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Abstract 

Grain protein content (GPC) is a key quality attribute and an important marketing trait in 

wheat. However, a negative relationship between grain yield and GPC has limited selection 

for increased GPC, since grain yield is the primary driver of breeding programs. GPC is 

strongly influenced by nitrogen (N) fertilizer application, but the N-use efficiency (NUE) of 

high and low GPC genotypes appears to be genetically determined. The aim of this PhD 

thesis was to investigate the grain yield-GPC relationship under controlled and field 

conditions, and to suggest selection targets and traits for improving NUE in wheat. 

Firstly, the N responsiveness of six wheat genotypes that varied in GPC were examined 

under controlled condition. This experiment was designed around non-destructive estimation 

of biomass using a high-throughput image-based phenotyping system. In parallel, field trials 

were conducted to allow the comparison of results obtained from the controlled condition 

study using the six selected genotypes. Estimating the rate of biomass accumulation in 

breeding plots in the field is difficult. Therefore, the growth rate of biomass related traits 

such as height and ground cover were assessed in these trials. To examine the grain yield-

GPC relationship under multi-environmental conditions, the grain yield and GPC data of 

over 200 wheat genotypes obtained from the Australian National Variety Trials (NVT) 

across the Australian wheat-belt were analysed. 

Results of the controlled environment experiment showed that high GPC genotypes appeared 

to demand more N to grow their biomass. In both controlled and field environments, high 

GPC genotypes slowed down the rate of biomass growth under low N supply. Under low 

yielding conditions, high GPC genotypes seemed able to manage grain N reserves by 

compromising biomass production. These results indicated the importance of biomass 

growth analysis to show the differences in the N responsiveness of high and low GPC 

genotypes. 
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Differences between high and low GPC genotypes in responding to low N could be due to 

their history of selection. N effect is strongly associated with the amount of available water 

in the soil. Controlled and multi-environmental studies showed that the slope of the 

relationship between grain yield and GPC is steeper in low compared to high yielding 

environments. Therefore, high GPC genotypes bred under stress conditions sacrifice yield 

in favour of GPC, possibly to enhance the survival chance by producing fewer grains with 

sufficient nutrient levels. Conversely, low GPC genotypes bred in high yielding environment 

are less conservative compared to high GPC genotypes in using N for yield production.  

The outcomes of this PhD project highlight the importance of considering environmental 

factors for improving NUE in breeding programs. It recommends that wheat breeders focus 

on selecting in low yielding environments for high yield and high GPC genotypes.  
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Chapter 1: Introduction 

Wheat (Triticum aestivum L.) is the most widely cultivated crop in the world and a 

substantial source of carbohydrate and protein in human diets (Shewry and Hey 2015). 

Besides high yield, wheat quality has been valued throughout the wheat cultivation history 

(Wilson 2007). Grain protein content (GPC) is a key quality attribute and an important 

marketing trait. However, there is a well-documented negative relationship between grain 

yield and GPC in wheat (McNeal et al. 1972; Kibite and Evans 1984; Simmonds, N. W. 

1995). Due to this negative relationship, there is a limitation to increase GPC as grain yield 

is the primary driver of the current breeding programs of wheat and other crops. In world 

cropping systems, GPC is strongly influenced by nitrogen (N) fertilizer application (Triboi 

et al. 2000; Sinclair and Rufty 2012), but the N-use efficiency (NUE) of high and low GPC 

varieties appears to be genetically different (Beres et al. 2018; Walsh et al. 2018). N 

translocation into grains for maintaining GPC is more in high compared with low GPC 

varieties  (Rahimi Eichi et al. 2019; Pan et al. 2020).    

Only 40%–60% of applied N is taken up by wheat crops (Sylvester-Bradley and Kindred 

2009). In addition to the high costs of fertilizer for farmers, the extra N can be lost to the 

environment, resulting in serious environmental issues (Bouwer 1989; Harrison and Webb 

2001). Consequently, there is considerable interest in improving NUE (Birch and Long 

1990; Sadras et al. 2016). Understanding the processes that determines N uptake and 

accumulation in crops is of major importance with respect to both environmental concerns 

and yield quality (Gastal and Lemaire 2002). Biomass is related to the dynamics of N 

accumulation in crops in different environments. This suggests that with an adequate soil N 

supply, N uptake in crops is to a large extent determined by their biomass growth rate 

(Greenwood et al. 1986; Gastal and Lemaire 2002). Therefore, the above-ground biomass 

can be a suitable indicator for N response since it is highly N responsive, and corresponds 

with grain weight, particularly, under controlled conditions (Sharma 1993; Richards 2000; 
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Sadras et al. 2016; Rahimi Eichi et al. 2019). NUE evaluations are usually simplified by 

measuring grain weight at given N supply (Araus, J. L. et al. 2002; Cormier et al. 2016) as 

destructive biomass harvests can be time and labour intensive, especially, for large-scale 

trials (Royo et al. 2004). Consequently, using image-based phenotyping techniques that 

allow measurement of biomass non-destructively is attractive as a tool for assessing NUE 

(Berger et al. 2012; Shi et al. 2013). 

The overall aim of this dissertation was to investigate the relationship between grain yield 

and GPC under controlled, field and multi-environmental conditions in high and low GPC 

wheat varieties. Measuring biomass through growth analysis was used to examine the 

differences in N response in high and low GPC wheats. The specific aims of this study were 

to 1) understand the relationship between biomass, grain yield and GPC in high and low 

GPC varieties under different N supply in controlled conditions; 2) relate the results in 

controlled conditions to field environments in South Australia and across the Australian 

wheat-belt. The main objective of this research was to explore breeding and selection options 

for breaking the negative association between yield and high GPC.     

 

This thesis consists of six chapters: 

Chapter 1 (Introduction) provides a broad overview of the thesis background. Research 

gaps and specific aims of the thesis are briefly discussed. 

Chapter 2 (Literature review) provides a review of the available literature setting the 

background to the grain yield-GPC relationship, differences between Australian wheat 

classes based on their GPC, and image-based phenotyping methods. The possible methods 

to study the N responses in wheat plants under controlled and field conditions is described, 

highlighting the current research gaps of this field.   
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Chapter 3 (Understanding the interactions between biomass, grain production and 

grain  protein content in high and low protein wheat genotypes under controlled  

environments), written in manuscript style and published in the journal Agronomy. This 

chapter provides information about biomass, grain yield and GPC responses to different N 

treatments in high and low GPC varieties under controlled conditions. This paper also shows 

the importance of non-destructive methods for biomass growth analysis to show the 

differences in the N responsiveness of high and low GPC wheat.    

Chapter 4 (Understanding the interactions between biomass, grain production and 

grain  protein content in high and low protein wheat genotypes under field 

environments), written in manuscript style, provides information about the N 

responsiveness of biomass, yield and GPC in high and low GPC varieties in two field trials 

conducted in 2018. This manuscript also includes results from a preliminary field trial 

carried out in 2017. UAV-based imaging platforms were used for the non-destructive 

estimation of biomass related traits such as height.    

Chapter 5 (Strengths and weaknesses of national variety trial data for multi-

environment analysis: A case study on grain yield and protein content), written in 

manuscript style and published in Agronomy. This chapter includes an in-depth analysis of 

the relationship between grain yield and GPC particularly with regard to the results shown 

in Chapters 3 and 4 in different environments across the Australian wheat-belt. This chapter 

also provides information about the value of comprehensive multi-environmental analysis 

for exploring the yield-GPC relationship based on the National Variety Trials dataset.  

Chapter 6 (General discussion) provides a discussion on how the findings reported in this 

dissertation can be used in breeding programs and provide strategies for future research 

directions. 
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This thesis also contains two appendices: 

Appendix 1  

Khan, Z, Rahimi-Eichi, V, Haefele, S, Garnett, T & Miklavcic , SJ 2018, 'Estimation of 

vegetation indices for high-throughput phenotyping of wheat using aerial imaging', Plant 

methods, vol. 20 p. 14. Doi:10. 950. 10.3390/rs10060950. 

 

Appendix 2  

Khan, Z, Chopin, J, Cai, J, Rahimi Eichi, V, Haefele, S & Miklavcic, SJ 2018, 

'Quantitative estimation of wheat phenotyping traits using ground and aerial imagery', 

Remote Sensing, vol. 10. Doi:10.1186/s13007-018-0287-6. 

The observations, experiences and method developments achieved in both appendices 

helped in the improvement of the UAV-based imaging in the field.   
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Chapter 2: Literature review 

2.1 Concurrent improvement of yield and grain quality in wheat 

2.1.1 Global wheat production 

Cereals, the major staple food worldwide, constitute more than 50% of the total daily calories 

in most human diets (Hawkesford 2014). Wheat alone accounts about 20% of the 

consumption of carbohydrates and proteins (Hawkesford et al. 2013). The ‘green revolution’ 

in the 1960s, which introduced dwarf high yielding new wheat varieties and changed 

conventional agricultural practices led to large increases in productivity (Farmer 2008). As 

a result, and despite little or no expansion in the total area sown to wheat, global wheat 

production has increased substantially over the last fifty years (FAOSTAT 2019; 

www.fao.org). 

Currently, the average rate of increase in wheat production is 1.3% per year. However, this 

yield increase needs to reach 2.4% per year to meet the demand for the expected 9 billion 

population by 2050 (Hawkesford et al. 2013; Pardey et al. 2014). Several factors limit yield 

increase including the depletion of water sources, declining soil fertility and cultivation of 

varieties poorly adopted to stressful conditions such as drought and heat (Asfaw and Lipper 

2012). The impacts of climate change are expected to further limit productivity (Lobell et 

al. 2011). 

 2.1.2 Importance of nitrogen and nitrogen-use efficiency  

Application of fertilizers, particularly nitrogen (N), at a large-scale has been one of the key 

elements for the green revolution’s success. Plants require large amounts of N for their 

development and reproduction. Therefore, N is one of the most important macronutrients 

plants take up from the soil. Accordingly, plant growth and survival highly depend on the 

maintenance of an optimum equilibrium between N demand and N supply (Marschner et al. 

2012). At the end of the 1960s, a newly introduced rice variety in India known as IR8, which 

http://www.fao.org/
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produced around 5 t.ha-1 grain yield with no N fertilizer, yielded nearly double after N 

application (De Datta et al. 1968). It is therefore not surprizing that the worldwide 

consumption of N fertilizer has increased almost 10-fold since 1961. However, due to a 

combination of other limitations, such as abiotic and biotic stresses, poor agricultural 

practices and low yielding germplasm, this fertilizer increase has not been paralleled by the 

productivity of crops (Figure 2-1) (FAOSTAT 2017; www.fao.org).   

 

Figure 2-1. The increase (fold increase) in worldwide N fertilizer consumption and cereal 
production from 1961 to 2014. Data was sourced from FAOSTAT (2017) (www.fao.org).  

 

N fertilizer is industrially produced through the Haber-Bosch process, which demands very 

high temperature and pressure and, consequently, consumes large amounts of energy. For 

instance, 3% of the total natural gas produced in USA in 1999 was used in the fertilizer 

industry (Clark and Kelly 2004). N fertilizer production contributes to both emissions of 

atmospheric greenhouse gases and depletion of non-renewable energy reserves. Moreover, 

excess N fertilizer used in agricultural systems can be lost via surface runoff, leaching into 

groundwater, and denitrification and volatilization in the soil (Ehdaie et al. 2010; 

Butterbach-Bahl and Dannenmann 2011). This can lead to the pollution and eutrophication 

of underground and surface water bodies, and release of greenhouse gasses (Matson et al. 

http://www.fao.org/
http://www.fao.org/
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1998). However, despite being applied in large amounts in agricultural soils, only a small 

portion of the available N can be taken up by crops. For instance, wheat crops uptake only 

40-60% of the supplied N (Sylvester-Bradley and Kindred 2009). The global cereal N 

recovery in grains from applied fertilizer in 1996, which was corrected for the amounts 

obtained from soil and atmosphere, was only 33%, resulting in a $15.9 billion loss (Raun 

and Johnson 1999). Therefore, to improve the sustainability of agricultural systems, N-use 

efficiency (NUE) needs to be increased in crops. However, NUE has not often been the target 

of breeding programmes, as breeders are not inclined to select under low N. In fact, genetic 

selection is usually conducted with high fertilizer N input in order to reduce N effect as a 

variable. This can mask the differences in efficiency between genotypes in accumulating and 

utilizing N for producing grain (Kamprath et al. 1982; Raun and Johnson 1999). Another 

study in this context showed that high-yielding varieties of corn, wheat and rice released 

during the Green Revolution were selected to respond to high N inputs (Earl and Ausubel 

1983). Nevertheless, NUE has been indirectly increased by selecting for high yielding 

genotypes (Sadras and Richards 2014). It is well-documented that N uptake is highly 

associated with water availability (Stoddard and Marshall 1990; Sadras and McDonald 

2012). Selection for high yield in water, and consequently N, scarce environments has 

consistently increased NUE since the early 20th century in Australia (Fischer 2009; Sadras 

and Richards 2014). 

Moll et al. (1982) defined NUE as dry mass of harvested grain per kilogram available N. 

NUE depends on plant’s ability to (i) take-up N from the soil; (ii) use the taken-up N to 

expand the biomass; and (iii) distribute carbon and N to the grains (Lemaire and Gastal 

2009). 
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2.2 The relationship between N supply, biomass, grain yield and 

protein  

2.2.1 N input and biomass, grain yield and GPC in wheat  

Increasing N supply expands crop canopy, and increases radiation-use efficiency and canopy 

photosynthesis. Previous studies on different crops indicated a linear relationship between 

N supply and biomass, grain yield and grain protein content (GPC) up to a point where N is 

not the main factor limiting biomass production (Rodgers and Barneix 1988; An et al. 2006; 

Lemon 2007; Hawkesford 2014). However, this is not always the case as the availability of 

water after flowering and temperature can strongly influence GPC (Flohr et al. 2020). Figure 

2-2 shows three main areas of N supply in wheat including extreme deficiency (regime 1), 

moderate (regime 2) and excessive (regime 3) N. Additional N supply in regime 1 increases 

grain yield but reduces GPC. Consequently, in regime 1 the GPC of wheat may not exceed 

7-8%, and the yield potential remains around 50%. Increasing N supply in regime 2 raises 

the yield potential to 60-80% with the maximum GPC of 10%. In regime 3 with adequate to 

excessive N, wheat plants nearly reach their yield potential and, therefore, may not respond 

to extra N. In fact, Figure 2-2 demonstrates that NUE in wheat reduces by increasing N 

supply. Conversely, GPC in regime 3 increases in response to the additional N applied.  

 

Figure 2-2. The relationship between nitrogen supply, and grain yield and grain protein 
content in wheat. Adopted and changed from Lemon (2007) 
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In wheat, high early vigour can improve N uptake efficiency (Pang et al. 2014). Rapid 

accumulation of shoot biomass is associated with increases in root growth in both length and 

surface area. This improves the plant’s capacity to take-up N before it leaches beyond the 

root zone (Liao et al. 2004). In high yielding environments, grain yield is positively 

correlated with the above-ground biomass (Figure 2-3) (Bustos et al. 2013). However, large 

biomass production can involve yield penalties by increasing susceptibility to lodging 

(Hawkesford 2014). In low yielding environments with terminal drought and heat stress 

conditions, “haying-off” is an additional issue, which reduces grain yield and NUE 

(McDonald, G. K. 1992; van Herwaarden et al. 1998). 

There is a negative relationship between grain yield and GPC in wheat (Figure 2-4) (McNeal 

et al. 1972; Kibite and Evans 1984; Simmonds, N. W. 1995), which limits furthur increase 

of protein in grain with higher yields. 

 

Figure 2-3. Relationship between above-ground dry matter and grain yield in wheat trials 
grown in the high yielding environments of Mexico, Argentina and Chile. The figure is 
obtained from Garcia et al. (2013). 
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Figure 2-4. Negative relationship between grain yield and grain protein content obtained 
from the wheat dataset of the National Variety Trials in 2016 in Wagga Wagga (low yielding 
environment) and Tasmania (high yielding environment).  

 

The inverse relationship between yield and GPC is mainly due to the competition between 

N and carbon for translocation in to developing grains (Munier‐Jolain and Salon 2005), 

resulting in N dilution by carbon-based components within grains (Acreche and Slafer 2012). 

Besides yield production, wheat quality improvement has been valued through thousands of 

years of cultivation (Wilson 2007). Nowadays, even in regions where food security is an 

issue, wheat grain quality is important (Husenov et al. 2015). Wheat grain quality can be 

determined by physical and chemical characteristics. Physical parameters are grain 

vitreousness, color, weight, shape and hardness, while chemical characteristics include GPC 

and gluten strength, etc (Gaines et al. 1996; Pasha et al. 2010). In wheat, GPC is a key quality 

attribute and an important marketing criterion since GPC is a fundamental indicator of wheat 

classification (Oury and Godin 2007; Husenov et al. 2015). Accordingly, achieving a 

suitable balance between N-use efficiency and improving the GPC with minimum risk of a 

yield penalty is desirable in breeding programs. 
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2.2.2 Wheat grain protein is more influenced by environment than by 

genetics 

GPC in wheat can be affected by a range of factors including genetics, seasonal conditions, 

agronomic practices, variety and soil type (Figure 2-5) (Stephens et al. 1989; Lemon 2007). 

However, GPC is more influenced by environmental conditions than by genetics (Blakeney 

et al. 2009; Rahimi Eichi et al. 2020). High seasonal water availability with prolonged cool 

moist grain filling period increases the yield and, consequently, dilutes the protein in grains 

(Larmour 1939; Lemon 2007). Conversely, heat and drought stresses at the end of the season 

can shorten the maturation period, reduce the grain size by limiting the amount of starch 

accumulated in the grain, and increase the GPC. Likewise, late sowing in such conditions 

increases GPC by reducing grain yield through a shortened grain filling stage (Jones and 

Olson-Rutz 2012). Frost is the other abiotic stress that increases GPC by reducing grain yield 

(Lemon 2007; Arnott and Richardson 2007 ).  

In the presence of adequate N, the deficiency of other macronutrients and trace elements 

usually reduces yield and increases GPC in crops (Lemon 2007). The type of soil can also 

change the GPC by influencing N and moisture reserves in soil. In this context, heavier soils 

usually store more minerals and water for a given depth, and are less likely to lose mineral 

N from leaching compared with sandy soils (Munier et al. 2006; Lemon 2007).  

 

Figure 2-5. Relative influence of factors affecting grain protein content in wheat. Adopted 
from Lemon (2007) 
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2.2.3 Australian wheat classes and their end-uses 

Among Australian agricultural products, wheat is the most valuable commodity export after 

beef. Total production of wheat per annum in Australia from 2005 to 2018 is shown in Table 

2-1. On average, Australia ranks between 6th and 8th place amongst the major wheat 

producing nations, while Australia is the 4th main wheat exporting country with 75-80% of 

the wheat produced in Australia exported (Australian Bureau of Statistics 2018-2019). The 

value of Australian wheat exports is determined based on the key quality attributes 

recognized by the importers of Australian wheat (Table 2-2) (Blakeney et al. 2009; Limley 

et al. 2013). Therefore, improving the capacity and sustainability of production for particular 

end-use products is important for Australian wheat producers. 

Table 2-1. Wheat production statistics for Australia, 2005-2018. Sources: ABARES; 
Australian Bureau of Statistics; Pulse Australia 
 

Period Area (’000 ha) Yield (t.ha-1) Production 
(’000 tonnes) 

2005-06 12443 2.02 25150 
2006-07 11798 0.92 10822 
2007-08 12578 1.08 13569 
2008-09 13530 1.58 21420 
2009-10 13881 1.57 21834 
2010-11 13502 2.03 27410 
2011-12 13902 2.15 29905 
2012-13 12979 1.76 22856 
2013-14 
2014-15 
2015-16 
2016-17 
2017-18 

12613 
12384 
11282 
12191 
12237 

2.01 
1.9 
2.0 
2.6 
1.7 

25303 
23743 
22275 
31819 
21244 
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Table 2-2. Characteristics and end-use products of different Australian wheat grades 
(Blakeney et al. 2009). 
 

Class Attributes End-uses 
Prime Hard • Minimum GPC of 13% 

• Hard-grained varieties 
• Prime hard varieties 
• High quality of milling 
• High strength and functionality of dough 

High volume pan bread and 
hearth bread, high quality 
yellow alkaline and dry white 
salted noodles 

Hard • Minimum GPC of 11.5% 
• Hard-grained varieties 
• Superior quality of milling 
• Good strength and functionality of 

dough 

High volume pan bread, 
flatbreads and noodles 

Premium 
White 

• Minimum GPC of 10% 
• Hard-grained varieties 
• High performance of milling 

Noodles, including instant 
noodles, middle Eastern and 
Indian-style flatbreads, pan 
bread and Chinese steamed 
bread  

Standard 
White 

• GPC less than 10% unless Australian 
Standard White classification 

Multipurpose including 
flatbread, steamed bread, 
noodles 

Noodle • GPC 9.6-11.5% 
• Soft grained varieties 
• Very good noodle quality 

Dry white salted noodles and 
Japanese udon noodles 

Durum • Very hard grained varieties 
• Good ratio and quality of semolina yield 
• High levels of yellow pigment 

Pasta and couscous  
 

Soft • Maximum GPC of 9.5% 
• Soft grained varieties 
• Weak doughs with low absorption of 

water 

Biscuits, cakes and pastry 

General 
Purpose 

• Wheat that fails to meet higher receival 
standards for milling, or produced to be 
in Australian General Purpose 
classification 

All purpose flours and 
blending applications 

 

Feed • Wheat suitable for animal feed, 
including all red grained varieties 

 

 

In Australia, wheat grades are used as the basis for payment to farmers. Grading is an 

approach to segregate wheat that exhibits different attributes such as kernel hardness, grain 

colour, GPC and the suitability of dough strength for various end-products. The differences 

in hardness modifies many functional properties of the flour and dough including milling, 
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processing, wet gluten, and loaf volume (Morris 2002; Blakeney et al. 2009; Salmanowicz 

et al. 2012; Baasandorj et al. 2016). Based on kernel hardness wheat can be classified in to 

soft, medium soft, hard, medium hard and extra hard (Kent and Evers 1994; Hansen, A. and 

Poll 1997), which is used for differentiating wheat grains in the world market (Pasha et al. 

2010). The interaction between starch granules and proteins is an important factor 

determining kernel hardness and, consequently, flour processing quality (Preston 1998). The 

endosperm of hard and soft wheats physically differ from each other due to the adhesive 

strength between the protein matrix and starch granules (Simmonds, D. H. et al. 1973). Such 

differences between hard and soft grain wheats are genetically determined and result in 

differences in grain composition (Symes 1965). Variation in the expression of Pin genes is 

the main reason of the different composition between hard and soft wheat grains. The genetic 

locus controlling this kernel texture is the hardness (Ha) locus located on the chromosome 

5D (Morris 2002). An additional factor, which affects kernel hardness is the amount of 

protein in the grain as mentioned earlier. Increasing grain protein up to a certain level is 

positively correlated with kernel hardness in both hard and soft wheat (Hong et al. 1989; 

Bettge and Morris 2000). Hard wheat varieties usually have higher GPC compared with soft 

varieties (Moss 1973; Anderson and Sawkins 1997; Lemon 2007). Australian hard wheat 

breeders tend to select simultaneously for high grain yield and GPC (Oury and Godin 2007; 

Mahjourimajd, S., Taylor, et al. 2016). Conversely, for soft wheats, which have different 

quality targets and end-products compared to hard wheats, lower GPC can be a desirable 

trait (Huebner et al. 1999).  

Until the 1930s, Australian wheat production was dominated by soft and low GPC 

genotypes. However, since the 1960s the proportion of hard cultivars with high GPC began 

to increase. Hard and soft wheat cultivars were segregated between the 1950s and 1970s in 

different Australian regions. This led to the payment of premiums for high GPC hard wheats 

(Simmonds, D. H. 1989), and soft and feed cultivars that produce low GPC stayed in 
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irrigated and high rainfall regions (Figure 2-6) (Simmonds, D. H. 1989; Anderson and 

Sawkins 1997; Spragg 2008). However, the majority of wheat produced in Australia is 

grown in low yielding regions (Simmonds, D. H. 1989; Anderson and Sawkins 1997; Turner 

2004).  

 

Figure 2-6. Cultivation areas for different Australian wheat classes, the production ratio of 
individual classes to the total Australian wheat, and grain protein content limits for each 
wheat class. Figure obtained from (AEGIC 2018).  

 

2.3 Phenotyping plant responses to N 

2.3.1 Terminology, background and importance of plant phenotyping  

Phenomics is mainly based on the examination of a series of traits related with morphology 

(e.g., plant height, canopy coverage, leaf or tiller number), developmental status (e.g., 

vegetative and reproductive stages), yield performance (e.g., grain number, grain weight, 
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protein content or biomass) and physiology (e.g., canopy temperature, water status or 

photosynthesis rate) (Furbank and Tester 2011). 

One of the factors that can affect the probability of identifying superior genotypes is the 

number of lines phenotyped in breeding programs (White et al. 2012). Today phenotypic 

capabilities are a bottleneck for the genetic examination of quantitative traits linked with 

growth, yield and grain quality. The empirical usage of genetic information such as linking 

the response to selection methods in breeding programs in genomic selection (Jannink et al. 

2010) or genome-wide association (Myles et al. 2009) studies require phenotyping of 

thousands of genetically defined lines. In this context, using image-based high-throughput 

phenotyping platforms could considerably reduce the time, cost and labour required in 

comparison with conventional phenotyping techniques (Montes et al. 2007; Furbank 2009).  

2.3.2 Image-based biomass measurements can help in NUE studies 

Due to the challenges of destructive harvests, NUE evaluations in the field are usually based 

on measuring grain weight at given N supply (Araus, J. L. et al. 2002; Cormier et al. 2016). 

However, the above-ground biomass can also be a suitable indicator for N response since it 

is highly N responsive, and corresponds with grain weight, particularly, under high yielding 

environments (Sharma 1993; Richards 2000; Sadras et al. 2016). Using conventional 

destructive methods to measure biomass is time and labour intensive, especially for large-

scale trials. For instance, measuring biomass and leaf area index (LAI) with destructive 

methods in the field requires collecting samples, measuring leaf area, oven-drying and 

weighting in the laboratory (Royo et al. 2004). Moreover, destructive methods discard a 

portion of the crop, which limits the use of such techniques in small-sized breeding plots 

(Prasad et al. 2007). Conversely, image-based phenotyping platforms provide consecutive 

measurements of biomass during the growing season, and assess plant growth dynamics. 

Monitoring growth dynamics without the need for periodic destructive harvests, improves 
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the precision of measurements (Furbank and Tester 2011). Using image-based methods also 

allows phenotyping of a large number of plots at reasonable costs and good repeatability 

(Langridge and Fleury 2011; Casadesus and Villegas 2014; Fahlgren et al. 2015).  

Plant nutrient status influences the time point of the switch from the vegetative to 

reproductive stage (Kozłowski 1992; Koelewijn 2004). Extended nutrient starvation can 

induce an early shift from vegetative to generative growth, and consequently compresses the 

phenology of plants (Berger et al. 2012; Marschner et al. 2012; Rahimi Eichi et al. 2019). 

This shifting time point that represents important physiological responses to N can be 

detected when a plant achieves its maximum growth rate. Accordingly, detecting the 

maximum growth rate requires using imaging techniques, and cannot be feasibly measured 

by destructive methods (Berger et al. 2012; Shi et al. 2013).  

Imaging techniques provide objective data and exceeds the capabilities of human eyes 

(Kumar 2015). Nevertheless, post-processing procedures including image adjustment, 

geometric and radiometric calibrations, atmospheric correction, automatic mosaicking, and 

algorithms for automatic image segmentation can limit the speed of imaging techniques 

(Berni et al. 2009; Zarco-Tejada et al. 2013).  

2.3.3 Image-based phenotyping under controlled and field conditions  

Since the phenome is the result of interactions between the genome and the environment, 

using controlled conditions can facilitate analysis by reducing environmetal variation 

(Furbank and Tester 2011). Non-invasive quantitative measurements in controlled 

environments can be done based on intensive phenotyping using robotics and imaging 

systems. In intensive methods, a small number of plants are phenotyped individually in high 

detail and at high resolution in comparison with extensive phenotyping, which includes 

higher number of plants (Houle et al. 2010). Accordingly, controlled environment 

experiments allow the examination of traits that may be difficult to measure in the field. For 
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instance, precise detection of shifts in the time points from vegetative to reproductive stage 

requires day-to-day imaging, which makes such traits hard to assess in the field conditions 

(Tardieu and Tuberosa 2010; Hansen, N. J. S. et al. 2018). However, there are also 

disadvantages with simulation of field conditions in controlled environment (White et al. 

2012). Limited root space in pots under greenhouse or growth chamber conditions, and the 

timing of watering can impact on flowering and seed setting (White et al. 2012; Turner 

2019). In the field, plants can be exposed to different stresses that may not be recorded or 

counted in the analyses (Araus, J. L. and Cairns 2014). In this context, the soil ecosystem in 

the field cannot be feasibly simulated in nutritiously heterogeneous soils in pots (Araus, J. 

L. and Cairns 2014). Environmental parameters such as solar radiation, wind speed and 

evaporation rates can be more severe in field than in controlled conditions. Accordingly, 

water deficit provokes higher soil penetration resistance in field compared to the soil in pots 

(Cairns et al. 2011; Araus, J. L. and Cairns 2014).  

Field-based high-throughput phenotyping (FBHTP) provides high-throughput information 

from actual cropping systems (White et al. 2012; Qiu et al. 2019). Precise FBHTP requires 

identifying and controlling possible site variation, selecting suitable measurement 

parameters, and using effective methods for data analysis and modelling (Araus, J. L. and 

Cairns 2014). The most challenging question in FBHTP is finding suitable indices for 

particular traits in the field (Ghanem et al. 2015). In FBHTP methods, it is important to use 

inexpensive and easy-to-handle tools, otherwise high costs, labor and time may limit the 

number of measurements (Araus, Jose L. et al. 2012; Araus, J. L. and Cairns 2014).  

2.3.3.1 Conventional visible imaging 

Imaging in the visible light range reproduces human perception by obtaining phenotypic 

information from digital images. Visible images are mainly obtained with silicon sensors, 

which are sensitive to visible light bands (400-750 nm), and are capable of imaging in two 

and three dimensions (2D & 3D). RGB (red, green and blue) cameras can be used in 
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controlled and field conditions for monitoring canopy structure and growth dynamics. Such 

traits indicate the plant status in response to biotic and abiotic stresses (Casadesús et al. 2007; 

Berger et al. 2012; Kumar 2015). Due to the low price, portability, high resolution and 

convenient usage, conventional digital photography with RGB cameras can help for high-

throughput phenotyping of crops under controlled and field conditions (Mullan and 

Reynolds 2010; Khan, Rahimi-Eichi, et al. 2018; Rahimi Eichi et al. 2019).  

 

2.3.3.2 Multispectral imaging 

Plant tissues interact with electromagnetic radiation through absorbance, reflectance and 

transmittance. The fraction of irradiated light that is reflected by leaves is described as leaf 

reflectance (Li, L. et al. 2014; Kumar 2015). Each constituent of plant cells and tissues 

absorbs, reflects and transmits an individual wavelength pattern. Accordingly, imaging at 

various wavelengths can present a wide range of information about the plant tissue’s 

composition and status (Li, L. et al. 2014). Plants can be characterized by electromagnetic 

waves reflected from visible (VIS) and near infrared (NIR) spectral regions (Berni et al. 

2009; Zarco-Tejada et al. 2013). Due to the high absorption of visible wavelengths (400-750 

nm) by photoactive pigments (chlorophylls, anthocyanins and carotenoids), vigorous 

canopies show lower reflectance compared to unhealthy plants. Conversely, healthy 

canopies show strong reflectance in near-infrared bands (750-1200 nm). The possible reason 

might be the multiple scattering of light from intercellular areas of mesophyll in leaves (Li, 

L. et al. 2014; Kumar 2015).  

Vegetation indices indicate multiple biophysical variables such as leaf area index (LAI), 

canopy chlorophyll content, vegetation fraction, absorbed photosynthetically active 

radiation (PAR), biomass and gross primary production (Hatfield et al. 2008; Delegido et al. 

2013). Vegetation indices are mostly obtained from reflectance in PAR range (400-700 nm), 

near-infrared (NIR) (700-1000 nm) and mid-infrared (MIR) (>4000 nm) bands.  
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The most common index for estimating vegetation conditions is the normalized difference 

vegetation index (NDVI), which is calculated from the visible and near-infrared light 

reflected by vegetation (Rouse et al. 1974; Jensen 2007; Shen et al. 2013): 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑉𝑉
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑉𝑉

 

 It has been reported that NDVI can indicate chlorophyll concentration, N content, biomass, 

PAR absorption and LAI (Tucker 1979; Sellers 1985; Aparicio et al. 2000; Magney et al. 

2016). The multispectral camera used in this dissertation included blue, green, red, red-edge 

and near-infrared bands. 

2.3.4 Effectiveness of unmanned aerial vehicles (UAVs) compared to other 

phenotyping platforms  

Phenotyping data can be obtained by deploying various platforms, e.g., ground-based 

booms, aircraft, satellites or UAVs (Table 2-3). In comparison with other platforms, UAVs 

have recently been particularly popular for applications in field phenotyping (De Castro et 

al. 2018; Khan, Chopin, et al. 2018). Table 2-3 shows the effectiveness of UAVs in FBHTP 

in comparison with other platforms. 

UAVs can be classified into very small, small, medium and large sizes. Using small UAVs, 

is an economical solution for providing high-quality aerial images. UAVs can carry a wide 

range of payloads including different kinds of cameras (Radoglou-Grammatikis et al. 2020). 

Based on their aerodynamic features, UAVs can be categorized into fixed-wing, rotary-wing 

and hybrid-wing types (Sylvester 2018; Radoglou-Grammatikis et al. 2020). Fixed-wing 

UAVs have longer endurance and can cover larger areas due to their fast flight speed. 

However, fixed-wing UAVs need an area for landing and take-off and are harder to 

manoeuvre. Fixed-wing UAVs can be suitable for aerial survey, high-resolution aerial 

photos, mapping and land surveying. In comparison with fixed-wing UAVs, rotory-wing 
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UAVs have lower speed, shorter flight duration and limited payload. Nevertheless, they have 

a good  manoeuvrability, ability to hover around a particular area, and ability to operate in 

confined areas. Accordingly, rotory-wing UAVs are ideal for surveillance and for 

monitoring crop health in field (Sylvester 2018). Rotory-wing UAVs are the easiest to 

manufacture, the cheapest and the most common type among different UAV types (Gonzalez 

et al. 2018). Hybrid-wing type UAVs are the combination of fixed-wing and rotory-wing 

types  (Sylvester 2018).  

Canopy height, biomass and ground cover are often targeted with UAVs in breeding plots 

(Watanabe et al. 2017; Chen et al. 2018; Makanza et al. 2018). Canopy height, an important 

indicator of crop development, defined as the distance between canopy base and the highest 

line of photosynthetic tissues. Using a ruler has long been the traditional way of measuring 

plant height. However, besides being labour intensive, measuring by ruler does not precisely 

indicate the average height of the canopy (Holman et al. 2016; Watanabe et al. 2017).  

In this dissertation, a set of six wheat varieties differing in GPC were selected based on 

available data from National Variety Trials (NVT) (Supplementary Figure S2 in Rahimi 

Eichi et al. (2019)). Among these varieties, Spitfire, Mace and Gregory were hard, and 

Impala, QAL2000 and Gazelle were soft wheats. In our field trial, RGB and multi-spectral 

cameras installed on rotory-wing UAVs were used on wheat trials to measure plot-wise 

characteristics, such as canopy height and NDVI. 
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Table 2-3. The limitations and application of different phenotyping platforms (West et al. 
2003; Jacobi and Kuhbauch 2005; Ollero et al. 2006; Niethammer et al. 2012; Deery et al. 
2014; Li, L. et al. 2014; Whitehead and Hugenholtz 2014).  

 
 

Platform 
Type 

Advantages Disadvantages 

 
Immobile 
platforms 

• Unmanned frequent monitoring. 
• Capable of operating throughout 

day and night. 
• Capable of recording with high 

repetition. 

• High cost 
• Monitor limited numbers of plots 

 
Phenomobile 

platforms 

• Easy to use in the field. 
• Suitable for geo-tagging. 
• High spatial resolution.  

• Generally slow-moving, which 
makes it time consuming for 
covering large trials, therefore 
susceptible to environmental 
variations.  

 
Blimps 

& 
balloons 

 

• Lower costs in comparison with 
other aerial systems. 

• Higher payload compared to UAVs 
(several kilograms). 

• Simultaneous operation of sensors. 

• Highly vulnerable to wind speed. 
• Low versatility. 
• Requires high labour work for 

control.  
• Requires large storage space after 

inflation.  
 

Satellite 
 

• Capable of covering large areas, 
sometimes the size of countries. 

• Higher payload compared to other 
airborne platforms. 

• High cost.  
• Lack of spatial resolution. 
• Limitations in revisit time. 
• Vulnerable to cloud coverage. 

 
 
 

Aircraft 

• Capable of carrying a wide range of 
cameras and sensors regardless of 
their size and weight.  

• Higher spatial and spectral 
resolutions in comparison with 
satellites. 

• Rapid monitoring of large-scale 
trials.   

• High operating costs. 
• Operational complexity. 
• Less availability and repeatability 

compared to UAVs. 
• Low temporal resolution. 

 
 
 
 
 

UAVs 

• Lower prices with lower 
operational costs in comparison 
with manned airborne platforms.   

• Can be operated by one person, so 
reduces the risks to pilots.  

• Flexible deployment and high 
versatility improves temporal and 
spatial resolution.  

• Easy to transport.  
• Capable of imaging large trials in 

minutes. 
• Advanced UAVs are commercially 

available and affordable. 

• Limitation in the size and weight of 
the attached cameras. 

• Limited flying height. 
• Limitation in the total time of 

flight, which limits the whole 
coverage.  

• Influenced by wind, albeit less than 
blimps. 

• Regulatory rules 
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2.4 Thesis scope and outline 

The objective of this study was to investigate the relationships between grain yield and 

protein under controlled, field and multi-environmental conditions in high and low GPC 

wheat varieties. The work described in this dissertation also evaluates the importance of non-

destructive methods for biomass measurements to show the differences in the N 

responsiveness of high and low GPC wheat.   

The specific aims of this project were: 

a) To understand the relationship between biomass, grain yield and GPC in high and low 

GPC varieties under different N supply in controlled conditions; 

b) To relate the results in controlled conditions to field environments in South Australia; 

c) To relate the results, regarding the grain yield-GPC relationship, in controlled and field 

conditions to different environments across the Australian wheat-belt.   
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Abstract: Grain protein content (GPC) is a key quality attribute and an important marketing trait
in wheat. In the current cropping systems worldwide, GPC is mostly determined by nitrogen (N)
fertilizer application. The objectives of this study were to understand the differences in N response
between high and low GPC wheat genotypes, and to assess the value of biomass growth analysis to
assess the differences in N response. Six wheat genotypes from a range of high to low GPC were
grown in low, medium and high N, under glasshouse conditions. This experiment was designed
around non-destructive estimation of biomass using a high throughput image-based phenotyping
system. Results showed that Spitfire and Mace had higher grain N% than Gazelle and QAL2000,
and appeared to demand more N to grow their biomass. Moreover, at low N, Spitfire grew faster
and achieved the maximum absolute growth rate earlier than high N-treated plants. High grain N%
genotypes seem able to manage grain N reserves by compromising biomass production at low N.
This study also indicated the importance of biomass growth analysis to show the differences in the N
responsiveness of high and low GPC wheat.

Keywords: grain protein content; grain nitrogen concentration; biomass; growth rate; time to
maximum growth rate; nitrogen response; imaging; hard and soft wheat

1. Introduction

Wheat is the most widely cultivated crop in the world and a substantial source of carbohydrate
and protein in human diets [1]. Increasing grain weight and grain quality are the two main goals in
improving wheat production. In this context, grain protein content (GPC) is a key quality attribute and
an important marketing trait [2]. Increasing GPC is positively correlated with grain hardness in both
hard and soft wheats [3–5]. Changes in kernel hardness can affect milling, downstream processing and
consequently end products [6]. Due to the negative correlation between grain weight and GPC [7–9],
grain weight increase may reduce the end-use quality of hard wheats [1,10]. However, lower GPC
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for soft wheats, which have different quality targets and end products compared to hard wheats,
can be a desirable trait [11]. Soft wheat lines produce substantially lower GPC compared with hard
wheats [12,13]. In the current world cropping systems, GPC is mostly determined by nitrogen (N)
fertilizer application [14,15]. Therefore the nitrogen use efficiency (NUE) of soft genotypes may be
genetically defined.

Only 40%–60% of the applied N is taken up by wheat plants [16], which inflates production
costs and environmental impacts [17,18]. Consequently, there is considerable interest in improving
NUE [19,20]. NUE, which can be defined as the ratio of grain weight to N supplied, has been mostly
improved by indirect selections for high grain weight [21,22]. In fact, efforts to improve NUE in wheat
has focused on increasing grain weight response to higher N inputs [23]. In this context, comparing
the N responses of high and low GPC wheats may reveal the mechanisms used by the contrasting
genotypes in their N use at high and low N input [24,25].

Due to the challenges of destructive harvests, NUE evaluations in the field are usually based on
measuring grain weight at given N supply [22,26]. Controlled environment phenotyping platforms
can help to dissect complex traits into simple components under reduced environmental variation.
Therefore, controlled environment experiments allow the examination of traits that may be difficult
to measure in the field [27–29]. In this respect, the above-ground biomass can be a suitable indicator
for N response since it is highly N responsive, and corresponds with grain weight under glasshouse
conditions [19,30–33].

Growth curves of single plants resemble consecutive measurements of biomass during the season,
and give a view of plant growth dynamics. Monitoring growth dynamics without the need for
periodic destructive harvests improves the precision of measurements [34]. Destructive methods, on
the other hand, require frequent harvests at specific time points and do not allow continuous growth
measurement from individual plants [35]. Therefore, deploying imaging platforms, which allow
for consecutive measurements, reduces the number of required plants and improves the precision
of growth analysis. Phenotyping based on imaging can also help to analyze plant nutrient status.
Plant nutrient status influences the time point of the switch from the vegetative to reproductive
stage [36,37]. Extended nutrient starvation can induce the early shift from vegetative to generative
growth, and consequently compresses the phenology of plants [35,38,39]. Maximum absolute growth
rate (max-AGR) indicates the transition point from vegetative to generative growth [40]. Accordingly,
the interval of the plant life cycle required to reach the max-AGR, which is known as the time of
max-AGR (t-maxAGR), can be studied as a trait for N response. These traits, max-AGR and t-maxAGR,
can be measured with imaging techniques and represent important physiological responses to N that
cannot be feasibly measured by destructive methods [35,41]. Also the requirement of day-to-day
imaging, for precise measurement of t-maxAGR makes this trait hard to assess in the field conditions.

Here, we report on a study based on growth measurement of single wheat plants under controlled
conditions with different N supply. The objectives of this study were: (1) to understand the differences
in N response between high and low GPC wheats; (2) to assess the value of biomass growth analysis for
the examination of differences in N response in high and low GPC wheats. To address these objectives,
a set of six genotypes differing in GPC were selected based on available data from National Variety
Trials (NVT) (Supplementary Figure S2).

2. Materials and Methods

2.1. Plant Material, Growth Conditions and N Treatment

Based on the NVT data from 11 years (Supplementary Figure S2), six wheat (Triticum aestivum
L.) genotypes were selected to cover a range of high to low GPC. The six genotypes, Spitfire, Mace,
Gregory, Impala, Gazelle and QAL2000, were grown at three N levels under greenhouse conditions.
The experiment was carried out in The Plant Accelerator (Australian Plant Phenomics Facility,
University of Adelaide, Australia; Latitude: −34.97113, Longitude: 138.63989) during spring and
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summer (June–November 2016). Temperature in the greenhouse was regulated based on a sinusoidal
cycle with 22 ◦C day/15 ◦C night.

Three seeds were sown in 150 mm pots (2.5 litre) with drainage holes, in 50:50 (v/v) coco-peat
mix: UC Davis potting soil with adequate fertilizers except nitrogen. The three levels of nitrogen
comprised of 25 (low), 75 (medium) and 150 (high) mg N per kg soil and were applied in the form of
urea during soil mixing. Soil surface was covered with blue poly-vinyl chloride mats to reduce soil
moisture evaporation while providing a favourable background colour for image analysis. A blue
carnation frame was placed in the pot to support the plant. Five days after emergence, seedlings were
thinned to one uniformly sized plant per pot.

2.2. Experimental Design

A spilt-plot design was used to assign the genotypes and N treatments to 108 plant carts (that
is pots) on a conveyor belt system. Each cart held one pot with a single plant, arranged in 6 lanes
by 18 plant carts (Supplementary Figure S1). Automatic imaging started on 29 days after sowing
(DAS) (before stem elongation) by transferring the pots to the conveyor system, where the plants
remained until 61 DAS. Water levels were monitored and adjusted daily to field capacity through an
automated weighing and watering system (LemnaTec GmbH, Aachen, Germany). After 61 DAS, plants
were returned to the greenhouse and grown to maturity. When mature, the plants were destructively
harvested for biomass measurements and N analysis of grain and non-grain tissues.

2.3. Red, Green, Blue (RGB) Image Capture and Image Analysis

Shoot images were taken using the LemnaTec 3D Scanalyzer system. Plants were imaged daily
with two 5-megapixel visible/RGB cameras (Basler Pilot piA2400-17gm). One image from the top and
two from the side at a 90 degrees rotation were prepared at each imaging session. All captured images
were analysed using the LemnaTec Grid software package (LemnaTec GmbH, Aachen, Germany).

The projected shoot area (PSA) was extracted from all three RGB images, and the sum of PSA from
the three images was used to estimate shoot biomass. Absolute growth rates (AGRs) were calculated
from the estimated PSA between two time points of tk and tj, [42]:

AGR
(
t j, tk
)
=

PSAtk− PSAt j
tk− t j

(1)

Projected shoot area values were smoothed by fitting a cubic smoothing spline to the data for
each plant. Smoothed absolute growth rates were calculated from the smoothed PSA [42].

2.4. N Measurements

Nitrogen content in grain (grain N%) and non-grain (non-grain N%) tissues were determined by
using a nitrogen analyser (Rapid N exceed®, Elementar, Germany). Accordingly, grain and non-grain
tissues were ground to a fine powder using ball mills after being dried at 60 ◦C. Non-grain tissues,
including vegetative tissues and the non-grain parts of spikes, were shredded before grinding.

2.5. Statistical Analysis

The design of the plots was generated using DAE [43], a package for the R [44] statistical computing
environment. The need for unequal residual variance for the imaging was tested through restricted
maximum likelihood estimation (REML) ratio tests using ASReml-R [45] and ASRemlPlus [46], packages
for the R statistical computing environment. If non-significant, then equal residual variances were
assumed. The phenotypic means were obtained using the resulting model. Significant differences were
accepted at p ≤ 0.05.
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3. Results

NVT data analysis showed that Spitfire produced the highest GPC, with Gazelle and QAL2000
showing the lowest compared to the other genotypes (Supplementary Figure S2). Mace was also
selected as it was reported to be highly N responsive [47,48].

As mentioned above, plants were imaged daily from 29 to 61 DAS. Over the course of imaging,
differences in PSA between the three N treatments increased over time. Maximum projected shoot
area (max-PSA), which was the curve vertex, was reduced for all genotypes as N supply decreased
(Figure 1A and Supplementary Figure S4A).
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Figure 1. Smoothed projected shoot area (PSA) (A) and smoothed absolute growth rate (AGR) (B). 6
wheat genotypes were grown in low (red), medium (green) and high (blue) nitrogen supply. Each line
represents the average of 6 replicates. Numbers with % show the reduce rates from high to medium and
from medium to low. Black arrows in Figure B indicate the maximum absolute growth rate. The unit of
projected shoot area is kilo pixels, and the unit of absolute growth rate is kilo pixels per day.

However, the biggest reduction in max-PSA from high to low N was in Spitfire and Mace with 46%
and 43% decrease, respectively. In this context, maximum projected shoot area from high to medium
nitrogen was more reduced in Spitfire and Mace with 32% compared to other genotypes. Conversely,
less PSA reductions from high to low N were found in Gazelle and QAL2000 (Figures 1A and 2, and
Table 1).
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Figure 2. Red, green, blue (RGB) camera images from side views showing phenotypic changes of the 6
wheat genotypes in response to high, medium and low N treatments 61 days after sowing. Samples are
selected from low and high nitrogen treatments.

Table 1. Table of grain protein content (GPC) from National Variety Trials (NVT) trials, grain and
non-grain nitrogen concentration measured in this study, total reduction of maximum projected shoot
area (max-PSA), maximum absolute growth rate (max-AGR) and the time of max-AGR (t-maxAGR)
in 6 wheat genotypes. GPC is the average of all NVT trials across the Australian wheat belt between
2008 to 2018. Total reduction rate in max-PSA, max-AGR and t-maxAGR were calculated as: ((high
N-lowN)/(high N)) × 100.

Spitfire Mace Gregory Impala QAL2000 Gazelle

Average of GPC from 11 years
of NVT data 13.4 11.3 12 11.6 10.9 10.9

Average of grain N% in all N
treatments 1.7 1.7 1.6 1.5 1.3 1.4

Average of non-grain N% in all
N treatments 0.3 0.4 0.3 0.2 0.2 0.2

% total reduction of max-PSA
from high to low N 46 43 34 39 30 33

% total reduction of tmax from
high to low N 44 35 25 32 19 8

% total reduction of max-AGR
from high to low N 43 33 33 31 32 32

After Spitfire and Mace, max-PSA declined more in Impala compared to other genotypes. However,
PSA in Spitfire and Mace were mostly reduced from high to medium N, while PSA in Impala was
highly restricted by reducing N inputs from medium to low (Figure 1A, and Table 1).

Max-AGR was also reduced as N level decreased in all genotypes (Figure 1B and Supplementary
Figure S4B). Spitfire showed the highest decrease in maximum absolute growth rate from high to low
N (Figure 1B and Table 1). Accordingly, the time to max-AGR (t-maxAGR) declined with reducing
N supply in most of the genotypes, except Gazelle where t-maxAGR was not significantly reduced
(Figure 3).
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Figure 3. Predictions from full interaction model of the time of maximum absolute growth rate
(t-maxAGR) of 6 wheat genotypes grown in low (red), medium (green) and high (blue) nitrogen supply.
The unit of t-maxAGR is day after sowing (DAS). Each columns represents 6 replicate plants. The
error bars are half of the least significant differences (p = 0.05) so that non-overlapping bars indicate
significant differences.

All genotypes, other than Gazelle, grew faster and achieved maximum absolute growth rate
earlier at low N compared to high N-treatment. Under low N condition, QAL2000 showed the lowest
reduction in the time of max-AGR after Gazelle, whereas the highest t-maxAGR decline was in Spitfire
and Mace.

The post-harvest analysis showed that the above-ground biomass and grain weight were enhanced
by increasing N inputs (Figure 4G–I and Supplementary Figure S3).
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Figure 4. Grain (A, B and C) and non-grain (D, E and F) nitrogen concentration (N%), and the dry
weight of above-ground biomass (G, H and I) measured at maturity in 6 wheat genotypes grown in low
(red), medium (green) and high (blue) nitrogen supply. Columns represent the average of 6 replicates
and the error bars are the sample standard errors. Each column represents 6 replicate plants. Different
letters indicate significant differences between genotypes according to the Tukey’s test (p < 0.05).
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At low and medium N, Gazelle and QAL2000 produced relatively higher above-ground biomass
and grain weight compared with other genotypes. However, at high N there was no difference
in above-ground biomass and grain weight production between genotypes (Figure 4G–I and
Supplementary Figure S3A–C). There was a positive correlation between above-ground biomass
and grain weight in all N treatments and genotypes (Figure 5A).

Agronomy 2019, 9, x FOR PEER REVIEW 7 of 15 

 

Different letters indicate significant differences between genotypes according to the Tukey’s test (p < 
0.05). 

At low and medium N, Gazelle and QAL2000 produced relatively higher above-ground biomass 
and grain weight compared with other genotypes. However, at high N there was no difference in 
above-ground biomass and grain weight production between genotypes (Figure 4G–I and 
Supplementary Figure S3A–C). There was a positive correlation between above-ground biomass and 
grain weight in all N treatments and genotypes (Figure 5A). 

 
Figure 5. Relationships between above-ground biomass weight and grain weight (A), grain weight 
and the percentage of nitrogen in grains (B), and above-ground biomass weight and the percentage 
of nitrogen in grains (C) in low (red), medium (green) and high (blue) nitrogen supply. Each shape 
represents a single plant. Plants were the 6 wheat genotypes used in this study. 

Grain N% was negatively correlated with above-ground biomass and grain weight particularly 
at low N (Figure 5B,C). This negative relationship was stronger at low and medium compared to high 
N treatments. In other words, there was a tendency for decreased GPC with increased grain weight 
at high N for all genotypes. 

In this study, the grain N% of all genotypes were not increased from low to high N. Consistent 
with NVT data (Supplementary Figure S2), N analysis showed that Spitfire tended to produce higher 
grain N% at low, medium and high N relative to the low GPC genotypes Gazelle and QAL2000 
(Figure 4A–C, and Table 1). Interestingly, the N% in the non-grain tissues of Mace was higher than 
for Spitfire (Figure 4D–F). 

There were no differences between the grain N% of Impala, Gazelle and QAL2000 in this study. 
However, results from 11 years of NVT data in different environments (Supplementary Figure S2A) 
showed that Impala and Gregory produced higher GPC compared to Gazelle and QAL2000, and 
lower GPC relative to Spitfire. Grain N% constituted most of the N reserves in all genotypes (Figure 
4A–C). Based on the average of grain N% in all nitrogen supplies, genotypes in this study were 
categorized into three groups; high (Spitfire and Mace), medium (Impala and Gregory), and low 
(QAL2000 and Gazelle) grain N% genotypes. Genotypes were grouped solely based on the grain N% 
results obtained in this study. However, NVT data showed that the average GPC of Mace was not 
higher than Gregory and Impala (Table 1). The lower average GPC of Mace in NVT data might be 
due to its higher yield at some of the sites compared with Gregory and Impala. Mace is adapted to 
the low-yielding environments of southern Australia [49] and its GPC tends to drop at high yielding 
sites [50]. In this context, the grain protein deviation of Mace, after Spitfire, was higher than the other 
four genotypes (Supplementary Figure S2B). 

Overall, the influence of N treatments on t-maxAGR was related to the difference from high to 
low grain N concentration genotypes (Table 1 and Figure 6A–C). 

Figure 5. Relationships between above-ground biomass weight and grain weight (A), grain weight
and the percentage of nitrogen in grains (B), and above-ground biomass weight and the percentage
of nitrogen in grains (C) in low (red), medium (green) and high (blue) nitrogen supply. Each shape
represents a single plant. Plants were the 6 wheat genotypes used in this study.

Grain N% was negatively correlated with above-ground biomass and grain weight particularly at
low N (Figure 5B,C). This negative relationship was stronger at low and medium compared to high N
treatments. In other words, there was a tendency for decreased GPC with increased grain weight at
high N for all genotypes.

In this study, the grain N% of all genotypes were not increased from low to high N. Consistent
with NVT data (Supplementary Figure S2), N analysis showed that Spitfire tended to produce higher
grain N% at low, medium and high N relative to the low GPC genotypes Gazelle and QAL2000
(Figure 4A–C, and Table 1). Interestingly, the N% in the non-grain tissues of Mace was higher than for
Spitfire (Figure 4D–F).

There were no differences between the grain N% of Impala, Gazelle and QAL2000 in this study.
However, results from 11 years of NVT data in different environments (Supplementary Figure S2A)
showed that Impala and Gregory produced higher GPC compared to Gazelle and QAL2000, and lower
GPC relative to Spitfire. Grain N% constituted most of the N reserves in all genotypes (Figure 4A–C).
Based on the average of grain N% in all nitrogen supplies, genotypes in this study were categorized into
three groups; high (Spitfire and Mace), medium (Impala and Gregory), and low (QAL2000 and Gazelle)
grain N% genotypes. Genotypes were grouped solely based on the grain N% results obtained in this
study. However, NVT data showed that the average GPC of Mace was not higher than Gregory and
Impala (Table 1). The lower average GPC of Mace in NVT data might be due to its higher yield at some
of the sites compared with Gregory and Impala. Mace is adapted to the low-yielding environments of
southern Australia [49] and its GPC tends to drop at high yielding sites [50]. In this context, the grain
protein deviation of Mace, after Spitfire, was higher than the other four genotypes (Supplementary
Figure S2B).

Overall, the influence of N treatments on t-maxAGR was related to the difference from high to
low grain N concentration genotypes (Table 1 and Figure 6A–C).
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Figure 6. Relationships between the day of maximum absolute growth rate (t-maxAGR) and projected
shoot area (PSA) in high (A), medium (B) and low (C) grain N concentration genotypes. The unit of
t-maxAGR is day after sowing (DAS). Different colours indicate the nitrogen treatments. Each shape
represents a single plant.

In Spitfire and Mace, which are considered as high grain N concentration genotypes, the time
to maximum absolute growth rate was strongly correlated with projected shoot area. However, the
strength of the relationship between t-maxAGR and PSA diminished in Gregory and Impala (medium
grain N concentration) and was entirely lost in Gazelle and QAL2000 (low grain N concentration).
The absence of a linear relationship between t-maxAGR and grain N% in Spitfire and Mace is shown
in Figure 7A,B. Despite the high influence of the time to maximum absolute growth rate on biomass
production in Spitfire and Mace, grain N% were unaffected at different N inputs.
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nitrogen concentration per plant in Spitfire (A) and Mace (B). Different colours indicate the nitrogen
treatments. The unit of t-maxAGR is days after sowing (DAS). Each shape represents a single plant.

4. Discussion

4.1. Biomass Can Indicate the Impact of Nitrogen on Grain Weight

As noted in previous studies [30,31,33], the strong correlation between above-ground biomass and
grain weight (Figure 5A) showed that biomass can be used as an indicator of grain weight responses to
N in the six wheat genotypes evaluated in this experiment. The relationship between above-ground
biomass and grain weight is likely to be due to the positive correlation between leaf surface area
and total photosynthesis per unit ground area [33,51]. Previous studies using destructive methods
also showed a strong relationship between biomass and grain weight in both hard and soft wheat
genotypes [25,52,53].

The high positive correlation between above-ground biomass and grain weight (Figure 5A) is
counteracted by the negative correlation between biomass and grain N% (Figure 5B,C). Consequently,
increasing grain weight appears to result in a grain N% penalty, particularly at low N. The reduction
in grain N% with increasing grain weight may reflect the high priority placed on elevating grain
weight by wheat breeders rather than grain N% accumulation under low N conditions. The results
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suggest that once the maximum level of grain weight has been achieved, the additional N is invested
in increasing grain N%, particularly, for high GPC genotypes [54,55]. The relatively low grain N% seen
for all varieties in this study (Figure 4A–C) may be due to the favourable growth conditions in the
greenhouse and, consequent, increase in biomass. It appears that the high N requirements of plants
seen in this experiment, meant that the applied N at low and medium N was mostly used for grain
weight production rather than to increase grain N%.

4.2. Differences in Nitrogen Responsiveness between High and Low GPC Genotypes

Spitfire and Mace produced less biomass at low N than the other genotypes and were more
responsive at high N compared with the low grain N% genotypes (Figures 1A and 4G–I). Related
studies on wheat and oilseed spring rape indicate that genotypes, which show reduced yield at low N
may show greater responses to higher N levels compared to other genotypes [48,56,57]. It is shown
that high compared to low GPC wheat genotypes require higher N rates to show favourable yield
responses [58].

In accordance with previous studies [39,59–61], reducing N supply diminished the total biomass
and growth rate. However, by reducing N inputs, biomass and growth rate declined more in high than
in low grain N concentration genotypes. In fact, the biomass of genotypes that were selected for high
GPC was more vulnerable to low N in comparison with the biomass of low GPC genotypes (Figure 1A,
Figure 2, and Figure 4G–I). The high reduction of biomass growth in high GPC genotypes at low N
was previously observed in wheat [62,63]. In high GPC genotypes, biomass growth under limited N
may be reduced in favour of root growth to support N uptake after anthesis [62].

This study showed that shortening t-maxAGR was the key limiting factor for PSA production
for high grain N genotypes (Figure 6A). In other words, high N genotypes appear to reach the peak
of growth and terminate the vegetative stage earlier in low N than high N-treated plants (Figure 1B,
Figure 3 and Table 1). Compressing phenology at low N, which decreases N requirement, has been
previously observed in different species [39,60,64–66]. However, the low impact of N shortage on the
t-maxAGR and biomass growth of Gazelle and QAL2000 was a new finding in this study.

Our results indicated that the rate of t-maxAGR reduction from high to low N was related to
the grain N concentration (Table 1 and Figure 6A–C). Spitfire and Mace had higher grain N than
Gazelle and QAL2000, and appeared to demand more N to grow their biomass. It might be that
high grain N% genotypes sense the low N status early in development and shorten their vegetative
growth phase to maintain sufficient N for grain development and filling. Hence, Spitfire responded
to low N by reducing growth rate, possibly to conserve N for grains (Figure 1B and Table 1). In this
context, the grain N% of Spitfire and Mace were not influenced by t-maxAGR at different N treatments
(Figure 7A,B). Therefore, high grain N% genotypes in this study were able to prevent grain N loss at
low N conditions regardless of the variations in the time to maximum absolute growth rate.

Accelerating the life cycle is a typical response of plants to low N [39]. N translocation corresponds
with senescence since senescing leaf and stem tissues are an important N source for grains [67–69].
Therefore, the increase of shoot biomass and carbon assimilation after flowering can compete with grain
demand for N [70]. In Gazelle and QAL2000, which are genotypes used for low GPC purposes [11], low
N supply did not trigger accelerated development and a decrease in the time to maxAGR (Figure 6C).
This suggests that Gazelle and QAL2000 use the available N primarily for biomass production and do
not show the conservative strategy used by Spitfire and Mace.

Increases of max-AGR and t-maxAGR from low to high N in Mace were not as high as in Spitfire
(Figure 1B and Table 1). Spitfire is known to produce higher GPC compared to Mace and many other
genotypes (Supplementary Figure S2A) [71,72]. Therefore, Mace may be less sensitive to low N in
comparison with Spitfire. The modest max-AGR increase in Mace from low to high N could be due to
mechanisms that help the plants adapt to unfavourable conditions late in the season. In contrast to
Spitfire, Mace is mostly grown in regions where late-season drought is common [19,48,73]. In such
regions, characterized by terminal drought, compressing phenology may be a beneficial trait [65].
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Extending the time to maxAGR and increasing max-AGR at high N in summer for Mace could raise the
risk of drought and haying-off at late season. Increasing t-maxAGR under high N supply conditions
may be an effective trait for building biomass provided that the available time for full development is
not limited.

Differences in N responsiveness between genotypes may be due to their history of selection
Dhugga and Waines [74] suggested that selection of new wheat genotypes in high N soils would
improve the breeding efficiency for high GPC. Over 20 years, N fertiliser application was steadily
increased [75] and wheat breeders have tended to select for high yielding genotypes under high N
supply. Applying N beyond the demand for maximum yield can raise the GPC (Figure 5B), which
would be undesirable for low GPC soft genotypes [76–79]. Soft wheats can be downgraded if they
have more than 9.5% GPC in Australia [13]. Thus, the rate of applied N for producing low-protein soft
wheats is less than for high GPC hard wheats [80,81]. Consequently, soft wheats are bred primarily for
high yield and GPC is a low priority since this can be managed by maintaining low N supply [82].
Selection under high N may have resulted in the higher sensitivity of Spitfire and Mace to low N in
comparison with Gazelle and QAL2000. Therefore, it is possible that Australian hard wheat breeders
have unintentionally selected for increased N demand in modern hard genotypes.

Gazelle and QAL2000 are grown mostly in east coast regions with high rainfall or irrigation [83–85].
Frequent rainfall or watering can lead to N leaching into deeper soil layers that reduces the amount of
available N in the soil [86]. Therefore, plants grown on such soils with poor available N, may respond
strongly to even low amounts of N [19,87]. In addition, several Australian soft wheat genotypes
originate from Western Australian regions characterized by light and sandy soils [88,89]. Sandy soils
have low water retention capacity, which reduces the amount of available N compared with finer
textured soils [19,87,88]. Consequently, Western Australian soils are potentially N-deficient [88,90].

Although Impala is a biscuit soft wheat, it is known to produce slightly higher GPC compared to
QAL2000 and Gazelle (Supplementary Figure S2A) [83]. Therefore, the higher decline in the biomass
and t-maxAGR of Impala from high to low N, compared to QAL2000 and Gazelle, may be due to the
higher N demand of Impala (Table 1). However, due to different selection purposes, less N% was
required in the grain of Impala compared to Spitfire and Mace. Consequently, PSA in Impala was
mostly reduced from medium to low N, whereas in Spitfire and Mace it was from high to medium N
(Figure 1A).

5. Conclusions

Accelerated development appeared to reduce the effect of low N supply on the grain N
concentration of genotypes with high GPC. High grain N% genotypes seem able to manage grain
N reserves by reducing biomass production at low N. This mechanism may sacrifice biomass and,
consequently, yield but helps to ensure the required amounts of N are available for grains to maintain
high GPC. Breeders appear to have selected for this trait through selection for high GPC in low yielding
environments. Conversely, for the low grain N% genotypes, Gazelle and QAL2000, low N has little
impact on the biomass production, and the yield of these genotypes shows greater tolerance to N
deficiency [91,92]. Consistent with the previous NUE studies on wheat and maize [25,63,93], the
current results suggest that there is value in including screening and selection at low N supply rather
than focusing only on high N environments in breeding programs. This can be beneficial for identifying
N-use efficient genotypes and novel NUE traits in wheat. This study also confirms the importance of
non-destructive method for biomass growth analysis to show the differences in the N responsiveness
of high and low GPC wheat.
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Chapter 3: Supplementary material 

The following are available online at http://www.mdpi.com/2073-4395/9/11/706/s1. 
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Figure S1: Grain protein content (a) and grain protein deviation (b) of 179 genotypes in 206 
NVT sites from 2008 to 2018. Grain protein deviation of each cultivar was calculated 
separately in each individual site, season and year. Total number of site*year*season for each 
genotype was between 50 – 896. Total number of site*year*season for 6 genotypes were as: 
Spitfire: 476, Mace: 850, Gregory: 897, Impala: 522, QAL2000: 346 and Gazelle: 445. 
Based on GPC, 6 genotypes were selected in this study. 

 

 

 

 

 
Figure S2: Grain weight of 6 wheat genotypes grown in low (a), medium (b) and high (c) 
nitrogen supply. Grain weights were measured for each individual plant. Each column 
represents the average of 6 replicates. Different letters demonstrate significant differences 
between genotypes according to the Tukey’s test (P < 0.05). 
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Figure S3: Predictions from full interaction models of maximum projected shoot area 
(Maximum PSA) (a) and maximum absolute growth rate calculated from projected shoot 
area (maximum PSA AGR) (b) of 6 wheat genotypes grown in low (red), medium (green) 
and high (blue) nitrogen supply. The unit of projected shoot area is kilo pixels, and the unit 
of maximum absolute growth rate is kilo pixels per day. Each columns represents 6 
replicates. The error bars are half of the least significant differences.  
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Abstract: Grain protein content (GPC) is a key quality attribute and an important 

marketing trait in wheat. In the current cropping systems worldwide, GPC is mostly 

determined by nitrogen (N) fertilizer application. The objectives of this study were to assess 

the value of height and ground cover growth analysis for the examination of differences in 

N response in high and low GPC wheats, and to propose some approaches for increasing N 

responses in the nitrogen use efficiency wheat trials of low yielding environments in South 

Australia. Six wheat genotypes from a range of high to low GPC were grown under different 

N treatments at three field trials located in South Australia in 2017 and 2018 seasons. 

Differences between N treatments were not significant in 2017. Therefore, in 2018 some 

changes were made to enhance the N treatment effects. This experiment was designed 

around non-destructive measurement of the increase in height and ground cover measured 

with unmanned aerial vehicle (UAV height) and GreenSeeker (GS NDVI), respectively. 

Results showed that high GPC genotypes, such as Spitfire and Impala, slowed down the rate 

of increase in UAV height and GS NDVI under low N supply.  

Keywords: Grain protein content; multi-environment; grain yield; National Variety Trials; 

high and low protein wheat; environment type; grain protein deviation 

 

1. Introduction 

Wheat is the most widely cultivated crop in the world and a substantial source of 

carbohydrate and protein in human diets (Shewry and Hey 2015). Increasing grain yield and 

grain quality are the two main goals in improving wheat production. In this context, grain 

protein content (GPC) is a key quality attribute and an important marketing trait (Husenov 

et al. 2015).  

In the current world cropping systems, GPC is mostly determined by nitrogen (N) fertilizer 

application (Triboi et al. 2000; Sinclair and Rufty 2012). N is an essential nutrient for plant 
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growth, development and reproduction. However, only 40-60% of the applied N is taken up 

by wheat plants (Sylvester-Bradley and Kindred 2009), which inflates production costs and 

environmental impacts (Bouwer 1989; Harrison and Webb 2001). Consequently, there is 

considerable interest in improving nitrogen use efficiency (NUE) (Birch and Long 1990; 

Sadras et al. 2016). NUE, which can be defined as the ratio of grain yield to N supplied, has 

been mostly improved by indirect selections for high grain yield (Sadras and Richards 2014; 

Cormier et al. 2016). In fact, efforts to improve NUE in wheat has focused on increasing 

grain yield response to higher N inputs (Sanford and MacKown 1986). Comparing the N 

responses of high and low GPC wheats may reveal the mechanisms used by the contrasting 

genotypes in their N use at high and low N input (Bogard et al. 2011; Hitz et al. 2017).  

Previous studies showed that the above-ground biomass is highly responsive to N, and 

therefore can be a suitable indicator for NUE studies in grain crops (Sharma 1993; Richards 

2000; Sadras et al. 2016; Rahimi Eichi et al. 2019). However, due to the challenges of 

destructive harvests, NUE evaluations in the field are usually based on measuring grain yield 

at a given N supply (Araus, J. L. et al. 2002; Cormier et al. 2016). Using conventional 

destructive methods to measure biomass is time and labour intensive, especially, for large-

scale trials. For instance, measuring biomass in field requires collecting, oven-drying and 

weighting samples in the laboratory (Royo et al. 2004). Moreover, destructive methods 

discard a portion of the crop, which limits the use of such techniques in small sized breeding 

plots (Prasad et al. 2007). Conversely, image-based phenotyping platforms provide 

consecutive measurements of biomass during the growing season, and assess plant growth 

dynamics. Monitoring growth dynamics without the need for periodic destructive harvests 

improves the precision of measurements (Furbank and Tester 2011). Using image-based 

methods also allows phenotyping of a large number of plots at reasonable costs and good 

repeatability (Langridge and Fleury 2011; Casadesus and Villegas 2014; Fahlgren et al. 

2015). 
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Phenotyping based on imaging can also help to analyse plant nutrient status (Berger et al. 

2012). Previous study in controlled conditions (Rahimi Eichi et al. 2019) showed that 

reducing N inputs decreases the growth rate more in high than in low GPC genotypes. 

However, in the previous study, biomass was estimated based on a comprehensive set of 

image data obtained daily from the top and both sides of single plants (Rahimi Eichi et al. 

2019). Obviously, measuring the total biomass in the same way on breeding plots under field 

conditions is not feasible. Therefore, measuring biomass related traits may help to assess the 

growth rate in the field. 

Ground cover is one of the parameters related with plant growth in the field (Rebetzke et al. 

2012). Normalized difference vegetation index (NDVI) can indicate the ground cover in 

crops. GreenSeeker NDVI (GS NDVI), which can be measured conveniently in the field, is 

correlated with biomass up to the point of canopy closure (Hill et al. 2004; Rebetzke et al. 

2012; Adeel Hassan et al. 2019).  

Plant height and its response to environmental variables such as water, nutrition, 

temperature, light, is another important factor for quantifying the wheat growth dynamics 

particularly during stem elongation (Kronenberg et al. 2017). Traditional methods for 

measuring height using a yardstick reduces the throughput and accuracy of the 

measurements. Recently, some effective techniques to measure height became available 

using a broad range of sensors (Walter et al. 2015; Jimenez-Berni et al. 2018). In the current 

study, the rate of height increase of wheat plants was measured with conventional Red Green 

Blue (RGB) cameras. 

Here, we report on a study based on biomass assessed through height and NDVI 

measurement of wheat breeding plots with different N supply. The objectives of this study 

were: (1) to assess the value of height and ground cover-based growth analysis for the 

examination of differences in N response in high and low GPC wheats; (2) to propose some 

approaches for increasing N responses in the NUE wheat trials of low yielding environments 
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in South Australia. To address these objectives, a set of six genotypes differing in GPC were 

selected based on available data from National Variety trials (NVT) (Supplementary Figure 

S2 of Rahimi Eichi et al. (2019)). 

 

2. Material and Methods 

2.1 Experimental site 

Three field experiments were conducted in 2017 and 2018 seasons on breeding trials in 

Pinery (34°20'21.0"S 138°28'28.4"E) and Freeling (34°26'43.5"S 138°47'44.0"E) located in 

South Australia. In 2017, the trial was a preliminary experiment and was conducted only in 

Pinery on the same farm with Pinery 2018. There were 144 mini-plot trials including 3 rows 

in 2018. The climate type of the experimental sites are semi-arid Mediterranean with a mean 

long-term rainfall of 429.8 and 490.1 mm in Pinery and Freeling, respectively (Table 1 and 

Supplementary Figure S1).  

 

2.2 Experimental design and crop management 

Based on the NVT data (Supplementary Figure S2 of Rahimi Eichi et al. (2019)) six wheat 

(Triticum aestivum L.) genotypes, Spitfire, Mace, Gregory, Impala, Gazelle and QAL2000, 

were selected to cover a range of high to low GPC. These experiments investigate six 

genotype of wheat, T.aestivum, and different levels of nitrogen on an 8 × 12 grid in 2017 

(Figure 1A and D) and 12 × 12 grid in 2018 (Figure 1B, C, E and F) indexed by rows and 

ranges.  
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Table 1. Plot and environmental characteristics of the experimental sites during the two 
growing seasons (2017 and 2018). Inter plot gap represents the distance between rows. The 
long-term data were recorded between 1925-2017 for Pinery and 1963-2017 for Freeling at 
less than 10km ditance from the experimental sites. Data are available at: 
http://www.bom.gov.au/climate/data/ 

 

 

 

 

 

 

 

 

Plot characteristics Pinery 2017 Pinery 2018 Freeling 2018 
Latitude -34°33'9431"S -34°33'6281"S -34°26'50.9"S 

Longitude 138°472217"E 138°475720"E 138°47'36.1"E 
Mean long-term cumulative annual 

rainfall (mm) 
429.8  429.8  490.1  

Annual cumulative rainfall (mm) 387.0 270.8 355.7 
Annual mean maximum temperature (°C) 24.1 24.6 24.0 
Annual mean minimum temperature (°C) 9.7 9.9 10.0 

Number of ranges  12  12  12  
Number of rows 8 12 12 
Seeded rows/plot 6  3  3  
Range length (m) 6  6  6  

Seeding length (m) 5  5.8  5.8  
Harvest length (m) 4  4  4  

Plot width (m) 1.33  0.8  0.8  
Row Spacing (m) 0.19  0.225  0.225   

Inter plot gap (between rows) (m) 0.38  0.35  0.35  
Gap between ranges (m)  2 2 2 

Residual nitrate N in 0-10 cm depth soil 
(mg/kg) 

41.8 31 23 

Residual nitrate N in 10-30 cm depth soil 
(mg/kg) 

11.6 8 6 

Sowing date May 25
th

  May 17
th

  May 17
th

  
Biomass crop cuts at harvest Nov. 28

th
  Dec. 5

th
  Dec. 5

th
 

Grain Yield measurement Dec. Dec. Dec. 

http://www.bom.gov.au/climate/data/
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Figure 1. Treatments (A, B and C) and genotypes (D, E and F) layouts in 3 field trials. 
Biomass cuts for validation in Pinery 2018 (B and E) were harvested from rows 7-12 of 
ranges 1-4 including 48 plots in total. In three top Figures, the codes for each N supply were 
1) 50+30, 2) 50+0, 3) 0+30 and 4) 0+0 kgN/ha in Figure A, 1) 60+0, 2) 0+60, 3) 30+30 and 
4) 0+0 kgN/ha in Figure B, 1) 60+60, 2) 60+0, 3) 0+60, 4) 30+30, 5) 30+0 and 6) 0+0 kgN/ha 
in Figure C. In three bottom Figures, the colour codes for each genotype were: 
   

Colour 
code 

                    

Figure D Mace Gregory Gazelle Impala QAL2000 Spitfire 
Figure E Mace Gazelle Impala Gregory Spitfire QAL2000 
Figure F Gregory Gazelle Impala QAL2000 Mace Spitfire 

 

The designs used were split-plot design in which rows in 2017 and ranges in 2018 formed 

the main plots and N was assigned to these using a randomized complete block design. The 

design in 2017 included 3 blocks of 4 main plots, whereas in 2018 it was 2 blocks of 6 main 

plots, each main-plot being a range. Then the subplot was a plot and lines were assigned to 

these using a resolved, spatially-optimized, row-column design. The 6 plots were within a 

row in 2017 and within a range in 2018. The subplot design was generated using DiGGer 

Range 

Ro
w

 

 Pinery 2017 

Range 
Pinery 2018 

Ro
w

 

A B C 

D E F 

Range 
Freeling 2018 
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(Coombes 2009), a package for the R statistical computing environment (R Development 

Core Team 2017). 

As will be discussed later, differences between N treatments were not significant in Pinery 

2017. Therefore, in 2018 some changes were made to enhance the N treatment effects. One 

of the differences between 2017 and 2018 trials was the direction of N treatments from 

alongside the rows in 2017 (Figure 1A), to alongside the ranges in 2018 (Figure 1B and C). 

Due to the higher pre-sowing residual N in the soil of Pinery 2018 compared with Freeling 

2018 (Table 1), a high residual N design with 4 N treatments (Table 2) and 6 replicates was 

used for Pinery 2018.  

Table 2. Nitrogen treatment patterns applied in 2017 and 2018 on Pinery and Freeling sites. 
N treatments were in the form of urea being top-dressed on wet soil in rainy days. 

 
Trial 

location 
and year 

Nitrogen rate 
(kgN/ha) 
applied at 

early 
germination  

Nitrogen rate 
(kgN/ha) 
applied at 

stem 
elongation  

Nitrogen 
rate 

(kgN/ha) 
applied at 
anthesis  

 
The name 

used in this 
study  

The 
numbers 
used  in 

Figure 1A, 
B and C 

 
 

Pinery 
2017 

- 50 30 50+30 1 
- 50 0 50+0 2 
- 0 30 0+30 3 
- 0 0 0+0 or Null 4 

 
 

Pinery 
2018 

60 0 - 60+0 1 
0 60 - 0+60 2 
30 30 - 30+30 3 
0 0 - 0+0 or Null 4 

 
 
 

Freeling 
2018 

60 60 - 60+60 1 
60 0 - 60+0 2 
0 60 - 0+60 3 
30 30 - 30+30 4 
30 0 - 30+0 5 
0 0 - 0+0 or Null 6 

 

However, for validating the non-destructive measurements, 2 replicates were harvested at 

two different time points during the 2018 season in Pinery (Khan, Chopin, et al. 2018; Khan, 

Rahimi-Eichi, et al. 2018). Accordingly, replicate numbers in Pinery 2018 reduced to 4 by 
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the end of the season. In Freeling, on the other hand, a wider range of N treatments compared 

to Pinery 2018 was deployed, which included 6 treatments and 4 replicates (Table 2). The 

aim of adding the 4 extra N treatments was to examine the possible biological differences 

between N treatments in the low N residual soil of Freeling 2018. 

Another difference between 2017 and 2018 was that in 2017, N treatments were applied at 

early stem elongation and anthesis, whereas in 2018 they were applied at early germination 

and early stem elongation stages (Table 2). Washed N into the soil is less susceptible to 

volatilization than the N left on the soil surface (McDonald, G. and Hooper 2013). Therefore, 

the urea granules were top-dressed on wet soils on rainy days that were followed by a 

minimum of 7mm rain over the next few days.  

2.3 Data collection and calculations 

Prior to sowing, soil samples were collected from 5 spots across the trails from the depth 

ranges of 0-10 and 10-30 cm, and were analysed for soil mineral nutrients (CSBP soil and 

plant laboratory, Bibra Lake, WA, Australia). 

Plant establishment data in 2018 were collected between 2nd and 3rd leaf stage (Rebetzke et 

al. 2012). Two establishment counts per plot from the middle row were measured with a 50 

cm piece of white dowel. Measurements from 2017 and 2018 trials are listed in Table 3.  

In 2017, NDVI was measured only at two time points using a multi-spectral sensor based on 

an unmanned aerial vehicle (UAV). However, NDVI in 2018 was measured with a 

GreenSeeker (GS) chlorophyll sensor® from early stages until the full canopy cover. The 

UAV height was measured using a drone-based RGB camera. The 99th percentile of height 

values, which gives a good representation of the canopy top, was used to calculate the 

distance between ground level and the top of the canopy (Castrignano et al. 2020). A 

previous study by Jimenez-Berni et al. (2018) indicated the relationship between point cloud 
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volume and biomass. Although, their results were obtained from a LiDAR unit, the theory 

could also be applied for UAV point clouds. 

 

Table 3. List of measurements and measurement dates based on days after sowing (DAS) 
from Pinery 2017, Pinery 2018 and Freeling 2018 sites. UAV: Unmanned aerial vehicle. GS: 
GreenSeeker. NIR: Near infrared spectroscopy.  

Measure   Pinery 2017 
(DAS) 

Pinery 2018 
(DAS) 

Freeling 
2018 

(DAS) 
Plant 

Establishment 
Plants were counted in 1 

meter scale NA 37  45  

  

Ground cover  

GreenSeeker NDVI (GS 
NDVI) 43, 120 62, 84, 95, 

104, 120  
62, 84, 95, 
104, 120  

Multi-spectral camera on 
UAV platform (UAV 

NDVI)  
43, 120  NA NA 

Crop 
development Zadoks stage  120, 132 86, 124, 137 93, 102, 118 

  
  

Height 
measurement 

RGB camera on UAV 
platform (UAV height)  NA 35, 47, 120, 

154  
35, 47, 120, 

154 
Manual height 

measurement from rows 1-6 
and ranges 1-4 

NA 120  NA 

Manual height 
measurement from rows 7-

12 and ranges 1-4 
NA 154 NA 

Biomass 
Validation 

1
st
 sampling from rows 1-6 

and ranges 1-4 
NA 120  NA 

2
nd

  sampling from rows 7-
12 and ranges 1-4 

NA 154  NA 

Final biomass cut from all 
plots 187 194 194 

Grain yield Grain harvested from all 
plots 203 204 204 

Grain protein 

Grain protein% with NIR > 210 NA NA 

Grain nitrogen% with N 
analyser NA > 210 > 210 

 

The actual height was measured in 48 plots by a ruler at 120 and 154 DAS in Pinery 2018 

(Table 3). On the same day, 3×0.5 meter biomass cuts were harvested from 3 seeded rows 
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of the mentioned plots. After drying the samples at 70° for 48 hours, the total biomass was 

measured. 

The GPC in 2017 was measured using a portable near infrared spectrometer (NIR). In 2018, 

however, the total N in grains was measured using a nitrogen analyser (Rapid N exceed®, 

Elementar, Germany). Afterwards, the GPC was calculated by multiplying the total N% by 

5.7.  

The rate of increase of UAV height and GS NDVI was calculated by dividing the differences 

between two consecutive measurements by the number of days. For instance, the increase 

rate of GS NDVI from first to second measurement date in Freeling 2018 was calculated as: 

 

1st GS NDVI increase rate = 
GS NDVI (84−62)

84−62
 

 

2.4 Statistical analysis 

The differences in biomass, grain yield, GPC, and the rate of increase in UAV height and 

GS NDVI was measured using a two-way ANOVA analysis with interaction followed by 

Tukey’s multiple comparison test. The average of grain yield and GPC from Freeling site in 

2018 were compared between genotypes (one-way ANOVA, Tukey’s test, p<0.05). 

Statistical analysis were performed using GraphPad Prism version 7.00 for Windows. Finally 

a Pearson correlation analysis was performed to highlight the relationships between non-

destructive (UAV height and GS NDVI) and destructive (manually measured height, in-

season and harvest biomass and harvest grain yield) measurements (GraphPad Software, La 

Jolla California USA, www.graphpad.com).  

 

 

 

http://www.graphpad.com/
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3. Results 

3.1 Weather and trial conditions 

The cumulative rainfall in Pinery 2017 was only 10% below the long-term average. In 2018, 

however, the total rainfall in 2018-2019 was 37% and 27% less than the long-term average 

for Pinery and Freeling, respectively (Table 1). The relatively higher cumulative rainfall in 

Freeling 2018 compared to Pinery 2018 was in accordance with their long-term average 

cumulative rainfall (Table 1 and Supplementary Figure S1). Due to the severe drought in 

2018, Zadoks stages were not consistent across trials and slight differences in soil moisture 

could vary the growth stage within and between plots. Accordingly, the time points in this 

study were identified by day after sowing (DAS). The establishment counts, indicating the 

density of germinated seeds (Rebetzke et al. 2012), were uniform across the trials 

(Supplementary Figure S2).  

3.2 Growth rate measurements 

In order to validate the relationship between UAV height and the actual height of plots, the 

average height of 48 plots (Figure 1B and E) were measured at 120 and 154 DAS in Pinery 

2018 (Table 3). On the same day, biomass cuts were harvested from the mentioned plots to 

validate the relationship between GS NDVI and total biomass. However, in the second 

validation (154 DAS), the maturity stage had already started and, therefore, the GS NDVI 

was not recorded at this date (Table 4). Due to the severe drought conditions in 2018 (Table 

1), plants started to mature earlier than in a normal season. 

There were significant differences in the rates of increase in UAV height and GS NDVI 

between N treatments in Freeling (Figure 2A, D and J) but not in Pinery (data not shown). 
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Figure 2. The rate of increase in UAV height (A-F) and GS NDVI (G-L) per day in Freeling 
2018. Only the highest (60+60) and lowest (0+0) N treatments were analyzed. The numbers 
on the X axes for UAV height (A-F) refer to 1: 35-47, 2: 47-120, 3: 120-154 days after 
sowing, and for the GS NDVI (G-L) 1: 62-84, 2: 84-95, 3: 95-104, 4: 104-120 days after 
sowing. Stars (*) indicate significant differences within genotypes between N treatments by 
two-way ANOVA with Tukey’s test (p<0.05); the vertical error bars represent the standard 
errors. 
 

Rainfall in Freeling 2018 was 27% below the average, which imposed a severe drought 

(Table 1). Therefore, due to the severe drought, 4 N treatments in Freeling 2018 (i.e. 30+0, 

30+30, 0+60, and 60+0) were not effective in discriminating between treatments but created 

noise in the analysis. Accordingly, only the growth rates of the two extreme N treatments 

(60+60 and 0+0) were analysed. In Spitfire and Impala, the rate of increase in UAV height 

was higher in 60+60 compared with the null (0+0) N treatments from 35 to 47 DAS (Figure 

2A and D). Furthermore, in Impala the GS NDVI growth rate was higher in 60+60 than the 

null N treatment between 95 and 104 DAS (Figure 2J). In fact, differences in the rates of 

increase in height and NDVI between high and low N treatments were found only in Spitfire 

and Impala.  
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3.3 Post-harvest measurements 

The average biomass and grain yield in Pinery 2018 were 78% and 68% lower, respectively, 

in comparison with Pinery 2017 (Figure 3).  

 

Figure 3. Biomass per 0.5 meter row (A, B and C), grain yield (D, E and F) and grain protein 
content% (GPC%) (G, H and I) from Pinery 2017 (A, D and G), Pinery 2018 (B, E and H) 
and Freeling 2018 (C, F and I). The grain protein content % in 2018 trials was calculated 
based on the total grain N% multiplied by 5.7. Stars (*) indicate significant differences 
within genotypes between N treatments by two-way ANOVA with Tukey’s test (p<0.05); 
the vertical error bars represent the standard errors. 
 
The average yield in Freeling 2018 was 1.2 t/ha, while the average yield of NVT trials in 

Turretfield, which is only 10km from Freeling, from 2014 to 2017 was 4.3 t/h ('National 

Variety Trial'  2019). The Turretfield NVT site produced only 1.5 t/ha in 2018, which was 

consistent with the results from Freeling 2018. The relatively higher grain yield in the NVT 

trial (1.5 t/ha) compared to the Freeling trial (1.2 t/ha) in 2018 could be due to the optimal 

fertiliser rates and other differences in agronomic practices at the NVT trials (Giles et al. 

2012). 

In Pinery 2017, biomass, grain yield and GPC were not different between N treatments 

(Figure 3A, D and G). In Pinery 2018, however, differences were observed in the GPC of 
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Spitfire and Mace between 60+0 and 0+0 N treatments (Figure 3H). In Freeling 2018, on the 

other hand, N treatment effects were found in biomass, grain yield and GPC% (Figure 3C, 

F and I). Biomass was different between N treatments for Mace, Impala and QAL2000 

(Figure 3C). For these three genotypes, 60+60 or 60+0 produced higher biomass compared 

with the null N treatment. Mace produced higher biomass in 60+60, 60+0, 0+60 and 30+30 

compared to the null N treatment. Grain yield was influenced by N treatments only in Mace, 

being at its highest level in 60+60 and 60+0 treatments (Figure 3F). The GPC of all six 

genotypes in Freeling 2018 were higher in 60+60 or 0+60 compared with the null N 

treatment. 

The highest average GPC between genotypes in Freeling 2018 was in Spitfire and Impala 

with the GPC of 15.2 and 14.5%, respectively (Figure 4B). Mace produced the highest 

average grain yield between genotypes (Figure 4A). 

 

Figure 4. The average grain yield (A) and protein content % (B) of six wheat genotypes in Freeling 
site in 2018. Grain protein content in these trials is calculated based on the total grain N% multiplied 
by 5.7. Letters indicate significant different between genotypes by one-way ANOVA with Tuckey’s 
correction (p<0.05). 
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3.4 Correlations between non-destructive and destructive or manual 

measurements 

In 2018 there were relatively high correlations between non-destructive and destructive or 

manual measurements (Table 4). 

Table 4. The correlation coefficient of the relationships between non-destructive and 
destructive or manual measurements in Freeling and Pinery 2018. Biomass and grain yield 
in Y axis are measured at harvest, which was at 204 DAS. GS NDVI: GreenSeeker NDVI, 
UAV height: height measured by drone-based RGB camera, r2: Pearson’s correlation 
coefficient. 

X axis DAS Y axis r2 
  
  
  
  

UAV height 

35   
Biomass  
(harvest) 

0.0005 
47 0.63 

120 0.70 
154 0.68 
35  

Grain yield  
(harvest) 

0.01 
47 0.68 

120 0.74 
154 0.70 

  
  
  
  
  

GS NDVI 

62  

Biomass 
 (harvest) 

0.04 
84 0.51 
95 0.58 

104 0.58 
120 0.63 
62  

Grain yield 
(harvest) 

0.03 
84 0.54 
95 0.55 

104 0.58 
120 0.63 

Manually 
measured plot 

height 

120 
UAV height 

0.60 
154 0.67 

Manually 
measured biomass 

120 GS NDVI 0.58 
204 Grain yield (harvest)  0.63 

 

The Pearson’s correlation coefficient of the relationship between UAV height and GS NDVI 

during the season, and biomass and grain yield at harvest was best at 120 DAS (Table 4). 

Such relationships with final biomass and grain yield remarkably increased after 47 and 84 

DAS for UAV height and GS NDVI, respectively. Manual height and biomass 
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measurements during the season in Pinery 2018 indicated relatively good correlations with 

UAV height and GS NDVI (Table 4).  

 

4. Discussion 

4.1 UAV height and GS NDVI can indicate the impact of nitrogen on 

biomass and grain yield 

Ground-based measurements showed relatively good correlations between manually 

measured plant height and biomass, and UAV height and GS NDVI (Table 4). Therefore, 

UAV height and GS NDVI can be used as indicators of biomass response to N in the six 

genotypes evaluated in this experiment. The reason that the Pearson’s correlation coefficient 

of the relationship between manual and UAV height was not more than 0.67 (Table 4) could 

be due to differences in measuring individual plants as opposed to an entire plot. Manual 

height was defined based on one or two height measurements with a ruler for each plot. 

However, UAV height was measured based on the differences between the averages of all 

point clouds at the top of the canopy and the ground. Therefore, the UAV height data can be 

more precise compared to the manual height measurement.  

The correlation of UAV height and GS NDVI with final biomass or grain yield was low at 

early growth stages and increased towards 120 DAS (Table 4). Previous studies on wheat 

showed that biomass development in early growth stages, until 60 DAS, has little correlation 

with the final biomass or grain yield (Freeman et al. 2003; Kovalchuk et al. 2016). The 

highest correlation between canopy coverage and final biomass or yield can be achieved at 

heading and flowering stage or two months before harvest (Mahey et al. 1991; Raun et al. 

2001; Kovalchuk et al. 2016; Magney et al. 2016). Accordingly, in Spitfire the differences 

between N treatments for the increase rate of UAV height (Figure 2A) at early stages (35-
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47 DAS) were not transferred to the harvest biomass (Figure 3C). In Impala, the GS NDVI 

differences between N treatments were at later stages (95-104 DAS), and the final biomass 

was different between high and low N treatments (Figure 3C). In addition to Impala, the 

differences between N treatments in the harvest biomass were also found in Mace and 

QAL2000 (Figure 3C). However, the UAV height and GS NDVI during 2018 season were 

not different between N treatments in these two genotypes (Figure 2). It is important to note 

that in this study, UAV height and GS NDVI indicated height and ground coverage, and 

therefore may not represent the total biomass. 

In this study, the r2 value of the relationship between biomass and grain yield was 0.63 (Table 

4), whereas it was up to 0.93 in the previous results obtained in controlled environments 

(Rahimi Eichi et al. 2019). This confirms the lower correlation between biomass and grain 

yield in low yielding environments compared to favourable conditions (van Herwaarden et 

al. 1998).  

4.2. Differences in the nitrogen responsiveness of biomass between high 

and low GPC genotypes 

In Freeling 2018, the differences between N treatments for grain yield were found only in 

Mace (Figure 3F), which is known as a high N responsive wheat genotype (Davis et al. 2016; 

Mahjourimajd, Saba, Kuchel, et al. 2016). Biomass analysis, however, showed such 

differences between N treatments in two additional genotypes. Interestingly, the biomass of 

Mace was statistically different across a wider range of N treatments compared to other 

genotypes (Figure 3C). These results indicate the higher N responsiveness of biomass 

compared with grain yield. 

The biomass growth analysis in Freeling 2018 (Figure 2) revealed some differences between 

high and low GPC genotypes in responding to N treatments. Spitfire and Impala produced 

higher GPC compared to other genotypes in Freeling 2018 (Figure 4B). The rates of increase 
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in UAV height and GS NDVI in low N treatments was reduced more in Spitfire and Impala 

than in other genotypes (Figure 2A, D and J). The higher restriction in the growth rate of 

high compared to low GPC wheat genotypes at low N was previously shown under 

controlled conditions (Rahimi Eichi et al. 2019). It was suggested that high GPC genotypes 

may use a conservative strategy by slowing down their rate biomass accumulation under low 

N to conserve available N for their grains. It is also possible that in high GPC genotypes, 

biomass growth under limited N may be reduced in favour of root growth to support N uptake 

after anthesis (Cox et al. 1985).  

The period between 35 and 47 DAS is around the beginning of stem elongation. The height 

increase before stem elongation is mostly determined by the length of leaf sheath (Sylvester-

Bradley et al. 2008). Southern Australian wheat crops sown in May could take up 20-30% 

of the total N by the start of stem elongation (McDonald, G. and Hooper 2013). However, 

the highest N demand is during stem elongation when crop growth and leaf area expansion 

are most rapid. Accordingly, increasing the frequency of imaging sessions between 47-120 

DAS could enhance the identifications of differences in the rate of increase in UAV height 

between N treatments. In this experiment, unfavourable weather conditions such as wind 

and clouds limited the feasibility of UAV imaging during this period.  

Contrary to the previous study in controlled conditions (Rahimi Eichi et al. 2019), the GPC 

of Mace was not high in the current experiment. This might be due to the higher grain yield 

of Mace compared to other genotypes in the low yielding environment (Eagles et al. 2014; 

Mahjourimajd, Saba, Kuchel, et al. 2016). Such results confirm a previous multi-

environmental study (Rahimi Eichi et al. 2020) that GPC in wheat is highly influenced by 

environmental conditions and agronomic management practices.    
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 4.3. Methods to increase the effect of nitrogen treatment in field trials 

Despite the severe drought condition in 2018, N treatments were more distinctive in the trials 

of 2018 compared with 2017 (Figure 3). It seems that the adopted strategies in 2018 

increased the effectiveness of N treatments. For instance, applying N treatments at earlier 

growth stages in 2018 than in 2017 (Table 2) could lead to clearer N responses. Grain yield 

and biomass in the 60+60 and 60+0 treatments were higher compared to other N treatments 

in Freeling 2018 (Figure 3C and F). McDonald, G. and Hooper (2013) showed that the 

highest yield response to N could be achieved when N was applied near the sowing date in 

low yielding environments of Southern Australia (McDonald, G. and Hooper 2013). The 

number of spikes per unit area in wheat is set before stem elongation (Li, C. et al. 2001), and 

applying N fertilizer at germination increases vegetative growth, tiller number, grain per ear 

and, consequently, grain yield. Therefore, delaying N application at this time may reduce the 

chance of achieving maximum yield response.  

Applying N later than the onset of stem elongation, however, leads to the translocation of 

the extra N into the grains (Quinlan and Wherrett 2013). The highest GPC in Freeling 2018 

was achieved for the 60+60 and 0+60 treatments (Figure 3I), when 60 kgN/ha was applied 

at stem elongation. In Pinery 2018, on the other hand, applying 60 kgN/ha at germination 

stage (60+0) produced the highest GPC (Figure 3H). In the drought season of 2018, Pinery 

trial received even less rainfall than Freeling (Table 1). Therefore, due to the severity of 

drought in Pinery 2018, the early-applied N may not have been used for producing biomass 

but were reserved for the grains. Reducing biomass and yield in favour of GPC increase is a 

strategy in plants to maintain sufficient nutrient levels under stress to support germination 

and plant establishment (Stone and Nicolas 1995; Daniel and Triboi 2002; Zorb et al. 2017). 

However, the overall higher influence of N treatments on biomass, grain yield and GPC in 

Freeling 2018 (Figure 3C, F and I) compared with Pinery 2018 (Figure 3B, E and H) could 
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be due to the higher rainfall in Freeling (Table 1). Previous studies showed that the N 

treatment effect is strongly associated with the amount of available water in the soil 

(Stoddard and Marshall 1990; Angus 2001; Sadras and McDonald 2012; Mahjourimajd, 

Saba, Kuchel, et al. 2016). 

The other possible reason for the more extensive N treatment effect in Freeling 2018 

compared to Pinery 2017 and 2018, could be the lower rates of pre-sowing residual N in soil 

in Freeling 2018 (Table 1). The crop histories of Pinery 2017 and 2018 were lentils, whereas 

it was canola for Freeling 2018. The amount of residual N in paddocks with the crop history 

of legume family such as lentils can be relatively high (Evans et al. 2003). Usually in 

Southern Australian regions, the residual N stays in soil due to the low rain over summer 

and autumn (Fillery 2001). After the early winter rainfalls in South Australia, the residual N 

can be leached below the plants rooting depth (Asseng et al. 1998). However, this residual 

N is still present in the soil at the time of sowing, when N effect is at its highest level for 

wheat plants in the low yielding environment (McDonald, G. and Hooper 2013). 

Accordingly, more replicates in Pinery 2018 (Figure 1B and E) compared to Freeling 2018 

(Figure 1C and F) could be helpful to overcome the heterogeneity of soil N. 

The other approach that may have improved the N treatment effects in 2018 could be 

increasing the distance between treatment plots from 0.2m in 2017 to 2m in 2018 (Table 1 

and Figure 1). Contamination from neighbouring plots due to the short distance (i.e. 0.2m) 

between rows (Figure 1A and D) could have counteracted the N treatments in 2017. In 2018, 

however, the 2m gap between ranges (Table 1 and Figure 1B, C, E and F) could reduce the 

possibility of N contaminations between different treatment plots. In 2017, a heavy rain 

could have washed away the top-dressed urea granules to neighbouring plots. The roots of 

field-grown wheat can occupy a volume of soil extending around 0.3 meters on all sides 

(Weaver 1926; Yamaguchi and Tanaka 1990). Therefore, 0.2 m distance between different 
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N treatments in 2017 may have been insufficient to prevent N leakage to the root zone of 

neighbouring plots. 

 

5. Conclusion 

Consistent with the previous results under controlled conditions (Rahimi Eichi et al. 2019), 

the current study confirms the advantage of the non-destructive methods of biomass growth 

analysis for NUE studies of wheat in the field. High GPC genotypes, such as Spitfire and 

Impala, slowed down the rate of increase in UAV height and GS NDVI under low N supply. 

Deploying UAV in the field, however, can be limited by weather conditions. 
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Figure S1. Long-term monthly rainfall at Freeling and Pinery experimental sites. The long-
term data were recorded between 1925-2017 for Pinery and 1963-2017 for Freeling in less 
than 10km distance from the experimental sites. Data are available at:  
http://www.bom.gov.au/climate/data/. 
 
 
 
 
 

 
Figure S2. Plant establishment counts (EC) per plot from 1 meter of the middle row in Pinery 
(A) and Freeling (B) in 2018. Letters indicate significant different between genotypes by 
one-way ANOVA with Tuckey’s correction (p<0.05). 
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Abstract: Multi-environment trial studies provide an opportunity for the detailed analysis of complex
traits. However, conducting trials across a large number of regions can be costly and labor intensive.
The Australian National Variety Trials (NVT) provide grain yield and protein content (GPC) data
of over 200 wheat varieties in many and varied environments across the Australian wheat-belt and
is representative of similar trials conducted in other countries. Through our analysis of the NVT
dataset, we highlight the advantages and limitations in using these data to explore the relationship
between grain yield and GPC in the low yielding environments of Australia. Eight environment types
(ETs), categorized in a previous study based on the time and intensity of drought stress, were used to
analyze the impact of drought on the relationship between grain yield and protein content. The study
illustrates the value of comprehensive multi-environment analysis to explore the complex relationship
between yield and GPC, and to identify the most appropriate environments to select for a favorable
relationship. However, the NVT trial design does not follow the rigor associated with a normal
genotype × environment study and this limits the accuracy of the interpretation.

Keywords: National Variety Trials; grain protein content; multi-environment; grain yield; high and
low protein wheat; environment type; grain protein deviation

1. Introduction

Wheat is a major source of protein in the human diet and, along with rice, the most important crop
product for carbohydrate [1,2]. Meeting the food demands of an estimated 9 billion people in 2050 [3,4]
requires about 70% increased production over the next 30 years [5,6]. Through advances in agronomic
practices and breeding, wheat yields have increased spectacularly over the past few decades [2,4,5].
Many of the major traits, such as yield and GPC, targeted for improvement in breeding programs
and of prime importance to farmers, are under complex genetic control and strongly influenced
by the production environment. For both wheat breeders and farmers, the relationship between
yield and GPC is important. Consequently, many countries run extensive varietal trials to provide
information for farmers on performance of varieties under their likely production conditions and for
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breeders to assess the advances they have achieved through breeding and selection. The variety trials
also provide a potentially valuable resource for researchers to understand the basis of genotype ×
environment relationships.

Concurrently, grain protein content (GPC), a key attribute for end use quality with high nutritional
value and an important marketing factor for wheat, will also have to be maintained [7–9]. For example,
in Australia, GPC is used in determining the value of the wheat crop to farmers [10]. However, there is
an unfavorable relationship between grain yield and GPC with increased yield frequently associated
with a decline in GPC and this presents a significant challenge to breeders [9,11,12]. A study on winter
wheat in Germany showed that good progress in raising grain yield was associated with a considerable
loss in GPC over the last 32 years [9]. Consequently, wheat germplasm is often divided into high
yielding or high quality varieties, as defined by high GPC% [13]. To simultaneously improve both grain
yield and GPC, grain protein deviation (GPD) has been suggested as a useful selection target [14,15].
Grain protein deviation measures the grain yield/GPC trade-off by compensating for GPC dilution
when selecting for higher yield potential [16]. Grain yield and GPC in wheat have low heritability
since they are highly sensitive to environmental variations and under complex genetic control [9,17].
Therefore, despite evidence for the genetic origin of the negative relationship between grain yield and
GPC in wheat [9,18], its expression can be highly influenced by the environment [11,19]. A previous
study using six Southern and Western Australian sites showed that the inverse relationship between
grain yield and GPC varied across different regions [20]. Therefore, multi-environment trial studies can
provide an opportunity for the simultaneous selection of both grain yield and GPC [11,19,20]. However,
conducting trials across a large number of regions can be costly and labor intensive. In this context,
Australian National Variety Trials (NVT) funded by Australian Grains Research and Development
Corporation (GRDC) provide a useful source of multi-environment data. The NVT system provides
information to growers through the NVT website (https://www.nvtonline.com.au/) to assist with
decisions about suitable varieties for particular regions in Australia. NVT data has been used in
previous studies to examine the relationship between grain yield and GPC in some hard wheats [21,22].
The NVT system in Australia is similar to varietal trials conducted in many other countries and regions,
such as the UK (https://ahdb.org.uk), Germany (https://www.bundessortenamt.de), and Kentucky,
USA (http://www.uky.edu/Ag/wheatvarietytest/).

NVT are designed to provide unbiased information on the performance of varieties across different
Australian regions [23]. Deploying small plots in NVT trials minimizes the large-scale field variation
effects. Accordingly, a combination of the small plot trials with modern statistical methods have
provided an accurate way to evaluate the performance of varieties [24]. The rationale for all NVT
trials is to achieve the best performance of varieties within the constraints of water-limited yield
potential under management regimes suited to the trial region. In NVT trials, optimal fertilizer rates
are usually applied to prevent the nutrition limitation [24] along with other appropriate agronomic
practices. Environmental categorization of NVT sites adds the option of characterization of genotype
and environment interactions [25] and comparison of biotic and abiotic stresses [26,27]. The majority
of the Australian wheat-belt area suffers from drought conditions [28]. Drought stress may reduce
the production of wheat up to 50% depending on its severity and duration [29]. It has been shown
that grain yield reductions due to drought can increase the GPC in wheat [30–32]. Based on the time
and intensity of drought stress, Chenu and Deihimfard [28] categorized different drought patterns
across the Australian wheat-belt into four major environment types (ETs). Accordingly, ET1 represents
a stress-free or short-term water deficit. ET2 shows a mild water shortage mainly during grain filling
that terminates by maturity. In ET3 water stress is severe at the vegetative stage but is usually over by
mid-grain filling. In ET4, water deficit begins from the early stage onwards, and becomes severe during
grain-set and grain filling [28]. All of the four ETs can be seen across most the Australian wheat-belt.
However, the frequency of occurrence for each ET varies between different regions. In this study,
11 years of NVT dataset were categorized based on their most frequent ETs. Through the use of the NVT
data, we have sought to highlight the advantages and limitations of using a large multi-environment
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datasets. We present a case study of applying the NVT data to explore the negative grain yield–GPC
relationship across diverse environments. If there is variation associated with the environmental
conditions, and under what conditions should breeders screen high yielding germplasms for high GPC?
Our previous study in a controlled environment indicated a stronger inverse relationship between grain
yield and GPC under low nitrogen (N) treatment in selected wheat varieties [33]. Since N deficiency
can be associated with water availability [34,35], it is worthwhile to search the effect of ETs on the
grain yield–GPC relationship. The goals of this study were: (1) assess the potential of using NVT
data for large-scale multi-environment analysis and (2) to see if GPC is a stable trait across different
environments. The lessons learned here, should be applicable to other varietal evaluation datasets and
could be used to address some of the limitations in the current design of varietal trials.

2. Materials and Methods

2.1. General NVT Protocols

Trials analyzed in this study were organized and managed under the GRDC NVT program
between 2008 and 2018 for 215 wheat (Triticum aestivum L.) varieties in 206 sites across the Australian
wheat-belt and Tasmania (Supplementary Figure S1). At some sites, a year could include up to three
seasons described as early, main or late seasons. However, only 2% of the entire data set are obtained
from long seasons. There is 79% and 18% of the data from main and early seasons, respectively. Based
on the popularity of varieties with growers in each region, newly released varieties could remain for
up to 5 years in an NVT system. Subsequently, varieties that represent less than 3% of the annual yield
are withdrawn from the NVT list. NVT breeding materials comprise varieties prior to their commercial
release and released varieties. Commercial varieties that are widely grown in a region, e.g., Mace in
South and Western Australia, are used as benchmark varieties [23].

Selection and management of NVT sites are determined by standard, outcome-based protocols.
However, additional fertilizer and pesticides are applied when required [23]. In this context, fertilizer
rates applied for NVT trials are often higher than the commercial rates in the region [24]. All NVT
trials are designed with three replicates but only grain yield is obtained from the individual plot.
Due to its high cost, GPC is assessed by using composite samples. In this method, equal weight grain
samples collected from each replicate are physically mixed to form a homogenous composite unit.
GPC measurements are made on the subsample, with an appropriate size, of each of these composite
units [36].

2.2. Multi-Environmental Analysis and Graph Depiction

Chenu, Deihimfard [28] characterized 60 sites by simulated water-stress index obtained from
their climate and the typical soil of their region (Supplementary Table S1). Simulated water-stress
index corresponds to the ratio of soil water supply to crop water demand, and reflects how the crops
experience the stress [28,37,38]. In the mentioned study, they performed a set of simulations for a
medium maturing variety, Hartog, based on 123 years of historical climate data obtained from 22 regions
across the Australian wheat-belt (Supplementary Figures S2 and S3). The 22 regions represent the
major production areas in the Australian wheat cropping system. Data shown in Supplementary Table
S1 are mostly obtained from Ababaei and Chenu [39] simulations on Janz variety.

Among the 206 NVT sites examined in this research, 46 sites were identical with the locations in
Chenu, Deihimfard [28] study. The location of other NVT sites were individually checked to determine
their regions and ETs. Except for Tasmania, all mainland NVT sites were located in the recognized
22 regions [39].

Categorizing NVT data based on ETs requires additional information, such as cumulative rainfall
and soil type, for all 206 individual sites over 11 years. Furthermore, some sites could cover multiple
seasons in one year due to differences in sowing date. Consequently, in this study, individual sites were
categorized based on the most frequent ETs in their regions (Supplementary Information). This can
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be an efficient and quick method to provide an overview of the long-term drought stress conditions
across the Australian wheat-belt. NVT datasets are available for a range of consecutive years in similar
locations. Therefore, the average long-term results for yield and GPC could be more influenced by the
dominant ETs compared to other ETs in each region. Accordingly, NVT sites, except for Tasmanian
sites, were categorized based on their dominant ETs in each region. In this research, the number of sites
for each of 22 regions ranged from 4 to 32, while they were between 1 and 8 in Chenu, Deihimfard [28]
study. The map of frequencies of each ET across the Australian wheat-belt [28] were used to categorize
different regions (Supplementary Figure S4).

Grain yield and GPC between different ETs were compared based on their average and median
values. p-Values and statistical tests were not conducted due to potential limitations with the analysis
of NVT dataset. These limitations are explained in the discussion section. Correlations between grain
yield and GPC were assessed using Pearson’s correlation coefficient. The slope of grain yield–GPC
relationship was measured for each ET by averaging the grain yield–GPC slope from individual sites
in each year. GPD was calculated for individual sites in each year as the residual from the regression
line of grain yield–GPC relationship [14]. All the analyses and the graphics were performed using R
v3.5.1 [40].

3. Results

Based on the map of the frequencies of each ET across the Australian wheat-belt [28], there were
two dominant ETs in some areas (Supplementary Figure S4). Such regions were categorized as separate
ETs since they lie in between of the two ETs. For instance, regions with dominant ET1 and ET2 were
named with ET1/2. Accordingly, there were eight ETs for NVT data in this study: ET0, ET1, ET1/2, ET2,
ET2/3, ET3, ET3/4, and ET4. In this context, ET1/2, ET2, and ET2/3 covered respectively, 20%, 26%, and
24% of the entire NVT data set (Table 1).

Chenu and Deihimfard [28] did not include Tasmania in their study. However, there were NVT
sites near Launceston where the average rainfall was ~600 mm per year [41]. Accordingly, the datasets
of these sites located in the high rainfall zones (HRZ) of Tasmania were categorized as ET0 in this study.
Average grain yield for the different environments ranged from 9.2 t/ha for ET0 down to 1.6 t/ha for
ET4 (Figure 1A).

Table 1. General information about National Variety Trials (NVT) dataset. The average number of
varieties per site, number of years, total number of sites during consecutive years, and total number of
data in individual environment types (ETs).

Environment Type ET0 ET1 ET1/2 ET2 ET2/3 ET3 ET3/4 ET4

Average no. of varieties per site 20 32 41 43 40 43 38 28
No. of years 7 11 11 11 11 11 11 11

No. of sites × year 7 132 254 321 317 85 193 29
Total no. of variety × site × year × season 140 4263 10,347 13,766 12,597 3666 7237 805
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Figure 1. Grain yield (A) and grain protein content (B) of all 215 varieties in the NVT dataset. Total
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(third quartile) percentile of data.
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The decline in in-season rainfall from ET0 to ET4 corresponds to the declining average yield
(Figure 1A and Supplementary Table S1) with ET1 being an exception, most probably associated with
the low soil fertility and short season in the ET1 environments of Western Australia [42–44]. After the
HRZ of Tasmania (ET0), areas with dominant ET1/2 produced the highest grain yield compared to
other ETs (Figure 1A). ET1/2 dominant regions are located in the HRZ of South Australia, Victoria and
New South Wales, whereas ET1 areas are in the HRZ of Western Australia. ET1/2 and ET1 regions
produced 4.4 and 3.3 t/ha, respectively. There were data available for most ETs during all 11 years
except for ET0 where only 7 years of NVT trials were available.

GPC average appeared to increase from ET0 to ET3, and then decline towards ET4 (Figure 1B).
The GPC mean of ET0, ET3 and ET4 were 11.1%, 13.1%, and 11.8%, respectively. This variation may
not be entirely due to environmental effects since the variety lists did vary between different ETs.
There were inverse relationships between grain yield and GPC when the entire NVT dataset was
plotted (Figure 2A) and this trend could also be seen for the individual ETs (Figure 2B–I).

The negative relationship between grain yield and GPC is apparent but there is a very wide spread
of results, indicating the complexity of the relationship and the influence of diverse environmental
factors on the yield and GPC (Figure 2A). By plotting the data for each environment type separately,
more clarity in the trends emerged (Figure 2B–I). The regression line for the grain yield–GPC relationship
of each ET was steepest in ET4 (Figure 2B), but close to horizontal in ET0 (Figure 2I). However, the high
variation within ETs counteracted this clarity of trends, particularly, for the ETs between ET0 and ET4
(Figure 2C–H). Therefore, the slope values of the grain yield–GPC relationship were calculated for
individual sites in each year to reduce the variation between sites within ETs (Table 2). This slope
increased from −0.45 in ET0 to −1.63 in ET4 (Table 2) indicating that the strength of the negative yield
and GPC relationship is associated with the severity of drought stress.

Table 2. Average grain yield (GY), grain protein content (GPC), and the slope of the GY–GPC
relationship in individual environment types (ETs). Slope, average GY and average GPC were obtained
from individual sites in each year and have been averaged. SE: standard errors.

Environment Type ET0 ET1 ET1/2 ET2 ET2/3 ET3 ET3/4 ET4

Average GPC (%) 11.2 11.6 11.6 11.9 12.1 13.1 12.2 11.8
Average GY (t/ha) 9.2 3.3 4.3 3.1 2.9 3.2 2.6 1.6

Average slope of GY-GPC
relationship −0.45 −1.19 −0.93 −1.27 −1.43 −1.35 −1.44 −1.63

SE of GPC 0.5 0.1 0.1 0.1 0.1 0.2 0.1 0.2
SE of GY 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Range of Average GPC (%) 7 10.37 12.2 13.8 13.2 10.56 12.8 7.8
Range of Average GY (t/ha) 7.85 6.71 10.46 11.34 8.17 6.93 6.67 3.05

An even clearer relationship can be seen between the steepness of the grain yield–GPC slope and
the average yield in each ET (Table 2 and Figure 3).

The variation in GPC across the range of different yielding environments was high. For example,
GPC varied from 8.9% to 18.3% at sites where the average grain yield was around 2 t/ha (Figure 2A).
This high GPC variation was also observed in individual ETs (Figure 2B–I).

The nature of variation in GPC was explored by examining the performance of individual varieties
within the large NVT dataset. For this purpose, six varieties were selected based on their average GPC
and their inclusion is a large number of trials at diverse sites (Figure 4).

Despite the large variation in the GPC of individual varieties (Figure 4), the median GPC of Spitfire
was high, particularly, compared to QAL2000 and Gazelle (Figure 4A). Under similar dominant ETs
(Figure 4C), the first and third quartile of the GPC varied between 11.5% and 14.8% in Spitfire, and
9.7% and 12% in QAL2000. Differences between low and high GPC varieties were even more evident
with GPD values. Accordingly, the first and third quartiles of GPD was 0.3 and 1.2 in Spitfire, and −1.6
and −0.7 in QAL2000 (Figure 4D). In the entire NVT dataset from all ETs, Gazelle showed the lowest
median GPD among the selected varieties (Figure 4B).
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Figure 2. Relationship between grain yield and grain protein content across all (A) and in the individual
environment types (ETs) (B–I). For the entire dataset (A), 215 wheat varieties were grown in 206 NVT
sites across the Australian wheat-belt and Tasmania. The total number of varieties × site × year ×
season data in (A) were 52,822. The number of varieties, years and sites for the individual ETs in (B–I)
are shown in Table 1. The lines in (B–I) show the best linear fit to the data. The negative relationships
in all figures, except (I), are significant. The highest and lowest R2 values are 0.57 and 0.01 for (B) and
(I), respectively.
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Figure 4. Grain protein content (A,C) and grain protein deviation (B,D) of 179 varieties in 206 sites,
and 6 varieties in 168 sites from 2008 to 2018. ETs common between 6 varieties in (C,D) are ET1/2, ET2,
ET2/3, and ET3/4. Grain protein deviation of each variety is calculated separately for each site, season,
and year. The number of available trial data for each variety in (A,C) ranged from 50 to 896. The data
available for the six selected varieties in (C,D) were: Spitfire: 366, Mace: 823, Gregory: 680, Impala:
429, QAL2000: 305 and Gazelle: 371. Boxes refer to the 25th (first quartile), 50th (median), and 75th
(third quartile) percentile of data. (A,B) are obtained and modified from the Supplementary Figure S2
of Rahimi Eichi et al., 2019.

For the six selected varieties, the relationship between grain yield and GPC was plotted (Figure 5).
All varieties showed a similar negative correlation between grain yield and GPC although they
showed a large variation in GPC. There is also large variation in GPC across the yield spectrum which
reflects the complexity of the influences of wheat production environments on GPC (Figure 5A–F and
Supplementary Data S2).
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Figure 5. Relationship between grain yield and grain protein content of six selected wheat varieties
obtained from NVT sites across Australia between 2008 and 2018. The number of available data for each
variety was 476 (Spitfire), 850 (Mace), 897 (Gregory), 522 (Impala), 346 (QAL2000), and 445 (Gazelle).
R2 represents the correlation coefficient, and slope refers to the slope of the regression line. The negative
relationship in all figures is significant.

4. Discussion

In this study, we have made use of a large, publicly available field trial dataset, to explore the
relationship between stress, yield and grain protein content for wheat production in Australia. The NVT
trial scheme in Australia is similar to varietal evaluation schemes operating in many countries and
regions. These trials provide a potentially valuable resource for researchers since they cover a large
number of trials and production environments. However, the trials are primarily designed to allow
growers and agricultural agencies to compare the performance of different varieties in their regions.
Consequently, the trial design does not necessarily reflect the rigor normally deployed in a scientific
experiment and this can present issues with the analysis of trial data. Through our analysis of the NVT
dataset, we have sought to highlight the advantages and problems in using large varietal trials.

In order to undertake this analysis, we needed to associate the 206 field sites for the NVT
trials with environments. Previous studies from Chenu and Deihimfard [28], and Ababaei and
Chenu [39] provided a good framework to categorize Australian wheat-belt regions based on their
environmental characteristics. Yield and environment information studies indicated clear differences
between environment types. Cumulative precipitation and simulated water-stress index reduced from
ET1 to ET4. Based on Chenu, Deihimfard [28] work, we were able to group the trials into seven ETs.
We then added the eighth environment to cover the high rainfall and high yielding sites in Tasmania.
In comparison with the high rainfall zones (HRZ) of mainland Australia, Tasmania has higher rainfall
and a milder climate with fewer extreme hot and cold temperatures [45]. These conditions allow
average wheat yields of almost 9 t/ha in the ET0 of the NVT dataset. Accordingly, potential average
yield of wheat in HRZ of Tasmania (ET0) is ~10 t/ha [45].

Some explanation is also needed for ET1, which does not follow the expected trend for yield
(Figure 1A and light blue points in Figure 2A). Despite the higher rainfall and simulated water-stress
index in ET1 (Supplementary Table S1), its average grain yield was less than of ET1/2 (Figure 1A).
In this context, Ababaei and Chenu [39] showed lower simulated biomass and yield in ET1 compared
to ET2 (Supplementary Table S1). The lower yield of Western Australia’s high rainfall zone (ET1)
compared to South–Eastern (ET1/2) and Tasmanian (ET0) high rainfall regions was shown in previous
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studies [43,45]. Chenu, Deihimfard [28] categorized all ETs mainly based on the time and severity
of drought stress regardless of their yield potential. The low yield in ET1, 50% of yield potential,
might be due to the poor fertility of their cropping soils [42–44]. The shorter growing season of ET1
compared to other HRZ may also result in reduced yield [43]. A previous study on grain yield–GPC
relationship suggested the separate assessment of Western Australian sites from other regions for GPC
improvement in breeding programs [20]. The average yield of ET1 in this study was 3.3 t/ha, while the
yield in Western HRZ was 2.7 t/ha [43,44]. The slightly higher average yield of NVT compared to the
actual yield in Western HRZ can be due to the agronomic practices in NVT sites.

The higher average of GPC in ET3 compared to other environments (Figure 1B) might be due to
differences in the drought pattern. It has been previously shown that drought stress before the end of
grain filling increases GPC in wheat [46]. N uptake after anthesis, which increases N accumulation
into grains, depends on the availability of water and nitrogen [35,47,48]. NVT sites receive adequate N
fertilizer, therefore water availability may be the limiting factor of N uptake [24]. Relief from drought
stress during grain filling in ET3 may permit post-anthesis N uptake. In ET4, however, water stress
begins early in the season and intensifies towards the end of grain filling [28]. Consequently, pre and
post-anthesis N uptake may not be sufficient to maintain yield and GPC in ET4. The high trade-off

between yield and GPC (Figure 2B,D and Table 2) can be another reason for the lower GPC in ET4
compared to ET3. In ET0, on the other hand, the dilution effect of high grain yield might reduce GPC
in comparison with ET3.

There is the potential for a range of variables to affect yield and GPC data from the NVT trials,
including varieties, seasonal factors, level of replication, edaphic and disease pressures, and agronomic
practices. In order to assess the reliability of the ET effects on yield and GPC, six varieties were
examined and compared to the full dataset (Figures 4 and 5). The same varieties were used previously
to examine their responses to N application in a controlled environment where plant growth rates
were assessed [33]. In the previous study, it was found that the severity of stress, in that case the
stress was induced through N starvation, intensified the negative relationship between yield and GPC.
Grain protein content in wheat is strongly influenced by environment, and environmental factors have
a greater impact than genetics effect [49,50].

The agronomic management of the NVT system aims to reflect the optimum practices for all sites
and varies between sites. Consequently, N fertilizer may be applied at different rates between ETs.
This may add to the variability of yield and GPC both between and within ETs. Moreover, in this study
sites with similar first dominant ET were categorized together regardless of their second, third, or
fourth dominant ETs. Therefore, the high yield and GPC variation of individual ETs (Figures 1 and 2)
might come from inconsistencies in the ETs classification or different agronomic practices. For instance,
the second dominant ET of two ET2 sites, Birchip and Cummins, were ET4 and ET1/2, respectively.
Therefore, the average yield at Birchip was 3 t/ha, whereas, it was 4.9 t/ha for Cummins. However,
these comparisons are based on averages and only indicate trends.

The inverse relationship between yield and GPC was stronger in low than in high yielding ETs
(Figure 2A–I and Table 2). The NVT data show that a 1 t/ha increase in yield leads to an average GPC
loss of 0.45% and 1.63% in ET0 and ET4, respectively. Previous studies on wheat also found a stronger
negative relationship between yield and GPC under low N compared to high N supply [20,33,51].
The strong GPC-yield trade off under low N conditions can be due to a higher priority for the plants
to maintain grain number and weight than for grain protein accumulation. A study on wheat [33]
showed that under low N, high GPC varieties bred for low yielding environments sacrificed biomass
and, consequently, yield in order to reserve N for grain protein. Conversely, low GPC varieties selected
for high yielding regions used the available N primarily for biomass and yield regardless of grain N
concentration. Reducing biomass and yield in favor of GPC increase can be considered as a strategy
for plants to maintain GPC under stress. Under the stressed scenarios, fewer grains are produced but
with sufficient nutrient levels to support germination and plant establishment [52–54]. The steep slope
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of the yield–GPC relationship under stress suggests that simultaneous selection for high yield and
GPC will be more effective in low than in high yielding regions.

Until the 1930s, Australian wheat production was dominated by soft and low GPC genotypes.
However, since the 1960s the proportion of hard varieties with high GPC began to increase. Hard
and soft wheat varieties were segregated between the 1950s and 1970s in different Australian regions.
This led to the payment of premiums for high GPC hard wheats [50], and soft and feed varieties that
were high yielding but with low GPC stayed in irrigated and high rainfall regions [50,55,56]. Higher
GPC varieties, tended to be grown in dryer regions with lower yield potentials and the majority of
wheat produced in Australia is grown in low yielding regions [50,55,57]. Over the last decade, there
has been a significant increase in the premium price for high GPC wheat grains. Consequently, growers
and breeders have targeted high GPC varieties even though this results in a small yield penalty [21,22].

Corresponding to the work of Bogart et al., [15], this study also showed the relative robustness of
GPD across different environments. GPD corrects for the environmental effects on GPC and reveals
the genotypic differences more clearly. The large variation in GPC due to environmental effects were
reduced using GPD (Figure 4). The varieties Gazelle and QAL2000, which are considered as low GPC
soft varieties had the lowest GPD, while, Spitfire, Mace, and Impala, high GPC varieties, showed
higher average GPD. Therefore, GPD can be used as a potential target for selection in wheat breeding.

Our results (Figure 5 and Supplementary Data S2) confirmed a previous study on NVT data [21],
indicating the inverse relationship between yield and GPC in individual varieties. However, this
negative relationship was as small as a 1 t/ha increase in yield corresponded to the average GPC loss
of ~0.4%. Indeed, the negative relationship between yield and GPC could be managed by applying
suitable agronomic practices [9,51,58]. As mentioned above, the agronomic practices in NVT sites are
based on the optimum for that region. For instance, delaying the final fertilizer application to around
heading has been shown to increase GPC without yield penalty [15,59]. However, the success of this
approach depends on climate conditions, particularly, water availability after anthesis. In the absence
of sufficient water, the additional N is not beneficial and leads to multiple environmental consequences
such as underground water pollution and eutrophication.

In the NVT system, varieties are selected to suit the production environments. Therefore, varieties,
agronomic practices, and the number of sites and entries can vary between years, sites, and ETs.
This variability means that statistical tests need to be applied with caution. The unbalanced nature
of these trials can affect the validity of statistical tests, which often assume that varieties have been
allocated at random to trials. However, in the NVT system the variables such as varieties and
agronomical treatments (e.g., sowing date, fertilizer rate, chemical application, etc.) are not random
but systematically decided in each field site. For example, the variety list of each NVT site is selected
based on their suitability to the region [23]. If a variety does not produce acceptable yield or GPC
in a site, it will usually be eliminated from the list at that site. Such limitations lead to the sampling
process bias and, consequently, reduce the value of statistical assumptions. Accordingly, in this study,
comparisons between varieties and ETs were based on averages or medians and only indicate trends.
Showing the trends of values for different ETs and varieties indicates the potential of using such large
numbers of data for multi-environmental studies. However, these are unbalanced datasets and this
limits there value for detailed statistical analysis. A possible approach to analyze such unbalanced
data can be the method developed by Smith and Cullis [60]. In other words, this study presented a
useful dataset that others can examine further in more statistically rigorous ways to answer questions
about the relationship between yield and GPC. Applying one standard agronomic practice in all sites
could also improve the comprehensive multi-environmental analysis of NVT dataset in future.

5. Conclusions

While grain yield is of critical importance to wheat farmers, the protein content will influence the
value of the grain. The relationship between grain yield and protein content is complex and highly
dependent on the production environment but breeders have targeted both traits for selection in their
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breeding programs. Achieving significant genetic gain for both yield and protein is difficult, given the
large environmental and relatively small genetic component. Controlled environment studies have
been helpful in understanding the impact of stress on the yield/protein relationship [11,20,33] but these
results require validation through actual field trials. Here we have explored the option of exploiting
the extensive field trial data used to evaluate germplasm across a large number of environments.
Many countries run extensive variety evaluation trials, and these usually cover a large number of sites
and environments. However, the trials are not designed with a view for the detailed statistical analysis
required to explore the genotype × environment interactions that strongly influence the yield/protein
relationship. In this study, we have attempted this analysis by using the ETs, categorized in Chenu
and Deihimfard [28] and based on the time and intensity of drought stress, identified the potential for
robust analysis of the impact of drought on yield–GPC relationship. However, further improvements
in statistical approaches and NVT trials management may enhance the precision of the analysis.

The negative relationship between yield and GPC is more significant in low than in high yielding
environments. This conclusion is consistent with controlled environment studies [11,20,33] and
supports the view that GPC needs to be interpreted with a consideration of environmental factors
that may limit yield. Selecting wheat varieties in low yielding regions might be more effective for the
simultaneous increase of yield and GPC, and transferring varieties bred in low yielding environments
to high yielding regions might provide results better than the reverse.

GPD revealed the genetic differences across different ETs, and therefore can be considered as a
worthwhile potential target for breeders to improve both yield and GPC in wheat. Despite the genetic
differences between varieties, selecting suitable sites and agronomic practices can help wheat farmers
to achieve their targeted GPC [55,61,62]. For farmers, GPC loss with yield increase is best compensated
using suitable region and agronomic management. Breeders, on the other hand, can select for varieties
in environments where the impact of stress on GPC loss can be assessed.

ET3 regions might be suitable to grow high GPC varieties with reasonable yield while the high
rainfall regions of Tasmania and the South–East Australian mainland should remain focused on soft or
feed varieties with high yield but low GPC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/5/753/s1,
Figure S1: The site location map of all wheat NVT trials in a single year (2015). Green rectangles indicate
single wheat trials, and blue and purple circles show the clusters of <15 and ≥15 multi trials, respectively.
Figure S2: The 22 regions (colored and named in each box) and 60 sites used in Chenu and Deihimfard [28]
study across the Australian wheatbelt: the ‘West’ area (green colors); ‘South’ (blue); ‘South-east’ (purple); ‘East’
(orange). State abbreviations: QLD, Queensland; NSW, New South Wales; SA, South Australia; WA, Western
Australia. Figure obtained from New Phytologist (2013) 198: 801–820. Figure S3: Simulated water-stress index
for four environment types (ETs) identified in all regions combined across the Australian wheat-belt in Chenu,
Deihimfard [1] study. The stress index corresponds to the ratio of soil water supply to crop water demand and is
shown as a function of cumulative thermal time relative to flowering, from the emergence of crop to 450 degree
days (◦Cd), which is after flowering. Figure obtained from New Phytologist (2013) 198: 801–820. Figure S4: The
pie chart map of the frequencies of each environment type (ET) across the Australian wheat-belt. Chenu and
Deihimfard [28] simulated the data for the check variety ‘Hartog’ over 123 years of historical data for the 22 regions
of the wheat-belt (shown in Figure S2). The size of the pie charts is proportional to the wheat-planted area in the
associated region. The ETs are shown in Supplementary Figure S3. State abbreviations: QLD, Queensland; NSW,
New South Wales; SA, South Australia; WA, Western Australia. Figure obtained from New Phytologist (2013) 198:
801–820. Table S1: Simulated biomass and yield, cumulative precipitation (Cum-Rain), simulated water-stress
index (Mean-SWSI) and duration of each phase for four environment types (ETs). Cumulative precipitation,
simulated water-stress index and the number of days for each phase are shown from sowing (0) to anthesis (6)
and maturity (9). Simulated water-stress index is shown for Janz over the same periods [39] and for Hartog at
anthesis [28]. Historical records of 60 sites from 1889 to 2011 (Hartog) and from 1981 to 2018 (Janz) were used
to simulate the drought impact. Standard errors for mean-SWSI and duration of ETs were ~ zero. SE: standard
errors. Data S1: List of all NVT varieties across the Australian wheat-belt from 2008 to 2018. Data S2: The number
of available NVT data for each variety, R square and slope of grain yield–grain protein
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Chapter 5: Supplementary material 

The following are available online at http://www.mdpi.com/2073-4395/10/5/753/s1 
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Table S1. Simulated biomass and yield, cumulative precipitation (Cum-Rain), simulated 
water-stress index (Mean-SWSI) and duration of each phase for four environment types 
(ETs). Cumulative precipitation, simulated water-stress index and the number of days for 
each phase are shown from sowing (0) to anthesis (6) and maturity (9). Simulated water-
stress index is shown for Janz over the same periods (Ababaei and Chenu 2020) and for 
Hartog at anthesis (Chenu et al. 2013). Historical records of 60 sites from 1889 to 2011 
(Hartog) and from 1981 to 2018 (Janz) were used to simulate the drought impact. Standard 
errors for mean-SWSI and duration of ETs were ~ zero. SE: standard errors. 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

Environment type ET1 ET2 ET3 ET4 
Simulated biomass (t/ha) 5.80 6.40 5.53 4.06 

Simulated yield (t/ha) 2.07 2.38 1.64 0.97 
Cum-Rain-0-6 (mm) 192.1 171.8 149.0 107.6 
Cum-Rain-0-9 (mm) 265.1 212.9 196.5 130.2 
Cum-Rain-6-9 (mm) 73.1 41.1 47.5 22.6 

Mean-SWSI-0-6 for Janz variety 0.95 0.95 0.88 0.81 
Mean-SWSI-0-9 for Janz variety 0.95 0.90 0.85 0.71 
Mean-SWSI-6-9 for Janz  variety 0.97 0.75 0.78 0.41 

Mean-SWSI at anthesis for Hartog variety 0.95 0.77 0.56 0.38 
Duration-0-6 (days) 116 124 123 121 
Duration-0-9 (days) 165 170 166 163 
Duration-6-9 (days) 49 47 43 42 

SE of simulated biomass (t/ha) 0.03 0.04 0.03 0.03 
SE of simulated yield (t/ha) 0.01 0.02 0.01 0.01 
SE of Cum-Rain-0-6 (mm) 0.9 1.4 1 0.9 
SE of Cum-Rain-0-9 (mm) 1 1.5 1.1 1.2 
SE of Cum-Rain-6-9 (mm) 0.4 0.5 0.5 0.5 
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Figure S1. The site location map of all wheat NVT trials in a single year (2015). Green 
rectangles indicate single wheat trials, and blue and purple circles show the clusters of <15 
and _15 multi trials, respectively. 
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Supplementary explanations for “Materials and methods” 

Chenu et al. (2013) ran the simulations for the 60 sites (Supplementary Figure S2) using the 

Agricultural Production Systems Simulator (APSIM) crop model (Wang et al. 2002; Keating 

et al. 2003) based on the local practices of farmers, soil characteristics and preceding rainfall.  

 

 

Figure S2. The 22 regions (coloured and named in each box) and 60 sites used in Chenu et 
al. (2013) study across the Australian wheatbelt: the ‘West’ area (green colours); ‘South’ 
(blue); ‘South-east’ (purple); ‘East’ (orange). State abbreviations: QLD, Queensland; NSW, 
New South Wales; SA, South Australia; WA, Western Australia. Figure obtained from New 
Phytologist (2013) 198: 801–820 
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After performing a cluster analysis at national level, Chenu et al. (2013) identified four main 

Environment types (ETs) as representative of drought patterns that wheat crops experience 

in the wheat-belt of Australia (Supplementary Figure S3). 

 

Figure S3. Simulated water-stress index for four environment types (ETs) identified in all 
regions combined across the Australian wheat-belt in Chenu et al. (2013) study. The stress 
index corresponds to the ratio of soil water supply to crop water demand and is shown as a 
function of cumulative thermal time relative to flowering, from the emergence of crop to 
450 degree days (°Cd), which is after flowering. Figure obtained from New Phytologist 
(2013) 198: 801–820   
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In our study, sites were categorized with their 1st dominant ETs based on the map of the 

frequencies of each ET shown in Supplementary Figure S4. 

 

 

Figure S4. The pie chart map of the frequencies of each environment type (ET) across the 
Australian wheat-belt. Chenu et al. (2013) simulated the data for the check variety ‘Hartog’ 
over 123 years of historical data for the 22 regions of the wheat-belt (shown in Figure S2). 
The size of the pie charts is proportional to the wheat-planted area in the associated region. 
The ETs are shown in Supplementary Figure S3. State abbreviations: QLD, Queensland; 
NSW, New South Wales; SA, South Australia; WA, Western Australia. Figure obtained 
from New Phytologist (2013) 198: 801–820 
 

Some regions had more than one dominant ET. Therefore, ET1/2, ET2/3 and ET 3/4 were 

added to the list of ETs based on the map in Supplementary Figure S4.   

One of the aims of this study was to examine the stability of GPC in low and high yielding 

environments. Most of the Australian wheat is produced in mainland regions frequently 
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subjected to severe stress (Chenu et al. 2013). Accordingly, Tasmania, which produces 

higher grain yield compared with mainland Australia, was selected as a high yielding region 

in our study. However, Tasmania was not between the 22 regions of Chenu et al. (2013) 

study. Characterization of drought patterns in Tasmania was beyond the scope of this study. 

However, the average grain yield of 9.2 t/ha and the 600 mm average annual participation 

('Bureau of Meteorology, Climate statistics for Australian locations, Monthly climate 

statistics, Summary statistics '  2019) implied the different weather conditions of the 

Tasmanian site from mainland Australia. Therefore, Tasmania was categorized with a 

different name (ET0) in this study. 
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Chapter 6: General Discussion 

Increasing grain yield and quality are two major goals of wheat breeding programs. Grain 

protein content (GPC) is a key quality attribute and an important marketing trait 

(Husenov et al. 2015; Gabriel et al. 2017; Michel et al. 2019). However, the simultaneous 

selection for both grain yield and GPC poses a major challenge for wheat breeders due 

the trade-off between grain yield and GPC (Simmonds, N. W. 1995). Accordingly, wheat 

breeders who seek high protein aim to break this undesirable correlation by increasing 

grain yield while maintaining the GPC (Simmonds, N. W. 1995; DePauw et al. 2007).  

Another challenge for improving grain yield and protein content in wheat is the low 

heritability of these traits. The large genotype-by-environment interaction and a complex 

quantitative inheritance governed by many genes of small-to-medium effect, complicate 

the genetic improvement of grain yield and GPC in wheat (Tanksley and McCouch 1997; 

Hoffstetter et al. 2016; Mahjourimajd, S., Taylor, et al. 2016; Schulthess et al. 2017). In 

other words, despite the strong influence of genetics on the negative correlation between 

grain yield and GPC (Laidig et al. 2017; Thorwarth et al. 2018), environmental effects 

can change the magnitude of this relationship (Oury and Godin 2007). Since the genetic 

variation in grain yield and GPC between different genotypes are masked by the 

interactions with environment, testing genotypes in different environments helps to 

identify heritable variation in grain yield and GPC (Oury et al. 2003; Semenov and 

Halford 2009). 

The purpose of this project was to explore the relationship between grain yield and GPC 

under different production conditions, with a view to providing advice to breeders on 

how they might select for high yield and high GPC. This study involved identifying the 

appropriate target environments for selecting high yield and high GPC genotypes. 
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In the current world cropping systems, GPC is strongly influenced by nitrogen (N) 

fertilizer application (Triboi et al. 2000; Sinclair and Rufty 2012). Comparing the N 

responses between high and low GPC wheats may reveal the mechanisms used by 

contrasting genotypes in their N use at high and low N input (Bogard et al. 2011; Hitz et 

al. 2017). Therefore, germplasm used in this study had been selected over a long period 

for either high or low GPC based on their end-use. Grain yield and GPC can be assessed 

precisely only at harvest and, consequently, may not demonstrate how high and low GPC 

genotypes use their N reserves during the growing season. Therefore, biomass growth 

traits were examined in this study since these could reflect the N response of plants 

throughout the season.  

Due to the high influence of environment on the grain yield-GPC relationship, the first 

approach was to fix the environment and try to determine the biomass growth responses 

to different N treatments. This experiment was conducted in controlled environment 

phenotyping platforms which allowed dissection of complex growth traits into simple 

components such as growth rate and the time to maximum growth rate under reduced 

environmental variation (Chapter 3). Results showed that under low N condition, 

biomass production was limited more in high than in low GPC genotypes. Moreover,  

high GPC genotypes grew faster and achieved the maximum growth rate earlier at low 

compared to high N-treated plants. Consequently, in low N treatments the grain yield 

was reduced more in high than in low GPC genotypes. 

Field trials were used to validate the controlled environment findings under conditions 

that emulate breeders’ trials in terms of  plot size, trial location and agronomic practices 

(Chapter 4). However, N effects were not clearly detected in the first field trial in 2017. 

This could have been due to the high pre-sowing residual N in the soil, late N treatment 

application when the plant’s response to N was low, and/or N leakage between different 

plots. Accordingly, two field trials, with revised N treatments, were conducted in 2018 
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(Chapter 4). The main strategies to increase N treatment effects in the 2018 trials were 

locating the trials based on their pre-sowing residual N level in the soil, applying N 

treatments at early growth stages, and increasing the distance between treatment plots. 

Measuring total biomass in wheat breeding plots is not simple for either destructive or 

non-destructive methods. Non-destructive methods rely on the measurement of biomass 

related traits such as height and ground cover to examine the N response of wheat plants 

in the field experiment. The main outcome of this study, which confirmed the controlled 

environment results, was that under low N treatments the rate of increase in biomass 

related traits were more restricted in high than in low GPC genotypes. Based on the non-

destructive measurements of biomass related traits, this experiment also confirmed the 

value of using biomass growth for NUE studies in field.   

After assessing wheat responses to N under controlled and field conditions, the last stage 

was to use a large number of different environments and try to determine the 

environmental relationship between grain yield and GPC. This study was based on 

National Variety Trial (NVT) data and included an assessment of the potentials and 

limitations of the NVT dataset for multi-environmental analysis across the Australian 

wheat-belt (Chapter 5). Results showed that the negative relationship between grain yield 

and GPC was most extreme under stressed (low yielding) conditions. The low N 

treatment in the controlled environment experiment and the high water stressed regions 

in the multi-environment analysis, demonstrated the strongest grain yield-GPC 

relationship. The significance of stress was emphasised by the observation that the slope 

of this relationship decreased in more favourable or high-yielding environments. 

The controlled and field experiments indicated that the way in which high GPC lines 

manage biomass was critical and, biomass and yield were reduced at low N to conserve 

N for grain. Therefore, under stress conditions varieties bred in low yielding regions are 
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able to restrict their growth in favour of GPC to produce fewer grains with sufficient 

nutrient levels. In addition to the environmental conditions, intensive selection by 

breeders can also influence the grain yield-GPC relationship. In other words, wheat 

breeders have selected for lines that are able to balance biomass production to allow for 

high GPC.  

The results reported here highlight the importance of considering environmental factors 

in breeding programs. In order to break the grain yield-GPC relationship, wheat breeders 

should select under stressed (low yielding) rather than high yielding conditions for high 

yield and high GPC genotypes. However, breeders should also be aware that by applying 

such methods they, inadvertently, select for germplasm that limit biomass and, 

consequently yield production to help conserve N for grain. Furthermore, breeders are 

often inclined to select under high N input in order to minimise the impact of N as a 

variable, and this may mask N-use efficiency (NUE) differences between genotypes 

(Kamprath et al. 1982). Selection in low yielding environments of Australia with low 

rainfall can improve the NUE due to the strong link between N uptake and water 

availability (Stoddard and Marshall 1990; Sadras and McDonald 2012).  

Conversely, lines selected in high yielding conditions tend to expend N for biomass and 

yield production regardless of the grain N reserves. The negative relationship between 

grain yield and GPC has an advantage for those end-products that favour low GPC 

(DePauw et al. 2007). Therefore, low GPC genotypes can be best selected in high 

yielding environments that result in low GPC but increasing grain yield. The large 

variation of GPC across the yield spectrum in this study reflected the high influence of 

wheat production environments on GPC. Accordingly, GPC loss with yield increase for 

farmers can be compensated in some environments through agronomic management 

such as N fertilizer.  



104 
 

In summary, the research conducted and presented in this dissertation is the first 

examination of the relationship between grain yield and protein in high and low GPC 

wheat genotypes under controlled, field and multi-environmetal conditions. Due to the 

strong influence of the environment on the yield-GPC relationship, multi-environment 

trials are recommended for future studies. However, conducting multiple trials in diverse 

range of environments can be cost and labour intensive. NVT data can provide a valuable 

resource for further research to explore the grain yield-GPC relationship in Australian 

environments. Improvements in statistical approaches together with applying one 

standard agronomic practice in all NVT sites in future could improve the multi-

environmental analysis of these datasets. Moreover, developing non-destructive 

phenotyping techniques that allow for frequent biomass measurements, regardless of 

weather condition, can be useful to detect biomass responses to N in field.   

. 
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METHODOLOGY

Estimation of vegetation indices 
for high-throughput phenotyping of wheat 
using aerial imaging
Zohaib Khan1* , Vahid Rahimi‑Eichi2, Stephan Haefele2, Trevor Garnett2 and Stanley J. Miklavcic1

Abstract 

Background: Unmanned aerial vehicles offer the opportunity for precision agriculture to efficiently monitor agri‑
cultural land. A vegetation index (VI) derived from an aerially observed multispectral image (MSI) can quantify crop 
health, moisture and nutrient content. However, due to the high cost of multispectral sensors, alternate, low‑cost 
solutions have lately received great interest. We present a novel method for model‑based estimation of a VI using 
RGB color images. The non‑linear spatio‑spectral relationship between the RGB image of vegetation and the index 
computed by its corresponding MSI is learned through deep neural networks. The learned models can be used to 
estimate VI of a crop segment.

Results: Analysis of images obtained in wheat breeding trials show that the aerially observed VI was highly corre‑
lated with ground‑measured VI. In addition, VI estimates based on RGB images were highly correlated with VI deduced 
from MSIs. Spatial, spectral and temporal information of images contributed to estimation of VI. Both intra‑variety and 
inter‑variety differences were preserved by estimated VI. However, VI estimates were reliable until just before signifi‑
cant appearance of senescence.

Conclusion: The proposed approach validates that it is reasonable to accurately estimate VI using deep neural 
networks. The results prove that RGB images contain sufficient information for VI estimation. It demonstrates that low‑
cost VI measurement is possible with standard RGB cameras.

Keywords: Wheat, Phenotyping, Deep learning, Precision agriculture
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Background
Satellite multispectral imaging has demonstrated the 
ability to efficiently map Earth’s resources (vegetation, 
water, minerals etc.) from remote locations [1, 2]. Recent 
technological advances in imaging methods are moving 
agricultural practice from traditional farming to precision 
farming. The unmanned aerial vehicle (UAV) platform 
is becoming an important tool for field-based precision 
agriculture [3–5]. Lightweight, high-resolution imag-
ing sensors have been developed and can be used with 
most UAVs [6, 7]. Aerial platforms can be used to support 
computerized ground-based vehicles in the management 

of extensive agricultural lands. Precise spatial applica-
tion maps can then be developed to direct ground based 
remedial measures to increase production efficiency. The 
result is a site specific agricultural management solution 
based on aerial observations.

A UAV equipped with a multispectral camera can be 
used to monitor spatial and temporal variations in veg-
etation characteristics. A vegetation index (VI) is a spec-
tral transformation metric for measuring the presence 
and state of vegetation [8]. Its basis is the characteristic 
photosynthetic response of green vegetation to incident 
light. Healthy plants exhibit high infrared reflectance 
and low red reflectance due to absorption of red light by 
chlorophyll, resulting in a high index value. Conversely, 
unhealthy, stressed or dead vegetation, a manifestation of 
reduced chlorophyll pigment, displays a low index value. 
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Therefore, VI measures can be used to facilitate correc-
tive measures in crop management.

Various uses of VI for the detection of biotic and abi-
otic stresses have been demonstrated. Vegetation indi-
ces were correlated with soil moisture measurements 
to assess the sensitivity of tallgrass prairie grasslands to 
drought [9]. The indices allowed remote identification of 
drought affected regions and could potentially be used to 
quantify the effects of drought on vegetation. Vegetation 
indices also have the potential to differentiate healthy 
from diseased plants [10]. Targeted application of insec-
ticides and herbicides which is of immense value to agri-
cultural economics can be automatically carried out by a 
UAV capable of both observation and treatment applica-
tion. Apart from stress, VI were shown to be sensitive to 
phenological changes (e.g. senescence) with age [11]. As 
a result it was possible to predict the age of plant leaves 
in forest to assess the state of ecosystem. Gracia-Romero 
et al. [12] evaluated several aerially assessed and ground 
based VI and found them to be highly correlated with 
Maize performance with fertilization. In addition, vegeta-
tion indices have demonstrated correlation with several 
performance characteristics of crops including biomass, 
yield potential and nutrient concentration [13, 14].

Vegetation indices are generally computed as the ratio 
of difference to sum of the sensor measurements in two 
bands. One of the most widely known is the Normalized 
Difference Vegetation Index (NDVI) [15], extensively 
used since the introduction of LANDSAT-1 satellite mul-
tispectral data. NDVI is based on measurement in Red 
and Near Infrared (NIR) channels to identify regions of 
vegetation cover and their condition. Other empirically 
derived indices based on the same principle make use 
of different bands in the photosynthetically active spec-
tral range in combination with NIR [16]. The main idea 
is to maximize sensitivity to vegetation and minimize the 
noise. The RedEdge Normalized Difference Vegetation 
Index (RENDVI) is most sensitive to leaf area and less 
prone to index saturation [17]. The Soil Adjusted Vegeta-
tion Index (SAVI) aims to minimize the influence of soil 
reflectance in computation of VI by adding a background 
adjustment factor [18]. The Enhanced Vegetation Index 
(EVI) further corrects for atmospheric noise by introduc-
ing aerosol resistance factors [19]. Although important 
for remote satellites, atmospheric noise is an insignificant 
factor for UAV imaging. Table 1 lists the common multi-
spectral VIs found in literature.

It is clear from the above definitions that the NIR 
reflectance is a critical requirement, common to most 
VI. However, the NIR channel is not available in stand-
ard RGB cameras. UAVs equipped with RGB cameras are 
therefore incapable of providing a direct VI measure. A 
straightforward solution is a 4-channel camera with the 

additional NIR channel, usually known as a multispec-
tral camera. However, multispectral cameras compatible 
with UAVs come with a very limited spatial resolution 
(< 5 million pixels), compared to most RGB cameras (up 
to 20  million pixels). Although high resolution may not 
be crucial for accurate NDVI measurement, it is desirable 
for many image phenotyping tasks such as flower detec-
tion, plant height [20] and leaf coverage estimation. Mul-
tispectral cameras have relatively low spatial resolution 
for such tasks. This compels the end-user to either trade-
off spatial resolution for spectral resolution, or conduct 
multiple flights with each sensor separately, to achieve 
both targets. Some UAVs allow for simultaneously carry-
ing multiple sensors (owing to payload limitations). Such 
a system would require accurate synchronization, align-
ment and integration of the sensors. This is a challenging 
task in dynamic scenarios where vegetation movement is 
inevitable due to environmental factors.

To circumvent costs, the NIR filter present inside a 
standard RGB camera can be removed. The implication 
of such a modification is a camera with blue, green and 
NIR channels. Then, the tradeoff is to use the blue chan-
nel to simulate the absorption in red channel. However, 
the blue channel in most camera sensors is prone to 
low signal to noise ratio. In addition, the equivalence of 
absorption in two different channels may not be neces-
sarily true. An improvement over this design is to remove 
the NIR filter from an RGB camera and introduce an 
additional high-pass filter, which theoretically results 
in NIR, green and red channels [21]. The optimal filter 
parameters for a specific camera are set to minimize the 
difference between reference and target spectral values. 
However, this requires careful customization of cam-
era and measurement of the camera sensitivity func-
tion. Yet another approach is to remove the NIR filter 
and introduce a dual band-pass filter to enhance NDVI 
measurement [22]. A major drawback as a consequence 
of modification of an RGB camera is the unavailability of 
an original RGB image. Apart from retrofit modifications, 
commercial dual CCD sensors, each with a different 

Table 1 A list of commonly used VIs in literature

Vegetation index Formula

Normalized Difference Vegetation Index [15] NDVI = NIR−Red
NIR+Red

Green Normalized Difference Vegetation Index 
[16]

GNDVI = NIR−Green
NIR+Green

RedEdge Normalized Difference Vegetation 
Index [17]

RENDVI =
NIR−RedEdge
NIR+RedEdge

Soil Adjusted Vegetation Index [18] SAVI = (1+L)×(NIR−Red)
NIR+Red+L

Enhanced Vegetation Index [19] EVI = G×(NIR−Red)
NIR+c1Red−c2Blue+L
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color filter to target desired channels have been com-
pared with single CCD sensor with multiple color filters 
for VI measurement [23]. However, the modifications 
add to the design and production costs limiting their use 
to specialized applications.

Although a number of methods for the modification of 
camera hardware have been proposed, each with its own 
benefits, this paper proposes a model-based approach to 
estimating VI from RGB images. The main idea is to learn 
the spatio-spectral relationships between information in 
RGB images of vegetation and their corresponding VI 
values (sourced from MSI). This is achieved by leveraging 
a deep neural network (DNN) to model the non-linear 
relationship between an RGB image and its vegetation 
index. Deep learning is classified as a machine learning 
method for learning multi-level representations of data 
[24]. It has performed well on a wide range of plant phe-
notyping tasks like organ counting [25–27], age estima-
tion [28], feature detection [29, 30], species and disease 
detection [31, 32]. Our motivation to use DNN was to 
formulate a regression problem such that the multilay-
ered convolutional features learned by the model relate 
RGB image data to NDVI. The rationale of our proposed 
approach is simple but effective, i.e. the spatial density 
and spectral signature (color) of vegetation reflects its VI.

Limmer and Lensch investigated a contrasting prob-
lem of colorizing infrared images [33]. They used DNN to 
synthesize RGB image of a scene from its infrared coun-
terpart with reasonable visual quality. Our approach to 
estimating VI is distantly similar to the band simulation 
approach proposed by Rabetal et al. [21]. The major dif-
ference that distinguishes our work is that it does not rely 
on camera hardware modification and extensive cam-
era sensitivity measurements. Moreover, the use of an 
unmodified camera allows for retaining the high-resolu-
tion RGB image for useful purposes while simultaneously 
achieving a VI estimate. There are no additional costs 
associated for the purpose of such application. To the 
best of our knowledge, this is the first attempt on mod-
eling vegetational indices from color images using deep 
learning.

Methods
Breeding experiment
The trial site used for this study was in a farmers’ 
field between Mallala and Balaklava, South Australia 
(Lat:34°18′4.29012″:S Long:138°28′57.05255″:E). A wheat 
breeding trial was conducted on site in collaboration 
with a wheat breeding company (LongReach Plant Breed-
ers). The experiment was sown on 25th May, 2016, and 
harvested at 214 days after sowing (DaS). A total of 1728 
single row wheat plots on the site were considered at 7 
growth stages, resulting in 12096 observations.

The three ‘bays’ monitored on the site were part of a 
much larger trial which was almost 1400  m long and 
72 m wide. Each bay was 19.2 m long and had 12 ranges 
(12 × 6  m) Germplasm entries were planted in double 
rows, perpendicular to the ranges, with a row spacing 
of 0.4 m, such that 24 entries were planted in each range 
making a total of 288 entries in a bay (see Fig.  1a). The 
initial length of planted rows was 5  m which was later 
sprayed back to 4 m. Therefore, each individual entry had 
two rows of 4 m and an area of 3.2 m2. It was noted after 
emergence that some rows were shorter due to insuffi-
cient seed at the time of sowing.

The first bay (coded R40) was planted with double 
haploid (DH) lines of an EGA Gregory/Spitfire popula-
tion targeted at studying the genetic control of grain N 
concentration. In this experiment, the DH entries were 
replicated twice and a total of 94 DH lines were tested. 
Along with the DH lines, 19 soft wheat check varieties, 
02 hard wheat check varieties, and both hard wheat 
parents were planted in a fully randomized layout. The 

a

b

Fig. 1 Experimental site. a UAV imagery of the trial site mapped to 
UTM Zone 54S in WGS84 coordinate system. Blue arrows indicate the 
flight direction and red markers indicate imaging points. b Rectangu‑
lar grid aligned to single row plots and displayed as an overlay
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remaining plots in this bay were filled with germplasm 
not related to the trial. The next two bays (coded R41 and 
R42) were planted with DH lines of 6 different crosses 
of soft wheat (3 in each bay), which were part of the 
soft wheat breeding program. For each cross, 80 differ-
ent DH lines were grown unreplicated, together with 24 
twice replicated check varieties of soft and hard wheat. 
In addition, a highly disease susceptible line (Morocco) 
was regularly repeated in each range to increase the dis-
ease pressure. All DH lines of each cross were grown in 
a block (4 ranges within a bay) and check varieties were 
randomized within this setup.

Ground reference
Ground based NDVI was estimated using a handheld 
crop sensor, ‘GreenSeeker’ (Trimble, USA). The measure-
ments were conducted by making a continuous sweep 
from the start to the end of a plot. A constant height 
and position over the center of an entry (i.e. the middle 
of two rows) was ensured by adjusting a thin line with a 
small weight on the sensor. Two lines in each bay were 
selected, and the 12 plots behind them were measured, so 
a total of 24 plots were measured in each bay. The meas-
urements were conducted on the following DaS: 93, 117, 
141, 156, 170, and 182.

UAV image acquisition
A 3DR Solo (3D Robotics Inc., USA) drone was used with 
a custom platform to attach a RedEdge™MultiSpectral 
camera (MicaSense Inc., USA). The camera was capable 
of simultaneously capturing five spectral bands at a res-
olution of 1.2  megapixels. For flight planning and auto-
matic mission control an open source autopilot software 
Mission Planner (ArduPilot) was utilized. The multispec-
tral camera was set to auto-capture mode with one image 
every two seconds. Image overlap was always ≥ 80% at a 
constant speed of ≤ 3  ms−1, but the actual speed could 
vary depending on the selected flight altitude, image cap-
ture rate and requested overlap. Initially, images were 
only acquired from 30 m height, but from the fifth ses-
sion onwards, images were also taken from a lower 20 m 
height for increased ground resolution.

A total of seven imaging sessions were conducted 
at intervals ranging from 1 to 3  weeks between August 
and November of 2016. A trial imaging session was 
conducted on DaS: 72, and regular imaging sessions 
were planned thereafter. However, the actual dates were 
adjusted according to suitable weather conditions (bright 
and not too windy). Subsequent imaging sessions were 
conducted at DaS: 93, 113, 135, 141, 156, 170, and 182.

In order to geographically register images captured in 
multiple sessions, 12 square panels were placed at fixed 
positions in the surveying area to serve as ground control 

points (GCP). The GCPs were repeatedly placed at the 
same position before commencement of an imaging ses-
sion, throughout the season. An image of a calibrated 
reflectance panel (MicaSense Inc., USA) was also cap-
tured from directly overhead the panel before and after 
each flight for radiometric calibration. All raw images 
were stored in a 16-bit TIFF file format.

UAV image processing
The acquired images were imported into Pix4D map-
per v3.2 (Pix4D Inc., Switzerland) for offline processing. 
Camera correction and calibration was applied to remove 
geometric distortions from images. Finally, a stitched 
orthomosaic image was generated with a Ground Sam-
pling Distance (GSD) ranging between 2.0  cm (30  m 
altitude) to 1.3  cm (20  m altitude). The orthomosaic 
image was radiometrically calibrated with the image of 
the standard white reflectance panel. Coordinates of the 
GCPs were used to compute geometric image transfor-
mation required to geographically register orthomosaics 
of successive imaging sessions. The calibrated orthomo-
saics were imported into MATLAB R2017a (Mathworks 
Inc., USA) for sampling of the reflectance data of plots. A 
uniform rectangular grid of fixed dimensions was laid out 
and aligned with the ground plot locations (see Fig. 1b). 
The geographic coordinates of rectangles were converted 
to intrinsic image coordinates to automatically crop the 
individual plot images. A few sampled plots were miss-
ing image data due to being outside the mapped range of 
UAV on DaS 135. These 18 images were excluded from 
the analysis. Since the orthomosaic images of differ-
ent dates varied in resolution, the sampled images were 
scaled to a uniform size of 208 × 15 pixels.

Deep neural network
Our aim was to utilize deep learning to represent an RGB 
image as a VI, or in other words to estimate the VI from 
an RGB image.

Architecture
The architecture is a modification of the AlexNet deep 
convolutional neural network [34]. Deeper networks like 
ResNet [35] and GoogleNet [36] allow for more complex 
feature learning in diverse classes but also require much 
higher resolution input images to propagate through the 
net. Our choice of a DNN with a few hidden layers was 
suitable for content and resolution of input images.

The DNN maps a color image to a scalar VI as shown 
in Fig. 2. The training network is comprised of two con-
volution layers, two max-pooling layers, one mean-pool-
ing layer, a dropout layer for regularization, and a fully 
connected layer. The input to the net is a three channel 
RGB color image of vegetation plot of H ×W  pixels. The 
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input image passes through the first convolutional layer 
which extracts 20 feature maps with a 5× 5 kernel. The 
resulting feature maps down-sample by max-pooling of 
non-overlapping 2× 2 regions. The second convolutional 
layer extracts 50 feature maps with a 5 kernel, followed by 
another max pooling operation of non-overlapping 2× 2 
pixels. The feature maps resulting from the second pool-
ing layer connect to two inner product layers (fully con-
nected) with an intermediate rectified linear unit layer 
and a dropout layer. The inner product layers succes-
sively reduce the dimensions of the feature maps down 
to a scalar. The output of the network is the activation of 
the (single neuron) final layer. The error was defined by a 
real-valued Euclidean loss function which computed the 
difference between the actual VI value and that estimated 
by the model.

We used the Caffe Deep Learning Framework (BVLC, 
UC Berkeley) [37] for implementation of the design, 
training and validation of model. The experiments were 
performed on an Intel Xeon PC with 128GB RAM and a 
GeForce GTX TITAN X (NVIDIA, USA) graphics pro-
cessing unit with CUDA enabled for faster computations.

Training
For training the network, RGB image data of vegetation 
plots was sampled from the multispectral image. The 
mean VI values were computed from the NIR and Red 
channels of the corresponding vegetation plots. Then, 
the network was trained with RGB images as the input 
source and the VI values as the target output. The Sto-
chastic Gradient Descent algorithm was used to optimize 

the network weights by minimizing back-propagation 
error. The weights were iteratively updated so as to mini-
mize the scalar distance (loss) between the output of the 
mean pooling layer and the final inner inner product 
layer. A mini-batch of 72 images was randomly sampled 
from the training set in each iteration. Moreover, the 
training data was augmented by randomly flipping the 
images. Training was conducted for the same number 
of epochs in each fold of validation. A fixed set of values 
for hyper-parameters was chosen for training across the 
folds. The base learning rate was initialized as α = 0.01 
with a momentum γ = 0.9 for quick convergence. The 
weight decay parameter was fixed as 0.0005. An inverse 
decay function defined the learning rate policy which 
reduced the learning rate with each iteration according to 
α × (1+ γ × iter)−power, where power = 0.75.

Testing
A test RGB image was forward propagated through the 
trained network to get the estimated index value from the 
final fully connected layer. Note that the dropout layer 
was excluded from the test network as its only purpose 
was to provide regularization for training.

Results
All data was split into training and test sets for experi-
ments. Robust Least Squares Regression was utilized to 
compare model accuracies. Root Mean Squared Error 
(RMSE) and coefficient of determination  (R2) were used 
as the criterion for model evaluation. Pearson’s correla-
tion coefficient (r) were also considered to assess the 

Fig. 2 Deep neural network architecture. A schematic illustration of the deep neural network for index estimation. Dotted rectangular bounds 
signify the sole components of a test network
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linear correlation between the observations and their 
estimates.

Validation
We first validate the aerially observed VI by compari-
son with manually recorded ground measurements for 
72 selected reference plots. Figure  3 provides a scatter 
plot of VI observed by UAV using multispectral imaging 
(VIMSI) and VI measured by ground reference (VIGND) at 
different growth stages (DaS). Note that the term growth 
stage here refers to imaging time points, and should not 
be confused with the phenological growth stage. It can be 
seen that both measurements are highly correlated  (R2, 
RMSE = 0.057) across all growth stages.

It should be noted that the measurements are prone 
to methodological differences. The ground sensor’s field 
of view and region of interest chosen, result in measure-
ments of different proportions of vegetation/soil regions. 
Moreover, the ground based sensor has an an active illu-
mination source, whereas the aerial measurement uti-
lizes solar illumination. A uniform lighting condition is 
assumed for the duration of the survey which may not 
always be valid on a particular day. Despite all differen-
tiating factors, the validation model parameters suggest 
a significant correlation between the aerial and ground 
based measurements.

Estimation of vegetation index
For index estimation, a DNN model was trained with 
RGB images of all growth stages. Models were trained in 
three fold cross validation, where in each fold, two spa-
tially different bays were used for training and the held-
out bay for testing. Therefore, the training set comprised 
8064 samples (576 plots × 2 bays × 7 growth stages), 
whereas the test set constituted 4032 (576 plots × 1 bay 
× 7 growth stages) samples. We term it as DNN-RGB 
model which attempts to learn the relationship between 
RGB image and VI. The index observed from multi-
spectral images (VIMS) against the index estimated by a 
trained model using RGB image (VIRGB) are presented in 
Fig. 4a. Regression analysis suggested that the RGB image 
estimated VI values had a good agreement with the 
observed VI values (R2

= 0.99,erms = 0.019). The contri-
bution of spatial, spectral and temporal information of 
images to VI estimation can be validated as follows.

Spectral information
The extent to which RGB color information contrib-
uted to vegetation index of a plot was quantified by the 
method of elimination. For this purpose, color informa-
tion was removed from all RGB images by conversion to 
grayscale. Then a DNN was trained with the grayscale 
images as input and vegetation index as output. The 
trained model (DNN-GRAY) was utilized to estimate 
VI of plots given test grayscale images. The results were 
compared to that of a DNN trained on color images and 
the differential loss was examined to quantify the advan-
tage of color information. The grayscale estimated index 
(VIGRAY) is plotted against the multispectral observed 
index (VIMS) in Fig. 4c. The root mean square error using 
grayscale image based VI estimation model was found to 
be more than twice (erms = 0.045) in comparison to that 
of RGB image based model. It demonstrates that RGB 
does contribute useful information for estimation of VI.

Spatial information
The contribution of spatial information in images of 
vegetation to estimated VI was quantified by purging 
the spatial dimension. To achieve this objective, spatial 
information was reduced from all RGB images (by tak-
ing the average of pixels in each channel) to a single pixel 
(1× 1× 3) image. Then a linear regression model was 
learned with the spatially diminished images as predictor 
variable and vegetation index as the response variable. 
The trained regression model (LR-RGB) was used to esti-
mate VI of test plots given single pixel images. The results 
were compared to that of DNN trained on original RGB 
images and the differential loss was evaluated to quantify 
the advantage of spatial information.

 93
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Fig. 3 Comparison of VIMSI and VIGND of aerially observed VIMSI with 
ground reference (VIGND) at different DaS for selected plot samples 
(Ground reference data for DaS 135 could not be recorded due to 
technical issue.). The equation, coefficient of determination (R2) and 
Root Mean Squared Error (erms) of regression analysis is provided in 
legend
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a

b

c

d

e

Fig. 4 Comparison of the observed and estimated NDVI. a DNN‑RGB, b DNN‑T, c DNN‑GRAY, d LR‑RGB estimation model.The equation, coef‑
ficient of determination (R2) and Root Mean Squared Error (erms) of regression analysis is provided in legend. c Error statistics of estimation models 
at different DaS. In each box, the central mark is median, and the lower and upper edges denote the 25th and 75th percentile of errors (q1 and q3
), respectively. If the central notches of two boxes do not overlap, their true medians are different at the 0.05 significance level (indicated by *). The 
whiskers extend to the most extreme data points not considered outliers [q1 − w × (q3 − q1), q3 + w × (q3 − q1)],w = 1.5. Outliers not shown 
on the chart for clarity
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Temporal information
The effect of temporal information of VI at different 
growth stages on estimated vegetation index was evalu-
ated. To this end, RGB images of one growth stage were 
withheld for training. In this manner, a learned DNN 
model was made temporally blind to images of one 
growth stage. For obtaining results, training was done 
on 10368 images (576 plots × 3 bays × 6 growth stages). 
The trained model (DNN-T) was tested on 1728 images 
of the left-out growth stage (576 plots × 3 bays × 1 growth 
stage). The process was repeated in a similar manner 
for all growth stages. It is encouraging to see that the 
DNN predicted VI at unseen growth stages by making 
use of information in nearby growth stages. It should 
be noted that a considerably different distribution of VI 
of the training data from the test data likely resulted in 
increased estimation error (e.g. DaS 182).

Table  2 summarizes the error statistics and correla-
tion at each growth stage for DNN-RGB, DNN-GRAY, 

DNN-T and LR-RGB models. The errors were calculated 
as a relative difference of the observed and estimated VI 
using,

Figure  4e graphically illustrates the statistics of the 
errors. It can be observed that DNN-RGB consistently 
outperforms all other methods. The estimation errors 
were considerably larger for the DNN-T model com-
pared to DNN-RGB model. This is not surprising since 
the DNN-T model does not recognize spatio-spectral 
variations at all temporal stages. Similarly, DNN-GRAY 
model is unable to sufficiently distinguish vegetation and 
background since it is not familiar with vegetation color 
resulting in unreliable VI estimates. In contrast, as the 
scope of a DNN-RGB model is complete, so it is famil-
iar with all the spatial, spectral and temporal variations in 
VI. In future work, a more complex DNN model could be 
designed to account for causal relationships of the data 
by using recurrent neural networks [38].

A significantly higher error was observed by all meth-
ods upon senescence (DaS 170, 182). It showed difficulty 
in accurately modeling relationship of mature plant RGB 
images and their unique range of VI. Larger errors for LR-
RGB model suggested a highly non-linear relationship of 
RGB images and VI after maturity. It also explained the 
likely reason for the failure of DNN-T model in mature 
growth stage, since it was blind to images of that stage. 
The DNN-T model estimates had high correlation 
with observed VI, albeit the estimates were biased and 
resulted in higher average error. In contrast, the DNN-
RGB model demonstrated relatively lower errors and its 
average error consistently remained within ± 2% at all 
growth stages.

A multispectral camera was used for the study to 
directly compare the RGB image estimated NDVI with a 
multispectral image observed NDVI. Thus, training was 
performed on low resolution RGB images sourced from 
the multispectral sensor. However, the proposed method-
ology can be extended to high-resolution RGB cameras. 
A common approach to adapt to a DNN where the input 
image size differs from the network input is to resize the 
input image. Therefore, DNN models trained on low res-
olution RGB images can be extended to an RGB camera 
by resizing the images.

Phenotyping with VI estimation
In order to evaluate the utility of the proposed approach 
for phenotyping in breeding experiments, we observed if 
the intra-variety and inter-variety differences were pre-
served in VI estimation. For this purpose, we selected 
the Morocco variety as a check-line in the trials and had 

(1)error (%) =
VIobs − VIest

VIobs
× 100

Table 2 Percentage estimation error statistics, mean (μ), 
standard deviation (σ), and the correlation coefficient (r) 
of the observed and estimated VI of each model

DaS Model µ± σ r

93 DNN‑RGB − 1.78 ± 4.03 0.97

DNN‑GRAY 0.00 ± 7.40 0.86

DNN‑T − 5.34 ± 4.30 0.98

LR‑RGB − 1.68 ± 6.92 0.89

113 DNN‑RGB − 0.61 ± 2.38 0.98

DNN‑GRAY 1.41 ± 5.67 0.68

DNN‑T − 0.56 ± 2.32 0.99

LR‑RGB 1.91 ± 5.66 0.70

135 DNN‑RGB 0.50 ± 1.73 0.96

DNN‑GRAY 0.70 ± 3.22 0.84

DNN‑T 1.27 ± 1.62 0.97

LR‑RGB − 1.57 ± 2.90 0.89

141 DNN‑RGB 0.87 ± 1.82 0.97

DNN‑GRAY − 2.07 ± 3.14 0.90

DNN‑T 2.53 ± 1.74 0.97

LR‑RGB − 1.97 ± 2.98 0.91

156 DNN‑RGB 1.09 ± 2.51 0.96

DNN‑GRAY 2.08 ± 6.89 0.88

DNN‑T 3.46 ± 2.18 0.97

LR‑RGB 4.07 ± 5.91 0.93

170 DNN‑RGB 1.45 ± 4.42 0.95

DNN‑GRAY 6.78 ±14.78 0.80

DNN‑T 6.62 ± 4.02 0.96

LR‑RGB 9.14 ±17.84 0.81

182 DNN‑RGB − 1.81 ± 9.56 0.83

DNN‑GRAY − 8.13 ±23.21 0.73

DNN‑T − 28.83 ± 7.13 0.86

LR‑RGB − 11.46 ±26.03 0.87
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12 replicates allowing comparisons throughout the sea-
son. As shown in Fig. 5, the variation in estimated NDVI 
across the season was consistent with the observed 
NDVI. Specifically, the trend of observed NDVI within 
replicates at each growth stage was largely preserved in 
estimated NDVI values as well.

Using Morocco again as an example, the relationship 
between the observed and estimated NDVI values was 
much clearer when plotted individually at each growth 
stage as shown in Fig.  6. Despite the large changes in 
NDVI across the season, and the relatively small vari-
ability in NDVI of replicates at each growth stage, there 

was a strong relationship between the observed and esti-
mated values.

In terms of comparison of observed and estimated 
NDVI across varieties, we selected Arrino and Rosella 
variety, each with 4 replicates. Relatively subtle differ-
ences in observed NDVI between the varieties were also 
preserved in the estimated NDVI values as shown in 
Fig.  7. Moreover, the VI variability within a variety was 
found to be preserved relative to the variability between 
varieties.

a

b

Fig. 5 Intra‑variety NDVI variation. a Observed NDVI values, and b 
estimated NDVI values for single row wheat plots of the Morocco 
variety across the growth stages (DaS). The twelve values at each 
growth stage represent independent replicates

a b

c d

e f

g

Fig. 6 Analysis of variety across growth stages. a–g Relationships 
of observed and estimated NDVI for the Morocco variety across the 
growing season. The twelve values for each growth stage represent 
independent replicates.
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An important consideration is the fact that no geno-
type-specific information was considered in learning of 
the estimation models. This helps show the robustness of 
the modeling approach as genotypic variation in growth 
characteristics would be a source of error in the observed 
and estimated NDVI relationships.

Conclusion
The use of RGB cameras and UAVs provide a ubiquitous 
solution for calculating VI for high throughput preci-
sion agriculture. This comes at a cost of an estimate of VI 
rather than actual VI. However, as demonstrated by our 
experiments, the tradeoff minimally affects the reliability 
of measurement. The current study was based on single 
row wheat plants and further analysis will be required to 
evaluate the feasibility of the proposed approach in broad 
acre crops. This could include estimation of the VI image 
of a paddock (instead of the VI of a plot) using an RGB 
image. In addition, the generalization of this approach by 
application to other crops of interest will be of significant 
value.
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Abstract: This study evaluates an aerial and ground imaging platform for assessment of canopy
development in a wheat field. The dependence of two canopy traits, height and vigour, on fertilizer
treatment was observed in a field trial comprised of ten varieties of spring wheat. A custom-built
mobile ground platform (MGP) and an unmanned aerial vehicle (UAV) were deployed at the
experimental site for standard red, green and blue (RGB) image collection on five occasions.
Meanwhile, reference field measurements of canopy height and vigour were manually recorded
during the growing season. Canopy level estimates of height and vigour for each variety and
treatment were computed by image analysis. The agreement between estimates from each platform
and reference measurements was statistically analysed. Estimates of canopy height derived from
MGP imagery were more accurate (RMSE = 3.95 cm, R2 = 0.94) than estimates derived from
UAV imagery (RMSE = 6.64 cm, R2 = 0.85). In contrast, vigour was better estimated using the
UAV imagery (RMSE = 0.057, R2 = 0.57), compared to MGP imagery (RMSE = 0.063, R2 = 0.42),
albeit with a significant fixed and proportional bias. The ability of the platforms to capture differential
development of traits as a function of fertilizer treatment was also investigated. Both imaging
methodologies observed a higher median canopy height of treated plots compared with untreated
plots throughout the season, and a greater median vigour of treated plots compared with untreated
plots exhibited in the early growth stages. While the UAV imaging provides a high-throughput
method for canopy-level trait determination, the MGP imaging captures subtle canopy structures,
potentially useful for fine-grained analyses of plants.

Keywords: unmanned aerial vehicle; mobile ground platform; canopy traits; canopy imaging;
field phenotyping; wheat; height; vigour

1. Introduction

Plant development is observable as changes in a plant’s morphological features, which occur
at specific growth stages. For example, plant development may result in the appearance of new
features such as reproductive organs (i.e., flowers) or a change in the pigmentation of the plant
foliage. Plant growth is not only characterized by an increase in the size of existing plant organs
(elongation and thickness of stems and area of leaves), but also by the emergence of new shoots
of a similar morphological feature (new leaves, new stems), which contribute to the overall increase
in plant vegetative volume [1]. The underlying ability of a plant to grow and develop, steered by
the environment, results in a phenotype that can be traced back to its genotype. One aim of a plant
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phenotyping exercise is to characterize and quantify the relationship between the genotype and the
phenotype as a function of environmental conditions.

Classical phenotyping relies on manual sampling and trait analysis of developing plants to
characterize a plant’s growth and development. This process requires a significant amount of time
and resources. While demanding, manual inspection of plants is feasible on a small scale and
under controlled conditions. However, sampling of plants in a field setting, which usually involves
an enormous number of plant varieties and is subject to significant variations in environmental
conditions (as arise in practical circumstances such as in plant breeding trials), represents an
overwhelming prospect.

Novel image analysis systems are now being designed and implemented to automatically capture
the ensuing morphometric changes in plant traits in the field [2]. State of the art imaging hardware and
image analysis methods have attracted considerable interest from the plant phenotyping community.
This is not only due to their potential of relieving the burden of manual phenotyping, but also the
possibility of objectively quantifying trait characteristics [3]. Land-based phenotyping platforms,
such as the mobile ground platform (MGP) used in this study, are able to capture high resolution
images of plant canopies at close range. The corresponding image analysis software is rapidly
becoming available and reliable [4–6]. In comparison, aerial imaging platforms such as an unmanned
aerial vehicle (UAV), have recently found application in field phenotyping [7,8]. The main advantage
of a UAV is that it can cover larger areas, thus offering high-throughput field capture, albeit with
a trade-off of resolution. Consequently, these platforms are utilized for the assessment of nurseries
and breeder plots [9]. The plot-wise characteristics that are usually targeted for capture are canopy
vigour [10,11], canopy height [12], biomass [13], leaf area [14] or ground cover [15].

Canopy height, defined as the distance between the base of a plant and the highest photosynthetic
tissue, is a gross, but important indicator of a plant’s physical development. Measurement of plant
height using a ruler has long been the traditional approach [12,16,17]. Assessment of plant height
from images is a far more complex process as it necessitates the estimation of depth in physical units;
in discipline terms, a so-called depth map is reconstructed from multiple images of a canopy taken from
slightly different viewpoints. Relevant work in this area has shown that accurate estimates are possible
and indeed preferable given their objectivity and accuracy, compared with manual measurements,
which can be subjective, as well as incomplete [5]. An alternative method, light detection and
ranging (LiDAR), uses an active laser sensor to non-destructively measure canopy height with high
accuracy [17].

The second readily-identifiable trait that communicates plant status at a given stage of
development is canopy vigour. Typically, the physicochemical state of leaf and stem pigmentation
and the density of foliage are major factors that contribute to canopy vigour [10,18]. Indirectly,
vigour can be quantified in terms of a vegetation index (VI), which involves a plant’s calibrated
reflectance at different wavelengths. A vegetation index can be used as a non-destructive substitute
of vigour, assuming it is proportionally related. Although there are some exceptions [19], vegetation
indices are most commonly defined as ratios of differences to sums of reflectance in two or more
bands. For example, the commonly-used normalized difference vegetation index (NDVI) is a ratio
of the difference between the plant’s reflectance in the near-infrared and red bands to the sum of the
reflectance [20–22]. While manual hand-held sensors with infrared capabilities have been used to
measure the reflectance and compute indices on a small scale, high-throughput imaging techniques
are preferable for large-scale studies.

Vegetation indices that can be derived from RGB images [23] include the excess green index
(ExG) [24], the modified hue index [25], which applies the inverse cosine function to a combination of
the red, green and blue (RGB) values, and the green-red vegetation index (GRVI) [26], defined as the
ratio of the difference to the sum of plant reflectance in the green and red channels. Kipp et al. found the
relative amount of green pixels (RAGP) index to be proportional to plant vigour [10]. A recent study
showed that a number of VIs, including ExG and NDVI, did not significantly differ in the ability to
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assess plant vigour [27]. In this study, GRVI has been used to represent and proportionally quantify
plant vigour. The index normalizes for variations in light intensities, has been a tested indicator
of chlorophyll content in several crops and is shown to be positively correlated with traits such as
biomass [28] and leaf area index [29], a quantity related to plant vigour. In this study, images of plant
canopies are captured in the RGB channels, making an RGB-derived index suitable to represent vigour
by both MGP and UAV. While acknowledging that several different indices can be derived from an
RGB image, the rationale for choosing a single index is to compare the attributes of MGP and UAV
image-based estimates of vigour on the same scale.

Close-range images of the field are captured with sensors attached to ground vehicles [6,30–33]
or mobile platforms [5,34,35] for trait estimation. On the other hand, remote images of the field are
captured with sensors attached to aerial platforms [36–39] for trait estimation. Recent studies to
quantify plant canopy development from images either report trait comparisons with reference to
a different sensor technology such as LiDAR [16,40] or compare image-based estimation techniques
with manual methods [5,41]. A comparison of the performance of two imaging methods on the same
field study has hitherto not been reported previously. In this paper, we provide such analysis for
quantitative estimation of phenotyping traits of wheat in a field trial. Our comparative analysis is
both relative and absolute since we have also employed the results of traditional manual methods
of measurement as a benchmark for the MGP and UAV imaging. The analysis is focused on canopy
height and vigour, which are two important plant phenotyping measures.

2. Materials and Methods

2.1. Experimental Design

A field trial to observe the differential growth of wheat with fertilizer treatment was conducted at
Mallala, South Australia (latitude = −34.457062◦ , longitude = 138.481487◦). A set of ten contrasting
varieties (Drysdale, Excalibur, Gladius, Gregory, Kukri, Mace, Magenta, RAC875, Scout, Spitfire) of spring
wheat (Triticum aestivum L.) were selected for the experiment to cover a diverse range of growth
characteristics. Six replicates of each variety were laid out in a 5 × 12 randomized split-block design of
60 plots, as shown in Table 1. Additional plots, not included in the trial, were added to either end of
the rows to attenuate edge effects on the border plots.

Table 1. Randomized split-block design layout of thrice replicated wheat varieties, Vn, n ∈ {1, . . . , 10}.
Shaded blocks were treated with fertilizer.

Row
Col 1 2 3 4 5 Rep

1 V3 V6 V10 V4 V7

12 V8 V2 V5 V1 V9
3 V2 V5 V1 V9 V8
4 V7 V4 V6 V3 V10
5 V9 V1 V10 V6 V8

26 V7 V3 V4 V5 V2
7 V3 V7 V5 V4 V6
8 V9 V10 V2 V8 V1
9 V2 V3 V1 V10 V5

310 V6 V8 V7 V4 V9
11 V8 V7 V10 V1 V4
12 V6 V5 V3 V9 V2

The trial was sown on 8 July 2016 at a seeding rate of 45 g per plot. The plot dimensions were
1.2 m × 4 m, containing 6 rows of wheat with an inter-row spacing of 0.2 m. Three replicates of each
variety were selected for fertilizer application. A top dressing of a standard mix of 16:8:16 N-P2O5-K2O
was applied 35 days after sowing at a rate of 37.5 g m−2. A following top dressing of urea was applied
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62 days after sowing at a rate of 4.3 g m−2. The remaining three replicates of each variety served as
controls and received no fertilizer treatment.

2.2. Image Data Collection and Analysis

Comparative data collection was performed five times between August and November of
2016 (see Table 2). MGP imaging was conducted following manual measurement of plant heights,
whereas UAV imaging was conducted following manual measurement of canopy vigour. For practical
reasons (e.g., adverse weather conditions), MGP and UAV could not always be deployed for image
collection on the same day. However, imaging sessions differed by at most four days, in most cases
fewer (see Table 2). The difference resulted in the unavailability of height reference measurements
on some days of UAV imaging and vigour reference measurements on some days of MGP imaging.
This limitation was addressed by linearly interpolating reference data taken on days immediately prior
to and subsequent to the days of missing data. Such an approach was considered appropriate for the
analysis since reference measurements were always available within a range of less than four days.

Table 2. The phenological development stage (BBCH-scale) of wheat and the respective days on which
images and reference data were collected. I: interpolated, A: actual, N: not available.

t Stage (BBCH-Code) MGP Date (Height, Vigour) UAV Date (Height, Vigour)

1 stem elongation (34) 23/09/16 (A, I) 19/09/16 (I, A)
2 (37) 07/10/16 (A, A) 07/10/16 (A, A)
3 anthesis (63) 28/10/16 (A, I) 26/10/16 (I, A)
4 grain development (77) 08/11/16 (A, I) 09/11/16 (I, A)
5 senescence (92) 18/11/16 (A, N) 18/11/16 (A, N)

2.2.1. MGP Imaging and Canopy Trait Estimation

Our MGP imaging system consisted of two identical EOS 60D digital SLR cameras (Canon Inc.,
Tokyo, Japan) with a resolution of 18.1 megapixels, synchronized to capture images within 1 ms of
each other by means of an electronic trigger. The cameras were mounted on a custom-built wagon,
20 cm apart on a central overhead rail, 1.90 m above ground level. The platform was manually driven
to a stop at three equidistant positions in each plot to capture images of its entire area. By fixing the
camera positions relative to a plot, subsequently captured images of the same plot automatically fell
into coarse alignment. Cameras were adjusted to focus at a depth of 2 m in the early growth stages
and 1.5 m at later stages to capture sharp images of canopies with growth. The remaining camera
settings were as follows: focal length: 18 mm; aperture: f/9.0; ISO: automatic; and exposure: 1/500 s.
The arrangement of MGP imaging system is shown in Figure 1a.

A ColorChecker Passport Photo (X-Rite Inc., Grand Rapids, MI, USA) calibration target was used
as a basis for colour correction. The calibration target was attached to the base of the platform such that
it was always visible from the perspective of one camera as described in Appendix C. Colour calibration
was performed on all images according to the method proposed in [41]. Field imaging was carried out
between 23 September 2016 and 18 November 2016 inclusive (see Table 2).

The acquired stereo image pairs were processed to reconstruct the depth of the plot canopy.
Firstly, the lens distortion was corrected by taking advantage of the calibration images from the locally
flat ground (i.e., no additional calibration was applied or indeed needed). A given stereo pair of
cameras was positioned with optical axes aligned in one plane. If the lenses of the stereo cameras
were undistorted and the plane of the camera sensors was parallel to the ground plane, the distance
between any two key points on the flat ground (plane) would be the same in the stereo pair of two
images. By taking advantage of this, we can estimate the lens distortion parameters. Then, a pixel-wise
matching technique was used to estimate the distance between corresponding points in the image
pair [42]. In this approach, the estimation of a depth image relied on reference data in the form of
the camera focal length and the physical distance between the two cameras. An approximate ground
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sampling distance (GSD) of 0.04 cm per pixel was achieved in the processed images. A detailed
description of the procedure is provided in [5].

The height distribution of plant tissues within a plot, i.e., the frequency of occurrence of plant
material at a given height above ground level was computed from the depth images that were
derived using the above-mentioned procedure. A sample graph of the height distribution is provided
in Figure A3. Overall canopy height, as presented in the analysis to follow, was defined as the
98th percentile of the canopy height distribution of a plot (refer to Appendix B for details on
percentile selection).

Vigour per plant pixel, computed separately from the colour-calibrated images, is defined as the
ratio of the difference in plant reflectance in green and red channels to the sum of the reflectance,

vigour ∼ GRVI =
Green− Red
Green + Red

(1)

The value of this quantity, averaged over the three RGB images per plot, was used as a representative
measure of plot canopy vigour.

2.2.2. UAV Imaging and Canopy Trait Estimation

Our UAV imaging system was a 3DR Solo quadcopter (3D Robotics Inc., Berkeley, CA, USA) with
a RX100 III Compact Digital Camera (Sony Corp., Japan) as the payload giving an effective image
resolution of 20.1 megapixels. Flights were planned using the open source ground control station
software, Mission Planner (ArduPilot), which directed the UAV to follow a preprogrammed path based
on the geographical coordinates of the site as shown in Figure 1c. The camera was set to automatically
capture snapshots every 2 s during flight at an altitude of 30 m, which resulted in an image-overlap
of more than 80%. Five imaging sessions were conducted from 19 September 2016–18 November
2016, inclusive (see Table 2). A standard reflectance panel (MicaSense Inc., Seattle, WA, USA) was
photographed before each flight for radiometric calibration of the images. Colour images were stored
as compressed JPEG files.

Inaccuracies in location estimates provided by the GPS receiver onboard the UAV contributed
to an uncertainty in the global alignment of orthomosaics captured at different times. To overcome
this deficiency, square panels, termed ground control points (GCPs), were used to provide a location
reference. A total of four such GCPs were consistently placed at fixed field locations before each
imaging session. This facilitated alignment and scaling of the orthomosaics over the whole season.

UAV images acquired in a given session were processed offline using the professional
photogrammetry software Pix4Dmapper v4.0 (Pix4D, Lausanne, Switzerland). The processing
comprised three main steps for 3D canopy reconstruction using the structure from motion (SfM)
technique [43]. Initially, ‘keypoints’ were automatically computed from original images. Keypoints
refer to visual features of interest that can be detected reliably in images taken from different
perspectives. These points were matched across all the images to estimate camera position, orientation
and internal camera parameters. The original images were corrected for any lens distortion using
a camera calibration model [44]. In the second step, matched keypoints were triangulated to create
a dense three-dimensional point cloud. In the final step, the following raster images were output as
TIFF files:

• Height map (also known as a digital surface model): Elevation (in cm) of the mapped surface
generated by interpolating the point cloud.

• Terrain map (also known as a digital terrain model): Elevation (in cm) of the mapped terrain
excluding any above-ground features (e.g., plants). This output was visually assessed and
confirmed to have filtered out the plants within each plot.

• Reflectance map: A colour-calibrated image generated by projecting ortho-rectified images
onto the height map. This output is colour calibrated using pixel values of the radiometric
calibration target.
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(a)

(b) (c)

Figure 1. (a) The MGP with stereo imaging cameras and calibration target. (b) The UAV with the
camera payload. (c) A perspective view of the trial site with ground control points magnified as insets.
The red broken line shows the aerial path taken by the UAV.

The output images resulted in an average GSD of 0.8 cm. The software uses manually-marked
locations of each GCP in six to eight images in order to register (position and scale) the output images
at different times. Spatial analysis of the trial was performed by importing the reflectance, height
and terrain images into MATLAB R2017b (Mathworks Inc., Natick, MA, USA). A rectangular lattice,
sized and spaced according to the plot dimensions, was interactively overlaid on the reflectance
image to establish the region of interest. The height distribution within the bounds of the region of
interest of a plot relative to the ground, was computed by subtracting the terrain map from the height
map. The canopy height was designated as the 98th percentile of a plot’s height distribution. Vigour,
defined by Equation (1), was computed per pixel within the region of interest from the reflectance
map. The average of this quantity taken over all plot pixels was used as a representative of plot
canopy vigour.

2.2.3. Ground Reference of Canopy Traits

A total of 300 height observations were recorded for the 60 plots on five occasions during the
growing season concurrent with the MGP imaging days (see Table 2). Canopy height was manually
measured using a meter rule with markings every cm. A measurement was taken by placing the
ruler vertically inside a plot and reading the ruler at the top of the canopy. Multiple locations within
each plot were sampled and averaged to get a single representative measure of the canopy height
of a plot. During the early stages of plant growth, when spikes were not present, canopy height
measurement related to the leaves only. Later, when flag leaves and spikes appeared, these features
were also included in the measurements. That is, plant height was defined (and recorded) to be at the
top of the level of the spike layer; awns, if any were present, were excluded from the measurements.

A total of 240 vigour observations were recorded for the 60 plots on four occasions during the
growing season concurrent with the UAV imaging days (Table 2). A GreenSeeker hand-held crop
sensor (Trimble Inc., Sunnyvale, CA, USA) was used to record the reference measure of canopy
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vigour. GreenSeeker is an active optical sensor that quantifies plant vigour using the NDVI ratio,
(NIR − red)/(NIR + red). A continuous longitudinal sweep of the sensor at a constant height above
a plot gave a representative measure of canopy vigour. The theoretical range of sensor measurement
was (0.00–0.99); a higher value indicated greater vigour, and a lower value indicated less vigour.
The observed range of reference canopy vigour of wheat plants in this trial was found to be (0.30–0.80).
Although we have shown elsewhere that NDVI can be closely estimated by RGB images [45], it is
inherently different from the GRVI derived from RGB images reported in this study. This difference
must be borne in mind in the comparison that follows.

2.3. Statistical Analysis

All statistical analyses were performed using the Statistics and Machine Learning Toolbox
of MATLAB R2017b (Mathworks Inc., Natick, MA, USA). Canopy traits estimated from the UAV
and MGP imagery were compared to the reference manual measurements using the ordinary least
squares regression model with a linear and constant term. The p-value of the estimated model
coefficients was derived from the t-statistics and tested against a significance level of 0.05. The goodness
of fit was assessed in terms of the coefficient of determination (R2) and root mean squared error
(RMSE). A significant fixed bias was found if the 95% confidence bounds of the estimated coefficient
(intercept) did not contain 0. A significant proportional bias was found if the 95% confidence
bounds of the estimated coefficient (the slope) did not contain 1. All errors were assumed to follow
a normal distribution.

Descriptive statistics of the estimated canopy traits were summarized using box and whisker
plots. The central line of a box corresponds to the median, and the lower and upper edges correspond
to the first and third quartile, respectively. The whiskers extend to the extreme inlier points, and
the outliers are plotted as ‘+’. The medians are significantly different at α = 0.05, if their notches do
not overlap.

3. Results

3.1. Comparison of MGP and UAV Estimated Canopy Height

The canopy height estimates of all plots derived from UAV and MGP images are compared
against reference ruler measurements in Figure 2a,b. Canopy height estimates from MGP imagery had
a better overall fit (RMSE = 3.95 cm, R2 = 0.94) with manual measurements, compared with estimates
derived from UAV imagery (RMSE = 6.64 cm, R2 = 0.85). The 95% confidence bounds of the regression
coefficients confirmed a 12.8-cm fixed bias in heights estimated by MGP imaging and a 4.6-cm fixed
bias in heights estimated by UAV imaging. Both MGP and UAV imaging methodologies contained
a significant proportional bias, which resulted in an underestimation of canopy height.

Height estimates relevant to different time points (growth stages) were also analysed in order to
assess if there was a significant variation in estimation accuracy over time. Figure 2c shows that MGP
imaging resulted in median errors closer to zero in the early growth stages t1 and t2. UAV imaging,
however, consistently underestimated canopy heights at all time points.

With regard to the effect of fertilizer treatment, we demonstrate in Figure 3a,b that the median of
canopy heights of plots in the group of treated plots was significantly higher than the heights of plots
in the control group, across all five time points. This effect has been captured by both the MGP and
UAV imaging system. Thus, although UAV imaging generally gave rise to greater errors (relative to
the reference manual measurements), the relative difference in canopy heights between treated and
untreated plots was reliably captured.

The results shown in Figure 3a,b distinguish treated plots from control plots, but otherwise collate
results for the different varieties. A more detailed picture, as captured by the MGP imaging system,
is shown in Figure 3c, which depicts the progressive growth difference due to fertilizer treatment for
individual varieties. For each variety, the graph was drawn from the average canopy height over
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three replicates of treated plots minus the average canopy height over three replicates of control plots.
As expected, there was a positive margin in the heights of fertilized and unfertilized plots, for most
varieties. Note that a steep descent in growth difference of the Magenta variety from t3–t4 could be
traced back to an erroneous estimate of height by MGP imagery.

t
1

t
2

t
3

t
4

t
5

0 20 40 60 80 100 120

reference height (cm)

0

20

40

60

80

100

120

o
b
s
e
rv

e
d
 h

e
ig

h
t 
(c

m
)

MGP imaging

Fit: y = 0.74x+12.78

95% conf. bounds

RMSE = 3.50, R2 = 0.94

(a)

t
1

t
2

t
3

t
4

t
5

0 20 40 60 80 100 120

reference height (cm)

0

20

40

60

80

100

120

o
b
s
e
rv

e
d
 h

e
ig

h
t 
(c

m
)

UAV imaging

Fit: y = 0.79x+4.58

95% conf. bounds

RMSE = 6.64, R2 = 0.85

(b)

M
G

P

U
A

V

M
G

P

U
A

V

M
G

P

U
A

V

M
G

P

U
A

V

M
G

P

U
A

V

time

-40

-30

-20

-10

0

10

e
rr

o
r 

(c
m

)

t
1

t
2

t
3

t
4

t
5

(c)

Figure 2. Regression analysis of canopy height estimates for (a) MGP imaging and (b) UAV imaging,
relative to reference heights. (c) Distribution of height estimation errors with time, tn.

We note the characteristic shape of most growth difference curves, which plateau around t3,
the post-anthesis stage of development. Thereafter, there is a minimal difference in plant height for
most varieties except for Gregory, Drysdale and Kukri, which maintain a differential height until
maturity. The differences between like-treated varieties are subtle and may require a more detailed
examination than can be discussed here. Of particular relevance to these observations is the fact that
the MGP-based methodology is able to quantitatively capture the temporal change, as well as the
differences between the heights of the treated and untreated plots of the same variety.
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Figure 3. Canopy heights of treated and control plots at time point tn as derived from (a) MGP imaging
and (b) UAV imaging. The data shown summarize the results over the 60 plots: 10 varieties and three
replicates for each treatment. (c) Difference between average canopy height of treated and untreated
plots of each variety derived from MGP imagery (time axis scaled to actual duration).

3.2. Comparison of MGP and UAV Estimated Canopy Vigour

Canopy vigour of all plots derived from MGP and UAV imagery is compared to reference
hand-held sensor measurements in Figure 4a,b. In contrast to the situation with height estimates,
the linear regression models associated with canopy vigour estimates by UAV imaging had slightly
better agreement with reference measurements (RMSE = 0.057, R2 = 0.57) than did estimates based on
MGP imaging (RMSE = 0.063, R2 = 0.42). The 95% confidence limits of regression coefficients suggested
a statistically-significant fixed and proportional bias in both MGP- and UAV-derived vigour estimates.

Vigour estimation analysed at different time points (Figure 4c) revealed a significant difference
between the median error of estimates provided by MGP imaging and UAV imaging, except at t2.
The median errors appear to be relatively lower using UAV imaging, which is consistent with the
above finding, and particularly so at the later time points (t3 and t4).
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Figure 4. Regression analysis of canopy vigour estimates for (a) MGP imaging and (b) UAV imaging,
relative to reference vigour. (c) Distribution of vigour estimation errors with time, tn.

An analysis of the effect of fertilizer application (Figure 5a,b) suggested significantly higher
median canopy vigour in the treated plots at the first two time points (t1 and t2). The margin of median
vigour between treated and control plots was higher as captured by UAV imaging in comparison
to MGP imaging. Moreover, the variance within each group was lower in the case of UAV imaging
compared with MGP imaging. The difference between median vigour values of the treated and control
plots diminished with time and all but disappeared by the mature time points (t4 and t5), at which
point a significant degree of senescence appears and becomes a dominant feature of the canopies.
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Figure 5. Canopy vigour of treated and control plots at time point tn as derived from (a) MGP imaging
and (b) UAV imaging. The data shown summarize the results over the 60 plots: 10 varieties and
three replicates for each treatment. (c) Difference between average canopy vigour of treated and
untreated plots of each variety derived from UAV imagery (time axis scaled to actual duration).

To complement the analysis summarized in Figure 5a,b, we show the differential development
of vigour in different treatments of individual varieties as captured by the UAV imaging system in
Figure 5c. For each variety, the graph was drawn from the average canopy vigour over three replicates
of treated plots minus the average canopy vigour over three replicates of control plots. We note the
characteristic shape of the differential vigour growth curves, which decayed after t2, the elongation
stage of development. As in the case of canopy height, canopy vigour of varieties demonstrated
different degrees of margin between treatments, with the differences becoming negligible (or negative)
as the canopies degrade with increased senescence (t4 and t5). The greatest difference in canopy
vigour between fertilized and unfertilized plots was observed at time point (t2), which approximately
concluded the major rainfall period of the season. Provided the canopy vigour estimates were not
reliable after t3, a ∆vigour < 0 may have been attributed to a delayed senescence of untreated plots of
some varieties than treated plots. For example, Kukri had ∆vigour < 0 at t4, but close to zero at t5. It is
possible that other varieties also reached ∆vigour = 0 at a later point when both treated and control
plots were fully senesced. Overall, UAV imaging was able to quantitatively capture the temporal
changes in vigour significantly up to t3 at the least, as well as the differences between the vigour of the
treated and untreated plots of the same variety.
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It is important to visually highlight the key differences in the quality of MGP and UAV images,
and their derived height and vigour maps, respectively, for trait estimation. Figure 6 shows sample
RGB, height and vigour images of a plot as derived from MGP and UAV imaging at two contrasting
times of growth, t2 and t4. Note the clarity of plant leaves in the MGP image, and its corresponding
height and vigour are accurately captured over time. Conversely, the RGB image captured by UAV
at t4 is of relatively poor quality compared to the same at t2, which also translated into poor quality
trait images. In general, the UAV-derived trait images barely contain as detailed information as the
MGP-derived trait images. However, they are still able to provide reasonable overall estimate of
traits from the noisy, but complete information of a plot. Similar results were obtained with reduced
resolution MGP images, details of which can be found in Appendix A.
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Figure 6. RGB, height and vigour of a wheat plot at time t2 and t4 derived from MGP imaging (top)
and UAV imaging (bottom). For the purpose of visualization, the illustrated MGP images are a result
of stitching the three partial images per plot using Image Composite Editor (Microsoft) software.

4. Discussion

Holman et al. [16] presented a study that addressed questions similar to those posed here,
despite in comparison to a different land-based platform. In combination, the two studies are useful
in establishing comparative benchmarks for field phenotyping with UAV and MGP technologies
and methodologies. The scope covered by the two works not only includes a diverse set of wheat
varieties (25 in [16] and 10 in this study), but also a greater range of climates, weather and (sun)
lighting conditions. Consequently, the findings of these studies, in terms of the correlation between
UAV imaging estimates of height and vigour, add support to the common conclusion of the two.
From a broader perspective, our findings are consistent with those of [16] in terms of a favourable
comparison of heights derived from UAV images with rule measurements, as well as the correlation
with treatment.

A distinct advantage of the MGP imaging system is its ability to provide high resolution images
of plots. Indeed, the high resolution not only allows for a greater degree of accuracy for the overall
analysis of plots, it also offers the possibility of characterizing structure within the canopy. Plant leaves
as a function of height can be distinguished from the terrain allowing for a detailed description of leaf
density distribution and related leaf vigour distribution, as well as an accurate estimation of canopy
height and overall canopy vigour that have been featured here. On the former note, leaf height and
vigour distributions can be used to the advantage of more accurate estimation of canopy coverage.
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Moreover, a colour analysis with leaf depth distribution can facilitate assessment of the onset and
progression of senescence through a canopy. Furthermore, the accuracy of plant segmentation can
be improved by utilizing the combination of pixel height and colour information as a determinant
to distinguish desired plant objects from surrounding mosses and weeds. The major disadvantage
of MGP phenotyping is the limited spatial domain that can be covered within a reasonable period
of time and with a reasonable demand on labour. In contrast, the main advantage of UAV-based
phenotyping is its high-throughput capability. Excluding setup time, on average, it took 3 min for
UAV imaging of the trial (~20 plots per min) compared to 30 min for MGP imaging (~2 plots per min).
A major limitation though is its lower spatial resolution, which may need consideration by the end-user
depending on any further information sought from the images. Here, we focused on canopy height
and canopy vigour, which can be captured by the UAV system with a reasonable accuracy.

The technical differences between the image processing methodologies also affect the accuracy
of trait estimates. Multi-view stereo was used to reconstruct the three-dimensional structure from
synchronously-captured field images taken with the MGP. In contrast, the SfM technique was used to
reconstruct three-dimensional information from time-lapse UAV images. The SfM technique assumes
a stationary scene relative to the camera position. In practice, however, a completely stationary
scene is rarely possible to achieve in the field as plants are susceptible to deformation (bending and
twisting) through the action of wind. Since height estimates were obtained from depth maps, a few
examples revealed that anomalies could be traced back to poor surface reconstruction of the plot
canopy. The percentile rank of elevation in affected plots was much different than the reference
elevation. Hence, the accuracy of height estimates based on UAV images was inferior to that of the
MGP system, which demonstrated a greater reliability in noisy conditions (see also the discussion on
structure from motion in [16]). Another differentiating feature is that aerial images are orthorectified,
i.e., geometrically corrected to present a uniform scale, and mosaicked, i.e., multiple aerial images are
joined together to form one large image. Canopy vigour, however, was relatively less affected by the
surface reconstruction errors since it was dependent on average VI reflectance per plot.

It would be fair to say that the results of this study have substantiated canopy height and canopy
vigour as relevant quantitative traits to capture and assess plot growth and health and their respective
dependencies on treatment, as well as genotype. For instance, the median canopy heights of all
treated plots increased at a higher rate than did those of the control plots up until maturity. Similarly,
the treated canopies exhibited greater vigour compared to the control plots, although predominantly in
the early stages of growth; the significant differences in vigour diminished with the onset of senescence
as plants grew into maturity. At the level of individual varieties, the MGP imaging system accurately
captured the different growth rates of the ten varieties, both treated and untreated, using canopy
height as a quantitative measure, while the UAV imaging system best captured the differing degrees
to which the varieties exhibited vigour. The slightly better agreement of manually-measured canopy
heights with the MGP-based estimates can be attributed to two issues: the higher resolution of MGP
imagery and its superior 3D reconstruction methodology and, conversely, the lower resolution of UAV
imagery and its inferior 3D reconstruction by SfM due to the non-stationarity of plants.

Given the brevity of time between manual height measurements and UAV imaging of the field, it is
unlikely that significant errors in the comparison were introduced by the interpolation of measurements.
On the other hand, the interpolation of manually-conducted GreenSeeker measurements is more likely
to be a contributing factor to the less accurate agreement of MGP-based estimates of vigour compared
with UAV-based estimates. It is arguably the case that a plant’s GreenSeeker values can exhibit a greater
variation over a shorter period of time in response to a locally changing environment. Finally, it should
be remembered that while correlated, our definition of vigour is fundamentally different from the
definition of the NDVI detected by the GreenSeeker sensor. This difference may also be a contributing
factor to its lower correlation with image-based vigour measurement by both MGP and UAV imaging
systems [29].
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Continuous monitoring of crop growth using imaging systems with geospatial information is
key to many applications in precision agriculture [46,47]. Of particular significance is the monitoring
of canopy height and canopy vigour, which are two good indicators of crop growth. The results
presented here not only confirm that these traits can be used to analyse crop responses to changes in
treatment, but also prove that these indicators can be reliably obtained either by MGP or UAV imaging.
Analysis of the crop growth as a function of interactions with soil and environmental conditions can
subsequently provide customized management plans for farmers to maximize yield [48].

5. Conclusions

In this study, we employed UAV and MGP imaging to quantify two canopy traits, height and
vigour, for a wheat field trial featuring ten wheat varieties and two treatments. The estimates derived
from UAV images and MGP images were validated through a comparison with corresponding manual
reference measurements of the traits taken over the course of the season. MGP imaging was found
to provide better estimates of height using high resolution images of plot canopy. UAV imaging was
found to provide better estimates of canopy vigour. Canopies treated with fertilizer were observed to
grow taller, throughout the season, compared to untreated canopies. Treated canopies were observed
to exhibit greater vigour than untreated canopies in the early stages of growth, whereas no significant
difference could be detected at later stages. Both UAV and MGP imaging and analysis methods were
sufficiently accurate to quantify these features.

Field phenotyping is challenging from a number of perspectives. Determining the most appropriate
system depends on the application. UAV imaging is a fast and efficient means of covering a large area
of land in a short time and is sufficiently accurate for canopy-wide trait estimation. MGP imaging is
potentially low-throughput (depending on the platform used) and more labour intensive. However,
it can capture detailed canopy structure with high fidelity, which offers the potential for trait analysis
at the plant level.
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ExG Excess green index
LiDAR Light detection and ranging
GSD Ground sampling distance
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Appendix A

A major difference in resolution of MGP and UAV systems is expected to affect the accuracy
of trait estimates. For a comparison and determination of scale-related effects, we downscale the MGP
images to the same resolution (GSD) as the UAV images. We then re-estimated the traits using these
low resolution MGP images. The results of regression analyses of canopy height and vigour from
reduced resolution MGP images relative to manual reference observations are presented in Figure A1.
As could be expected, the results show that the estimates of the height are less accurate.

As evident from Figure A2, a significant amount of detail in the canopy is missing in reduced
resolution MGP images, which are comparable to the resolution of UAV images. However, due to the
advantage of multi-view stereo reconstruction, canopy structure is still more detailed in MGP images
compared to those deduced from the corresponding UAV images.
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Figure A1. Regression analysis of the canopy trait estimates using reduced resolution MGP images for
(a) height and (b) vigour, relative to reference traits.
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Figure A2. Reduced resolution RGB, height and vigour of the wheat plot in Figure 6 derived from
MGP imaging. For the purpose of visualization, the illustrated MGP images are a result of stitching the
three partial images per plot using Image Composite Editor (Microsoft) software.

Appendix B

We analyse the height distribution histograms obtained from the MGP and UAV images of the
same sample plot on the same day (t2) in Figure A3. Observe how the MGP image-derived histogram
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depicts a detailed height variation from the ground to the top of the canopy. The UAV image-derived
histogram conveys less detail, but still captures useful information of the canopy top, which allows for
a reasonable estimation of height.
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Figure A3. Height distribution histogram of plants of a single plot derived from (a) an MGP image
and (b) a UAV image.

A percentile rank must be selected for the determination of a representative value of canopy
height from the height distribution histograms. For this purpose, we sought a range of percentiles
from 95–99.5 and found the minimum error between reference and observed heights of MGP images
at t1. Figure A4 shows the error, i.e., the mean absolute difference between the reference and observed
heights at each percentile.
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Figure A4. Error between the reference and observed heights from MGP imaging. Data points are the
mean ± standard deviation of all plots at t1.

The error was found to be minimum at 98%, and the same percentile was used for canopy height
estimation from the histograms obtained from UAV images.
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Appendix C

Figure A5. A sample rectified stereo image pair captured by the MGP system.
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