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1 INTRODUCTION 

The use of guided waves for structural health moni-
toring (SHM) has been widely recongised as one of 
the promising technologies in different engineering 
fields, e.g. civil, mechanical and aerospace engineer-
ing. A number of safety inspection techniques (Giur-
giutiu & Bao 2004; Croxford et al. 2007; Veidt et al. 
2008; Ng 2014b; Vanli & Jun 2014) have been de-
veloped to enhance the safety and increase the sus-
tainability of the structures. In general guided wave 
can propagate in different types of structures. Based 
on the propagation characteristics, research works 
have focused on one-dimensional waveguides, e.g. 
rods, beams and pipes (Rucka 2010; Ng 2014a; 
Leinvo et al. 2015), and two-dimensional wave-
guides, e.g. plates and shells (Giurgiutiu & Bao 
2004; Kudela et al. 2007; Ng 2015b). 

Guided waves propagate in thin plates refer to 

Lamb waves. The fundamental symmetric (S0) and 

anti-symmetric modes (A0) of Lamb wave are the 

two most commonly used wave modes in damage 

detection. Most of the Lamb wave based damage de-

tection techniques operate below the cut-off fre-

quency of the higher order Lamb wave modes (Ihn & 

Chang 2008; Ng et al. 2009; Rose & Wang 2010; 

Aryan et al. 2016). This can limit the generated wave 

modes to only the S0 and A0 Lamb waves, and 

hence, simplifying the data interpretation in the 

damage detection process. At low-frequency regime 

(i.e. below the cut-off frequency), S0 Lamb wave is 

non-dispersive, and hence, it has a much longer 

propagation distance compared to the A0. However, 

the A0 Lamb wave is more sensitive to damages with 

smaller sizes as its wavelength is shorter than that of 

the S0 Lamb wave (He & Ng 2015). 
 In general most the Lamb wave based SHM sys-
tems rely on a transducer network with permanently 
installed transducers, such as surface bonded or em-
bedded transducers, to cover a pre-defined inspec-
tion area on a structure (Sohn et al. 2004; Su & Ye 
2004; Ng 2015a). Each of the transducers can act as 
both actuator and sensor for excitation and meas-
urement of Lamb waves. The damage detection is 
usually carried out by comparing the current meas-
urements with the Lamb wave signals measured at 
pristine condition of the structure (baseline meas-
urements). One of the commonly used approaches to 
extract the scattered wave information from the 
measured Lamb wave signals is to subtract the cur-
rent measurements from the baseline measurements, 
i.e. baseline subtraction (Lee et al. 2011; Ng 2015a). 

In the literature it was shown that the variation of 
the environmental conditions, i.e. variation of tem-
perature and applied loads, could make the baseline 
subtraction fail. Konstantinidis et al. (2006) investi-
gated the temperature stability of guided wave dam-
age detection based on the baseline subtraction ap-
proach. They demonstrated that the change in 
temperature could cause significant errors in the 
baseline subtraction, and make the guided wave 
based damage detection techniques fail in detecting 
damages. Chen & Wilcox (2007) presented a study 
of the effect of loads on the guided wave propaga-
tion. Their study showed that the applied load could 
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ABSTRACT: This paper presents an analysis of the stress effect on Lamb wave propagation in isotropic 
plates based on the theory of nonlinear elasticity. In this study the plates are assumed to be initially isotropic 
hyperelastic and subjected to homogeneous stress. The theory of small deformations superimposed on large 
deformations is used to derive the acoustoelastic dispersion equations for both symmetric and anti-symmetric 
modes of Lamb waves. Different magnitudes of the inhomogeneous stress are considered in this study. The 
results of the theoretical predications show that the acoustoelastic effect of isotropy plates subjected to a real-
istic level of applied stresses is quite significant, especially for higher order Lamb wave modes near the cut-
off frequencies. 



change the phase and group velocity of the guided 
wave. 

In practical situation the variation of the tempera-
ture and applied load are unavoidable in long-term 
SHM using the guided wave approach. Therefore, it 
is important to gain physical insights into the effect 
of stress variation on the Lamb wave propagation. 
This can provide a basis in developing an effective 
strategy to compensate the effect of stress variation 
on damage detection, which is essential for industrial 
deployment of the guided wave SHM system. The 
objective of this study is to investigate the effect of 
homogeneous stress on the propagation of Lamb 
waves in an initially isotropic hyperelastic plate. The 
dispersion equations for Lamb wave propagation in 
pre-stressed the plate are derived based on the theory 
of acoustoelasticity. 

This paper is structured as follows. The constitu-
tive equation for an isotropic hyperelastic material 
with initial stress and the equation governing incre-
mental deformations superimposed on a finite de-
formation are reviewed. A specialised form of the 
strain energy function, which accounts for weakly 
nonlinear elasticity, is then derived. The governing 
equations and the selected form of the energy func-
tion are used to obtain the dispersion equations for 
Lamb wave propagation in the pre-stressed plates. 
Several examples of the effect of uniaxial homoge-
neous stress on the propagation of Lamb waves in 
plates are then provided. Conclusions are drawn at 
the end of the paper. 

 
Figure 1. Reference coordinate system 

2 THEORY OF ACOUSTOELASTICITY 

2.1 Governing equations 

We first consider an isotropic hyperelastic plate with 
thickness d  and density rr  at stress-free reference 
condition and a reference Cartesian coordinate sys-
tem X = (X1,X2,X3) at the mid-plane of the plate as 
shown in Figure 1. When the plate subjected to a 
general homogeneous deformation, the coordinate of 
the material points after the deformation can be de-
fined as x = (x1,x2,x3) and it can be related to the 
reference Cartesian coordinate system as 

x = FX   (1) 

where F = diag[l1,l2,l3]  is the deformation gradi-
ent tensor. l1

 l2
 and l3

 are the principal stretches 
of the deformation. 

For an unconstrained material, the nominal and 
Cauchy stress tensors are given by 

   (2) 

where W =W (F)  is the strain-energy function and 

J = detF. We then consider the superposition of a 
small-amplitude time-dependent motion u(x,t)  up-
on the static finite deformation. The material re-
sponse due to this incremental deformation can be 
described by the incremental constitutive relation 
(Destrade & Ogden 2013) 

   (3) 

where  is the incremental nominal stress tensor. 
The incremental equations of motions are given by 

A0 piqj

¶2u j

¶xp ¶xq
= r

¶2ui

¶t 2
   (4) 

where r = rrJ
-1  is the density of the material after 

the deformation. A0 piqj
 is the components of the elas-

ticity tensor and can be expressed in terms of the 
strain energy function W  as 

A0 piqj = J -1FpaFqb
¶2W

¶Fia ¶Fjb
  (5) 

with Aopiqi = A0qjpi
 (Destrade & Ogden 2013). 

2.2 Weakly nonlinear elasticity 

The strain energy function W  is specialized to 
weakly nonlinear elasticity for studying small but fi-
nite elastic effects. The strain energy function W  
can be expressed in a form similar to Murnaghan’s 
expansion and in terms of the principal invariant 
(Murnaghan 1937; Destrade & Ogden 2013) as 

W =
l0

8
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  (6) 

where l0
 and m  are the classical Lamé constants. l , 

m , n  are the third order elastic constants. I1 , I2
 

and I3
 are the principal invariants and are defined as 
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The components of the elasticity tensor are given by 

JA0 piqj = 2 W1 + I1W2( )Bpqdij +

2W2 2BpiBqj - BiqBjp - BprBrqdij - BpqBij( ) +

2I3W3 2dipd jq - diqd jp( ) + 4W11BipBjq +

4W12 2I1BipBjq - BipBjrBrq - BjqBirBrp( )

  (8) 

where the coefficients W1
, W2

, W3
, W11

 and W12
 

can be obtained from Equation (6). Bij  are the com-
ponents of the left Cauchy-Green deformation tensor 
B = FFT . dij  is the Kronecker delta. 

2.3 Uniform extension with lateral contraction 

Considering the plate subjected to a uniaxial load 
and deformed finitely, the uniaxial Cauchy stress s  
can be taken to be along the e1

 direction. Hence, 
s11 = s , s22 = s33 = 0  and the corresponding prin-
cipal stretch is l1

. There is symmetry perpendicular 
to the e1

 axis as the plate was initially isotropic and 
without pre-stress, and hence, l2 = l3

 (Ogden 
1984). The uniform extension is specified in terms 
of the nominal stress tensor, which provides relation 
between the axial force of the deformed condition to 
the area in the reference (undeformed) condition. 
The principal components of the nominal stress can 
be expressed in terms of the principal stretches as 

Sii =
¶W

¶l i
   (9) 

For a given uniaxial stress field S11
, the principal 

stretches can be determined by inverting the relation 
in Equation (9) with S22 = S33 = 0 . The principal 
Cauchy stresses and the components of the elasticity 
tensor can be obtained using Equations (2) and (8), 
respectively. It should be noted that the uniaxial 
stress field leads to strain induced anisotropic, and 
hence, the elastic response of the plate becomes 
transversely isotropic in nature. However, the elas-
ticity tensor does not process the same symmetry as 
in the case of classical transversely isotropic linear 
elasticity (Destrade & Ogden 2013). 

3 ACOUSTOELASTIC LAMB WAVES 

To describe the propagation of acoustoelastic Lamb 
waves in a plate subjected to the homogeneous uni-
axial stress field, it requires the equation governing 
incremental motions superimposed on a finite de-
formation, i.e. Equation (4), to be solved in conjunc-
tion with stress-free boundary conditions at the sur-
faces of the plate. Assuming the waves only 
propagates along the direction of the applied uniaxial 
stress and they are planes waves of the form 

u j =U je
ik x1+ax3-ct( )

, j = 1,2,3  (10) 

where u j  and U j
 are the particle displacement and 

amplitude of the displacement, respectively. k  is the 
wavenumber along the x1

 direction. a  is the ratio of 
the wavenumbers in the x3

 direction to that in the x1
 

direction. c  is the phase velocity in the x1
 direction. 

 Substituting Equation (10) into Equation (4) yields 
an eigenvalue problem as 

Kij a( )u j = 0, i, j = 1,2,3  (11) 

We assume the wave only propagates along the di-
rection of applied stress and the elasticity tensor is 
refereed to the principal axes of the pre-strain. 
Therefore, the only non-zero components of the elas-
ticity tensor for a pre-stressed isotropic material are 
A0iiii

, A0iijj
, A0ijij

 and A0ijji
 for i ¹ j  (Ogden 1984), 

and hence, K12 = K21 = K23 +K32 = 0  and the non-
zero components of Kij  are 

K11 = rc2 - A01111 - A03131a
2

K13 = -a A01133 + A03113( )

K22 = rc2 - A01212 - A03232a
2

K31 = -a A01331 + A03311( )

K33 = rc2 - A01313 - A03333a
2

  (12) 

Since K12 = K21 = K23 +K32 = 0 , it means that the 
analysis can be confined to displacements in x1

 and 
x3

 direction only as the shear horizontal wave mo-
tions uncouple from the Lamb wave motion (Nayfeh 
& Chimenti 1989). The eigenvalue problem in Equa-
tion (11) can be reduced to 

Kij a( )u j = 0, i, j Î 1,3{ }  (13) 

Since the eigenvalue problem has non-trivial solu-
tions, Kij = 0 , i, j Î 1,3{ }. This yields a fourth or-
der equation as 

N1a
4 + N2a

2 + N3 = 0    (14) 

where N1
, N2

 and N3
 are given by 

N1 = A03131A03333
   (15) 

N2 = -rc2 A03333 + A03131( ) + A03333A01111 +

A03131A01313 - A01133A01331

  (16) 

N3 = r2c4 -rc2 A01313 + A01111( )+ A01111A01313
  (17) 

The fourth order equation can be further reduced to a 
quadratic equation in term of a2

. This results in four 
solutions for a  denoted by aq  for qÎ{1,2,3,4}  
with a2 = -a1

 and a4 = -a3
. 

 Using Equation (12), we define the displacement 
ratio of U3

 to U1
 for each of the four values of a  as 

Rq  and it can be expressed as 



Wq =
rc2 - A01111 - A03131aq

2( )
aq A01133 + A03113( )

  (18) 

Using the principle of superposition, Equation (18) 
allows the displacement field u1

 and u3
 of the Lamb 

waves to be written in term of the displacement ratio 
Rq  as 

u1 = U1aqe
ik x1+aqx3-ct( )

q=1

4

å

u3 = U1aqWqe
ik x1+aqx3-ct( )

q=1

4

å

   (19) 

and the stress field can be found by substituting 
Equation (19) into Equation (3) as 

  (20) 

where 

D1q = A03311 + aqA03333Wq

D2q = A01313aq + A01331Wq

   (21) 

To account the relations a2 = -a1
 and a4 = -a3

 in 
Equations (18) - (21), it results in the following re-
strictions 

W j+1 = -W j

D1 j+1 = D1 j for  j = 1,3

D2 j+1 = -D2 j

  (22) 

To satisfy conditions of Lamb wave, i.e. the in-
cremental traction free boundary conditions at the 
upper and lower surfaces of the plate, the compo-
nents of the incremental nominal stress become 

  (23) 

This leads to the following four equations 
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ik x1-ct( )

= 0
 (24) 

where U1q =U1aq , Eq = e
ikaq (d 2)

 and Eq = e
-ikaq (d 2)

. As 
Equation (24) has non-trivial solutions, the determi-
nant of the coefficient matrix in Equation (24) is 
equal to zero.  

D11E1 D12E2 D13E3 D14E4

D21E1 D22E2 D23E3 D24E4

D11E1 D12E2 D13E3 D14E4

D21E1 D22E2 D23E3 D24E4

= 0   (25) 

Using Equation (22), Equation (25) can be further 
reduced to two characteristic equations as 

D11D23 cot ga1( ) - D13D21 cot ga3( ) = 0

D11D23 tan ga1( ) - D13D21 tan ga3( ) = 0
  (26) 

for the symmetric and anti-symmetric Lamb wave 
modes, respectively. g = kd / 2 = wd / 2c. w  is the 
angular frequency of the wave. The dispersion 
curves can be obtained by solving Equation (26) us-
ing numerical methods (Gandhi 2010). 

4 EFFECT OF APPLIED STRESS ON LAMB 
WAVE PROPAGATION 

This section investigates the effect of the applied 
stress on dispersion curves of symmetric and anti-
symmetric Lamb wave modes obtained using Equa-
tion (26). We consider a 6061-T6 aluminium plate 
with the elastic properties shown in Table 1, which 
were obtained from the experimental work of Asay 
and Guenther (1967). 

 
Table 1. Elastic properties for 6061-T6 aluminum 

l0
 54.3GPa 

m  27.2GPa 

l  -281.5GPa 
m  -339.0GPa 
n  -416.0GPa 
r  2704 kg/m3 

 

 
Figure 2. Dispersion curves for symmetric (Blue solid line) and 
anti-symmetric (red dashed line) mode of Lamb waves propa-
gating in a 6061-T6 aluminum plate along the direction of a 
uniaxial applied stress of 100 MPa. 

 



 As an example Figure 2 shows the phase velocity 
dispersion curves for symmetric and anti-symmetric 
modes of Lamb waves subjected to a uniaxial ten-
sion of 100 MPa. The propagation of the waves is 
along the direction of a uniaxial applied stress. It 
should be noted that as the shear horizontal modes 
are decoupled from the Lamb wave modes, they are 
not shown in Figure 2. 
 To investigate the effect of the uniaxial tension on 
the Lamb wave propagation, Figures 3a, 3b and 3c 
show the change of phase velocity Dc  for S0, S1 and 
S2 Lamb waves at 20 MPa, 40 MPa, 60 MPa and 80 
MPa applied uniaxial tensions, respectively. As 
shown in Figure 3, the change in the phase velocity 
is negative for all considered symmetric modes, 
which means the tensile stress reduces the phase ve-
locity. This is consistent with the findings that bulk 
wave speed along the direction of an applied tensile 
load is less than the unstressed wave speed (Hughes 
& Kelly 1953). Figure 3 also shows that the change 
of the phase velocity increases with the applied uni-
axial tensile stress at the lower frequency-thickness 
region. 

a)  

b)  

c)  
Figure 3. Change of phase velocity for S0, S1 and S2 Lamb 
wave at different values of uniaxial tension 

 
 Figure 4 shows the change of the phase velocity 
for A0, A1 and A2 Lamb waves. As shown in Figure 
4a, the change of the phase velocity of A0 Lamb 
wave at the very low frequency-thickness region is 
positive but it becomes negative for larger value of 

frequency-thickness. Similar to the symmetric modes 
of Lamb waves, the tensile stress leads to negative 
values in the change of the phase velocity for A1 and 
A2 Lamb waves. In general the results shown in Fig-
ures 3 and 4 indicate that the higher order wave 
modes have better sensitivity to the applied uniaxial 
tensile stress. 
 

a)  

b)  

c)  
Figure 4. Change of phase velocity for A0, A1 and A2 mode 
Lamb wave at different values of uniaxial tension 

5 CONCLUSIONS 
 
This study has investigated the effect of applied 
stress on the Lamb wave propagation in initially iso-
tropic elastic plates. It is assumed that the plates are 
subjected to a homogeneous stress field. The govern-
ing equations of motion and dispersion equations 
have been derived based on the nonlinear theory of 
elasticity and the invariant-based formulation of the 
strain energy function. 
 The results predicted by the derived equations 
have shown that the phase velocity of Lamb wave 
generally decreases with the magnitude of the ap-
plied uniaxial tensile stress. The low frequency-
thickness region and higher order modes of Lamb 
waves have higher sensitivity to the applied uniaxial 
tensile stress. Overall this study has provided a theo-
retical basis to take into account the effect of the ap-



plied stress in using the Lamb waves for damage de-
tection. 
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