VV polarisation. Table

5.2 gives a summary of the detection improvement for the reconstructed sub-band with known

target and unknown target velocity. The table shows that the detection performance using the

SWT is larger when the target is non-stationary. The highest detection improvement is 35.8 dB

for the monostatic configuration at 120◦.
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Figure 5.12. The probability of detection (first column) and the number of selected sub-bands

(second column) for NetRAD bistatic data and VV polarisation: βbi = 60◦ and a Swerling-0

target.

5.4.3 Detection Summary and Recommendation

Based on the detection performance and analysis, we found that the proposed SWT detection

scheme is robust and performs well for nearly all data sets from both monostatic and bistatic

configurations. The detection improvements vary depending on the target velocities. The best

detection is found in the monostatic VV polarisation, at the bistatic angle of 120◦. In terms

of bistatic angles of operation, a conclusive trend cannot be drawn from the SWT detection

scheme.
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Table 5.2. Detection improvement for monostatic and bistatic VV polarised data with a

Swerling-0 target. Results are measured at Pd = 0.5 and a probability of false alarm of 10−3.

NetRAD
Monostatic Bistatic

60◦ 90◦ 120◦ 60◦ 90◦ 120◦

Target velocity 0 m/s
Ã4 0.45 0.23 0.4 1.4 0.85 0.38

eSWT -0.5 -0.25 0.4 0.8 0.75 -0.02

Target velocity 1.9 m/s
D̃4 11 18.55 16.8 7.4 7.9 19.4

eSWT -0.4 16.35 16.5 5.4 7.75 12.1

Target velocity 6.3 m/s
D̃123 17.7 24 35.8 18.3 10.4 19.75

eSWT 17.65 23.75 35.8 18.25 9.4 19.72

However, the detection analyses provided here are admittedly only based on limited results

from a very short observation time (128 pulses or 0.12 s). Moreover, the data at βbi = 90◦ and

βbi = 60◦ of the monostatic HH and VV polarisations appear to contain unexpected targets,

making the comparison unclear. Another point to note is that the radar looks at different patches

of the sea-surface for every bistatic angle and polarisation and the sea surface structure may be

varying between trials. Moreover, the range to the illuminated patch of sea surface is shorter as

the bistatic angle βbi increases.

5.5 Conclusion

This chapter demonstrated a SWT-based detection scheme for small target detection in

monostatic and bistatic sea-clutter from a ground based radar system at low grazing angles.

The first part of this chapter analysed different aspects of sea-clutter which could impact on the

detection. It was found that the Doppler spectrum of the sea component was approximately

1/10 of the spectral width of the Ingara data.

With a good understanding of the data, the signal processing method using SWTs was adapted

to the NetRAD sea-clutter data. The process of sub-band isolation and reconstruction was

illustrated with each reconstructed sub-band of the SWT highlighting different features of the

sea-clutter to better detect targets. Entropy was then used to select the appropriate reconstructed

sub-band when the target velocity is not known prior to its detection.
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To demonstrate the SWT scheme, a Monte-Carlo simulation using a CA-CFAR detection

algorithm was implemented. The best reconstructed sub-bands with known target velocity

were then compared with that determined by an entropy indicator. This analysis revealed that

depending on the target velocity and bistatic angle, the improvement over unfiltered data

varied between -1.3 dB and 20.9 dB for the HH polarised data and between -0.5 dB and

35.8 dB for the VV polarisation. The entropy indicator was able to successfully determine the

‘best’ reconstructed sub-band in the majority of cases.

These results demonstrated that the SWT scheme can improve the detection performance in

many cases. However, there is no clear indication whether a monostatic or bistatic configuration

is more favourable. More trials and analysis are therefore required to clarify which geometry is

preferable. When compared with the Ingara medium grazing angle in Chapter 4, the NetRAD

results were better for a fast moving target but worse for a stationary target.
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Chapter 6

Target Detection in Sea
Clutter Using Resonance

Based Sparse Signal
Separation

S
EA clutter and targets often have different characteristics due to their

motion. In this chapter, this difference is exploited with a resonance-

based sparse signal separation method using the tuned Q-factor wavelet

transform (TQWT). The separation is achieved using a basis pursuit denoising

(BPD) formulation. This chapter firstly investigates the impact of the regularisation

(or penalty) parameter in the BPD algorithm and then proposes an adaptive penalty

parameter which dynamically adapts to the sea-clutter intensity across range. A

new detection scheme is developed and demonstrated with the Ingara sea-clutter

data. Using a Monte-Carlo simulation, a significant detection improvement is

achieved.
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6.1 Introduction

In previous chapters, a novel detection technique using an application of stationary wavelet

transform (SWT) was presented. The technique explored the various levels of SWT

decomposition by partitioning the sea-clutter Doppler spectrum into sub-bands. When tested

with real radar sea-clutter, significant detection improvements were achieved. Another

potentially useful approach to improve the detection performance is to exploit the resonance

properties of the clutter and target backscatter. Over a short time period, targets travel at an

approximately constant radial velocity resulting in a sustained oscillation. Sea-clutter on the

other hand varies with the environmental conditions and has non-sustained oscillations and a

wider Doppler spectrum. In this chapter, a resonance-based sparse signal separation technique

is investigated for extracting targets from background sea-clutter and improving the detection

performance.

Sparse signal separation has been successfully used in various applications such as image

denoising, speech recovery and the detection of targets in sea-clutter [41, 43, 75, 77, 100].

Farshchian and Selesnick [43] first applied a resonance-based decomposition using dual tuned

Q-factor wavelet transforms (TQWT) to show how to separate targets from any unwanted

interference. Nguyen and Al-Ashwal [77] similarly applied the dual TQWT to separate both a

rubber inflatable boat and a flock of birds from sea-clutter.

To further understand the choice of the TQWT parameters, Ng et al. [75] investigated the effect

of different Q-factors on the target separation. A single Q-factor TQWT decomposed the data

into a signal component with a sparse representation and a residue. This used a basis pursuit

denoising (BPD) approach. When applied to real data, it was found that a low Q-factor TQWT

led to better detection for stationary targets while a high Q transform led to better detection of

moving targets. In practice, an important factor in determining the performance of sparse signal

separation is the choice of the penalty parameter, λ. When λ is small, the signal component is

not very sparse but the reconstruction has high fidelity (small residue); conversely, when λ is

large, the signal component is very sparse, but the residue can be large [65]. Anitori et al. [8]

proposed a complex approximate message passing (CAMP) iterative algorithm to solve the

BPD problem, and applied it to target detection from radar measurements in Gaussian noise.

The CAMP threshold parameter (proportional to λ) and the noise variance were adaptively

estimated to achieve a sparse solution. It was further shown that the scheme can adaptively

control the probability of false alarm against unknown noise and clutter, albeit in a classical

detection context.
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This chapter uses the TQWT parameters investigated in [75] and focuses on an analysis of

the penalty parameter’s impact on sea-clutter using a TQWT and the BPD formulation. To

be consistent with earlier work [75], the BPD problem is solved using an iterative algorithm

known as the ‘Split Augmented Lagrangian Shrinkage Algorithm’ (SALSA) [2,99], which also

runs significantly faster than CAMP. Based on this analysis, an adaptive method is proposed

to determine the penalty parameter using statistics of the backscatter to achieve a good sparse

representation of the output signal, thus improving the detection of weak targets.

This chapter is organised as follow. Section 6.2 outlines the principle of sparse signal separation

and related applications. Section 6.3 give a brief description of TQWTs and the motivation

that TQWT is a suitable dictionary for sea-clutter analysis. The results using different TQWT

parameters and penalty parameters are presented in Section 6.4, as well as the proposed adaptive

penalty parameters. Section 6.5 illustrates the impact of the penalty parameter on sea-clutter

and demonstrates the detection performance achieved with the adaptive penalty parameter for

both low and high Q-factors.

6.2 Sparse Signal Representation

A signal representation is said to be sparse when it is well approximated by few coefficients.

Donoho [32] first proposed the sparse representation technique in the context of compressive

sensing, which suggested that a signal can be reconstructed by fewer values without significant

degradation. The method has proved to be effective in many fields including astrophysics,

machine learning, signal processing and image processing [21, 34, 99]. This section provides

an introduction to the theory of sparse signal representation in the context of finding the least

square and sparsity-based solution to a problem. A suitable sparse-based method is then

proposed for the sea-clutter analysis.

Consider an under-determined linear system defined by equations

y = Ax + e (6.1)

where

y =


y0

y1

...

yM−1

 , x =


x0

x1

...

xN−1

 , and e =


e0

e1

...

eM−1

 .
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The vectors y and x have length M and N (M < N), respectively. The vector e is an unknown

noise (or error term) with the same length as y. The matrix A1 is the degradation operation (or

dictionary) consisting of M × N elements. The goal is to find a sparse representation x such

that y ' Ax.

The system has more unknowns than equations with no solution when y is not in the span of

the columns of A. To avoid such cases, the matrix AAT is assumed invertible and therefore,

the system characterised by Equation (6.1) has infinitely many solutions [40, 101].

The definition of vector norms is given here as it will be used in subsequent sections. Suppose a

vector x = [x(1), x(2), · · · , x(N)]T is an N dimensional vector in Euclidean space. The norm

of the vector is

‖x‖p
p =

N−1

∑
n=0
|x(n)|p (6.2)

where 1 ≤ p ≤ ∞ and the p−norm is also known as `p−norm of the vector. The `1-norm (or

‖·‖1) is the sum of absolute values of the vector elements, while the `2-norm (or ‖·‖2) is the

sum of the element squares and referred to as the ‘energy’ of x.

6.2.1 Least Squares Approximation

The least squares (LS) formulation is a classic signal estimation technique. From the linear

model of Equation (6.1), we can write the error term as:

e = y−Ax. (6.3)

The `2-norm of the error term, or the square error, is then given by

‖e‖2 =
√

e2
0 + e2

1 + · · ·+ e2
M−1

= ‖y−Ax‖2. (6.4)

This problem is a continuous differentiable unconstrained convex optimisation, which is solved

by performing differentiating with respect to x. The solution of Equation (6.4) is explicitly

given by [98, 101]:

x = AT(AAT)−1y. (6.5)

When the signal, y, is noisy and strongly correlated, the error term can be large (i.e. A is

ill-conditioned) and the estimation becomes meaningless [11, 98]. To overcome that
1A is often referred to as the measurement matrix in compressive sensing literature.
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possibility, a regularisation term is required to achieve a stable solution. The fundamental idea

of the regularisation is to substitute the original ill-conditioned problem with a

well-conditioned problem whose solution approximates the required solution [11]. This

problem can be solved using an iterative optimisation method by minimising the cost function

to get an approximate solution of Equation (6.1) [11, 101]:

min
x
‖y−Ax‖2

2 + λ‖x‖2
2 (6.6)

where λ‖x‖2
2 is the regularisation term which is introduced to narrow down the choice of

solutions to one well-defined solution. The regularisation parameter λ is added to avoid the

system over-estimation or overfitting. The solution to Equation (6.6) is given by

x = (ATA + λI)−1ATy. (6.7)

The equations can grow very large if y and/or x are long especially in signal processing.

Therefore, a fast algorithm is required to solve the system of equations.

6.2.2 Sparse Solutions

In signal processing, another common approach to invert an under-determined system is a

technique known as basis pursuit (BP) [22]. This aims to minimise the sum of absolute values

of x. The BP equation is given by:

min
x
‖x‖1 such that y = Ax (6.8)

where ‖x‖1 is the `1-norm. When the signal is noisy, the solution is found by minimising the

following cost function:

min
x
{‖y− Ax‖2

2 + λ‖x‖1} (6.9)

where λ‖x‖1 is the `1-norm regularisation and ‖·‖2
2 is the fidelity term. This is also known as

basis pursuit denoising (BPD) and in statistical analysis, known as least absolute shrinkage and

selection operator (LASSO) [110]. The problem is usually solved using an iterative numerical

algorithm rather than computing an analytic solution [101].

As illustrated in Figure 6.1, the sum of squared values in the `2-norm is most sensitive to large

values. Therefore, when performing the minimisation using an `2-norm, it is vital that the values

of x are small to avoid system overfitting. As a result, sparse solutions are usually not achieved

by minimising the `2-norm [101].
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|x|

x2

0 1 2-2 -1

x

Figure 6.1. The approximate behaviour of functions |x| and x2 [101].

The problem in Equation (6.6) is convex, smooth and globally differentiable. Similarly the

BPD problem in Equation (6.9) is also convex, but is now non-smooth and non-differentiable

due to `1-norm [40]. The BPD problems in Equation (6.9) does not have an explicit solution

due to ‖x‖1 being non-differentiable at zero [101]. Instead a valid solution can be found using

iterative algorithms from optimisation theory [17, 19]. Some of these include Approximate

Message Passing (AMP) [33], Complex AMP (CAMP) [66], Iterative Shrinkage-Thresholding

Algorithm (ISTA) [11] and Split variable Augmented Lagrangian Shrinkage Algorithm

(SALSA) [2]. From these choices, SALSA is found to be the most effective iterative algorithm

for obtaining a sparse solution within a reasonable computation time [101].

6.3 Sparse Signal Separation with TQWTs

In this work, sparse signal separation using the BPD method and TQWTs as a dictionary is

investigated to isolated targets from the background sea-clutter. When both the BPD algorithm

and the TQWT are used, a number of parameters must be known prior to the implementation.

The tuned Q-factor wavelet transform (TQWT) is a flexible time-frequency transform,

compared to the conventional dyadic WT. The Q-factor of the dyadic WT is low which can

lead to poor frequency resolution and hence only being suitable for piecewise smooth

signals [10, 19]. For signals with a higher frequency resolution, the TQWT can be used, with a

Q-factor that is adjustable and can be tuned to suit different signals. The details of these

transforms are presented in Chapter 3.
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A TQWT decomposes a given signal x into a set of wavelet coefficients w:

w = Φx, (6.10)

where Φ is the matrix (or dictionary) corresponding to the TQWT. Each TQWT is characterised

by the parameters:

• Q-factor (Q = fc
B ): the ratio of centre frequency, fc, and bandwidth, B.

• Redundancy factor (r): controls the overlapping of the bandpass filter response of multiple

sub-bands.

• Decomposition level (K): If one performs K-levels of decomposition, there are K+1 sub-

bands (i.e K detail (or high-pass) and 1 approximate (or low-pass) sub-band).

When using the TQWT, the Q-factor is typically chosen so that the wavelet function matches the

signal being analysed. It should be set low for impulsive signals without sustained oscillations

and high for sustained oscillatory signals. In a multi-level decomposition, the two filter banks

of the TQWT are iteratively applied to the low-pass signal with r defining the spectral overlap

between two adjacent band-pass filters. The maximum decomposition level, K, that an analysed

signal can be decomposed, depends on the parameters: Q, r and the length of the signal.

6.4 Analysis of Sea-Clutter with BPD

For our analysis, the BPD problem using the TQWT is characterised by

min
w
‖y−Φ−1w‖2

2 + λ‖θ �w‖1 (6.11)

where the `2-norm (‖.‖2) and `1-norm (‖.‖1) are the fidelity and penalty terms, respectively, �
denotes element-wise multiplication, and θ is a vector of the `2-norms of wavelets needed to

satisfy the energy preserving condition of the TQWT.

To apply BPD to the problem of separating targets from sea-clutter, we let Y denote the radar

backscatter in the slow time domain. The separation is then given by

Y = X + R, (6.12)

where X is the approximated signal and R is the residue. Ideally, we would like the X
component to be the target signal, while the interference (clutter and noise) is the R
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component. In the analysis, the variation of TQWT parameters is firstly investigated, followed

by the choice of penalty parameter.

The Ingara sea-clutter data set is used for this work with Figure 6.2 showing the HH backscatter,

collected in the upwind direction at 30◦ grazing angle. The data are subdivided into 4 blocks of

128 pulses (0.22 s) having 200 range bins per block. The fourth block is selected for analysis

as it contains the most sea-clutter variability across range bins. Note that the range bins will be

labelled 1 to 200 for the subsequent analysis. Further detail on the data set and the Ingara radar

can be found in Section 2.5.1.

Figure 6.2. Ingara radar backscatter with HH polarisation. Each block consists of 200 range

bins by 128 pulses (or 0.22 seconds).

6.4.1 Choice of TQWT Parameters

When using the TQWT, there are three parameters (Q, r and K) which must be set prior to

implementation. With extensive simulation, Ng et al. [75] investigated the effect of these

parameters for the BPD problem. It was shown that stationary targets are largely captured in

the X component with a low Q-factor TQWT. Moving targets, on the other hand, are better

matched with a high Q-factor TQWT.
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To demonstrate the effect of different Q-factors, a stationary and a moving target with a radial

velocity of 2.6 m/s and an SIR of 5 dB were injected into range bins 60 and 140 in the selected

data block. The BPD problem is then solved for the data using both low Q-factor parameters

(Q = 1, r = 2 and J = 3) and high Q-factor parameters (Q = 8, r = 8 and J = 30) based on analysis

in [75]. Figures 6.3 and 6.4 show the BPD optimisation output for these cases. In both figures,

it is found that the majority of the clutter is contained in the residue component. When the

low Q-factor is used, the stationary target is maintained in the X component while the moving

target is completely rejected. For the high Q-factor, the moving target is now captured in the X

component and the stationary target is primarily in the residue.

Figure 6.3. BPD output using a low Q-factor TQWT (Q = 1, r = 2 and K = 3). Two simulated

point targets with SIRs of 5 dB are injected into the data. The stationary target is at range bin

60 and the moving target is at range bin 140 from the 4th data block.

To illustrate the potential detection improvement of these results, the mean separation between

the interference only and interference plus target is now compared along with the difference of

the energy ratios of the X and R components. The energy ratio is defined for each range bin and

is determined by summing the power in X component and the R component over M pulses in

the CPI,

Erat(r) =
M

∑
m=1

|Xr(m)|2
|Rr(m)|2 (6.13)
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Figure 6.4. BPD output using a high Q-factor TQWT (Q = 8, r = 8 and K = 30). Two simulated

point targets with SIRs of 5 dB are injected into the data. The stationary target is at range bin

60 and the moving target is at range bin 140.

where r is the range bin index. If there exists a target in a given range bin, the energy after BPD

optimisation (Xr component) will remain strong while the energy of the same range bin in the

residue (Rr component) will be small. Note that depending on the target velocity, target echoes

can span multiple range bins. This must be taken into account when measuring the detection

performance. Table 6.1 gives a summary of the mean separation and energy ratio difference of

the data after the BPD processing for a range of TQWT parameters. The energy ratio difference

and mean separation consistently indicate that the low Q-factor TQWT has the best performance

for a stationary target, while the high Q-factor TQWT performs best for the moving target. For

more detailed analysis relating to the choice of TQWT parameters, refer to [75].

6.4.2 Penalty Parameter Selection

A crucial factor which impacts the performance of the signal separation is the penalty parameter

λ. When the value λ is zero, the obtained X component is closely matched with the data, while

a higher value of λ means that the X component is sparser in the TQWT domain. The most

suitable value for λ depends on the nature of the analysed signal. The main focus of this section

is to propose and evaluate a selection technique for λ.
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Table 6.1. BPD results of mean separation and energy ratios in dB using different TQWT

parameters. A simulated Swerling-0 target with an SIR of 5 dB is used with the best

performance highlighted in bold.

TQWT parameters Stationary target Moving target

Q r K
Mean Energy ratio Mean Energy ratio

separation difference separation difference

1 2 3 12.51 22.43 -0.78 6.99

3 2 5 3.47 17.78 1.86 14.77

5 4 15 1.74 14.77 5.2 14.77

8 8 30 -1.44 14.77 5.91 17.78

Detection Statistic

The presence of a target in a range bin usually results in a larger energy ratio, compared to

interference only. Ng et al. [75] used this model for detection using a cell averaging constant

false alarm rate (CA-CFAR) algorithm. However, in this work, the energy ratio is used directly

as a detection statistic:

Erat
H1
≷
H0

γ (6.14)

where H0 and H1 indicate the hypothesis for the returned signal containing interference only

and interference plus target, respectively. The choice of the threshold, γ, is somewhat arbitrary

and a natural question is how to select a value that leads to sensible results. This choice also

influences the spread of points during the pre-processing stage where we estimate λ0 and η

with no targets present. When there is a large γ, the penalty parameters are small with the result

having less energy in the R component. Conversely, a small γ typically results in a large penalty

parameter. From extensive experiments, two discoveries were found. Firstly, good detection

performance is achieved when the energy in R is greater than the energy in the X component.

This implies that a suitable upper bound for choosing the threshold is γ < 0 dB. Secondly, the

detection performance is largely insensitive to the choice of γ, over several decades of energy

ratio values. A number of experiments were repeated for choices of γ ranging from -10 dB to

-80 dB, with differences in the detection performance being negligibly small. If we choose too

low a value, numerical problems can occur in the implementation and we therefore set a lower

bound on the choice of γ > −100 dB.
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Impact of Penalty Parameter

In previous research on sparse signal separation applied to sea-clutter [43, 75, 77], a global λ

was used to analyse the data for all range bins. For example, three stationary Swerling-0 targets

are injected into different range bins of the Ingara data set (40, 90 and 140) with SIRs of 5,

2.5 and 0 dB, respectively. As the target is stationary, the TQWT parameters are chosen to be

Q = 1, r = 2 and J = 3. In this work, the number of iterations and the selection of µ which affects

convergence speed are empirically chosen to be 50 and 2, respectively and are consistent with

previous work [75, 77, 99].

Figure 6.5 shows the original data (left) and the X component with fixed penalty parameters of

0.5 (middle) and 1 (right), after performing the BPD optimisation. When λ is 0.5, the targets

are visible, but there is also a large amount of sea-clutter present. However, when λ is set to

1, the X component maintains the strongest target and parts of the target having SIR = 2.5 dB,

with the weakest target eliminated. The BPD optimisation has instead placed it in the residue

component (not shown). This analysis has demonstrated that using a uniform or global penalty

parameter for all range bins is a trade-off between retaining targets and suppressing sea-spikes.

Figure 6.5. Signal separation, X, when the penalty term λ is 0.5 (middle) and 1 (right). The

original data is shown on the left.
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Adaptive Penalty Parameter

As shown on the left side of Figure 6.5, the Ingara data has strong waves which move through

the scene. The radar backscatter corresponding to a crest is indicated by strong returns at

approximately every 40 range bins. Since the BPD optimisation is performed independently

for each range bin, it is possible to choose penalty parameters that depend on the strength of

the signal backscatter. For example, range bins corresponding to the wave crests can have

larger penalty parameters than those in the trough.

One measure which clearly shows this fluctuation is the backscatter standard deviation (STD),

defined for the rth range bin as σr. However, we cannot directly use the STD to scale the

penalty parameter, as any strong target will cause the optimisation to weight the penalty term

too strongly. To avoid penalising the target, the STD is instead averaged by M/2 range cells

either side of the range cell of interest. The averaged STD, σ̃r(M), is shown in Figure 6.6 for

different choices of M. From these results, M = 8 provides a reasonable amount of smoothing

while preserving the shape and is used for the remaining examples.

Figure 6.6. Range bin STD, σr, and the averaged STD, σ̃r, with: (—) M = 4, (—) M = 8,

(—) M = 16.

The proposed adaptive penalty parameter for each range bin is given by

λr = λ0 + η (σ̃r(M)−min{σ̃r(M)}) , (6.15)

where λ0 is a constant offset for the penalty parameter, η is a multiplier which can be chosen

to suit the clutter background and the averaged STD is offset by its minimum value across all

range bins. The offset adds a degree of flexibility to allow bigger increases of λr at the crests of

the waves than in the troughs.
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To demonstrate the effect of the adaptive penalty parameter, three examples are shown with

η = 0, 2 and 4 and λ0 = 0.5. Figure 6.7 shows the images of the X components. When the

adaptive penalty parameter is used, there is clearly less clutter present in the X components as

the value of η increases.

Figure 6.7. BPD output using different sets of adaptive penalty parameters for λ0 = 0.5 and

η = 0 (non-adaptive), 2 and 4. The value of M is 8.

To further demonstrate the effect of the adaptive penalty parameter, the energy ratio is measured

after the BPD. Figure 6.8 shows the energy ratio of the example dataset with the three targets

present. When the penalty term is fixed (left figure), large fluctuations in the energy ratio are

observed for different λ0. However, when adaptive penalty parameters are used, the energy

ratios of the data become more uniform, with minimal effect to the targets. If η is further

increased above 4, we find that the penalty parameter is too high and the BPD starts to remove

too much of the target from X.

Penalty Parameter Model

The penalty parameters for both adaptive and non-adaptive cases must be determined prior to

performing BPD signal separation from background data which is known to be free of any

targets. For the adaptive penalty parameter technique, two parameters λ0 and η must be

determined, while the non-adaptive formulation requires only an estimation of the intercept λ0
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Figure 6.8. Energy ratio after BPD for η = 0, 2 and 4. Three targets having SIRs of 5, 2.5 and

0 dB are present at range bins 40, 90 and 140, respectively.

because η is set to zero. For the adaptive case, one possible approach to estimate the

parameters is to determine a linear fit to the energy ratio. Then we shift the model to achieve a

desired level of residual clutter or Pfa in the X component. For the analysis, 9 additional blocks

of target free data are used to achieve a Pfa = 10−3. Since the energy ratio after BPD can get

very small for large values of the penalty parameter, a minimum value for the energy ratio is

set to γ = −60 dB, well within the recommended range of −100 dB < γ < 0 dB found

earlier.

Figure 6.9 shows a scatter plot of the HH polarised energy ratios as a function of penalty

parameters λr and the averaged standard deviation (σ̃r −min{σ̃r}). The blue circles indicate

the required λr to achieve an energy ratio of -60 dB at each range bin. The red line is the linear

fit representing the variation in energy ratio for different range bins. It is observed that the

penalty parameter increases with the standard deviation. The line is then shifted upward by

increasing the intercept of the red line to achieve the desired Pfa of 10−3. For the 2000 data

points in Figure 6.9, this corresponds to 2 points above the black line. The intercept and slope

of the black line are λ0 = 0.8 and η = 3.76, respectively. For the non-adaptive penalty case,

the line is horizontal and the slope η is zero. This is represented by the magenta line in

Figure 6.9 with λ0 = 1.06. This approach for selecting λ0 and η is quite heuristic, but

provides a straightforward method for achieving the desired Pfa without requiring an analytical

study of the detection statistics.
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Figure 6.9. Scatter plot of the energy ratio at γ = −60 dB for each range bin with HH

polarisation. The vertical axis is the penalty parameter required for BPD and the horizontal

axis is the standard deviation: (σ̃r −min{σ̃r}). The red line (—) is the best fit to the energy ratio,

while the black line (—) and the magenta line (—) represent the adaptive and non-adaptive

penalty parameters respectively.

Figure 6.10. Scatter plot of the energy ratio at γ = −60 dB for each range bin with VV

polarisation. The vertical axis is the penalty parameter required for BPD and the horizontal

axis is the standard deviation: (σ̃r −min{σ̃r}). The red line (—) is the best fit to the energy ratio,

while the black line (—) and the magenta line (—) represent the adaptive and non-adaptive

penalty parameters respectively.
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Figure 6.10 shows the same scatter plot for the VV polarisation. The energy ratios do not

vary as greatly with (σ̃r −min{σ̃r}) compared to the HH polarisation. As a result, the fitting

line (red) is relatively flat. The intercept λ0 and slope η of the shifted version of the fitting

line are 1.46 and 1.67, respectively. The non-adaptive penalty parameter is represented by the

horizontal magenta line with an intercept, λ0 = 1.51. A small value of slope for the adaptive

case means that the algorithm requires less adaptation and the data has less variation across

range. In comparison, the penalty parameters in VV are bigger than those in the HH polarisation

when setting the same Pfa. Another point to note is the smoothed standard deviation in the VV

polarised data is about half of the HH polarisation, meaning that the HH backscatter varies more

than the VV backscatter.

6.5 Detection Performance

The new detection scheme is now investigated with and without the adaptive penalty

parameter. The results of the BPD detection scheme will then be compared against the

detection of unprocessed data using a cell averaging constant false alarm rate (CA-CFAR)

scheme. Note that due to the time and range varying nature of the spectrum, we do not

consider any coherent processing techniques. Two types of fluctuating targets (Swerling-0 and

Swerling-1) are investigated in both HH and VV polarised data. We also use low Q-factor

TQWT parameters (Q = 1, r = 2 and K = 3) for the injected stationary target and high Q-factor

TQWT parameters (Q = 8, r = 8, and K = 30) for the moving target with a radial velocity of 2.6

m/s.

6.5.1 Detection Implementation

The adaptive and non-adaptive penalty parameters used for BPD are described in Section 6.4.2

such that the probability of false alarm Pfa is 10−3, for a chosen threshold γ = −60 dB. The

detection results are compared to the detection of unprocessed (original) data using a CA-CFAR

detection scheme, applied to the data intensity. The CA-CFAR algorithm is implemented along

range and adapts to the local clutter to approximately maintain a constant false alarm rate. It is

implemented with Mr = 32 range bins adjacent to the cell under test. Since the targets used

in the thesis are the simulated point-targets, the guard bins on either side of the target are not

required. To determine the threshold multiplier, the CA-CFAR detection algorithm is run on

the data with no target present. The multiplier is then varied to match the desired probability of

false alarm, Pfa.
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To determine the probability of detection, Pd, a Monte Carlo simulation is implemented by

repeatedly injecting simulated targets into each range bin. The target SIR is then varied and

the various detection schemes are run. The Pd is then determined by tallying the number of

correct detections. Refer to Section 2.4 for more detail on the Monte-Carlo simulation and the

CA-CFAR algorithm.

6.5.2 Low Q-factor TQWT Detection

Figure 6.11 shows the probability of detection versus SIR for the processed and unprocessed

data for HH (top) and VV (bottom) polarisations with a constant Swerling-0 target. As the

target is stationary, the data was processed using the low Q-factor TQWT parameters (Q = 1,

r = 2 and K = 3). The CA-CFAR conventional detection scheme for the unprocessed data is

shown in Figure 6.11 by the blue solid line, while the detection using the non-adaptive

(or fixed) and adaptive penalty parameters are shown in red dashed and black dash-dot lines,

respectively. The minimum required SIRs to achieve a probability of detection, Pd = 0.5 are

measured to show the improvement in performance. Firstly, we can observe that the required

SIR for the HH polarisation using both non-adaptive and adaptive penalty parameter schemes

have significant improvements of 11.25 dB and 12.75 dB over the unprocessed data. That is,

the adaptive penalty parameter provides an improvement of 1.5 dB over the non-adaptive

scheme. For the VV data, the detection improvements over the unprocessed data using the

non-adaptive and adaptive schemes are 8.6 dB and 8.7 dB, respectively. The similar detection

performance of non-adaptive and adaptive penalty parameters highlight that backscatter from

the VV polarisation fluctuates less than the HH polarisation. It can be observed that the red

curve jumps above the black curve for the Pd near 1. This is due to the penalty parameter

setting for the adaptive case being greater than in the non-adaptive case (see Figures 6.9

and 6.10). It is also interesting to note that the target is better detected in the VV polarisation

when the CA-CFAR scheme is used but after BPD, the detection improvement is less than the

improvement with the HH polarisation.

Figure 6.12 shows the detection performance when a fluctuating Swerling-1 target is injected

into the HH (top) and VV (bottom) polarisations. In general, the detection of Swerling-1 targets

requires a higher SIR to achieve the same Pd than a Swerling-0 target. For the HH polarisation,

the detection improvement over unprocessed data is approximately 11.5 dB and 12.5 dB for

the schemes using non-adaptive and adaptive penalty parameters, respectively. For the VV

polarisation, the improvement is approximately 9 dB for both non-adaptive and adaptive BPD

schemes.
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Figure 6.11. Detection performance of Swerling-0 targets with HH (top) and VV (bottom)

polarisations: (—) CA-CFAR, (- - -) fixed penalty parameter (BPD-fixed), (-·-·-) adaptive penalty

parameter (BPD-adap.).

6.5.3 High Q-factor TQWT Detection

To investigate the performance of the BPD scheme with a high Q-factor TQWT, a moving

target is now injected into the data. In this analysis, the TQWT parameters are Q = 8, r = 8

and K = 30 which are found to have the best signal separation for a target with radial velocity

of 2.6 m/s [75]. One key difference for moving targets is that their backscatter drifts from one

range bin to the next over the CPI and hence the detection improvement may be reduced.

Similar to the low Q-factor procedure, we have to first determine the required penalty

parameters prior to performing the BPD detection scheme. Figure 6.13 shows the scatter plot

of required penalty parameter versus (σ̃r − min{σ̃r}) for the high Q-factor parameters. The

blue circles indicate the required λr for a given (σ̃r −min{σ̃r}) to sustain the energy ratio of

γ = −60 dB at each range bin. The red line represents the energy ratio fit, while the black and

magenta lines denote the required adaptive and non-adaptive penalty parameters respectively.

The left figure of Figure 6.13 is for the HH polarisation, while the VV polarisation is on the

right.
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Figure 6.12. Detection performance of Swerling-1 targets with HH (top) and VV (bottom)

polarisations: (—) CA-CFAR, (- - -) fixed penalty parameter (BPD-fixed), (-·-·-) adaptive penalty

parameter (BPD-adap.).

Figure 6.13. Scatter plot of the energy ratio at γ = −60 dB using a high Q-factor TQWT

for each range bin with HH (left) and VV (right) polarisations. The vertical axis is the penalty

parameter required for BPD and the horizontal axis is the standard deviation: (σ̃r −min{σ̃r}).
The red line (—) is the best fit to the energy ratio, while the black line (—) and magenta line (—)

denote the adaptive and non-adaptive penalty parameters respectively.

In the HH polarisation, there are a few outliers as the penalty parameter is quite high in order

to sustain the -60 dB energy ratio. These outliers were found to correspond to sea-spikes and
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are well-matched to the high Q-factor wavelet. The computed values of λ0 and η for the

adaptive case are 1.8 and 7.2 respectively. The fixed penalty parameter is λ0 = 2.2. For the

VV polarisation, the required penalty parameter is relatively constant to maintain the energy

ratio of -60 dB. The slope of the adaptive penalty parameter is relatively small with

parameters, λ0 = 0.98 and η = 4.4 while the non-adaptive case has λ0 = 1.1.

Figure 6.14. Detection performance of Swerling-0 targets using a high Q-factor TQWT with HH

(top) and VV (bottom) polarisations: (—) CA-CFAR, (- - -) fixed penalty parameter (BPD-fixed)

and (-·-·-) adaptive penalty parameters (BPD-adap.).

Figure 6.14 shows the detection performance of a Swerling-0 target for the HH (top) and VV

(bottom) polarisations. These results show much steeper curve for the BPD due to combination

of the Swerling-0 target and the high Q-factor TQWT. Moreover, the detection improvement

for the HH polarisation in this case is decreased when compared to the low Q-factor TQWT

due to the high setting of penalty parameters as shown in Figure 6.13. For the HH polarisation,

we observe that the detection performance using non-adaptive and adaptive BPD schemes give

improvements of 4.25 and 5.15 dB, respectively. These improvements are relatively small for

both cases, possibly due to high penalty parameter. The detection performance in the VV

polarisation does not suffer from the high penalty parameter and has an improvement of 9.8 dB

and 10.37 dB for the non-adaptive and adaptive penalty schemes, respectively.

The BPD scheme with a high Q-factor is also used to investigate the detection performance

for a Swerling-1 target. It is worth mentioning that the effects in the HH polarisation caused
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Figure 6.15. Detection performance of Swerling-1 targets using a high Q-factor TQWT with HH

(top) and VV (bottom) polarisations: (—) CA-CFAR, (- - -) fixed penalty parameter (BPD-fixed)

and (-·-·-) adaptive penalty parameter (BPD-adap.).

by the outliers will also impact the detection of the Swerling-1 targets. Figure 6.15 shows the

detection performance using the BPD scheme with a high Q-factor TQWT for the HH (top)

and VV (bottom) polarisations. The detection improvement for the HH polarisation is 5.7 dB

and 6.6 dB for non-adaptive and adaptive schemes respectively. For the VV polarisation, the

detection improvement is 11 dB and 11.5 dB.

6.5.4 Detection Summary

For a comparison of all the results, Table 6.2 shows a summary of the detection improvements

using the BPD scheme with non-adaptive and adaptive penalty parameters. The table also

includes the detection improvement for the HH and VV polarisations and both Swerling target

fluctuations.

The proposed BPD detection scheme offers a significant improvement over the unprocessed

data for both polarisations and target fluctuations. The biggest improvement is achieved for the

HH polarisation when the low Q-factor TQWT parameters are used with a stationary target. The

second main result is that the BPD scheme with an adaptive penalty parameter provides better

detection performance over the non-adaptive case for both low and high Q-factors and also in
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Table 6.2. Summary of non-adaptive and adaptive BPD detection improvements (minimum

required SIR) when measured at Pd = 0.5. Two sets of TQWT parameters are used for the

detection in HH and VV polarisations with two types of target fluctuations (Swerling-0 and 1).

Note: when low Q-factor TQWT is used, the target is stationary and when high Q-factor is used,

the target moves with a radial velocity of 2.6 m/s.

TQWT

Pol.

Fixed penalty BPD Adaptive Penalty BPD

Q r K λ0 η
Pd Improvement (dB)

λ0 η
Pd Improvement (dB)

Swerling-0 Swerling-1 Swerling-0 Swerling-1

1 2 3
HH 1.06 0 11.25 11.5 0.84 3.77 12.75 12.5
VV 1.51 0 8.6 8.75 1.46 1.67 8.75 9

8 8 30
HH 2.2 0 4.25 5.7 1.8 7.2 5.15 6.6

VV 1.1 0 9.8 11 1 4.4 10.37 11.5

both polarisations. Thirdly, the BPD detection results using a low Q-factor in HH polarised

data is better than the VV polarisation for both types of targets due to the required penalty

parameters being greater for the VV polarisation. However, when a high Q-factor TQWT is

used for detecting moving targets, the performance levels are reversed: the detection in the VV

polarisation is better than HH due the higher penalty parameters. Another interesting point to

note is that Swerling-1 targets have a slightly better detection improvement than the Swerling-0

target when a high Q-factor TQWT is used.

6.6 Conclusion

In this chapter, signal separation of targets and sea-clutter was demonstrated using the BPD

algorithm with TQWTs. Stationary and slowing moving targets are better suited to a low Q-

factor TQWT while fast moving targets are better suited to a high Q-factor TQWT.

The focus of this chapter was on choosing the penalty parameter for the BPD algorithm. It was

found that a high penalty parameter can reject strong interference, but at the cost of

suppressing weak targets. In order to reject as much interference as possible while still

detecting weak targets, we proposed a method to determine an adaptive penalty parameter

which varies according to the sea-surface fluctuations across range. A simple method of

choosing these penalty parameters was presented. The selection of these parameters is based

on the least square error fitting between the energy ratio and the average standard deviation of
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the interference. If the energy ratio is used as a detection threshold, then the choice of penalty

parameter can be directly linked to the desired probability of false alarm.

A new detection scheme was then proposed based on the energy ratio after sparse signal

separation. Using Monte-Carlo simulations, the detection performance of the sparse signal

separation scheme offered significant improvements up to 12.75 dB over the original data

when compared to a conventional CA-CFAR algorithm.

In this chapter, we only considered detection in the range / time domain. Future work could

investigate a formulation in in the range / Doppler domain where further improvement may be

achieved due to the coherent processing gain.
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Chapter 7

Conclusion and
Future Work

I
N this chapter, a summary of the thesis and the main contributions are

outlined. A description of future work to further improve the performance

of radar detection in sea-clutter is provided.
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7.1 Conclusion

The main goal of this thesis was to develop new techniques for detection of small targets in

sea-clutter. For maritime radar, the main interfering component are sea-spikes which are not

only strong in intensity but also vary in velocity. The challenges of detecting targets in these

conditions have been outlined in Chapters 1 and 2. A review of time frequency methods was

conducted and reported in Chapters 1 and 3. The stationary wavelet transform (SWT) and tuned

Q-factor wavelet transform (TQWT) were selected for the different detection schemes presented

in the thesis. The SWT is the shift invariant version of the discrete wavelet transform (DWT),

while the TQWT is shift invariant and provides better time-frequency resolution.

Two radar data sets, outlined in Chapter 2, were used to validate the detection schemes. The

first data set is collected at medium grazing angles from a moving airborne platform using the

Ingara radar. The second data set was recorded by the NetRAD system.

The first detection scheme in the thesis is based on sub-band analysis using SWTs. The SWT

decomposes a signal into different components (sub-bands) with each sub-band revealing

different characteristics of the data. Initial analysis looked at the mean separation between the

interference and the interference with an injected target. Many of the reconstructed sub-bands

were then shown to have larger separation than the unprocessed data. For a stationary target,

better separation was achieved in the low resolution approximate reconstructed sub-band.

However, moving targets had better separation in one or multiple reconstructed detail

sub-bands. The optimal choice of sub-band requires the target velocity to be known prior the

detection. To overcome this problem, a sub-band indicator using an entropy metric was

introduced. A heuristic scheme was then proposed to reduce the computation time and select

the reconstructed sub-band with the most information about the target.

To quantify the detection improvement and robustness, Monte-Carlo simulations were

implemented for the unprocessed Ingara data, the reconstructed sub-band with known target

velocity and the reconstructed sub-band using the entropy metric. The detection performance

using a CA-CFAR revealed that with prior knowledge of the target velocity, the improvement

was between 3 and 7 dB over the unprocessed data. For the unknown target velocity case, the

entropy indicator was able to successfully determine the best reconstructed sub-bands in the

majority of the cases and offered similar improvement over the unfiltered data when compared

to the ‘best’ reconstructed sub-band.

With the successful implementation of the SWT scheme in Chapter 4, the scheme was then

applied to the data recorded with the NetRAD bistatic radar system. Both the Ingara and
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NetRAD radar systems operate at different frequency bands, PRFs and grazing angles.

Moreover, the data received from low and medium grazing angles contains different sea-clutter

characteristics. With the NetRAD data, the Doppler width is confined to ±50 Hz and we

needed to decompose the data to lower resolutions. For analysis, the scheme was applied to 12

different sets of data from 3 different bistatic angles (60◦, 90◦ and 120◦) and included both

monostatic and bistatic data with HH and VV polarisations.

The results showed that the scheme worked well with the NetRAD radar system. The highest

improvement compared to the unfiltered data was found in the monostatic configuration with

20.9 dB and 35.8 dB greater SIRs for the HH and VV polarisations respectively. When

analysing the improvement in relation to the bistatic angles, the results show mixed

improvements with an unclear conclusion whether one operational angle is better than the

others. This may be due to possible target contamination in some of the data sets.

Overall, the new SWT detection scheme works effectively for both medium and low grazing

angle data sets, operated from moving and static platforms. The largest improvements for both

cases were 8 dB for the Ingara data and 35.8 dB for the NetRAD data.

The final part of the thesis, Chapter 6 considered sparse signal separation using a resonance

based transform. The algorithm used to perform sparse signal separation was basis pursuit

denoising (BPD). The BPD algorithm requires two main factors to achieve a good separation:

a selected sparse transform (or dictionary) and a regularisation (penalty) parameter. For this

work, a tuned Q-factor wavelet transform (TQWT) was used based on previous studies.

The novel contribution here is an adaptive penalty parameter for the BPD algorithm. In previous

work, a global penalty parameter was used for all range bins. With the adaptive scheme, the

penalty parameter is uniquely set for each range bin using an estimate of the standard deviation

smoothed across range.

A detection scheme was then developed using the energy ratio between the residual and

estimated signal. To demonstrate and quantify the detection improvement, a Monte-Carlo

simulation was implemented using the Ingara data set as a detection statistic. The scheme

using both non-adaptive and adaptive penalty parameters was compared to the detection of

unprocessed data. The results for the HH polarisation showed a significant improvement of

11.5 dB and 12.8 dB over the conventional processing for the non-adaptive and adaptive

schemes, respectively. For VV polarisations, the improvement was 11 dB and 11.5 dB for the

non-adaptive and adaptive penalty parameters.
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The two detection schemes, presented in this thesis both showed great potential when tested on

real radar data. The first scheme was tested with both the Ingara and NetRAD data while the

second scheme was validated with the Ingara data only. The SWT detection scheme offers a

significant detection improvement over a conventional detector, while the second scheme using

sparse signal separation provided even further improvement.

7.2 Future Work

Detection methods based on wavelet transforms have been investigated here but there are other

time-frequency transforms that have potential and were not studied. With the wavelet transforms

used in this project, two schemes have been developed and tested on real radar data. However,

there is still further work which can be explored to improve the detection performance of small

targets in sea-clutter. Some suggested potential further investigations are listed below.

7.2.1 Sub-band Analysis Using SWTs

1. Detection in the range-Doppler domain
Radar target detection can be implemented in either the range-time or range-Doppler

domains. In this thesis, only range-time detection has been explored. However, further

improvement in performance could be achieved in the frequency domain.

2. Sub-band Indicator
The choice of a sub-band indicator when the target velocity is not known prior to the

detection could be further explored. The entropy metric was proposed in this work and

selects the correct sub-bands in the majority of cases. However, the indicator does not

work very well when the SIR is low and there are strong sea-spikes. Therefore research

into an alternative indicator is encouraged to further improve the detection performance.

3. Choice of Wavelets
The SWT detection scheme was shown to have significant detection improvement for

small targets. In this thesis, the Daubechies-4 wavelet was used based on previous work

but a more thorough investigation is recommended to potentially improve detection

performance.
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7.2.2 Sparse Signal Separation Using TQWTs

With the sparse signal separation scheme, stationary and slow moving targets are better

detected using low Q-factor TQWTs while fast moving targets are better detected with high

Q-factor. In order to capture both stationary and moving targets, a dual Q-factor

implementation could be implemented. A method which has been used to perform the dual-Q

signal separation is Morphological Component Analysis (MCA) [106]. The method was

previously analysed by Farshchian and Selesnick [43] and Nguyen and Al-Ashwal [77].

However, their implementations used a fixed penalty parameter. Based on the observed

effectiveness of the adaptive penalty parameter, a new implementation using the dual-Q MCA

technique could be investigated. Future work using this sparse signal separation method could

also be implemented in the frequency domain.
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Appendix A

Detection Performance
Using Single Level SWTs

T
HIS appendix provides the detection results for all the polarisations

with the single level SWT using both 1D and 2D wavelets. The results

complement those included in Chapter 4.

Page 137



A.1 Detection performance

A.1 Detection performance

An analysis of the detection performance and comparison using 1D and 2D SWTs was studied

in Chapter 4 with only the results presented for the HH polarisation. The conclusion from these

results is that the 1D SWT produced better detection performance than the 2D SWTs. In this

appendix, the detection performance for all polarisations are presented.

Figure A.1 shows the probability of detection for the original and 1D SWT reconstructed sub-

bands. Results for the stationary and moving targets are shown in the first and second columns,

respectively. Figure A.2 then illustrates the required SIR using the 1D SWT detection scheme

with a variation of the velocity from 0 to 4.3 m/s when measured at Pd = 0.5. These results are

then repeated for the 2D SWT in Figures A.3 and A.4.

Using both the 1D and 2D SWTs, the detection performance of the sub-band reconstruction

scheme offers better detection performance compared to the unprocessed data. For stationary

targets, the approximate reconstructed sub-bands (Ã1 and L̃L1) of both the 1D and 2D SWTs

show the biggest improvement. Moving targets are best detected in the detail D̃1 and vertical

H̃L1 reconstructed sub-bands. The detection improvements also vary when different

polarisations are used. For the stationary target using the 1D SWT, similar improvements were

observed for HV, VH and HH polarisations while the VV polarisation offered the least

improvement. When using the 2D SWT, the biggest improvement is achieved in the HH

polarisation followed by the VH polarisation, while the VH and VV polarisations are worse

than the unprocessed data. The detection improvements are reversed for the moving target.

The biggest improvements using both the 1D and 2D SWTs are found in the VV polarisation

followed by HH, HV and VH.
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Figure A.1. The probability of detection for the original and 1D SWT reconstructed sub-bands.

Results for stationary and moving targets are shown in first and second columns.
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Figure A.2. Required SIR using the 1D SWT detection scheme with variation of the velocity

from 0 to 4.3 m/s.
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Figure A.3. The probability of detection for the original and 2D SWT reconstructed sub-bands.

Results for stationary and moving targets are shown in first and second columns.
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Figure A.4. Required SIR using the 2D SWT detection scheme with variation of the velocity

from 0 to 4.3 m/s.
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