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Abstract

Wearable sensors provide an infrastructure-less multi-modal sensing method. Current

trends point to a pervasive integration of wearables into our lives with these devices

providing the basis for wellness and healthcare applications across rehabilitation,

caring for a growing older population, and improving human performance.

Fundamental to these applications is our ability to automatically and accurately

recognise human activities from often tiny sensors embedded in wearables. In this

dissertation, we consider the problem of human activity recognition (HAR) using

multi-channel time-series data captured by wearable sensors.

Our collective know-how regarding the solution of HAR problems with wearables has

progressed immensely through the use of deep learning paradigms. Nevertheless, this

field still faces unique methodological challenges. As such, this dissertation focuses on

developing end-to-end deep learning frameworks to promote HAR application opportunities

using wearable sensor technologies and to mitigate specific associated challenges. In our

efforts, the investigated problems cover a diverse range of HAR challenges and spans

from fully supervised to unsupervised problem domains.

In order to enhance automatic feature extraction from multi-channel time-series

data for HAR, the problem of learning enriched and highly discriminative activity

feature representations with deep neural networks is considered. Accordingly, novel

end-to-end network elements are designed which: (a) exploit the latent relationships

between multi-channel sensor modalities and specific activities, (b) employ effective

regularisation through data-agnostic augmentation for multi-modal sensor data

streams, and (c) incorporate optimization objectives to encourage minimal intra-class

representation differences, while maximising inter-class differences to achieve more

discriminative features.

In order to promote new opportunities in HAR with emerging battery-less sensing

platforms, the problem of learning from irregularly sampled and temporally sparse readings

captured by passive sensing modalities is considered. For the first time, an efficient

set-based deep learning framework is developed to address the problem. This

framework is able to learn directly from the generated data, bypassing the need for

the conventional interpolation pre-processing stage.
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In order to address the multi-class window problem and create potential solutions

for the challenging task of concurrent human activity recognition, the problem of

enabling simultaneous prediction of multiple activities for sensory segments is considered.

As such, the flexibility provided by the emerging set learning concepts is further

leveraged to introduce a novel formulation of HAR. This formulation treats HAR

as a set prediction problem and elegantly caters for segments carrying sensor data

from multiple activities. To address this set prediction problem, a unified deep HAR

architecture is designed that: (a) incorporates a set objective to learn mappings from

raw input sensory segments to target activity sets, and (b) precedes the supervised

learning phase with unsupervised parameter pre-training to exploit unlabelled data

for better generalisation performance.

In order to leverage the easily accessible unlabelled activity data-streams to serve

downstream classification tasks, the problem of unsupervised representation learning from

multi-channel time-series data is considered. For the first time, a novel recurrent

generative adversarial (GAN) framework is developed that explores the GAN’s latent

feature space to extract highly discriminating activity features in an unsupervised

fashion. The superiority of the learned representations is substantiated by their

ability to outperform the de facto unsupervised approaches based on autoencoder

frameworks. At the same time, they rival the recognition performance of fully

supervised trained models on downstream classification benchmarks.

In recognition of the scarcity of large-scale annotated sensor datasets and the

tediousness of collecting additional labelled data in this domain, the hitherto unexplored

problem of end-to-end clustering of human activities from unlabelled wearable data is

considered. To address this problem, a first study is presented for the purpose of

developing a stand-alone deep learning paradigm to discover semantically meaningful

clusters of human actions. In particular, the paradigm is intended to: (a) leverage

the inherently sequential nature of sensory data, (b) exploit self-supervision from

reconstruction and future prediction tasks, and (c) incorporate clustering-oriented

objectives to promote the formation of highly discriminative activity clusters. The

systematic investigations in this study create new opportunities for HAR to learn

human activities using unlabelled data that can be conveniently and cheaply collected

from wearables.
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Chapter 1

Introduction

T
HIS introductory chapter presents a brief overview of human

activity recognition (HAR) in ubiquitous computing, and

discusses the scope of the research problems investigated in

this dissertation. We specifically clarify the motivations and research

objectives in relation to each studied problem, as well as highlighting

the contributions of the present research. The chapter is concluded by

providing a guide to the structural organisation of the thesis.
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1.1 Introduction

Automatic human activity recognition (HAR) using wearable sensors has emerged as

a key research area in ubiquitous computing Bao and Intille (2004) with thriving

development of low-cost sensing technologies as well as the fast advancements

in machine learning techniques. In this problem, high-level activity information

is acquired by analysing raw low-level sensor data-streams, with the goal of

providing proactive yet unobtrusive assistance to users. Having created new

possibilities in diverse application domains including health-care Torres-Huitzil and

Alvarez-Landero (2015); Subasi et al. (2018); Chesser et al. (2019), smart-homes Zheng,

Wang and Black (2008); Wang et al. (2011); Bianchi et al. (2019), manufacturing Günther,

Kärcher and Bauernhansl (2019), sports and the entertainment industry Kunze et al.

(2006); Ladha et al. (2013); Zhuang and Xue (2019), HAR has successfully sparked

excitement in both academia and industry. Fundamental to realising these applications

is our ability to automatically and accurately recognise human activities from, often,

tiny sensors embedded in wearables. This forms the driving motivation behind the

research conducted in this dissertation.

Traditionally, the standard activity recognition pipeline for time-series sensory data

involved sliding window segmentation, manual hand-crafted feature design, and

subsequent activity classification with classical machine learning algorithms Bulling,

Blanke and Schiele (2014); we illustrate the traditional HAR work-flow in Fig. 1.1.

Studies along these lines have extensively explored hand-crafted features including

statistical Bao and Intille (2004); Ravi et al. (2005), basis transform Huynh and Schiele

(2005), multi-level Zhang and Sawchuk (2012a), and bio-mechanical Wickramasinghe

et al. (2017) features; and have employed shallow classifiers including decision trees

Classifier Training

Shallow Models

Support Vector 
Machines

Activity Inference

Sensor Data-Stream

Sensor Segments

Data-stream Acquisition Sliding Window
Segmentation

Time

ax
ay
az

Hand-crafted 
Feature Extraction

Feature Vectors

Decision Trees

Figure 1.1: Traditional HAR pipeline. We illustrate the traditional human activity recognition

pipeline which is characterised by hand-crafted feature engineering and adoption of classical machine

learning algorithms in separate stages, highlighted by the red boxes.
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Bao and Intille (2004), support vector machines Bulling, Ward and Gellersen (2012),

joint boosting Lara et al. (2012) and graphical models Shinmoto Torres et al. (2017a).

While this manually tuned procedure has successfully acquired satisfying results for

relatively simple recognition tasks, its generalisation performance is limited by heavy

reliance on domain expert knowledge to engineer effective features.

Recently, the emerging paradigm of deep learning has demonstrated unparalleled

performance in various research areas including computer vision, natural language

processing and speech recognition LeCun, Bengio and Hinton (2015). When applied to

sensor-based HAR, deep learning allows for automated end-to-end feature extraction,

largely alleviating the need for laborious feature engineering procedures; we illustrate

the deep learning HAR work-flow in Fig. 1.2. Moreover, the adoption of deep neural

networks for HAR has successfully created pipelines for end-to-end learning of activity

recognition models yielding state-of-the-art performance for diverse applications in

ubiquitous computing Ordóñez and Roggen (2016); Hammerla, Halloran and Plötz

(2016); Yao et al. (2018); Murahari and Plötz (2018). Consequently, we observe a shift

in the research efforts from traditional methods towards deep learning paradigms in

addressing complex human activity recognition problems in recent years.

Despite the progress towards deep learning architectures for achieving state-of-the-art

performance on HAR problems, this field still faces many unique methodological

challenges leaving room for further improvements. Accordingly, it is of great

significance to propose systematic approaches towards accurate recognition of

activities that triumph over the challenges. In light of the advantages brought about by

the introduction of deep neural networks for HAR problems, this dissertation focuses

on developing end-to-end deep learning frameworks to promote HAR opportunities using

Deep Neural Networks

Activity Inference

Sensor Data-Stream

Sensor Segments

Data-stream Acquisition Sliding Window
Segmentation

Time

ax
ay
az

End-to-End 
Representation Learning 
and Classifier Training

Feedforward Neural Network

Recurrent Neural Network

Convolutional Neural Network

Figure 1.2: Deep learning HAR pipeline. We illustrate the deep learning human activity

recognition pipeline which is characterized by end-to-end feature representation learning and

simultaneous classifier training, highlighted by the green box.
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pervasive sensor technologies and to mitigate specific associated challenges. In what follows,

we elaborate on the key challenges explored in this thesis:

• Learning Highly Discriminative Activity Features. Wearable sensing devices

capture individuals’ activity dynamics by continuously recording measurements.

They do this using various sensor channels over time, generating multi-channel

time-series data-streams. In order to cater for the unique characteristics of

the generated data, it is essential to design deep learning modules that: (a)

seamlessly operate on raw time-series data without relying on hand-crafted

feature engineering procedures; (b) capture the inherent temporal dependencies

between samples for sequence modelling; and (c) take into account the

relationships among the multitude of incorporated sensor channels used for

data acquisition. Additionally, human activities are inherently diverse in nature.

Consequently, it is challenging to learn feature representations that uniquely

represent distinct human actions. Further, intra-class variability and inter-class

similarity pose two fundamental challenges for HAR based on wearables. The

former phenomenon refers to the fact that different individuals may execute the

same activity differently (e.g., different walking patterns). The latter challenge

arises when different classes of activities reflect very similar sensor patterns

(e.g., walking upstairs and walking downstairs). In order to accurately classify

the actions embedded in the generated sequences, it is of crucial importance

to incorporate deep neural architectures and learning strategies that encourage

achieving discriminative activity representations.

• Learning Human Activities from Emerging Passive Sensor Devices. With

the technological advances in sensing platforms, an increasing number of

battery-less—so-called, passive—wearables are providing the opportunity to

collect fine-grained physiological information on human activities. They are able

to do this conveniently, at a low cost. In particular, passive sensing modalities

Chen et al. (2015); Lemey et al. (2016); Jayatilaka et al. (2019) operating on

harvested energy provide maintenance-free, unobtrusive, lightweight and often

disposable devices. These characteristics make such devices highly desirable to

both older people and healthcare providers Gövercin et al. (2010); Torres et al.

(2017). Despite their compelling propositions for sensing applications Philipose

et al. (2005), the data-streams collected from these sensors are characterised by
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high temporal sparsity. This makes it extremely challenging for conventional

deep neural networks to learn from such irregularly sampled sensor streams.

• Multi-class Window Problem. Regardless of adopting the traditional or deep

learning pipelines, HAR problem formulations often rely on a fixed duration

sliding window and predict a single activity class for all samples within the

partitioned segment. However, human actions exhibit great diversity in their

duration. Consequently, deciding on an optimal size for the sliding window

in advance is difficult. As a result, we inevitably observe data segments

that contain sensor samples of multiple activity labels; namely, the multi-class

window problem Yao et al. (2018). However, the dominant multi-class problem

formulation of HAR mistreats such segments by approximating the segment

annotations to either the most Yang et al. (2015) or the last Ordóñez and

Roggen (2016) observed sample annotations. This strategy towards ground-truth

approximation is clearly associated with a loss of activity information and

potentially deludes the supervised training process. Moreover, the multi-class

formulation of HAR fails to cater for the complex nature of human activities,

where actions are not only performed sequentially but are also carried-out

simultaneously—the so called concurrent activity recognition problem.

• Annotated Data Scarcity. The process of data collection and annotation may

be retrospective in the case of vision-based sensing modalities where visual

inspections of, for example, video frames provide the basis for ground truth.

However, the parallel task with wearables is nearly impossible. Moreover, such

methods cannot be easily scaled to gather the large datasets often necessary

for deep learning frameworks. In the absence of a reliable visualisation to

establish ground truth, acquisition of labelled sensory data is labour-intensive,

time-consuming and clearly not scalable to large datasets. This shortcoming

poses a significant challenge to the development of deep learning frameworks

for HAR problems involving wearable sensors that have predominantly been

studied under supervised learning regimes. Accordingly, it is crucially important

to consider unsupervised learning scenarios and explore systematic solutions. This

will allow us to benefit from conveniently collectable activity data-streams that

lack human data annotations.
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1.2 Summary of Original Contributions

This dissertation delivers several original contributions to the field of human activity

recognition based on wearable sensors in ubiquitous computing. These contributions

focus on developing deep learning paradigms in diverse problem settings, spanning

from supervised learning regimes to fully unsupervised training scenarios. The

contributions can be summarised as follows:

1. The problem of learning highly discriminative and generalisable activity

representations from raw multi-modal data-streams is considered. The study

proposes novel deep learning architectural elements to: (a) enrich convolutional

feature-map representations by exploiting latent correlations between sensor

channels; (b) incorporate centre-loss to alleviate dealing with intra-class

variations of activities; and (c) augment multi-channel time-series data with

mixup for better generalisation. The contributions from the design concepts

are validated through exhaustive quantitative and qualitative experiments,

including activity misalignment measures, and ablation studies. This work is

currently under-review in the ACM International Joint Conference on Pervasive

and Ubiquitous Computing (UbiComp) under the title “Attend and Discriminate:

Beyond the State-of-the-Art for Human Activity Recognition using Wearable

Sensors”.

2. The problem of activity recognition from temporally sparse data-streams

captured by passive wearables is considered. For the first time, the study

develops an end-to-end human activity recognition framework to learn directly

from temporally sparse data-streams using set-based deep neural networks.

Previous studies rely on interpolation pre-processing to synthesise sensory

partitions with fixed temporal context. In contrast, the proposed SparseSense

network seamlessly operates on sparse segments with a potentially varying

number of sensor readings and delivers highly accurate predictions despite

some missing sensor observations. Extensive experiments on publicly available

HAR datasets shows that the proposed novel treatment for sparse data-stream

classification results in recognition models that significantly outperform deep

learning based HAR models relying on interpolation pre-processing to address

sparsity. It also incurs notably lower real-time prediction delays. We believe

that this work will provide a new method for understanding human motion data

Page 6



Chapter 1 Introduction

collected using passive wearables for health-care applications. This work has

been published in the Proceedings of the Twenty-Eighth International Joint Conference

on Artificial Intelligence (IJCAI) under the title “SparseSense: Human Activity

Recognition from Highly Sparse Sensor Data-streams Using Set-based Neural

Networks” (Abedin et al., 2019).

3. The inevitable multi-class window problem arising from the dominantly

incorporated sliding window segmentation approach is considered. To address

this problem, the task of human activity recognition is expressed more naturally

as a set prediction problem. Within this definition, the predictions are sets of

ongoing activity elements with unfixed and unknown cardinality that can handle

sensor segments with multiple activities. For the first time, the multi-class

window problem is addressed by presenting a novel HAR approach that learns

to output activity sets using deep neural networks. Moreover, motivated

by the limited availability of annotated HAR datasets, the supervised set

learning scheme is complemented with a prior unsupervised feature learning

process that adopts convolutional auto-encoders to exploit unlabelled data. The

empirical experiments on two widely adopted HAR datasets demonstrate the

substantial improvement of the proposed methodology over the baseline models.

This work has been published in the Proceedings of the 15th EAI International

Conference on Mobile and Ubiquitous Systems (MobiQuitous) under the title “Deep

Auto-Set: A Deep Auto-Encoder-Set Network for Activity Recognition Using

Wearables” (Abedin et al., 2018).

4. In order to leverage the easily accessible unlabeled activity data-streams for

downstream classification tasks, the problem of learning unsupervised activity

representations from multi-channel time-series data is considered. For the first

time, the study proposes a bidirectional GAN (BiGAN) framework comprising

a recurrent generator, encoder and discriminator that can communicate in a

unified architecture to learn unsupervised feature representations. Moreover,

a novel strategy is proposed to alleviate the burden on the discriminator

to uncover the generator’s inverse mapping function by seeking additional

feedback from geometric distance penalisation in data and latent manifolds.

Interestingly, incorporation of the geometric terms is found to be a vital necessity

for successful training of BiGAN in the sequential domain, where (in contrast

to the visual domain) extensive training guidelines may be missing. The
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unsupervised learned features are evaluated on three downstream sequence

classification benchmarks, outperforming existing unsupervised approaches

while closely approaching fully supervised performance. This work is currently

under-review for the International Conference in Sensor Networks (IPSN) under the

title “Guided-GAN: Geometrically-Guided Adversarial Representation Learning

for Activity Recognition with Wearables”.

5. In recognition of the scarcity of large scale annotated datasets, the hitherto

unexplored problem of end-to-end clustering of human activities from unlabelled

wearable using a deep learning paradigm is considered. To the best of

knowledge, this constitutes the first study to investigate and develop a novel

deep clustering architecture for HAR problems involving sensor data, with the

aim of alleviating the reliance on human data annotations. The systematic

experiments demonstrate the effectiveness and generalisability of the proposed

approach for clustering human activities across three diverse HAR benchmark

datasets. Further, additional insights are shared by: (a) examining the

unsupervised learned representations from sequential sensor data; and (b)

an ablation study to validate the network design thinking. We believe this

study makes a significant advancement to the learning of human activities

from unlabelled data that can be conveniently and cheaply collected from

wearables. This work has been accepted to be published in the Proceedings

of the International Symposium on Wearable Computers (ISWC) under the title

“Towards Deep Clustering of Human Activities from Wearables” with an

extended version prepared for submission to the Pattern Recognition Journal under

the title “Deep Sensory Clustering: Unsupervised Learning of Human Activities

from Wearables”.

1.3 Dissertation Structure

We organise the technical contributions of this dissertation into eight chapters.

The organisational structure is outlined in Figure 1.3, and briefly described in the

subsequent text.

1. Chapters 1 and 2 provide a brief introduction and background to human activity

recognition (HAR) with pervasive sensing technologies; in particular, wearable

sensors or so-called wearables.
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 4 • Investigating the problem of learning activity recognition models from 
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• Investigating the multi-class window problem for sensor segments with data 
from multiple activities.
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• Investigating the problem of unsupervised activity clustering from wearables.
• Exploring the effectiveness of multi-tasks autoencoding objectives for 

unsupervised initialization of feature space in HAR.
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• Summary
• Future research directions

Figure 1.3: Thesis structure. We illustrate the organisational structure incorporated in this

dissertation.
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2. Chapter 3 studies new opportunities to improve upon the automated feature

representation learning process for wearable activity data. It addresses key

under-explored dimensions with great potential to learn enriched and highly

discriminating activity representations. In particular, it discusses systematic

strategies to: (a) learn to exploit the latent relationships between multi-channel

sensor modalities and specific activities, (b) leverage the effectiveness of

data-agnostic augmentation for multi-modal sensor data-streams to regularise

deep HAR models, and (c) incorporate a classification loss criterion to encourage

minimal intra-class representation differences whilst maximising inter-class

differences, to achieve more discriminative features.

3. Chapter 4 investigates the problem of learning activity recognition models from

irregular and temporally sparse data captured by battery-less sensing modalities.

Here, the time intervals between sensor readings are irregular, while the

number of readings per unit of time are often limited. Bypassing the need for

interpolation preprocessing, an efficient set-based deep learning paradigm is

proposed to learn directly from sparse data in an end-to-end manner.

4. Chapter 5 investigates a novel formulation of human activity recognition as a

set prediction task. Such a formulation may serve to overcome the multi-class

window problem and the fact that conventional HAR models can only output

a single activity label for a given sensor segment. This new formulation allows

sensory segments to be associated with a set of activities and, thus, naturally

handles segments with multiple activities. In a unified architecture, a deep HAR

system is proposed that (a) incorporates a set objective to learn mappings from

input sensory segments to target activity sets, and (b) exploits unlabelled data for

unsupervised pre-training of network parameters to achieve better generalisation

performance.

5. Chapter 6 examines the problem of unsupervised activity representation learning

from multi-channel time-series data through generative adversarial networks

(GANs). Here, the aim is to leverage cheaply accessible unlabelled data to learn

unsupervised feature representations that may serve subsequent downstream

sequence classification tasks. To this end, (a) a novel bidirectional GAN

framework comprised of a recurrent generator, encoder and joint discriminator

is designed, and (b) a stable training strategy is efficiently implemented by

augmenting adversarial feedback with geometric manifold distance guidance.
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6. Chapter 7 studies the problem of unsupervised activity clustering from unlabeled

data-streams captured by wearable sensors. Here, the goal is to uncover

semantically meaningful clusters of activity data in an unsupervised manner.

For the first time, an end-to-end deep clustering architecture is developed

that (a) leverages the inherently sequential nature of sensory data, (b) exploits

self-supervision from reconstruction and future prediction tasks, and (c)

incorporates a clustering-oriented objective to promote the formation of highly

discriminative activity clusters.

7. Chapter 8 summarises the research conducted in this dissertation, and outlines

potential future research directions.
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Chapter 2

Background

T
HIS chapter provides a brief background on sensor-based human

activity recognition (HAR) with deep learning paradigms. A

generic formulation for the problem is presented and the notations

incorporated across the chapters are introduced for clarity. Common

sensor modalities used for data acquisition are discussed and representative

HAR benchmark datasets are reviewed. In addition, this chapter provides

an overview of popular deep learning building blocks incorporated in

HAR frameworks to learn from raw multi-channel time-series data in an

end-to-end manner. Further, the predominantly used evaluation metrics

are introduced to ground our work and quantify the experimental results.
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2.1 Notations

For notational consistency, we present a generic formal definition of the human activity

recognition problems considered in this dissertation. Except where specifically stated,

these notations are applicable across chapters. We formally introduce the notations and

describe the process whereby the collected raw sensor data-streams are partitioned

into smaller chunks to provide the input for end-to-end HAR frameworks. We

further define the two broad categories into which the explored HAR problems in this

dissertation fall, based on the availability of sensor data annotations—supervised and

unsupervised HAR problems.

Data-streams. We consider developing deep learning-based HAR systems to help us

understand a diverse set of k human actions in a predefined activity spaceA = {ai}k
i=1

using multi-modal HAR sensing platforms. Without loss of generality, we assume

a hardware-specific sampling rate for the wearable sensors, denoted by f. Such

devices continuously record measurements through different sensor channels over

time and generate multi-channel time-series data. Accordingly, body-worn sensors yield

the collected data-stream of raw time-series samples Xstream and their corresponding

Sensor Data-Stream

Ground-truth Annotations

Sensor Segments and Labels

(a) Data-stream Acquisition (b) Sliding Window Segmentation

Figure 2.1: Sensor data-stream acquisition and segmentation. (a) Initially, raw multi-channel

sensor data-streams—Xstream and Ystream—are collected from various sensing modalities over time,

and (b) subsequently, a sliding window is adopted to partition the continuous data-stream into a

dataset of sensory segments and their corresponding activity labels—Xsegment and Ystream. Here, we

have color-coded the activity labels with colored boxes around the sensor data segments.

Page 14



Chapter 2 Background

activity labels Ystream

Xstream = (x1, x2, ..., xS),

Ystream = (y1, y2, ..., yS),
(2.1)

where xt ∈ RD denotes the multi-dimensional vector that contains sample

measurements over D distinct sensor channels at time step t, yt ∈ A is the

corresponding activity annotation, and S denotes the total length of the recorded

sequence.

Data Stream Segmentation. We apply the commonly adopted time-series

segmentation technique Bulling, Blanke and Schiele (2014) of a sliding window of fixed

temporal duration δt to partition the acquired sensor stream into a set of n sensor

segments Xsegment and corresponding activity labels Ysegment

Xsegment = (x1, x2, ..., xn),

Ysegment = (y1, y2, ..., yn),
(2.2)

where x ∈ RD×W is a slice of captured time-series data with D denoting the number of

sensor channels used for data acquisition and W = fδt representing the choice for the

window duration. In addition, yi denotes the last activity annotation observed during

the sliding window lifetime for a given data segment xi. For the purpose of simplicity,

we illustrate the process of data-stream acquisition and segmentation in Fig. 2.1 for a

triaxial accelerometer (i.e., D = 3).

HAR Learning Regimes. Notably, this dissertation explores the development of

HAR frameworks under both supervised and unsupervised problem settings:

• Supervised Learning Regime. When operating in the supervised domain, we

assume access to a labelled training dataset S = {(xi, yi)}n
i=1 comprising pairs

of sensor segments and their corresponding activity labels during training. In

particular, the HAR problems studied from Chapter 3 to Chapter 5 assume access

to annotated sensor data for training HAR models. As such, they fall under the

supervised learning category.

• Unsupervised Learning Regime. For unsupervised scenarios, we assume access to

an unlabelled training dataset U = {xi}n
i=1 that is composed of sensor data
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segments, but which lacks the corresponding annotations during training. In

recognising the scarcity of data annotations for HAR, Chapter 6 and Chapter 7

consider HAR problem scenarios which only have access to unlabelled data for

the purpose of model development.

2.2 Sensor Modalities

An increasing number of sensing technologies are providing the opportunity to

conveniently collect fine-grained physiological information at low-cost. Such

information can serve to inform our understanding of human activities. As a

consequence of this technological development, diverse sensing modalities for data

acquisition are being incorporated into sensor-based human activity recognition. The

relevant sensors are mainly classified into three categories: wearable sensors, object

sensors, and ambient sensors Chavarriaga et al. (2013). Below, we present a brief

description of each category.

• Wearable sensors. Body-worn sensors are found in devices such

as smart-phones, watches and garments equipped with accelerometers,

magnetometers, gyroscopes and barometers. These sensors measure human

motion data directly and conveniently, and constitute the most common sensor

modalities used for human activity recognition. In particular, accelerometers

measure acceleration, gyroscopes measure angular velocity, and magnetometers

report changes in the magnetic field. Often, these devices are gathered and used

together in an Inertial Measurement Unit (IMU).

• Object sensors. These sensors are attached to objects of interest, recording their

movement data. Accordingly, human interactions with these objects provide

context and localisation information for inferring human activities.

• Ambient sensors. These sensors include WiFi, radar, sound, pressure and

temperature sensors embedded in smart environments to report state changes

in the environment for inferring human actions.

This dissertation primarily conducts experimentation with public HAR datasets of

multi-channel time-series data captured by body-worn sensor modalities—wearable

sensors—due to their ease of deployment and popularity in ubiquitous computing.
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The explored HAR datasets are extensively adopted in HAR studies for benchmarking

purposes and exhibit great diversity in terms of activities they cover and their

application scenarios. To provide an overview, we present a brief description of

representative datasets investigated in this dissertation.

Skoda Dataset Stiefmeier et al. (2008). This dataset covers the problem of

recognising the activities of assembly-line workers in a manufacturing scenario. For

data acquisition, 20 triaxial accelerometers with a sampling rate of 98Hz were worn by

a subject on both arms while performing manual quality checks of newly constructed

cars. The dataset is annotated with 10 manipulative gestures of interest, including

writing in a notepad, checking the steering wheel, opening and closing the

boot, doors, and engine bonnet, as well as a null class to identify non-relevant

activities. In this dissertation, Chapter 3 studies the corresponding activity recognition

task in a supervised learning scenario while Chapter 7 considers the problem in an

unsupervised setting.

WISDM Dataset Kwapisz, Weiss and Moore (2011). This dataset contains

acceleration measurements from 36 volunteers performing a specific set of activities.

The data were collected under controlled, laboratory conditions. The collected

dataset delivers high quality data and has frequently been used in HAR studies

for benchmarking purposes. The sensing device used for data acquisition is an

Android mobile phone with a constant sampling rate of 20 Hz, placed in the subjects’

front trouser pocket. The sensor samples carry annotations from walking, jogging,

climbing up stairs, climbing down stairs, sitting and standing. This dataset is

explored in Chapter 4 to synthesize sparse data-streams as well as in Chapter 5 to

detect multiple activities within a segment.

Opportunity Dataset Chavarriaga et al. (2013). This dataset comprises annotated

recordings from a wide variety of on-body sensors including IMUs and triaxial

accelerometers. For data acquisition, four subjects were instructed to carry out

naturalistic kitchen routines. Each sample in the resulting dataset corresponds to 113

real-valued signal measurements recorded at a frequency of 30 Hz. The dataset offers

different sets of annotations to address two distinct activity recognition problems:

gesture recognition and locomotion recognition. The former is examined in Chapter 3
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with 18 sporadic gestures, and the latter is investigated in Chapter 5 with five

modes of locomotion. Notably, both activity tasks require recognition of the null

class—periods without the activities of interest—challenging the performance of

HAR models.

UCI HAR Dataset Anguita et al. (2013). This dataset targets the problem of

recognising activities of daily life (ADLs). The data was collected from 30 volunteers

wearing a smartphone at waist level in controlled, laboratory conditions while

undertaking six physical activities: laying, walking, walking upstairs, walking

downstairs, sitting, and standing. During the experiments, the acceleration and

angular velocity readings were recorded at a constant rate of 50Hz using the phone’s

embedded accelerometer and gyroscope, resulting in 9-dimensional measurements.

The gathered data has been manually annotated using the video recordings from the

experiments. This dataset is adopted to evaluate recognition performance of HAR

models for unsupervised representation learning and activity clustering in Chapter 6

and Chapter 7, respectively.

This dissertation further investigates the Hospital (Yao et al. (2018); Chapter 3), Clinical

Room (Torres et al. (2013); Chapter 4), USC-HAD (Zhang and Sawchuk (2012b);

Chapter 6), and MHEALTH (Banos et al. (2014); Chapter 7) datasets for activity

recognition in health-care scenarios as well as PAMAP2 (Reiss and Stricker (2012);

Chapter 3) for understanding common activities of daily life.

2.3 Deep Learning Models

Over the past years, human activity recognition has greatly advanced with the

introduction of end-to-end deep learning paradigms. Here, we introduce the core

deep learning building blocks that have mainly been adopted in the development of

HAR frameworks in recent literature. These include multi-layer perceptrons, recurrent

neural networks, convolutional neural networks, autoencoders and combinations of these

components.

Multi-Layer Perceptrons (MLPs). Multi-layer perceptrons adopt fully-connected

topologies with computational nodes—namely, neurons—arranged into layers and

inter-connected using trainable parameters. Internally, each neuron learns a non-linear
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Reshape
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Figure 2.2: Multi-Layer Perceptrons (MLPs). We illustrate an overview of HAR frameworks

designed solely using MLPs. Notably, MLPs leverage fully connected structures and require their

input to have a flattened representation for processing.

projection of the activations from its preceding layer. Given their dense design

structure, MLPs significantly increase the number of network parameters, making

them computationally expensive to train. Accordingly, they often serve only as

the classification component of HAR frameworks, with the deepest layer generating

activity membership distributions. Nevertheless, some early studies have relied on

HAR frameworks developed entirely using MLPs Vepakomma et al. (2015); Walse,

Dharaskar and Thakare (2016). In Fig. 2.2, we illustrate the work-flow of an HAR

framework built upon MLPs to perform classification of human activities from raw

time-series segments. Initially, the input segment is reshaped to achieve a flattened

vectorised representation. Subsequently, the flattened input is processed through a

series of fully connected hidden layers to ultimately generate classification decisions

over the activity space.

Recurrent Neural Networks (RNNs) Rumelhart, Hinton and Williams (1986).

Recurrent neural networks integrate neurons with recurrent feedback in order to

model temporal dependencies in sequential data. In a recursive manner, the output

at each time-step is computed as a function of the current input and the hidden state of

the network from previous time-steps. In this regard, incorporation of long-short term

memory (LSTM) units Hochreiter and Schmidhuber (1997) and gated recurrent units

(GRU) Cho et al. (2014) in recurrent neural networks form two extended flavours of

RNNs that leverage gating mechanisms to implement memory cells and facilitate the

learning of long-range temporal dependencies.

In the context of HAR problems, RNNs and their variants (i.e., LSTMs and GRUs)

are directly applicable to raw multi-channel time-series data and allow automatic

extraction of the temporal correlations between individual sample measurements
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Figure 2.3: Recurrent Neural Networks (RNNs). We illustrate an overview of HAR frameworks

incorporating RNNs for temporal modelling of multi-channel time-series data.

at the lowest possible level. We depict the work-flow of an HAR framework

incorporating RNNs for feature extraction in Fig. 2.3. Initially, the raw input segment

is sequentially processed by the recurrent component for temporal modelling. The

final representation achieved after processing the entire input sequence serves as a

holistic summary of the input, and is subsequently fed to an MLP to produce activity

classification scores.

Convolutional Neural Networks (CNNs) LeCun, Bengio and Hinton (2015).

Convolutional neural networks constitute the most popular choice of deep neural

networks for the purpose of automating feature extraction from sensor data in

human activity recognition studies. In general, CNNs are formed through a stack of

convolutional operators with small filters which are capable of automatically capturing

salient features at progressively more abstract resolutions. In the context of HAR

problems, CNNs predominantly employ 1D convolutional filters. These filters are

directly applied along the temporal dimension of sensor channel data to capture the

local dependencies in a hierarchical manner. The acquired feature-maps are ultimately

unified and mapped into activity class scores using a jointly trained classifier. We

illustrate this process in Fig. 2.4.

Hybrid Neural Networks. Based on the successful independent applications of

CNNs and RNNs as a way to develop effective HAR models, efforts have been made

to combine the CNN-based representation learning approach with an RNN-based

Page 20



Chapter 2 Background

temporal modelling strategy. Within the developed frameworks, the CNN module

extracts local features from individual sensor modalities and hierarchically merges

them into global features. Subsequently, the RNN module exploits the learned features

and extracts temporal relationships at a more abstract representation level.

AutoEncoder Neural Networks. Through stacked hidden layers of

encoding-decoding operations, autoencoders provide an effective means to learn

unsupervised feature representations from input data. They comprise an encoder

neural network and a decoder neural network; the encoder extracts features from

unlabelled data (often in a low-dimensional space) and the decoder network attempts

to reproduce the original data using the learned features with minimal error. As the

unsupervised training process progresses and the corresponding reconstruction error

is reduced, the network uncovers better feature representations of the data without

relying on data annotations.

In the context of sensor-based activity recognition, autoencoders have been

successfully applied to exploit unlabelled activity data for unsupervised pre-training

and unsupervised representation learning tasks. Notably, the encoder and decoder

components can incorporate different variations of deep neural networks—i.e., MLPs,

CNNs, or RNNs—to uncover representations from sequential sensory data. We

present an overview of autoencoder frameworks for unsupervised feature extraction

from raw multi-channel time-series data captured using wearables in Fig. 2.4. The

reconstruction of unlabelled sensory data by imposing a bottleneck layer in a

MLP

Softm
ax 

Flattened Deep 
Representation Membership Distribution

Sensor Segment

Classifier

1D Filter

CNN
Reshape

Feature-map
Representation

Feature Extractor

Figure 2.4: Convolutional Neural Networks (CNNs). We illustrate an overview of HAR

frameworks integrating CNNs for automatic feature extraction from multi-channel time-series data.
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Figure 2.5: AutoEncoder Neural Networks. We illustrate an overview of HAR frameworks

adopting autoencoders for unsupervised feature learning from multi-channel time-series data.

low-dimensional space encourages the network to capture only the most salient

activity features of the input. These features are critical to the successful reconstruction

of the data and, thus, are expected to encode enriched representations.

2.4 Evaluation Metrics

We introduce the evaluation metrics which are most commonly used in the HAR

literature to ground studies and quantify experimental results. First, we provide a

definition for the primitive terminologies of True Positive (TP), False Positive (FP), True

Negative (TN), and False Negative (FN):

• True Positive (TP). This term indicates a correct prediction of an activity label that

has indeed occurred.

• False Positive (FP). This term indicates an incorrect prediction of an activity label

that has not occurred.

• True Negative (TN). This term indicates a correct rejection of an activity label that

has not occurred.

• False Negative (FN). This term indicates an incorrect rejection of an activity label

that has occurred.

Leveraging these terms, we present formal definitions for accuracy, precision, recall and

F1-score. These definitions help us to evaluate the performance of the developed HAR

frameworks in terms of the relevant activity recognition tasks.
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Accuracy (Acc). For a given activity class ai ∈ A, we compute the HAR model’s

accuracy—denoted by Acci—to quantify the proportion of correctly classified activity

segments (i.e., TPi + TNi) over the total number of activity occurrences in the

predictions and ground-truth (i.e., TPi + TNi + FPi + FNi),

Acci =
TPi + TNi

TPi + TNi + FPi + FNi
. (2.3)

Precision. For a given activity class ai ∈ A, we compute the HAR model’s

precision—denoted by Precisioni—to quantify the proportion of correctly predicted

activity occurrences (i.e., TPi) over the total number of activity occurrences in the

predictions (i.e., TPi + FPi),

Precisioni =
TPi

TPi + FPi
. (2.4)

Recall. For a given activity class ai ∈ A, we compute the HAR model’s

recall—denoted by Recalli—to quantify the proportion of correctly predicted activity

occurrences (i.e., TPi) over the total number of label occurrences in the ground-truth

(i.e., TPi + FNi),

Recalli =
TPi

TPi + FNi
. (2.5)

F-score. For a given activity class ai ∈ A, we compute the HAR model’s

F-score—denoted by F-scorei—by taking into account both precision and recall values

and computing their harmonic mean,

F-scorei = 2(
Precisioni × Recalli
Precisioni + Recalli

). (2.6)

Notably, the evaluation metrics presented above provide a means to quantify the

recognition performance of an HAR framework for a specific activity category.

In order to aggregate the recognition performance achieved across all activity
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classes, we compute their corresponding class-average—denoted by (.)m—and

weighted-average—denoted by (.)w—to serve as global evaluation metrics

Accm =
1
k

k

∑
i=1

Acci Accw =
k

∑
i=1

wi ×Acci

Precisionm =
1
k

k

∑
i=1

Precisioni Precisionw =
k

∑
i=1

wi × Precisioni

Recallm =
1
k

k

∑
i=1

Recalli Recallw =
k

∑
i=1

wi × Recalli

F-scorem =
1
k

k

∑
i=1

F-scorei F-scorew =
k

∑
i=1

wi × F-scorei

(2.7)

where, wi is the ratio of sensor segments belonging to the activity class ai ∈ A. It is

important to note that the weighted-average takes into account the frequency of samples

belonging to a specific activity class. As such, it is highly affected by the distribution of

activity labels. In contrast, the class-average weights each activity category equally and

reflects the ability of the HAR model to recognise every activity category, regardless of

its prevalence in the collected data.
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Chapter 3

Supervised Learning of
Enriched Activity Feature

Representations

T
HIS chapter considers the problem of automatic feature

representation learning using multi-channel time-series data

captured by wearable sensors for supervised Human Activity

Recognition (HAR). Although our collective know-how to solve HAR

problems with wearables has progressed immensely with end-to-end

deep learning paradigms, several fundamental opportunities remain

overlooked. This chapter rigorously explores these new opportunities to

learn enriched and highly discriminating activity representations. This

chapter proposes: (a) learning to exploit the latent relationships between

multi-channel sensor modalities and specific activities; (b) investigating

the effectiveness of data-agnostic augmentation for multi-modal sensor

data streams to regularise deep HAR models; and (c) incorporating a

classification loss criterion to encourage minimal intra-class representation

differences whilst maximising inter-class differences to achieve more

discriminative features. The contributions from the design concepts are

validated through extensive experiments, including activity misalignment

measures, ablation studies and insights shared through both quantitative

and qualitative studies.
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3.1 Motivation and Contribution

Recently, the adoption of deep neural networks for sensor-based human activity

recognition (HAR) has created effective pipelines for end-to-end learning of activity

recognition models from raw multi-channel time-series data. Despite the progress

made towards addressing supervised HAR problems, this chapter particularly

discusses opportunities to improve upon the automated feature representation

learning process. In our efforts, key under explored dimensions are uncovered

with significant potential to effectively enrich activity feature-maps, achieve more

discriminative representation, and obtain better generalisation performance in

recognition of human activities. In particular:

• HAR data acquisition often involves recording of motion measurements over

number of sensors and channels. Therefore, we can expect the capability of

different sensor modalities and channels to capture and encode some activities

better than others whilst having complex interactions between sensors, channels

and activities. Thus, we hypothesise that learning to exploit the relationships

between multi-channel sensor modalities and specific activities can contribute to

learning enriched activity representations—this insight remains unstudied.

• Human actions, for example walking and walking up-stairs, exhibit significant

intra-class variability and inter-class similarities. This suggests imposing

optimisation objectives for training that not only ensure class separability but also

encourage compactness in the established feature space. However, the commonly

adopted cross-entropy loss function does not jointly accommodate both objectives.

• Due to the laborious process of collecting annotated sequences with wearables,

sensor HAR datasets are often small in size. While expanding the training

data with virtual samples has proved beneficial in achieving better generalization

performance for general machine learning problems, exploration of data

augmentation for HAR has been largely limited to hand-crafted techniques that

alter the data sequences with the assumption of being able to preserve the

activity label semantics. However, achieving label-preserving transformations

for wearable HAR sensor data is not obvious and intuitively recognizable Um

et al. (2017). Thus, the augmented data may not necessarily preserve salient

characteristics embedded within the original data, leading to alteration of the

activity labels and potentially deluding the supervised training process. For
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Figure 3.1: Enhanced feature extraction work-flow for wearable activity data. We aggregate

the proposed components for achieving highly discriminative and generalisable activity feature

representation in a unified HAR framework that seamlessly operates on raw multi-channel time-series

data captured by wearables.

instance, in the image domain, a flipped image of a person is still a meaningful

illustration of the person concept whilst applying the same method and flipping

sensor channels of an inertial sensor leads to a completely different signal.

Motivated by these opportunities, the key contribution in this chapter is to propose

novel end-to-end trainable components to enhance automatic feature extraction

from multi-channel time-series data captured by wearables. We substantiate

the effectiveness and generalisability of the proposed elements in a unified

HAR framework—illustrated in Fig. 3.1—in achieving more discriminative and

generalisable activity feature representations across multiple diverse wearable sensor

datasets. The key contributions are summarised below:

1. This chapter proposes and designs a cross-channel interaction encoder to incorporate

a self-attention mechanism to learn to exploit the different capabilities of sensor

modalities and latent interactions between multiple sensor channels capturing

and encoding activities. The encoder module captures latent correlations

between multi-sensor channels to generate self-attention feature maps and enrich

the convolutional feature representations (Section 3.3.2 and Fig. 3.9).

2. Temporal attention layers were recently shown in Murahari and Plötz (2018) to

improve performance by capturing temporal context in a network constructed

using LSTM (long short-term memory) layers capable of learning dependencies

in sequences. Therefore, this chapter designs an attentional GRU (gated recurrent

unit) encoder to enhance the sequence of self-attention enriched features by further

capturing the relevant temporal context (Section 3.3.3). Compared with LSTMs,

GRUs are easier to train and leverage fewer parameters Zheng et al. (2018).
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3. In recognizing the intra-class variations of HAR activities, this chapter

proposes adopting the center-loss criterion to encourage minimal intra-class

representation differences whilst maximising inter-class differences to achieve

more discriminative features and demonstrate the effectiveness of center-loss

penalisation for learning highly discriminative activity representations for

wearable HAR problems. (Section 3.3.4).

4. In recognizing the difficulty of ensuring label-preserving augmentation with

hand-crafted approaches in wearable HAR problems, this chapter proposes

adopting mixup method to take into account both data and label information

for multi-modal sensor data augmentation, investigates the effectiveness of the

method and demonstrates the seamless integration of mixup for wearable HAR

problems (Section 3.3.5). Importantly unlike existing augmentation approaches

that are dataset dependent and thus require domain expert knowledge for

effective adoption, mixup is domain independent and simple to apply; an

important consideration for wearable HAR problems based on multiple different

sensor modalities and sensor specific semantic and signal characteristics.

5. Under a unified evaluation protocol, the effectiveness and generalisability

of the incorporated components is substantiated on diverse HAR datasets

(Section 3.4.4). Further, the key insights gained from the study in this chapter

are shared through extensive quantitative and qualitative results as well as an

ablation study to comprehensively demonstrate the contributions made by the

architectural elements (Section 3.4.5).

3.2 Related Work

3.2.1 Automatic Feature Learning in HAR

Over the past years, the emerging paradigm of deep learning has largely alleviated the

need for laborious feature engineering procedures and provided an effective means for

automated end-to-end feature extraction from multi-channel time-series data in HAR.

Pioneering studies in the field have explored Restricted Boltzmann Machines

(RBMs) for automatic representation learning Plötz, Hammerla and Olivier (2011);

Hammerla et al. (2015); Zhang, Wu and Luo (2015); Alsheikh et al. (2016). Recently,
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deep architectures based on convolutional neural networks (CNNs) have been

predominantly leveraged to automate feature extraction from sensor data streams

while mutually enhancing activity classification performance Zeng et al. (2014);

Yang et al. (2015); Ronao and Cho (2015); Bhattacharya and Lane (2016). These

studies typically employ a cascaded hierarchy of 1D convolution filters along the

temporal dimensions to capture salient activity features at progressively more abstract

resolutions. The acquired latent features are ultimately unified and mapped into

activity class scores using a fully connected network. In particular, Zeng et al. (2014)

adopts 1D convolutional filters along the temporal dimension of accelerometer signals

to capture local dependencies and scale invariant features. Similarly, Yang et al. (2015)

proposes a CNN architecture that employs convolution and pooling layers to capture

salient sensor signal patterns at different time scales. In Ronao and Cho (2015), a study

is conducted to compare recognition performance of end-to-end trained CNNs against

traditional HAR algorithms. In another study, Chen and Xue (2015) investigates the

effective kernel width for convolutional operators to automate feature extraction in

HAR. Taking a different approach, Yao et al. (2018) develops a fully convolutional HAR

architecture that leverages 2D filters to simultaneously detect temporal and spatial

feature representations from input sensor data.

Another popular architecture design for HAR adopts deep recurrent neural networks

(RNNs) that leverage memory cells to directly model temporal dependencies between

subsequent sensor samples. In particular, Inoue, Inoue and Nishida (2018) develops

a deep RNN for activity recognition from raw accelerometer data. In Hammerla,

Halloran and Plötz (2016), authors investigate forward and bi-directional long

short-term memory (LSTM) networks to capture temporal dynamics in both forward

and backward directions. In another study, Guan and Plötz (2017) demonstrates how

multiple LSTM models can be ensembled to achieve superior recognition performance.

In order to reduce the computational complexity, Edel and Köppe (2016) develops a

binarised LSTM network for activity recognition on resource-constrained devices.

Combining the representational power of CNNs with RNNs, Ordóñez and Roggen

(2016) proposes DeepConvLSTM by pairing convolutional and recurrent networks in

order to model the temporal correlations at a more abstract representation level. This

concept is further extended in Murahari and Plötz (2018), where the recurrent network

of DeepConvLSTM is expanded with attention layers to model the relevant temporal

context of sensor data. Similarly, Yao et al. (2017) develops deepsense by integrating
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convolutional layers together with a GRU network. Within the framework, the CNN

module extracts local features from individual sensor modalities and hierarchically

merges them into global features. Subsequently, the GRU module exploits the learned

features and extracts temporal relationships.

3.2.2 Data Augmentation

Data augmentation constitutes an explicit approach to effectively regularise deep

neural networks and improve their generalisation performance through artificial

expansion of the training dataset Simonyan and Zisserman (2014); He et al. (2016);

Zhong et al. (2020). Despite its demonstrated effectiveness for general machine

learning problems, considerably limited research efforts in HAR have focused on

investigating systematic data augmentation techniques for wearable sensor data.

In particular, Um et al. (2017) investigates hand-crafted augmentation approaches

including jittering, scaling, cropping, permutation and axis rotations for monitoring

of Parkinson’s disease using wearable sensors with convolutional neural networks. In

Mathur et al. (2018), data augmentation is applied to sensor data in order to specifically

counter sampling-jitters resulting from software and hardware heterogeneity in

diverse sensing devices. In another study, Faridee et al. (2019) explores a series of

sequentially applied transformations—rotation, time-warp, scaling and jittering—in a

semi-supervised transfer learning framework for complex human activity recognition.

While the use of data augmentation in these studies consistently demonstrates

improved generalisation to unseen data, the incorporated strategies are

dataset-dependent and rely on the use of domain expert knowledge for effective

and meaningful adoption; e.g. it is not straightforward and clear what degree of

sensor data scaling is considered reasonable to apply without altering the semantic

activity label of the original data. This becomes even more problematic as wearable

data are often captured over multitude of sensor channels with diverse magnitudes

and innate properties; thus, complicating manual design of label-preserving sensor

augmentations. This necessitates investigation of data-agnostic augmentation

approaches for multi-channel times-series data in HAR that can be applied to

effectively expand the training data captured by diverse sensing modalities without

reliance on domain expert knowledge.
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Summary. Despite the great progress in the field, we can see that the unique

opportunities discussed in Section 3.1 for learning from multi-channel time-series data

generated by body-worn sensors remain. Conventionally, the feature-maps generated

by convolutional layers are trivially vectorised and fed to fully connected layers or

recurrent networks to ultimately produce classification outcomes. However, such

manipulation of the convolutional feature-maps fails to explicitly capture and encode

the inter-channel interactions that can aid accurate recognition of activities. Moreover,

regardless of the architectural designs, cross-entropy loss constitutes the common

choice for supervised training of deep HAR models. Yet, this optimisation objective

alone does not cater for the need to achieve minimal intra-class compactness of

feature representations Wen et al. (2016) necessary to counter the significant intra-class

variability of human activities. In addition, while data augmentation has shown

great potential for regularising deep neural networks in the computer vision domain,

the effectiveness of data-agnostic augmentation for multi-channel time-series data

captured by wearables remains under-utilised for HAR.

3.3 Proposed Methodology

The goal is to develop an end-to-end deep HAR model that directly consumes

raw sensory data captured by wearables and seamlessly outputs precise activity

classification decisions. In our proposed methodology, a network composed of 1D

convolutional layers serves as the backbone feature extractor in order to automatically

extract an initial feature representation for each sensory segment. Subsequently, a

two-staged refinement process is proposed to enrich the initial feature representations

prior to classification that allows the model to i) effectively uncover and encode

the underlying sensor channel interactions at each time-step, and ii) learn the

relevant temporal context within the sequence of refined representations. Moreover,

we encourage intra-class compactness of representations with centre-loss while

regularising the network with mixup data augmentation during training. In what

follows, the network components illustrated in Fig. 3.1 are elaborated.

3.3.1 1D Convolutional Backbone

Following the sliding window segmentation, the input to the network is a slice of the

captured time-series data x ∈ RD×W, where D denotes the number of sensor channels
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used for data acquisition and W represents the choice for the window duration. For

automatic feature extraction, the input is then processed by a convolutional backbone

operating along the temporal dimension. Given the 1D structure of the adopted

filters, progressively more abstract temporal representations are learned from nearby

samples without fusing features in-between different sensor channels. Ultimately, the

backbone yields a feature representation x̄ ∈ RC×D×T, where in each of the C feature

maps, the sensor channel dimension D is preserved while the temporal resolution

is down-sampled to T. Without loss of generality, in this chapter we employ the

convolutional layers of a state-of-the-art HAR model Ordóñez and Roggen (2016) as

the backbone feature extractor; the input segment is successively processed by four

layers, each utilising 64 one-dimensional filters of size 5 along the temporal axis with

ReLU non-linearities.

3.3.2 Cross-Channel Interaction Encoder (CIE)

Accurate realisation of fine-grained human actions using wearables is often associated

with utilising multitude of on-body sensing devices that capture activity data across

multiple channels. Measurements captured by different sensor channels provide

different views of the same undergoing activity and are thus, inherently binded

together in an unobservable latent space. Accordingly, we seek to design an

end-to-end trainable module that takes as input the initial convolutional feature-maps

at each time-step, learns the interactions between any two sensor channels within

the feature-maps, and leverages this overlooked source of information to enrich the

sensory feature representations for HAR.

Motivated by the emerging successful applications of self-attention Vaswani et al.

(2017); Wang et al. (2018b); Zhang et al. (2019) in capturing global dependencies by

computing relations at any two positions of the input, here a Cross-Channel Interaction

Encoder (CIE) is designed that adopts self-attention mechanism to effectively process

the initial feature representations and uncover the latent channel interactions. To this

end, the normalised correlations are first computed across all pairs of sensor channel

features x̄d
t and x̄d′

t using the embedded Gaussian function at each time-step t,

ad,d′
t =

exp
(

f (x̄d
t )

ᵀg(x̄d′
t )
)

∑D
d′=1 exp

(
f (x̄d

t )
ᵀg(x̄d′

t )
) , (3.1)
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where ad,d′
t indicates the attendance of the model to the features of sensor channel

d′ when refining representations for sensor channel d. Subsequently, the extracted

correlations are leveraged in order to compute the response for the dth sensor channel

features xd
t ∈ RC and generate the corresponding self-attention feature-maps od

t at each

time-step

od
t = v

( D

∑
d′=1

ad,d′
t h(xd′

t )
)

. (3.2)

Technically, the self-attention in the CIE module functions as a non-local operation

which computes the response for sensor channel d at each time-step by attending to

all present sensor channels’ representations in the feature-maps at the same time-step.

In the above, f , g, h, and v all represent linear embeddings with learnable weight

matrices (∈ RC×C) that project feature representations into new embedding spaces

where computations are carried out. Having obtained the self-attention feature-maps,

the initial feature-maps are then added back via a residual link (indicated by
⊕

in Fig.

3.1) to encode the interactions and generate the refined feature representations rt,

rd
t = od

t + xd
t . (3.3)

With the residual connection in place, the model can flexibly decide to use or discard

the correlation information. During training, the HAR model leverages the CIE

module to capture the interactions between different sensor channels. The discovered

correlations are encoded inside the self-attention weights and leveraged at inference

time to help support the model’s predictions.

3.3.3 Attentional GRU Encoder (AGE)

As a result of employing the CIE module, the feature-maps generated at each time-step

are now contextualised with the underlying cross-channel interactions. As shown in

Fig. 3.1, the representations at each time-step are vectorised to obtain a sequence of

refined feature vectors (rt ∈ RCD)T
t=1 ready for sequence modelling. Given that not all

time-steps equally contribute in recognition of the undergoing activities, it is crucial to

learn the relevance of each feature vector in the sequence when representing activity

categories. In this regard, applying attention layers to model the relevant temporal

context of activities has proved beneficial in recent HAR studies Murahari and Plötz
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(2018). Adopting a similar approach, we utilise a 2-layer attentional GRU Encoder (AGE)

to process the sequence of refined representations and learn soft attention weights

for the generated hidden states (ht)T
t=1. In the absence of attention mechanism in

the temporal domain, classification decision would only be based on the last hidden

state achieved after observing the entire sequence. By contrast, empowering the GRU

encoder with attention alleviates the burden on the last hidden state and instead,

allows learning a holistic summary z that takes into account the relative importance

of the time-steps

z = ∑
t

βtht, (3.4)

where βt denotes the computed attention weight for time-step t. Technically, attention

values are obtained by first mapping each hidden state into a single score with a linear

layer and then normalising these scores across the time-steps with a softmax function.

3.3.4 Centre Loss Augmented Objective

Intra-class variability and inter-class similarity are two fundamental challenges of

HAR with wearables. The former phenomena occurs since different individuals may

execute the same activity differently while the latter challenge arises when different

classes of activities reflect very similar sensor patterns. To counter these challenges,

the training objective should encourage the model to learn discriminative activity

representations; i.e., representations that exhibit large inter-class differences as well

as minimized intra-class variations.

Existing HAR architectures solely rely on the supervision signal provided by the

cross-entropy loss during their training phase. While optimising for this criteria directs

the training process towards yielding inter-class separable activity features, it does

not explicitly encourage learning intra-class compact representations. To boost the

discriminative power of the deep activity features within the learned latent space,

this chapter proposes to incorporate center-loss Wen et al. (2016) for training the

HAR model. The auxiliary supervision signal provided by centre-loss penalises the
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distances between activity representations and their corresponding class centres and

thus, reduces intra-class feature variations. Formally, centre-loss is defined as

Lc =
1
2

n

∑
i=1
‖zi − cyi‖

2
2, (3.5)

where zi ∈ Rz denotes the deep representation for sensory segment xi, and cyi ∈
Rz denotes the yith activity class centre computed by averaging the features of the

corresponding class. This criteria is enforced on the activity representations obtained

from the penultimate layer of the network to effectively pull the deep features towards

their class centres.

In each iteration of the training process, the joint supervision of cross-entropy

loss together with centre-loss is leveraged to simultaneously update the network

parameters and the class centres cy in an end-to-end manner. Hence, the aggregated

optimisation objective is formulated as

Θ∗ = arg min
Θ
L+ γLc, (3.6)

where L represents the cross-entropy loss, γ is the balancing coefficient between the

two loss functions, and Θ denotes the collection of all trainable parameters.

3.3.5 Mixup Data Augmentation for HAR

Due to the laborious task of collecting annotated datasets from wearables, current

HAR benchmarks are characterised by their limited sizes. Therefore, introducing

new modules and increasing the network parameters without employing effective

regularisation techniques, makes the model prone to overfitting and endangers its

generalisation. In this regard, while extending the training data with augmented

samples achieved by e.g. slight rotations, scaling, and cropping has consistently led to

improved generalisation performance for computer vision applications, these methods

are not directly applicable to multi-channel time-series data captured by wearables.

Accordingly, we explore the effectiveness of a recently proposed data-agnostic

augmentation strategy, namely mixup Zhang et al. (2018a), for time-series data in

order to regularise the deep HAR model. This approach has demonstrated its

potential in significantly improving the generalisation of deep neural networks by

encouraging simple linear behaviour in-between training data. In addition, unlike
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Linear Interpolation 
According to Eq. (7)

Figure 3.2: Mixup multi-channel time-series data augmentation. We leverage mixup data

augmentation technique to generate virtual sequences during training. We interpolate in-between

samples. Here, we visualise (a) a sequence of sensor data from the training split corresponding to

the lying activity and its one-hot encoded label representation, (b) a training sensor data segment

corresponding to the walking activity, and (c) a virtual or generated sequence and its target label

according to Eq. 3.7 with a drawn λ value of 0.64 (sampled from a Beta distribution). The visualised

data corresponds to a subset of sensor channels in the PAMAP2 dataset Reiss and Stricker (2012).

existing augmentation approaches that are dataset dependent and thus require domain

expert knowledge for effective adoption, mixup strategy is domain independent and

simple to apply. In essence, mixup yields augmented virtual example (x̃, ỹ) through

linear interpolation of training example pairs (xi, yi) and (xj, yj),

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj,
(3.7)

where λ sampled from a Beta(α, α) distribution is the mixing-ratio and α is the

mixup hyper-parameter controlling the strength of the interpolation. Notably, mixup

augmentation allows efficient generation of virtual examples on-the-fly by randomly

picking pairs from the same minibatch in each iteration. In this work, we adopt mixup

strategy to augment the time-series segments in each mini-batch and train the model

end-to-end with the generated samples. We visually explain the augmentation process
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Opportunity
Null (75.35%)
Open Door 1 (1.10%)
Open Door 2 (0.91%)
Close Door 1 (0.64%)
Close Door 2 (1.32%)
Open Fridge (1.34%)
Close Fridge (0.65%)
Open Dishwasher (1.85%)
Close Dishwasher (1.04%)
Open Drawer 1 (1.16%)
Close Drawer 1 (0.92%)
Open Drawer 2 (0.74%)
Close Drawer 2 (1.45%)
Open Drawer 3 (1.42%)
Close Drawer 3 (0.82%)
Clean Table (1.95%)
Drink from Cup (5.57%)
Toggle Switch (1.77%)

PAMAP2

Rope Jumping (2.91%)
Lying (10.24%)
Sitting (9.52%)
Standing (10.10%)
Walking (12.75%)
Running (3.57%)
Cycling (8.41%)
Nordic Walking (9.52%)
Ascending Stairs (6.31%)
Descending Stairs (5.71%)
Vacuum Cleaning (9.14%)
Ironing (11.82%)

Skoda

Null (22.86%)
Write on Notepad (8.95%)
Open Hood (10.65%)
Close Hood (10.16%)
Check Door Gaps (7.09%)
Open Left Front Door (4.62%)
Close Left Front Door (4.33%)
Close Both Left Doors (7.45%)
Check Trunk Gaps (8.44%)
Open and Close Trunk (9.58%)
Check Steering Wheel (5.87%)

Hospital

Lying (31.13%)
Standing Up (2.84%)
Sitting (48.64%)
Walking (10.59%)
Lying Down (2.47%)
Sitting Down (1.85%)
Getting Up (2.47%)

Figure 3.3: Activity distributions in benchmark HAR datasets. We illustrate the activity

categories covered and their corresponding distributions within each dataset.

with an example in Fig. 3.2, where a pair of randomly drawn training data sequences

are linearly interpolated to yield a novel virtual sequence.

3.4 Experiments and Results

3.4.1 Datasets

To validate the effectiveness of the incorporated network elements and provide

empirical evidence of their generalisability, four HAR benchmarks are employed that

exhibit great diversity in terms of the sensing modalities used and the activities to be

recognised. A brief description of the datasets is provided in what follows.

Opportunity Dataset Chavarriaga et al. (2013). This dataset is captured by multiple

body-worn sensors. Four participants wearing the sensors were instructed to carry

out naturalistic kitchen routines. The data is recorded at a frequency of 30 Hz and
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is annotated with 17 sporadic gestures as well as a Null class. Following Hammerla,

Halloran and Plötz (2016), the 79 sensor channels not indicating packet-loss are used.

For evaluation, we use runs 4 and 5 from subjects 2 and 3 as the holdout test-set, run 2

from participant 1 as the validation-set, and the remaining data as the training-set.

PAMAP2 Dataset Reiss and Stricker (2012). This dataset is aimed at recognition 12

diverse activities of daily life. Data was recorded over 52 channels with annotations

covering prolonged household and sportive actions. Replicating Hammerla, Halloran

and Plötz (2016), we use runs 1 and 2 from subject 6 as the holdout test-set, runs 1 and

2 from subject 5 as the validation-set, and the remaining data for training.

Skoda Dataset Stiefmeier et al. (2008). The dataset covers the problem of

recognising 10 manipulating gestures of assembly-line workers in a manufacturing

scenario. Following Guan and Plötz (2017), we use the data recorded over 60 sensor

channels collected from the right arm, utilise the first 80% of each class for the

training-set, the following 10% for validation and the remainder as the test-set.

Hospital Dataset Yao et al. (2018). This dataset is collected from 12 hospitalised older

patients wearing an inertial sensor over their garment while performing 7 categories

of activities. All the data is recorded at 10 Hz. Following Yao et al. (2018), data from

the first eight subjects are used for training, the following three for testing, and the

remaining for the validation set.

3.4.2 Experimental Setup

To ensure a fair comparison, we directly adopt the evaluation protocol and metrics

used in the recent literature Hammerla, Halloran and Plötz (2016); Guan and Plötz

(2017); Murahari and Plötz (2018); Haresamudram, Anderson and Plötz (2019). Where

possible, sensor data are down-sampled to 33 Hz to achieve a consistent temporal

resolution with the Opportunity dataset. Each sensor channel is normalised to

zero mean and unit variance using the training data statistics. The training data is

partitioned into segments using a sliding window of 24 samples (i.e., W=24) with 50%

overlap between adjacent windows. For a realistic setup, sample-wise evaluation is

adopted to compare the performance on the test-set; thus, a prediction is made for
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Table 3.1: Hyper-parameters. Summary of hyper-parameter values selected per dataset. All other

hyper-parameters are kept constant across all datasets.

Hyper-parameter Opportunity PAMAP2 Skoda Hospital

Dropout ratio pfeat 0.5 0.9 0.5 0.5

Dropout ratio pcls 0.5 0.5 0.0 0.5

Weighting coefficient γ 3× 10-4 3× 10-3 3× 10-1 3× 10-1

every sample of the test sequence as opposed to every segment. Given the imbalanced

class distributions in the datasets (see Figure 3.3), as in Guan and Plötz (2017);

Hammerla, Halloran and Plötz (2016); Murahari and Plötz (2018), the class-average

F-score

F-scorem =
1
k

k

∑
i=1

F-scorei (3.8)

is used as the evaluation metric to reflect the ability of the HAR model to recognise

every activity category regardless of its prevalence in the collected data. Here, k

denotes the number of activity classes and F-scorei is the harmonic mean of precision

and recall terms computed for activity class ai according to Eq. 2.6.

3.4.3 Implementation Details

The experiments are implemented using Pytorch Paszke et al. (2017). The entire

network is trained end-to-end for 300 epochs by back-propagating the gradients

of the loss function based on mini-batches of size 256 and in accordance with the

Adam Kingma and Ba (2015) update rule. The learning rate is set to 10-3 and decayed

every 10 epochs by a factor of 0.9. For mixup augmentation, we fix α=0.8. All these

hyper-parameters are kept constant across all datasets. For each dataset, we choose

a dropout probability p ∈{0, 0.25, 0.5, 0.75, 0.9} for the refined feature-maps (pfeat)

and the feature vectors fed to the classifier (pcls), and select the centre-loss weighting

coefficient γ ∈ 3×{10-4, 10-3, 10-2, 10-1}, as summarised in Table 3.1.

3.4.4 Results

Classification Measure. We compare the effectiveness of our learned activity feature

representations against state-of-the-art HAR models on four standard benchmarks
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Figure 3.4: Class-specific recognition performance. We illustrate the confusion matrices

highlighting the class-specific recognition performance for the testing splits of Opportunity, PAMAP2,

Skoda, and Hospital HAR datasets. The vertical axis represents the ground-truth activity categories

and the horizontal axis denotes the predicted activities.
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Table 3.2: Hold-out evaluation. We present a comparison of sample-wise activity recognition

performance based on class-average F-scores on the holdout test sequences. The baseline results

are quoted from Guan and Plötz (2017); Murahari and Plötz (2018), except for (*) where the

publications’ code is used.

HAR Model Opportunity PAMAP2 Skoda Hospital*

LSTM Learner Baseline Guan and Plötz (2017) 65.9 75.6 90.4 62.7

DeepConvLSTM Ordóñez and Roggen (2016) 67.2 74.8 91.2 62.8

b-LSTM-S Hammerla, Halloran and Plötz (2016) 68.4 83.8 92.1 63.6

Dense Labelling Yao et al. (2018)* 62.4 85.4 91.6 62.9

Att. Model Murahari and Plötz (2018) 70.7 87.5 91.3 64.1

Ours 74.6 90.8 92.8 66.6

(Improvement over Runner-up) (5.52%) (3.77%) (0.76%) (3.9%)

in Table 3.2. As elucidated in Section 3.4.2, every baseline generates sample-wise

predictions on the entire holdout test sequence and the performance is judged based on

the acquired class-average F-score (F-scorem). The baseline results are directly quoted

from Guan and Plötz (2017); Murahari and Plötz (2018), except where indicated by (*),

where the published code is used with the standard evaluation protocol.

In Table 3.2, we can see that the introduced network elements consistently yield

significant recognition improvements over the state-of-the-art models. Interestingly,

we observe the highest performance gain of 5.52% on the Opportunity dataset

characterised by i) the largest number of incorporated sensor channels; ii) the greatest

diversity of the actions to recognise; and iii) the highest ratio of class imbalance. The

experimental results highlight the significant contribution made by the integrated

components in dealing with challenging activity recognition tasks. Notably, the

network still achieves a moderate performance improvement on the performance

saturated Murahari and Plötz (2018) Skoda dataset.

For further insights, the class-specific recognition results from the proposed model

are summarised by presenting confusion matrices for the four recognition tasks in

Fig. 3.4. We can see that for Opportunity and Skoda datasets with the inclusion of

a Null class in the annotations, most of the confusions occur in distinguishing between

the ambiguous Null class and the activities of interest. This can be understood since

the Null class represents an infinite number of irrelevant activity data for the HAR

problem in hand; thus, explicitly modelling this unknown space is a difficult problem.
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Table 3.3: Cross-fold evaluation. We present a comparison of segment-wise activity recognition

performance based on class-averaged f1-scores with cross-fold evaluation.

HAR Model Opportunity Opportunity PAMAP2 Skoda Skoda Hospital

(w/o Null) (w/o Null)

LSTM Learner Baseline 75.6 ± 0.7 70.2 ± 0.7 97.8 ± 0.1 90.9 ± 0.6 82.6 ± 0.6 71.5 ± 2.1

DeepConvLSTM 73.0 ± 0.8 67.7 ± 0.8 97.9 ± 0.1 90.8 ± 0.2 83.2 ± 0.2 72.1 ± 2.4

b-LSTM-S 77.2 ± 1.1 71.8 ± 1.1 97.9 ± 0.1 90.9 ± 0.2 83.5 ± 0.2 72.4 ± 1.4

Dense Labeling 78.5 ± 0.4 73.1 ± 0.4 98.4 ± 0.1 92.1 ± 0.3 84.1 ± 0.3 70.3 ± 0.7

Att. Model 78.1 ± 0.2 72.3 ± 0.6 98.4 ± 0.1 90.4 ± 0.5 82.8 ± 0.4 72.5 ± 1.7

Ours 81.1 ± 0.2 75.7 ± 0.1 98.7 ± 0.1 93.2 ± 0.4 85.3 ± 0.3 73.1 ± 1.9

For completeness, additional extensive cross-fold evaluations are performed across all

benchmark datasets in Table 3.3 to complement the hold-out evaluations presented in

Table 3.2. Following Jordao et al. (2018), fully non-overlapping windows are employed

to generate sensor segments with no temporal overlaps. This is to guarantee that the

segment contents do not simultaneously appear both in training and testing splits

and prevent data leakage from the training set to the test sets. Subsequently, 3-fold

stratified cross-validation is adopted on the datasets to produce the training and testing

splits while preserving activity class distributions across all folds. Each constructed

fold is in turn utilized once for testing while the remaining folds constitute the training

data. The resulting class-average F-score is reported in Table 3.3 for the benchmark

datasets and the corresponding HAR models. In the case of the Opportunity and Skoda

datasets, the recognition performance is reported both including and ignoring the Null

class (w/o Null columns in Table 3.3) during inference. Inclusion of the Null class may

result in an overestimation of the recognition performance due to its large prevalence

and thus, providing both results gives better insights into the nature of the errors made

by the models Ordóñez and Roggen (2016).

Consistent with the observations of hold-out evaluations, the proposed framework

in this chapter presents superior performance in identifying human activity classes

from raw sensor data across all benchmarks as compared with the baseline HAR

models in Table 3.3. Interestingly, a comparison of results between the two evaluation

methods—i.e., hold-out evaluation in Table 3.2 and cross-fold evaluation in Table

3.3—indicates significantly higher recognition performance for the latter. This is mainly due

to the fact that with cross-fold evaluation, the activity data captured by a subject may

appear both in the training and testing folds (despite not having any temporal overlap
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start end start end

Prediction

Ground-Truth Null

Null

Null

Null

Null

Null

Underfill Deletion Insertion Overfill

Figure 3.5: Missalignment measures. We illustrate different categories of misalignment measures

investigated in this paper. Here, presence of different activity classes is represented with distinct

colors and the Null class is denoted with gray. The sequence of continuous sample predictions is

compared against the ground-truth sample labels to compute the underfill, overfill, insertion and

deletion misalignment measures.

of the sensor data), thus leading to better generalisation performance of the trained

models on the testing sets.

Misalignment Measure. In addition to the reported classification metrics, we further

report on the explicitly designed misalignment measures of overfill/underfill, insertion,

and deletion Ward, Lukowicz and Gellersen (2011) and provide comparisons with the

state-of-the-art HAR model Murahari and Plötz (2018) in Table 3.4. These metrics

characterise continuous activity recognition performance and provide finer details

on temporal prediction misalignment with respect to ground truth as illustrated in

Fig. 3.5. Specifically:

• Overfill and Underfill indicate errors when the predicted start or end time of an

activity are earlier or later than the ground-truth timings.

• Insertion errors refer to incorrectly predicting an activity when there is Null

activity.

• Deletion represents wrongly predicting Null class when an activity exists.

Since some measures require the existence of Null class by definition, results on

Opportunity and Skoda datasets are reported. The quantitative results in Table 3.4

indicate the improved capability of the proposed model to predict a continuous

sequence of activity labels that more accurately aligns with ground-truth timings and

better recognises existence or absence of activities of interest.
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Table 3.4: Misalignment measures comparison. We report explicitly designed metrics to

measure misalignments for continuous activity recognition analysis. (*) denotes the best performing

state-of-the-art recognition model Murahari and Plötz (2018) according to Table 3.2.

Opportunity Skoda

Alignment Measures Ours SoA* Ours SoA*

Deletion (↓) 0.62 0.69 0.04 0.04

Insertion (↓) 2.87 3.34 2.01 3.34

Underfill/Overfill (↓) 3.71 4.15 5.33 5.17

True Positives (↑) 92.8 91.82 92.62 91.45

Further, fragments of sensor recordings from these datasets are visualised in Fig.

3.6 for qualitative assessment. The Skoda dataset includes repetitive execution of

quality check gestures while the Opportunity dataset is characterised by short duration

and sporadic activities. We present the ground-truth annotations (top rows), the

proposed model’s softmax output probabilities (last rows) and the binarised sequence

of predictions (middle rows) obtained after applying argmax operation on the soft

scores for each time-step. At every time-step, we colour-code and plot the output class

probabilities for each activity category, where we observe a strong correspondence

between the ground-truth annotations, activity duration and the predicted activity

scores.

Efficiency Analysis In Fig. 3.7, we present a computational complexity comparison

among activity recognition models explored in this study. In particular, we illustrate

the number of trainable network parameters associated with the HAR baselines for

each activity recognition benchmark dataset in Fig. 3.7-a. Clearly, FCN Yao et al. (2018)

demonstrates significantly lower number of parameters as compared with the other

models due to its fully convolutional structure and abandoning fully connected layers

entirely. This is beneficial for realizing activity recognition on edge devices where

storage constraints may be a concern. As for the baseline LSTM learner Guan and Plötz

(2017), we observe a similar number of parameters across all benchmark datasets. This

is due to the fact that the number of parameters within the LSTM networks are heavily

influenced by the number of adopted hidden units. This also holds for the b-LSTM-S

Hammerla, Halloran and Plötz (2016) architecture, however employing roughly twice

the number of learnable parameters due to the bi-directional connections. The
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(a) Opportunity Dataset
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Close Hood
Open Hood

Open Left Front Door
Check Door Gaps 

Close Both Left Doors
Close Left Front Door

Open and Close Trunk
Check Trunk Gaps

Check Steering Wheel

(b) Skoda Dataset

Figure 3.6: Visualisation of network predictions on holdout test fragments. The proposed

HAR model accurately localises and classifies short duration gestures embodied in sequences of

sensor signals captured by wearables. We visualise the model’s predictions against the ground-truth

annotations for sequence fragments of Opportunity and Skoda datasets which include a Null class

label representing activities of non-interest.

remaining HAR frameworks—DeepConvLSTM Ordóñez and Roggen (2016), Att.

Model Murahari and Plötz (2018), and Ours—employ identical backbone feature

extractors and mainly differ in terms of the recurrent networks and the attentional

components. Notably, by replacing the LSTM recurrent network with the GRU modules, our

proposed HAR framework reduces the number of trainable parameters within the architecture.

Additionally, in Fig. 3.7-b, we analyze the inference time required by each HAR

model to process a single sensory window of 24 samples for all benchmark datasets.

To simulate a real-time deployment scenario, the holdout test sets of the benchmark

datasets are segmented and sequentially processed—i.e., with a batch size of one—by

the HAR baselines and the corresponding total processing time is divided by the

total of number of processed segments to generate the results in Fig. 3.7-b. While all

frameworks are suitable for real-time predictions—i.e., consuming a processing time of

approximately 0.8-1.9 milliseconds—the b-LSTM-S network demonstrates the highest

inference time.
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Figure 3.7: Efficiency analysis. A computational complexity comparison among activity recognition

models explored in this study: (a) the number of trainable network parameters, and (b) the inference

time required for processing a single sensory segment associated with the HAR baselines for each

activity recognition benchmark dataset.

3.4.5 Ablation Studies and Insights

Given that the proposed HAR model integrates several key ideas into a single

framework, we conduct an ablation study on the Opportunity dataset to understand

the contribution made by the various components for the human activity recognition

task in Table 3.5. For each ablated experiment, we remove specific modules of

our framework and as a reference we include DeepConvLSTM—the backbone of

our network as illustrated in Fig. 3.1. Unsurprisingly, removing any component

handicaps the HAR model and reduces performance (to 67.2%—see DeepConvLSTM

baseline performance) while incorporating all components together yields the highest

performing HAR model (74.6%—see mixup+Centre-loss+CIE+AGE).
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Table 3.5: Ablation study. We investigating the contribution of integrated modules through an

ablation study conducted on the Opportunity dataset.

HAR Model Fm

DeepConvLSTM Baseline 67.2

Ours (mixup) 70.7

Ours (mixup + Centre-loss) 72.2

Ours (mixup + AGE) 71.7

Ours (mixup + CIE) 73.0

Ours (mixup + Centre-loss + AGE) 72.3

Ours (mixup + Centre-loss + CIE ) 73.2

Ours (mixup + CIE + AGE) 74.0

Ours (mixup + Centre-loss + CIE + AGE ) 74.6

Table 3.6: Data augmentation analysis. A comparison of activity recognition performance on

Opportunity dataset based on the class-averaged f1-scores achieved while employing different data

augmentation strategies.

No Augmentation Jittering Scaling Magnitude Warping Mixup

Fm 70.2 69.4 70.4 70.3 74.6

Notably, the effectiveness of mixup augmentation in regularizing models learnt

from time-series wearable HAR data is demonstrated by the significant relative

improvement of 5.2% over the DeepConvLSTM Baseline compared to employing mixup

alone (an improvement from 67.2% to 70.7%). The virtual multi-channel time-series

data attained through in-between sample linear interpolations expand the training

data and effectively improve the generalisation of learned activity features to unseen

test sequences.

We also investigated conventional hand-crafted augmentation strategies adopted

for wearable HAR. We adopt the recent methods studied in Um et al. (2017)

including jittering, scaling and magnitude warping using the officially provided

implementations in Table 3.6. Here, jittering simulates additive sensor noise, scaling

changes the magnitude of segment data by multiplying by a random scalar, and

magnitude warping convolves the segment with a random sinusoidal curve using

arbitrary amplitude, frequency and phase.
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According to the results, mixup clearly outperforms existing augmentation methods

by a large margin. Moreover, in line with the observations made in Um et al. (2017), we

see that data augmentation techniques may adversely affect recognition performance

if not carefully tuned and applied, as is the case here for the jittering approach. We

argue that depending on the target task—i.e., the activities to be recognized, sensor

channel characteristics, intra-class variations and inter-class similarities—hand-crafted

augmentation methods demand domain expert knowledge for effective adoption. In

particular, for the Opportunity dataset with 79 sensor channels and 18 fine-grained

activity classes, it is not trivial and straight-forward to design channel specific

augmentations.

Most importantly, as opposed to the conventional hand-crafted augmentation

strategies, mixup augmentation takes into account both data and label information (see

Eq. 3.7) when generating novel samples. This approach largely alleviates the concerns

regarding the label-preservation of transformations, and allows simple adoption for

diverse activity recognition problem scenarios. This is substantiated in Table 3.6

comparisons of recognition performance on the Opportunity dataset, where mixup

provides improved results over no augmentation whilst hand-crafted augmentation

strategies such as jittering negatively impacts performance and other methods

provides approximately similar results to those achieved with no augmentation.

As hypothesised, encouraging minimal intra-class variability of representations

with centre-loss consistently improves the recognition performance for activities

(mixup+Centre-loss). In addition, while both CIE and AGE modules allow

learning better representations of activities reflected by the enhanced metrics for

mixup+CIE+AGE compared to mixup (4.7% relative improvement), we observe a larger

performance gain when incorporating CIE module as compared with AGE; the former

encodes the cross-channel sensor interactions with self-attention while the latter learns

the relevance of time-steps with temporal attention. Presumably this is due to the fact

that within the Opportunity challenge setup, the sequence of representations fed to

the GRU is quite short in length (i.e., T=8) and therefore, the last hidden state alone

captures most of the information relevant to the activity. In order to verify this, we

extract the learned attention scores βt corresponding to the hidden states (ht)T=8
t=1 of

the GRU encoder and present an illustration for every activity category of Opportunity

dataset in Fig. 3.8. In line with the observations made in Murahari and Plötz (2018),

the recurrent neural network progressively becomes more informed about the activity
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Figure 3.8: Learned temporal attention scores. A visualisation of discovered temporal attentions

by the proposed AGE module. The vertical axis represents the normalised attention scores and the

horizontal axis denotes hidden states (ht)T=8
t=1 of the GRU encoder. The GRU becomes progressively

more informed about the activity and thus, places higher attention on the few last hidden states with

the last state dominating the attention weights.

and thus, proportionally places higher attention on the few last hidden states with the

last state dominating the attendance.

On the other hand, we observed exploiting latent channel interactions to significantly

improve activity representations as highlighted in ablation results in Table 3.5.

To visually explain the learned self-attention correlations from the proposed

cross-channel encoder, we graph two segments associated with activity classes of

drinking from cup and cleaning table. The CIE module consumes an input

sequence and generates a normalised score matrix of size D×D, corresponding to the

attention between each pair of D=79 channels. In Fig. 3.9, we present the normalised

self-attention scores, a ∈ R79×79 (attained from softmax operation) in Eq. 3.1, where

each column in the attention matrix indicates the extent that a particular sensor channel

attends to available sensor channels.

We observe a clear and meaningful focus on a subset of channels vital to the recognition

of activities indicated by dark rows in the matrices. For example, we notice high

attendance: (a) to the inertial measurement units (IMUs) on the right arm when right

hand is being used for drinking from cup; and (b) to the IMUs placed on the back and

left-upper arm when upper-body is bent during cleaning table. Thus, the explicit

modelling of sensor channel interactions not only leads to improved recognition

performance as substantiated by the ablation study in Table 3.5, but also facilitates

visual explanation through interpretable scores.
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Figure 3.9: Learned self-attention correlations. A visualization of learned self-attention

correlations by our CIE module. (a) Subject engaged in two activities; (b) discovered cross-channel

correlations by our model selected for Right-hand used for drinking from cup (dark shaded

marks along the rows highlighted in green) and Upper-body bent during cleaning table (dark

shaded marks along the rows highlighted in blue) as shown in video snapshots recorded during

the data collection process and shown in (a); and (c) highly attended sensor locations for each

activity—color-coded to match green and blue highligts in (b)—in the Opportunity dataset.

3.5 Conclusions

The emergence of deep learning paradigms has facilitated development of end-to-end

human activity recognition frameworks and has created a growing number of

possibilities for HAR applications. Despite the great progress in this emerging field,

this chapter explored solutions to unique and fundamental challenges that benefit

from further investigations. We presented network architectural elements to enrich

activity feature representations and demonstrated its generalisability by evaluations

across four diverse benchmarks. In particular, systematic solutions were discussed

to: (a) enrich activity representations by exploiting latent correlations between

sensor channels; (b) incorporate centre-loss to alleviate dealing with intra-class

variations of activities; and (c) augment multi-channel time-series data with mixup

for better generalisation beyond training data. We hope to see the incorporation
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Figure 3.10: Upcoming chapter sneak peek.

of the introduced components in follow-up studies for effective training of activity

recognition systems.

The next chapter focuses on an emerging generation of battery-less wearable

computing platforms to enable low-cost, maintenance-free and unobtrusive

monitoring of human activities. Investigating this problem is of importance given

its great application opportunities in the health-care sector and in particular for older

people Jayatilaka et al. (2019). Hence, we will discuss the unique challenges associated

with adoption of passive sensors, review existing technological solutions and finally

present a novel framework to tackle the problem for the first time in an end-to-end

fashion. For clarification, we contrast the presented HAR problem in this chapter

against the corresponding problem scope explored in Chapter 4 in Fig. 3.10.
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Chapter 4

Learning from Sparse
Passive Sensor

Data-streams

T
HIS chapter considers the problem of developing end-to-end

human activity recognition systems using emerging

battery-less—passive—body worn sensor technologies. These

passive wearables are providing new and innovative methods for human

activity recognition (HAR), especially in healthcare applications for older

people. Passive sensors are low cost, lightweight, unobtrusive and

desirably disposable; attractive attributes for healthcare applications in

hospitals and nursing homes. Despite the compelling propositions for

sensing applications, the data streams from these sensors are characterised

by high sparsity—the time intervals between sensor readings are irregular

while the number of readings per unit time are often limited. This chapter

rigorously explores the problem of learning activity recognition models

from temporally sparse data. We describe how to learn directly from

sparse data using a deep learning paradigm in an end-to-end manner,

and demonstrate significant classification performance improvements

on real-world passive sensor datasets from older people over the

state-of-the-art deep learning human activity recognition models. Further,

insights into the model’s behaviour are provided through complementary

experiments on a benchmark dataset and visualisation of the learned

activity feature spaces.
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4.1 Motivation and Contribution

Increasing plethora of wearables are providing the opportunity to conveniently and at

low-cost collect fine-grained physiological information to understand human activities.

While wearables predominantly employ battery powered devices, new opportunities

for human activity recognition applications, especially in healthcare, are being created

by battery-less or passive wearables operating on harvested energy Ranasinghe et al.

(2014); Chen et al. (2015); Lemey et al. (2016); Shinmoto Torres et al. (2017b). In

particular, older people have expressed a preference for unobtrusive and wearable

sensing modalities Gövercin et al. (2010); Torres et al. (2017). Accordingly, this chapter

rigorously investigates the problem of human activity recognition in the context of

battery-less sensing modalities, discussing their unique challenges and ultimately,

presenting an end-to-end solution to learn about human activities through their lens.

In contrast to using often bulky and obtrusive battery powered wearables, passive

sensing modalities provide maintenance-free, often disposable, unobtrusive and

lightweight devices highly desirable to both older people and healthcare providers.

However, the very nature of these sensors leads to new challenges; i.e., the process

of operating a battery-less sensor and transmitting the data captured is reliant on

harvested power. Due to variable times to harvest adequate energy to operate sensors,

the data-streams generated are highly sparse with variable inter-sample times. We

illustrate the problem in Fig. 4.1 for a data stream captured by a body-worn passive
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Figure 4.1: Data acquisition from passive wearable sensors. Left: Older volunteer wearing a

passive sensor over their clothing in the clinical rooms public datasets used in this work (datasets and

figure from Torres et al. (2013)). Right: Due to variable times to harvest adequate energy to operate

sensors, the data-streams generated are highly sparse with variable time intervals between sensor data

reporting times. Thus, adopting the sliding window segmentation results in sensor partitions with

variable number of motion measurements.
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sensor. We can see two key artefacts: i) the variable time intervals between sensor data

reporting times; and ii) the relatively low average sampling rate. Accordingly, this

chapter considers the problem of deriving human activity recognition (HAR) models

from sparse data-streams using a deep learning paradigm in an end-to-end manner.

The dominant human activity recognition pipeline uses fixed duration sliding window

to partition wearable time-series data-streams and feed neural networks during both

training and inference stages Wang et al. (2019); Guan and Plötz (2017); Ordóñez and

Roggen (2016); Hammerla, Halloran and Plötz (2016); Yang et al. (2015); Zeng et al.

(2014). When dealing with sparse data partitions, a common remedy is to rely on

interpolation techniques as a pre-processing step to synthesise sensor observations

to obtain a fixed size representation from time-series partitions as illustrated in

Fig. 4.2 Wickramasinghe and Ranasinghe (2015); Gu et al. (2018). However, we

recognise two key issues with an interpolated sparse data-stream:

• Interpolating between sensor readings that are temporarily distant can

potentially lead to poor approximations of missing measurements and contextual

activity information. Accordingly, adoption of convolutional filters or recurrent

layers to extract temporal patterns from the poorly approximated measurements

may potentially propagate the estimation errors to the activity recognition

model—we substantiate this through extensive experiments in Section 4.3.3.

• Interpolation is as an intermediate processing step that prevents end-to-end

learning of activity recognition models directly from raw data and introduces

real-time inference delays in time critical applications—we demonstrate the time

overheads imposed in Section 4.3.3.

In this study, instead of relying on the naturally poor temporal correlations between

consecutively received samples in sparse data-streams, we consider incentivising the

activity recognition model to uncover discriminative representations from the input

sensory data partitions of various sizes to distinguish different activity categories. Our

intuition is that a few information bearing sensor samples, although not temporally

consistent, can capture adequate amount of information. Therefore, this chapter

proposes learning HAR models directly from sparse data-streams. An illustrative

summary of the proposed methodology for sparse data-stream classification in

comparison with the conventional treatment is presented in Fig. 4.2. Given that we

no longer rely on often poor temporal information, we represent sparse data stream
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Figure 4.2: Sparse data-stream classification pipelines. We present an overview of the

conventional sparse data-stream classification pipeline (blue plane) versus our novel set-based deep

learning pipeline (green plane). Top: The conventional pipeline applies interpolation pre-processing on

the sparse segments to synthesise fixed temporal context for model training and inference. bottom: In

contrast, our proposed approach elegantly allows end-to-end learning of activity recognition models

directly from sparse segments to deliver highly accurate classification decisions.

partitions as unordered sets with various cardinalities from which embeddings capable

of discriminating activities can be learned. This approach is inspired by recent research

efforts to investigate set-based deep learning paradigms to address a new family of

problems where inputs Qi et al. (2017); Zaheer et al. (2017) of the task are naturally

expressed as sets with unknown and unfixed cardinalities. Therefore, the strategy here

is to develop activity recognition models that can learn and predict from incomplete

sets of sensor observations, without requiring any extra interpolation efforts.

The main contributions of this chapter are summarised in what follows. In particular:

1. A new problem is formulated and addressed with a deep neural network

formulation—learning from sparse sensor data-streams in an end-to-end manner.

2. We show that set learning can tolerate missing information which otherwise

would not be possible with conventional DNN.

3. It is substantiated that the proposed novel treatment of the problem yields

significantly outperforming recognition models with lower inference delays
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compared with the state-of-the-art on naturally sparse public datasets—over

4% improvement in the best case. In addition, further comparisons with a

benchmark HAR dataset are presented to provide deeper insights into the

performance improvements obtained from the proposed approach.

4.2 Proposed Methodology

We first present a formal description of the human activity recognition problem with

sparse data-streams and introduce the notations used throughout this chapter before

elaborating on the proposed activity recognition framework to learn directly from

sparse data-streams in an end-to-end manner.

4.2.1 Problem Formulation

Consider a collected data-stream of raw time-series samples from body-worn sensors

of the form Xstream = (x1, x2, ..., xS), where xt ∈ RD is a multi-dimensional vector

that contains sample measurements over D distinct sensor channels at time step t

and S is the total length of the sequence. Without loss of generality, we assume a

hardware-specific sampling rate for the wearable sensors, denoted by f.

HAR with Uniform Time-series Data. In an ideally controlled laboratory setup,

sensor samples are constantly taken at regular intervals of 1
f seconds. In such case,

applying the commonly adopted time-series segmentation technique with a sliding

window of fixed temporal context δt yields the labelled dataset

Duniform = {(x1, y1), (x2, y2), ..., (xn, yn)}, (4.1)

where xi = [xi, ..., xi+W−1] ∈ RD×W is a fixed size segment of captured sensor readings,

W = fδt is the constant number of received samples, and yi denotes the corresponding

one-hot encoded ground-truth from the pre-defined activity space A = {a1, ..., ak}.
The acquired dataset can then be utilised to train activity recognition models using

out-of-the-box machine learning techniques.
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HAR with Sparse Time-series Data. Unfortunately, sparse time-series data often

found in real-world deployment settings, especially with passive sensors have variable

inter-sensor observation intervals.

In this case, utilising a fixed time sliding window approach to segment the sparse

data-stream results in the labelled dataset:

Dsparse = {(Xm1
1 , y1), (Xm2

2 , y2), ..., (Xmn
n , yn)}, (4.2)

where Xmi
i = {xi, ..., xi+mi−1} ∈

mi︷ ︸︸ ︷
RD × ... ×RD is a set of sparse sensor observations

during a timed window, mi ∈ N is the cardinality of the obtained observation set, and

yi denotes the corresponding activity class. We emphasise that the number of received

sensor readings in the time interval δt is unfixed for different sensory segments and

upper bounded by the sensor sampling rate; i.e., for any given sensory segment Xmi
i ,

we have mi ≤ fδt.

Having acquired the training dataset of sparse sensory segments Dsparse =

{(Xmi
i , yi)}n

i=1, the goal here is to directly learn a mapping function FΘ∗ : 2R
D → A,

that operates on input sensory sets with unfixed cardinalities and accurately predicts

the underlying activity classes,

yi = FΘ∗(Xmi
i ) = FΘ∗({xi, ..., xi+mi−1}), ∀i ∈ {1, ..., n}.

4.2.2 SparseSense Framework

Our work is built upon the insight that incorporating interpolation techniques to

recover the missing measurements across large temporal gaps between received

sensor observations in sparse data-streams leads to poor estimations and therefore,

significant interpolation errors. As we demonstrate in Section 4.3.3, the adoption of

convolutional filters or recurrent layers to extract temporal patterns from the poorly

approximated measurements can potentially propagate the estimation errors to the

activity recognition model.

Instead of forcing the network to exploit the potentially weak temporal correlations

in sparse data-streams, this chapter proposes learning global embeddings from sets

that encode aggregated information related to an activity. Therefore, we propose
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Figure 4.3: SparseSense network architecture. The proposed network consumes sets of raw

sensor observations with potentially varying cardinalities, uncovers latent projections for individual

samples, aggregates sample embeddings into a global segment embedding, and maps the acquired

segment embedding to its corresponding activity category. The number of neurons constituting the

linear layers are outlined in parenthesis. All layers utilise ReLUs for non-linear transformation of

activations except for the last layer which leverages a softmax activation function.

formulating sparse segments as unordered sets with unfixed and unknown number

of sensor readings. Hence, we design SparseSense as a set-based activity recognition

framework for the HAR task that directly manipulates sets of received sensor readings

with irregular inter-sample observation intervals and outputs the corresponding

activity membership distributions. The proposed approach provides a complete

end-to-end learning method that incentivises the activity recognition model to uncover

globally discriminative representations for the input sparse segments with variable

number of samples, and distinguish different activity categories accordingly.

Network Architecture

The overall architecture of the proposed SparseSense network is illustrated in Fig. 4.3.

Essentially, we approximate the optimal mapping function FΘ∗ through training of

a deep neural network parameterised by Θ. The primary task for integrating set

learning into deep neural networks is employing a shared network to map each set

element independently into a higher dimensional embedding space (to facilitate class

separability) and adopting a symmetric operation across the element embeddings to

generate a global representation for the entire set that does not rely on the set element

orderings. This pipeline is incorporated into the building blocks of our network as

elucidated in what follows:

Input. Adopting sliding window segmentation over the sparse data-stream yields

sets of sparsely received sensor observations X in the pre-defined temporal window

δt, with potentially varying cardinalities.
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Shared Sample Embedding Network. The embedding network φθ1 : RD →
Rz parameterised by θ1, operates identically and independently on each sample

measurement x within the received observation set X and learns a corresponding

higher dimensional projection zx ∈ Rz to alleviate separability of activity features

in the new embedding space; i.e., zx = φθ1(x), ∀x ∈ X . Technically, φθ1 is a

standard multi-layer perceptron (MLP) whose parameters are shared between the

sensor sample readings; i.e., all samples undergo the same layer operations and are

therefore processed identically through a copy of the MLP.

Aggregation Layer. Described by h : Rz × ... × Rz → Rz, the aggregation layer

applies a symmetric operation across the latent representations of individual sensor

samples and extracts a fixed size global embedding zX ∈ Rz to represent the sensory

segment as a whole. Thus, for a given sensory segment Xi, we have

zXi = h({zxi , ..., zxi+mi−1}). (4.3)

Notably, the shared sample embedding network coupled with the symmetric

aggregation layer allow summarizing sparse segments with effective high-dimensional

projections that i) do not rely on the weak temporal ordering of the sparse samples,

and, ii) ensure fixed size tensor representations independent of the number of received

readings. Inspired by Qi et al. (2017), in this chapter, we set h to incorporate a

feature-wise maximum pooling across sample embeddings which promises robustness

against set element perturbations.

Segment Embedding Classifier. Described by ρθ2 : Rz → A parameterised

by θ2 is trained to exploit the segment embeddings zX through multiple layers of

non-linearity and predict the corresponding activity class probability distributions ŷ;

i.e., ŷ = ρθ2(zX ).

Here, a softmax activation function governs the output of our network to yield

posterior probability distributions over the activity space A.

Summary. Now, we can express the mathematical operations constituting the

forward pass of the proposed activity recognition model for a given sparse sensory

segment Xi as:

FΘ(Xmi
i ) = ρθ2

(
h({φθ1(xi), ..., φθ1(xi+mi−1)})

)
, (4.4)
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where Θ denotes the collection of all network parameters; i.e., Θ = (θ1, θ2).

Network Training and Activity Inference

During the training process, the goal is to learn the network parameters Θ such that

the disagreement between the network outputs and the corresponding ground-truth

activities is minimised for the training dataset. We can precisely express this

discrepancy minimisation by adopting an end-to-end optimisation of the negative

log-likelihood loss function LNLL on the training dataset Dsparse; i.e.,

Θ∗ = arg min
Θ

n

∑
i=1
LNLL

(
FΘ(Xmi

i ), yi
)
. (4.5)

As the training process progresses and the corresponding objective function is

minimised, the SparseSense network uncovers highly discriminative embeddings for

sparse segments that allow effective separation of classes in the activity space.

Once the training procedure converges and the optimal network parameters Θ∗ are

learned from the training dataset, we adopt a maximum a posteriori (MAP) inference

to promote the most probable activity category for any given set of sparse sensor

readings; i.e., the highest scoring class in the softmax output of the network is chosen

to be the final prediction.

4.3 Experiments and Results

4.3.1 Datasets

To ground our study, we evaluate the proposed framework on two naturally sparse

public datasets collected in clinical rooms with older people using a body-worn

battery-less sensor intended for ambulatory monitoring in hospital settings. For

further insights, extensive empirical analysis of the proposed approach are presented

on a HAR benchmark dataset with synthesised sparsification and comparisons are

provided against the state-of-the-art deep learning based HAR models.

Clinical Room Datasets Torres et al. (2013). The dataset is collected from fourteen

older volunteers, with a mean age of 78 years, performing a set of broadly scripted
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activities while wearing a W2ISP over their attire at the sternum level (see Fig. 4.1). The

W2ISP is a passive sensor-enabled RFID (Radio Frequency Identification) device that

operates on harvested electromagnetic energy emitted from nearby RFID antennas to

send data with an upper-bound sampling rate of 40 Hz. Data collection was carried out

in two clinical rooms with two different antenna deployment configurations to power

the sensor and capture data; resulting in Roomset1 and Roomset2 datasets. Each sensor

observation in the obtained datasets records triaxial acceleration measurements as well

as contextual information from the RFID platform indicating the antenna identifier and

the strength of the received signal from the sensor. These recordings were manually

annotated with lying on bed, sitting on bed, ambulating and sitting on chair to

closely simulate hospitalised patients’ actions.

WISDM Dataset Kwapisz, Weiss and Moore (2011). This dataset contains

acceleration measurements collected through controlled, laboratory conditions and

covers the activities of walking, jogging, climbing up stairs, climbing down

stairs, sitting and standing. The collected dataset delivers high quality data and

has frequently been used in HAR studies for benchmarking purposes. Accordingly,

we find this dataset a suitable choice for thorough investigation of our SparseSense

network under different levels of synthesised data sparsification.

4.3.2 Experimental Setup

In our investigations, we initially perform per-feature normalisation to scale

real-valued observation attributes to the [0, 1] interval. We consider a fixed temporal

context δt and obtain sensory partitions by sliding a window over the recorded

data-streams. The acquired segments are assumed to reflect adequate information

related to a wearer’s current activity and are thus, assigned a categorical activity label

based on the most observed sample annotation in the time-span of the sliding window.

The experiments are implemented in Pytorch Paszke et al. (2017) deep learning

framework on a machine with a NVIDIA GeForce GTX 1060 GPU. The SparseSense

deep human activity recognition model is trained in a fully-supervised fashion by

back-propagating the gradients of the loss function in mini-batches of size 128; i.e.,

the network parameters are iteratively adjusted according to the RMSProp Tieleman

and Hinton (2012) update rule in order to minimize the negative log-likelihood loss
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using mini-batch gradient descent. The optimiser learning rate is initialised with 10−4,

reduced by a factor of 0.1 after 100 epochs, and the optimisation is ceased after 150

epochs. Further, a weight decay of 10−4 is imposed as L2 penalty for regularisation.

Following previous studies, we employ 7-fold stratified cross-validation on the

datasets and preserve activity class distributions across all folds. Each constructed

fold is in turn utilised once for validation while the remaining six folds constitute the

training data.

4.3.3 Baselines and Results

Clinical Room Experiments

In Table 4.1, we report the class-average F-score (F-scorem) as the widely adopted

evaluation metric and compare SparseSense with activity recognition models

previously studied for the naturally sparse clinical room datasets as well as solid

deep learning based HAR models. Wickramasinghe and Ranasinghe (2015) has

explored shallow models including support vector machines (SVMlin and SVMrb f )

and conditional random fields (CRF) trained using hand-crafted features extracted

from either raw or interpolated sparse segments. In addition, we investigate

the effectiveness of Bi-LSTM Hammerla, Halloran and Plötz (2016), DeepCNN

and DeepConvLSTM Ordóñez and Roggen (2016) as solid deep learning baselines

representing popular state-of-the-art frameworks for HAR applications.

In particular, Bi-LSTM leverages bidirectional LSTM recurrent layers to directly

learn the temporal dependencies of samples within the sensory segments. Both

DeepCNN and DeepConvLSTM adopt four layers of 1D convolutional filters along the

temporal dimension of the fixed size segmented data to automatically extract feature

representations. However, DeepCNN is then followed by two fully connected layers

to aggregate the feature representations while DeepConvLSTM utilises a two layered

LSTM to model the temporal dynamics of feature activations prior to the final softmax

layer. We refer interested readers to the original papers introducing the HAR models

for further details and network specifications.

Following Wickramasinghe and Ranasinghe (2015), for each baseline we explore

progressively increasing window duration, i.e. δt ∈ {2, 4, 8, 16}, adopt per-channel

interpolation schemes (linear, cubic, quadratic and previous) to compensate for the

missing acceleration data and report the highest achieving configurations in Table 4.1
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for all competing approaches. In this regard, cubic and quadratic interpolation schemes

respectively refer to a spline interpolation of second and third order, and the previous

scheme fills missed values with the previously received sensor readings.

From the outlined results, we observe that the SparseSense network outperforms all

the baseline models with a large margin in the task of sparse data-stream classification.

Notably, the baselines are: i) well-engineered shallow models that require a large

pool of domain expert hand-crafted features; and ii) state-of-the-art deep learning

HAR models that demand interpolation techniques to synthesise regular sensor

sampling rates. In contrast, SparseSense seamlessly operates on sparse sets of

sensory observations without requiring any extra interpolation efforts or manually

designed features, and automatically extracts highly discriminative embeddings for

the classification task in an end-to-end framework.
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Figure 4.4: Performance comparison analysis. We present a comparison on activity recognition

performance and computational complexity of the proposed SparseSense framework for sparse

data-stream classification against the state-of-the-art DeepConvLSTM HAR model. DeepConvLSTM

is tailored for sensory segments of fixed size temporal context and thus, requires sparse segments be

re-sampled through adoption of interpolation methodologies prior to inputting them.

WISDM Benchmark Experiments

To provide additional insights onto the model’s behaviour, we conduct experiments

on WISDM benchmark dataset and analyse the network’s classification performance

under different levels of synthesised data sparsification. Taking into account the

superior performance of DeepConvLSTM among the baselines in Table 4.1, here we

only present comparisons with this model. Following Kwapisz, Weiss and Moore

(2011); Alsheikh et al. (2016), we partition the data-streams into fixed size sensory

segments using a sliding window of 10 seconds duration (corresponding to 200 sensor

readings) and train the HAR models on the acquired segmented data. Subsequently at

test time, we drop sensor readings at random time-steps in order to generate synthetic

sparse segments.
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Walking Jogging Upstairs Downstairs Sitting Standing

25% 50% 75% 87.5%

(a) DeepConvLSTM

(b) SparseSense

Figure 4.5: 2D visualization of the learned feature spaces. We present t-SNE visualisations

in 2D for (a) DeepConvLSTM and (b) SparseSense under different data sparsity levels indicated by

the percentage of artificially imposed missed readings. SparseSense learns robust embeddings that

maintain cluster separation even under significant missing sample settings.

Tolerance to Data Sparsity and Delays

In Fig. 4.4, the obtained evaluation measures are plotted for both HAR models

under different sparsification settings. When data segments are received in full,

DeepConvLSTM performs better than SparseSense due to its ability in capturing

temporal dependencies between consecutive sensor readings. However, as the data

sparsity increases and the temporal correlation weakens, we observe a significant

drop in classification performance of DeepConvLSTM. Notably, with large temporal

gaps between sensor observations, interpolation techniques cannot produce good

estimations of the missing samples and fail to recover the original acceleration

measurements which in turn impacts the classification decisions of DeepConvLSTM.

In contrast, not only does SparseSense achieve comparable classification results for

completely received sensory segments, but it also displays great robustness to data

sparsity by making accurate decisions for incomplete segments of sensor data. In

addition, we show in the bar plot the mean processing time required by the HAR

models to make predictions on a mini-batch of 128 segments. Clearly, our framework
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Figure 4.6: Contributing samples analysis. We illustrate the density plots for the number of

contributing samples that constitute the aggregated segment embeddings for each activity category

of WISDM dataset.

demonstrates a significant advantage over other HAR models for real-time activity

recognition using sparse data-streams by removing the need for prior interpolation

pre-processing.

SparseSense Model Behaviour

We visualise the learned feature spaces for both models in 2D space using t-distributed

stochastic neighbor embedding (t-SNE) Maaten and Hinton (2008) in Fig. 4.5. In

the absence of significant data sparsity, the segment embeddings belonging to each

activity category are clustered together while different activities are separated in the

feature space. However, while SparseSense is able to maintain this cluster separation

for severely missed sample ratios and incomplete observation sets, DeepConvLSTM

clearly struggles to discriminate between the interpolated segments. Technically, the

symmetric max pooling operation in the aggregation layer of SparseSense incentivises

our HAR model to summarise sensory segments using only the most informative

readings present in the segment. We refer to these information bearing samples as

the contributing samples.

In Fig. 4.6, we provide density plots for the number of sensor readings that ultimately

contribute to the aggregated segment embeddings for each activity category of the

WISDM dataset. We observe that SparseSense intelligently summarises the segments

through discarding potentially redundant information in the neighbouring samples
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when windows of fully received samples (m = 200) are presented to the network—see

the density plots where the tails towards 200 contributing samples have a probability

of zero. More interestingly, the network displays a clear distinction in its behaviour

towards learning embeddings for static activities (i.e., sitting and standing) as opposed

to dynamic activities (i.e., walking, jogging and climbing stairs) by exploiting far

fewer number of sensor observations out of the m = 200 received samples in the

window. This can be intuitively understood as static activities reflect signal patterns

with small changes in sensor measurements of a timed window as compared with

dynamic activities and thus, can be summarised with smaller number of observations.

4.4 Conclusion

A large body of the literature in ubiquitous computing explores human activity

recognition (HAR) in the context of battery-powered sensor platforms. In contrast,

this chapter examined alternative technological solutions that enable integration of

emerging passive wearable devices for unobtrusive activity monitoring, in particular

for healthcare applications. Accordingly, an end-to-end human activity recognition

framework was presented to learn directly from temporally sparse data-streams

using set-based deep neural networks. In contrast to previous studies that rely

on interpolation pre-processing to synthesise sensory partitions with fixed temporal

context, the proposed SparseSense network seamlessly operates on sparse segments

with potentially varying number of sensor readings and delivers highly accurate

predictions in the presence of missing sensor observations. Through extensive

experiments on publicly available HAR datasets, it was substantiated how our

novel treatment for sparse data-stream classification problem results in activity

recognition models that significantly outperform solid deep learning methods that rely

on interpolation pre-processing, while incurring notably lower real-time prediction

delays. The method developed herein provides insights into an effective approach

for understanding human motion data using passive wearables, particularly for

health-care applications.

Interestingly, the next chapter discusses how the flexibility provided by the powerful

set learning frameworks can further be leveraged to address a natural problem

arising from the conventional multi-class classification formulation of human activity

recognition problems. In a nutshell, adopting the sliding window segmentation
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Figure 4.7: Upcoming chapter sneak peek.

technique inevitably results in sensor partitions that carry motion data beyond a

single activity category. However, the conventional HAR formulation casts activity

recognition as a multi-class classification problem where each sensor segment is

assumed to be associated with a single activity category. This assumption is relaxed

in the next chapter and a novel formulation of HAR is presented to elegantly

handle simultaneous prediction of multiple activities. Moreover, through preliminary

exploitation of unlabelled data, next chapter serves as the transition point from fully

supervised training regimes discussed so far to unsupervised development of HAR

frameworks in this dissertation. We illustrate the explored HAR problem in this

chapter in comparison against the investigated problem in Chapter 5 in Fig. 4.7.
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Chapter 5

Learning to Predict Activity
Sets from Wearable Sensor

Data-streams

M
OST recent research in the field of human activity

recognition (HAR) adopts supervised deep learning

paradigms to automate extraction of intrinsic features

from raw signal inputs and addresses HAR as a multi-class classification

problem, as in Chapter 3 and Chapter 4; here, detecting a single activity

class within the duration of a sensory data segment suffices. However,

due to the innate diversity of human activities and their corresponding

duration, no data segment is guaranteed to contain sensor recordings of

a single activity type. This chapter expresses HAR more naturally as a

set prediction problem where the predictions are sets of ongoing activity

elements with unfixed and unknown cardinality. For the first time, this

problem is addressed by presenting a novel HAR approach that learns

to output activity sets using deep neural networks. Moreover, motivated

by the limited availability of annotated HAR datasets as well as the

current immaturity of existing unsupervised deep learning methods, the

supervised set learning scheme is preceded with a prior unsupervised

feature learning process that adopts convolutional auto-encoders to exploit

unlabelled data. The empirical experiments on two widely adopted

HAR datasets demonstrate the substantial improvement of the proposed

methodology over comparable methods.
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5.1 Motivation and Contribution

While previous studies have explored both shallow and deep architectures for a

diverse range of HAR application scenarios, multi-class classification has been their

dominant approach for formulating the problem. As such, sensor time segments

obtained from striding a fixed-size sliding window over the sensor data-streams

are assigned a single activity class, approximated based on the most Yang et al.

(2015) or the last Ordóñez and Roggen (2016) observed sample annotations. Such

a strategy towards ground-truth approximation is clearly associated with loss of

activity information and potentially deludes the supervised training process. This

becomes even more problematic since the optimal size for the sliding window is

not known a priori Bulling, Blanke and Schiele (2014) and therefore, no segment is

guaranteed to contain measurements of a single activity type Yao et al. (2018)—the

so called multi-class window problem. We illustrate the problem in Fig. 5.1, where

the acquired sliding window segment carries sensor samples from both walking and

standing activities. However, the conventional HAR formulation approximates the

ground-truth for this segment with either walking or standing activity, respectively

corresponding to the most and the last observed sample annotations.

Equally important, existing deep HAR systems demand large amounts of annotated

training data for enhanced supervised performance. However, large-scale annotated

HAR datasets are limited. Further, collection of labelled sensory data is labour

intensive, time-consuming and expensive Kim, Helal and Cook (2010). As opposed

to other domains (e.g. image recognition) where human visualisation of raw data

alleviates the labelling process, manual annotation of sensor signals is a tedious

task. Unfortunately, activity recognition systems that leverage the cheaply available

 C
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Sensor Data-Stream

Segment Data Segment Annotations

Figure 5.1: Multi-class window problem. The multi-class formulation of HAR approximates the

ground-truth for each sensor segment with a single activity label based on either the most or the last

observed sample annotations; here, this respectively corresponds to walking and standing activities.
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Figure 5.2: High-level overview of Deep Auto-Set. We illustrate the novel Deep Auto-Set

network to perform precise activity recognition from time-series data. The network consumes

windowed raw sensory excerpts (x), automatically extracts distinctive features and outputs

corresponding sets of activities (Y) with various cardinalities.

unlabelled sensory data are rare in the field and, therefore, necessitates the exploration

of effective unsupervised alternatives.

This chapter overcomes the innate limitations of multi-class formulated HAR by

expressing the problem more naturally as a set prediction problem. As such, the goal is to

predict the set of ongoing activity elements (whose cardinality is unknown and unfixed

beforehand) within the duration of a time segment. For instance, considering a sensory

time segment in which the subject of interest is initially walking but then suddenly

stops moving, the system is expected to output the set {walk, stand} to capture the

underlying activity transition. Similarly, an output empty set {} intuitively expresses

a time segment in which the activities of interest did not occur. Inspired by the study

in Rezatofighi et al. (2018), for the first time we develop a HAR system that performs
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activity set learning and inference in a systematic fashion using deep paradigms.

In contrast to conventional multi-label approaches, our methodology omits heuristic

thresholding methods for selecting activity labels and instead learns to predict

cardinality in addition to the activity labels. Further, motivated by the scarcity of

annotated HAR datasets, we complement our supervised training scheme with a prior

unsupervised feature learning step that exploits unlabelled time-series data. Through

experiments on widely adopted public HAR datasets, we demonstrate the significant

improvement achieved from the proposed deep learning based methodology, the Deep

Auto-Set network (depicted in Fig. 5.2), over the baseline models.

The main contributions of this chapter are summarised as follows:

1. For the first time, a novel formulation of a human activity recognition problem

from body worn sensor data streams is investigated where the predictions

for sensor segments are expressed as activity sets. The proposed formulation

naturally handles sensory segments with varying number of activities and

thus, avoids the potential loss of information from conventional ground-truth

approximations necessary during model training.

2. We present Deep Auto-Set: a unified deep learning paradigm that (a) seamlessly

functions on raw multi-modal sensory segments, (b) exploits unlabelled data to

uncover effective feature representations, and (c) incorporates set objective to

learn mappings from input sensory data to target activity sets.

3. The effectiveness of the proposed Deep Auto-Set network is demonstrated

through empirical experiments on two HAR representative datasets. In addition,

the components of the proposed methodology are examined in isolation, to

present insights on their contribution to an enhanced recognition performance.

5.2 Related Work

Motivated by the unparalleled performance of end-to-end learning in diverse

application domains, we are seeing an increasing adoption of deep learning paradigms

in HAR Zeng et al. (2014); Yang et al. (2015); Hammerla, Halloran and Plötz (2016);

Ordóñez and Roggen (2016); Yao et al. (2018). In this regard, convolutional neural

networks (CNNs) have appeared as the most popular choice for automatic extraction
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of effective high-level features. Research in this line includes Zeng et al. (2014);

Yang et al. (2015) where raw sensory data were processed by convolutional layers to

extract discriminative features. Going beyond CNNs, Hammerla et al. Hammerla,

Halloran and Plötz (2016) conducted extensive experiments to investigate suitability

of various deep architectures for HAR using wearables and concluded guidelines

for hyper-parameter tuning in different application scenarios. Ordóñez and Roggen

Ordóñez and Roggen (2016) developed a recurrent-based neural network (RNN) for

wearable sensors and reported state-of-the-art performance on a representative HAR

dataset. Except for the dense labelling and prediction approach in Yao et al. (2018),

existing supervised solutions are based on the assumption that all samples within a

sliding window segment share the same activity annotation. We argue that such an

assumption is counter-intuitive to the diverse nature of human activities with varying

duration and hinders accurate analysis of segments with multiple activities. In this

chapter, we present a novel network that naturally allows segmented sensory data to

be associated with a set of activity elements.

Moreover, most existing HAR research solely rely on supervised training for feature

extraction. In the absence of sufficiently large annotated datasets, this leads to poor

generalisation performance. Taking into account the scarcity of annotated HAR

datasets and the difficulty of doing so, we exploit unlabelled time-series data to learn

useful feature representations by adopting convolutional auto-encoders. In this regard,

the most relevant study to ours is Alsheikh et al. (2016) where layer-wise pre-training

of fully connected deep belief networks is adopted and the recognition problem is

limited to pre-processed spectrograms of acceleration measurements. In contrast,

our proposed unsupervised methodology substitutes the layer-by-layer pre-training

with an end-to-end optimisation of the reconstruction objective and is also seamlessly

applied on raw multi-modal sensor data.

5.3 Proposed Methodology

Here we elaborate on our novel methodology towards addressing HAR as a set

prediction problem, which we refer to as the Deep Auto-Set. The working flow of the

proposed solution involves an unsupervised feature learning step (described in Section

5.3.1) that exploits cheaply accessible unlabelled sensor measurements followed by

a supervised fine-tuning step (detailed in Section 5.3.2) that leverages valuable label
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information to extract more discriminative features while simultaneously training

the network to generate activity sets for the given sensory data. Noting that our

methodology is not confined to a specific network architecture, we carry out both

supervised and unsupervised tasks by adopting a CNN architecture employed in

Ordóñez and Roggen (2016) as the core of our network and apply modifications to

suit our problem settings; this architecture comprises of four convolutional layers

followed by two dense layers that apply rectified linear units (ReLUs) for non-linear

transformation as well as a softmax logistic regression output layer to yield the

classification outcome.

Specifically for the unsupervised feature learning step, we construct a symmetric

convolutional auto-encoder by arranging a chain of deconvolutional operations in

the decoder network symmetric to the convolutional layers in the encoder network.

This choice is grounded over the success of auto-encoders in improving generalisation

performance through unsupervised feature learning Erhan et al. (2010).

In addition, for the supervised activity set learning step, the encoder network is

augmented with a multi-label classification head and the output layer is adjusted

to suit the set formulation. The overall architecture of our Deep Auto-Set network

is illustrated in Fig. 5.3. In the proposed architecture, all convolution (and

deconvolution) operations are applied along the temporal dimension of the feature

maps, automatically uncovering temporal signal patterns within the time span of the

filters.

In order to provide a clear formulation of the problem, here we introduce the notations

used throughout this chapter. In this chapter, we use Y for a set with unknown

cardinality and Ym for a set with known cardinality m. We define the set of k supported

activity elements byA = {ai}k
i=1. Consider a collected data stream which contains raw

time-series recordings from D distinct sensor channels. We assume that for a subset of

the recordings, sample annotation is not provided. Accordingly, adopting time-series

segmentation with a sliding window size of W on the data stream results in:

• A labelled training dataset S = {(xi,Ymi
i )}n1

i=1 of size n1, where each training

instance is a pair consisting of a sensory segment xi ∈ RD×W with a fixed 2D

representation and a target activity set Ymi
i = {a1, . . . , ami} ⊆ A, |Yi| = mi, mi ∈

Z+.
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Figure 5.3: Unified architecture of Deep Auto-Set network. The tags above the feature

maps refer to the corresponding layer operations. The numbers before and after ”@” respectively

correspond to the number of generated feature-maps and their dimensions in each layer. In this

architecture, all convolution (and deconvolution) layers apply a filter of width 5 (as in Ordóñez and

Roggen (2016)) and stride 2 (for down-sampling) along the temporal dimension of the feature maps.

For the unsupervised step, starting from the input layer, layer operations on the dashed arrow are

consecutively applied on the generated feature maps of previous layers to output the reconstructed

segment; these operations correspond to the convolutional auto-encoder network parameterised by

Θenc and Θdec. Similarly for the supervised step, operations on the solid arrow correspond to the

activity set network parameterised by Θenc and Ω. Once the network parameters are optimised, set

inference (as described in Section 5.3.2) is carried out to generate activity set predictions.

• An unlabelled dataset V = {x̄i}n2
i=1 of size n2, where each instance is an unlabelled

sensory segment x̄i ∈ Rd×w.

In order to leverage a larger number of segments for the unsupervised feature learning

task, we define the unlabelled training dataset U = {x′i}n1+n2
i=1 = V ∪ {xi}n1

i=1 where

each training instance x′i ∈ RD×W is either a segment whose target activity set was not

provided in the first place or a segment whose target set was intentionally discarded

to augment the unlabelled dataset.

5.3.1 Unsupervised Feature Learning

Through stacked hidden layers of encoding and decoding operations, auto-encoder

learns latent representations of the sensory data in an unsupervised fashion. The

reconstruction of unlabelled segments captures the process in which the sensor signals
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are generated and allows for the correlations between various sensor channels to

be captured. Thus, the latent representations learned by the auto-encoder serve as

efficient features that are highly effective in discriminating activity patterns. Formally,

the input to the convolutional auto-encoder network is an unlabelled sensory time

segment x′ ∈ U on which the encoder network fenc : RD×W → Rp (parameterised by

Θenc) is firstly applied to obtain the latent representation zx′,Θenc , i.e.

zx′,Θenc = fenc(x′; Θenc). (5.1)

The resulting latent representation zx′,Θenc ∈ Rp is then utilised by the decoder network

fdec : Rp → RD×W (parameterised by Θdec) to reconstruct the input. Noting that

the generated reconstruction is directly influenced by the values of Θenc and Θdec,

we define the loss incurred by the output of auto-encoder network (illustrated by the

dashed path in Fig. 5.3) given the unlabelled segment x′ as

Lauto(x′; Θenc, Θdec) = ‖x′ − fdec(zx′,Θenc ; Θdec)‖
2. (5.2)

We adopt an end-to-end approach towards training the convolutional auto-encoder

parameters by minimising the reconstruction objective on the unlabelled dataset U

(Θ∗enc, Θ∗dec) = arg min
Θenc,Θdec

n1+n2

∑
i=1
Lauto(x′i; Θenc, Θdec). (5.3)

In this architecture, the encoder network extracts features from unlabelled data and

the decoder network uses the learned features to reconstruct the input. As the

unsupervised training process progresses and the corresponding reconstruction loss is

reduced, the network uncovers better feature representations of the sensory data. As a

result, the acquired encoder network weights (Θ∗enc) can later be adopted in favour of

a better guided supervised training.

5.3.2 Supervised Activity Set Learning and Inference

Using the labelled training dataset S = {(xi,Ymi
i )}n1

i=1, the goal here is to train an

activity set network that predicts a set of activity elements Y+ = {a1, . . . , am} with

unknown and unfixed cardinality m for a given test sensor segment x+. In our
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architecture, this is carried out by optimising a set objective through tuning the activity

set network parameters which include weights corresponding to the encoder layers

(Θenc) as well as the extra dense layers (Ω) in the classification head. Similar to

Rezatofighi et al. (2018), in this chapter we adopt joint learning and inference to learn

and predict activity sets for HAR which we describe in what follows.

Set Learning

In order to develop an accurate HAR system that meets the application demands,

the network is required to correctly predict both the set cardinality (number of

ongoing activities) as well as the set elements (activity types) given a sensory segment.

Formally, given an input segment x, the output of our activity set network comprises

of: i) a set cardinality term fm′(x) with log softmax activation which produces

cardinality scores; as well as ii) a set element term fa′(x) with sigmoid activation which

produces scores for the set elements (activity types). In order to compute the loss

incurred by the output of the activity set network (shown by the solid path in Fig. 5.3)

given a labelled segment x with the target set Ym, we define our set objective as

Lset(x,Ym; Θenc, Ω) = ∑
a∈Y

`bce(a, fa′(x; Θenc, Ω))

+ `nll (m, fm′(x; Θenc, Ω)),
(5.4)

where `nll and `bce denote the negative log likelihood loss and the binary cross entropy

loss, respectively. We consider the same i.i.d assumption adopted in Rezatofighi et al.

(2018) for the set elements and perform MAP estimate to train the network parameters

by minimising the set objective on the labelled dataset S , i.e.

(Θ∗enc, Ω∗) = arg min
Θenc,Ω

n1

∑
i=1
Lset(xi,Ymi

i ; Θenc, Ω). (5.5)

As such, Θ∗enc and Ω∗ are estimated by computing the partial derivatives of the

objective function in Eq. (5.4) and employing standard back-propagation in order to

learn the network parameters.

Set Inference

During the prediction phase for a given time segment x+, the goal is to predict the

most likely set of activity elements Y∗ = {a1, . . . , am}. Using the optimal parameters
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(Θ∗enc, Ω∗) learned from the training dataset S , a MAP inference is adopted to output

the most likely activity set as

Y∗ = arg max
m′,Ym′

fm′
(
x+; Θ∗enc, Ω∗

)
+ m′ log U

+ ∑
a′∈Ym′

log fa′(x
+; Θ∗enc, Ω∗),

(5.6)

where U, estimated from the validation set of the data, is a normalisation constant that

allows comparison between sets with different cardinalities. We derive the optimal

solution for the above problem by solving a simple linear program as suggested in

Rezatofighi et al. (2018).

5.4 Experiments and Results

5.4.1 Datasets

For the evaluation of the proposed approach, we adopt two widely used public

HAR datasets that present both periodic and static activities. These benchmarks are

elaborated as follows:

WISDM dataset Kwapisz, Weiss and Moore (2011). This dataset contains 1,098,207

triaxial accelerometer readings gathered from 36 users which reflect activity patterns

of walking, jogging, sitting, standing, and climbing stairs. The acceleration

measurements are collected with Android mobile phones at a constant sampling rate

of 20 Hz. The recordings from 8 subjects are used as the holdout testing set and the

remaining data constitute the training and validation sets.

Opportunity dataset Chavarriaga et al. (2013). This dataset comprises annotated

recordings from a wide variety of on-body sensors configured on four subjects while

carrying out morning activities. The annotations include several modes of locomotion

along with a Null activity (referring to non-relevant activities) which makes the

recognition problem much more challenging. For data collection, subjects were

instructed to perform five Activities of Daily Living (ADL) runs as well as a drill

session with 20 repetitions of a predefined sequence of activities. Each sample in the
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resulting dataset corresponds to 113 real valued signal measurements recorded with

a sampling rate of 30 Hz. We employ the same subset of data as in the Opportunity

challenge Chavarriaga et al. (2013) for training and testing purposes: ADL runs 4 and

5 collected from subjects 2 and 3 compose our testing set, and the remainder of the

recordings from subjects 1, 2 and 3 form our training and validation sets.

5.4.2 Data Preparation

The preparation process involves performing per channel normalisation to scale real

valued attributes to [0,1] interval as well as segmentation and ground-truth generation,

as described below.

Time-series Segmentation. Following the experiments in Kwapisz, Weiss and

Moore (2011); Alsheikh et al. (2016), we fix the sliding window size w to incorporate 200

samples for both datasets (i.e, segments of 10 and 6.67 seconds duration for WISDM

and Opportunity dataset, respectively). However, since using non-overlapping sliding

windows hinders real-time recognition of human activities, we set the sliding window

stride to 20 samples. Such a deployment setting leads to generating predictions every

second for the WISDM dataset and every 0.67 seconds for the Opportunity dataset.

Set Ground-Truth Preparation. Considering the sample annotations of a windowed

sensory excerpt, the goal is to prepare the corresponding target set of activity elements

as the training data. To this end, we consider a minimum expected recognition length

denoted by r, based on which we include activities in the target set. As such, if

a minimum of r sample annotations from a specific activity are observed in a time

segment, the activity label appears in the target set. If no activity persists for the

duration of r, the target activity set is considered as an empty set {}, representing the

null class activity segment. In our experiments, we set r to half the sensor sampling

rates; i.e., 10 and 15 for WISDM and Opportunity datasets, respectively.

5.4.3 Evaluation Metrics

We employ the widely used HAR evaluation measures to report the performance of

the baselines and our Deep Auto-Set network. We compute per-class precision, recall and
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F-score according to Eq. 2.4, Eq. 2.5, and Eq. 2.6, respectively. For a specific activity

label, precision is defined as the ratio of the correctly predicted label occurrences over

the total number of label occurrences in the predictions. Similarly, recall is defined

as the ratio of the correctly predicted label occurrences over the total number of

label occurrences in the ground-truth. In this regard, per-class F-score corresponds

to the harmonic mean of precision and recall. Accordingly, we aggregate the per-class

measures by reporting the corresponding class-average values of Precisionm, Recallm

and F-scorem.

We also use the overall exact match ratio (MR), as adopted in Guo and Gu (2011);

Alessandro et al. (2013), to report a harsh evaluation of performance. This metric

requires the predicted activity set to exactly match the corresponding target set (both

in terms of the set cardinality and the set elements) and therefore, does not tolerate

partially correct predictions. For instance, no credit is considered for a predicted set

of {walk} when the target set is {walk, stand}. We further decompose this measure

over different activity set cardinalities c and additionally report MRc; i.e, for instance

MR2 corresponds to the number of correctly predicted activity sets with cardinality of

2 over the total number of target sets with this cardinality.

5.4.4 Implementation Details

The experiments are implemented using PyTorch Paszke et al. (2017) as the deep

learning framework and are run on a machine with a single GPU (NVIDIA GeForce

GTX 1060). The network parameters are learned using ADAM optimiser with weight

decay and initial learning rate respectively set to 5 · 10−5 and 10−4, on mini-batches

of size 64 by back-propagating the gradients of corresponding loss functions. For

the supervised training step, the optimiser learning rate is scheduled to gradually

decrease after each epoch. Moreover, training is stopped if validation objective does

not decrease for 5 subsequent epochs. Accordingly, the corresponding weights for the

epoch with the best validation performance are applied to report performance on the

testing sets. The hyper-parameter U is set to be 2.5 and 3.4, respectively adjusted on

the validation sets of WISDM and Opportunity datasets. We refer interested readers to

Hammerla, Halloran and Plötz (2016) for excellent guidelines on setting architecture

and optimiser hyper-parameters.
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Table 5.1: Evaluation of multi-class formulated baseline. Performance evaluation of the baseline

CNN architecture Ordóñez and Roggen (2016) trained with multi-class formulated objective against

both the approximated ground truth (equivalent to the last observed sample annotation) as well as

the actual ground-truth for Opportunity dataset.

Model Network Prediction Evaluation Ground Truth F-scorem MR

CNN Ordóñez and Roggen (2016) Single activity label
Last sample’s label 0.890 87.4%

Actual labels 0.793 54.7%

5.4.5 Results

A key motivation for our work is the activity information loss that is incurred by

conventional ground truth approximations in multi-class problem formulations. In

order to verify this, we conform to the conventional multi-class formulation of HAR

and train the CNN in Ordóñez and Roggen (2016) by minimising the multi-class

classification objective. In Table 5.1, we report performance of the resulting HAR

system by comparing the generated predictions against both the approximate ground

truth (obtained from the last observed sample annotation) as well as the actual

multi-label ground truth for Opportunity dataset. To clarify, consider the scenario

where a sensory segment of interest initiates with measurements of walking and

terminates with standing. Thus, the approximate ground truth would be standing

but the actual ground truth labels are the set {walking,standing}. Assuming that the

network solving the multi-class formulated problem predicts the underlying activity

to be standing, in our evaluation against the actual ground truth represented by the set

of labels {walking, standing}, the predicted class standing is treated as a true positive

whereas the missing class walking is considered as a false negative.

In Table 5.1, the lower performance measures obtained from the evaluation against the

actual ground truth labels as compared with the approximated ground truth suggest

that there are sensory segments in the HAR dataset that convey measurements of

multiple activities in the time span of the sliding window—see the result for MR in

Table 5.1. For these segments, approximating the ground-truth can lead to missed

activity information for a multi-class formulation of HAR, especially in the presence

of short duration activities such as activity transitions Yao et al. (2018). In contrast,

a set-based formulation allows capturing the presence of multiple activity labels in

the ground truth. Although we have shown a comparison for a multi-class problem

formulation commonly employed for HAR, we can see that it is not possible to make a
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Figure 5.4: Investigated Frameworks. We present an overview of different activity recognition

models explored in this chapter.

fair comparison with our set-based formulation beyond what we have observed here.

Therefore, we omit empirical comparisons with existing multi-class based solutions

and instead present evaluation against multi-label based activity recognition systems

that can handle segments with multiple activities.

Activity Recognition Models. In Fig. 5.4, we illustrate the schematic architectures

for investigated frameworks in this chapter and provide a brief description in what

follows:

• Deep-BCE: A conventional multi-label model that follows a purely supervised

minimisation of binary cross entropy loss (`bce) for training and heuristic

thresholding of activity scores for inference.

• Auto-BCE: A conventional multi-label model that leverages a prior unsupervised

feature learning step via minimisation of reconstruction objective (Lauto) as well

as a supervised optimisation of binary cross entropy loss.
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Table 5.2: Exact match ratio evaluation of multi-label formulated frameworks. We present a

comparison of the proposed Deep Auto-Set network against the baselines according to the obtained

exact match ratio for each dataset. The best results are highlighted with boldface. Note that for

the WISDM dataset, sensor segments with cardinality of 0 (corresponding to Null segments) and 3

do not exist.

Dataset Model MR MR0 MR1 MR2 MR3

WISDM

(Baseline) Deep-BCE 90.1% - 91.1% 60.2% -

(Ours) Auto-BCE 92.9% - 93.9% 62.7% -

(Ours) Deep-Set 93.2% - 93.9% 71.5% -

(Ours) Auto-Set 94.9% - 95.5% 75.1% -

Opportunity

(locomotions)

(Baseline) Deep-BCE 82.0% 70.7% 85.0% 84.9% 68.3%

(Ours) Auto-BCE 83.1% 73.7% 85.1% 85.3% 69.9%

(Ours) Deep-Set 83.9% 78.2% 86.8% 84.9% 68.7%

(Ours) Auto-Set 84.9% 80.2% 87.1% 85.6% 75.6%

• Deep-Set: A set-based model that follows a purely supervised optimisation of

the set objective (Lset) proposed in Eq. (5.4) for training and the MAP inference

introduced in Eq. (5.6) for set inference.

• Auto-Set: The proposed Deep Auto-Set model elaborated in Section 5.3.

Notably, as opposed to existing multi-class based HAR systems which are restricted

to predict a single activity class even when an activity transition takes place within

a segment, all recognition models adopted in this chapter are capable of predicting

multiple activities for a given sensory segment. We adopt the same layer operations

presented in Fig. 5.3 for supervised and unsupervised training steps of the baseline

models.

The performance results of our Deep Auto-Set network and the baseline models on the

two HAR representative datasets are shown in Table 5.2 and Table 5.3 for different

evaluation metrics. From the reported results, we can see that our novel Deep Auto-Set

network consistently outperforms the baselines on WISDM and Opportunity datasets

in terms of both F-score and exact match ratio performance metrics. Moreover, the

match ratios in Table 5.2 suggest that Deep Auto-Set is a robust activity recognition

system capable of: i) distinguishing different activity classes accurately (implied from

MR0 and MR1 values); ii) identifying activity transition segments (implied from MR2
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Table 5.3: F-score, precision and recall evaluation of multi-label formulated frameworks.

We provide a comparison of the proposed Deep Auto-Set network against the baselines according to

the obtained class-average F-score (F-scorem), precision (Precisionm) and recall (Recallm) for each

dataset. The best results are highlighted with boldface.

Dataset Model F-scorem Precisionm Recallm

WISDM

(Baseline) Deep-BCE 0.943 0.908 0.980

(Ours) Auto-BCE 0.966 0.949 0.983

(Ours) Deep-Set 0.961 0.943 0.980

(Ours) Auto-Set 0.973 0.957 0.989

Opportunity

(locomotions)

(Baseline) Deep-BCE 0.927 0.901 0.954

(Ours) Auto-BCE 0.936 0.918 0.955

(Ours) Deep-Set 0.934 0.915 0.955

(Ours) Auto-Set 0.943 0.927 0.960

values); as well as iii) recognising short duration human activities (implied from

MR3 values). Note that all models adopt the same network architecture to generate

classification outputs and thus, share the same number of parameters. Therefore,

the enhanced recognition performance is a product of effective unsupervised feature

learning as well as incorporating novel set loss function for the underlying problem.

We summarise the experimental results on both datasets by concluding that:

• Activity recognition systems that leverage unlabelled data present better

performance over their solely supervised variants; e.g., note the improved

performance of Auto-BCE over Deep-BCE.

• Compared with a conventional multi-label formulation: i) incorporating set

loss into the training process can allow the network to learn multiple activities

represented in the ground truth data of a given segment more accurately; and ii)

the set inference procedure can jointly exploit cardinality and set element scores

to generate predictions instead of empirically determined thresholds; e.g., note

the performance improvement of Deep-Set over Deep-BCE.

• While each component of the proposed methodology (unsupervised feature

learning and supervised set learning) individually introduces performance

boost in recognition of human activities, when coupled together in a unified

framework, the resulting HAR system proves to be the most effective.
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5.5 Conclusion

This chapter contrasted the de facto HAR problem formulation with a novel set

prediction formulation. As opposed to the conventional multi-class treatment of

HAR problems, the intuitive formulation developed herein allows sensory segments

to be associated with a set of activities and thus, naturally handles segments with

multiple activities. In a unified architecture, the corresponding activity recognition

problem was addressed by developing a deep HAR system that: (a) exploits unlabelled

data to uncover effective feature representations; and (b) incorporates a set objective

to learn mappings from input sensory segments to target activity sets. To provide

insights on how each component of the proposed methodology contributes to enhance

recognition performance in isolation, three different multi-label activity recognition

models were explored as the baselines. Finally, through empirical experiments on

HAR representative datasets, the effectiveness of the proposed Deep Auto-Set network

for human activity recognition was demonstrated.

While not explored in this chapter, the proposed set-based methodology naturally

provides an elegant solution for the challenging problem of concurrent human activity

recognition; here, the task aims to recognise not only the sequentially occurring actions

but also the co-occurring activities. Hence, we leave it for future work to explore

the effectiveness of the proposed set-based framework to tackle complex concurrent

activity recognition scenarios.

Up until this chapter, we investigated supervised training regimes to learn activity

representations from raw multi-channel time-series data; i.e., in Chapter 3 and

Chapter 4 the entire network parameters were trained with full supervision from

labelled HAR datasets, and in this chapter (a) the network weights were pre-trained

through unlabelled data and subsequently (b) all parameters (including those

corresponding to the feature extractor) were again finetuned with full supervision

with annotated data. As emphasised, the process of collecting annotated sensory

datasets is tedious, time-consuming and not scalable to large volumes of data.

On the contrary, unlabelled data acquisition is cheap and feasible at large-scale;

e.g., physical activities of athletes, factory workers, or hospitalised patients can

continuously be recorded through low-cost and unobtrusive embedded sensors

throughout the day without demanding a human workforce to provide online or

post-hoc annotations. Accordingly, it is crucially important to comprehend the

potentials of unsupervised learning alternatives in ubiquitous computing and explore
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systematic approaches to exploit vast amounts of easily accessible unlabelled data

to promote new HAR application opportunities. This forms the core motivation for

the problems investigated in Chapter 6 and Chapter 7, where we respectively study

unsupervised representation learning and clustering of human actions from wearable

sensor data using deep learning paradigms. In Fig. 5.5, we illustrate the examined

HAR problem in this chapter in comparison against the explored unsupervised

problem in Chapter 6.
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Chapter 6

Unsupervised
Representation Learning

with Generative Adversarial
Networks

G
ENERATIVE adversarial networks (GANs) are emerging as

state-of-the-art for diverse visual benchmarks from synthetic

data generation to unsupervised representation learning for

natural images. This chapter considers the problem of building a

generative adversarial network architecture for multi-modal sequential

data capable of communicating in a bidirectional GAN framework

to learn unsupervised feature representations from easily accessible

unlabelled activity data. Addressing this problem results in acquiring

enriched feature representations that can effectively serve subsequent

downstream classification tasks. The proposed network formulation,

Guided-GAN, alleviates the burden on the discriminator in achieving

inverting generators and encoders by seeking to augment feedback from

geometric distance penalisation in data and latent manifolds. Interestingly,

we discover that the proposed formulation is vital for successfully training

a bidirectional GAN framework in the sequential domain. In addition,

the quality of features learned in the unsupervised setting are evaluated

on three downstream classification benchmarks, outperforming existing

unsupervised approaches whilst closely approaching the performance of

fully supervised learned representations.
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6.1 Motivation and Contribution

Generative adversarial networks (GANs) Goodfellow et al. (2014) built upon deep

convolutional neural networks have emerged as the state-of-the-art in diverse natural

image generation benchmarks ranging from image-to-image translation Liu and

Tuzel (2016); Zhu et al. (2017); Taigman, Polyak and Wolf (2017); Park et al.

(2019) to super-resolution Sønderby et al. (2017); Ledig et al. (2017). Despite their

demonstrated empirical strength in the visual domain to capture semantic variations

of data distributions, the adoption of GANs for the challenging task of unsupervised

representation learning for sequential multi-modal data remains. In our efforts

to bridge the gap between unsupervised representation learning and GANs for

multi-modal sequential data, this chapter considers unsupervised investigation of

GAN’s latent feature space to uncover discriminative sequence representations.

Sequential data are uniquely characterized by the inherent sample dependencies across

time and demand architecture designs beyond convolutional operators for temporal

modelling. In addition, GANs are notorious for their unstable training process and

sensitivity to hyper-parameter selections. Although, the immense community effort

in the visual domain has resulted in well-established guidelines for architectural

designs—weight initialisations and hyper-parameter settings for stable training of

convolutional GANs Radford, Metz and Chintala (2015); Salimans et al. (2016); Miyato

et al. (2018a); Karras et al. (2018)—the same exploration is lacking in the sequential

domain. Moreover, examinations of GANs for temporal data are predominantly

confined to synthesising artificial sequences that resemble the original data Mogren

(2016); Esteban, Hyland and Rätsch (2017); Alzantot, Chakraborty and Srivastava

(2017); Moshiri et al. (2020); Wang et al. (2018a); Yoon, Jarrett and van der Schaar (2019),

while investigation of GAN’s latent feature space for unsupervised learning remains.

Grounded on the immense success of generative models in the visual domain, this

chapter explores the GAN’s latent feature space to offer an appealing alternative to

the de facto autoencoder-based frameworks Freitag et al. (2018); Bai et al. (2019);

Haresamudram, Anderson and Plötz (2019) for sequence representation learning;

this chapter proposes a GAN formulation in our efforts to bridge the gap between

unsupervised representation learning and GANs for multi-modal sequential data.

Our network architecture draws inspiration from BiGANs Donahue, Krähenbühl and

Darrell (2017); most significantly we present a critical new formulation to enable

its robust application for sequential data. Firstly, we design a sequential generator,
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encoder and joint discriminator architectures armed with recurrent neural networks

that can cooperate in a unified framework. Second, an intuitive extension for effective

training of our recurrent framework is proposed. Interestingly, the generator and

encoder in BiGAN do not directly communicate; instead, a discriminator receiving

pairs of data and latents conducts the discrimination in the joint space and is

responsible for encouraging the encoder to uncover the generator’s inverse mapping.

Consequently, BiGAN relies solely on the discriminator’s guidance to match the joint

data-latent distributions and achieve inverting generator and encoder components at

the adversarial game’s theoretical solution. Unfortunately, convergence to the optimal

theoretical solution is difficult to meet in practice and thus, encoder does not necessarily

uncover the inverse mapping Dumoulin et al. (2017); Zhang et al. (2018b). To address

these difficulties, we alleviate the burden on the discriminator by additionally aligning the

data and latent manifolds through geometric distance penalisation. Our intuitive approach

measures and attempts to minimise the errors associated with reconstructing data and

latent samples and is efficiently implemented through re-using existing components

and weight sharing as illustrated in Figure 6.3. The key contributions made in this

chapter are summarised as follows:

1. A first rigorous study of generative adversarial frameworks for unsupervised

representation learning from sequential multi-modal data is presented.

2. A novel unsupervised representation learning framework with symmetrically

orchestrated recurrent generator and encoder components is developed. The

proposed framework augments adversarial feedback with geometric distance

guidance to encourage the encoder to invert the generator mappings. Exploiting

the symmetrical architecture, the Guided-GAN is efficiently implemented with

weight sharing and re-using the generator and the encoder for the reconstruction

tasks.

3. A series of systematic experiments are conducted to demonstrate the

effectiveness and generalisability of the proposed approach.

6.2 Related Work

Recently, generative adversarial networks (GANs) Goodfellow et al. (2014) built

upon deep convolutional neural networks have demonstrated great success in
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approximating arbitrary complex data distributions and thus, have emerged as the

state-of-the-art for realistic data generation on variety of benchmarks Denton et al.

(2015); Radford, Metz and Chintala (2015); Brock, Donahue and Simonyan (2019). The

incorporated adversarial training pits a generative network against a discriminative

model in a minimax game. As opposed to its traditional counterparts (e.g. variational

autoencoders Kingma and Welling (2014)), GAN’s optimisation objective directly aims

for plausible data generation instead of enforcing element-wise reconstruction; casting

it as an elegant framework within the research community for capturing high-level

semantics.

Beyond data generation, recent research efforts highlight investigations into the latent

representations learnt using this powerful framework for unsupervised learning of

enriched feature representations. However, the standard GAN framework lacks an

inference network; i.e. while the generator learns mappings from the latent space to the

data space, directly inverting this process is not accounted for. Accordingly, the visual

perception arena has witnessed recent attempts Chen et al. (2016); Zhang et al. (2018b);

Donahue, Krähenbühl and Darrell (2017); Dumoulin et al. (2017); Perarnau et al.

(2016); Donahue and Simonyan (2019) to extend the GAN framework with an encoder

network responsible for projecting natural images back into their corresponding latent

feature representations. In Chen et al. (2016), mutual information maximisation is

adopted to infer and gain control over a subset of latent features. In order to achieve

full inference on the latents in Perarnau et al. (2016); Zhang et al. (2018b), the generator

output is directly fed to an encoder network that is trained to reconstruct the latents

entirely. In particular, Donahue, Krähenbühl and Darrell (2017); Dumoulin et al.

(2017) take an interesting approach for learning the generator’s inverse mapping and

propose the bidirectional GAN (BiGAN) as an effective means for visual representation

learning on ImageNet Deng et al. (2009); within the framework, the encoder and the

generator do not directly communicate. However, the discriminator receives pairs of

data and latents to conduct the discrimination task in the joint space. The resulting

adversarially learned representations demonstrate state-of-the-art performance when

transferred for auxiliary supervised discrimination tasks on natural images.

In contrast, interest in the adoption of GANs for sequential multi-modal data has

predominantly focused on realistic sequence generation. In a preliminary work,

Mogren (2016) proposes a generative adversarial model that operates on continuous

sequential data and applies the framework on a collection of classical music. The
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resulting GAN adopts LSTM networks for generator and discriminator to generate

polyphonic music. Applying architectural modifications, the authors in Esteban,

Hyland and Rätsch (2017) develop a recurrent GAN to produce synthetic medical

time-series data. The approach is further extended to exploit data annotations for

conditional generation in order to substitute sensitive patient records. In Alzantot,

Chakraborty and Srivastava (2017), authors generate synthetic sensor data preserving

statistics of smartphone accelerometer sensor traces. Similarly in Wang et al. (2018a),

authors attempt to synthesise sensory data captured by wearable sensors for human

activity recognition. In order to cover the multi-modal distribution of human actions,

independent activity-specific GANs are developed. We observe that deep generative

models have demonstrated significant potential in unsupervised learning of enriched

features for natural images in the visual domain, however, investigations into the

sequential domain remains.

6.3 Background and Methodology

Multi-modal sensing platforms continuously record measurements through different

sensor channels over time and generate sequential multi-modal data. The acquired

stream is then partitioned into segments x ∈ RD×W using a sliding window,

where D denotes the number of sensing modalities used for data acquisition and

W represents the choice for the window duration. Here, the goal is to learn

unsupervised representations enriched with distinctive features that can subsequently

benefit classification of generated sequences. In what follows, we first discuss how

existing GAN frameworks can be adopted for unsupervised representation learning

of such sequences (Section 6.3.1). Highlighting the existing challenges, we then

introduce our novel framework to uncover unsupervised representations with higher

correspondence to class semantics (Section 6.3.2).

6.3.1 Unsupervised Representation Learning with GAN frameworks

Recurrent Generative Adversarial Networks

The standard GAN Goodfellow et al. (2014) comprises of two parameterised

feed-forward neural networks—a generator Gφ and a discriminator Dω—competing

against one another in a minimax game. Ultimately, the goal is for the generator to
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capture the underlying data distribution px. To this end, the generator exploits a simple

prior distribution pz to produce realistic samples that trick the discriminator. On the

contrary, the discriminator is trained to distinguish between the real and the generated

samples. The resulting adversarial game optimises

min
Gφ

max
Dω

Ex∼px [logDω(x)] +Ez∼pz [log(1−Dω(Gφ(z)))], (6.1)

where, x ∼ px represent the mini-batch training samples and z ∼ pz denote the drawn

latents.

Extending the vanilla GAN to generate sequences of real-valued data, Esteban, Hyland

and Rätsch (2017) substitutes both the generator and discriminator with recurrent

neural networks and develops the Recurrent GAN (RGAN) for medical time-series

generation. Within the resulting framework depicted in Fig. 6.1-a, the generator

Gφ takes a latent sample z and sequentially generates multi-channel data for each

time-step. Similarly, the discriminator Dω consumes an input sequence and delivers

per time-step classification decisions. We visualise the internal structure of these

components in Fig. 6.2.

While the focus in Esteban, Hyland and Rätsch (2017) is solely on sequence

generation, in our experimental study, re-investigate the framework for the purpose

of unsupervised feature learning for sequences; the intermediate representations from

the trained discriminator of a GAN are found to capture useful feature representations

for related supervised tasks Radford, Metz and Chintala (2015). Intuitively, these set

of features are attained free of cost and encoded in the discriminator weights when

distinguishing real sequences from generated sequences during training. Notably,

Real
or

Fake?

Real
or

Fake?

(a) Recurrent GAN [Esteban et al,. 2017] (b) Recurrent FAAE [Zhang et al,. 2018]

Figure 6.1: Baseline generative framework pipelines. We visualise the workflow for (a) RGAN

Esteban, Hyland and Rätsch (2017), and (b) Recurrent adaptation of flipped adversarial autoencoder

proposed in Zhang et al. (2018b).

Page 94



Chapter 6 Unsupervised Representation Learning with GANs

Latent Space

Shared Linear 

LS
TM

Copied T times

G
en

er
at

or
 Shared Linear 

LS
TM

D
is

cr
im

in
at

or
 

Real or Fake?

(a) Discriminator (c) Encoder 

Latent Space

Linear 

LS
TM

En
co

de
r 

(b) Generator  

Input Latent

Inferred Latent

Input Sequence

Generated Sequence

(or    )Input Sequence

Figure 6.2: Baseline generative framework building blocks. We illustrate the baselines’ recurrent

building blocks: (a) Discriminator functions in the data space to produce real vs. fake classification

scores at each time-step. (b) Generator consumes a latent input repeated to the sequence length

and produces a synthetic sample in the sequential data space. (c) Encoder serves as the inference

machine and projects an input sequence into its corresponding latent representation. Notably, we

depict a slightly modified version of Esteban, Hyland and Rätsch (2017); i.e.: i) a shared linear layer

is added on top of the recurrent networks; and ii) instead of sampling independent latents, a single

latent is sampled and replicated to the sequence length.

RGAN provides the arguably most straightforward extension of a regular GAN for

the sequential domain and thus, we base our own investigations by building upon this

framework.

Recurrent Flipped Adversarial AutoEncoder

Despite their empirical strength to model arbitrary data distributions, the vanilla

GAN and in turn the RGAN, naturally lack an inference mechanism to directly infer

the latent representation z for a given data sample x. Accordingly, Zhang et al.

(2018b) proposes a natural extension of GANs to jointly train an encoder network that

embodies the inverse mapping and coins the name Flipped Adversarial AutoEncoder

(FAAE). Visualised in Fig. 6.1-b, the resulting framework exploits the adversarial

guidance of a discriminator in the data space exactly identical to a regular GAN. In

order to train the encoder, it additionally minimises the reconstruction error associated

with reproducing the latent representations. The training objective thus translates to:

min
Gφ,Eθ

max
Dω

Ex∼px [logDω(x)] +Ez∼pz [log(1−Dω(Gφ(z)))] + ‖z− Eθ(Gφ(z))︸ ︷︷ ︸
zrec

‖2
2, (6.2)
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where, Eθ denotes the parameterised encoder network and zrec = Eθ(Gφ(z)) is the

reconstructed latent representation.

Since there exists no previous exploration of FAAE framework for the sequential

domain, we design and augment RGAN with a recurrent encoder Eθ depicted

in Fig. 6.2. In particular, the encoder reads through the generated sequences

from the generator and updates its internal hidden state according to the received

measurements at each time step. Ultimately, the final hidden state after processing

the entire sequence is exploited to regress the latent representations. In addition,

the encoder and generator receive adversarial feedback from the discriminator for

parameter updates during training.

Bi-directional Generative Adversarial Networks

While the FAAE framework paves the way for learning the inverse mapping function,

the encoder Eθ performance is heavily reliant on the quality and diversity of

generator’s produced samples. Essentially, the encoder is never exposed to the original

data from the training set and thus, its learned feature representations are handicapped

by the generator’s performance. Accordingly, Donahue, Krähenbühl and Darrell

(2017); Dumoulin et al. (2017) propose the BiGAN with a novel approach to integrate

efficient inference. We illustrate BiGAN while contrasting it with the proposed

formulation, Guided-GAN, in the gray shaded area in Fig. 6.3; i.e., the discriminator is

modified to discriminate not only in the data space, but rather in the joint data-latent

space between (x, Eθ(x)) and (Gφ(z), z) pairs. Hence, the corresponding minimax

objective is defined as

min
Gφ,Eθ

max
Dω

Ex∼px [logDω(x, Eθ(x))] +Ez∼pz [log(1−Dω(Gφ(z), z))]. (6.3)

To satisfy the objective, the generator is motivated to produce samples resembling the

real data distribution and the encoder is incentivised to output latent representations

matching with the prior latent distribution. It is shown in Donahue, Krähenbühl

and Darrell (2017) that the theoretical optimal solution to this adversarial game leads

to the encoder and generator inverting one another while the joint distributions are

aligned. Importantly, the encoder in BiGAN has the luxury of directly learning from

real samples x ∼ px.
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6.3.2 The Proposed Framework

We formulate a novel framework to uncover unsupervised representations with

higher correspondence to class semantics by drawing inspiration from the BiGAN

as visualised in Fig. 6.3. Our work addresses the problem of convergence and

enables the application of bi-directional GANs for sequential multi-modal data. We

observe, that the generator and encoder within the BiGAN framework do not directly

communicate. Consequently, the discriminator alone bears the burden of matching

the joint data-latent distributions and guiding the encoder and generator components

towards inverting one another at the optimal solution. Unfortunately, converging to

the optimal theoretical solution is difficult to achieve in practice; thus, the encoder and

the generator do not necessarily invert one another Dumoulin et al. (2017); Zhang et al.

(2018b). We observed this behaviour to be even more problematic in the sequential data

domain. In response, a new intuitive extension is proposed to alleviate the training

convergence observed in BiGANs and an efficient implementation architecture is

designed as detailed in what follows.

Geometrically-Guided Adversarial Feedback

In addition to the adversarial feedback provided by the discriminator to match the

joint data-latent distribution, we optimise geometric distance functions to match the

marginal manifolds independently; i.e., we receive gradients from aligning: i) the

original data manifold with generator’s induced output manifold; and ii) the prior

latent manifold with the encoder’s output manifold. In particular for early stages

of training, geometric distance optimisation usually provides much easier training

gradients Che et al. (2017). We discovered this to be a vital necessity for successful

training of a BiGAN in the sequential domain where GAN heuristics may be missing1.

To this end, we measure and minimise the reconstruction errors associated with

reproducing both the data and the latent representations. Hence, the proposed

1Our attempts to train recurrent BiGANs without the proposed manifold distance minimisation

terms were unsuccessful. Specifically, the encoder did not learn useful representations (resulting in

extremely low downstream classification performance), and failed to uncover the generator’s inverse

mapping function.

Page 97



6.3 Background and Methodology

Data Reconstruction

Latent Reconstruction

Real/Fake? weight sharing

Figure 6.3: Guided-GAN framework pipeline. We present an overview of the proposed adversarial

game for unsupervised representation learning from sequential multi-modal data. Compared

to Donahue, Krähenbühl and Darrell (2017) (highlighted by the gray box), Guided-GAN proposes:

(a) incorporating additional gradient feedback from geometric distance minimisation in both data and

latent manifolds, (b) the efficient architecture implementation through parameter sharing (indicated

by dashed lines), and (c) integration of our designed recurrent building blocks (depicted in Fig. 6.4)

for temporal modelling.

minimax adversarial game is formulated as:

min
Gφ,Eθ

max
Dω

Ex∼px [logDω(x, Eθ(x))] +Ez∼pz [log(1−Dω(Gφ(z), z))]

+ λx‖x− Gφ(Eθ(x))︸ ︷︷ ︸
xrec

‖2
2 + λz‖z− Eθ(Gφ(z))︸ ︷︷ ︸

zrec

‖2
2,

(6.4)

where ‖.‖2
2 imposes the `2 reconstruction retrieval in the data and latent feature

spaces. Notably, the reconstruction errors are efficiently computed at no extra model

complexity cost through weight sharing as depicted in Fig. 6.3. Here, λx and λz denote

the loss balancing coefficients.

Recurrent Symmetrical Adversarial Framework

In order to exploit the sequential nature of multi-modal data streams, the core building

blocks of our framework are empowered by recurrent units with memory cells,

as depicted in Fig. 6.4. Moreover, the generator and encoder communicate in a

symmetrical orchestration to measure the manifold distances in data and latent spaces.

Recurrent Joint Discriminator. The discriminator Dω serves in the joint data-latent

space attempting to differentiate joint input samples of (x, Eθ(x)) against (Gφ(z), z)
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Figure 6.4: Guided-GAN framework building blocks. We present a visualisation of our developed

recurrent building components (a) Discriminator receives pairs of data-latents, learns a sequence of

aggregated feature representations and delivers per time-step classification scores, (b) Generator

and (c) Encoder leverage the same architecture design as recurrent GAN and FAAE. However, they

are additionally trained to minimise the associated reconstruction errors in data and latent spaces,

respectively. For discriminator,
⊕

represents the concatenation operation of projected data and

latent features.

pairs. Internally, the multi-modal stream is initially processed by an LSTM network

yielding a sequence of hidden state representations. Simultaneously, the latent input is

linearly projected and concatenated to the LSTM hidden states at each time-step. The

resulting sequence aggregates the learned features from both data and latent spaces,

and is used to construct per time-step classification decisions.

Symmetrical Generator and Encoder. The generator Gφ and encoder Eθ of our

framework share the same internal structure with the recurrent GAN and FAAE.

However, they are symmetrically connected and serve augmented responsibilities:

i) the generator is additionally exposed to encoded latents from the encoder’s posterior

distribution (ẑ = Eθ(x); x ∼ px) and is trained to reconstruct the input sequence;

and ii) the encoder observes the generator’s outputs (x̂ = Gφ(z); z ∼ pz) and learns

to regress the corresponding latent representation. Notably, given the symmetrical

architecture design, our encoder now has access to both the original data samples (in contrast

to FAAE) as well as the novel generated data samples (as opposed to BiGAN) to uncover

generalisable feature representations and serve as a fully fledged feature extractor.

6.4 Experiments and Results
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6.4.1 Datasets

To validate our framework and provide empirical evidence towards its generalisability,

we investigate the effectiveness of our unsupervised representations on two

downstream classification tasks: a) sequential digit classification, and b) human

activity recognition (HAR) from body worn multi-modal sensors. Notably, enabling

unsupervised HAR solutions creates new opportunities, especially in the health

domain, where collection of annotated data is tedious, time-consuming and not

scalable to large volumes of data.

Sequential MNIST Dataset LeCun et al. (1998). For visual interpretation, we

re-purpose the popular MNIST hand-written digits dataset as sequential multi-channel

dataset; i.e., each 28× 28 gray-scale digit is treated as a sequence of 28 time-steps, with

each time-step carrying values over 28 channels. This dataset contains 10 distinct digit

categories and offers standard train and test splits with respectively 60000 and 10000

samples.

UCI HAR Dataset Anguita et al. (2013). This dataset is collected with 30 volunteers

wearing a smartphone at the waist whilst undertaking six physical activities. The

embedded accelerometer and gyroscope resulted in 9-dimensional readings recorded

at a constant rate of 50 Hz. This dataset provides standard train/test splits with 70%

of the volunteers used for training and the remaining for the test split.

USC-HAD Dataset Zhang and Sawchuk (2012b). The dataset is aimed at recognition

of fine-grained daily activities in health-care scenarios and consists of 12 activities

collected from 14 subjects over 6 sensor channels. Replicating the protocol

from Haresamudram, Anderson and Plötz (2019), data from the first ten participants

constitute the training split, the following two participants form the validation set, and

the remaining is used as the test split.

Following Haresamudram, Anderson and Plötz (2019), sensory data are

down-sampled to 33 Hz, and per-channel normalisation is adopted using the

training data statistics to scale the values into the range [−1, 1]. Subsequently, the

data-streams are partitioned into segments using a sliding window of 30 samples (i.e.,

W=30) with 50% overlap between adjacent windows.
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6.4.2 Unsupervised Activity Representation Learning Baselines

We briefly introduce the alternative approaches that serve as concrete baselines for the

task of unsupervised activity representation learning:

Recurrent Autoencoder (RAE) Haresamudram, Anderson and Plötz (2019). The

framework comprises of a deterministic encoder E and a decoder G trained directly

to minimise `1 or `2 element-wise reconstruction error in the data space.

Motion2Vector (M2V) Bai et al. (2019). This framework includes a decoder G,

however with a stochastic encoder E parameterising an Isotropic Gaussian N (0, I).

The framework is trained with reconstruction error in the data space as well as

KL-divergence additionally optimised for the latent space; KL-divergence is incorporate

to match the encoder output distribution with the standard Gaussian prior.

Recurrent Generative Adversarial Network (RGAN) Esteban, Hyland and Rätsch

(2017). The framework trains a generator G and a discriminator D by optimising the

standard adversarial loss in the data space according to Eq. (6.1).

Recurrent Flipped Adversarial Autoencoder (RFAAE). We adapt the approach

proposed in Zhang et al. (2018b) to a recurrent framework. In addition to the generator

G and discriminator D of a standard GAN, this baseline jointly trains an additional

encoder E to regress the latents; according to Eq. (6.2), the adversarial loss is optimised

in the data space, and the `2 reconstruction error is minimised in the latent space between

the encoder outputs and the sampled priors.

6.4.3 Experimental Setup

We follow the standard evaluation protocol in Zhang, Isola and Efros (2016) to assess

the quality of unsupervised learned sequence representations of different baselines.

First, we train all network modules using the unlabelled train-split sequences.

Subsequently, we freeze the feature extractor parameters and leverage the training

labels to train a single linear classifier on the learned representations. Except for the

RGAN baseline Esteban, Hyland and Rätsch (2017), the encoder network E within the

frameworks serves as the feature extractor. For the RGAN baseline lacking an encoder

module, the penultimate representations from the discriminator network D are used

as the unsupervised features. The trained classifier is then evaluated on the held-out

test split sequences and we report the achieved classification performance.
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Table 6.1: Unsupervised representation learning comparison. We present a comparison of

unsupervised learned representations when transferred for use on downstream classification tasks.

The classification performance is judged based on the attained accuracy and class-averaged F-scores

(values in parenthesis) on the holdout test sequences. All of the methods employ recurrent neural

networks, except for Zhang et al. (2018b), where we employ a recurrent adaptation of the proposed

method.

Recurrent Representation Learning Model Sequential MNIST UCI HAR USC-HAD

RAND 51.4 (48.8) 51.6 (44.3) 34.3 (21.2)

M2V Bai et al. (2019) 82.8 (82.6) 70.9 (69.8) 54.1 (44.0)

RGAN Esteban, Hyland and Rätsch (2017) 80.2 (79.8) 76.3 (75.6) 50.7 (42.8)

RFAAE (our recurrent adaption of Zhang et al. (2018b))* 94.0 (93.9) 88.5 (88.4) 64.4 (57.2)

RAE-`1 Haresamudram, Anderson and Plötz (2019) 95.5 (95.5) 87.1 (87.1) 63.8 (54.8)

RAE-`2 Haresamudram, Anderson and Plötz (2019) 95.7 (95.7) 87.2 (87.2) 65.2 (56.0)

(Ours) Guided-GAN 97.3 (97.3) 89.0 (88.9) 67.2 (59.9)

SUP 99.1 (99.1) 91.1 (91.0) 68.6 (62.6)

6.4.4 Implementation Details

We implement our experiments using PyTorch Paszke et al. (2017) deep learning

framework and employ the following parameters described for all the methods. All

network parameters are trained end-to-end for 500 epochs by back-propagating the

gradients of the corresponding loss functions averaged over mini-batches of size

64 and in accordance with the Adam Kingma and Ba (2015) update rule. The

learning rate for Adam is set to 10-3 and the beta values β1 = 0.5, β2 = 0.999

are used. The fixed prior distribution pz for deep generative models is set to

be a 100-dimensional isotropic Gaussian N (0, I). To ensure a fair comparison,

the encoder E , generator (interchangeably decoder in autoencoder frameworks) G,

and discriminator D constitute a single-layer uni-directional LSTM with 100 hidden

neurons to process the input sequences. For our Guided-GAN, the loss weighting

coefficients λz = 1 and λx = 0.01 are kept constant across the sensory datasets.
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6.4.5 Results

Downstream Sequence Classification. As elaborated in Section 6.4.3, we transfer

the unsupervised learned representations and investigate their effectiveness for

downstream supervised classification tasks. Notably, the feature extractor parameters

are frozen and only the parameters corresponding to a single classifier are trained

using supervision from labelled data.

In Table 6.1, we summarise the downstream sequence classification performance by

reporting the classification accuracy together with the class-averaged F-score (Fm) for

each baseline. Given the potential imbalanced class distributions in the datasets, the

latter metric reflects the ability of the HAR model to recognise every activity category

regardless of its prevalence in the collected data. In addition to the discussed unsupervised

baselines, we further present results from a fully supervised trained feature extractor (SUP) as

well as a frozen randomly initialised feature extractor (RAND) on each dataset for the readers’

reference.

Across the three datasets, the large performance gap between RGAN (80.2%, 76.3%

and 50.7% respectively) against RFAAE (94%, 88.5% and 64.4%) highlights the

significance of incorporating an inference network for effective representation learning

in generative adversarial frameworks. While the discriminator’s delegated task

of distinguishing between real and generated sequences benefits the penultimate

representations (see the superiority of RGAN over RAND baseline), learning an

inverse mapping to the latent feature space through encoder results in significantly

more effective features. However, the encoder in RFAAE is only trained on synthetic

sequences and never encounters real data samples. Accordingly, its performance as

a feature extractor is heavily reliant on the quality and diversity of the generator’s

sequences. In contrast, the encoder in our framework is exposed to both real data

sequences as well as generated ones, which evidently offers feature representations of

higher quality, achieving 3.51%, 0.56% and 4.35% relative improvements respectively

on Sequential MNIST, UCI HAR and USC-HAD datasets.

Comparing the lower performance levels of Motion2Vector (M2V) against its

non-variational counterparts (RAE-`1 and RAE-`2), we observe that its ability to

sample new sequences comes at the cost of harming the feature representation

qualities. However, the proposed Guided-GAN framework bridges this shortcoming

by allowing the generation of realistic synthetic data while simultaneously achieving

higher quality representations. In fact, the proposed approach not only outperforms
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Figure 6.5: Class-specific recognition performance. We present the confusion matrices

highlighting the class-specific recognition performance for the testing splits of Sequential MNIST,

UCI HAR, and USC-HAD benchmarks. The vertical axis represents the ground-truth labels and the

horizontal axis denotes the predicted labels.

Table 6.2: Classification network parameter specifications. We present a detailed description of

trainable and frozen parameters for downstream classification evaluation on the three benchmarks.

Parameter Count Sequential MNIST UCI HAR USC-HAD

Total 63110 55106 54512

Frozen 62100 54500 53300

Trainable 1010 606 1212

(Trainable Ratio) (1.6%) (1.1%) (2.2%)

existing unsupervised baselines with a large margin but it also closely approaches the

fully supervised baseline–SUP–performance.

Notably, we summarise the number of parameters corresponding to the feature

extractor (frozen), classifier (trainable) and the ratio of trainable parameters to the total

number of network parameters (trainable ratio) in Table 6.2. We can observe the proposed

Guided-GAN to achieve comparable classification performance to that of the fully supervised

baseline (SUP) whilst having access to only 1.6%, 1.1%, and 2.2% of the parameters for

training on the three datasets, respectively.

For reference, we summarise the class-specific recognition results from the

Guided-GAN’s unsupervised features by presenting confusion matrices for the

downstream classification tasks in Fig. 6.5.
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Figure 6.6: Effect of labelled training data size. We present a comparison of classification

performance for learned sequence representations with varying sizes of annotated training data.

Results are averaged over five different sets of training data and reported over the entire held-out

test splits.

Varying Labelled Dataset Sizes. To gain further insights into the generalisation

capability of feature representations learned by the investigated unsupervised

approaches, we analyse the classification performance on the entire testing splits for

the three datasets while varying the amount of available labelled data for supervised

classifier training in Fig. 6.6. The reported results are averaged over five different sets

of training data.

We observe the unsupervised baselines to provide an effective means to learn useful

feature representations by exploiting unlabelled data in the absence of large amounts of

annotated training data, resulting in substantial performance gains over the RAND and

SUP baselines; supervised classifier training on top of a randomly initialised feature

extractor (RAND baseline) fails to learn clear classification boundaries to discriminate

different classes regardless of the amount of available labelled data and the fully

supervised baseline struggles to generalise to the unseen test sequences when trained

on low volumes of annotated samples. Moreover, our approach consistently offers

better generalisation to unseen data compared with existing unsupervised remedies

in the presence of extremely limited labelled training data. Further, Guided-GAN

achieves higher classification performance when leveraging all labelled training data

that it is comparable with the supervised baselines trained end-to-end with full

supervision.

Assessing Multi-modal Sequence Generation. While unsupervised feature learning

constitutes the main focus of our study, we qualitatively demonstrate the ability of

the unconditional generator trained through Guided-GAN is able to generate diverse

and realistic sequences. To this end, we visualise the data spaces for both the real and
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Figure 6.7: Sequential MNIST data generation. For Sequential MNIST dataset, we present

t-SNE visualisation of: (a) real data sequences colour-coded with semantic labels, and (b) generated

sequences overlaid on real data samples. Evidently, our Guided-GAN’s generator successfully captures

semantic variations in the data and aligns with the real data distribution.

Generated Data

(a) Real Data (b) Generated Data overlaid on Real Data 
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Sitting Standing Lying
Downstairs

Walking
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Lying

Sitting
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Real Data

Figure 6.8: UCI HAR data generation. For UCI HAR benchmark, we present t-SNE visualisation

of: (a) real data sequences colour-coded with semantic activity labels, and (b) generated sequences

overlaid on real data samples. Our Guided-GAN’s generator is observed to successfully capture

semantic variations embedded in the multi-modal motion sequences.
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generated datasets in 2D using t-SNE Maaten and Hinton (2008) in Fig. 6.7 and Fig. 6.8

for Sequential MNIST and UCI HAR respectively.

We can observe that the generated data distribution closely follows the real data

distribution, as indicated by the dense overlap between their corresponding sequence

samples. In addition, we observe a smooth interpolation in the space between different

categories for the generated sequences; e.g., the generated samples interconnecting

the Lying and Sitting activity categories in Fig. 6.8-b. Further, we depict a set of

generated sequences where visual inspection of generated data for Sequential MNIST

clearly demonstrates a conformance to the class label semantics.

Investigating the Faithfulness of Reconstructions. It has been reported in Dumoulin

et al. (2017); Zhang et al. (2018b) that the reconstructions of data with Bidirectional

GAN (BiGAN) Donahue, Krähenbühl and Darrell (2017) and Adversarially Learned

Inference (ALI) Dumoulin et al. (2017) are not always faithful reproductions of the

inputs; in extreme cases deviating entirely from the semantic labels.

We conduct a set of experiments to quantitatively measure the veracity of the

sequential multi-modal data reconstructions by our Guided-GAN. To this end, we

rigorously explore the downstream classification tasks on Sequential MNIST and UCI

HAR while considering different development datasets (denoting the dataset used to

train the supervised classifier) and evaluation datasets (denoting the dataset used for

evaluation):

• Train—The standard training split data and labels.

• Test—The standard testing split data and labels.

• Reconstructed Train—The reconstructed training data attained by applying

xrec = Gφ(Eθ(x)) for every sequence in the original Train split whilst retaining

the original labels.

• Reconstructed Test—The reconstructed test data attained by applying xrec =

Gφ(Eθ(x)) for every sequence in the original Test split whilst maintaining the

original labels.

We summarise the corresponding classification performances in Table 6.3. From

the results, across both datasets, we observe that Guided-GAN demonstrates
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Table 6.3: Quantitative assessment of reconstruction faithfulness. We quantitatively assess

the faithfulness of data reconstructions through rigorous evaluation on downstream classification

tasks. We report classification accuracy together with class-averaged F-score (value in parenthesis)

on the holdout evaluation datasets.

Development Dataset Evaluation Dataset Sequential MNIST UCI HAR

Train Test 97.3 (97.3) 89.0 (88.9)

Reconstructed Train Test 95.1 (95.0) 84.2 (84.0)

Train Reconstructed Test 93.9 (93.8) 83.4 (83.1)

Reconstructed Train Reconstructed Test 94.6 (94.6) 84.9 (84.7)

reconstructions of reasonable faithfulness to their original semantic categories;

i.e., substituting the original data splits—e.g. Train—with their corresponding

reconstructions—Reconstructed Train—still allows learning a classifier with

comparable performance to the original data splits. For reference, we further

include qualitative samples of data reconstructions in Fig. 6.9.

Training Comparison between Guided-GAN and Recurrent BiGAN. As

emphasized, our attempts to train recurrent BiGANs without the proposed manifold

distance minimization terms were unsuccessful. For reference, we present empirical

(a) Sequential MNIST (b) UCI HAR

Figure 6.9: Qualitative assessment of reconstruction faithfulness. We present qualitative results

for data reconstructions with Guided-GAN for (a) Sequential MNIST and (b) UCI HAR datasets,

where the first odd rows represents the original data x and the even rows are the corresponding

reconstructions xrec = Gφ(Eθ(x)). Interestingly, we observe reconstructions for UCI HAR sequences

reflecting different phases and variations of activity sequences whilst preserving the semantics of the

reconstructed sequences.
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Epoch 1 Epoch 5 Epoch 50

(a) Recurrent BiGAN

(b) Guided-GAN

Epoch 1 Epoch 5 Epoch 50

Figure 6.10: Convergence comparison. We present generated digit sequences together with their

corresponding reconstructions at different stages of training for (a) recurrent BiGAN, and (b) the

proposed Guided-GAN. As illustrated, we observed through multiple experiments, the inability of the

recurrent BiGAN to uncover the generator’s inverse mapping.

results obtained from training recurrent BiGAN as well as our Guided-GAN on

Sequential MNIST for ease of visual inspections.

To observe the behaviour of generators and encoders, we visualise randomly

generated samples x̂ = Gφ(z) at different stages of the training process together

with their corresponding reconstructions xrec = Gφ(Eθ(x̂)) for both recurrent BiGAN

and the proposed Guided-GAN in Fig. 6.10. In particular, we observed that the

sole discriminator in BiGAN was not able to guide the recurrent encoder towards

uncovering the generator’s inverse mapping function. Thus, no useful representations

were obtained and accordingly, extremely low downstream classification performance

was achieved. In contrast, the proposed Guided-GAN successfully inverts the

generator and encoder at the very early stages of training process.

6.5 Conclusion

This chapter examined the problem of extracting unsupervised feature representations

from unlabelled activity data using the generative adversarial network’s latent feature

space. To this end, Guided-GAN was proposed in our efforts to bridge the gap

between unsupervised representation learning and generative adversarial networks

for sequential multi-modal data. In recognition of the inherent temporal dependencies

within the sequential data, a recurrent generator, encoder and discriminator
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Figure 6.11: Upcoming chapter sneak peek.

architectures were designed cooperating in a bidirectional GAN framework. Further,

the key insight in training BiGAN frameworks for sequential data was shared

that the discriminator adversarial feedback alone may be insufficient to uncover

the generator’s inverse mapping. Hence, Guided-GAN leveraged an intuitive

formulation to alleviate the burden on the discriminator in achieving inverting

generators and encoders by seeking additional training guidance from geometric

distance penalisation in data and latent manifolds. When evaluated on three downstream

sequence classification benchmarks, our learned sequence representations outperformed existing

unsupervised approaches whilst closely approaching the performance of fully supervised learned

features. Therefore, it was substantiated that the proposed Guided-GAN can effectively

leverage unlabelled data to extract discriminative features in an unsupervised fashion.

In recognition of the importance of unsupervised learning regimes in the absence of

large-scaled annotated HAR datasets, next chapter studies the challenging problem of

unsupervised human activity clustering using end-to-end deep learning paradigms.

For the first time, we will develop a stand-alone unsupervised HAR framework

that consumes raw multi-channel time-series data and generates cluster assignments

with high correspondence to human activity semantics. We depict the examined

unsupervised HAR problem in this chapter in comparison against the investigated

clustering problem in Chapter 7 in Fig. 6.11.
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Chapter 7

Deep Clustering of Human
Activity Data-streams from

Wearables

T
HE costly work of gathering and annotating sensory activity

datasets is tedious, labour intensive, time consuming and not

scalable to large volumes of data. In our efforts to develop

unsupervised strategies to exploit unlabelled wearable data, Chapter 6

investigated the problem of unsupervised representation learning in order

to learn discriminative activity features from unlabelled data that benefit

subsequent downstream classification tasks. In this chapter, we focus on

the fundamental problem of human activity clustering from wearables and

develop end-to-end strategies using deep learning paradigms. Through

exhaustive experiments, the effectiveness of the proposed approach is

demonstrated to jointly learn unsupervised representations for sensory data

and generate cluster assignments with strong semantic correspondence to

distinct human activities.
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7.1 Motivation and Contribution

As discussed in Chapter 3 through Chapter 5, human activity recognition problems

have predominantly relied on supervised learning regimes where deep learning

paradigms are extremely successful in learning activity representations from annotated

data. While the process of collection and annotation may be retrospective with

vision based sensing modalities where visual inspections of, for example, video

frames provides the basis for ground truth, the parallel task with wearables is nearly

impossible. Moreover, such methods cannot be easily scaled to gather large datasets

often necessary for deep neural networks (DNNs). In comparison to other domains,

generating labelled data to benefit from supervised learning methods to build HAR

applications in the absence of a reliable visualisation to establish ground truth is a

unique HAR problem with wearable sensors.

Although unsupervised methods provide avenues for learning from unlabelled data,

investigations of unsupervised learning from multi-sensor time-series datastreams

from wearables remains remains limited to pre-training Alsheikh et al. (2016); Abedin

et al. (2018) as in Chapter 5 or unsupervised representation learning Haresamudram,

Anderson and Plötz (2019); Bai et al. (2019) as in Chapter 6. Unsupervised alternatives

such as deep clustering exist for classification of image data without requiring any

labels, however, these frameworks are tailored for static images and lack the inherent

capability to learn representations and cluster sequential time-series data recorded by

wearables. Therefore, our motivation for this chapter is to investigate and develop a

deep clustering architecture for unsupervised HAR for multi-sensor time series data

sequences from wearables. In particular, clustering methods operate in the absence

of supervisory feedback from annotated data. Therefore, data representation quality

has a significant impact on clustering performance or the ability to learn semantically

meaningful groupings of input sequences. Our goal in this chapter is to develop a deep

clustering architecture that:

• Leverages the inherently sequential nature of sensory data.

• Learns clustering friendly representations of activity features in the multi-sensor

and multi-channel input signals that offer separation of activity classes in the

feature space.

• Promotes the formation of highly discriminative clusters with high semantic

correspondence to human activities.
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This chapter proposes Deep Sensory Clustering—a deep clustering architecture that

learns highly discriminative representations using self-supervision with reconstruction

and future prediction tasks informed by feedback from a clustering objective to

guide the network towards clustering-friendly representations. The self-supervised

tasks intend to incentivise the network to learn salient activity features that offer

semantic separation in the feature space while simultaneously reducing the risk

of collapsing clusters. Further, the optimisation objective is augmented with a

clustering-oriented criterion to further refine the feature representations and gradually

promote clustering-friendliness in the feature space. The framework design concepts

are validated through extensive experiments; The key contributions are summarised

below:

1. This chapter develops an unsupervised deep learning network architecture for

clustering human activities from sequences of wearable sensor data streams.

The proposed approach, to the best of knowledge, provides the first standalone,

end-to-end, deep clustering method for wearables.

2. The proposed novel architecture is built upon insights gained from

exploring the effectiveness of multi-task autoencoding objectives augmented

with a clustering-oriented criteria to learn semantically meaningful

representations from sensory data in an unsupervised fashion. We

demonstrate that the augmentation of the clustering-oriented criteria—previously

unexplored—significantly improves the clustering quality as well as learning

representations.

3. The effectiveness and generalisability of the proposed approach is demonstrated

through a systematic experimental regime conducted on three popular and

diverse HAR benchmark datasets (UCI HAR, Skoda, MHEALTH).

4. Insights gained from the study in this chapter are shared through both

quantitative and qualitative results from: i) an investigation into the effectiveness

of the learned representations from the sensor data; and ii) an ablation study.

7.2 Related Works

Here, we provide: i) a brief overview of the literature on human activity recognition

using wearable sensors; and ii) review existing clustering approaches that leverage
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the high representational power of deep neural networks for the unsupervised task of

clustering. In the sequel, we describe the motivation of our work by highlighting the

limitations of existing studies.

7.2.1 Human Activity Recognition with Wearable Sensors

Recently, the superior performance of supervised deep neural networks in

classification tasks has led to a shift towards the adoption of deep learning paradigms

for recognising human activities with wearables Wang et al. (2019); Nguyen et al.

(2017); Khan, Roy and Misra (2018); Hossain, Al Haiz Khan and Roy (2018); Abedin

et al. (2019). In this line, researchers have explored CNNs Zeng et al. (2014); Yang et al.

(2015); Ronao and Cho (2015); Jiang and Yin (2015), RNNs Hammerla, Halloran and

Plötz (2016); Guan and Plötz (2017), and a combination of convolutional and recurrent

layers Ordóñez and Roggen (2016); Murahari and Plötz (2018) to effectively model the

temporal dependencies inherent in sequences captured with sensors whilst mutually

enhancing activity classification performance.

Despite the tremendous progress achieved in this emerging area of research, existing

deep HAR systems owe their success to large amounts of annotated training data

and are only applicable to the supervised learning regime. However, acquisition of

labelled sensory data is labour intensive, time-consuming and clearly not scalable

to large datasets. On the other hand, unsupervised learning with deep neural

networks for HAR has merely been investigated as a means for weight initialisation

or unsupervised feature learning prior to supervised fine tuning with labels Alsheikh

et al. (2016); Abedin et al. (2018); Haresamudram, Anderson and Plötz (2019); Bai et al.

(2019), rather than a standalone end-to-end approach for exploiting cheaply accessible

unlabelled data. In particular, Alsheikh et al. (2016) adopts layer-wise pre-training of

a fully connected deep belief network using pre-processed spectrograms and Abedin

et al. (2018) pre-trains a deep convolutional autoencoder on raw multi-modal sensor

data. Both approaches then rely on subsequent optimisation of network weights

using labelled data. In contrast to these studies, the focus of this chapter is on

developing end-to-end clustering solutions that can take as input raw sensory data

captured by wearables and directly output activity categorisation without relying

on any supervision from annotated data; a yet unexplored objective in HAR with

wearable sensors.
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7.2.2 Clustering with Deep Neural Networks

Clustering is a central concept in unsupervised machine learning and serves a wide

range of data-driven application domains. The main objective of clustering is to

categorise data into groups of similar samples. Previously, data transformation

methods Wold, Esbensen and Geladi (1987); Hofmann, Schölkopf and Smola (2008)

and traditional clustering algorithms Arthur and Vassilvitskii (2007); Reynolds (2015)

were applied sequentially to project raw data into a feature space where separation

would be easier. However, the clustering performance of these traditional approaches

were challenged by the complex structure of high-dimensional data.

Recently, the high representational power of deep neural networks has been leveraged

in order to achieve clustering-friendly representations and cluster assignments

simultaneously in an end-to-end manner; hence the rise of Deep Clustering paradigms.

In this regard, Xie, Girshick and Farhadi (2016); Guo et al. (2017a,b); Li, Qiao and

Zhang (2018) adopt reconstruction task to initialise a feature space for representing

images using deep autoencoders. Subsequently, a novel cluster assignment hardening

loss is incorporated to iteratively refine the assignment of the representations to

clusters. Similar ideas have been investigated in Chen, Lv and Zhang (2017);

Ghasedi Dizaji et al. (2017), where reconstruction and clustering-oriented objectives

are jointly incorporated to learn cluster-specific representations with deep neural

networks. The former defines a locality preserving criteria to learn structure

preserving image representations and further penalises embedded features based on

their proximity to the cluster centres. The latter minimises a relative cross-entropy

loss coupled with a regularisation term to encourage balanced cluster assignments. In

Yang et al. (2017), k-means loss and reconstruction objective are jointly incorporated

using an alternative optimisation algorithm. Taking a different approach, Hu et al.

(2017) proposes an unsupervised discrete representation learning algorithm for deep

clustering using a fully connected architecture. This method maximises the mutual

information between the input images and output cluster assignments. Avoiding

discrete configurations of optimisation objective, Shah and Koltun (2018) formulates

clustering as a global continuous objective. Authors in Yang, Parikh and Batra

(2016) leverage a convolutional neural network for image feature representation and

uses agglomerative clustering objective in a recurrent process. For a comprehensive

overview of deep clustering studies, we refer interested readers to Min et al. (2018);

Aljalbout et al. (2018).
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Summary. Though these methods achieve excellent performances for computer vision

applications, existing deep clustering frameworks are tailored for static image datasets

and are not directly applicable to the unlabelled sequences captured by wearables;

the adopted architectures merely incorporate fully connected layers and convolutional

operations which as substantiated by our experiments in Section 7.4.3, inherently suffer

from the inability to learn representations for time-series data recorded by wearables

and generate clusters of activities. By contrast, this chapter rigorously seeks to develop

a recurrent architecture design as well as unsupervised training objectives that can

elegantly handle the sequential nature of wearable sensor data, effectively categorising

them into semantically meaningful clusters of human actions.

7.3 Proposed Methodology

Consider the problem of clustering a set of n unlabelled segments of sensory readings

{xi}n
i=1 captured from wearable sensors into k clusters, each representing a semantic

human activity category. These sensory partitions are obtained by applying a sliding

window of fixed temporal duration δt over D sensor channels of recorded datastreams.

Taking into account the absence of supervisory signals from annotated data and

the crucial impact of data representation quality on the clustering performance, our

goal is to develop an unsupervised framework that i) accounts for the inherent

sequential nature of sensory data to learn intrinsic representations; and ii) induces

clustering-friendly spaces with high semantic correspondence to human activities.

To satisfy these requirements, this chapter proposes an unsupervised two-staged Deep

Sensory Clustering framework, illustrated in Figure. 7.1. In the first stage, we pre-train

a multi-task autoencoder with a recurrent structure to jointly perform reconstruction

and future anticipation for the input sensory measurements. These self-supervised

tasks are intended to incentivise the network to learn salient activity features that

offer semantic separation in the feature space while simultaneously reducing the risk

of collapsing clusters. Once the feature space is initialised, in the second stage we

augment the optimisation objective with a clustering-oriented criteria to further refine

the feature representations and gradually promote clustering-friendliness in the space.

As substantiated by our experiments, this step significantly improves the achieved

clustering performance as well as the quality of the learned feature representations.

We elaborate on the workflow of our framework in what follows.
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Figure 7.1: Deep Sensory Clustering framework. We illustrate an overview of the proposed

pipeline for Deep Sensory Clustering.

7.3.1 Stage (I): Pre-training with Multi-Task Autoencoder

In order to facilitate learning clustering-friendly representations from multi-channel

sensory data, we initialise the feature space by pre-training a recurrent autoencoder to

accomplish auxiliary tasks in an unsupervised fashion. In order to accomplish the

delegated tasks, the network is forced to extract enriched representations from the

sensory sequences. As a result, the network learns an initial non-linear mapping from

the data space into a feature space with semantically more relevant representations

where clustering criterion can be imposed and optimised for additional improvements.

Recurrent Encoder (Encθ)

The encoder component of our network consumes a windowed excerpt of raw

multi-channel sensory sequence and learns a compact fixed length representation as a

holistic summary of the input. In particular, we adopt a bi-directional GRU that reads

through the partitioned sensory sequence x in both forward and backward directions

and updates its internal hidden state in each time step according to the received input.

The final hidden state obtained after scanning the entire input sequence is reduced

in dimensionality through a fully connected layer. The resulting low-dimensional

embedded feature, denoted by z ∈ Rz, encodes contextual activity information
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by modelling the temporal dependencies present in the input sequence of sensory

measurements x. Hence, we summarise the parameterised operations associated with

encoding the input sequence xi as

zi = Encθ(xi). (7.1)

Notably, we impose an under-complete representation learning constraint by

restricting the embedding feature dimension to be smaller than that of the input space.

This motivates the network to automatically extract the most salient activity features

from raw sensory data-streams.

Conditional Recurrent Decoders (Decφ)

The decoder modules of the framework are structured symmetrical to the encoder

component. Firstly, a context vector is achieved by back projecting the embedded

representation from the encoder into a higher-dimensional space such that it can be

used to initialise the hidden states for the decoders. Two recurrent decoders then

jointly exploit the generated context vector to accomplish different self-supervised

tasks without requiring any manual supervision. Inspired by Srivastava, Mansimov

and Salakhudinov (2015), in this chapter we share the encoder network between

decoders with two different expertise; one decoder is specialised to reconstruct the

temporally inversed input sequence, while the other one learns to anticipate the future

sensory measurements that should follow after, conditioned on the encoded input

representation. Hence, not only the network has to learn a representation enriched

with sufficient information to reproduce the input sequence, but also encode features

that allow extrapolating future measurements.

Initially, a zero input vector is fed to the decoders as a signal for commencing the

decoding process. For subsequent time steps, the linearly projected output from the

previous time step is fed to the decoders as input. In order to control the information

flow to the decoders, we avoid adopting the teacher forcing practice; i.e., we chose

not to provide the expected ground-truth from previous time steps as the input to the

decoders and instead use the actual decoder outputs. While this strategy substantially

adds difficulty to the decoding tasks, it helps uncover stronger representations by
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encouraging the model to look deep into the encoder for the required information.

We summarise the parameterised decoding process as

(ŷrec
i , ŷfut

i ) = Decφ(zi), (7.2)

where ŷrec
i and ŷfut

i respectively denote the reconstructed and the anticipated sequences

generated from the input xi to satisfy the tasks.

Pre-training Optimisation

We pre-train the entire recurrent autoencoder with a joint objective function,

L(i)AE = L(i)rec + L(i)fut = ‖y
rec
i − ŷrec

i ‖2︸ ︷︷ ︸
reconstruction loss

+ ‖yfut
i − ŷfut

i ‖2︸ ︷︷ ︸
future prediction loss

, (7.3)

where Lrec and Lfut denote the mean square error between each decoder’s generated

output sequence (i.e., ŷrec and ŷfut) and the expected ground-truth target sequences (i.e.,

yrec and yfut). Once the training is complete and the discrepancy between the generated

outputs and their corresponding target sequences is minimised, the optimal network

parameters, i.e., (θ∗, φ∗) = minθ,φ
1
n ∑n

i=1 L
(i)
AE, serve as an initialisation point for the

second stage. We empirically show that jointly optimising for these auxiliary tasks

results in a low-dimensional and semantically meaningful feature space where we can

enforce and optimise clustering objectives to gain additional performance gains.

7.3.2 Stage (II): Representation Refinement with Clustering Criteria

Once the autoencoder becomes proficient in accomplishing the auxiliary tasks and

hence the feature space finds a semantic orientation, we extend our framework with

a parameterised clustering network fω(.) capable of estimating cluster assignment

distributions and iteratively optimise a clustering objective LC to refine the feature

space and guide the network towards yielding clustering-friendly representations.

In order to verify the insensitivity of the proposed approach to a specific clustering

criterion, this chapter incorporates two representative and diverse state-of-the-art

clustering-oriented objectives, namely Cluster Assignment Hardening Xie, Girshick and

Farhadi (2016) and Information Maximising Self-Augmented Training Hu et al. (2017); the

former is a centroid-based approach while the latter takes an information-theoretic
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stance for clustering. Validated by our experiments, both criteria consistently result

in significantly improved representations. Note that our primary goal is to present

a proof-of-concept for a previously unexplored objective rather than an exhaustive

search over all possible combinations of clustering objectives.

During the refinement stage, both the clustering loss LC and the autoencoding

objectives LAE are jointly incorporated to be optimised. Hence, the aggregated

optimisation criterion for instance i is formulated as

L(i) = γL(i)C + L(i)AE, (7.4)

where γ ∈ [0, 1] is the coefficient that controls the balance between the two objectives.

Note that we chose not to discard the decoding tasks during the refinement step in

order to preserve the local data structure and allow a smoother manipulation of the

feature space without distorting the previously established one. Once the network

parameters are optimised with respect to the global criterion, i.e., (θ∗, φ∗, ω∗) =

minθ,φ,ω
1
n ∑n

i=1 L(i), the clustering network of our framework directly delivers cluster

assignments without requiring a separate clustering algorithm to be run on the

representations in a decoupled process. In what follows, we describe the clustering

criteria utilised in this work.

Cluster Assignment Hardening (CAH)

This clustering objective leverages the similarities between the data representations

and the cluster centroids as a kernel to compute soft cluster assignments. Putting

emphasis on the high confidence assignments, it then purifies the clusters and forces

the assignments to have stricter probabilities.

To incorporate this method, our clustering network fω comprises a single layer which

maintains the cluster centroids (ωj ∈ Rz)k
j=1 as tunable network parameters and

generates assignment distributions Qi = fω(zi) for each instance i. This layer

follows the Student’s t-distribution to measure the similarity of embedded sequence

representation zi ∈ Rz to the k cluster centroids and therefore, obtains the normalised

similarities Qi = (qij)
k
j=1,

qij =
(1 + ‖zi −ωj‖2)−1

∑k
j′=1(1 + ‖zi −ω′j‖2)−1

. (7.5)
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Through squaring this distribution and then normalising it, an auxiliary target

distribution Pi = (pij)
k
j=1 is then defined that leverages high confidence assignments

in order to point the learning process towards stricter cluster assignments,

pij =
q2

ij/ ∑n
i=1 qij

∑k
j′=1(q

2
ij′/ ∑n

i=1 qij′)
. (7.6)

Subsequently, the soft assignment distribution Qi is iteratively purified through

minimizing the Kullback-Leilbler (KL) divergence between the soft labels and the

auxiliary target distribution via training the network parameters,

L(i)C = KL(Pi||Qi) =
k

∑
j=1

pij log
pij

qij
. (7.7)

This centroid-based approach requires the cluster centres to be initialised once at the

beginning of the refinement stage. The initial centres are obtained by applying classical

clustering algorithms on the acquired representations from the optimal pre-trained

parameters; i.e., {zi = Encθ∗(xi)}n
i=1.

Information Maximising Self-Augmented Training (IMSAT)

As an alternative, we explore incorporating IMSAT for further refinement of the

established feature space. This method learns a probabilistic classifier to maximise the

mutual information between the inputs and their corresponding cluster assignments

in order to achieve statistical dependencies. In addition, the unsupervised training

process is regularised via a self-augmentation loss that imposes local invariance on the

learned data representations.

To integrate this approach, our parameterised clustering network fω constitutes a

multi-layer perceptron with a final softmax activation that generates the discrete

output distribution Qi = fω(zi) for each instance i. Using these normalised cluster

assignment probabilities Qi = (qij)
k
j=1, IMSAT minimises the following objective,

L(i)C = λL(i)IM + L(i)SAT, (7.8)

where LIM and LSAT respectively denote the information maximisation and the

self-augmentation loss functions, and λ is the weighting constant for the objectives.
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The mutual information loss is represented by the difference between the conditional

entropy and the marginal entropy,

L(i)IM =
k

∑
j=1

qij log qij︸ ︷︷ ︸
conditional entropy

−
k

∑
j=1

n

∑
i′=1

qi′ j log

(
n

∑
i′′=1

qi′′ j

)
︸ ︷︷ ︸

marginal entropy

(7.9)

where minimising the conditional entropy promotes unambiguous cluster

assignments while increasing the marginal entropy prevents large clusters to

distort the feature space. As for the self-augmented loss, we adopt virtual adversarial

training Miyato et al. (2018b) in order to penalise for dissimilarities between the

discrete representation of the original data Qi, and its adversarial perturbed version

Pi(r) = fω (Encθ(xi + r)),

L(i)SAT = KL(Qi‖Pi(r)) (7.10)

where perturbation r is chosen to be an adversarial direction for input xi and is

efficiently approximated by a pair of forward and backward passes,

r = arg max
‖r′‖2≤ε

KL(Qi‖Pi(r′)). (7.11)

In Eq. 7.11, ε is a hyper-parameter controlling the range of the local perturbation.

7.4 Experiments and Results

We conduct extensive experiments: i) to demonstrate the effectiveness of the proposed

Deep Sensory Clustering approach as an end-to-end deep clustering architecture; and ii)

validate our network design thinking by presenting an ablation study.

7.4.1 Datasets

To ground our work, we evaluate the proposed framework on three sensor-based

HAR benchmarks. The selected datasets exhibit great diversity in terms of the sensing

modalities used and the activities to be recognised. We summarise the investigated

datasets in Table 7.1 and provide a brief description in what follows.
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Table 7.1: HAR datasets specifications. We summarise the datasets explored in this chapter.

Dataset UCI HAR Skoda MHEALTH

Sensor Sampling Rate 50Hz 33Hz 50Hz

Sliding Window Duration (δt) 2.56s 1s 2.56s

Number of Sensor Channels (D) 9 60 23

Number of Activity Categories (k) 6 10 12

Number of Training Segments 7352 5448 4088

Number of Testing Segments 2947 718 1022

UCI HAR Dataset Anguita et al. (2013). This dataset targets the problem of recognising

six activities of daily life using a smartphone worn at the waist level. The sensor

measurements are collected at a frequency of 50Hz from the phone’s embedded

accelerometer and gyroscope, ultimately providing 9-dimensional recordings. This

dataset provides randomly partitioned train and test splits, where 70% of the

volunteers were used for generating the training split and the remaining users for the

test split. In addition, a sliding window of 2.56 seconds with 50% overlap between

adjacent segments is applied to partition the recorded data-streams.

Skoda Dataset Stiefmeier et al. (2008). This dataset is concerned with recognition

of 10 manipulative gestures in a manufacturing scenario. Sensor data-streams are

collected from assembly-line workers with body-worn triaxial accelerometers while

performing manual quality checks of newly constructed cars. Following Guan and

Plötz (2017), data-streams of 60 sensor channels collected from the subject’s right arm

are downsampled to 33Hz and a fixed-duration sliding window of 1 second is used to

obtain sensory segments with 50% overlap between adjacent windows. We follow the

same protocol as Anguita et al. (2013) to generate the training and testing data.

MHEALTH Dataset Banos et al. (2014). The dataset is aimed for recognition of 12

physical activities with diverse action intensities and execution speeds collected from

10 subjects. The dataset comprises body motion and vital signs recorded at a sampling

rate of 50 Hz over 23 sensor channels. Since, the sampling rate in Anguita et al. (2013)

is identical to the MHEALTH dataset, we follow the same protocol to segment the data

and generate the train and test splits.
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7.4.2 Implementation Details

Data Prepration. Data-streams are initially re-scaled using per-channel normalisation.

After adopting the sliding window segmentation technique to partition the continuous

data-streams, we consider the first 50% of sensory measurements in each segment to

constitute the input sequences to our framework. Accordingly, the temporally inversed

version of the input is used as the target sequence for the reconstruction task while the

remaining sensory measurements are considered as the target sequence for the future

prediction task.

Network Architecture. For the encoder, we leverage a two-layered bi-directional

GRU with 256 hidden units. The decoders have an identical structure but utilise

uni-directional connections. Considering the lower input dimension for UCI HAR as

compared with skoda and MHEALTH datasets, we impose a bottleneck embedding

dimension of 64 for the former and 256 for the latter ones in our autoencoder network.

The clustering network fω(.) for adopting CAH has a single layer that generates soft

cluster assignments according to Eq. 7.5. In addition, fω(.) for incorporating IMSAT

uses two stacked fully connected layers with 1200 neurons, followed by a final layer

with softmax activation whose dimension is set to be the number of activity categories.

Optimisation Settings. We implement our experiments in PyTorch Paszke et al. (2017)

and optimise the network parameters according to ADAM Kingma and Ba (2015)

update rule in mini-batches of 256 using an initial learning rate of 10−3, decayed by

a factor of 10 after 70 epochs. The network is pre-trained for 100 epochs, and fine

tuned with a clustering objective until the cluster assignment changes between two

consecutive epochs is less than 0.1%. The weighting coefficients γ and λ are set to

be 0.1, and perturbation range ε is 0.5. All above parameters are set to achieve a

reasonably descent autoencoding loss (LAE) and are held constant across all datasets

to refrain unrealistic parameter tuning.

7.4.3 Clustering

This section focuses on evaluating our deep clustering network architecture for

the task of end-to-end activity clustering using multi-channel sensory data. The

proposed approach is compared against popular centroid-based k-means Arthur

and Vassilvitskii (2007) clustering as well as representative hierarchical clustering

algorithms including agglomerative clustering with average linkage (AC-Average)
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Jain, Murty and Flynn (1999), agglomerative clustering with complete linkage

(AC-Complete) and Ward agglomerative clustering (AC-Ward). In addition, we

present comparisons against existing end-to-end deep clustering methods proposed

in Xie, Girshick and Farhadi (2016); Guo et al. (2017a); Hu et al. (2017) and show how

they fail to cater for the sequential nature of time-series data. We base our evaluations

for clustering on the two widely adopted metrics of unsupervised clustering accuracy

(ACC) and Normalised Mutual Information (NMI).

Clustering Performance. In Table 7.2, we evaluate the clustering performance of

the baselines on both the: i) data space using raw input representations: and ii)

autoencoding space using the embedded features {zi = Encθ∗(xi)}n
i=1 attained by

optimising LAE in the pre-training stage, and iii) compare with the end-to-end cluster

assignments generated by deep clustering baselines and the proposed Deep Sensory

Clustering, optimised for CAH or IMSAT criteria. As required by the CAH objective,

we report results over two different strategies to initialise the cluster centres only

once before commencing the refinement stage: i) we run k-means clustering on the

embedded features to obtain k centroids; and ii) we perform Ward clustering and

use the mean representation of the obtained clusters as the initial centres. We also

assess performance levels on the test splits in order to evaluate the generalisation of

the clustering algorithms beyond the data seen during the training stage.

As indicated by the results, not only our end-to-end approach outperforms traditional

clustering algorithms applied on both input data and auto-encoding spaces, but

also offers a large performance margin over representative deep clustering baselines

originally proposed for image datasets. Without any manual supervision, the

proposed unsupervised approach directly delivers cluster assignments that highly

correspond to the activities of interest in the explored datasets, indicated by the mean

accuracies of 75.33%, 50.97% and 55.13%, respectively obtained on UCI HAR, Skoda

and MHEALTH datasets. In addition, the consistent improvement of unsupervised

metrics across all three HAR datasets using the proposed framework, demonstrates:

i) the insensitivity to the choice of our optimised clustering loss LC, CAH or IMSAT;

and ii) the generalisability to different HAR problems. In the remaining sections, we

investigate the clustering-oriented feature space achieved from the CAH variant of our

framework with Ward initialisation and report analysis with UCI HAR dataset given

that: i) the performance gains from the proposed approach is agnostic the clustering

objective; and ii) the proposed approach generalises well across all three datasets.
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Visualisation. In Figure 7.2, we demonstrate the evolution of the feature

space towards the ultimate clustering-oriented embedding space achieved with our

framework by visualising the data representation for the sequences in UCI HAR using

t-SNE Maaten and Hinton (2008). Here, we show the original dataset, the dataset

embedded by the encoder after the pre-training stage (autoencoding space) and the

final representations after optimising for the aggregated objective function L in Eq.

7.4 (clustering-oriented space). Without manual supervision, the framework discovers

well-defined and clearly separated clusters of activity segments with strong correspondence

to the ground-truth labels. As a reference, we also present the clustering spaces achieved

by the baseline deep clustering methods in Figure 7.3, where the feature spaces

achieved fail in correctly discovering activity clusters; e.g. static activities of sitting

and standing are recognised as a single cluster, and different walking variations

are completely mingled. These visualisations highlight the necessity of leveraging

recurrent structures within the network architectures and incorporation of effective

self-supervised tasks when dealing with time-series data generated by wearables.
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Walking Walking-Upstairs Walking-Downstairs

Sitting Standing Laying

(a) Data Space (b) Autoencoding 
Space

(c) Clustering-oriented 
Space

CAH

Stage (I) Stage (II)

IM
SAT

Figure 7.2: Deep Sensory Clustering space visualisations. We illustrate t-SNE visualisations of

data representations for UCI HAR dataset in (a) Input data space, (b) Autoencoding space, and (c)

Clustering-oriented space achieved with the proposed architecture using CAH and IMSAT criteria.

Sequence representations are colour-coded with their corresponding ground-truth activity labels.

Ablation Study. In order to provide insights on the importance of each optimisation

criterion adopted in our framework, we perform an ablation study on UCI HAR to

assess the relevance of the embedded features for the clustering task after training

with regards to each objective. To this end, we pass the dataset through the optimised

encoder module and perform classic clustering algorithms on the embedded features.

The obtained accuracies in each embedding space are summarised in Figure. 7.4.

Consistent with our previous observations, the performance improvements gained

in the reduced space produced by the encoder, substantiates the validity of the

self-supervised tasks for unsupervised extraction of discriminative features. Moreover,

jointly optimising for sequence reconstruction and future prediction tasks provides a

more reliable embedding space compared with considering each task individually, as

indicated by the higher mean clustering performance. Most importantly, we observe

that introducing the clustering criterion results in a clustering-friendly feature space

where all algorithms demonstrate a uniform and significantly improved clustering

performance. We observed the same trend for the other two HAR datasets.
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(a) DEC Xie, Girshick and Farhadi (2016) (b) IDEC Guo et al. (2017a)

Figure 7.3: Baseline clustering space visualisations. We visualise the clustering spaces achieved

by the baseline deep clustering methods for UCI HAR dataset using t-SNE. Evidently, colour-coded

representations from different activities are not effectively separated in the feature space.

Figure 7.4: Ablation study. We present an ablation study on the validity of optimisation

criteria adopted in our architecture for the task of clustering. The future prediction, reconstruction,

autoencoding and clustering-oriented spaces respectively denote the embedding spaces achieved after

optimising for Lfut, Lrec, LAE, and the proposed aggregated L (Eq. 7.4) using the CAH objective.
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7.5 Conclusions

In our efforts to study unsupervised learning possibilities in HAR, this chapter

examined the hitherto unexplored problem of end-to-end clustering of human activities

from unlabelled multi-channel time-series data captured by wearables using a

deep learning paradigm. For the first time, a novel deep clustering architecture

was developed for HAR problems with wearable sensor data that (a) leverages

the inherently sequential nature of sensory data, (b) exploits self-supervision from

reconstruction and future prediction tasks, and (c) incorporates clustering-oriented

objectives to promote the formation of highly discriminative activity clusters. The

systematic experimental regime demonstrated the effectiveness and generalisability

of the proposed approach for clustering human activities across three diverse HAR

benchmark datasets. Further, insights into the proposed approach were shared by

examining the unsupervised learned representations from sequential sensor data, and

conducting an ablation study to validate the network design thinking.

The next chapter will briefly review the HAR problems explored in this dissertation

and share the conclusions made upon the investigations. Moreover, the next chapter

will outline potential areas worthy of future research investigations emanating from

this dissertation.
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Chapter 8

Conclusion

T
HIS chapter concludes the dissertation and suggests directions

for future work.
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8.1 Summary

This dissertation focused on emerging research problems concerned with recognition

of human activities using often tiny wearable devices and end-to-end deep learning

paradigms. The investigated problems covered diverse HAR problem settings ranging

from fully supervised to unsupervised problem domains.

We investigated HAR problems under supervised learning settings where data

annotations were assumed to be available during training. These investigations are

presented in three chapters:

• In Chapter 3, we describe novel deep learning elements for supervised feature

extraction. These elements have been developed to learn highly discriminative

and generalisable activity feature representations from multi-channel time-series

data captured by wearable sensors. The study is motivated by investigating key

under-explored dimensions of HAR to improve accurate end-to-end recognition

of human activities in diverse ubiquitous application scenarios. In particular, the

developed components: (a) introduce a new HAR module based on self-attention

with the aim of exploiting the latent relationships between multi-channel sensor

modalities and human activities, (b) demonstrate the effectiveness of mixup data

augmentation for sequential data to regularise deep HAR models, and (c) jointly

incorporates cross-entropy and centre-loss training objectives to elegantly handle

the inevitable challenges of intra-class variations and inter-class similarities in

human activities. The extensive quantitative experimental results substantiated

the effectiveness and generalisability of the introduced network elements on

diverse activity recognition problem benchmarks. Accordingly, we hope to see

the incorporation of the introduced components in future applications, with the

goal of effectively training activity recognition systems.

• In Chapter 4, a first end-to-end deep learning framework—namely,

SparseSense—is proposed for temporally sparse data. This framework promotes

integration of the emerging battery-less wearable devices for unobtrusive

activity monitoring, in particular for healthcare applications in hospitals

and nursing homes. In order to handle the temporally sparse nature of the

acquired data-streams, the framework incorporates set-based neural networks

to learn robust activity representations with a high tolerance for missing

sensor observations. Notably, the developed method seamlessly operates
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on sparse segments with potentially varying numbers of sensor readings

and bypasses the need for interpolation pre-processing. Through empirical

evaluations, it is demonstrated that our novel treatment for sparse data-stream

classification results in activity recognition models that significantly outperform

solid HAR baselines while incurring notably lower real-time prediction delays.

Consequently, this study provides a deep learning method for the construction of

HAR models that enable low-cost, maintenance-free and unobtrusive solutions

to understand human motion data captured by battery-less wearable computing

platforms.

• In Chapter 5, the flexibility provided by set learning frameworks has been further

leveraged to present a novel formulation of HAR. This formulation elegantly

handles simultaneous prediction of multiple activities for a given sensor

segment. The proposed framework—namely Deep Auto-Set—demonstrates an

end-to-end strategy for the direct learning of the cardinalities of ongoing

activities together with their confidence scores. At inference time, the generated

cardinality and confidence scores are jointly taken into account to predict a set

of human actions corresponding to the raw input sensor readings. This strategy

lifts the limitations of conventional HAR models, which are limited to predicting

a single activity label even for multi-class windows. Moreover, in order to

facilitate better generalisation performance on unseen test data, the supervised

set learning scheme is preceded by an unsupervised pre-training stage that

exploits unlabelled data to initialise network parameters. This preliminary

exploitation of unlabelled data for parameter pre-training of HAR frameworks

sets the scene for our investigations in Chapter 6-7 under fully unsupervised

HAR problem settings.

Moreover, under unsupervised learning conditions where manual supervision from

data annotations are absent during training, the exploration of HAR problems in this

dissertation was organised into two chapters:

• In Chapter 6, for the first time, a recurrent bidirectional GAN—namely,

Guided-GAN—has been designed to learn unsupervised activity representations

from the GAN’s latent feature space. The developed framework comprises

a recurrent generator, encoder and joint discriminator specifically designed

for sequential data. Governed by an adversarial game, these components
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communicate in a unified architecture to learn unsupervised feature

representations. Notably, the proposed network formulation alleviates the

burden on the discriminator in achieving inverting generator and encoders by

seeking additional feedback from geometric distance penalisation in data and

latent manifolds, efficiently implemented through weight sharing. This strategy

is rooted in the key insight that the discriminator’s adversarial feedback alone

may be insufficient to uncover the generator’s inverse mapping. When evaluated

on diverse downstream classification benchmarks, it was demonstrated that

the obtained unsupervised feature representations outperformed existing

unsupervised approaches while closely approaching the performance of fully

supervised learned representations. In addition, further quantitative and

qualitative evaluations validated (a) the generator’s ability to produce diverse

and realistic sequences, and (b) the veracity of sequence reconstructions through

the learned generator and encoders.

• In Chapter 7, a first stand-alone end-to-end deep learning framework—namely,

Deep Sensory Clustering—is proposed. The framework is designed to learn

to discover semantically meaningful clusters of human actions embedded in

unlabelled sensor data-streams. In a novel unified architecture design, the

proposed solution (a) leverages the inherently sequential nature of sensory

data, (b) exploits self-supervision from reconstruction and future prediction

tasks, and (c) incorporates a clustering-oriented objective to promote the

formation of highly discriminative activity clusters. Our systematic experimental

regime demonstrated the effectiveness and generalisability of the proposed

approach for clustering human activities across three diverse HAR benchmark

datasets. Further, we shared insights into the proposed approach by examining

the unsupervised learned representations from sequential sensor data, and

conducting an ablation study to validate the network design thinking. This study

creates new opportunities to learn human activities from unlabelled data that can

be conveniently and cheaply collected from wearables.

8.2 Future Research Opportunities

The following problems and challenges highlight a number of potential opportunities

worthy of future explorations. They have been derived from our analysis of HAR
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problems with deep learning paradigms, as well as from all the investigations

conducted in this dissertation.

• Concurrent Human Activity Recognition. In Chapter 5, a novel formulation

of HAR based on set learning is presented. Its purpose is to elegantly handle

simultaneous prediction of multiple activities for a given sensor segment.

While the evaluations were conducted on popular HAR datasets with subjects

performing activities one after another sequentially, the proposed set-based

methodology also offers an elegant solution for the challenging problem of

concurrent human activity recognition. Within this problem, the goal is to

recognise not only the sequential activities, but also to recognise the co-occurring

activities from raw sensory time-series data. For example, for a sensor segment

which has recorded the activities of an individual who is drinking coffee while

simultaneously walking on the street, the HAR system is expected to generate

the corresponding output set of {walk,drink} to precisely capture the underlying

concurrent activities. Notably, as opposed to existing multi-class based HAR

systems (which are limited to the prediction a single activity category for a

given sensor segment), all recognition models explored in Chapter 5 are capable

of predicting multiple activities simultaneously. Thus, as a future direction,

the proposed systems can be evaluated for recognition of concurrent human

activities. In particular, very limited studies have focused on exploring deep

learning solutions for concurrent activity recognition Zhang et al. (2017); Li

et al. (2017); Okita and Inoue (2017), leaving further opportunities to tackle this

challenging problem.

• Clustering of Human Activity Data within GAN’s Latent Space. In Chapter 6,

we study the GAN’s latent space for unsupervised feature learning and

derive Guided-GAN to extract enriched activity representations from wearable

data. Through evaluation of downstream classification tasks, we observe that

the GAN’s latent space provides a powerful alternative over the de facto

autoencoder-based frameworks for extracting unsupervised activity feature

representations. Moreover, the promising results from a recent study by

Mukherjee et al. (2019) demonstrate that the GAN’s latent space can be further

adapted for the challenging task of clustering. That is, by wisely replacing the

popular standard Gaussian prior with a mixture of discrete and continuous latent

variables, we can impose a non-smooth geometry in the GAN’s latent space in
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order to elegantly represent the distinct cluster categories. A logical follow-up

step to our investigations in Chapter 6 is to extend the Guided-GAN framework

for the task of clustering. This can be pursued by modifying: (a) the recurrent

generator so that it can consume a prior that comprises standard Gaussian

vectors (to represent continuous random variables) cascaded with one-hot

encoded vectors (to represent discrete variables); and (b) the recurrent encoder

so that it can predict both the discrete and continuous portions of the latent

representations. Notably, the virtue of achieving a clustering solution within

the GAN’s latent space is that the generator can then be used for conditional

synthetic sequence generation. That is, by fixing the discrete portion of the

latent code and varying the continuous component, we can sample synthetic

sequences which correspond to different modes of activity data distribution, in

an unsupervised manner. We leave it to future studies to investigate the GAN’s

latent space for the clustering of human activities with deep generative models.

• Deep Clustering with Unknown Number of Activities. In Chapter 7, the

problem of activity clustering from unlabelled sensor data-streams captured by

wearables is investigated. Briefly, the problem is concerned with categorising

a set of n unlabelled segments of sensory readings {xi}n
i=1 into k clusters, each

representing a semantic human activity category. We present the Deep Sensory

Clustering framework to address the problem by training a multi-task recurrent

autoencoder jointly optimised with feedback from a clustering criterion. The

proposed solution, inline with the majority of studies in the area of deep

clustering Xie, Girshick and Farhadi (2016); Guo et al. (2017a,b); Li, Qiao and

Zhang (2018); Chen, Lv and Zhang (2017); Ghasedi Dizaji et al. (2017); Yang et al.

(2017); Hu et al. (2017), relies on prior knowledge of the number of ground-truth

clusters. That is, the formulation requires the number of activities k to be set

a priori. However, for real-world practical HAR applications, the number of

executed human activities during unsupervised data acquisition is often not

known in advance. Accordingly, it is of high interest to tackle the problem of

deep clustering for human activities without leveraging any prior knowledge on

the true number of clusters. Instead k should be inferred as a random latent variable

in future studies.
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