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Abstracts 

Lithium/sodium-sulfur (Li/Na-S) batteries hold practical promise for next-generation 

batteries because of high energy density and low cost. Development is impeded at present 

however because of unsatisfied discharge capacity and stability in long cycling. Advanced 

materials can serve as sulfur host materials to improve the capacities and stability of the 

lithium/sodium-sulfur batteries. More importantly, they provide suitable models with which 

to connect and test experimental results with theoretical predictions. This is crucial to 

develop insight into the relationship between electrochemical behavior of sulfur and the 

structural properties of sulfur host materials. This thesis explores sulfur and its intermediates 

adsorption/redox conversion mechanisms and investigate crucial structural-property 

relationships of the advanced nanomaterials as sulfur host materials in high-performance 

lithium/sodium-sulfur batteries. 

First, A unique three-dimensional hybrid of nickel sulfide and carbon hollow spheres was 

synthesized as a sulfur host. The uniformly distributed nickel sulfide can greatly promote 

adsorption capability towards polysulfides. Meanwhile, the hollow carbon spheres increase 

sulfur loading as well as the overall conductivity of the sulfur host. Utilized in an electrode, 

this 3D hybrid sulfur host achieved a capacity of 695 mA h g-1 after 300 cycles at 0.5 C and 

a low capacity decay of 0.013% per cycle. 

Second, a two-dimensional (2D) MoN-VN heterostructure is investigated as a model sulfur 

host. The 2D heterostructure can regulate polysulfides and improve sulfur utilization 

efficiency. This resulted in superior rating and cycling performance. More importantly, 

incorporation of V in the heterostructure can effectively tailor the electronic structure of 

MoN. This leads to enhanced polysulfides adsorption. 
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Last, a two-dimensional (2D) metal-framework (MOF) is investigated as a model sulfur host 

for Na-S batteries. The MOF can enhance polysulfides adsorption and conversion kinetics. 

This resulted in superior rating and cycling performance. Through a combination of 

advanced experimental characterization techniques and theoretical computations based on 

the 2D nanomaterials, an in-depth understanding of sulfur redox and the structure-properties 

relationships in metal-sulfur batteries have been obtained. 
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Chapter 1 Introduction 

1.1. Background 

Development of lithium-ion battery technology has dominated portable electronics devices 

over recent decades owing to their high voltage, low self-discharge rate, and stable cycling 

performance. Nevertheless, state-of-art lithium-ion batteries cannot meet the requirement of 

applications such as electric vehicles and grid-level energy storage, due to their low energy 

density (100-220 W h kg−1) and high cost.1-3 

Rechargeable metal-sulfur batteries are considered among the most promising candidates 

to achieve a low-cost and high-energy-density system owing to high theoretical specific 

capacities of elemental sulfur (1673 mA h g−1) and metal, such as Li (3860 mA h g−1), Na 

(1166 mA h g−1), Mg (2205 mA h g−1) and Al (2979 mA h g−1). For example, lithium-sulfur 

(Li-S) batteries coupled sulfur and Li metal as cathode and anode exhibit an average voltage 

of 2.15 V. They can therefore deliver a theoretical energy density of ~ 2500 Wh kg−1, which 

is significantly higher than that of the lithium-ion batteries. In addition, elemental sulfur is 

highly abundant, low-cost and low in toxicity. More importantly, redox conversion between 

the elemental sulfur and metal sulfide enable sulfur a universal cathode material to 

theoretically couple with a wide range of metal as anode. However, a series of intermediate 

metal polysulfides (MPoSs, M = Li, Na, K .etc, Li2Sn, 2 < n ≤ 8) produced in the redox 

conversion are soluble in ethers-based solvent. The soluble MPoSs can diffuse to anode side 

and be chemically reduced by the metal, and then diffuse back to the cathode side. This 

“shuttle effect” results in loss of the sulfur and low Coulombic efficiency of the metal-sulfur 

batteries. In addition, low electrical conductivity of sulfur and metal sulfides as well as the 

pulverization of the cathode arising from large volume expansion during discharge largely 
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reduce utilization of the sulfur. Especially, high sulfur loading electrodes are essential for 

Li/Na–S technology in the marketplace. These problems become more severe with high 

sulfur loading in the sulfur cathode. 

1.2. Aim and Objectives 

The aim of this thesis is to design and synthesize effective and stable nanostructured cathode 

materials and illuminate the underlying structure-performance relations for Li/Na-S batteries. 

The specific objectives are as follows. 

(1) To develop advanced cathode materials for high-performance Li/Na-S batteries through 

the investigation of surface atomic arrangement, surface areas and bulk compositions; 

(2) To explore and understand the structure-performance relations and design principles of 

the cathode materials in Li/Na-S batteries; 

(3) To fabricate high-performance Li/Na-S batteries with high capacities and stabilities. 

1.3. Thesis Layout 

This thesis contains six chapters. Chapter 1 introduces the significance and objectives of the 

thesis. Chapter 2 presents a critical review of the advanced materials in Li/Na-S batteries 

through experimental and theoretical approach. The mechanisms during the discharging and 

charging processes and their implications are discussed in detail. Additionally, it outlines the 

research objectives and key contributions. In Chapter 3, NiS@C-HS with high surface areas 

and high conductivity are first developed as an effective cathode material, which paves way 

for the development of highly efficient cathode material. In Chapter 4, 2D MoN-VN 

heterostructure was fabricated for the effective confinement of the polysulfides. Chapter 5 

explores the effect of Ni-based MOF on the polysulfides adsorption and conversion kinetics 

Chapter 6 summarizes the key achievement of this thesis and provides perspectives for future 
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work. 
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Chapter 2 Literature Review 

2.1. Introduction 

It is widely acknowledged that metal-sulfur batteries hold practical promise for next-

generation batteries because of high energy density and low cost. However, a drawback with 

existing reviews is that they focus only on features and functions of electrode materials. 

What is missing is a critical evaluation of atomic/molecular-level structure-property 

relationships in sulfur cathodes and metal anodes. Significant progress has been made in 

understanding mechanisms for sulfur redox and metal stripping-plating to boost 

electrochemical performance of metal-sulfur batteries. This has rested on a judicious 

combination of experimental and theoretical approaches. Advanced nanomaterials (0D, 1D, 

2D and 3D) have been widely studied in sulfur cathodes to boost the performances. For 

example, 3D hollow nanospheres can not only effectively confine the polysulfides within 

the hollow structures, also they can be utilized to build networks to enhance the 

electron/lithium ion conductivity. Two-dimensional (2D) nanomaterials offer a suitable 

model to correlate experimental results with theoretical predictions and, importantly, with 

which to explore structure-property relationships in metal-sulfur batteries. In this Review, 

we critically assess advances in 2D nanomaterials for metal-sulfur batteries and explore the 

atomic/molecular-level understanding of the structure-property relationships. In particular, 

we assess the prevailing sulfur redox and Li/Na stripping-plating reaction mechanisms from 

both an experimental and theoretical computational view and relationship between 2D 

nanomaterials design, physicochemical/electronic properties, reaction mechanisms and 

electrochemical performance. 
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2.2 Unveiling the Advances of 2D Materials for Li/Na-S Batteries Experimentally and 

Theoretically 

This chapter is included as a submitted manuscript by Chao Ye, Dongliang Chao, Jieqiong 

Shan, Huan Li, Kenneth Davey, Shi-Zhang Qiao, Unveiling the Advances of 2D Materials 

for Li/Na-S Batteries Experimentally and Theoretically. 
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Abstract: Metal-sulfur batteries hold practical promise for next-generation batteries because 

of high energy density and low cost. Development is impeded at present however because 

of unsatisfied discharge capacity and stability in long cycling. Combination of experimental 

and theoretical approaches can be used to develop insight into the relationship between 

electrochemical behavior of sulfur redox and metal stripping-plating and the structural 

properties of electrode materials. With metal-sulfur batteries, two-dimensional (2D) 

nanomaterials are a suitable model with which to connect and test experimental results with 

theoretical predictions and to explore structural-property relationships. Here through the 

view of combining experimental and theoretical approaches, we explore sulfur redox 

conversion on 2D nanomaterials in various reaction stages and critically review crucial 

factors impacting 2D nanomaterials as artificial solid electrolyte interfaces (SEIs) and host 

materials in protecting Li and Na metal anodes. We conclude with a focused discussion on 

promising research orientations for developing high-performance metal-sulfur batteries. 
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Introduction 

Rechargeable metal-sulfur batteries hold practical promise for next-generation batteries 

because of high energy density (> 300 W h kg−1) and low cost of sulfur (~ $150 ton-1) when 

compared with state-of-the-art lithium-ion batteries with significantly lower energy density 

(100 – 220 W h kg−1) and greater cost of active materials (e.g. LiCoO2: ~ $10000 ton-1).1 

The high energy density is attributed to the high theoretical specific capacities of elemental 

sulfur (1673 mA h g−1) and metals such as Li (3860 mA h g−1) and Na (1166 mA h g−1).1-3 

For example, lithium-sulfur (Li-S) batteries exhibit an average voltage of 2.15 V and can 

therefore deliver a theoretical energy density of ~ 2500 Wh kg−1. This is significantly greater 

than for lithium-ion batteries.4-8 Nevertheless, major obstacles for metal-sulfur batteries 

development are their unsatisfactory discharge capacities and stability.9-11 

For high-performance metal-sulfur batteries, highly reversible and efficient interfacial 

reactions on sulfur cathodes/electrolyte and electrolyte/metal anodes interfaces are crucial 

(i.e. on the cathode side, elemental sulfur ↔ soluble metal polysulfides ↔ insoluble metal 

sulfides, and; on the anode side, metal stripping ↔ plating).12-14 The reversibility and kinetics 

of these complex heterogeneous reactions significantly depend on physicochemical 

properties and electronic structure of the interfaces. Recent advances have resulted in an 

improved understanding of the electrochemistry of the interfacial reactions at the 

atomic/molecular level based on a judicious combining of experimental nanotechnology and 

computational quantum chemistry.15,16 For example, remarkable advanced in-situ 

spectroscopy characterization techniques with high time-resolution have allowed 

identification of specific sulfur intermediates and the tracking of dynamic conversion 

processes. A result is that a comprehensive view of sulfur conversion kinetics in various 
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stages is obtained.17,18 With theoretical investigations, researchers are capable now of 

obtaining growing fundamental insight into the adsorption/reaction origin on cathode/anode 

interfaces between sulfur species/solvation Li+ and the electrode material. For example, it is 

practically possible to obtain a series of adsorption energies and decomposition energies of 

sulfur intermediates for a particular stage, based on thermochemical models and transition-

states theory via density functional theory (DFT) computations. A comprehensive review of 

critical factors impacting reversibility and kinetics of the interfacial reactions on cathodes 

and anodes is therefore timely.  

Two-dimensional (2D) nanomaterials, as sulfur/metal host materials, have been 

demonstrated as a particularly promising material to facilitate reversible and accelerated 

cathode/anode interfacial reactions.19-21 So far, fine tuning of compositions and 

physicochemical/electronic properties of 2D nanomaterials can be achieved through defect 

engineering, heteroatom doping, heterostructure construction and hybridization.22-31 One can 

synthesize 2D nanomaterials with a high density of active sites that facilitate rapid sulfur 

redox or homogeneous metal stripping-plating. More importantly, 2D nanomaterials with a 

uniformly exposed lattice plane provide ideal and programmable computational models to 

connect experimental results with theoretical studies. Additionally, free-standing flexible 

films of uniform thickness fabricated by 2D nanomaterials can significantly boost the energy 

storage efficiency of metal-sulfur batteries for practical application.32 

Combining experimental and computational methodologies based on 2D nanomaterials 

has led to significant developments in lithium/sodium-sulfur (Li/Na-S) batteries over the 

years 2006 to 2019 as is seen in Figure 1. Importantly, this development has resulted in an 

increase in understanding of sulfur redox/metal stripping-plating at the atomic/molecular 
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level. Here, we review recent advances to boost electrochemical performance of Li/Na-S 

batteries from combining advanced experimental technologies and fundamental sciences. 

We show how a judicious combination of experimental and computational approaches can 

be used to understand crucial factors in Li/Na-S batteries and to direct a proof-of-concept 

design of 2D nanomaterials. We offer comprehensive insight into the structure-performance 

relationship of these nanomaterials in metal-sulfur batteries. We conclude with a focused 

discussion on promising research orientations for future development of high-performance 

metal-sulfur batteries. 

Sulfur cathodes 

Sulfur cathodes have been conjugated with a range of metal anodes to develop various metal-

sulfur batteries. Amongst them, Li/Na-S batteries are the most widely studied in recent years 

owing to their outstanding high energy density and low cost (Figure 2).33-36 Nevertheless, a 

major practical challenge is the polysulfide ‘shuttle effect’ on the sulfur cathode side.37-39 

This is a main cause of battery degradation as it leads to irreversible interfacial reaction on 

the sulfur cathodes. Soluble polysulfides generated in discharge can diffuse to the anode side 

and be reduced by metal anodes, and reduction products diffuse back to the cathode side.40 

More importantly, this results in loss of the active material of sulfur and consequently a low 

Coulombic efficiency (CE) with Li/Na-S batteries.41 Additionally, the utilization of sulfur is 

largely reduced by its low electrical conductivity and resultant lithium/sodium sulfides, 

together with pulverization of the cathode resulted from a significant volume expansion 

during discharge. These problems are severe in cathodes with high sulfur loading and lean 

electrolyte.42 The adsorption energies to polysulfides and kinetics of particular steps are 

widely considered as crucial factors impacting reversibility and kinetics of sulfur 
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electrochemical redox on sulfur cathodes. For example, in Li-S batteries, crucial steps such 

as reduction of soluble lithium polysulfides to insoluble Li2S2/Li2S, Li2S decomposition and 

Li2S2 reduction to Li2S. These have been widely studied based on 2D nanomaterial models 

through combining experimental and theoretical approaches. 

Metal-free 2D nanomaterials 

Amongst the more widely studied metal-free materials in sulfur cathodes, graphene and 

hybrids possess several unique properties. These include : 1) large theoretical surface area, 

2) large modulus of elasticity, and 3) attractive thermal/electrical conductivities. These 

properties make graphene an ideal sulfur host material.43 Early research on graphene oxide 

(GO) in sulfur cathodes focused mainly on modification of the pore structure to provide 

physical confinement of the polysulfides. Dai and co-workers first developed a graphene/S 

composite electrode (S-PEG/G) with surfactant-directed sulfur particles and graphene 

nanosheets. This resulted in sulfur particles with improved electrical conductivity and 

provided enhanced physical confinement of the polysulfides within the graphene. The 

resultant sulfur cathodes showed specific capacity of nearly 800 mA h g-1 with life-span of 

100 cylces.44 Zhang and co-workers demonstrated that graphene oxide and sulfur composite 

cathode (GO-S) exhibit strong sulfur chemical adsorption and, therefore a prolonged span 

life of Li-S batteries. Soft X-ray absorption spectroscopy (XAS) measurements highlighted 

strong chemical interaction between S and these groups together with surface C atoms in 

GO.45 One of the limitations of GO in sulfur cathodes however is that its electrical 

conductivity depends on its oxidation degree.46 To address this, significant research has 

focused on synthesis of GO with various functional groups and tailored porosity, or 

hybridization of graphene with other conductive nanomaterials.47-51 Despite this, 
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accomplishing enhanced polysulfides adsorption capability is a significant challenge on 

pristine GO. 

To improve polysulfide adsorption on GO, heteroatom dopants can be introduced to 

boost interaction between GO and polysulfides. Zhang and co-workers highlighted that 

sulfur cathodes with N-doped graphene (NG) were effective for boosting polysulfides 

adsorption. Ab initio molecular dynamics (AIMD) computations implied that the 

polysulfides adsorption energies of the NG are greater than those for pristine graphene. 

Importantly, dominant pyridinic N and pyrrolic N in NG can form SxLi-N interactions with 

lithium polysulfides via N lone-pair electrons.52 Li and co-workers reported a fundamental 

study on polysulfides adsorption origin on NG. Through systematic DFT computations on 

behavior of lithium polysulfides adsorption on NG with various N dopants, they showed that 

only NG with pyridinic N-dopants interacts with the polysulfides.53 Recently, Hou et al. 

employed systematic DFT computations to investigate the chemical origin of the 

polysulfides adsorption behavior on heteroatoms-doped nanocarbon materials to establish 

design principles. These authors proposed that the formation of a ‘Li-bond’ significantly 

enhances polysulfide adsorption and thereby effectively prevents the shuttle of 

polysulfides.54 Further, Zhang and co-workers identified this Li-bond in sulfur cathodes via 

a combination of theoretical calculations and 7Li nuclear magnetic resonance (NMR) 

measurements based on NG. They for the first time proposed a quantitative descriptor of 

chemical shift in 7Li NMR to describe the Li-bond strength. The variations of chemical shift 

in NMR spectrum were in good agreement with DFT results. Therefore, the theoretically 

predicted Li-bond strength was verified through experimental 7Li NMR results (Figures 3A 

and 3B).55 Later, Zhou et al. reported that a N/S co-doped graphene (N,S-G) sponge electrode 
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provided strong polysulfides adsorption owing to a synergistic effect of nitrogen and sulfur 

dopants. A combination of lithium polysulfides physical confinement in the porous graphene 

and the polysulfides chemical adsorption to N and S sites in graphene, significantly 

prevented S loss. This resulted in a specific capacity of 1200 mA h g-1 at 0.2 C and good life-

span of 500 cycles with nearly 100 % CE (Figure 3C).56  

Recently, metal-free 2D nanomaterials have been utilized as a substrate to support low 

concentration metal single atoms that exhibit boosted performance in sulfur cathodes. For 

example, Ni@NG was reported to have a lower barrier for Li2S decomposition than that for 

NG. The Ni-N-C moieties therefore facilitated formation and decomposition of Li2S in 

discharge/charge process. Moreover, the low decomposition energy of Li2S on Ni@NG 

contributes to enhanced conversion kinetics of polysulfides through Sx
2−⋅⋅⋅Ni-N bonding. 

These properties resulted in significantly boosted rate performance and cycling stability in 

the Li-S batteries (Figures 3D, 3E and 3F).57 Another example can be found with Co single 

atom decorated NG at a high S mass loading(6.0 mg cm−2), in which Co@NG sulfur cathodes 

delivered a significant aerial capacity of 5.1 mA h cm−2 at 0.2 C together with a low capacity 

decay of 0.029 % per cycle.58 

Other metal-free 2D nanomaterials have been widely studied in sulfur cathodes. For 

example, graphitic carbon nitride (g-C3N4) is a 2D crystal with a layered structure with van 

der Waals interaction between the layers. Importantly, plentiful pyridinic nitrogen species in 

g-C3N4 is considered crucial to improved polysulfides chemical adsorption. A seminal report 

was the synthesis of oxygenated carbon nitride (OCN) for Li-S batteries: enriched nitrogen 

and micro/mesopores in the material resulted in high S utilization and stable long-term cycle-

life.59 Quan et al. demonstrated electron transfer from electron-rich pyridinic Nδ- groups to 
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Li+ in the polysulfides using Li 1s X-ray photoelectron spectroscopy (XPS) (Figure 3G). 

DFT computations implied that the Li2S2 is adsorbed via Li-N bonding illustrated by a 

shortened bond length of 2.06 Å, in comparison with the average length of 2.14 Å. They 

pointed out that 53.5 atom % N concentration is sufficient to absorb all polysulfides of a 

sulfur cathode containing 75 wt % sulfur, and resultant sulfur cathodes of 0.04 % capacity 

fade per cycle under 0.5 C in 1500 cycles (Figures 3H and 3I).60 Additionally, g-C3N4 hybrids 

such as hybrid of graphene and g-C3N4 was also investigated as host materials to promote 

electrochemical properties of sulfur cathodes.61,62  

For other analogues to graphene, including graphdiyne and hexagonal boron nitride (h-

BN), there is little reported research for electrochemical applications. This might be due to 

its low stability together with poor electrical conductivity.63 Black phosphorus (BP) is 

semiconductor with a layered structure and a bandgap of ~ 2 eV that can be tuned through 

controlling thickness. Cui and co-workers reported a BP coated commercial separator in 

which the BP, with descent electron conductivity and ultra-high Li diffusion, trapped and 

activated polysulfides. The ex-situ XPS results indicated that BP adsorbed polysulfides 

through both P-S and P-Li bonds. Significantly, DFT computations confirmed these 

experimental results.64 

Metal oxides 

Inorganic materials represent an attractive class of host materials for sulfur cathodes. This is 

because they possess potential stronger adsorption energies to the polysulfides and more 

complex adsorption mechanisms to the polysulfides.65-67 This presents an opportunity to 

boost adsorption and conversion kinetics of the polysulfides via a new mechanism. Early 

studies on the use of metal oxides as additives in sulfur cathodes were generally with 
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nonconductive oxides that included Mg0.6Ni0.4O and SiO2.
68,69 For example, Nazar and co-

workers reported that semi-conducting Ti4O7 possessed strong polysulfides adsorption. A 

combination of operando XAS and electrochemical tests revealed that Ti4O7 enabled a 

significantly more rapid Li2S deposition during discharge. This was attributed to an 

enhanced redox electron transfer on the Ti4O7 that resulted in significantly reduced 

interfacial impedance. They concluded that adjusting sulfiphilic and metallic properties of 

inorganic additives was crucial to facilitate sulfur redox reaction.70 Further, these authors 

proposed a distinctive mechanism based on MnO2 nanosheets as a redox mediator in the 

sulfur cathode (Figure 4A). Based on ex-situ XPS results, thiosulfate surface species formed 

on the MnO2 surface that reacted with the polysulfides to produce a polythionate complex 

and shorter polysulfides. MnO2 therefore can act as a redox mediator to bind soluble 

polysulfides and facilitate conversion to Li2S via disproportionation. The resultant Li-S 

batteries exhibited a limited capacity decay of approximately 0.036 % per cycle over 2000 

cycles (Figures 4B and 4C).71 Cui and co-workers investigated systematically Li+ diffusion 

properties on a series of nonconductive metal oxides decorated carbon flakes (Figure 4D). 

Significantly, a combination of electrochemical tests and DFT computations revealed fast 

polysulfides diffusion, that induced controlled growth of Li2S and was essential for sulfur 

redox conversion. As a result, composite materials of MgO/C, La2O3/C and CeO2/C 

nanoflakes showed greater capacity and better cycling performance in comparison with other 

studied metal oxides (Figures 4E and 4F).72 

More recently extensive research attention has been given to the impact of geometric 

properties of metal oxides surface on polysulfides conversion. For example, oxygen 

vacancies have been considered to be beneficial in promoting polysulfides conversion 
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kinetics in sulfur cathodes.73 However, it was demonstrated that on ultra-thin niobic acid, 

adsorption and conversion of polysulfides is hindered by the oxygen vacancies (Figure 4G). 

Results from a judicious combination of electrochemical tests and DFT computations 

attributed inferior performance of niobic acid to decreased electrical conductivity and 

weakened polysulfides adsorption, which is induced by oxygen vacancies (Figures 4H and 

4I).74 

Metal sulfides 

With development of syntheses for 2D metal dichalcogenides, metal sulfides have been 

explored for sulfur cathodes in recent times.75-77 Metal sulfides have a number of major 

benefits that include: 1) low lithiation voltages vs. Li/Li+ that is less likely to overlap with 

working voltage windows of sulfur cathodes, and 2) a largely metallic or half-metallic 

property that contrasts with that for metal oxides. For example, Pentlandite Co9S8 exhibits a 

significantly good room-temperature conductivity of 290 S cm−1. With dual-interaction 

based on S (from polysulfides)-Co and Li-S (from Co9S8) between the polysulfides and 

Co9S8, a low capacity fading of 0.045 % per cycle in 1500 cycles can be achieved.78 Cui and 

co-workers demonstrated a 2D titanium sulfide (TiS2) as an effective host material for Li2S. 

TiS2 possesses high conductivity and polar Ti atoms that can potentially form Ti-S bonds. 

These result in strong interactions with Li2S/Li2Sn species.79 

Transition metal dichalcogenides (TMDs), a large group of 2D nanomaterials, have 

attracted significant research attention for sulfur cathodes, especially MoS2, owing to unique 

physicochemical/electronic properties and large surface area. A major development was 

understanding polysulfide adsorption on different sites of the 2D nanomaterials for 

controlled Li2S deposition via a combination of theoretical and experimental investigations 
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(Figure 5A). The selectivity of Li2S deposition on MoS2 edge sites, compared with that of 

the MoS2 terrace sites, was demonstrated through DFT computations, electrochemical tests 

and microscopic characterizations (Figures 5B and 5C). The vertically aligned MoS2 (V- 

MoS2) significantly promoted electrochemical performance compared with that of the 

horizontal MoS2 (H- MoS2). This work proffered guidance for design of 2D MoS2 with 

improved metal-sulfur batteries.80 Lee and co-workers studied the effect of S deficiencies on 

MoS2 basal plane on sulfur redox conversion. They found that S deficiencies boosted 

conversion of soluble lithium polysulfides. This decreased losses from the shuttle effect. As 

a result, a meaningfully small amount of MoS2-x/rGO (i.e. 4 wt% in the cathode) promoted 

simultaneously rating capacity and cycling stability. These findings provided strong 

evidence for the catalytic impact of MoS2-x/rGO in the sulfur cathode (Figures 5D, 5E and 

5F).81 Most recently, MoS3 was studied as cathode materials in Li/Na-S batteries to enable 

relative high capacity and long life-span (Figure 5G). A combination of operando XAS 

experiments and DFT computations provided convincing evidence that repetitive 

discharge/charge processes did not lead to decomposition of MoS3 (Figures 5H and 5I). 

Significantly, shuttle effect can be avoided because there was no Li2S or polysulfide detected 

during the discharge/charge processes.82 

A range of metal sulfides can be used in investigation of polysulfides adsorption 

behavior and conversion and offer insight into the energy barriers in these processes. Zhou 

et al. selected a series of metal sulfides as models to explore crucial parameters in 

determining the energy barrier for Li2S decomposition (Figure 6A). They demonstrated that 

the Li2S decomposition energy barrier was associated with the binding between Li+ and the 

S atoms in metal sulfides. The resultant sulfur cathodes with VS2, TiS2 and CoS2 exhibited 
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greater capacity, lower overpotential and better cycling stability when compared with the 

other metal sulfides-based electrodes (Figures 6B and 6C).83 Similarly, Chen et al. selected 

a series of transitional-metal sulfides as modes to obtain an in-depth understanding of 

adsorption origin to the polysulfides (Figure 6D). It was concluded that strong S bonds are 

induced mainly by electron transfer between metal atoms in metal sulfides and S atoms in 

lithium polysulfides, whilst Li bonds are induced by electrostatic interactions between them. 

The adsorption energies and Li diffusion energy barriers are crucial factors for high-

performance sulfur cathodes. VS2 has the strongest adsorption ability on the polysulfides 

together with a low diffusion barrier among all the transitional-metal sulfides (Figures 6E 

and 6F).84 

Research has focused on soluble polysulfides conversion and Li2S deposition/oxidation. 

However, the importance of conversion from Li2S2 to Li2S has been overlooked. Recently, 

Yang et al. reported a 2D nanomaterial of CoS3@NG (CoS3-S) as an effective electrocatalyst 

for electrochemical conversion from Li2S2 to Li2S (Figure 6G). Significantly, a combination 

of in-situ XAS characterizations and DFT computations revealed that CoS3 had strong 

interaction with sulfur species, and significantly low Li2S2 dissociation energy, facilitating 

conversion of Li2S2 to Li2S (Figures 6H and 6I). The sulfur cathode with high sulfur loaded 

electrodes (3 - 10 mg cm-2) with CoS3 exhibited > 80 % sulfur utilization. This is a > 20 % 

increase compared with counterparts without CoS3.
85 

Other inorganics 

In addition to 2D metal oxides and sulfides, inorganics such as 2D metal carbides/nitrides, 

phosphides and metal organic frameworks (MOFs) with porous structure and strong 

chemical interaction with polysulfides have been used as metal-sulfur batteries.86-91 Amongst 
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these materials MXene appears as a practical option. Derived from a selective etching out 

the A constituent to exfoliate MAX phases, where M, A, X refer to early transition metal, 

group 13 or 14 element, C and/or N, respectively, MXene exhibits high conductivity, large 

specific surface area and strong interaction with polysulfides.92,93 Nazar and co-workers 

explored the surface chemistry of the polysulfides on titanium based MXene phases (Figure 

7A). Using a combination of XPS analyses and DFT computations, these authors 

demonstrated for the first time, that prior to a Lewis acid-base interaction of Ti-S bond, 

hydroxyl groups on the MXene surface facilitate conversion from the polysulfides to 

thiosulfate (Figures 7B and 7C). This finding of dual-mode behavior provided a new 

mechanism to confine polysulfides and to enable promoted cycling performance of the Li-S 

batteries.94 Qiao and co-workers fabricated a 2D heterostructured MoN-VN as a new model 

sulfur host (Figures 7D and 7E). Spectroscopic studies highlighted that Mo in MoN-VN 

heterostructures possess greater chemical interaction with the polysulfides than does Mo in 

MoN. Theoretical investigations underscored that the electronic structure modification of 

2D MoN achieved by incorporation of V resulted in enhanced adsorption capability to the 

polysulfides on the 2D MoN-VN. Compared with the 2D MoN, the 2D MoN-VN 

heterostructure showed improved sulfur utilization efficiency and capacity retention.95 Li 

and co-workers, similarly through a judicious combination of experimental and theoretical 

approaches, demonstrated VN with strong polysulfides chemical adsorption. These authors 

synthesized a 3D free-standing electrode with porous VN and graphene to achieve a 

significant rate performance of 956 mA h g-1 at 2 C (Figure 7F).96 

To study the effect of anions on polysulfides adsorption/conversion of various 

inorganics, Qian and co-workers systematically studied the kinetic behavior of Li-S 
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chemistry on Co-based inorganics and deciphered the descriptor of the electrochemical 

results. DFT computations revealed that a shift of p band centers highly significantly 

impacted kinetics of interfacial electron transfer on Co-based inorganics (Figure 7G). 

Moreover, a scaling relationship was established between the energy gap of d and p band 

centers and the redox potentials. This revealed that the anion p band position and electronic 

structural engineering is crucial for sulfur redox conversion (Figures 7H and 7I).97 As a result, 

CoP exhibits the lowest overpotential for polysulfide redox conversion, and CoP-based 

sulfur cathodes deliver a capacity of 417 mA h g-1 at 40 C together with an unmatched power 

density of 137 kW kg-1.98 

In order to boost both electron conduction and polysulfide adsorption properties, Nazar 

and co-workers reported lightweight MgB2 as a sulfur host. They showed that borides are 

unique in that both B- and Mg- terminated surfaces bond with Sx
2- anions through DFT 

computations. The surface-mediated polysulfide redox behavior resulted in a significantly 

greater exchange current in comparison with MgO. By fabricating a high-surface-area 

composite structure via hybridizing MgB2 with graphene, these researchers synthesized 

sulfur cathodes with stable cycling properties at a high sulfur loading of 9.3 mg cm-2.99 

Metal anodes 

The acknowledged instability of the Li/Na stripping-plating interfacial reaction is considered 

originating from the high reactivity with polysulfides/additives in organic electrolyte and 

significant volume change during the stripping-plating process.100 These act together to form 

unstable SEI and uncontrollable growth of Li/Na dendrites that can lead to problems such 

as: 1) low CE, 2) Li/Na powdering, and 3) internal short-circuits in Li/Na metal batteries. A 

significantly reduced life-span and important overriding safety concerns with Li/Na metal 
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anodes can act to limit practical application of Li/Na-S batteries.2 The judicious combining 

of experimental studies and theoretical computational investigations can be used to reveal 

the chemical origin of reaction between the metal and solvents or additives in the electrolyte. 

This approach can be successfully used to predict stability of the SEI and thereby assist the 

search for and screening of appropriate compositions in the electrolyte. Additionally, 2D 

nanomaterials such as graphene and h-BN have been used to fabricate artificial SEIs. 

Advantages include: 1) a light weight, large specific surface area, 2) high chemical stability, 

and 3) good mechanical strength. The SEI formed during the anode reaction can be stabilized 

on top of the artificial SEIs and the metal ions can be plated underneath the artificial SEIs.101 

Both these strategies improve CE. 2D nanomaterials as Li/Na hosts with high porosity and 

lithiophilic/sodiophilic properties, have been demonstrated to enable homogeneous Li/Na 

nucleation and to block dendrite growth.102 

2D nanomaterials in Li metal anodes 

The structure and components of SEIs formed on Li anodes in Li-S batteries are distinctive 

from those in routine Li metal batteries because of the reactivity of lithium polysulfides with 

Li metal. This results in additional requirements of high resistance to lithium polysulfides 

and high Li loading to match sulfur cathodes for Li metal anodes in Li-S batteries.103 In 

addition to strategies such as introduction of electrolyte additives and optimization of 

electrolyte components, artificial SEIs have been widely studied via combining experimental 

and theoretical approaches to protect Li metal anode. For example, an artificial SEI 

fabricated via electroplating in electrolyte (based on LiTFSI, LiNO3 and Li2S5) was used to 

prevent side reactions (Figure 8A). Theoretical calculations showed that the highest 

occupied molecular orbitals (HOMOs) of SEI components were lower than the lowest 
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unoccupied molecular orbitals (LUMOs) of the solvents, including 1,3-dioxolane/1,2-

dimethoxyethane (DOL/DME) and ethylene carbonate/diethyl carbonate (EC/DEC) solvents 

(Figure 8B). This indicates the artificial SEI is stable against DOL/DME and EC/DEC 

solvents. The resultant Li-S pouch cells showed significantly boosted capacity from 156 to 

917 mA h g-1 and enhanced CE from 12 % to 85 % at 0.1 C compared with Li-S pouch cells 

without protection of the artificial SEI.104 In addition, fabrication of artificial SEI and 

lithiophilic matrix with 2D nanomaterials has also been extensively studied.105-109 For 

example, Reza and co-workers demonstrated a facile application of defective GO on Li 

anodes. DFT computations and AIMD simulations indicated that lithiophilic GO enhances 

Li+ adsorption and diffusion to the Li anode surface through defect sites on the GO (Figure 

8C). Phase-field modeling (PFM) showed that defective GO with good mechanical property 

can physically block the Li dendrites growth (Figure 8D). A dense and uniform plating of Li 

and significant improvement in cyclability and stability was achieved. Overall findings 

suggest that the lithiophilic and defective nature of the GO coating have a synergic effect for 

protecting Li anode as artificial SEIs.110 Kim used phosphate functional graphenes to design 

artificial SEIs that improve Li anode stability. This artificial SEI stabilized Li migration 

through a favored interaction of the Li with pyro-/metaphosphates and phosphorus 

species.111 

The concept of lithiophilicity has been a dominant indicator in estimating the Li host 

properties since Cui and co-workers pioneered in fabricating layered Li-GO composite films 

through thermal infusion.112 Recently NG has been reported as the Li plating matrix in Li 

anodes that assists to regulate the nucleation of Li metal and therefore suppresses the growth 

of Li dendrites. Amongst the different configurations in NG, the lithiophilic pyridinic and 
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pyrrolic nitrogen were demonstrated to facilitate uniform nucleation and distribution of Li 

on the anode surface. With this modification a dendrite-free morphology is achieved on the 

Li metal anode, and consequently a high CE of 98 % in 200 cycles.113 Zhang and co-workers 

proposed a descriptor of log (0.5 × electronegativity + local dipole) for Li binding energy on 

doped graphene via combining NMR spectra and DFT computations. They showed that a 

dopant with a large electronegative and a strong local dipole directly delivered a large 

binding energy (Figures 8E and 8F). Li nucleation overpotential tests confirmed the O 

doping carbon frameworks possessed excellent lithiophilicity. This was also evidenced by 

TEM images.114 

In addition to graphene, other 2D nanomaterials with homogeneous Li nucleation sites 

have been explored to protect the Li metal anode. For example, Yang and co-workers have 

reported uniform nucleation of Li a g-C3N4 coating on 3D collector. They emphasized that 

the inherent negative electric fields on the g-C3N4 possess a strong ability to adsorb Li+ as 

was confirmed through DFT computation. The uniform electric field induced by the high N 

content results in homogeneous Li nucleation sites, promoting homogeneous Li nucleation. 

The resultant Li anode had a high CE of 98 % and an ultra-long life-span with a high capacity 

of 9 mA h cm−2.115 

2D nanomaterials in Na metal anodes 

Because of different intrinsic atomic and physicochemical properties of metal Na from metal 

Li, Na dendritic nucleation/growth mechanism and SEI components/structure on Na metal 

anode in RT Na-S batteries are not analogues to those for Li-S batteries and have been poorly 

elucidated.116 Importantly, because of the high reactivity of Na with solvent/additives in the 

electrolyte, the formation of a stable SEI could actually play a more important role in 
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protecting Na metal anodes than that in Li metal anodes.117,118 This would also mean that 

computations, such as adsorption energy and diffusion barriers in Li metal anode, are 

oversimplified for Na plating. It is significant to note that the protection of Na metal anodes 

is discussed rarely in the general field of RT Na-S battery research. Therefore, here we have 

focused on more generally on Na metal anodes. 

Despite that strategies applied in Li anodes are not aligned to Na anodes, several 

researchers have demonstrated that alloying is effective in avoiding Na dendrites due to a 

low melting point of Na.119,120 In addition, the thermal infusion approach was used 

successfully in fabricating controllable Na-GO composite anodes. Compared with the 

pristine Na metal, the mechanical strength and electrochemical stability of Na-GO anodes 

were boosted.121 

In the search for 2D nanomaterials as artificial SEIs, Zhang and co-workers concluded 

that to make a compromise between metal ion diffusion and acceptable mechanical property 

is important. In general, the diffusion barrier strongly depends on the size of the hollow 

atomic ring in 2D nanomaterials. In addition, electronic structure can significantly impact 

barriers for ion diffusion. For example, although structures and atomic bond lengths of 

defective h-BN and graphene are similar, the former one enables significantly better ion 

diffusion compared with the latter one (~ 24 orders of magnitude greater). Additionally, 

improving ion diffusion through introducing defects or pores decreases mechanical property 

of the 2D materials to suppress Li/Na dendrite growth (Figures 8G and 8H).122 

Notably, in following research it was shown that defective graphene catalyzes SEI 

formation on the Na anode. The authors compared the defective graphene with nanopores 

and pristine graphene. They found that the former led to a thicker SEI than the later. This 
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resulted in a significant overpotential and low CE during subsequent Na plating/stripping. 

This promoted growth of metal dendrites and electrical shorting.123 More recently, a facile 

and versatile strategy was demonstrated by synthesizing a sodiophilic interphase. Through 

DFT computations this facilitated a homogenous Na nucleation and lateral Na plating to 

form dendrite-free Na metal anode (Figure 8I). The resultant Na anode exhibited an ultra-

high specific capacity that approached the theoretical capacity and ultra-long life up to 3000 

cycles124 

Summary and outlook 

Crucial factors such as adsorption energy, diffusion barrier and electronic structure have been 

widely investigated from a theoretical view using DFT computations to assess performance 

of various materials, especially sulfur cathodes (Figure 9). In addition, other computational 

methods such as AIMD have been used to reveal microscopic sulfur redox kinetics.125-127 At 

the same time, a broad spectrum of spectroscopic characterization, electron microscopy 

techniques and electrochemical methods have been used on a range of 2D nanomaterials to 

investigate relationships between surface physicochemical properties and dynamic 

conversion of intermediates species on cathodes and anodes.  
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Figure 1. Timeline (2006 to 2019) for Li-S and Na-S battery development. 
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Figure 2. Summary comparison of power and energy density of metal-sulfur batteries with 

regard to mass of sulfur cathode. 
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Figure 3. 2D carbonaceous nanomaterials as sulfur hosts in sulfur cathodes. (A) Schematic 

diagram of polysulfides adsorption on N-doped graphene (Grey, light blue, yellow and 

purple balls represent C, N, S and Li atoms, respectively). (B) Theoretically computed and 

experimentally obtained 7Li NMR spectra for Li2S8 before and after interacting with pyridine. 

Reproduced with permission from Hou et al.55 Copyright 2017 John Wiley Sons, Inc. (C) 

Optimized configurations for binding of the polysulfides to N,S-G. Reproduced with 

permission from Zhou et al.56 Copyright 2015 Nature Publishing Group. (D) Schematic of 

Li2S oxidation on Ni single atom on N-doped graphene (Grey, light blue, green, yellow and 

purple balls represent C, N, Ni, S and Li atoms, respectively). (E) XPS spectra of N 1s on 

the Ni@NG at various charge/discharge states. (F) The decomposition energy barriers of 

Li2S on the Ni@NG and NG (Blue, cyan, green, yellow, and brown balls represent Ni, N, Li, 

S, and C atoms, respectively). Reproduced with permission from Zhang et al.57 Copyright 

2019 John Wiley Sons, Inc. (G) Schematic of polysulfides adsorption on g-C3N4 (Grey, light 

blue, yellow and purple balls represent C, N, S and Li atoms, respectively). (H) Li 1s and S 

2p XPS spectra of Li2S4 and g-C3N4/Li2S4 mixture. (I) Variation of binding energy of Li2S2 

molecules versus the number of Li2S2 on respective substrates. Reproduced with permission 

from Pang et al.60 Copyright 2016 American Chemical Society. 
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Figure 4. Metal oxide nanomaterials promoting sulfur redox in sulfur cathodes. (A) 

Schematic diagram of reduction of polysulfides on MnO2 nanosheets (Red, cyan, yellow and 

purple balls represent O, Mn, S and Li atoms, respectively). (B) Ex-situ XPS of S/MnO2 

electrodes after discharge to 2.15 V (top) and aged for 20 h afterwards (bottom). (C) Mn 

2p3/2 spectra of MnO2 nanosheet (top) and MnO2-Li2S4 (bottom). Reproduced with 

permission from Liang et al.71 Copyright 2015 Nature Publishing Group. (D) Schematic of 

polysulfides diffusion on MgO (Red, sky blue, yellow and purple balls represent O, Mg, S 

and Li atoms, respectively). (E) Plot of CV peak current of the cathodic reaction S8-Li2S4. 

(F) Minimum energy path for Li ion diffusion on MgO (100). Reproduced with permission 

from Tao et al.72 Copyright 2015 Nature Publishing Group. (G) Schematic of polysulfides 

adsorption on HNb3O8 nanobelts (Red, white, blue, yellow and purple balls represent O, H, 

Nb, S and Li atoms, respectively). (H) CV curves of HNb3O8 (HNO) and HNb3O8 with high 

oxygen vacancy concentration (HNO-v) cathodes. Orange, blue, green and red lines 

represent scan rates of 0.2, 0.5, 1.0 and 2.0 mV s-1, respectively. (I) The PDOSs of HNb3O8. 

Reproduced with permission from Xu et al.74 Copyright 2019 John Wiley Sons, Inc. 
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Figure 5. Molybdenum sulfides in sulfur cathodes. (A) Schematic of Li2S adsorption on 

MoS2 (Bright green, yellow and purple balls represent Mo, S and Li atoms, respectively). 

(B) TEM images of Horizontally aligned MoS2 (H-MoS2, top) and vertically aligned MoS2 

nanofilm (V-MoS2, bottom). (C) Schematic of H-MoS2 nanosheet on V-MoS2 with binding 

energies. Reproduced with permission from Wang et al.80 Copyright 2016 American 

Chemical Society. (D) Schematic of polysulfides conversion on MoS2-x (Bright green, 

yellow and purple balls represent V, S and Li atoms, respectively). (E) CV tests of symmetric 

cells with MoS2-x/rGO. (F) S 2p XPS spectra of MoS2-x/rGO electrodes after CV tests. 

Reproduced with permission from Lin et al.81 Copyright 2017 Royal Society of Chemistry. 

(G) Schematic of Li storage on MoS3 (Bright green, yellow and purple balls represent Mo, 

S and Li atoms, respectively). (H) Fourier-transformed XAS spectrum of Mo K-edge in 

MoS3 during charge and discharge comparing with those for MoS2 and Mo. Inset image 

indicates slight change of Mo-S bond length during battery cycle. (I) Calculation of charge-

density distribution in Li on MoS3, where cyan, blue, and yellow balls represent Li, Mo, and 

S atoms, respectively, and green and brick red regions indicate depletion and accumulation 

of electrons. Reproduced with permission from Ye et al.82 Copyright 2017 National Academy 

of Sciences. 
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Figure 6. Other metal sulfides promoting sulfur redox in sulfur cathodes. (A) Schematic of 

conversion from Li2S to the polysulfides on VS2 (Deep pink, yellow and purple balls 

represent V, S and Li atoms, respectively). (B) Voltage profiles of various metal sulfides-

Li2S electrodes in the first charge process. (C) Energy for Li+ diffusion of on various metal 

sulfides and graphene. Reproduced with permission from Zhou et al.83 Copyright 2017 

National Academy of Sciences. (D) Schematic of Li2S diffusion on VS2 (Deep pink, yellow 

and purple balls represent V, S and Li atoms, respectively). (E) Periodic law of binding 

energy on transition metal sulfides. (F) Energy barriers of Li+ diffusion on transition metal 

sulfide surfaces. Reproduced with permission from Chen et al.84 Copyright 2017 American 

Chemical Society. (G) Schematic of conversion from Li2S2 to Li2S on CoS3 (Blue, yellow 

and purple balls represent Co, S and Li atoms, respectively). (H) S K-edge and Co K-edge 

XAS of sulfur electrode with CoS3 at different states of discharge/charge. (I) Adsorption 

energy (Ea) of Li2S2 on the surface of CoS3. Reproduced with permission from Yang et al.85 

Copyright 2019 John Wiley Sons, Inc. 
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Figure 7. Other inorganics as promoters in sulfur cathodes. (A) Schematic of polysulfides 

adsorption and conversion on Ti3C2 (Grey, orange, red, yellow and purple balls represent C, 

Ti, O, S and Li atoms, respectively). (B) O 1s XPS spectra of Ti3C2 (top) and Ti3C2-

polysulfides (bottom). (C) Variation of binding energy of lithium polysulfides bonding to 

respective substrates. Reproduced with permission from Liang et al.94 Copyright 2017 John 

Wiley Sons, Inc. (D) Schematic of polysulfides adsorption on V-MoN (Light blue, bright 

green, deep pink, yellow and purple balls represent N, Mo, V, S and Li atoms, respectively). 

(E) Mo L-edge NEXAFS spectra of MoN-VN and MoN. Reproduced with permission from 

Ye et al.95 Copyright 2018 John Wiley Sons, Inc. (F) View of Li2S6 on VN. Reproduced with 

permission from Sun et al.96 Copyright 2017 Nature Publishing Group. (G) Schematic of 

polysulfides adsorption on CoP (Light pink, blue, yellow and purple balls represent P, Co, S 

and Li atoms, respectively). (H) Summary potential and current density for CV peak 

corresponding to reduction of Li2S6 to Li2S for Co-based samples with various anions. (I) 

Relation between the ∆ band (d-p) center and polysulfides redox potentials for CoP, CoS2, 

and Co3O4, respectively. Reproduced with permission from Zhou et al.98 Copyright 2018 

Elsevier. 
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Figure 8. Combining experimental and theoretical investigations to develop Li/Na anodes. 

(A) Schematic of ex-situ SEI fabrication on the Li through electroplating. (B) HOMO and 

LUMO levels of SEI components and solvents. Reproduced with permission from Cheng et 

al.104 Copyright 2018 Elsevier. (C) Simulation of lithiated GO on Cu surface from initial 

state to 1930 fs (Purple, orange, gray and red spheres represent Li, Cu, C and O atoms, 

respectively). (D) Simulations of Li dendrites growth with protective layer. Reproduced with 

permission from Foroozan et al.110 Copyright 2018 John Wiley Sons, Inc. The relationship 

between Li atom binding energy and (E) log (0.5 × electronegativity + local dipole), and (F) 

theoretical 7Li chemical shift. Inset is the modeling of heteroatom-doped graphene. 

Reproduced with permission from Chen et al.114 Copyright 2019 American Association for 

the Advancement of Science. (G) Energy curves of Na+ ion diffusion through defective 

graphene and h-BN. (H) The strain–stress relations for h-BN and defective h-BN. 

Reproduced with permission from Tian et al.122 Copyright 2017 John Wiley Sons, Inc. (I) 

The Na growth on oxygen functionalized carbon nanotubes (top) and Cu foil surfaces 

(bottom) by DFT computations. Reproduced with permission from Ye et al.124 Copyright 

2019 John Wiley Sons, Inc. 
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Figure 9. Summary theoretical investigation of sulfur intermediates adsorption energy, and 

Li ion diffusion relative energy, on various nanomaterials (represented by bars and points, 

respectively). 
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Figure 10. 2D nanomaterials design for Li/Na-S batteries through combining experimental 

and computational approaches. 
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Chapter 3 A Three-Dimensional Hybrid of Chemically Coupled Nickel Sulfide and 

Hollow Carbon Spheres for High Performance Lithium-Sulfur Batteries 

3.1. Introduction and Significance 

Lithium-sulfur batteries are regarded as one of the most promising next generation batteries. 

However, their performance is limited by the loss of active material and the low conductivity 

of sulfur. Metal sulfide and its hybrids can potentially serve as sulfur hosts to effectively 

solve these issues. However, conventional methods produce metal sulfides with large size 

and poor distribution, limiting the performance of the lithium-sulfur batteries. Moreover, 

sluggish charge transfer at the interface of the metal sulfide and carbon results in limited 

redox efficiency of the polysulfides. 

Our study presents a new method to produce a three-dimensional (3D) hybrid of nickel 

sulfide and carbon hollow spheres with strong chemical coupling, achieving a unique 3D 

nanostructure of nanosized nickel sulfide uniformly distributed on carbon hollow spheres. 

The hybrid electrode realized a sulfur loading of 2.3 mg cm-2, a high capacity of 695 mA h 

g-1 after 300 cycles at 0.5C, and a low capacity decay of 0.013% per cycle. This new hybrid 

system provides new routes to engineer sulfur hosts for lithium-sulfur systems. The 

highlights of this work include: 

1. New method. An in situ thermal reduction and sulfidation method was applied to 

hybridize nickel sulfide and hollow nanocarbon which is different from conventional 

methods. 

2. Unique structure. A unique 3D hybrid material of nickel sulfide and carbon hollow 

spheres was produced as a sulfur host with nanosized nickel sulfide uniformly distributed 

on hollow carbon spheres.  
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3. Chemical coupling. Strong C-S chemical coupling between nickel sulfide and 

nanocarbon derived from the new method further enhances the charge transfer and redox 

kinetics of the electrode. 

4. High performance. The hybrid as a sulfur host promises high retention of sulfur and high 

conductivity, leading to high performance lithium-sulfur batteries (0.013% capacity 

decay per cycle at 0.5 C). 

3.2. A Three-Dimensional Hybrid of Chemically Coupled Nickel Sulfide and Hollow 

Carbon Spheres for High Performance Lithium-Sulfur Batteries 

This section is included as a submitted manuscript by Chao Ye, Lei Zhang, Chunxian Guo, 

Dongdong Li, Anthony Vasileff, Haihui Wang, and Shi-Zhang Qiao, A Three-dimensional 

Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High 

Performance Lithium-sulfur Batteries, Advanced Functional Materials, 2017, 27(33), 

1702524. 
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Chapter 4 2D MoN-VN Heterostructure as a Model Sulfur Host to Regulate 

Polysulfides for Highly Efficient Lithium-Sulfur Batteries 

4.1. Introduction and Significance 

Lithium-sulfur batteries are acknowledged as the most promising next generation batteries. 

However, their performance is limited by loss of active sulfur material (polysulfides). This 

is because of the ‘shuttle effect’. Rational design of sulfur hosts could solve this by regulating 

polysulfides via chemical adsorption of the polysulfides, and through improving their redox 

efficiency. However, at present an atomic-level understanding of chemical interaction 

between sulfur hosts and polysulfides is missing.  

Here, a 2D MoN-VN heterostructure is designed and fabricated. It is used as a model sulfur 

host material to overcome the ‘shuttle effect’ and to gain atomic-level understanding of 

polysulfides adsorption features. The resulting MoN-VN-based lithium-sulfur battery 

displayed excellent discharge capacity and cycling stability when compared with many 

reported sulfur hosts. Density functional theory (DFT) calculations revealed that the 

electronic structure of MoN can be tailored by VN. This leads to enhanced polysulfides 

adsorption. In situ synchrotron X-ray Diffraction (synchrotron XRD) and electrochemical 

results showed efficient sulfur utilization when MoN-VN was used as the sulfur host.  

The particular novelty of this work is:  

1. Novel 2D MoN-VN heterostructure as a model sulfur host - We present the first report 

on a 2D heterostructure of MoN-VN as a sulfur host with effective regulation to polysulfides. 

More importantly, the 2D heterostructure provides a theoretical model for DFT calculations 

to investigate polysulfides adsorption behaviours. 

2. DFT calculations and in situ synchrotron XRD - DFT calculations reveal that the 
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incorporation of VN can tailor electronic structure of MoN in the MoN-VN heterostructure, 

leading to enhancement of polysulfides adsorption. Additionally, in situ synchrotron XRD 

and electrochemical measurements suggested effective sulfur regulation and utilization 

when MoN-VN is used as a sulfur host. 

3. Superior performance - The 2D MoN-VN-based lithium-sulfur battery offers a highly 

significant capacity of 708 mA h g-1 at 2C and an excellent operational stability with a low 

capacity decay of 0.068 % per cycle during 500 cycles. This performance is meaningfully 

superior to many currently reported.  

4.2. 2D MoN-VN Heterostructure as a Model Sulfur Host to Regulate Polysulfides for 

Highly Efficient Lithium-Sulfur Batteries 

This section is included as a journal paper by Chao Ye, Yan Jiao, Huanyu Jin, Ashley D. 

Slattery, Kenneth Davey, Haihui Wang and Shi-Zhang Qiao, 2D MoN-VN Heterostructure 

as a Model Sulfur Host to Regulate Polysulfides for Highly Efficient Lithium-Sulfur 

Batteries, Angew. Chem. Int. Ed., 2018, 57, 16703-16707.  
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Chapter 5 Electron-state confinement of polysulfides for highly stable sodium-sulfur 

batteries 

5.1. Introduction and Significance 

Confinement of polysulfides in sulfur cathodes is widely acknowledged as an important 

issue in eliminating the ‘shuttle effect’ in metal-sulfur batteries, and for subsequent practical 

application to large-scale, sustainable energy storage. However, there is presently no 

adequate mechanistic explanation for polysulfide confinement that could lead to highly 

stable metal-sulfur batteries. 

Here we report a new mechanism for polysulfides confinement. Based on a two-

dimensional met-al-organic framework (2D MOF), this new mechanism highlights for the 

first time a correlation be-tween local electron-states of the sulfur cathode materials and the 

facilitated polysulfides conversion kinetics. The performance of a room-temperature 

sodium-sulfur (RT Na-S) battery is amongst the best reported and surpasses that for all sulfur 

cathode materials in RT Na-S batteries. We conclude that our findings offer a practical means 

to address the shuttle effect in metal-sulfur batteries for production of highly stable metal-

sulfur batteries. Highlights of this work include: 

1. Confinement mechanism - We demonstrate, based on in-situ synchrotron X-ray 

diffraction (XRD), electrochemical experiments and density functional theory (DFT) 

computations, that this new mechanism involves two features: 1) Electron-rich N sites on 
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the MOF facilitate strong poly-sulfide adsorption by Na-N interaction, and; 2) Dynamic 

electron states of Ni centers enable tun-ing of Na-N interaction to further facilitates fast 

polysulfide conversion kinetics. 

2. A chemical origin - Based on a combination of both synchrotron-based near-edge X-ray 

absorp-tion fine structure (NEXAFS) analyses, and DFT computations, we reveal that the 

generation of electron-rich N sites and dynamic electron states on Ni centers originate from 

charge redistribution from the bulk MOF to the 2D MOF. 

3. Superior performance - We demonstrate that sulfur cathodes with 2D MOF exhibit a 

significantly high, reversible capacity of 347 mAh g−1 after 1000 continuous cycles under 

a current density of 1 C, together with an ultra-low decay of 0.042 % per cycle. This 

performance is amongst the best reported and is superior to all sulfur cathode materials in 

RT Na-S batteries.  

 

5.2. Electron-state confinement of polysulfides for highly stable sodium-sulfur batteries 

This section is included as a submitted manuscript by Chao Ye, Yan Jiao, Dongliang Chao, 

Tao Ling, Jieqiong Shan, Binwei Zhang, Qinfen Gu, Kenneth Davey, Haihui Wang, Shi-

Zhang Qiao, Electron-state confinement of polysulfides for highly stable sodium-sulfur 

batteries. 
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Confinement of polysulfides in sulfur cathodes is pivotal for eliminating ‘shuttle effect’ 

in metal-sulfur batteries, which represent promising solutions for large-scale and 

sustainable energy storage. However, mechanistic explorations and in-depth 

understanding for the polysulfides confinement remain limited. Consequently, it has 

been a critical challenge to achieve highly stable metal-sulfur batteries. Here, we 

propose a new mechanism to realize effective polysulfides confinement based on a two-

dimensional metal-organic framework (2D MOF). Combination of in-situ synchrotron 

X-ray diffraction, electrochemical measurements and theoretical computations reveals 

that dynamic electron states of Ni centers in the MOF enable tuning of Na-N interaction 

between polysulfides and the MOF in the discharge/charge process, resulting in strong 

polysulfides adsorption and fast polysulfides conversion kinetics. The resultant room-

temperature sodium-sulfur batteries (RT Na-S) are amongst the most stable ones so 

far, thus demonstrating that the new mechanism opens a promising avenue for 

development of high-performance metal-sulfur batteries. 

As a promising electrode material, sulfur benefits from low cost and high-theoretical specific 

capacity of ~1675 mAh g−1 (ref. 1). Additionally, sulfur cathodes can be conjugated with a 

range of metal anodes in metal-sulfur batteries. This holds promise for practical energy-

storage applications2, 3. However, a major drawback with metal-sulfur batteries is the ‘shuttle 

effect’. This arises from solubility of the intermediate metal polysulfides, together with a 

parasitic reaction between the polysulfides and the metal anodes. This leads to a low 

Coulombic efficiency (CE) and a rapid capacity decay in metal-sulfur batteries4. For 

example, the shuttle effect severely hinders practical application of room-temperature 

sodium-sulfur (RT Na-S) batteries because of highly reactive Na5-7. Therefore confinement 

file:///C:/Users/Ye/Box/Paper%203/3manuscript/Manuscript-submitted.docx%23_ENREF_1
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file:///C:/Users/Ye/Box/Paper%203/3manuscript/Manuscript-submitted.docx%23_ENREF_5


118 

 

 

of polysulfides in sulfur cathodes is critical to long-term stability and development of metal-

sulfur batteries2, 8. 

Currently, polysulfides confinement with weak physical adsorption on carbon-based 

materials would inevitably inhibit their conversion kinetics, resulting in a compromise 

between high discharge capacity and low capacity decay of the sulfur cathodes9. On the other 

hand, too strong polysulfides adsorption would cause decomposition of the polysulfides, 

resulting in block of the adsorption sites10. The keys for efficient polysulfides confinement 

lie in appropriate adsorption of the polysulfides and their facilitated conversion kinetics, 

which are largely determined by local electronic state of a sulfur cathode material11-16. For 

example, on N-doped graphene, pyridinic N with an extra pair of electrons interacts with 

terminal Li in lithium polysulfides to form Li bond, which greatly promote lithium 

polysulfides confinement17. However, systematic investigation to correlate local electron 

state with adsorption behaviors of a series of polysulfides remains very limited, which is due 

to the complexity of the polysulfide conversion process. For example, in the case of the RT 

Na-S batteries, at least five sodium polysulfides (NaPoSs) including Na2S5, Na2S4, Na2S2 

and Na2S are involved18, 19. Consequently, realizing efficient polysulfides confinement in 

sulfur cathodes has been a challenging topic in high-energy density metal-sulfur batteries.  

Although polysulfides are too sensitive to be detected in air, advances in in situ 

synchrotron-based characterizations permit the identification of specific polysulfides and the 

tracking of dynamic macroscopic polysulfides conversions6, 20, 21. In-depth comprehension 

can thus be offered for macroscopic polysulfides conversion kinetics22. Nevertheless, 

atomic-level understanding for the polysulfides adsorption behaviors is imperative and 

remains difficult to achieve experimentally23. Extraordinary progress in density functional 

file:///C:/Users/Ye/Box/Paper%203/3manuscript/Manuscript-submitted.docx%23_ENREF_2
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theory (DFT) that take into account the surface chemistry and local electron state of the 

sulfur cathode materials is essential for investigating the polysulfides adsorption behaviors24. 

For instance, d-orbital electron numbers of the transitional metal sulfides strongly determine 

adsorption energies of lithium polysulfides25. Therefore, combination of the advanced in-

situ synchrotron characterizations and computational quantum chemistry can reveal the 

mechanism of polysulfides confinement on cathode materials. One can engineer potential 

sulfur cathode materials with efficient polysulfides confinement by tailoring their electron 

states. It is thus urgently required for introducing the aforementioned advanced methodology 

to the field of metal-sulfur batteries. 

Here we report a new mechanism for polysulfides confinement based on a two-

dimensional metal-organic framework (2D MOF). Using the MOF as a model together with 

a judicial combination of in situ synchrotron X-ray diffraction (XRD), electrochemical tests 

and DFT computations, we demonstrate that dynamic electron states of Ni centers in the 

MOF enable tuning of Na-N interaction between polysulfides and the MOF in the 

discharge/charge process, facilitating strong polysulfide adsorption and rapid polysulfides 

conversion kinetics. The resulting performance of the RT Na-S batteries is amongst the best 

ones reported so far. We report for the first time the correlation between the local electron 

state of the sulfur cathode materials and facilitated polysulfides conversion kinetics. Our 

findings offer a practical means to address the shuttle effect in metal-sulfur batteries for 

production of highly stable metal-sulfur batteries. 

Results 

Structural and electron-state characterizations of 2D Ni (II) MOFs. 

file:///C:/Users/Ye/Box/Paper%203/3manuscript/Manuscript-submitted.docx%23_ENREF_24
file:///C:/Users/Ye/Box/Paper%203/3manuscript/Manuscript-submitted.docx%23_ENREF_25


120 

 

 

A hydrothermal method was adopted to fabricate a single crystal bulk Ni2(PymS)4 MOFs 

(Ni-MOF-bulk, PymSH = 2-mercaptopyrimidine)26. Morphology of the Ni-MOF-bulk was 

characterized by scanning electron microscopy (SEM) to reveal its layered structure 

(Supplementary Fig. 1). High-angle annular dark-field scanning transmission-electron 

microscopy (HAADF-STEM) images and corresponding energy-dispersive spectroscopy 

(EDX) elemental maps revealed a uniform distribution of C, N, S and Ni (Supplementary 

Fig. 2). Mechanical exfoliation was used on the Ni-MOF-bulk via wet ball-milling in acetone. 

Because of weak interaction between its layers, the Ni-MOF-bulk was readily exfoliated into 

2D MOF nanosheets (Ni-MOF-2D)27. This was evidenced by a broad signal from 3100 to 

3150 cm-1 in the Raman spectrum that is assigned to N···H hydrogen bonds between layers 

of the Ni-MOF-bulk (Supplementary Fig. 3). In contrast, a negligible corresponding signal 

in the Ni-MOF-2D would imply breaking of the N···H hydrogen bonds as a result of 

exfoliation28. The schematic, Fig. 1a, shows this layered structure of Ni-MOF-2D with a 

(002) interlayer-space of 0.84 nm. X-ray diffraction (XRD) patterns demonstrate that the Ni-

MOF-2D maintains the original crystalline phase of the Ni-MOF-bulk, (Fig. 1b). The inset 

high-resolution transmission electron microscopy (HRTEM) image shows an outstanding 

(002) peak in Ni-MOF-2D pattern to evidence successful exfoliation of the bulk MOF26. 

Representative SEM and transmission electron microscopy (TEM) measurements were 

performed to aid visualization of the morphology of Ni-MOF-2D. These showed a 2D 

nanosheet structure (inset of Fig. 1c, Supplementary Figs. 4a and 5a). Atomic force 

microscopy (AFM) images confirmed this 2D morphology with a thickness of ~ 8.6 nm 

(Supplementary Fig. 4b). HRTEM images (Fig. 1c) together with the selected-area-electron-

diffraction (SAED) pattern (Supplementary Fig. 5b) gave measured lattice distances of 0.23 

nm and 0.27 nm, corresponding respectively, to the (244) and (241) facets of Ni2(PymS)4 

MOFs. To provide a more detailed composition of Ni-MOF-2D, HAADF-STEM image and 

corresponding EDX elemental map are presented as Fig. 1d. This shows that the C, N, S and 
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Ni elements are uniformly distributed and confirms that the Ni-MOF-2D maintains the 

physical phase of pristine Ni-MOF-bulk. 

Because it is reported that an optimized electron-state of cathode materials is favorable 

for improving discharge capacity and cycling stability of sulfur cathodes29. We performed 

density functional theory (DFT) calculations and conducted Bader charge analysis to predict 

the charge redistribution from the Ni-MOF-bulk to the Ni-MOF-2D30. Findings show that 

~10 % of electrons from S transfer to Ni in processing of Ni-MOF-bulk to Ni-MOF-2D 

(Supplementary Fig. 6 and Supplementary Table 1)31. Synchrotron-based near-edge X-ray 

absorption fine structure (NEXAFS) characterizations were performed on both Ni-MOF-

bulk and Ni-MOF-2D to investigate any structural impact on electron transfer behavior. 

NEXAFS is a powerful tool to provide reliable information on local electron-states. As is 

seen in the white-line region of N and C K-edge of Fig. 1e and 1f, the white-line adsorption 

energies of the Ni-MOF-bulk decrease following exfoliation. This finding indicates 

increased N and C electron densities in the Ni-MOF-2D nanosheets32, 33. Equally, according 

to the white-line adsorption energies, Fig. 1g and inset present a clear view of the Ni L-edge 

spectra in which Ni-MOF-2D exhibits increased electron density following exfoliation from 

Ni-MOF-bulk24, 25. In contrast the S K-edge spectra demonstrate a decreased electron density 

of S following exfoliation (Fig. 1h). X-ray photoelectron spectra (XPS) measurements were 

performed on the four elements of the Ni-MOF-bulk and Ni-MOF-2D to substantiate 

electron transfer behavior34-38 (Supplementary Fig. 7 and Note 1). Compared with Ni-MOF-

bulk, Ni-MOF-2D showed a lower valence state for C, N and Ni, and a higher for S. It is 

concluded that the electrons transfer from S to N, C and Ni. This is consistent with the 

computational results. Overall, these findings confirm a charge redistribution during the 

exfoliation from Ni-MOF-bulk to Ni-MOF-2D, which can be attributed to the breaking of 

N···H bonds between the layers39, 40. 

Electrochemical properties of NaPoSs on Ni-MOF-2D. 
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To investigate the electrochemical performance of the as-prepared Ni-MOFs in RT Na-S 

batteries, we assembled three sulfur electrodes of S/Ni-MOF-2D, S/Ni-MOF-bulk and 

S/conductive carbon using active materials with a sulfur mass ratio of 48.6 % 

(Supplementary Fig. 8). As is seen in Figs. 2a and 2b S/Ni-MOF-2D exhibited a series of 

advantageous discharge capacities of 516, 416, 372, 331 and 284 mAh g−1 when cycled at, 

respectively, 0.1, 0.2, 0.5, 1 and 2 C (1 C = 1675 mA g-1). When current density was switched 

back to 0.2 C, a high discharge capacity of 406 mAh g−1 was maintained. In contrast, S/Ni-

MOF-bulk and S/conductive carbon cathodes showed a poor rate performance with limited 

capacities under a high rate (Supplementary Fig. 9). As is shown in Supplementary Figs. 10 

and 11 following further cycling at 0.2 C, the S/Ni-MOF-2D exhibited an ultra-low capacity 

decay of 0.024 % per cycle (406 to 313 mAh g−1 in 970 cycles). This was significantly better 

than that for either S/Ni-MOF-bulk (0.074 %) or S/conductive carbon (0.095 %). Long-term 

cycling experiments at a high rate of 1 C and 2 C were conducted to investigate 

electrochemical performance of S/Ni-MOF-2D (Fig. 2c and 2d, Supplementary Figs. 12-14). 

High capacities of 347 and 241 mAh g−1 were maintained after 1000 continuous cycles under 

1 C and 2 C that refer respectively to low capacity decay of 0.042 % and 0.052 % per cycle, 

together with a stabilized CE held at around 100 %. This excellent cycling stability of S/Ni-

MOF-2D is superior to those of the metal oxides, metal sulfides, or hybrid sulfur cathodes 

reported recently (Fig. 2e and Supplementary Table 2). 

Cyclic voltammetry (CV) tests under a low scan rate of 0.1 mV s-1 between 0.5 and 2.8 

V were performed to investigate electrochemical behaviour of sulfur and electrochemical 

evolution of NaPoSs from S/Ni-MOF-2D cathode. During the initial cathodic scan (Fig. 3a), 

two prominent peaks centered at around 2.08 and 0.73 V were observed. These corresponded 
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to the solid-liquid transition from elemental sulfur to Na2Sx (long-chain NaPoSs, 6 ≤ x ≤ 8) 

and a further reduction to, respectively, less-soluble Na2S2 and Na2S. In the ensuing cathodic 

scan, two strong cathodic peaks at 1.59 and 0.94 V were observed that were highly-

reproducible. These are related to reduction of Na2Sx. For the anodic scan, only one 

reproducible peak at 1.78 V was observed. This corresponds to oxidation of Na2S2 and Na2S 

into Na2Sx. In contrast, CV curves of the S/Ni-MOF-bulk exhibited reduction peaks at lower 

potentials of 1.98, 1.58, 0.92 and 0.70 V, and an oxidation peak at a greater potential of 2.06 

V. The lower potential gap between first reduction and oxidation peaks in S/Ni-MOF-2D 

suggests lower polarization and faster kinetics compared with those for S/Ni-MOF-bulk 

(Supplementary Fig. 15)41. Additionally, we estimated the voltage gaps (ΔE) at 50 % depth 

of discharge (DOD). These are closely related to electrode polarization (Supplementary 

Table 3). S/Ni-MOF-2D exhibited a lower ΔE2D than either S/Ni-MOF-bulk or S/conductive 

carbon. This finding indicates significant enhancement of NaPoSs redox kinetics on the Ni-

MOF-2D and is consistent with the CV observations42. 

To further investigate the NaPoSs’electrochemical and adsorption behavior on Ni-

MOF-2D, in situ synchrotron XRD measurements were conducted in transmission mode. A 

modified 2032-type coin cell of S/Ni-MOF-2D was performed using an in-house design43. 

As can be seen in Fig. 3b during the initial discharge from ~ 2.2 V, two peaks at 20.2° and 

12.9° were observed in the XRD patterns. These are assigned to soluble Na2Sx (ref. 6, 13). 

When the battery was discharged to ~1.6 V, three new peaks emerged at 11.9°, 20.1° and 

20.6°, corresponding, respectively, to (131), (341) and (302) facets of Na2S5 (JCPDF no. 77-

0294). This finding reveals that the peak in the CV scan at 1.59 V is a result of the reduction 

of Na2Sx to Na2S5. The peak at 11.6° is derived from the (220) facet of Na2S4 (JCPDF no. 
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71-0516) and was generated when the battery was discharged further to ~ 1.0 V. This 

indicates that the peak at 0.94 V in the CV curves can be reliably assigned to the formation 

of Na2S4. This peak for Na2S4 faded into a new (200) peak for Na2S2 (JCPDF no. 81-1771) 

at 12.1° when the battery was further discharged to 0.8 V. The final discharge to ~ 0.7 V 

revealed a peak at 10.6°. This is attributed to the (111) facet of Na2S (JCPDF no. 77-2149). 

In the discharge from 0.5 to 2.8 V, most of the Na2S in the battery was oxidized to Na2Sx. It 

is notable that broader peaks are related to Na2S2, Na2S4 and Na2S5 when compared with 

narrow peaks for Na2Sx. This is attributed to the formation of an organized Na2S4 and Na2S5 

layer that is the result of strong adsorption on Ni-MOF-2D44. Importantly, overall results 

from the combination of the in situ synchrotron XRD and CV measurements underscore the 

facilitated conversion kinetics of all NaPoSs on Ni-MOF-2D. 

To study the origin of the electrochemical performance of Ni-MOF-2D, we used PymSH 

and another Ni-based MOFs (Ni-BDC MOFs) as controls and investigated the individual 

roles of the heterocyclic linker and the Ni center (Supplementary Figs. 16 and 17). Results 

showed that both PymSH (without the Ni) and Ni-BDC MOFs (without the PymSH ligand) 

are inactive in sulfur cathodes. To provide an objective view of electrochemical performance 

of Ni-MOF-2D, we evaluated capacities normalized by electrochemically active surface 

areas (ECSAs) on S/Ni-MOF-2D, S/Ni-MOF-bulk and S/conductive carbon cathodes 

(Supplementary Fig. 18)45, 46. S/Ni-MOF-2D exhibted the greatest ECSA together with 

greatest normalized capacity under 0.2 C, 1 C and 2 C (Supplementary Table 4). The former 

finding is attributed to the more exposed active sites of the 2D morphology. The latter 

demonstrates a highly efficient NaPoSs confinement on Ni-MOF-2D from strong chemical 

adsorption and fast redox kinetics towards NaPoSs47. It is concluded therefore that the 

linkers and Ni centers synergistically contribute to NaPoSs adsorption and conversion 

kinetics on Ni-MOF-2D.  
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Mechanistic investigation of NaPoSs adsorption on Ni-MOF-2D 

To explore the mechanism of NaPoSs adsorption on Ni-MOF-2D, a series of spectra surveys 

were carried out. Raman spectra of Ni-MOF-2D and NaPoSs-treated Ni-MOF-2D (Ni-MOF-

2D-NaPoSs) were investigated to study the change in the chemical environment of the 

heterocyclic linker. As is shown Fig. 4a, right inset, stretching bands (ν ring) of heterocyclic 

linker ring were observed in the range 1450-1650 cm-1. These are good indicators of the 

electron density of the linker48. The bands centered at 1565 and 1533 cm-1 in the Ni-MOF-

2D actually downshift to 1563 and 1533 cm-1 following treatment with NaPoSs. This finding 

suggests that the heterocyclic linker interacts with NaPoSs via electron transfer49. 

Importantly, the left inset shows that the C-S bond stretching vibration band (ν C-S) at 1167 

cm-1 in Ni-MOF-2D upshifts to 1179 cm-1 in Ni-MOF-2D-NaPoS. This finding indicates a 

decrease in electron density on S following interaction with NaPoSs. NEXAFS 

characterizations were carried out on Ni-MOF-2D-NaPoS to investigate the change in local 

electron density. As is shown in the regions of N K-edge, Figs. 4b and 4c, the Ni-MOF-2D 

exhibits increased white-line adsorption energies in comparison with those for Ni-MOF-2D-

NaPoS. This finding indicates electron transfer from N to NaPoSs is due to interaction 

between Ni-MOF-2D and NaPoSs. This is in good agreement with results of the Raman 

spectrum. It is therefore concluded that this interaction leads to decreased electron density 

on S and N and is responsible for the conjugation effect in the heterocyclic linker rings. In 

the C K-edge, no electron gain or loss is observed. However, a decreased Ni electron density 

for Ni-MOF-2D-NaPoS is demonstrated by the increased white-line adsorption energy of Ni 

L-edge (Fig. 4d). This is different to reported open-metal sites in 3D MOFs in which electron 

density would be expected to increase due to interaction with S in the lithium polysulfides.50 

Our results imply therefore that electrons of Ni are transferred to NaPoSs through the linker51. 

In contrast, Ni-MOF-bulk exhibited weak interaction with NaPoSs (Supplementary Figs. 19 
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and 20) as is evidenced in the Raman and NEXAFS spectra. To confirm NaPoSs adsorption 

capabilities of Ni-MOF-2D, Ni-MOF-bulk and the PymSH, samples were treated with a 5 

mM NaPoSs solution for 1 h. As is illustrated in Supplementary Fig. 21, the adsorption 

capabilities of the materials are: Ni-MOF-2D > Ni-MOF-bulk > PymSH. Overall, these 

results underscore that NaPoSs are adsorbed on Ni-MOF-2D through interaction with the 

heterocyclic linker as an electron donor and NaPoSs as an electron acceptor. Notably, 

electron transfer behaviors are also observed on Ni centers, which might contribute to the 

interaction between the polysulfides and Ni-MOF-2D. 

Discussion 

To further gain atomic-level insights into the polysulfides confinement on Ni-MOF-2D, we 

performed theoretical calculations. The (002) facet was determined as an exposed surface of 

the Ni-MOF-2D based on the HRTEM images. Ab initio molecular dynamics (AIMD) 

calculations were applied to investigate NaPoSs adsorption energies on Ni-MOF-2D36, 37. 

The energy profile (Ea) of all five Na2Sn molecules (n = 1, 2, ..., 5) adsorbed on the Ni-MOF-

2D surface (Ni-MOF-2D-Na2Sn) were evaluated for 4000 fs (Fig. 5a). AIMD simulations 

predicted Ea increases with the length of the Na2Sn chain as approximately -4.4, -4.0, -3.9, -

2.6, -2.5 eV, respectively. These high adsorption energies indicate strong adsorption of the 

NaPoS on Ni-MOF-2D when compared with those of reported materials in sulfur cathodes 

for lithium/sodium polysulfides adsorption9. DFT calculations were carried out to optimize 

the Ni-MOF-2D-Na2Sn configurations for analyses of electron transfer induced by the 

adsorption. As is shown in Supplementary Fig. 22, Na in Na2Sn locates atop the N atoms on 

the outermost part of the Ni-MOF-2D structure, whilst the S in Na2Sn locates away from the 

surface. This finding implies that N can function as a dominant adsorption site to interact 

with Na in Na2Sn. Charge difference analyses were performed to investigate the chemical 
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origin of the Na2Sn adsorption behavior. The interaction between the Ni-MOF-2D and Na2Sn 

triggers an electron transfer from the N in Ni-MOF-2D to the Na in Na2Sn, leading to electron 

accumulation between N and Na together with electron depletion near N in the Ni-MOF-2D 

(Supplementary Figs. 22). Therefore, the electron-rich N can interact with Na in Na2Sn as 

electron donors and acceptors through Na-N interaction. This finding agrees well with both 

the Raman and NEXAFS results. Importantly, as is shown in Fig. 5b, with Na2Sn adsorption 

energies increasing from Ni-MOF-2D-Na2S5 to Ni-MOF-2D-Na2S, electron states of the Ni 

centers tend to change from an electron accummulation state (in Ni-MOF-2D-Na2S5) to an 

electron depletion state (in Ni-MOF-2D-Na2S). This indicates that electron transfer from Ni 

to N correlates with the strengthened Na-N interaction and increased adsorption energy from 

Na2S5 to Na2S on Ni-MOF-2D, which agrees well with the NEXAFS results of Ni-MOF-

2D-NaPoS. 

The schematic Fig. 5c illustrates effect of the Ni centers’ electron states on NaPoSs 

confinement. Basically, the Ni centers with high redox capability are understood to 

strengthen the Na-N interaction through electron transfer from the Ni-MOF-2D to the 

NaPoSs. This strengthened Na-N interaction should facilitate the sodiation process from 

Na2S5 to Na2S during discharge. During charge, the weakened  Na-N interaction also 

facilitates the desodiation process of Na2S to Na2S5 due to electron transfer from  the 

NaPoSs to the Ni-MOF-2D. Therefore, this dynamic electron transfer between Ni-MOF-2D 

and NaPoSs facilitates NaPoSs sodiation-desodiation kinetics on Ni-MOF-2D. The Ni 

centers with high redox capability appears to result from the charge redistribution of the Ni-

MOF-2D14, 52, 53. As a result, enhanced NaPoSs adsorption and conversion kinetics on Ni-

MOF-2D significantly boosts the discharge capacities and capacity retention. In contrast, the 
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Ni-MOF-bulk suffers from weak NaPoSs confinement. As is evidenced in the N K-edge and 

Ni L-edge NEXAFS spectrum of Ni-MOF-bulk-NaPoS, there is neither electron gain or loss 

on N and Ni atoms (see Supplementary Fig. 23). Density of states (DOS) analysis revealed 

a semiconducting property of Ni-MOF-2D with a smaller band gap of ~ 0.56 eV compared 

with those of reported MOFs in sulfur cathodes (Supplementary Fig. 24). The 

semiconducting property of Ni-MOF-2D is believed responsible for the enhanced electron 

transfer between Ni centers and the linkers. All these results demonstrate that dynamic 

electron states on Ni centers facilitate the polysulfides adsorption and conversion kinetics. 

We conclude that our work demonstrates a new mechanism for effective polysulfides 

confinement on a 2D Ni (II) MOF and its chemical origin. The electrochemical performances 

of the resulting sulfur cathodes are shown to be superior to those of all sulfur cathode 

materials in RT Na-S batteries. On the basis of synchrotron-based in situ XRD, NEXAFS 

characterizations, electrochemical tests and systematic DFT computations, we demonstrated 

that this new mechanism includes two features: first, strong polysulfide adsorption can be 

facilitated by electron-rich N sites on the MOF via Na-N interaction; second, fast 

polysulfides conversion kinetics can be realized by tuning Na-N interaction via dynamic 

electron states of Ni centers, thus results in strong polysulfides adsorption and fast 

polysulfides conversion kinetics. We conclude that our findings offer a practical means for 

production of highly stable metal-sulfur batteries and for the design of electrode materials 

for broader applications in energy storage and conversion. 

Methods 

Fabrication of Ni-MOF-bulk and Ni-MOF-2D. Ni-MOF-bulk was fabricated by a 

hydrothermal method.26 In a typical procedure Ni (II) acetate tetrahydrate (0.45 mmol), 

Potassium hydroxide (0.9 mmol) and PymSH (0.9 mmol) are placed in a 23 mL Teflon-lined 

stainless-steel reactor with 8 mL of water. The mixture is heated to 348 K and maintained at 
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this temperature for 48 h, then cooled to room-temperature (RT = 22 OC) over 5 h. Green 

crystals of Ni-MOF-bulk are collected, washed with water and ethanol several times and 

dried in air. Wet ball-milling is used to exfoliate the bulk with Ni-MOF-bulk particles 

dispersed in 2 mL of acetone solvent and milled continuously for 4 h on a planetary mill 

(with zirconia balls and vials) at a low speed of 400 rpm. The obtained green dispersion is 

centrifuged at 3000 rpm for 3 min to remove any large particles, including un-exfoliated Ni-

MOF-bulk particles, to give a light-green colloidal suspension of Ni-MOF-2D nanosheets in 

ethanol. Ni-MOF-2D in the form of powder is obtained following evaporation of the ethanol 

from the supernatant under vacuum.  

Materials characterization. The morphologies and structure of the samples were 

characterized by AFM (Bruker Dimension Fast Scan), SEM (FEI Quanta 450), TEM (FEI 

Tecnai G2 Spirit). HRTEM, HAADF-STEM and EDX images were recorded at 200 kV 

(Talos F200X). XRD data were recorded on a Rigaku MiniFlex 600 X-Ray Diffractometer. 

Sulfur content of the active material was determined by TGA (METTLER TOLEDO 

TGA/DSC 2) under nitrogen. In situ synchrotron XRD (with a wavelength λ = 0.6888 Å) 

and NEXAFS data were detected on the powder diffraction and the soft X-ray spectroscopy 

beamline in the Australian Synchrotron. The 0.1 M Na2Sx solution (x ≈ 4) was prepared by 

dissolving and mixing stoichiometric amounts of Na2S and sulfur in ethylene 

carbonate/propylene carbonate (EC/PC with a volume ratio of 1:1) at room temperature for 

10 h. 0.5 mM Na2Sx solution was prepared by mixing 10 µL of the 0.1 M Na2Sx solution and 

2 mL of EC/PC (volume ratio of 1:1). 5.0 mg of Ni-MOF-2D, Ni-MOF-bulk and PymSH 

were added separately to each solution. All procedures were completed in an Argon-filled 

glovebox. NaPoSs-treated samples were prepared by repeatedly washing of the as-obtained 

samples with ethanol before characterization. 

Electrochemical characterization. For battery performance measurement, active material 

of the elemental sulfur and conductive carbon with mass ratio of 1:1 was sealed in a quartz 
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ampoule and thermally treated at 300 oC for 2 h in a nitrogen atmosphere. The slurry mixture, 

containing 80 wt% obtained active material, 10 wt% of conductive carbon and 10 wt% N-

lauryl acrylate (LA133, purchased from Chengdu Yindile Power Supply Technology) was 

cast on aluminum-foil and dried at 50 °C overnight to fabricate S/conductive carbon. S/Ni-

MOF-2D was fabricated by adopting 5 wt% Ni-MOF-2D instead of the conductive carbon 

in the S/conductive carbon. Other sulfur cathodes were fabricated via similar method. The 

2032-type coin cells were assembled using glass-fiber as the separator and Na metal as the 

anode. The electrolyte consisted of 1.0 M NaClO4 in EC/PC with a volume ratio of 1:1 and 

5 wt% fluoroethylene carbonate (FEC) additive. The volume of electrolyte injected into the 

coin cells was controlled to 20 μL per 1 mg of elemental S. The areal active material loading 

in the cathode for rating performance was ~ 1.0 mg cm-2. The galvanostatic charge/discharge 

measurements were performed using a NEWARE battery tester. The capacities were 

calculated based on the mass of the elemental S. The electrodes for symmetrical cells were 

fabricated with above sulfur cathodes as identical working and counter electrodes.  

Computational methods. DFT calculations were carried out using the Vienna Ab-initio 

Simulation Package (VASP)54, 55. The exchange-correlation interaction was described by 

generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) 

functional56. The DFT-TS method of Grimme was employed to treat the VDW interaction57. 

All calculations were carried out using a plane wave kinetic energy cut-off of 600 eV. 

All structures in the calculations were spin-polarized and relaxed until the convergence 

tolerance of force on each atom was smaller than 0.05 eV. The energy convergence criteria 

were set to 10-4 eV for self-consistent calculations with a Gamma centered 2×2×1 K-point. 

All periodic slabs had a vacuum spacing of at least 12 Å. The slab model for Ni-MOF-2D 

was established based on a published Ni-MOF-bulk model26 by keeping the Ni atoms and 

atoms below these fixed in the Ni-MOF-bulk as is shown in Supplementary Fig. 7b. The 

file:///C:/Users/Ye/Box/Paper%203/3manuscript/Manuscript-submitted.docx%23_ENREF_54
file:///C:/Users/Ye/Box/Paper%203/3manuscript/Manuscript-submitted.docx%23_ENREF_55
file:///C:/Users/Ye/Box/Paper%203/3manuscript/Manuscript-submitted.docx%23_ENREF_56
file:///C:/Users/Ye/Box/Paper%203/3manuscript/Manuscript-submitted.docx%23_ENREF_57
file:///C:/Users/Ye/Box/Paper%203/3manuscript/Manuscript-submitted.docx%23_ENREF_26


131 

 

 

dimension of such a unit cell was 8.07 × 15.75 × 17.68, Å. For AIMD simulation, cut-off 

energy was set to 600 eV and a Gamma centered 1×1×1 K-point was used. For charge 

differences and DOS calculation conducted following the AIMD tests the K-point mesh was 

set to, respectively, 600 eV and 6×6×1. Na2Sn (n = 1 - 5) adsorption energies were 

investigated for 4000 fs (1 fs/step) within the canonical constant-temperature at 330 K, 

constant-volume (NVT) ensemble. Ea for each configuration was calculated from: 

Ea = Etotal – ENa2Sn – Es 

where Etotal, ENa2Sn and Es are, respectively, the energies of the whole system, Na2Sn and 

substrate.   
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Figure 1 | Structural characterization and electron-state analyses of Ni-MOF-2D 

nanosheets. a, Schematic of Ni-MOF-2D with few-layer structure from side-view and top-

view, in which blue, light grey, yellow, purple and white spheres represent, respectively, N, 

C, S, Ni and H. b, XRD patterns of Ni-MOF-bulk and Ni-MOF-2D. Inset is HRTEM image 

of the few-layer Ni-MOF-2D. c, HRTEM and d, HAADF-STEM image and corresponding 

EDX mapping images of Ni-MOF-2D. Inset of c is a representative TEM image of Ni-MOF-

2D. e-h, N and C K-edges, Ni L-edge and S K-edge NEXAFS spectra of Ni-MOF-2D and 

Ni-MOF-bulk. Insets show the enlarged white-line regions. 
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Figure 2 | Electrochemical performance of S/Ni-MOF-2D in RT Na-S batteries. a, 

Rating capacities of S/Ni-MOF-2D, S/Ni-MOF-bulk and S/conductive carbon. b, 

Corresponding discharge/charge curves of S/Ni-MOF-2D at different rates in a. c, 

Discharge/charge curves of S/Ni-MOF-2D at 1 C during 1000 cycles. d, Cycling 

performances and Coulombic Efficiencies (CE) of the three sulfur electrodes at 1 C after 0.1 

C activation. e, Comparison of cycle numbers and capacity retentions of recently reported 

RT Na-S batteries with the current work in which deeper colour refers to greater current 

density. References for [S1] etc. are given in Supplementary References. 
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Figure 3 | Electrochemical behaviour of NaPoSs on Ni-MOF-2D. a, CV curves of S/Ni-

MOF-2D at scan rate of 0.1 mV S-1. b, Initial galvanostatic discharge/charge curve and 

corresponding in situ synchrotron XRD patterns of S/Ni-MOF-2D in which the colored 

patterns indicate major changes along the discharge/charge process, and; yellow and cyan 

spheres represent S and Na atoms, respectively. 
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Figure 4 | Analysis of electron transfer between Ni-MOF-2D and NaPoSs. a, Raman 

spectra of Ni-MOF-2D and Ni-MOF-2D-NaPoS. e-h, N and C K-edges, Ni L-edge and S K-

edge NEXAFS spectra of Ni-MOF-2D and Ni-MOF-bulk. 
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Figure 5 | Computational investigation of NaPoSs confinement on Ni-MOF-2D. a, 

Adsorption energies of Na2Sn on graphene and Ni-MOF-2D as a function of ab initio 

molecular dynamics (AIMD) simulation time (fs). b, Adsorption energies of Na2Sn with 

insets of charge difference analyzes from configurations of Ni-MOF-2D-Na2Sn in 

Supplementary Figs. S22, in which yellow and cyan iso-surface represent electron 

accumulation and electron depletion. Color code is the same as for Fig. 1a and cyan spheres 

represent Na atoms. The iso-surface value is 0.005 e Å-3. c, Schematic of NaPoSs 

confinement on Ni-MOF-2D. 
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Supplementary Figures 

 

Supplementary Figure 1. SEM images of Ni-MOF-bulk. 
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Supplementary Figure 2. EDX elemental maps of Ni-MOF-bulk. 
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Supplementary Figure 3. Raman spectra of Ni-MOF-2D and Ni-MOF-bulk. 
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Supplementary Figure 4. a and b AFM and SEM images of Ni-MOF-2D. 
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Supplementary Figure 5. a and b Representative TEM image of Ni-MOF-2D and 

corresponding SAED image. 
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Supplementary Figure 6. a and b, Calculation model for, respectively, Ni-MOF-2D and 

Ni-MOF-bulk. 

 



149 

 

 

 

Supplementary Figure 7. Analysis of change in valence states of N, C, Ni and S between 

Ni-MOF-bulk and Ni-MOF-2D. a-d, N 1s, C 1s, Ni 2p and S 2p XPS spectra of the two 

samples. 
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Supplementary Figure 8. TGA curve of the active material. 
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Supplementary Figure 9. a and b, Discharge/charge curves of S/Ni-MOF-bulk and 

S/conductive carbon under rates from 0.1 to 2 C. 
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Supplementary Figure 10. Cycling performance and Coulombic efficiency (CE) of the 

three sulfur electrodes at 0.2 C following the rating test.  
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Supplementary Figure 11. a-c, Discharge/charge curves of S/Ni-MOF-2Dc, S/Ni-MOF-

bulk and S/conductive carbon at 0.2 C following the rating test.  
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Supplementary Figure 12. a-c, Discharge/charge curves of S/Ni-MOF-2D, S/Ni-MOF-

bulk and S/conductive carbon at 1 C. 
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Supplementary Figure 13. Cycling performance and CE of the three sulfur electrodes at 2 

C.  
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Supplementary Figure 14. a-c, Discharge/charge curves of S/Ni-MOF-2D, S/Ni-MOF-

bulk and S/conductive carbon at 2 C.  
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Supplementary Figure 15. Cyclic voltammograms (CV) curves of S/Ni-MOF-bulk. 
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Supplementary Figure 16. a, Rating capacities and cycling performance at 1 C of the 

S/ligand. b and c, Discharge/charge curves of the S/ligand in the rating and cycling test. 
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Supplementary Figure 17. a, Rating capacities and cycling performance at 1 C of S/Ni-

BDC. b and c, Discharge/charge curves of the S/ligand in the rating and cycling test. 
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Supplementary Figure 18. Determination of the electrochemically active surface area 

(ECSA) of the three sulfur cathodes. a-c, CV) curves of S/Ni-MOF-bulk, S/Ni-MOF-bulk 

and S/conductive carbon symmetrical cells. d, Scan rate dependence of the current densities 

at 0 V. A series of CV tests under different scan rates from 20 - 500 mV s-1 were conducted 

to investigate the ECSA of the three sulfur cathodes. It is accepted widely that the ECSA of 

a materials of similar composition can be directly compared by measuring the slopes of the 

linear relations between current densities and scan rates. S/Ni-MOF-2D exhibited a greater 

linear slope than that for S/Ni-MOF-bulk and S/conductive carbon. This strongly suggests a 

meaningfully greater ECSA for S/Ni-MOF-2D. The boosted ECSA of S/Ni-MOF-2D is 

ascribed to its 2D morphology together with greater numbers of exposed active sites.  
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Supplementary Figure 19. Raman spectra of Ni-MOF-bulk and Ni-MOF-bulk-NaPoS. The 

ν ring and ν C-S bands of Ni-MOF-bulk-NaPoS remain almost the same as those of Ni-

MOF-bulk, suggesting weak interaction between Ni-MOF-bulk and NaPoSs. 
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Supplementary Figure 20. Analysis of charge transfer between Ni-MOF-bulk and 

NaPoSs. a-c, N K-edge, C K-edge and Ni L-edge NEXAFS spectra of the two samples. 

These show Ni-MOF-bulk-NaPoSs with almost the same white-line adsorption energies as 

those for Ni-MOF-bulk except that charge transfer from N to the NaPoSs is due to weak 

electrostatic interaction. 
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Supplementary Figure 21. Adsorption capacities of Ni-MOF-2D, Ni-MOF-bulk and 

PymSH. Optical images of (I) blank 0.5 mM Na2Sx solution and (II)-(V) Ni-MOF-2D, Ni-

MOF-bulk and PymSH following 1 h treatment with Na2Sx solution.  
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Supplementary Figure 22. a-e, Charge differences in configurations of Ni-MOF-2D-Na2Sn. 

The color code is the same as with Fig. 5b. The iso-surface value = 0.005 e Å-3. 
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Supplementary Figure 23. Schematic for NaPoSs confinement on Ni-MOF-bulk. 
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Supplementary Figure 24. DOS analysis of Ni-MOF-2D. 
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Supplementary Tables 

Supplementary Table 1. Bader charges of S atoms and Ni atoms in the super cells 

(Supplementary Fig. 6). 

 

Sample 

Bader charge (e-) 

QS QNi 

Ni-MOF-2D 0.22 -0.89 

Ni-MOF-bulk 0.25 -0.95 
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Supplementary Table 2. Summary comparison of performance of RT Na-S batteries.  

Sample 
Rate 

(C) 
Cycles 

Capacity 

decay  

(% per 

cycle) 

Reversible 

capacity  

(mAh g-1) 

Ref. 

S/ Ni-MOF-2D 

0.2 970 0.024 
313  

(after rate tests) This 

work 1 1000 0.042 347 

2 1000 0.052 242 

S/ hollow carbon on 

carbon nanofibers 
2 400 0.044 256 1 

Hollow Na2S 1.67 100 0.57 300 2 

S/Fe on hollow 

carbon nanospheres 
0.06 1000 0.061 394 3 

S/carbon 

microspheres 
~ 0.06 350 ~ 0.21 ~ 300 4 

S/carbon fiber cloth 0.1 300 0.3 120 5 

S/microporous 

carbon 
0.1 250 0.23 410 6 

S/hollow carbon  ~ 0.06 200 ~ 0.38 292 7 

S/Nafion@separator 0.1 20 ~ 0.63 350 8 

S/carbonized ZIF-8 0.2 250 0.17 500 9 

S/carbon ~ 0.05 900 0.053 517 10 

S/microporous 

carbon  
0.5 100 0.31 ~ 400 11 

S/Co on carbon ~ 0.06 600 0.088 507 12 
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Supplementary Table 3. ΔE values for the three sulfur cathodes estimated at 50 % DOD. 

 

Rate  

(C) 

ΔE  

(V) 

ΔE2D ΔEbulk ΔEcarbon 

0.2 0.80 0.88 0.90 

1 0.96 1.04 1.06 

2 0.95 1.03 1.05 

 

 

 

 

Supplementary Table 4. Computed electrochemically active surface area (ECSA) and 

normalized capacities of the three sulfur cathodes. 

 

 

Sample 

Cdl 

(mF cm-

2) 

 

Rf
a 

ECSAb 

(cm2) 

Normalized capacityc 

(mA h g-1 cm-2) 

0.2 C 1 C 2 C 

S/Ni-MOF-2D 1.233 20.55 23.33 13.4 15.1 10.4 

S/Ni-MOF-bulk 0.864 14.40 16.27 3.6 5.2 5.3 

S/conductive 

carbon 

0.931 15.52 17.53 1.1 8.8 8.2 

 

a Rf was calculated from dividing Cdl by the capacitance of ideal-planar metal-oxides with smooth surface taken 

as 0.06 mF cm-2. 

b ECSA were calculated from multiply Rf by the electrode geometric area of 1.13 cm2. 

c Normalized capacities were calculated from dividing the value of specific capacity by the corresponding 

surface area. 
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Supplementary Note 1. XPS Analyses of valence states 

As is seen in Supplementary Figs. 8 the N 1s profiles exhibit five (5) peaks of Ni-MOF-2D 

spectrum centered at 402.3, 400.8 (400.0), 399.2 and 398.4 eV that can be attributed to 

oxidized N, N-H, N-C and N-Ni, respectively, all of which are less than those for Ni-MOF-

bulk13. A similar trend is observed on C 1s XPS spectra in which Ni-MOF-bulk exhibits the 

four (4) peaks but centered at greater binding energies than those observed for Ni-MOF-2D, 

suggesting a lower C valence state for the latter. The C 1s XPS spectra of Ni-MOF-2D can 

be fitted into four (4) peaks centered at 287.8, 286.8, 285.8 and 284.5 eV that can be assigned 

to N-C-N, C-N, C-N-Ni and C-C species, respectively14, 15. Similarly, Ni 2p XPS spectra of 

Ni-MOF-2D can be fitted into a pair of doublets centered at 853.8 and 870.6 eV that can be 

assigned to Ni2+ 2p3/2 and 2p1/2, whilst the corresponding peaks for Ni-MOF-bulk shift to 

854.2 and 871.6 eV. In contrast in the S 2p region of Ni-MOF-2D, two well-resolved peaks, 

corresponding to the 2p3/2 and 2p1/2 split orbits of sulfur in the thiolate form, occur at 161.9 

and 163.0 eV. These indicate an upshift of S valence state relative to those of Ni-MOF-bulk. 

Therefore, as compared with Ni-MOF-bulk, Ni-MOF-2D shows lower valence states for C, 

N and Ni and a higher valence state for S. 
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Chapter 6 Conclusion and perspectives 

It is now possible to practically tailor geometric/physicochemical properties of cathode 

materials to boost electrochemical performance of Li/Na-S batteries using strategies such as 

the introduction of dopants/defects, fabricating hybrids and heterostructures. However, a 

number of issues remain, these include: 

1. Missing descriptors – these are needed to link macroscopic conversion kinetics and 

microscopic electronic structures in cathode/anode materials. Theoretical computations have 

therefore only occasionally been used to predict electrochemical performance. This is 

partially due to a limitation of current computing power and the complexity of the 

cathode/anode interfacial reaction, together with the wide range of physicochemical 

properties of current 2D nanomaterials. 

2. Agreed standards – these are needed to evaluate electrochemical behaviour at 

atomic/molecular level. To correlate microscopic physicochemical/electronic properties of 

2D materials, and electrochemical performance in sulfur cathodes or metal anodes, identical 

standards are essential for both evaluation and comparison. For example, specific surface 

area of 2D nanomaterials and resultant electrochemically active surface areas (ECSAs) of 

synthesized electrodes highly significantly impact electrochemical performance. An agreed 

standard will obviate the impact of differing number and density of active sites, and more 

accurately permit comparison of intrinsic activities of site and establish accurate property-

performance relationships. 

3. Accelerated combined experiment and theory – this is needed to develop further the 

proven fruitful approach. A combination of advanced in situ characterization techniques, 

operando theoretical computations and microscopy is needed to accelerate research to better 



174 

 

 

understand conversion kinetics of sulfur intermediates and Li/Na stripping-plating. The 

properties of 2D nanomaterials might change dynamically during discharge/charge. For 

example, in situ XAS is a powerful tool that can be used to detect various sulfur 

intermediates and dynamic chemical structures of 2D materials. Resulting information will 

be of significant value to determine reaction mechanisms and to guide design of 

cathode/anode materials. 

4. Three-dimensional (3D) electrodes from 2D nanomaterials – this might be a practical 

approach to meet requirements for metal-sulfur batteries commercialization. Sulfur cathodes 

and metal anodes with high mass loading and content of active materials are highly desired 

in practical application. Theoretically, 2D nanomaterials possess promising large active 

surface area to host sulfur/metal. Nevertheless, a part of the electrochemical active sites on 

2D nanomaterials might be blocked in routine slurry electrodes. A promising approach might 

be fabrication of 3D electrodes from 2D nanomaterials with optimized pore volume and pore 

structure to take full advantage of their large surface area. Importantly the 3D cathodes with 

a high sulfur loading (> 6 mg cm −2), sulfur content (> 70 %) and low porosity (< 70 %) are 

essential to improve volumetric energy density of the metal-sulfur batteries so as to be 

comparable with commercial Li-ion batteries (~ 600 Wh L−1). Notably, large surface area of 

2D nanomaterials would result in electrolyte depletion. Therefore, control the electrolyte 

content to an acceptable level is another crucial factor to promote the energy/power density 

of the metal-sulfur batteries. 

5. Advanced materials to develop other metal anodes for metal-sulfur batteries. For example, 

although mechanisms of potassium stripping-plating in corresponding potassium-sulfur 

batteries have been rarely studied, use of artificial SEI and host materials have proven 



175 

 

 

effective in K-metal anode protection. With multivalent metal-sulfur batteries such as 

Mg/Ca/Al-S, strategies might need to be different to develop metal anodes. For example, 

although the Mg deposition is nondendritic, sluggish kinetics of Mg ions transfer in SEI 

results in an electric/ionic nonconductive film on Mg metal surface. This leads to uselessness 

of the Mg anode. 2D nanomaterials as artificial SEIs can act as ion sieve membrane to 

conduct metal ions and prevent surface passivation on the multivalent metal anodes. The 

impact of additives and solvents on metal ion diffusion barriers in SEIs could be better 

understood through transition state computations and AIMD simulations. 

Based on overall findings from advanced materials we could expect the establishment of 

structure-capacity/stability relationships, together with increased insight into the mechanism 

for sulfur redox/metal stripping-plating from applying a judicious combination of advanced 

characterizations, electrochemical experiments and theoretical computations. Resulting 

fundamental understanding of interfacial reactions on sulfur cathodes and metal anodes will 

speed design for advanced materials to boost electrochemical properties in metal-sulfur 

batteries and in wider environmental sciences and energy conversions. 




