
ACCEPTED VERSION 

 

Stella A. Child, Kate L. Flint, John B. Bruning, Stephen G. Bell 
The characterisation of two members of the cytochrome P450 CYP150 family: 
CYP150A5 and CYP150A6 from Mycobacterium marinum 
Biochimica et Biophysica Acta - General Subjects, 2019; 1863(5):925-934 
 
© 2019 Elsevier B.V. All rights reserved. 
 

This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Final publication at http://dx.doi.org/10.1016/j.bbagen.2019.02.016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/119813 

 

 

 

 

PERMISSIONS 

https://www.elsevier.com/about/our-business/policies/sharing 

Accepted Manuscript 

Authors can share their accepted manuscript: 

 [12 months embargo] 

After the embargo period  

 via non-commercial hosting platforms such as their institutional repository 
 via commercial sites with which Elsevier has an agreement 

In all cases accepted manuscripts should: 

 link to the formal publication via its DOI 
 bear a CC-BY-NC-ND license – this is easy to do 
 if aggregated with other manuscripts, for example in a repository or other site, be 

shared in alignment with our hosting policy 
 not be added to or enhanced in any way to appear more like, or to substitute for, 

the published journal article 

 

19 June 2020 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.bbagen.2019.02.016
http://hdl.handle.net/2440/119813
https://www.elsevier.com/about/our-business/policies/sharing
https://www.elsevier.com/about/our-business/policies/hosting


The characterisation of two members of the cytochrome P450 CYP150 family: 

CYP150A5 and CYP150A6 from Mycobacterium marinum 

Stella A. Child1, Kate L. Flint1, John B. Bruning2, and Stephen G. Bell1*  

 

1Department of Chemistry, University of Adelaide, SA 5005, Australia  

2School of Biological Sciences, University of Adelaide, SA 5005, Australia 

* To whom correspondence should be addressed.  

Stephen G. Bell (stephen.bell@adelaide.edu.au)  

 

Highlights 

- Two Mycobacterium marinum cytochrome P450s of the CYP150A subfamily were 

characterised 

 

- CYP150A5 binds a broad range of terpenoids and selectively oxidised β-ionol 

 

- CYP150A6 binds a narrower range of substrates and was structurally characterised to 

1.5 Å  

 

- Members of the CYP150A subfamily were discovered across many bacteria, 

including in pathogens 

 

- Azole inhibitors that bind with different affinities to CYP150A5 and CYP150A6 were 

identified 

  



Abstract 

Background  

Actinobacteria, including the Mycobacteria, have a large component of cytochrome P450 

family monooxygenases. This includes Mycobacterium tuberculosis, M. ulcerans and M. 

marinum, and the soil-dwelling M. vanbaalenii. These enzymes support hydroxylation of 

CH bonds and have important roles in natural product biosynthesis.  

Methods 

Two members of the bacterial CYP150 family, CYP150A5 and CYP150A6 from M. 

marinum, were produced, purified and characterised. The substrate ranges of both enzymes 

were analysed and the monooxygenase activity of CYP150A5 was reconstituted using a 

physiological electron transfer partner system. CYP150A6 was structurally characterised by 

X-ray crystallography. 

Results  

CYP150A5 was shown to bind various norisoprenoids and terpenoid. It could regioselectively 

hydroxylate β-ionol. The X-ray crystal structure of substrate-free CYP150A6 was solved to 

1.5 Å. This displayed an open conformation with short F and G helices, an unresolved F-G 

loop and exposed active site pocket. The active site residues could be identified and important 

variations were found among the CYP150A enzymes. Haem-binding azole inhibitors were 

identified for both enzymes.  

Conclusions 

Substrates were identified for CYP150A5. The structure of CYP150A6 will facilitate the 

identification of physiological substrates and the design of better inhibitors for members of 

this P450 family. Based on the observed differences in substrate preference and sequence 

variations among the active site residues, their roles are predicted to be different. 

General Significance  



Multiple CYP150 family members were found in many bacteria and are prevalent in the 

Mycobacteria including several human pathogens. Inhibition and structural data are reported 

here for these enzymes for the first time.  
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Abbreviations 

2xYT, 2 x concentration yeast extract tryptophan broth; CYP or P450, Cytochrome P450 

enzyme; DTT, dithiothreitol; EMM, Esherichia coli minimal media; FAD, flavin adenosine 

dinucleotide; FdR, ferredoxin reductase; Fdx, ferredoxin; GC-MS or MS, gas-

chromatography mass spectrometry or mass spectrometry; IPTG, Isopropyl β-D-1-

thiogalactopyranoside; LB, Lysogeny broth (also known as Luria or Lennox Broth), 

NAD(P)H reduced nicotinamide adenine dinucleotide (phosphate); PDB, Protein Data Bank; 

PDR, phthalate dioxygenase reductase; RT, retention time; SOC, Super Optimal broth with 

Catabolite repression. 

  



1. Introduction 

Cytochrome P450s (CYP or P450) are a family of haem monooxygenase enzymes. They act 

with a conserved mechanism to selectively insert an oxygen atom from molecular dioxygen 

into a carbon-hydrogen (C-H) bond of the substrate, forming an alcohol product [1]. Various 

CYP enzymes have also been found to catalyse other oxidation reactions, such as 

epoxidation, sulfoxidation, decarboxylation, hydrogenation, and carbon-carbon bond 

formation [2]. The catalytic cycle of the enzymes requires the transfer of electrons, ultimately 

derived from NADH or NADPH, to the haem via electron transfer proteins. Bacterial CYPs 

most frequently utilise a two component electron transfer system, comprised of an iron-sulfur 

ferredoxin and a FAD-containing ferredoxin reductase, which is termed a Class 1 system [3]. 

In a given genome, the number of genes tends to decrease in the order CYP > ferredoxin > 

ferredoxin reductase [4, 5]. The reconstruction of the native electron transfer chain for a 

given CYP enzyme is often required for optimal activity, as individual CYPs are often highly 

selective for a preferred ferredoxin [6, 7].  

In humans, CYP enzymes are responsible for a large proportion of drug interactions 

but they are also widely found across plants, bacteria and fungi, performing both anabolic and 

catabolic roles [8, 9]. Due to their diversity, CYP enzymes are categorised into families, 

given a number, and sub-families, given a letter code, based on sequence similarities [10]. 

Members of the same family share >40% sequence identity, while sub-family members share 

>55%. Above 80% identity is sufficient for two enzymes to share a name. Bacterial CYPs 

have generally been investigated either as inhibition targets in pathogenic species, or as 

biocatalysts, as they frequently catalyse the formation of synthetically valuable compounds 

[9]. Functionalisation of C-H bonds is particularly difficult to achieve by chemical methods, 

often requiring harsh conditions and resulting in poor selectivity. In contrast, CYPs often 



display very high selectivity of oxidation, and regio- and stereo- selectivity in product 

formation is widespread [11].  

Mycobacterium tuberculosis, the pathogen responsible for human tuberculosis, has 

been the target of ongoing drug development efforts as increasing levels of resistance to first 

and second-line anti-tuberculosis drugs is seen globally [12]. There are 20 CYP enzyme 

encoding genes in Mycobacterium tuberculosis, several of which have been found to be 

essential for cell function or infectivity in the pathogen [13-15]. One of these, CYP121A1, 

which forms a carbon-carbon bond in the cyclic dipetide cyclo(l-Tyr-l-Tyr) has been subject 

to targeted inhibitor design [16-18]. Another, CYP128A1 has been implicated in virulence 

via the mediation of the metabolite sulfomenaquinone [19]. CYP125A1 and CYP142A1 are 

together necessary for M. tuberculosis cholesterol breakdown [20, 21]. In many other 

Mycobacterium species, the number of cyp genes is higher [22, 23]. The human pathogen 

Mycobacterium ulcerans, which causes the Buruli ulcer common in tropical areas of West 

Africa and Australia, has 24 while Mycobacterium marinum, a marine pathogen capable of 

opportunistic infection of humans, has 47 cyp genes [24, 25]. The lower number of CYPs in 

M. ulcerans and M. tuberculosis is thought to be caused by reductive evolution as they 

specialised towards pathogenicity [22-24]. M. marinum, in contrast to the two human 

pathogens, retains its ability to survive outside the host and is hypothesised to resemble the 

most recent common ancestor of M. tuberculosis and M. ulcerans, with which it shares a high 

degree of sequence identity (97% and 85%, respectively) [25]. Study of the CYP complement 

of M. marinum offers the understanding of the role and function of the additional CYPs, and 

hence the altered metabolism of the more pathogenic strains [26]. In addition, the CYPome of 

M. marinum is accompanied by a greater number of ferredoxins, with 12 single cluster 

containing species being associated with CYP enzymes in the genome [27]. Only three of 

these are retained in M. tuberculosis, while M. ulcerans retains seven.  



M. marinum M contains two members of the CYP150 family, CYP150A5 and 

CYP150A6, which are the fifth and sixth members of the same sub-family. An analogue of 

CYP150A6 is present in M. ulcerans Agy99, but neither enzyme is conserved in M. 

tuberculosis. Other members of the CYP150 family have been identified in Mycobacteria 

including in M. vanbaalenii PYR-1 (CYP150A7). This enzyme has been characterised as 

having the potential to oxidise polycyclic aromatic hydrocarbons and is therefore of interest 

for its potential application in environmental remediation [28]. The CYP150A5 gene is 

beside a ferredoxin gene in the genome, and we have previously reported the enzyme is able 

to hydroxylate the fragrance compound β-ionone when coupled with a native electron transfer 

chain [27]. Here we report the biochemical and structural characterisation of the two enzymes 

CYP150A5 and CYP150A6 to gain insight into their function in the bacterial kingdom.   

  



2. Experimental 

2.1 General 

All organic substrates, derivatisation agents and other general reagents, except where 

otherwise noted, were purchased from Sigma-Aldrich, Alfa-Aesar, VWR International or 

Tokyo Chemical Industry. Antibiotics, detergents, DTT and IPTG were from Astral 

Scientific. The media for cell growth and maintenance (LB, 2xYT, SOC, EMM and trace 

elements) were prepared as reported previously [26, 29]. Antibiotics were added to the 

working concentrations listed here; ampicillin, 100 µg mL1
 and kanamycin, 30 µg mL1. 

UV-Visible spectra were recorded on a Varian Cary 5000 at 30 ± 0.5 °C. GC-MS 

analysis was performed using a Shimadzu GC-17A equipped with a QP5050A MS detector 

and DB-5 MS fused silica column (30 m x 0.25 mm, 0.25 µm) or a Shimadzu GC-2010 

equipped with a QP2010S GC-MS detector, AOC-20i autoinjector, AOC-20s autosampler 

and DB-5 MS fused silica column (30 m x 0.25 mm, 0.25 µm). On both instruments, the 

injector was held at 250 °C and the interface at 280 °C. Column flow was set at 1.5 mL min-1 

and the split ratio was 24. For norisoprenoid analysis, the initial oven temperature was 120 °C 

(held for 3 min), before increasing to 220 °C at 10 °C min-1, where it was maintained for 7 

min.  

2.2 CYP150A6 production and purification 

CYP150A6 was purified according to the same method as reported previously for 

CYP150A5, using two ion-exchange steps [27]. Before each use, the stored protein samples 

were buffer exchanged into 50 mM Tris (pH 7.4) using a PD-10 desalting column (5 mL, GE 

Healthcare) to remove glycerol. The CYP150A5 concentration was determined using ε419 = 

111 ± 4 mM−1 cm−1 [27]. The extinction coefficient of CYP150A6 was determined by the CO 

binding assay initially developed by Omura and Sato [30] which was performed as described 

previously [26]. 



2.3 Spin-state shift assays and dissociation constant determination 

The CYP enzymes were diluted to ~1 µM using 50 mM Tris (pH 7.4) buffer and the UV/Vis 

spectrum was recorded between 600 and 250 nm, while held at 30 °C. Aliquots (1 to 5 µL) of 

substrate stock solutions (50 mM or 100 mM, DMSO or EtOH) were added. The spectra were 

recorded until the shift reached a stable point. The ratio of high spin to low spin CYP (390 

nm peak to 420 nm peak) was estimated to ± 5% by comparison to the P450cam–camphor 

bound substrate spectra [26].  

To measure the binding affinity, the CYP enzymes were diluted to ~2 µM in a volume 

of 2.5 mL in 50 mM Tris (pH 7.4) buffer and used to baseline the spectrophotometer. 

Varying aliquots (1 to 3 µL) of substrate stock solutions of increasing concentrations (1 mM, 

10 mM or 100 mM) were added via a Hamilton syringe and mixed. The difference spectrum 

was recorded between 300 nm and 600 nm. Further aliquots of substrate were added until no 

change in the peak-to-trough ratio at 420 nm and 390 nm (for a Type I spectrum) or 410 

and 430 nm (for a Type II spectrum) was observed. The difference in absorbance versus 

substrate concentration was fitted to the hyperbolic function (Equation 1):  

∆𝐴 =  
∆𝐴𝑚𝑎𝑥 × [𝑆]

𝐾𝑑 + [𝑆]
 

where Kd is the dissociation constant, [S] is the substrate concentration, ΔA the peak-to-

trough ratio, and ΔAmax the maximum peak-to-trough absorbance. Where a particular 

substrate exhibited tight binding (Kd equalling less than five times the concentration of the 

enzyme), the data were instead fitted to the tight-binding quadratic equation: 

∆𝐴 =  𝛥𝐴 ×
[𝐸] + [𝑆] + 𝐾𝑑 − √([𝐸] +  [𝑆] + 𝐾𝑑)2 − 4[𝐸][𝑆] 

2[𝐸]
 

where Kd is the dissociation constant, [S] is the substrate concentration, ΔA the peak-to-

trough ratio, ΔAmax the maximum peak-to-trough absorbance and [E] is the enzyme 

concentration [31]. 



2.4 Whole-cell oxidation turnovers 

Whole-cell turnovers with CYP150A5 were performed as per the method previously reported 

[26]. Briefly, a pRSFDuet vector containing the genes of the CYP and Fdx8, and a pETDuet 

vector containing the Fdx8 and FdR1 genes used for expression in E. coli BL21(DE3) cells. 

These were grown in LB with the appropriate antibiotics and trace elements (3 mL L-1) at 37 

°C. Alternative pETDuet vectors were used containing genes for the electron transfer partners 

listed in Table S1. Once the cells reached late log phase, the temperature was reduced to 18 

°C. Benzyl alcohol (0.02% v/v), ethanol (2% v/v) were added and protein expression was 

induced after a further 30 min with IPTG (0.1 mM). After 16 h, the cells were resuspended in 

E. coli minimal media (EMM) and the substrates added to a final concentration of 1 mM and 

shaken for a further 24 h. Aliquots of these growths (including cells) were extracted into ethyl 

acetate, and analysed by GC-MS. 

2.5 Phylogenetic analysis 

Sequences were obtained either from the National Centre for Biotechnology Information 

(NCBI) database or from the Dr Nelson P450 homepage for bacterial P450s [32]. Sequence 

alignments were performed using ClustalW [33]. The evolutionary history was inferred by 

using the Maximum Likelihood method based on the Jones-Taylor-Thornton (JTT) matrix-

based model [34]. Initial trees for the heuristic search were obtained automatically by 

applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated 

using a JTT model, and then selecting the topology with superior log likelihood value. The 

tree is drawn to scale, with branch lengths measured in the number of substitutions per site. 

All positions containing gaps and missing data were eliminated. Evolutionary analyses were 

conducted in MEGA6 [35]. 

  



2.6 Crystallography 

CYP150A5 and CYP150A6 underwent a further purification step by size exclusion (Enrich 

SEC Column, 650 x 10 x 300 mm, 1 mL min-1) before concentration to ~30 mg mL-1  in 50 

mM Tris (pH 7.4). Commercially available screening conditions (Hampton Research) were 

used for initial screening in 96 well sitting drop trays, using 1 µL of both protein and 

reservoir solution. Crystal conditions were then refined using the hanging drop vapour 

diffusion method, again using both 1 µL of protein and reservoir solution with a 500 µL 

reservoir. Diffraction quality crystals of CYP150A6 were obtained after 2 weeks at 16 °C 

from the condition containing 0.2 M ammonium phosphate, 20% w/v polyethylene glycol 

3,350, pH 4.7. The crystals were harvested using a Micromount (MiTeGen) and cryo-

protected by immersion in Parabar 10312 (Paratone-N, Hampton Research) before flash 

cooling in liquid N2. Data were collected by X-ray diffraction at the Australian Synchrotron 

MX1 beamline (360 exposures using 1° oscillations at a wavelength of 0.9357 Å) at 100 K 

[36]. The data were processed into the space group P3121 using iMosflm [37], followed by 

truncation and addition of Rfree flags using Aimless [38], as part of the CCP4 package [39]. 

Molecular replacement phasing was carried out using the MrBump pipeline [40], also part of 

CCP4, comprising PhaserMR [41] and one round of Buccaneer [42] model building and 

refinement. The search model used was PDB:3EJD [43], prepared for molecular replacement 

by MOLREP [44]. The model was rebuilt using Coot [45] based on initial electron density 

maps and refined using phenix.refine [46] over several iterations. The structure was deposited 

in the Protein data bank (PDB: 6DCB) and the data collection and refinement statistics are 

presented in Table 1.  

 



Table 1: Crystal data collection and refinement statistics for CYP150A6 from M. marinum 

(PDB: 6DCB) 

Data collection statisticsa 

Wavelength  0.95370 

Unit cell a = 80.57 b = 80.57 c = 134.76 

α =  90 β = 90 γ = 120  

Space group  P3121  

Mol. in asym. unit  1 

Resolution 48.47 – 1.55 (1.57 – 1.55)b  

Unique reflections 74838 (3655) 

Completeness  100.0 (100.0) 

Redundancy 22.0 (20.7)  

(I)/[σ(I)] 11.7 (0.8) 

Rmerge (all I+ and I-) 0.26 (4.72) 

Rpim (all I+ and I-)  0.057 (1.056) 

CC(1/2)  0.99 (0.36) 

Rwork 0.223 (0.342) 

Rfree 0.247 (0.349) 

% solvent 53.46 

Residues modelled  406 

RMS deviation from restraint values 

Bond lengths  0.004 

Bond angles 0.80 

Ramachandran analysis 

Most favoured 97.8 

Additionally 

allowed 

2.2 

Disallowed 0 

a Data collected from one crystal 

b Values in parenthesis are for highest resolution shell. 

 

  



3. Results/Discussion 

3.1 Phylogenetic analysis  

The CYP150 family has only one named subfamily at present (according to the Cytochrome 

P450 Homepage maintained by Dr Nelson of the University of Tennessee [32]). There are 15 

members of the subfamily that have been assigned CYP names so far, all of which are found 

in either Mycobacterium or Frankia species. CYP150A5 and CYP150A6 are both found in 

M. marinum M, with a CYP150A6 species also found in M. ulcerans Agy99 (98% sequence 

identity). Other Mycobacterium species such as M. vanbaalenii PYR-1, M. smegmatis MC2 

155, M. avium sp. paratuberculosis and M. kansasii ATCC 12478 contain more than one 

CYP150 family member. In some species up to six genes encoding CYP150 family members 

can be found [23]. For example M. vanbaalenii PYR-1 has four, CYP150A7-10. As such, the 

CYP150 family appears prolific in Mycobacterium species, including human pathogens M. 

ulcerans and M. colombiense (Table S2). A BLAST search revealed there are a large number 

(~1000 entries with >55% identity) of similar proteins to both CYP150A5 and CYP150A6, 

the vast majority of which are from Mycobacterium (>90% of entries found). Enzymes of this 

family are also found in species of Frankia, Streptomyces, Nocardia, and Rhodococcus (see 

Table S2 for more details). This distribution of analogous enzymes in other Actinobacteria is 

similar to that observed for the M. marinum CYP enzymes CYP268A2 and CYP147G1 [26, 

27, 47]. The analysis of Parvez et al placed the CYP150 family in a clan with the other 

Mycobacterium P450 families of CYP278, CYP1016, CYP269, CYP121, CYP1120, 

CYP1126, and CYP144 [23].  

A sequence alignment of CYP150 family members (selected enzymes shown in Fig. 

S1) showed the proximal cysteine is conserved as Cys363 (the residue numbering is given for 

CYP150A6 which coincidentally is the same for CYP150A5) as is the nearby phenylalanine 

(Phe356). The EXXR motif is also conserved in all the CYP150 enzymes analysed (Fig. S1). 



All contain an acid-alcohol pair; a glutamate (Glu255) and a threonine (Thr256). 

Phylogenetic analysis revealed CYP150A6 clusters closer to the previously studied M. 

vanbaalenii PYR-1 CYP150A7 (the polycyclic aromatic hydrolase [28]) and A8, while 

CYP150A9 and A10 are closer to CYP150A5 (Fig. 1). There appears to be two distinct 

CYP150 family groups; one containing CYP150A5 and the other with CYP150A6. However, 

all the CYP150 family members cluster together compared to the closest structurally 

characterised enzymes CYP144A1 from M. tuberculosis (32% identity to CYP150A5) and 

P450BioI from Bacillus subtilis (30% identity to CYP150A6). 

 

Figure 1: Phylogenetic tree (phenogram) of M. marinum enzymes CYP150A5 and 

CYP150A6 alongside other members of the CYP150 family from various Mycobacterium 

and other species. CYP150A7 from M. vanbaalenii has been reported to bind polyaromatic 

hydrocarbons. The CYP150 family member from Frankia sp. EuI1c (encoded by the gene 

FraEuI1c_5334) is included. The scale shows number of substitutions per site. CYP150A11, 

A12, A13 and A14 are from Frankia sp. EAN1pec. 



The genomic context of the two CYP enzymes in M. marinum M is dissimilar (Fig. 

S2). CYP150A5 (Mmar_4737) lies near CYP190A3 (Mmar_4733) and there are three [3Fe-

4S] ferredoxins nearby: Mmar_4730, Mmar_4734 and Mmar_4736. M. liflandii 128FXT, M. 

avium sp. paratuberculosis, M. smegmatis MC2 155 and other Mycobacterium species show 

similar gene neighbours in the region of their CYP150A subfamily analogues. These  also 

include a TetR transcriptional regular, an acyl-CoA dehydrogenase, an acyl-CoA 

acetyltransferase and an amidohydrolase. CYP150A9 from M. vanbaalenii PYR-1 has the 

most similar genomic region to that of CYP150A5 of the four CYP150 members from that 

species. In contrast, while CYP150A6 is present in M. ulcerans Agy99 (the sequence identity 

is 98%), comparison of the surrounding genomic region shows the enzyme is not part of a 

conserved operon. In M. ulcerans Agy99 CYP188A3 is nearby (three genes upstream) 

accompanied by a ferredoxin, while in M. marinum M the equivalent pair of genes are 23 

genes downstream from CYP150A6. Frankia species that contain CYP150 family members 

show very little regional genomic similarity to M. marinum M (Fig. S2). 

3.2 Characterisation of the CYP150 enzymes  

The production, purification and quantitation of CYP150A5 has been reported previously in 

an investigation of the ferredoxin association with the CYPome of M. marinum [27]. 

CYP150A6 was produced recombinantly using E. coli, purified and the ferrous CO bound 

spectrum was recorded (mass confirmed by SDS-PAGE, Fig. S3). The absorbance of the 

enzyme’s Soret peak shifts (>95%) to 450 nm upon reduction and CO exposure, indicating 

the reconstituted protein is a viable P450 enzyme (Fig. 2). The CYP150A6 enzyme 

demonstrated a comparable shift of the ferrous-CO bound form to CYP150A5 [27] and the 

extinction coefficient was determined to be ε418=110 ± 6 mM−1 cm−1. 

In order to determine the substrate range, other members of the CYP150 family were 

considered. CYP150A7 from M. vanbaalenii has been reported to oxidise polyaromatic 



hydrocarbons, such as pyrene, dibenzothiophene, and 7-methylbenz-α-anthracene [28]. 

However, as Brezna et al reported, there is no correlation between presence of a member of 

the CYP150 family and the polycyclic aromatic degradation ability of a particular strain, 

suggesting this may be a promiscuous activity of the enzyme [28]. 

 

Figure 2: CYP150A6 (black, A418), the reduced ferrous (blue, A417) and the ferrous form 

bound with CO (red, A446) showing the characteristic ~450 nm absorbance. The shoulder at 

~420 nm comprises < 5% of the total area. The extinction coefficient for the enzyme was 

determined to be ε418 = 110 ± 6 mM−1 cm−1. 

The first substrates tested with both enzymes were therefore aromatic and polycyclic 

substrates. These included bicyclic aromatics such as naphthalene, naphthol, phenylphenol, 

tetralin, and quinoline. None perturbed the spin state of the CYP150A5 enzyme by more than 

15% (see Table S3). Ionone derivatives such as α- and β-ionol, camphor and cineole as well 

as larger molecules such as sclareol and sclareolide were then assessed as substrates (Fig. 3). 

A large range of norisoprenoid substrates were capable of shifting the spin state shift of 

CYP150A5 to the high spin state (Table 2). These substrates included α-ionol (70% HS), 

methyl-α-ionone (65%), and α-ionone (45%). Interestingly, β-damascone, which differs in the 

location of the ketone group by only two carbons to the ionone substrates, shifted only 15% 

of the haem to the high spin form (compared to 60% high spin with β-ionone). (S)-(‒)-

Camphor (60%) and other monoterpenoid substrates such as bornyl acetate and isobornyl 



acetate (75% and 70% respectively) also induced shifts indicative of a good substrate fit with 

the active site of the enzyme. The diterpene sclareol induced the highest spin state shift, at 

90%, compared to 50% by sclareolide, which has an additional ring in the structure (Fig. 3). 

In contrast to the other hydrophobic aromatic compounds assessed, the bicyclic sesquiterpene 

guaiazulene shifted 60% of the haem to the high spin form. Both guaiazulene and 2-naphthol 

(70% high spin) were better substrates than 2-methylnapthalene (10%) suggesting the 

substituents around the aromatic ring are important to substrate recognition in CYP150A5. 

Table 2: Substrate binding data for both CYP150A5 and CYP150A6. See Figure 4 for 

dissociation constant analysis. The Supplementary Information contains binding data of 

additional substrates (Table S3, Fig. S4 to S8). 

Substrates 

CYP150A5 Spin 

state shift (%) 

 

KD (µM) 

CYP150A6 

Spin state shift (%) 

Sclareol 90 0.8 ± 0.08 10 

Bornyl acetate 75 45 ± 6 10 

Isobornyl acetate 70 34 ± 2 20 

α-Ionol 70 17 ± 2 10 

2-Naphthol 70 1900 ± 280 <5 

Methyl-α-ionone 65 23 ± 4 10 

Guaiazulene 60 1.9 ± 0.4  <5 

β-Ionone 60 41 ± 2 [27] 15 

1,8-Cineole 60 331 ± 45 <5 

Fenchyl acetate 60 88 ± 13  10 

β-Ionol 55 64 ± 6 20 

Sclareolide 50 - 25 

(-) indicates dissociation constant was not determined due to limitations in substrate solubility 

preventing the endpoint being reached.  

Dissociation constant analyses were performed for compounds that, from the spin 

state shift, indicated they were complementary to the active site of CYP150A5 (defined here 

as where the shift to the high spin form was greater than 60%, Fig. 4). Sclareol had the 

highest binding affinity for the enzyme, at 0.8 ± 0.08 µM, followed by guaiazulene with 1.9 ± 

0.4 µM. These were almost an order of magnitude higher than the next best, α-ionol (17 ± 2 

µM). The previously reported affinity with β-ionone (41 ± 2 µM [27]) was similar to those 



recorded for bornyl acetate (45 ± 6 µM) and slightly weaker than with isobornyl acetate (34 ± 

2 µM). β-Ionol was less tightly bound (64 ± 6 µM). Despite the high spin state shifts recorded 

for naphthol and cineole with the enzyme, the dissociation constants indicated they bound 

weakly (1900 ± 280 µM and 331 ± 45 µM for 2-naphthol and 1,8-cineole, respectively). The 

results of this binding analysis provide evidence for a substrate range for CYP150A5 that 

includes both polycyclic hydrocarbons and terpenoid substrates.  

 

Figure 3: Structures of selected substrates tested with CYP150A5 and CYP150A6. 

CYP150A6, in contrast, did not demonstrate any significant shifts in the spin state (all 

≤ 25%) with any substrate tested. Sclareolide (25%), 1,4-cineole (20%), isobornyl acetate 

(20%) and β-ionol (20%) were the substrates that induced the greatest spin state shifts. A 

range of other substrates were tested, including fatty acids, benzoic acids, terpenoids, 

aromatics and steroids, however, no significant spin state shift was recorded (all ≤ 20%, 

Table S3 and Fig. S7). The CYP150A6 enzyme requires further characterisation as this 



screening method did not reveal many substrates which were able to modify the spin state. 

This may suggest that the binding of the physiological substrate for this enzyme may be 

highly specific.   

 
 (a) 

  
(b) 

 
(c) 

 
(d) 

Figure 4: Dissociation constant analysis of CYP150A5 with (a) sclareol, (b) guaiazulene, (c) 

β-ionol and (d) ketoconazole. The inset represents a typical substrate titration. The peak to 

trough difference in absorbance was measured for (a) and (c), from 420 to 390 nm, for (b) 

trough to baseline (420 to 600 nm) due to interfering substrate absorbance and for (d) 432 to 

411 nm. For additional dissociation constant analyses see Figure S5 and S6.  

Both enzymes were tested with a range of azole compounds, known competitive 

inhibitors of CYPs (Fig. 5, Fig. S6 and Fig. S8). Econazole, ketoconazole and miconazole 

among others, generated Type II shifts in both enzymes indicative of N binding directly (or 

indirectly via a bridging H2O ligand) to the haem Fe (Table 3).  Both 1- and 4-

phenylimidazole gave inhibitory shifts in both CYPs, while 2-phenylimidazole did not, 

similar to the results obtained with CYP268A2 and other P450 enzymes [26, 48, 49]. 



Fluconazole bound to CYP150A5, shifting the absorbance in a Type II manner, while with 

CYP150A6 a small (HS ~5%) Type I shift was observed suggesting it bound the enzyme in a 

substrate-like manner. In general, the phenylimidazoles bound less tightly, with dissociation 

constants in the tens of µM for both enzymes in contrast to the nanomolar affinities of the 

larger azoles.  

Table 3: Binding data for possible inhibitors of both CYP150A5 and CYP150A6.  

Possible 

inhibitors 

CYP150A5 Spin 

state shift KD (µM) 

CYP150A6 Spin 

state shift 

 

KD (µM) 

1-Phenylimidazole type II, 423 nm 19.2 ± 5.1 type II, 423 nm 29.9 ± 13.2 

2-Phenylimidazole ~ 0% - ~ 0% - 

Clotrimazole type II, 424 nm 0.016 ± 0.01 type II, 425 nm 0.05 ± 0.02 

Econazole type II, 424 nm 0.01 ± 0.01 type II, 424 nm 1.1 ± 0.06  

Fluconazole type II, 419 nm - Type 1, ~5% - 

Ketoconazole type II, 423 nm 0.80 ± 0.14 type II, 422 nm 6.6 ± 1 

Miconazole type II, 424 nm 0.045 ± 0.01 type II, 423 nm 1.0 ± 0.09 

(-) indicates dissociation constant was not determined.  

The affinity of the azoles were higher for CYP150A5 than CYP150A6 (for example, 

with econazole KD = 0.01 ± 0.01 µM compared to 1.1 ± 0.06 µM for the respective enzymes). 

The affinity of clotrimazole for CYP150A6 was high in comparison to the other tested azoles 

with that enzyme (KD = 0.05 ± 0.02 µM, two orders of magnitude tighter than the next best) 

although the CYP150A5 affinity (0.016 ± 0.01 µM) was greater still.  

  



(a) (b) 

Figure 5: Dissociation constants of CYP150A6 with (a) ketoconazole and (b) clotrimazole. 

The inset represents a typical substrate titration. The peak to trough difference in absorbance 

was measured from was (a) 435 to 414 nm and (b) 434 to 413 nm. For additional 

dissociations constants see Figure S8. 

 3.3 Product formation  

Reconstitution of the in vivo activity of CYP150A5 was attempted with the native ferredoxin 

Fdx8 (Mmar_4736) as it is the adjacent gene to the CYP. No reductase gene is located nearby 

so the ferredoxin reductase FdR1 (Mmar_2931), which has been demonstrated to support 

CYP147G1 activity with Fdx3, was used [27]. Additional electron transfer systems including 

Tdx/ArR [7, 50], the fused phthalate dioxygenase reductase (PDR) domain from 

Pseudomonas putida pp_1957 [51], and other native ferredoxins from M. marinum were also 

tested (see Table S1). This included the ferredoxin seven genes away from CYP150A5, Fdx6 

(Mmar_4730).  The product formation of each electron transfer system was tested with the 

substrate β-ionone. The native Fdx8 in combination with FdR1 was the best system tested.  

 

Figure 6: GC chromatogram of the in vivo turnover of CYP150A5 with Fdx8 and FdR1 (red) 

and the alternative electron transfer system of pp_1957 from Pseudomonas putida (blue) [51] 

both with the substrate β-ionol. β-Ionol (RT 6.9 min) converted into a single hydroxylation 

product, 4-hydroxy-β-ionol (RT 9.4 min). The physiological electron transfer partners Fdx8 



and FdR1 supported greater CYP activity than the alternative systems tested, including 

pp_1957 (shown above, see Table S1 for others). * indicates a substrate impurity.  

A range of substrates were tested with the CYP150A5 enzyme, including β-ionol and other 

terpenoids. A single hydroxylation product of β-ionol with CYP150A5 was visible by GC-

MS analysis (Fig. 6). The mass spectrum and retention time corresponded to the 4-hydroxy-

β-ionol product previously using CYP101B1 (Fig. S9)[52]. This is consistent with the 4-

hydroxy product of β-ionone with the same enzyme. Again higher levels of metabolite 

formation were observed in combination with the Fdx8/FdR1 electron transfer partners (Fig. 

6). However, product formation levels were still low and metabolites could not be detected 

with other substrates using the in vivo systems. Given the [3Fe-4S] Fdx8 ferredoxin is located 

nearby in the genome, the barrier to efficient electron transfer and oxidation may arise from 

the ferredoxin reductase. Further investigation into potential alternative reductases is required 

to optimise the system and to establish the full range of products that are generated.  

 

Scheme 1: CYP150A5 conversion of β-ionol to 4-hydroxy-β-ionol.  

 

3.4 Crystal structure of CYP150A6 

In order to better understand the substrate range of both enzymes we attempted crystallisation 

of both CYP150A5 and CYP150A6 in a range of conditions. No crystals were obtained for 

CYP150A5, but diffraction quality crystals were obtained for substrate-free CYP150A6. Data 

for CYP150A6 were collected from one crystal and the structure solved to 1.5 Å (Table 1, 

PDB: 6DCB). The structure presented difficulties in phasing that were resolved by using a 

truncated model of P450BioI prepared by Sculptor (as CYP150A6 lacks the acyl-carrier 



domain of the P450BioI structure) [43]. Several regions required full rebuilding in Coot before 

refinement (residues 67 to 76 and 350 to 360). The final structure modelled the enzyme from 

residues 3 to 424 with the exception of the residues from 180 to 195 of the F-G loop for 

which the electron density was unresolved (Fig. 7). Despite the missing 16 residues, the 

overall structure of the enzyme clearly displays the conserved fold of a P450 with an open 

structure when compared to other structures in the PDB (composite omit map Fig. S10, and 

structural comparisons in Fig. S11 and S12). The disorder in the F-G loop is relatively 

common in previously characterised P450 enzymes in the open form [53, 54]. Both the F and 

G helices in CYP150A6 appear to be shorter than in most structurally characterised P450 

isoforms (Fig. 7(b)), leaving a probable 18 residue long F-G loop region (in contrast M. 

tuberculosis CYP144A1 has only 3 residues between the F and G helices, Fig. S12). The 

proline residue at the end of the G helix (P199) is conserved in all Mycobacterium CYP150 

members, while the glycine at the end of the F helix (G180) is conserved in M. ulcerans 

CYP150A6 and M. vanbaalenii CYP150A7, but not in CYP150A5 and some others, inferring 

that in these proteins the F helix may be longer. The length of the F and G helices is similar 

to those in mammalian CYP3A4, which has a large degree of substrate promiscuity [55, 56]. 

However the F-G loop region in CYP3A4 contains two further helices (F´ and G´) and is 35 

residues long. As a result of the unresolved residues in CYP150A6, interpreting the precise 

nature of the active site and access channel is more challenging. As modelled, the active site 

appears to be very open to solvent (Fig. S13). The F and G helices may reform to a length 

similar to those in other systems when the enzyme is crystallised in the presence of a 

substrate.  

The structure was compared to that of P450BioI (PDB: 3EJD), but the active site of the 

two structures present few similarities apart from the overall fold when overlaid (Fig. S12 

and S15). An overlay with the closest structural model from M. tuberculosis, CYP144A1 (as 



identified using MrBump and also the Dali server [57]) showed two regions of dissimilarity, 

including small α-helices (between the α-B and B´ region, and the other between α-L and β-

5) that are not present in CYP144A1 [58]. These are referred to in this text as L´ and B ̋ (Fig. 

7(a)). The remaining best matches as identified by the Dali server were Bacillus megaterium 

CYP109A2 (PDB: 5OFQ)[59] and M. tuberculosis CYP142A1 (PDB: 2XKR). The β-sheet 

region in the B-C loop of CYP144A1 was absent in CYP150A6 (Fig. S11). The B-C loop 

area was more similar to that of the M. smegmatis CYP142A2 enzyme (PDB: 3ZBY, Fig. 

S12) [60].  

(a) (b)  

 (c)  

Figure 7: (a) CYP150A6 resolved to 1.5 Å with labelled α-helices according to the 

nomenclature developed in P450cam  (CYP101A1) [61]. Helices are coloured in red, β-sheets 

in yellow and the remaining backbone in green. The haem is in blue. The two additional 

helices of CYP150A6 are labelled in red. In the absence of substrate a water molecule binds 

to the distal site of the haem Fe. (b) The key residues P199 and G180 at the end of the F and 



G helices showing the short F and G loops (for comparison to other P450 structures see 

Figures S11 and S12). (c) The residues as well as the network of water molecules (hydrogen 

bonds in red) in the active site of the substrate-free CYP150A6 (green) enzyme. 

The distal side of the haem contains an iron-bound water molecule (Wat316, Fe-O 

2.2Å). Wat316 is stabilised by a network of hydrogen bonded waters in the active site (Fig. 

7(c)). Two further water molecules (Wat110 and Wat10) are found bound in the kink of the I 

helix, forming hydrogen bonds between the A251 and T256 residues (where the T256 and 

E255 are the acid-alcohol pair of the enzyme, Fig. S14). The substrate binding pocket is 

primarily non-polar although the polar residues S301, D302 and M94 are present. The D302 

residue, however, interacts with the carboxylate group of the haem (analogous to D297 in 

P450cam [62]). These, along with A64 and L65, V99, F248, A251 and A252, V299, and I409 

can be identified as probable active site residues. The residues between 248 and 252 belong 

to the I helix (as seen in Fig. S14) while the B-C loop provides M94 and V99. As the residues 

of the F-G loop that may have formed the cap of the active site are not modelled, their 

probable interactions with a ligand cannot be seen. However, there is only limited evidence 

for direct substrate interaction with the F-G loop [63].  

Applying the sequence alignment of CYP150A5 and other CYP150 enzymes to the 

structure of CYP150A6 allows the identification of the probable active site residues of those 

species (Table 4). The residues are very dissimilar between CYP150A6 and CYP150A5. 

Instead of the A251, CYP150A5 has a serine residue (the residue numbering in both enzymes 

is aligned so will not be given) while the S301 residue of CYP150A6 is changed to a glycine. 

F248 is changed to asparagine, while both the V99 and M94 residues are replaced with a 

phenylalanine. A64 and L65 are a serine and valine respectively in CYP150A5. Of the 

residues identified above, only the acid alcohol pair (E255 and T256), V299, D302 (which 

interacts with a haem carboxylate) and I409 are conserved in both enzymes. Together the 

changes would represent a significant alteration in the polarity and shape of the active site 



between the enzymes, as reflected in the substrate binding results obtained for the two CYP 

isoforms.  

Table 4: The active site residues of CYP150A6 and the aligned residues of other CYP150 

family members, including CYP150A6 from M. ulcerans, CYP150A5 from M. marinum and 

all four enzymes from M. vanbaalenii PYR-1. Bold indicates the residue matches that of 

CYP150A6, underlined indicates it matches CYP150A5. For emphasis those that are 

conserved in all are given in red.a Additional CYP150 family members are listed in Table S4.  

Mmar 

150A6 

Mulc 

150A6 

Mmar 

150A5 

Msmeg 

150A3 

Mvan 

150A7 

Mvan 

150A8 

Mvan 

150A9 

Mvan 

150A10 

A64 A64 S64 S65 A64 A64 S65 A70 

L65 L65 V65 V66 V65 I65 V66 V71 

M94 M94 F94 F96 M94 I94 F98 F100 

V99 V99 P99 P101 V99 V99 P103 P105 

F248 F248 N248 N250 F253 F250 N252 N253 

A251 A251 S251 S253 A256 A253 S255 A256 

A252 A252 A252 A254 A257 A254 A256 A257 

V299 V299 V299 V301 V304 T301 V303 I304 

I409 I409 I409 I411 I414 L411 I413 I414 

a E255 and T256 (the acid alcohol pair) are also conserved in all but are not listed here. 

 

The CYP150A6 enzyme in M. ulcerans Agy99 preserves all of the active site residues of the 

M. marinum equivalent, so it would be expected to both perform a similar function and the 

same inhibitors would be effective. Of the M. vanbaalenii PYR-1 enzymes, CYP150A7 has 

all the CYP150A6 active site residues conserved. CYP150A9 has equivalent residues to 

CYP150A5 at all these positions as does CYP150A3 from M. smegmatis MC2 155 (Table 4 

and see Table S4 for other CYP150 family enzyme comparisons). The remaining two 

isoforms of M. vanbaalenii PYR-1, CYP150A8 and CYP150A10, share some active site 

residues with both M. marinum enzymes, and potentially would have distinct roles again.   



4. Conclusions 

Members of the CYP150 family are widely found in Mycobacterium species, as well as in 

related Actinomycetes. The only previously studied member of the family, CYP150A7 from 

M. vanbaalenii PYR-1, was found to oxidise certain polycyclic aromatic hydrocarbons which 

was linked to the activity of this species to degrade this class of compound. Here, the enzyme 

CYP150A5 is shown to bind and hydroxylate cyclic terpenes, with sclareol having the best 

binding parameters, rather than polycyclic aromatics. A physiological ferredoxin was used to 

support CYP activity in combination with a ferredoxin reductase also from M. marinum. The 

structural characterisation of CYP150A6 will facilitate future substrate identification for this 

enzyme through use of modelling and high-throughput screening methods. As both enzymes 

are found in a range of Mycobacteria, including human pathogens, the inhibitors which were 

determined for both enzymes could be used to stop CYP-related metabolism in these species 

which could form the basis of future drug design.   
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