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Structure-from-Motion (SfM) is a cornerstone of computer vision. Briefly speaking,

SfM is the task of simultaneously estimating the poses of the cameras behind a set of

images of a scene, and the 3D coordinates of the points in the scene.

Often, the optimisation problems that underpin SfM do not have closed-form solutions,

and finding solutions via numerical schemes is necessary. An objective function, which

measures the discrepancy of a geometric object (e.g., camera poses, rotations, 3D coordi-

nates) with a set of image measurements, is to be minimised. Each image measurement

gives rise to an error function. For example, the reprojection error, which measures the

distance between an observed image point and the projection of a 3D point onto the

image, is a commonly used error function.

An influential optimisation paradigm in SfM is the `∞ paradigm, where the objective

function takes the form of the maximum of all individual error functions (e.g. individual

reprojection errors of scene points). The benefit of the `∞ paradigm is that the objec-

tive function of many SfM optimisation problems become quasiconvex, hence there is

a unique minimum in the objective function. The task of formulating and minimising

quasiconvex objective functions is called quasiconvex programming.

Although tremendous progress in SfM techniques under the `∞ paradigm has been made,

there are still unsatisfactorily solved problems, specifically, problems associated with

large-scale input data and outliers in the data. This thesis describes novel techniques to

tackle these problems.
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A major weakness of the `∞ paradigm is its susceptibility to outliers. This thesis im-

proves the robustness of `∞ solutions against outliers by employing the least median of

squares (LMS) criterion, which amounts to minimising the median error. In the context

of triangulation, this thesis proposes a locally convergent robust algorithm underpinned

by a novel quasiconvex plane sweep technique. Imposing the LMS criterion achieves

significant outlier tolerance, and, at the same time, some properties of quasiconvexity

greatly simplify the process of solving the LMS problem.

Approximation is a commonly used technique to tackle large-scale input data. This

thesis introduces the coreset technique to quasiconvex programming problems. The

coreset technique aims find a representative subset of the input data, such that solving

the same problem on the subset yields a solution that is within known bound of the

optimal solution on the complete input set. In particular, this thesis develops a coreset

approximate algorithm to handle large-scale triangulation tasks.

Another technique to handle large-scale input data is to break the optimisation into mul-

tiple smaller sub-problems. Such a decomposition usually speeds up the overall optimisa-

tion process, and alleviates the limitation on memory. This thesis develops a large-scale

optimisation algorithm for the known rotation problem (KRot). The proposed method

decomposes the original quasiconvex programming problem with potentially hundreds

of thousands of parameters into multiple sub-problems with only three parameters each.

An efficient solver based on a novel minimum enclosing ball technique is proposed to

solve the sub-problems.
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Chapter 1

Introduction

Computer vision is a discipline aiming to extract high-level information from digital

images or videos. In many respects, computer vision can be regarded as a field of

artificial intelligence, and over the last 40 years, researchers have endeavoured to develop

computers with the capacity to ‘see’ the world like humans do. Building such intelligent

computer vision systems is a challenging task. While biological vision systems are able

to effortlessly extract rich information from the visual data, computer vision systems

still lack the ability to fully handle the complexity of visual data.

However, computer vision is developing rapidly. The last decade has seen an unprece-

dented level of deployment of vision technologies. Some examples of computer vision ap-

plications include automatic face recognition, automated medical image analysis, robotic

manufacturing, object recognition and tracking, augmented reality, autonomous vehicles,

security and surveillance, to name a few. In some tasks, such as object classification and

face recognition, computer vision can even outperform humans. It is conceivable that

computer vision will become increasingly prevalent in the future.

1.1 SfM in computer vision

Many computer vision capabilities benefit from having the 3D structure of the environ-

ment. A primary way of acquiring 3D information is by SfM. Given a set of images

(views) of a scene, SfM estimates the 3D coordinates of the points (structure) in the

scene and the poses of the cameras (motion) behind the images. See Figure 1.1.

A typical SfM pipeline can be largely separated into two modules, the feature-extracting-

and-matching module and the structure-and-motion-estimation module. Raw images are

firstly fed into the feature-extracting-and-matching module where features (e.g., interest

1
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(a) Input of SfM (b) Output of SfM

Figure 1.1: Demonstration of SfM. Panel (a) shows sample images from the Alcatraz
water tower dataset [1]. Panel (b) is the output of SfM, where each red ‘+’ represents
the position of camera centres of the images, and the blue dots represent reconstructed
scene points.

points) are extracted from the images and then matched across the images to produce a

set of feature correspondences, see Figure 1.2. The feature correspondences are input to

the structure-and-motion-estimation module to calculate the 3D structure of the scene

and camera poses.

Figure 1.2: Feature-extraction-and-matching. Features extracted from the images on
the left (red circles) are matched with features extracted from the image on the right
(green crosses) as indicated by yellow lines.

In the structure-and-motion-estimation module, there are mainly two approaches, the



Chapter 1. Introduction 3

incremental approach [51, 5, 47] and the global approach [42, 39, 16]. Figure 1.3 shows

the two types of pipelines.

Features
correspondences

Initialisation

Triangulation

Feature-
extracting-
and-matching

Raw
images

Feature-extracting-and-matching Structure-and-motion-estimation

Refined
absolute poses
and structure

Two-view
reconstruction

Image
registration

Bundle
adjustment
(BA)

(a) An incremental SfM pipeline

Rotation
averaging

Refined
absolute 
rotations

Bundle
adjustment
(BA)

Features
correspondences Relative 

pose
estimation

Known
rotation
problem
(KRot)

Refined
camera positions
and structure

Relative
poses

Simultaneous refinement option 1

Simultaneous refinement option 2

Feature-
extracting-
and-matching

Raw
images

Feature-extracting-and-matching Structure-and-motion-estimation

Initial
absolute poses
and structure

Refined
absolute poses
and structure

Relative
rotations

Refined
absolute poses
and structure

(b) A global SfM pipeline

Figure 1.3: Pipeline of SfM. Panel (a) shows an incremental SfM pipeline. Panel (b)
shows a global SfM pipeline. Triangulation and the known rotation problem (KRot),
which are in grey boxes in the two panels, are the two sub-problems in SfM that
are focused upon in this thesis and will be introduced in detail in Section 1.2.2 and
Section 1.2.3.

1.1.1 Incremental SfM pipeline

Figure 1.3a demonstrates a typical incremental SfM pipeline. The initialisation pro-

cedure is to initialise the reconstruction model with a carefully selected two-view re-

construction [10]. Choosing a suitable initial pair is critical, since the reconstruction

may never recover from a bad initialization. New images can be added to the current

reconstruction in succession to gradually complete the reconstruction of the whole scene.
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Each time a new image I is to be added, it first goes through the image registration

procedure where the pose of I is obtained by solving the Perspective-n-Point (PnP)

problem. The input of the PnP problem is the feature correspondences to the scene

points whose 3D coordinates have already been estimated in the current reconstruction

(the registered scene points), and the RANSAC technique [24] is applied here to remove

wrong feature correspondences (outliers).

The newly registered image I observes some registered scene points and some unreg-

istered scene points. If any unregistered scene point is also observed by as least one

more registered image, then it can be reconstructed by triangulation. Triangulation is

a crucial step in the incremental SfM; it amounts to estimating the 3D coordinates of a

scent point from the observations of the point in a set of images when the camera poses

of the images are known. For the registered scene points, if any of them is also observed

by I, then its 3D coordinates is refined by triangulation to incorporate the additional

measurement from I.

An incremental pipeline needs further refinement to prevent drifts to a non-recoverable

state [15]. Bundle adjustment [54] (BA) is the procedure to provide necessary refinement

of the poses of registered images and the 3D coordinates of registered scene points. BA

is a non-linear least squares problem that minimises the sum of squared reprojection

errors (see Section 1.2.2.1), and Levenberg-Marquardt method is the standard method

for solving BA.

The incremental approach suits SfM problems with a large collection of images and has

demonstrated impressive results on internet-scale image sets [5], however, it is typically

slow, vulnerable to drifting errors, and dependent on good initialisations. In contrast,

the global approach has better potential in efficiency and accuracy [16].

1.1.2 Global SfM pipeline

In a typical global SfM pipeline, as shown in Figure 1.3b, the relative poses between all

pairs of images are estimated simultaneously in the relative pose estimation procedure.

As in the incremental pipeline, outliers are removed in this procedure.

Starting from here, there are various strategies for refining the camera poses and the

structure; here, two representative strategies are presented. The first option performs

the BA procedure. With the relative poses available, a rough estimation of absolute

poses of all cameras can be obtained by fixing an arbitrary camera as the reference

camera and inferring the poses of others; then an initial estimation of the structure

(the 3D coordinates of the scene points) is obtainable by triangulation. This provides
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necessary initialisation for BA to simultaneously refine the absolute poses of cameras

and the structure.

The second option is to first get a refined estimation of the absolution rotations of all the

cameras via a rotation averaging procedure [28], then solve a known rotation problem

(KRot) [32] to simultaneously estimate the camera translations and the structure (see

Section 1.2.3 for details). This thesis focuses on the second option.

1.1.3 Structure densification

What the SfM pipeline has achieved thus far might be a sparse/semi-dense reconstruc-

tion of the texture-rich areas of a scene, with gaps in the low-texture regions. This

sparse/semi-dense reconstruction can be densified by multi-view stereo (MVS) tech-

niques (e.g., patch-based multi-view stereo (PMVS) [25]) if a dense reconstruction is

desirable. SfM + MVS has been one of the standard pipelines for dense reconstruc-

tion [34].

The following introduces the core concepts behind some of the building blocks of the

pipeline in Figure 1.3 that are relevant to this thesis.

1.2 Fundamentals of SfM

1.2.1 Pinhole camera model

In SfM, the commonly used camera model is the pinhole camera model. Observe Fig-

ure 1.4 where a camera with focal length f is placed in a 3D Euclidean coordinate system

— here, the world coordinate system (with axes XW, YW and ZW) coincides with the

camera coordinate system (with axes XC, YC and ZC), such that the camera centre C

is at the origin O of the world coordinate system and the axes of the camera coordinate

system align with the axes of the world coordinate system. The principal point p of the

camera is at the origin of the 2D Euclidean coordinate system (with axes x and y) on

the image plane (or image) P. A 3D point X in the world coordinate system and the
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X

x
C p

Y

y

x

principal axis

image planecamera
centre

W YC/ XW XC/

ZW ZC/O

Figure 1.4: Pinhole camera model. C is the camera centre and p the principal point.
The world coordinate system (XW, YW, ZW) coincides with the camera coordinate
system (XC, YC, ZC). C is placed at the origin O of the world coordinate system. X
and x are respectively the 3D scene point and its projected image point on the image
P. The distance between C and p equals the focal length f .

2D coordinates x of the 2D projection of X onto P comply with the equation:

x =

[
x1

x2

]
=

[
fX1

X3

fX1

X3

]
,

where X =




X1

X2

X3


 ∈ R3 is the 3D coordinates of X,

and x =

[
x1

x2

]
∈ R2 is the 2D coordinates of x on P.

(1.1)

Letting X̃ and x̃ represent the homogeneous coordinates of X and x respectively, then

(1.1) can be rewritten as

x̃ =




fX1

fX2

X3


 =




f 0 0 0

0 f 0 0

0 0 1 0







X1

X2

X3

1




=




f 0 0 0

0 f 0 0

0 0 1 0


 X̃ = P X̃. (1.2)

The matrix P that transforms X̃ to x̃ in (1.2) is called the camera matrix. The camera

matrix can be further decomposed into three parts

P =




f 0 0 0

0 f 0 0

0 0 1 0


 =




f 0 0

0 f 0

0 0 1










1 0 0

0 1 0

0 0 1




∣∣∣∣∣∣∣∣




0

0

0





 = K[R|t], (1.3)

(1.4)



Chapter 1. Introduction 7

where

K =




f 0 0

0 f 0

0 0 1


 (1.5)

is called the camera calibration matrix, and

R =




1 0 0

0 1 0

0 0 1


 and t =




0

0

0


 (1.6)

are respectively the rotation and translation that define the orientation and position of

the camera coordinate system with respect to the world coordinate system. Note that

the rotation matrix R is an identity matrix and the translation t is a zero vector in

this example because of the coincidence between the world coordinate system and the

camera coordinate system. In the general case, R can be any valid rotation matrix, and

t will follow

t = −R t̂, (1.7)

where t̂ is the 3D coordinates of the camera centre C in the world coordinate system.

R and t together define the pose of a camera.

Often, the principal point p is not at the origin of the camera coordinate system on P,

in which case, a more general camera calibration matrix is

K =




f 0 p1

0 f p2

0 0 1


 , where p =

[
p1

p2

]
∈ R2 is the 2D coordinates of p on P. (1.8)

Normally, camera calibration matrices K are estimated by a calibration process [29,

Section 8.5]; this thesis assumes that K for all images are known.

1.2.2 Triangulation

One fundamental task in SfM is triangulation, which aims to recover the 3D coordinates

of a scene point from observations of the point in a set of images, given that the camera

matrices P of the images are known. A basic 2-view triangulation instance is presented

as follows to introduce the idea as well as some optimisation concepts that are commonly

used in SfM.
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Consider a scenario where the 3D coordinates of a single scene point need to be estimated

from two images. The two images P1 and P2 are in front of their respective camera centre

C1 and C2, and the 3D point is imaged by the two cameras, resulting in two 2D measured

image points (or measurements) — u1 on P1 and u2 on P2 (see Figure 1.5a). Suppose

the camera matrices of the two cameras, P1 and P2, are known. The task is to retrieve

the 3D coordinates of the scene point from the two measurements u1 and u2.

In the absence of noise, estimating the 3D coordinates of the scene point is trivial.

Suppose X is the true 3D coordinates of the scene point. Given P1 and P2, by (1.2), it

is viable to project X onto the two images to produce two image points — x1 on P1 and

x2 on P2. Then line C1x1 and line C2x2 must intersect at X in 3D space. This is shown

in Figure 1.5a. Without noise, the measured image points u1 and u2 will coincide with

the projected image points x1 and x2 respectively, such that X can be calculated as the

intersection of the two lines C1u1 and C2u2.

However, noise is inevitable in practice. On each image (e.g., P1), the existence of noise

would cause a discrepancy between the measured image point (e.g., u1) and the projected

image point (e.g., x1). In that case, in the example demonstrated in Figure 1.5b, line

C1u1 and line C2u2 will not intersect, thus the simple method based on intersecting

lines will fail. As illustrated in Figure 1.5b, suppose X0 is the current estimation of X,

then projecting X0 onto the two images gives two image points x0
1 on P1 and x0

1 on P2.
Notice that, the measured image points u1 and u1 do not coincide with x0

1 and x0
2.

X

x

x

C
C

u u1

1

1

1

2
2

2

2

(a) No noise

x
x

C
C

u

u

X0

0

0

1

21

2

1

1
2

2

(b) With noise

Figure 1.5: A demonstration of 2-view geometry. The left panel demonstrates the
simple intersection method for triangulation in the absence of noise. The right panel
demonstrates the discrepancy between the noisy measurements and the projected points
for a candidate 3D estimate X0.

1.2.2.1 Reprojection error

Reprojection error measures the discrepancy between the measured image point and the

projected image point on each image. Formally, let Pi ∈ R3×4 be the camera matrix

of the ith image, ui the 2D measured image point of the 3D scene point X on the ith
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image, and xi be the 2D projection of X on the ith image. Then the reprojection error

fi(X) caused by scene point X on the ith image is defined as:

fi(X) = ‖ui − xi‖q =

∥∥∥∥∥ui −
P 1:2
i X̃

P 3
i X̃

∥∥∥∥∥
q

, (1.9)

where P 1:2 is the first-two rows of P , and P 3 is the third row of P . The symbol ‖ · ‖q
indicates a valid q-norm [2]; usually q is taken to be 1, 2 or ∞. In this thesis, q is left

unspecified because most algorithms that are surveyed or proposed in this thesis can

apply to any q, except for the polyhedron collapse triangulation algorithm surveyed in

Section 2.2.3.1, where q =∞. Other errors do exist, for example, the angular error (as

used in [45, 44]) and the photometric error (as used in [40, 18]). However, this thesis

will focus on the reprojection error since it is more commonly used.

In the presence of noise, it is desirable that the estimate X causes small reprojection

errors. This creates an optimisation problem. The exact form of the optimisation

problem for triangulation depends on how the multiple reprojection errors (incurred by

the 3D scene point X on multiple images) are aggregated. The objective function F (X)

is used to aggregate the individual reprojection errors.

The following shows some examples of F (X).

1.2.2.2 The `2 formulation of triangulation

A commonly used F (X) is the sum of squared errors

F (X) = ‖fi(X)‖2 =
√
Σ
i
fi(X)2, (1.10)

and the optimisation problem that minimises F (X) is also called the `2 formulation of

triangulation.

The `2 formulation of triangulation can be interpreted as maximum likelihood estima-

tion. However, the major weakness of the `2 formulation is that the objective function

F (X) contains multiple minima, and finding the global optimal solution is often in-

tractable [31].

1.2.2.3 The `∞ formulation and quasiconvex programming

A more recently used F (X) is the maximum over individual reprojection errors:

F (X) = ‖fi(X)‖∞ = max
i

fi(X). (1.11)
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This approach was first introduced in [27]. This thesis focuses on the `∞ paradigm and

the associated optimisation problem. In a triangulation instance where a 3D scene point

X is to be estimated from N images, the input of the triangulation instance includes

camera matrices {Pi}Ni=1 and 2D measurements {ui}Ni=1 on the images, and the output

is the 3D coordinates of X. The optimisation problem is

min
X∈R3

max
i

fi(X),

s.t. P 3
i X̃ > 0, ∀i ∈ {1, . . . , N},

(1.12)

where fi(X) is as defined in (1.9), and the constraints P 3
i X̃ > 0 ensure that X lies in

front of all the cameras (also call cheirality).

Using the `∞ norm to aggregate the errors is useful mainly because F (X) has a unique

minimum. As established in Hartley and Schaffalitzky’s seminal paper [27], the repro-

jection error is quasiconvex [3], hence their point-wise maximum is also quasiconvex.

Quasiconvex functions have unique minima. Section 2.1 in Chapter 2 will define quasi-

convex functions more formally.

On the other hand, there are weaknesses in the `∞ formulation. One weakness is its sus-

ceptibility to outliers. Another disadvantage of the `∞ formulation is that the efficiency

of algorithms for optimisation deteriorates for large input data size since the algorithms

often employ costly convex optimisation routines. This thesis makes progress towards

addressing the above two issues.

1.2.3 KRot

KRot is the task of simultaneously estimating the 3D coordinates of scene points (X)

and cameras translations (t), given that the rotations (R) of the cameras are known. It

is part of an SfM pipeline where the orientations of the cameras have been estimated

first using rotation averaging (see Figure 1.3). The strength of this approach is twofold:

first, estimating the rotations of the cameras is a comparatively easy task. In some cir-

cumstances, rotation averaging can be solved globally [42, 22]. Second, when formulated

as an `∞ problem, KRot becomes quasiconvex programming, which is also amenable to

global solutions [32].

Formally, in a KRot instance that involves M 3D scene points {Xk}Mk=1 and N images,

the input includes camera rotation matrices {Rj}Nj=1 and 2D measurements {uj,k}N, M
j=1,k=1,

where uj,k represents the 2D measurement of the kth 3D scene point Xk on the jth image,

and the output is the 3D coordinates of the scene points {Xk}Mk=1 and the translations

{tj}Nj=1 of cameras. The reprojection error incurred by the kth 3D scene point on the
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jth image is defined as

fj,k(Y) =

∥∥∥∥∥uj,k −
P 1:2
j X̃k

P 3
j X̃k

∥∥∥∥∥
q

=

∥∥∥∥∥uj,k −
K1:2
j (R1:2

j xk + t1:2j )

K3
j (R3

jxk + t3j )

∥∥∥∥∥
q

, (1.13)

where P 1:2
j and P 3

j are respectively the first two rows and the third row of Pj (same for

K1:2
j and K3

j , R1:2
j and R3

j , t1:2j and t3j ), Y is the aggregation of parameters {tj}Nj=1 and

{Xk}Mk=1, and the symbol ‖ · ‖q represents the type of norm.

Under the `∞ formulation, the optimisation problem corresponding to KRot is

min
Y

max
j,k

fj,k(Y),

s.t. K3
j (R3

jXk + t3j ) > 0, ∀ j ∈ {1, . . . , N}, k ∈ {1, . . . ,M},
(1.14)

which estimates the scene points {Xk}Mk=1 and the camera translations {tj}Nj=1 simul-

taneously. Intuitively, KRot aims to minimise the maximum reprojection error over all

the 2D observations, and the constraints of the problem ensure that the estimated {xk}
lie in front of all the cameras. As established in [43], the `∞ KRot is a quasiconvex

optimisation problem since (1.13) is quasiconvex.

1.2.4 Other optimisation problems

Note that there are other optimisation problems in the SfM pipeline, such as relative

pose estimation, rotation averaging, and bundle adjustment, as shown in Figure 1.3.

This thesis focuses on `∞ triangulation and KRot mainly because these two problems

are representative of quasiconvex problems in computer vision.

1.3 Thesis outline

In Chapter 3, an efficient meta-algorithm for `∞ triangulation is introduced.1 By ex-

ploiting the quasiconvexity of `∞ triangulation, the algorithm efficiently finds the global

optimum, usually within 10 iterations regardless of the input size.

To deal with outliers, Chapter 4 introduces a locally optimal algorithm (Q-sweep) for

robust triangulation. Q-sweep converges to a local minimum in a comparable runtime

with the prevalent random methods. A novel quasiconvex plane sweep technique under-

pins the superior performance of Q-sweep. This is the first locally optimal algorithm for

LMS triangulation.

1After this meta-algorithm was published, the authors realised it was similar to Seo and Hartley’s
work [48].
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Chapter 5 shows that `∞ triangulation admits a coreset scheme and develops a coreset al-

gorithm for large-scale triangulation. The proposed algorithm produces a representative

subset (i.e., coreset) of the whole input such that solving triangulation on this coreset

will produce a solution within known bound of the optimal solution on the whole input.

This provides a theoretically justifiable approximate approach of dealing with large-scale

input.

Finally, Chapter 6 proposes an intersection-resection algorithm (Res-Int) for KRot. The

Res-Int algorithm breaks the original optimisation task (potentially with hundreds of

thousands of parameters) into multiple sub-problems (with only 3 parameters), which

can then be efficiently solved by a novel fast descent method (FDM) based on a minimum

enclosing ball technique. The Res-Int algorithm is not only significantly faster than the

current state-of-art methods, but also can scale up to problem sizes that are beyond the

reach of existing methods.



Chapter 2

Literature Review

This chapter surveys existing algorithms for `∞ triangulation and `∞ KRot. To give

an exhaustive list of existing solvers would be difficult, thus this chapter aims to survey

the state-of-the-art algorithms that either are closely related to this thesis or can serve

as competitors to the algorithms proposed in this thesis. For brevity, in this chapter,

‘triangulation’ implies ‘`∞ triangulation’ and ‘KRot’ implies ‘`∞ KRot’.

Since most quasiconvex optimisation algorithms are applicable to both triangulation and

KRot, this chapter first reviews existing methods for triangulation, including standard

algorithms and robust algorithms to deal with outliers, then summarises the aspects in

which KRot is different from triangulation in regard to optimisation.

In addition, several concepts from computational geometry that are relevant to this

thesis, i.e., minimum enclosing ball (MEB) problem , coreset, and plane sweep, are also

introduced.

2.1 Quasiconvexity

As in [14, Chapter 3.4], one definition of a quasiconvex function is as follows

Definition 2.1 (Quasiconvexity). A function e(x) : Rρ → R is quasiconvex if its domain

Y and all its δ-sublevel sets

Sδ = {x ∈ Y | e(x) ≤ δ}, δ ∈ R (2.1)

are convex.

An illustration of a 1D quasiconvex function e(x) : R→ R is shown in Figure 2.1a.

13
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Figure 2.1: Panel (a): a quasiconvex function e(x) : R→ R. For each δ, the δ-sublevel
set Sδ is convex, i.e., a contiguous interval in the 1D case. The sublevel set Sδ1 is the
interval [a,b]. The sublevel set Sδ2 is the interval [−∞,c]. Panel (b): a quasiconvex
function e1(x) : R → R has a unique minimum γ, while any x ∈ [a,b] is a global
minimiser.

A quasiconvex function has a unique minimum (i.e., the globally minimal value), though

its global minimisers can be multiple, as shown in Figure 2.1b. Another useful prop-

erty of quasiconvexity is that the maximum of quasiconvex functions (i.e., E(x) =

max{e1(x), ..., en(x)}) is also quasiconvex [3].

2.2 Algorithms for triangulation

2.2.1 Bisection method

Since each δ-sublevel set Sδ of a quasiconvex function is convex, the quasiconvex opti-

misation problem (1.12) can be solved by a sequence of convex programming problems.

To see that, (1.12) is firstly transformed into an equivalent formulation

min
X∈R3,δ∈R

δ

s.t. fi(X) ≤ δ,
P 3
i X̃ > 0,

∀i ∈ {1, . . . , N}.

(2.2)

The optimal δ∗ in (2.2) can be found by solving the feasibility test

find X ∈ R3,

s.t. fi(X) ≤ δ,
P 3
i X̃ > 0,

∀i ∈ {1, . . . , N}

(2.3)

with different values of δ in a bisection process. Figure 2.2 provides an illustration.
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Figure 2.2: A demonstration of bisection to solve a 1D quasiconvex optimisation prob-
lem that minimises the maximum over four quasiconvex functions. The quasiconvex
functions have unique minima, and their point-wise maximum is the upper-envelope,
which is also quasiconvex and has a unique minimum achieved at x∗. δ∗ is the optimal
δ. A feasible δ = δu produces a non-empty feasible region [a,b], x∗ ∈[a,b] (marked in
blue on the x-axis), which indicates δ∗ ≤ δu, thus a smaller δ should be tested in the
next iteration. On the other hand, a non-feasible δ = δl results in an empty feasible
region, which indicates δ∗ > δl, thus a larger δ is tested in the next iteration. Every
feasibility test narrows the range of feasible δ, and eventually, δ converges to δ∗ and x
converges to x∗.

As in Definition 2.1, the quasiconvexity of each fi(X) implies the feasible region of X

in (2.2) for each δ (i.e., sublevel set Sδ) is convex, thus (2.3) (which finds the intersection

of convex regions) is a convex feasibility problem. Actually, depending on the choice of q

in fi(X) (see (1.9)), (2.3) is either a second order cone programming feasibility problem

(for q = 2), or a linear programming feasibility problem (for q = 1 or q =∞).

As outlined in Algorithm 2.1, the bisection algorithm maintains an interval [δl, δu] that

encloses the optimal δ∗, and, with each iteration, the updated δ is calculated as the

middle value of δl and δu as in Step 2. Variable X∗ and δ∗ store the latest feasible X

and δ; as the gap between δl and δu diminishes wish each iteration, X and δ converge

to the optimal values.

2.2.2 Generalised fractional programming

Problem (2.2) is in the form of a generalised fractional programming (GFP) problem,

as shown in the follows.
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Algorithm 2.1 BISECTION: bisection method for triangulation in the form of (2.2).

Require: Input data {Pi,ui}Ni=1, an initial interval [δl,δu] containing the optimal δ∗,
and a tolerance ε.

1: while δu − δl > ε do
2: δ ← (δu + δl)/2.
3: Feasibility test: solve (2.3) to get X.
4: if feasible then
5: δu ← δ,X∗ ← X, δ∗ ← δ.
6: else
7: δl ← δ.
8: end if
9: end while

10: return δ∗,X∗.

Taking the denominator of fi(X) out of the ‖ · ‖q operation in (1.9) yields

fi(X) =

∥∥∥∥∥ui −
P 1:2
i X̃

P 3
i X̃

∥∥∥∥∥
q

=

∥∥∥uiP 3
i X̃− P 1:2

i X̃
∥∥∥
q

P 3
i X̃

=
gi(X)

hi(X)
. (2.4)

Then by (2.4), (2.2) can be rewritten as

min
X∈R3,δ∈R

δ

s.t.
gi(X)

hi(X)
≤ δ,

hi(X) > 0,

∀i ∈ {1, . . . , N},

(2.5)

which is in the form of a GFP problem [6].

Bisection method is a special case of GFP type algorithms. Similar to bisection, GFP

type algorithms solve (2.5) by repeating feasibility test (2.3) as in Algorithm 2.1, how-

ever, different algorithms apply different strategies for updating δ and X. Here, two

other GFP type algorithms, i.e., Dinkelbach’s method [19] and Gugat’s method [26], are

surveyed.

2.2.2.1 Dinkelbach’s method

Although bisection method is simple to implement and analyse, it has two drawbacks.

Firstly, the convergence rate is only linear [6], and secondly, the X obtained from the

previous iteration does not contribute towards a more informed update of δ. In these

two aspects, Dinkelbach’s method [19] is superior.
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The basic Dinkelbach’s method is similar to bisection method except that, with each

iteration, δu is updated based on the value of the last feasible X:

δu = max
i

∥∥∥∥∥ui −
P 1:2
i X̃

P 3
i X̃

∥∥∥∥∥
q

. (2.6)

Such a δu progresses to δ∗ more rapidly than the δu maintained in bisection method.

Although the provable convergence rate of the basic Dinkelbach’s method is still linear,

a few varieties of the basic version can achieve a better convergence rate. For example,

the so called scaled Dinkelbach’s algorithm and dual Dinkelbach’s algorithm are proven

to have super-linear convergence [6].

2.2.2.2 Gugat’s method

Following a similar spirit to Dinkelbach’s method, Gugat’s method [26] employs a more

advanced updating rule on δ. It is necessary for Gugat’s method to alter the formulation

of (2.3) as follows.

Each inequality constraint (i.e., gi(X)/hi(X) ≤ δ, as opposed to the strict inequality

constraint such as hi(X) > 0) can be developed into

gi(X)− δhi(X) ≤ 0, (2.7)

which can be further transformed into

gi(X)− δhi(X) ≤ ω, (2.8)

where ω ∈ R indicates the degree of violation of constraint (2.8). Then by (2.8), (2.3) is

transformed into

min
X∈R3,ω∈R

ω

s.t. gi(X)− δhi(X) ≤ ω,
hi(X) > 0,

∀i ∈ {1, . . . , N},

(Qδ)

and (2.5) is feasible if the optimal ω of (Qδ) is less than 0.
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In each iteration of Gugat’s method, δ is updated based on not only the last feasible X

but also the solution λ of the dual problem of (Qδ)

δ = max{ δl, min{δ + ω/λg(X), δu} }, (2.9)

where δ1 and δu are calculated as in Dinkelbach’s method, ω and λ are respectively the

primal solution and dual solution of (Qδ), and g(X) is a column vector with the ith

element to be the value of gi(X) in (Qδ), which is evaluated on the last feasible X.

The GFP type algorithms for triangulation are efficient for moderate input size. As in-

put size increases, the efficiency of this type of algorithms can drop dramatically. That is

because, in each iteration, the convex feasibility problem (Qδ) (or (2.3)) can incur signif-

icant computational and memory overheads (although convex optimisation is tractable,

in practice, running a convex solver on large number of constraints is computationally

expensive).

2.2.3 Descent methods

To obviate the reliance on solving convex optimisation problems for feasibility test,

researchers have devised descent type algorithms. The underlying principle of descent

type algorithms is to iteratively find a descent direction ∆X then update the solution

X along ∆X by a step size α

X = X +∆X ∗ α. (2.10)

Different descent type algorithms use different strategies for finding the descent direction

and step size.

2.2.3.1 Polyhedron collapse method

The polyhedron collapse method proposed by Donne et al. [20] is a descent type method.

Geometrically, the process of X converging to X∗ with each iteration is analogous to

a 3D polyhedron H collapsing to a 3D point (i.e., X∗). To make the analogy more

explicit, [20] first reformulates the ith reprojection error (1.9) as

fi(X) =

∥∥∥∥∥ui −
P 1:2
i X̃

P 3
i X̃

∥∥∥∥∥
q

=
‖AiX + bi‖q

cTi X + di
, (2.11)

where Ai =

[
aTi,1

aTi,2

]
∈ R2×3, bi =

[
bi,1

bi,2

]
∈ R2, (2.12)
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ci ∈ R3 and di are constants calculated from the data Pi and ui. By choosing q =

∞, (2.11) is rewritten into

fi(X) = max

(
|aTi,1X + bi,1|

cTi X + di
,
|aTi,2X + bi,2|

cTi X + di

)
, (2.13)

which can be further developed into

fi(X) = max

(
aTi,1X + bi,1

cTi X + di
,
−aTi,1X− bi,1

cTi X + di
,

aTi,2X + bi,2

cTi X + di
,
−aTi,2X− bi,2

cTi X + di

) (2.14)

= max
(
f1i (X), f2i (X), f3i (X), f4i (X)

)
. (2.15)

Each component of the reprojection errors

f ji (X) =
aTi,jX + bi,j

cTi X + di
, i ∈ {1, . . . , N}, j ∈ {1, 2, 3, 4} (2.16)

forms a constraint in another equivalent formulation of (2.5)

min
X∈R3,δ∈R

δ

s.t. f ji (X) =
aTi,jX + bi,j

cTi X + di
≤ δ,

cTi X + di > 0,

∀i ∈ {1, . . . , N}, j ∈ {1, . . . , 4}

(2.17)

With fixed δ, each constraint in (2.17) essentially defines a half-space. All these half-

spaces together construct a feasible region of X in 3D space, and this feasible region is

denoted as the polyhedron H. The optimal X∗ must reside inside H; and the current X

is provably on an edge of H.

In each iteration, a direction ∆X starting from X is derived from just a small number

(generally within 4) of active constraints (the constraints satisfying f ji (X) = δ) in (2.17),

then H collapses along ∆X by a step size α, which is computed by a line search process.

The polyhedron collapse method is one of the most efficient triangulation solvers, how-

ever, it is only applicable to the case where q =∞ in (2.11). Moreover, in each iteration,

both the descent direction ∆X and the step size α produced by the algorithm are not

optimal, thus the convergence rate of the method has not reached its full potential.
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2.2.3.2 Relax method

The Relax method proposed by Dai et al. [17] is another descent type algorithm. By

investigating the behaviour of Gugat’s method, the authors discovered two hurdles that

affect the performance of the method. Let Qδtt denote the optimisation task of solv-

ing (Qδ) with δ = δt in the tth iteration of Gugat’s method, and let Xt be the solution

of Qδtt , then these two hurdles are summarised as

1. Hurdle 1: in each iteration, the convex feasibility problem Qδtt of the current

iteration t solves Xt from scratch, and the solution Xt−1 obtained from the previous

iteration is not fully utilised — in a sense that Xt−1 is only used to guide updating

δt, rather than used to initialise the current Qδtt ;

2. Hurdle 2: for each Qδtt , starting from an initialisation X0
t , the solution Xt is

solved via multiple Newton steps. However, it is observed that normally only

the first Newton step makes the largest progress towards the Xt. The following

Newton steps not only make weak contribution towards optimality, but also are

likely to push the solution to the boundary of the feasible region of Qδtt .

For Hurdle 1, Xt−1 obtained from Q
δt−1

t−1 is not used to hot-start Qδtt because Xt−1 is in

general on the boundary of the feasible region of Q
δt−1

t−1 , such that it is generally not a

feasible solution (or interior point) of Qδtt .

The remedies are twofold. Firstly, the algorithm ‘relaxes’ δt−1 in Q
δt−1

t−1 mildly by re-

placing δt−1 with a slightly larger value δ′t−1, where δ′t−1 > δt−1, in the hope that by

solving Q
δ′t−1

t−1 , the resulting solution X′t−1 is more likely to be an interior point (feasible

solution) of Qδtt .

The second remedy, which solves both Hurdle 1 and Hurdle 2, is to terminate Q
δt−1

t−1
after only one Newton step. This strategy not only significantly reduces the chance of

pushing Xt−1 out of the feasible region of Qδtt , but also removes the runtime wasted on

those insignificant Newton steps.

Thus, the core idea of Relax method is to perform only one Newton step on the relaxed

version of (Qδ) with each iteration, so it is essentially a descent type algorithm with the

descent direction ∆X and step size α derived from the standard Newton method.

Relax algorithm demonstrates better performance than the GFP type algorithms in

terms of efficiency and scalability. However, the need for calculating Hessians for all the

measurements (in the Newton step in every iteration) is a significant per-iteration cost.
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2.2.4 Algorithms exploiting generalised linear programming proper-

ties

Problem (2.5) is a generalised linear programming (GLP) problem, and this has been

extensively exploited by many modern algorithms.

2.2.4.1 GLP properties

It has been established that, the triangulation problem (e.g., (1.12)) belongs to a broader

class of problems — GLP problems [8] if q ≥ 1 in (1.9). Many algorithms exploit two

particular GLP properties, which, stated in the context of triangulation, are as follows.

Property 1 (Monotonicity). Let X = {1, ..., N} index the set of data {Pi,ui}Ni=1, then

for any C ⊆ X ,

min
X

max
i∈C

fi(X) ≤ min
X

max
i∈X

fi(X) (2.18)

given the appropriate cheirality constraints on both sides.

Property 2 (Support set). Let X = {1, ..., N} index the set of data {Pi,ui}Ni=1, and let

X∗ and δ∗ respectively be the minimiser and minimised objective value of (1.12). There

exists a subset Q ⊆ X with |Q| ≤ 4, such that for any C that satisfies Q ⊆ C ⊆ X , the

following holds

δ∗ = min
X

max
i∈Q

fi(X) = min
X

max
i∈C

fi(X) = min
X

max
i∈X

fi(X) (2.19)

given the appropriate cheirality constraints. In fact, the three problems in (2.19) have

the same minimiser X∗. Further,

fi(X
∗) = δ∗ for any i ∈ Q. (2.20)

The subset Q is called the ‘support set’ of the problem.

See [8] for details and proofs related to the above properties. Intuitively, (2.20) states

that, at the minimiser of (1.12), the minimised maximum error occurs at the support

set Q whose size is bounded by 4; Figure 2.3 illustrates. Further, (2.19) states that

solving (1.12) amounts to solving the same problem on Q.

2.2.4.2 QuickPseudo algorithm

QuickPseudo algorithm [36] applied Sharir and Welzl’s algorithm [49] for GLP to tri-

angulation. The algorithm aims to find the support set Q. In the algorithm, Q is
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Figure 2.3: Triangulating a point X observed in 10 views by solving (1.12) with
q =∞. The red ‘+’ in panel (a) is the minimiser X∗. The reprojection errors incurred
by X∗ on all images are shown in panel (b). Observe that there are at most 4 data
with the same largest reprojection error at X∗; these data are the support set Q of this
triangulation instance.

initialised with an arbitrary input datum (‘a datum’ means a pair of input — {Pi,ui}
— that belongs to a particular camera). QuickPseudo method iterates through the data

and checks for violations to the current support set Q (a violation occurs when the

reprojection error fi produced by the ith datum is greater than the reprojection error

produced by the current support set Q). If the ith datum violates the current Q, a

new support set is calculated from the data indexed by {Q ∪ i}. The algorithm termi-

nates when none of the data violate the current Q, which implies that Q is the support

set of the whole input data. QuickPseudo method was proven to have sub-exponential

runtime [37].

2.2.5 Other methods

Olsson et al. [43] introduced two globally convergent triangulation algorithms after es-

tablishing that triangulation problem was actually a pseudoconvex programming prob-

lem. Pseudoconvexity is a stronger condition than quasiconvexity in the sense that a

pesudoconvex function has only one stationary point, and this implies that a pesudo-

convex function has a unique global minimiser (as opposed to the existence of multiple

global minimisers in a quasiconvex function, as seen in Figure 2.1b). The first algorithm

proposed in [43] uses LOQO algorithm [55], an interior point algorithm for general non-

convex problems, to solve X∗ and δ∗ jointly. The main contribution of Olsson et al.

is an analytical proof of global convergence of the approach. The second algorithm is

an interior point method that numerically solves the Karush-Kuhn-Tucker equations
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of (2.5), and this algorithm is proven to be equivalent to the scaled Dinkelbach’s algo-

rithm mentioned in Section 2.2.2.1 [6].

Eriksson and Isaksson [21] proposed a proximal splitting approach. Briefly, in each

iteration, the proposed method performs a one-step bundle adjustment followed by a 1D

bisection to evaluate the proximal operator. The speed of convergence depends on the

rate of increase of a penalty parameter, which needs to be controlled properly to avoid

divergence. In practice, often a conservative rate is required to produce correct results.

Proximal splitting method demonstrates better efficiency than GFP type algorithms in

practice.

2.3 Robust triangulation

As mentioned in 1.2.2.3, a major weakness of the `∞ formulation is being vulnerable

to outliers. In the context of triangulation, problem (1.12) is essentially to fit the

outliers because the maximum reprojection error is in general caused by the outliers

(i.e., wrongly associated features). To deal with data that are contaminated by outliers,

a robust technique usually needs to be applied.

Commonly used robust techniques include least median of squares (LMS) [46], maximum

consensus [24], M-estimators [30], to name a few. M-estimator technique transforms the

objective function into an intrinsically robust cost function (e.g., Huber function) to

achieve robustness; the maximum consensus criterion aims to detect as many inliers as

possible; while the goal of LMS is to minimise the median squared error. It is hard to

conclude which technique is the ‘best’ because each technique has its own strength in

specific respects.

2.3.1 LMS triangulation

This thesis focuses on the LMS criterion. In the context of triangulation, the LMS

criterion entails solving

min
X∈R3

median
i∈{1,...,N}

fi(X),

s.t. P 3
i X̃ > 0, ∀i ∈ {1, . . . , N},

(2.21)

i.e., minimising the median reprojection error. LMS provably has a breakdown point of

0.5, which means that it can tolerate up to 50% of outliers [46, Chap. 3]. However, taking

the median removes the nice properties of the `∞ paradigm. Chiefly, the median of the

reprojection errors is not quasiconvex, and problem (2.21) becomes intractable in general.
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The non-differentiability of the median also complicates the usage of standard gradient-

based optimization [41]. However, as we will see in Chapter 4, the quasiconvexity of the

individual reprojection errors (i.e., (1.9)) can still be exploited for optimisation.

2.3.1.1 Random sampling method

A popular LMS algorithm is by random sampling [46]. In the context of triangulation,

a random sampling type LMS algorithm is outlined in Algorithm 2.2. In each iteration

of Algorithm 2.2, a minimal subset E (4 elements for triangulation) of the input X =

{1, ..., N} is sampled, then an estimation of X is obtained by solving (1.12) on the subset

E .

Next, reprojection errors evaluated on X are calculated for the whole data X , and

the median reprojection error is obtained to evaluate this sample. This procedure of

random-sampling-then-verifying is repeated for a number of times (estimated based on

the highest expected outlier rate of 0.5) and the sample that produces the least median

error is selected to compute the final solution X∗.

This method is simple and generally efficient, however, it could become inefficient on

large-scale datasets. Additionally, the randomized heuristic has no guarantee of opti-

mality.

Algorithm 2.2 RANDOMLMS: a random sampling LMS method for triangulation.

Require: Input data {Pi,ui}Ni=1, X = {1, ..., N} index the set of data, and Rep the
number of repetition.

1: med∗ ← +∞.
2: for t = 1, ..., Rep do
3: E ← RANDOMSAMPLE(X , 4).
4: Solve (1.12) on E to get X.
5: if med∗ > median

i∈X
fi(X) then

6: med∗ ← median
i∈X

fi(X).

7: X∗ ← X.
8: end if
9: end for

10: return X∗.

2.3.1.2 Ke and Kanade’s method

Ke and Kanade [33] used the bisection technique endowed with a non-convex feasibility

test to solve general quasiconvex LMS problems, which includes (2.21). A brief survey

of this method, in the context of (2.21), is as follows.
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Let Fm(X) denote the median reprojection error in problem (2.21), then (2.21) is rewrit-

ten to

min
X∈R3,θ∈R

θ

s.t. Fm(X) ≤ θ,
P 3
i X̃ > 0,

∀i ∈ {1, . . . , N},

(2.22)

which, if to be solved by bisection method, amounts to repeating the feasibility problem

find X ∈ R3

s.t. Fm(X) ≤ θ,
P 3
i X̃ > 0,

∀i ∈ {1, . . . , N}

(2.23)

for different θ.

As established by the authors, solving the feasibility problem (2.23) is equivalent to

solving the following integer programming problem

min
X∈R3,δ∈RN

δ1 + δ2 + · · ·+ δN

s.t. gi(X)− θhi(X) ≤ δi,
− hi(X) + ε ≤ δi,
δi = {0, v},
∀i ∈ {1, . . . , N},

(2.24)

where ε is a small positive number (to turn strict inequality constraints into inequality

constraints), v is a large positive integer, δ is the aggregation of δi, and the definitions

of gi(X) and hi(X) follow (2.4).

Since integer programming is intractable, the proposed method solves a relaxed problem

to (2.24):

min
X∈R3,δ∈RN

δ1 + δ2 + · · ·+ δN

s.t. gi(X)− θhi(X) ≤ δi,
− hi(X) + ε ≤ δi,
∀i ∈ {1, . . . , N}.

(2.25)
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The proposed method finds an approximate solution of (2.22) by repeating the relaxed

feasibility problem (2.25) in a bisection approach. This method can only converge to an

approximate LMS solution without any certificate of optimality (either local or global).

2.3.1.3 Global method

On the other extreme, combinatorial search algorithms have been proposed to solve

LMS exactly [53, 7]. For triangulation, Li [35] exploited the quasiconvexity of the

reprojection error and devised a search algorithm that enumerates all local minima

of the LMS problem. Despite the low-dimensionality of X, the exact algorithms are

computationally costly, and are practical only for small instances.

What is lacking in the field of LMS triangulation thus far is an algorithm that can

provide some assurance of the quality of solutions while being much more tractable than

prohibitively inefficient global methods.

2.3.2 An `∞ outlier-removal scheme

The outlier-removal scheme proposed by Sim and Hartley [50] is relevant to this thesis.

The authors established that a support set for (1.12) contains at least one outlier if there

is any, thus removing this support set from the input guarantees to reduce the number of

outliers. The principle of this outlier-removal scheme is to repeatedly compute a support

set of current input and update the input by removing the computed support set. The

algorithm terminates when the maximum reprojection error computed from the current

input is within a pre-defined threshold. Since an uncertain number of inliers and outliers

are removed in each iteration, this algorithm does not guarantee optimality for the LMS

criterion.

2.4 KRot

As described in Section 1.2.2 and Section 1.2.3, KRot and triangulation have many

aspects in common; most prominently, both problems can be solved by quasiconvex

programming and both are GLP problems. Thus, it is not surprising to see many

triangulation algorithms surveyed above can also be used to solve KRot.

For example, the GFP type algorithms (e.g., bisection method, Dinkelbach’s method,

and Gugat’s method) mentioned in Section 2.2.2 can apply to KRot seamlessly, although

the algorithms demonstrate unsatisfactory efficiency and scalability due to significantly
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increased number of variables associated with KRot (see below). Some algorithms, such

as Relax method [17] and the proximal splitting method [21], were actually designed

as dual-purpose solvers for both triangulation and KRot. They are in general more

efficient than the GFP type algorithms, however, they still lack the capacity of dealing

with large-scale KRot.

KRot is in general much harder to solve than triangulation. Primarily, two features

of KRot account for the difficulty. One of the features is that the input size in a

KRot instance is much larger than in a triangulation instance. In a reconstruction task

involvingM 3D scene points andN cameras, the number of measurements is up toM×N
(when every 3D point is observed by every camera’s image thus incurs a measurement);

thus, if the reconstruction task is to be solved as a KRot instance, the input size of the

KRot instance is also up to M×N . At the same time, if camera translations (i.e., t) are

already known and only the M scene points need to be estimated, the reconstruction

can be solved by M triangulation instances and the input size of each triangulation

instance is bounded by N . The sheer volume of input size of KRot could significantly

compromise the efficiency of the aforementioned quasiconvex programming algorithms.

The other feature that makes KRot hard to solve is the large number of parameters to

be estimated. The parameter space of each triangulation instance is only 3D, implying a

support set of size at most 4, which underpins the success of the triangulation algorithms

that exploit GLP properties (e.g., QuickPseudo method in Section 2.2.4.1 and Sim’s

outlier-removal scheme in Section 2.3.2). In contrast, the parameter space in a KRot

instance with M scene points and N cameras is 3 × (M + N)-dimensional, as shown

in (1.14). As a result, the size bound of a support set for such a KRot instance is

3× (M +N) + 1, which makes GLP algorithms impractical.

2.5 Other background

Some theories established in this thesis are inspired by a few concepts from computa-

tional geometry such as MEB, coreset, and plane sweep. For the purpose of a background

introduction, a short review of these concepts is provided in this section.

2.5.1 MEB

The MEB problem refers to the task of finding the centre of a ball with minimal radius

that encloses a given set of points (see Figure 2.4). Formally, let B(m, r) denote an

enclosing ball with centre m and radius r, and B∗(m∗, r∗) denote the MEB, then given
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a set G = {gi ∈ Rρ}Ni=1 of N points gi in a ρ-dimensional space, the centre m∗ and the

radius r∗ of the MEB B∗(m∗, r∗) is defined as

m∗ = argmin
m∈Rρ

max
gi∈G
‖gi −m‖2;

r∗ = max
gi∈G
‖gi −m∗‖2,

(2.26)

Some other commonly seen terms for MEB include smallest circle when ρ = 2 and

smallest sphere when ρ = 3.

(a) (b)

Figure 2.4: MEB in a (ρ = 2)-dimensional space. Panel (a) is of the general case
where the size of the support set is ρ+ 1 = 3, and panel (b) is of the degenerated case
where the size of the support set is less than ρ + 1. In both panel, the set of the red
dots represents the support set.

MEB has many important applications across a large landscape of research, thus remains

to be an active research area. In the late 20th century, [56, 38] devised O(n) complex

algorithms for fixed dimension ρ. In 2003, [23] proposed a method that can deal with ρ

up to 10, 000. There are also algorithms designed to find an approximate solution with

bounded precision to the exact solution [9].

MEB problem also belongs to GLP problems, thus GLP properties (i.e. monotonicity,

support set, etc.) also apply to MEB problem, as seen in Figure 2.4.

MEB related techniques are substantial components of this research, as seen in Chap-

ter 3, Chapter 5 and Chapter 6.

2.5.2 Coreset

For a problem with input size too large to handle, or when an exact solution is un-

necessary, an approximation solution with guaranteed accuracy becomes desirable. The

term (1 + ε)-approximation refers to an approximate solution that is no ‘worse’ than

the exact solution by a factor of ε. Being ‘better’ or ‘worse’ is subject to pre-defined

metrics for measuring the quality of a solution [4]. For example, in the context of MEB

problems, the radius r is usually used as a quality measurement. In which case, an
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approximate solution B′(m′, r′) is qualified to be a (1 + ε)-approximation to the exact

solution B∗(m∗, r∗) if

r∗ ≤ r′ ≤ (1 + ε)r∗. (2.27)

Associated with the concept of (1+ε)-approximation is the concept of coreset. A coreset

is a subset Z of the original input X , Z ⊆ X , such that solving the same problem on Z
yields a (1 + ε)-approximation of the solution obtained from solving the problem on X .

Chapter 5 establishes the necessary mathematical underpinnings of a coreset algorithm

for triangulation.

2.5.3 Plane sweep

Plane sweep is one of the key techniques in Computational Geometry. The central idea

of a plane sweep algorithm is to use an imaginary line to sweep or move across the plane,

stopping at some event points. Normally, the solution of the to-be-solved problem lies in

one of the event points, and the solution is found once the imaginary line has passed over

the plane. This family of algorithms can be adapted to solve many related computational

geometric problems, such as finding intersecting polygons, finding the intersections of

line segments [11], Delaunay triangulation [13], to name a few.

Amongst the sweeping type algorithms, the LMS line fitting algorithm developed by

Souvaine and Steele [52] is mostly relevant to this thesis. The algorithm boils down

to using a sweep line to pass through all the intersections of multiple linear functions

(as illustrated in Fig. 2.5). Benefiting from the plane sweep technique, the algorithm

solves the LMS line fitting problem in O(n2log(n)) time (where n is the number of linear

functions). By comparison, a brute-force method solves the same problem in O(n3) time.

The algorithm proposed in Chapter 4 for LMS triangulation also benefits from employing

the plane sweep technique to sweep multiple quasiconvex functions.

2.6 Summary of contributions

As surveyed in Section 2.2.2, the GFP type algorithms do not scale well to large in-

put size. Nevertheless, if a large-scale triangulation instance can be broken into mul-

tiple smaller-scale sub-problems, GFP type algorithms are still useful as sub-problem

solvers; this is demonstrated in Chapter 3. The meta-triangulation algorithm developed

in Chapter 3 exploits the quasiconvexity of (1.12), and the algorithm efficiently finds
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Sweep line

Figure 2.5: Plane sweep algorithm for the dual form of LMS line fitting — to find the
intersection in a line arrangement that can cover half of the lines in the arrangement
with minimal vertical distance. The red vertical line is the imaginary sweep line sweep-
ing from the left to the right of the plane; the blue circles represent the intersections
(i.e., event points) in this line arrangement; the algorithm finds the ‘best’ intersection
by sweeping over all the intersections one by one.

the global optimum usually within 10 iterations regardless of the input size. Being a

meta-algorithm, it relies on other triangulation solvers (e.g., the GFP type algorithms)

to solve smaller-scale sub-problems, however, extensive experiments suggests it solves a

triangulation instance more efficiently than invoking an underlying triangulation solver

on the whole input data directly.1

The coreset algorithm proposed in Chapter 5 is also a powerful tool for large-scale tri-

angulation. It produces a representative subset (i.e., coreset) of the whole input such

that solving triangulation on this subset will produce a solution that is within known

bound of the optimal solution on the whole input. The coreset algorithm is equipped

with an ‘any-time stopping‘ feature. Whenever the algorithm stops, a guaranteed ap-

proximate accuracy can be derived from how many iterations have been performed upon

termination of the algorithm.

To deal with outliers, this thesis devises a novel locally optimal algorithm called Q-sweep

that guarantees deterministic convergence to a local minimum for LMS triangulation.

Q-sweep algorithm fills the gap between the methods with no optimality assurance and

the globally optimal algorithms that are prohibitively inefficient. Experiments demon-

strated in Chapter 1 shows that Q-sweep algorithm constantly yields better solutions

than random sampling methods with comparable runtime and is much more practical

than globally optimal methods.

1After this meta-algorithm was published, the authors realised it was similar to Seo and Hartley’s
work [48].
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For KRot, in response to large input size and large number of to-be-estimated parame-

ters, Chapter 6 devises a novel resection-intersection (Res-Int) KRot solver that breaks

optimisation problem (1.14) into multiple sub-problems which are then efficiently solved

by a novel fast descent method (FDM). Empirically, the Res-Int algorithm exhibits supe-

rior performance to the state-of-the-art algorithms, and can scale up to large input data

that easily overwhelm existing algorithms. Moreover, the fast descent method (FDM)

by its own becomes a state-of-the-art triangulation solver.





Chapter 3

An Efficient Meta-Algorithm for

Triangulation

The work contained in this chapter has been published as the following paper

Qianggong Zhang and Tat-Jun Chin: An Effcient Meta-Algorithm for Triangulation.

Asian Conference on Computer Vision (ACCV) Workshops, 148-161.

The published paper is available at

https://link.springer.com/chapter/10.1007/978-3-319-54427-4_12

After publication, the authors realised this method was similar to Seo and Hartley’s

work. [48]
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An Efficient Meta-Algorithm for Triangulation
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Abstract. Triangulation by �∞ minimisation has become established
in computer vision. State-of-the-art �∞ triangulation algorithms exploit
the quasiconvexity of the cost function to derive iterative update rules
that deliver the global minimum. Such algorithms, however, can be com-
putationally costly for large problem instances that contain many image
measurements. In this paper, we exploit the fact that �∞ triangulation
is an instance of generalised linear programs (GLP) to speed up the
optimisation. Specifically, the solution of GLPs can be obtained as the
solution on a small subset of the data called the support set. A meta-
algorithm is then constructed to efficiently find the support set of a set of
image measurements for triangulation. We demonstrate that, on practi-
cal datasets, using the meta-algorithm in conjunction with all existing �∞
triangulation solvers provides faster convergence than directly executing
the triangulation routines on the full set of measurements.

1 Introduction

Triangulation refers to the task of estimating the 3D coordinates of a scene
point from multiple 2D image observations of the point, given that the pose of
the cameras are known. Triangulation is fundamentally important to 3D vision,
since it enables the recovery of the 3D structure of a scene. Whilst in theory
structure and motion must be obtained simultaneously, there are many settings,
such as large scale reconstruction [10,24] and SLAM [17], where the camera poses
are first estimated with a sparse set of 3D points, before a denser scene structure
is produced by triangulating other points using the estimated camera poses.

An established approach for triangulation is by �∞ minimisation [12]. Specif-
ically, we seek the 3D coordinates that minimise the maximum reprojection
error across all views. Unlike the sum of squared error function which contains
multiple local minima, the maximum reprojection error function is quasicon-
vex and thus contains a single global minimum. Algorithms that take advan-
tage of this property have been developed to solve such quasiconvex problems
exactly [2,5,7,9,13,14,19]. In particular, Agarwal et al. [2] showed that some of
the most effective algorithms belong to the class of generalised fractional pro-
gramming methods [6,11].

Although algorithms for �∞ triangulation have steadily improved, there is
still room for improvement. In particular, on large scale reconstruction problems
or SLAM where there are usually a significant number of views per point (recall

c© Springer International Publishing AG 2017
C.-S. Chen et al. (Eds.): ACCV 2016 Workshops, Part II, LNCS 10117, pp. 148–161, 2017.
DOI: 10.1007/978-3-319-54427-4 12
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that the size of a triangulation problem is the number of 2D observations of a
scene point), the computational cost of many of the algorithms [2] can be consid-
erable; we will demonstrate this in Sect. 4. A major reason is that the algorithms
need to repeatedly solve convex programs (LPs or SOCPs) constructed using all
the measurements to determine the update direction. Although theoretically con-
vex programs can be solved efficiently, the runtime of many existing solvers are
still non-trivial given large input sizes. It is thus of significant practical interest
to develop faster algorithms.

Contributions. We propose the usage of a meta-algorithm that works in
conjunction with existing �∞ solvers to achieve fast triangulation. The meta-
algorithm exploits the fact that �∞ triangulation is a GLP. Specifically, the solu-
tion of a GLP given a set of input data can be obtained as the solution of the
same problem on a small subset of the data called the support set. The purpose
of the meta-algorithm is to efficiently find the support set. In contrast to existing
�∞ solvers, the meta-algorithm does not require to solve convex problems on the
full data simultaneously. This property is desirable on large scale problems. We
demonstrate the benefits of the meta-algorithm on publicly available large scale
3D reconstruction datasets.

2 Background

Let {Pi,ui}N
i=1 be a set of data for triangulation, consisting of camera matrices

Pi ∈ R3×4 and observed image positions ui ∈ R2 of the same scene point x ∈ R3.
In this paper, by a “datum” we mean a specific camera and image point {Pi,ui},
and let X = {1, . . . , N} index the set of data. The �∞ technique estimates x by
minimising the maximum reprojection error

min
x

max
i∈X

r(x | Pi,ui), where r(x | Pi,ui) =

∥∥∥∥ui − P1:2
i x̃

P3
i x̃

∥∥∥∥
p

, (1)

subject to P3
i x̃ > 0, ∀i ∈ X

Here, P1:2
i and P3

i respectively denote the first-2 rows and 3rd row of Pi, and x̃
is x in homogeneous coordinates. The chirality constraints P3

i x̃ > 0 ensure that
the estimated point lies in front of all the cameras. The reprojection error

r(x | Pi,ui) =

∥∥∥∥ui − P1:2
i x̃

P3
i x̃

∥∥∥∥
p

=

∥∥(
uiP

3
i − P1:2

i

)
x̃
∥∥

p

P3
i x̃

(2)

is basically the distance between the observed point ui and the projection of x
onto the i-th image plane. We have left p in the reprojection error undefined,
since it remains a “design choice”; the optimisation problem above, therefore, is
dubbed (�∞, �p) to reflect this choice. Typical values of p are 1, 2 and ∞.



150 Q. Zhang and T.-J. Chin

The (�∞, �p) triangulation problem can be re-expressed as

min
x

δ

subject to

∥∥(
uiP

3
i − P1:2

i

)
x̃
∥∥

p

P3
i x̃

≤ δ,

P3
i x̃ > 0, ∀i ∈ X

(3)

where the optimal δ∗ is precisely the minimised maximum reprojection error.

2.1 Bisection and Generalised Fractional Programs

Although Eq. (2) is not convex, it is quasiconvex in the region P3
i x̃ > 0. Since the

objective function in Eq. (1) is the maximum of a set of quasiconvex functions,
it is also quasiconvex. This implies that for any fixed (and non-negative) δ, the
following feasibility problem is convex for p ≥ 1:

does there exist x

such that

∥∥(
uiP

3
i − P1:2

i

)
x̃
∥∥

p

P3
i x̃

≤ δ,

P3
i x̃ > 0, ∀i ∈ X

(4)

The method of bisection exploits the convexity of Eq. (4) to efficiently solve
Eq. (3) [13]. Specifically, a binary search is conducted to find the minimum δ. In
each step, the feasibility test Eq. (4) (that involves all of the data) is conducted.

Bisection can be viewed as an instance of generalised fractional programming
(GFP) [2]. More efficient GFP algorithms exist, such as Dinkelbach’s method [6]
and Gugat’s method [11]. However, all these methods share the similarity that a
convex problem involving all of the data must be solved at each iteration. This
represents a significant computational bottleneck for large problems [7].

2.2 Generalised Linear Programs

For p ≥ 1, (�∞, �p) problem also belongs to a broader class of problems called
generalised linear programs (GLP) [3]. Two useful properties of GLPs, stated in
the context of (�∞, �p), are as follows.

Property 1 (Monotonicity). For any C ⊆ X ,

min
x

max
i∈C

r(x | Pi,ui) ≤ min
x

max
i∈X

r(x | Pi,ui) (5)

given the appropriate chirality constraints on both sides. �	
Property 2 (Support set). Let x∗ and δ∗ respectively be the minimiser and min-
imised objective value of (�∞, �p). There exists a subset B ⊆ X with |B| ≤ 4,
such that for any C that satisfies B ⊆ C ⊆ X , the following holds

δ∗ = min
x

max
i∈B

r(x | Pi,ui) = min
x

max
i∈C

r(x | Pi,ui) = min
x

max
i∈X

r(x | Pi,ui)

(6)
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Fig. 1. Triangulating a point x observed in 10 views by solving (�∞, �p). The red ‘+’
in panel (a) is the �∞ solution x∗ for p = 2 in the reprojection error. The reprojection
error of all the data at the solution x∗ for respectively p = 1, 2 and ∞ are shown in
panels (b), (c) and (d). Observe that there are at most 4 data with the same residual
at x∗; these data are the support set B of the respective problems. (Color figure online)

given the appropriate chirality contraints. In fact, the three problems in Eq. (6)
have the same minimiser x∗. Further,

r(x∗ | Pi,ui) = δ∗ for any i ∈ B (7)

The subset B is called the “support set” of the problem. �	

See [3,15,23] for details and proofs related to the above properties. Intuitively,
Eq. (7) states that, at the solution of (�∞, �p), the minimised maximum error
occurs at the support set B; Fig. 1 illustrates. Further, Eq. (6) states that solving
(�∞, �p) amounts to solving the same problem on B. Many classical algorithms
in computational geometry [4,16,20,22] exploit this property to solve GLPs.

One of the most basic algorithms is due to Sharir and Welzl [22]. Li [15]
more recently applied this algorithm to triangulation. Algorithm1 summarises
the method, in the context of (�∞, �p).

The algorithm finds the support set B by iterating through the data, and
checking for violations to the current B (Step 8). If a datum i violates the current
B, a new support set is calculated from the data indexed by B and i (Steps 3
and 10), which implicitly also obtains the current estimate x∗ and objective
value δ∗ from problem based on data B (Steps 4 and 11). Support set updating
is conducted using a primitive solver - we refer the reader to [22] for details. The
algorithm terminates when none of the data violate the current B, which implies
that B is the support set of the whole input data.

Matoušek et al. [16] proved that the algorithm of Sharir and Welzl [22] has
sub-exponential runtime. Observe that, unlike the GFP algorithms (Sect. 2.1),
each update iteration of Algorithm1 involves only small subset of the data (B ∪
{i}). However, as we will show in Sect. 4, the runtime of Algorithm 1 can still be
significant on large scale 3D reconstruction datasets.
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Algorithm 1. Subexponential-time algorithm [22] for solving (�∞, �p).

Require: Input data {Pi,ui}N
i=1.

1: Randomly permute the order of {Pi,ui}N
i=1, and define X = {1, . . . , N}.

2: B ← {1, 2, 3, 4}.
3: B ← Support set of data indexed by B ∪ {i}.
4: (x∗, δ∗) ← Solution of Eq. (3) on data indexed by B.
5: while true do
6: v ← 0.
7: for i = 1, . . . , N do
8: if r(x∗ | Pi,ui) > δ∗ then
9: v ← v + 1.

10: B ← Support set of data indexed by B ∪ {i}.
11: (x∗, δ∗) ← Solution of Eq. (3) on data indexed by B.
12: Optionally rearrange X by moving i to the first position.
13: end if
14: end for
15: if v = 0 then
16: Break.
17: end if
18: end while
19: return x∗ and δ∗.

3 Meta-Algorithm for �∞ Triangulation

The primary source of inefficiency in Algorithm1 is that multiple passes over all
N of the data are usually required. This is due to the fact that the algorithm
keeps track of only at most 4 of the data at once (i.e., B). Thus, a large number
of updates are required before convergence. Secondly, the choice of the datum
i for updating B is determined randomly (via the random permutation of X
during initialisation). To hasten convergence, the selection should be made more
strategically. Figure 2(a) provides an analogy of each iteration of Algorithm1.

We propose Algorithm 2 as a more efficient technique for �∞ triangula-
tion [21]. First, Algorithm 2 is a meta-algorithm, since it requires an underlying
(�∞, �p) solver to carry out the updates (see Steps 3 and 10). Any of the previ-
ous algorithms [2,5,7,9,13,14,19] can be embedded. Thus, although Algorithm2
appears simple, a lot of complexity due to solving (�∞, �p) has been abstracted
away (in this sense, Algorithm 1 is also a meta-algorithm, since there remains
the primitive solver routine whose specification is independent of the main struc-
ture).

Conceptually, instead of explicitly finding the support set B directly, Algo-
rithm2 seeks a representative subset of the data C, which is no smaller than
4. The algorithm incrementally expands C, by choosing the data q that most
violates the current solution x∗. This helps to accelerate convergence, since the
“radius” of C (i.e., the minimised maximum reprojection error of the data in C)
is expanded quickly; see Fig. 2(b). Contrast this to Algorithm1, whose selection
of the “pivot” datum i is achieved effectively by random selection.
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(a) (b)

Fig. 2. Illustration of conceptual difference between Algorithms 1 and 2 on the mini-
mum bounding circle problem, which is also a GLP and thus analogous to �∞ triangu-
lation. (a) Algorithm 1 seeks the support set B of the data, and in each iteration, B is
updated using the primitive solver [22] from the current B and a (randomly) selected
datum i that violates B. (b) Algorithm 2 seeks a representative subset C of the data,
and in each iteration, C is updated using an (�∞, �p) solver [2,5,7,9,13,14,19] from the
current C and the most violating datum q.

Algorithm 2 terminates when C equals X , or when C contains the support set
B of the whole input data. A formal statement is provided as follows.

Theorem 1. Algorithm 2 finds x∗ in at most N iterations.

Proof. Given the current C with solution x∗ and value δ∗, let q be obtained
according to Step 5 in Algorithm 2.

– If q ∈ C, then, by how x∗ and δ∗ were calculated in Step 10, the condition in
Step 6 must be satisfied and x∗ is the global minimiser.

– If q /∈ C and the condition in Step 6 is satisfied, then Eq. (6) is implied and
x∗ is the global minimiser.

– If q /∈ C and the condition in Step 6 is not satisfied, then Algorithm2 will
insert q into C. There are at most N of such insertions (including the initial
four insertions in the initialisation). In the worst case all of X will finally be
inserted, and C converges to X . �	
Clearly, for Algorithm2 to be more efficient than executing an (�∞, �p) solver

directly on the full input data, C must be expanded in a way that incorporates
B into C quickly. This enables C and the number of iterations to be small, and,
equally importantly, the embedded (�∞, �p) solver need only be invoked on small
subsets C of X . Section 4 demonstrates that, in practice, Algorithm 2 can in
fact find the global minimiser much more efficiently than invoking an (�∞, �p)
solver [2,5,7,9,13,14,19] in “batch mode” on the whole data.

3.1 Connections to Coreset Method

Algorithm 2 is in fact an instance of a coreset algorithm [1] (the representative
subset C can be interpreted as a coreset of X ). Coreset methods are applied
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Algorithm 2. Meta-algorithm for solving (�∞, �p).

Require: Input data {Pi,ui}N
i=1.

1: Randomly permute the order of {Pi,ui}N
i=1, and define X = {1, . . . , N}.

2: C ← {1, 2, 3, 4}.
3: (x∗, δ∗) ← Solution of Eq. (3) on data indexed by C.
4: for t = 1, . . . , N − 4 do
5: q ← arg maxi∈X r(x∗ | Pi,ui).
6: if r(x∗ | Pq,uq) ≤ δ∗ then
7: Exit for loop.
8: end if
9: C ← C ∪ {q}.

10: (x∗, δ∗) ← Solution of Eq. (3) on data indexed by C.
11: end for
12: return x∗ and δ∗.

frequently in discrete geometry to obtain ε-approximation solutions for extent
problems, such as minimum enclosing balls. However, the bounds arising from
current theoretical results are usually too loose to be of practical use (e.g., to
obtain a small approximation error ε, the maximum number of iterations pre-
dicted is often far larger than available data in real-life problems).

Nonetheless, Algorithm 2 remains a very efficient meta-algorithm for (�∞, �p),
as we will demonstrate in the next section.

4 Experiments

We conducted experiments to investigate the performance of Algorithm 2 as a
global minimiser to the �∞ triangulation problem. We used a standard machine
with 3.2 GHz processor and 16 GB main memory.

4.1 Datasets and Initialisation

We tested on publicly available datasets for large scale 3D reconstruction,
namely, Vercingetorix Statue, Stockholm City Hall, Arc of Triumph, Alcatraz,
Örebro Castle [8,18], and Notre Dame [24]. The a priori estimated camera poses
and intrinsics supplied with these datasets were used to derive camera matrices.
For triangulation, the size of an instance is the number of observations of the
target 3D point. To avoid excessive runtimes, we randomly sampled 10% of the
scene points in each dataset - this reduces the number of problem instances, but
not the size of each of the selected instances. Figure 3 illustrates the distribution
of problem sizes in each of the datasets used.

As shown in the respective pseudo-codes, Algorithms 1 and 2 were initialised
by randomly choosing four data to instantiate x∗ by solving (�∞, �p).
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Fig. 3. Histograms of problem size.

4.2 Comparing Algorithm 1 and Algorithm 2

As mentioned above, Algorithms 1 and 2 can both be regarded as meta-
algorithms, in that they require an embedded solver (the primitive solver [22]
for Algorithms 1 and an (�∞, �p) solver for Algorithm2), and the main structure
of the algorithm is independent from the specification of the embedded solvers.
Further, the solvers are only executed on a subset of the data in each update. In
this section, we compare Algorithms 1 and 2 in terms of the number of updates
(i.e., the number of calls to the embedded solver) required before convergence.

Synthetic Data. First, we generated synthetic data of varying sizes N (recall
that the size of a triangulation problem is the number of views/measurements of
the same 3D point). The camera centres were distributed uniformly around the
3D point, with the camera orientation pointing roughly towards the 3D point;
Fig. 1 illustrates an instance of the synthetically generated data with N = 10.
The observed point coordinates in each view were obtained by perturbing the
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true point with Normal noise of standard deviation 3 pixels. For brevity, we
considered only the (�∞, �2) version in this experiment. The method of bisection
was used as the embedded solver for Algorithm 2.

Columns 2 and 3 in Table 1 show the number of updates for N = 10, 100,
1k, 10k, 20k and 50k, and Fig. 4 plots the results in a graph (number of updates
versus N). Both algorithms performed only a very small number of updates
compared to the actual size of the data before convergence. However, it is also
clear that Algorithm 2 required far fewer updates than Algorithm1. The growth
of the number of updates for both methods also slowed down as N increased.
In particular, the number of updates conducted by Algorithm2 remained at 5
after N = 1k. This illustrates the ability of Algorithm2 to quickly find and
incorporate the support set B into C.

Table 1. Comparison of number of updates and cumulative subproblem size between
Algorithm 1 and Algorithm 2 on synthetically generated data of varying size N .

Data size N Number of updates Cumul. subproblem size

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

10 8 3 40 22

100 15 4 75 30

1000 35 5 175 39

10000 48 5 240 39

20000 62 5 310 39

50000 76 5 380 39
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Fig. 4. Number of updates as a function of input size N (synthetic data) for Algorithm 1
and Algorithm 2.
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A comparison of the number of updates will not be complete without com-
paring the total computational effort required. Instead of recording the actual
runtime, however, which is dependent on the specific solver used and the matu-
rity of its implementation, we compare the cumulative size of the subproblems
that needed to be solved across the updates — intuitively, this is the amount of
data that the algorithm accessed for triangulation. For Algorithm1, since each
update is invoked on the data of size 5 (i.e., |B∪{i}|), the cumulative subproblem
size is simply 5 times the number of updates. For Algorithm 2, the subproblem
size depends on the size of C; the relationship between the cumulative subprob-
lem size and the number of updates/iterations is

4 (initialisation) + 5 (iter 1) + 6 (iter 2) + 7 (iter 3) + . . . (8)

Columns 4 and 5 in Table 1 show the cumulative subproblem sizes for both
algorithms. Clearly Algorithm2 remains superior in this respect, thus we expect
Algorithm 2 to be faster than Algorithm 1 in actual applications.

Real Data. The experiment above was repeated on real data; here, the three
variants of (�∞, �p) with p = 1, 2 and ∞ were tested. The Dinkelbach’s method
was used as the embedded (�∞, �p) solver in Algorithm 2. Tables 2 and 3 show
respectively the total number of updates and total cumulative subproblem size
of both algorithms across all triangulation instances in each dataset. The same
conclusion can be drawn, i.e., Algorithm2 is far more efficient in terms of number
of updates and total amount of measurements accessed.

Table 2. Number of updates.

Dataset (�∞, �1) (�∞, �2) (�∞, �∞)

Algorithm1 Algorithm2 Algorithm1 Algorithm2 Algorithm1 Algorithm2

Vercingetorix 2883 1065 2788 1069 2914 1104

Stockholm 14766 5811 13624 5350 14956 5915

Arc of Triumph 20796 7430 19147 7069 20676 7524

Alcatraz 36943 11028 34881 12533 36094 11966

Örebro Castle 63613 22506 57806 20912 61978 22380

Notre Dame 62577 10743 44758 13451 66469 12358

Table 3. Cumulative subproblem size.

Dataset (�∞, �1) (�∞, �2) (�∞, �∞)

Algorithm1 Algorithm2 Algorithm1 Algorithm2 Algorithm1 Algorithm2

Vercingetorix 11532 4958 11152 4974 11656 5213

Stockholm 59064 30327 54496 26875 59824 30913

Arc of Triumph 83184 38970 76588 36236 82704 39616

Alcatraz 147772 57902 139524 66303 144376 63980

Örebro Castle 254452 126963 231224 114711 247912 126260

Notre Dame 250308 49034 179032 64200 265876 58721
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4.3 Relative Speed-Up of Meta-Algorithm over Batch Solution

We compared running Algorithm2 with a specific solver as a sub-routine, and
the direct execution of the same solver in “batch mode” on the whole data.
Since the runtime of Algorithm2 depends on the efficiency of embedded solver,
the key performance indicator here is the relative speed-up achieved by the meta-
algorithm over batch execution.

Choice of Solvers. In this experiment, we tested the three variants of (�∞, �p),
specifically (�∞, �1), (�∞, �2) and (�∞, �∞).

Table 4. Runtime comparison between Algorithm 2 and batch execution for (�∞, �1),
(�∞, �2) and (�∞, �∞). Points: number of scene points in the dataset. Views: total
number views involved. For Algorithm 2, the number in parentheses indicates the per-
centage amongst all triangulation instances where Algorithm 2 was faster than batch
execution.

Total runtime (s)

(�∞, �1) Dataset Points Views Batch Algorithm 2

Vercingetorix 594 68 1.61 1.58 (13%)

Stockholm 2176 43 10.49 9.87 (19%)

Arc of Triumph 2744 173 20.57 12.00 (49%)

Alcatraz 4431 419 166.34 40.12 (73%)

Örebro Castle 5943 761 1011.96 56.01 (94%)

Notre Dame 7149 715 1535.57 116.22 (87%)

Total runtime (s)

(�∞, �2) Dataset Points Views Batch Algorithm 2

Vercingetorix 594 68 23.65 17.43 (26%)

Stockholm 2176 43 109.51 74.02 (32%)

Arc of Triumph 2744 173 204.40 89.91 (56%)

Alcatraz 4431 419 452.73 239.55 (47%)

Örebro Castle 5943 761 1440.97 351.25 (76%)

Notre Dame 7149 715 2399.22 582.64 (76%)

Total runtime (s)

(�∞, �∞) Dataset Points Views Batch Algorithm 2

Vercingetorix 594 68 1.82 1.83 (−1%)

Stockholm 2176 43 12.20 11.77 (4%)

Arc of Triumph 2744 173 23.57 14.15 (40%)

Alcatraz 4431 419 146.26 28.93 (80%)

Örebro Castle 5943 761 887.27 52.20 (94%)

Notre Dame 7149 715 865.35 31.72 (96%)
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For (�∞, �1) and (�∞, �2), we chose Dinkelbach’s method [6] (equivalent
to [19]). Although the best performing technique in [2] was Gugat’s algo-
rithm [11], our experiments suggested that it did not outperform Dinkelbach’s
method on the triangulation problem — in any case, the performance metric of
interest here is the relative speed-up of the meta-algorithm (Algorithm2) over
batch execution. If a faster solver was used, it would likely improve both Algo-
rithm2 and batch solution by the same factor. SeDuMi [25] was used to solve
the convex subproblems (LP for (�∞, �1) and SOCP for (�∞, �2)) in Dinkelbach’s
method. For (�∞, �∞), we used the state-of-the-art polyhedron collapse solver [7].

Results and Analysis. Table 4 shows the total runtime of Algorithm2 and
batch execution on the large scale 3D reconstruction datasets described in
Sect. 4.1. Clearly on most of the datasets, embedding the (�∞, �p) solver into
Algorithm 2 significantly cuts down the total runtime. On datasets where the
computational gains were not evident, this was because the datasets were too
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Fig. 5. Runtime comparison between batch method and Algorithm 2.
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small (in terms of the number of triangulation instances and the size of the
instances) for the benefit of Algorithm 2 to be exhibited.

For the case of (�∞, �2), the average runtimes of Algorithm 2 and batch solu-
tion as a function of problem size N (number of views/measurements) are plot-
ted in Fig. 5. Observe that the runtime of batch increased linearly and then
exponentially, whilst Algorithm2 exhibited almost constant runtime — the lat-
ter observation is not surprising, since Algorithm2 usually terminated at ≤ 10
iterations regardless of the problem size, as established in Sect. 4.2.

Of course, on all of the datasets, most of the triangulation instances are small,
as summarised in the histograms in Fig. 3. However, in these datasets, there are
sufficient numbers of moderate to large problem instances, such that the total
runtime of Algorithm2 is still much smaller than the total runtime of batch, as
evidenced in Table 4.

5 Conclusions

In this paper, we propose a meta-algorithm for �∞ triangulation. By exploring
the fact that �∞ triangulation is a GLP, the meta-algorithm offers significant
acceleration over applying an underlying triangulation solvers in batch mode.
We provided comprehensive experimental results that establish the practical
value of the meta-algorithm on large scale 3D reconstruction datasets.

Acknowledgement. This work was supported by ARC Grant DP160103490.
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Abstract

Triangulation is a fundamental task in 3D computer vi-
sion. Unsurprisingly, it is a well-investigated problem with
many mature algorithms. However, algorithms for robust
triangulation, which are necessary to produce correct re-
sults in the presence of egregiously incorrect measurements
(i.e., outliers), have received much less attention. The de-
fault approach to deal with outliers in triangulation is by
random sampling. The randomized heuristic is not only
suboptimal, it could, in fact, be computationally inefficient
on large-scale datasets. In this paper, we propose a novel
locally optimal algorithm for robust triangulation. A key
feature of our method is to efficiently derive the local up-
date step by plane sweeping a set of quasiconvex functions.
Underpinning our method is a new theory behind quasicon-
vex plane sweep, which has not been examined previously in
computational geometry. Relative to the random sampling
heuristic, our algorithm not only guarantees determinis-
tic convergence to a local minimum, it typically achieves
higher quality solutions in similar runtimes1.

1. Introduction

Triangulation is the task of estimating the 3D coordinates
of a scene point from multiple 2D image observations of the
point, given that the pose of the cameras are known [14].
The task is of fundamental importance to 3D vision, since
it enables the recovery of the 3D structure of a scene.

Most 3D reconstruction pipelines estimate 3D structure
and camera poses simultaneously (via bundle adjustment,
factorization, or equivalent steps). However, triangulation
can play an important role in densifying or refining the 3D
structure, by estimating the 3D coordinates of additional
image measurements (e.g., extracted from original high-
resolution images) based on the optimized camera poses.

Since 2D feature detection and association methods are
not perfect, they inevitably create wrong feature correspon-

1See supplementary material for demo program.

dences and tracks. In an SfM pipeline, outliers are removed
during the robust relative pose estimation step. However,
outliers will exist in the additional feature correspondences
extracted post-SfM, since they were not subjected to the
SfM pipeline (e.g. for efficiency reasons).

For non-robust triangulation, the `∞ paradigm [13] has
been influential. Given a set of N 2D image measurements
{ui}Ni=1 of the same scene point x ∈ R3, and the associ-
ated camera matrices {Pi}Ni=1 with each Pi ∈ R3×4, we
estimate x by minimizing the maximum reprojection error

min
x∈R3

maximum
i∈{1,...,N}

∥∥∥∥ui −
P1:2
i x̃

P3
i x̃

∥∥∥∥
p

,

s.t. P3
i x̃ > 0 ∀i ∈ {1, . . . , N},

(1)

where P1:2 is the first-two rows of P, P3 is the third row
of P, and x̃ is x in homogeneous coordinates. The posi-
tivity constraints P3

i x̃ > 0 ensure that x lies in front of all
the cameras. In the above, ‖ · ‖p indicates a valid p-norm;
usually p is taken to be 1, 2 or∞.

Algorithms to solve (1) take advantage of quasiconvexity
to efficiently find the global minimizer x∗ [15, 16, 25, 23,
3]. Recently, Donné et al. [9] showed that their polyhedron
collapse algorithm (for p =∞) is the fastest.

A major weakness of the `∞ paradigm, however, is that
the estimate is easily biased by outlying measurements. To
fix this issue, the usage of an inherently robust cost func-
tion is necessary. A popular robust criterion is least median
squares (LMS) [24]; for triangulation, this entails solving

min
x∈R3

median
i∈{1,...,N}

∥∥∥∥ui −
P1:2
i x̃

P3
i x̃

∥∥∥∥
p

,

s.t. P3
i x̃ > 0 ∀i ∈ {1, . . . , N},

(2)

i.e., minimize the median error. LMS provably has a break-
down point of 0.5, which means that it can tolerate up to
50% of outliers [24, Chap. 3]. The drawback of LMS, how-
ever, is that the median of the reprojection errors is not qua-
siconvex, and problem (2) becomes intractable in general.
The non-differentiability of the median also complicates the
usage of standard gradient-based optimization [21].



Existing algorithms for LMS Most practitioners rely
on the random sampling heuristic to approximately solve
LMS [30, 24]. Specifically, we randomly sample minimal
subsets of the measurements to estimate x (using, e.g., DLT
for triangulation), then select the estimate with the lowest
median error. A probabilistic upper bound of the number
of samples to take can be deduced based on the highest
expected outlier rate of 0.5 [1]. Apart from being non-
deterministic, a noticeable weakness of random sampling
is that it provides no optimality guarantees.

Ke and Kanade [16] used the bisection technique en-
dowed with a non-convex feasibility test to solve gen-
eral quasiconvex LMS problems, which includes (2). For
tractability, a relaxed feasibility test which is more conser-
vative is performed, thus the method can only converge to
an approximate LMS solution without any certificate of op-
timality (either local or global).

On the other extreme, combinatorial search algorithms
have been proposed to solve LMS exactly [28, 4]. For trian-
gulation, Li [17] exploited the quasiconvexity of the repro-
jection error to devise a search algorithm that enumerates
all local minima of the LMS problem. Despite the low-
dimensionality of x, the exact algorithms are computation-
ally costly, and are practical only for small instances.

Our contributions We propose a novel locally optimal
algorithm for LMS triangulation (2). At each iteration, our
approach calculates the update via a 1D quasiconvex LMS
problem, which can be solved efficiently via plane sweep.
We develop the necessary theory and algorithm for quasi-
convex plane sweep, and establish the convergence of the
overall algorithm to a local minimum.

Experimentally, we show that our method consistently
yields better solutions than random sampling with compa-
rable runtimes. Further, our technique is much faster and
practical than the globally optimal methods.

Differentiation against RANSAC Another popular ro-
bust technique in computer vision is RANSAC [12]. Un-
like LMS, the aim of RANSAC is to maximize the number
of inliers, given a threshold. Whether LMS or inlier maxi-
mization is the “better” criterion is debatable—certainly for
robust triangulation, both are valid and widely used.

The optimization machinery in RANSAC is random
sampling, thus, it shares the disadvantages of the ran-
domized heuristic for LMS mentioned above. Of course,
there are alternative methods for inlier maximization, e.g.,
RANSAC variants [6], branch-and-bound [18] and subset
search [5]. We stress, however, that from an optimization
viewpoint, these methods solve a different problem to LMS
and are not strictly comparable to our algorithm (not to
mention that global methods for inlier maximization would
also be costly, similar to global methods for LMS).

2. Background
First, define and rewrite the i-th reprojection error as

ri(x) =

∥∥∥∥ui −
P1:2
i x̃

P3
i x̃

∥∥∥∥
p

=
‖Aix + bi‖p
cTi x + di

, (3)

where Ai =

[
aTi,1
aTi,2

]
∈ R2×3, bi =

[
bi,1
bi,2

]
∈ R2, (4)

ci ∈ R3 and di are constants calculated from the data Pi
and ui. For p ≥ 1, ri(x) is quasiconvex [11].

To enable direct comparison with the state-of-the-art
polyhedron collapse method, we also base our method on
the same p =∞. The reprojection error thus becomes

ri(x) = max

(
|aTi,1x + bi,1|
cTi x + di

,
|aTi,2x + bi,2|
cTi x + di

)
, (5)

which can be further developed into

ri(x) = max

(
aTi,1x + bi,1

cTi x + di
,
−aTi,1x− bi,1
cTi x + di

,

aTi,2x + bi,2

cTi x + di
,
−aTi,2x− bi,2
cTi x + di

) (6)

= max (ri,1(x), ri,2(x), ri,3(x), ri,4(x)) . (7)

For simplicity, we define ri,j(x), j = 1, . . . , 4, as

ri,j(x) =
aTi,jx + bi,j

cTi x + di
; (8)

the reader should be reminded that constants ai,j and bi,j
should be taken with the appropriate sign from the input
data. Henceforth, we call the ri,j(x)’s “constraints”.

Defining ri(x) as above, i.e., as a max over four linear
fractional terms, will be crucial for clarifying the operations
of our method later. For now, we re-express the LMS trian-
gulation problem equivalently as

min
x∈R3

median
i∈{1,...,N}

ri(x)

s.t. cTi x + di > 0 ∀i ∈ {1, . . . , N},
(9)

where the input data is {Ai,bi, ci, di}Ni=1.

3. Locally optimal LMS triangulation
Algorithm 1 describes the proposed locally optimal

method (called Q-sweep) to solve (9). The overall structure
of Q-sweep is simple—given an initial feasible estimate x̂,
find a direction ∆x and step size α to adjust x̂ such that
the median error decreases; stop when a valid ∆x cannot
be found. A similar overall structure exists in polyhedron



collapse, and indeed in many techniques in the wider opti-
mization literature [21]. Nonetheless, there are significant
novelties in our work, namely, an efficient routine to com-
pute the optimal step size α for LMS triangulation, and the-
oretical analyses on convergence and complexity.

Algorithm 1 Q-sweep method for LMS triangulation.
Require: Input data {Ai,bi, ci, di}Ni=1, initial soln. x̂.

1: ∆x← DESCENTDIR
(
{Ai,bi, ci, di}Ni=1, x̂

)
.

2: while ∆x is not null do
3: α← STEPSIZE

(
{Ai,bi, ci, di}Ni=1, x̂,∆x

)
.

4: x̂← x̂ + α∆x.
5: ∆x← DESCENTDIR

(
{Ai,bi, ci, di}Ni=1, x̂

)
.

6: end while
7: return x̂.

The rest of this section is devoted to fleshing out Algo-
rithm 1 (details on initialization are postponed until Sec. 4).

3.1. Finding descent direction

Algorithm 2 describes the routine DESCENTDIR used in
Q-sweep to find ∆x for the current estimate x̂. The routine
begins by finding the set of residuals A and constraints J
that are active, i.e., has the same value as the median er-
ror for x̂. Given J , the rest of the routine largely follows
the procedure of polyhedron collapse to calculate ∆x. For
brevity, we will give only high-level account of the method.

Algorithm 2 DESCENTDIR to find descent direction.
Require: Input data {Ai,bi, ci, di}Ni=1, an estimate x̂.

1: r̂ ← medi ri(x̂).
2: A ← {p | rp(x̂) = r̂}.
3: J ← {(p, q) | p ∈ A, rp,q(x̂) = r̂}.
4: N = {n1,n2, . . . } ← set of normals for the constraints

indexed by J ; see (11) and surrounding text.
5: ∆x← null.
6: if |N | = 1 then
7: ∆x← n1.
8: else if |N | = 2 then
9: ∆x← n1 + n2.

10: else
11: for each triplet (nu,nv,nw) of N do
12: y← nu × nv + nv × nw + nw × nu.
13: s← 〈nu,y〉/|〈nu,y〉|.
14: y← sy.
15: if 〈y,n〉 > 0, ∀n ∈ N then
16: ∆x← y.
17: Break.
18: end if
19: end for
20: end if
21: return ∆x.

Each active constraint rp,q(x) indexed byJ defines a 2D
plane in 3D space, i.e.,

rp,q(x) =
aTp,qx + bp,q

cTp x + dp
= r̂,

=⇒ (aTp,q − r̂cTp )x + bp,q − r̂dp = 0.

(10)

The normal of the plane pointing towards the negative di-
rection is given by

n = −(aTp,q − r̂cTp ). (11)

The normal n is also the direction where rp,q(x) will reduce
in value, starting from the point x̂.

If J has only one element, then the normal of that con-
straint is installed as ∆x (Step 7). If there are more than
one active constraints, then the normals of the constraints
are combined: by a simple addition if there are two active
constraints (Step 9), or if there are more active constraints,
triplets of normals are considered. For each triplet, the vec-
tor that gives the same scalar product on the normals are
computed (Step 14). The first such vector that allows all ac-
tive constraints to reduce is then taken as ∆x (Step 16)—if
no such vector is available, the overall algorithm terminates.

Donné et al. showed that finding ∆x in the manner above
guarantees that ∆x represents a direction from x̂ along
which the active residuals (which are the median residu-
als in our case) decrease in value. Sec. 3.3 will establish
that DESCENTDIR always find a descent direction until the
convergence of Q-sweep to a local minimum.

Number of active constraints The cost of Algorithm 2
depends on the number |J | of active constraints. Donné et
al. cited empirical evidence to support that the number of
active constraints is small (3 or 4). Actually, as we prove
below, there is a theoretical limit on the number of active
constraints—this is another contribution of our work.

Theorem 1. For any feasible x̂, there are at most 8 con-
straints ri,j(x) such that ri,j(x̂) = median i ri(x̂).

Proof. The combinatorial dimension of quasiconvex `∞ tri-
angulation is 4, and assuming that the input data is non-
degenerate2, the number of active residuals (i.e., the cardi-
nality of A in Algorithm 2) is at most 4 [26].

From (6), in each residual ri(x), the operands ri,1(x)
and ri,2(x) are symmetric, such that for any r̂ > 0,

ri,1(x̂) = r̂ and ri,2(x̂) = r̂ (12)

cannot be satisfied simultaneously. Likewise for ri,3(x) and
ri,4(x). Thus, for each active residual rp(x), there are at
most two operands that satisfy rp,q(x̂) = r̂. The total num-
ber of active constraints thus cannot be more than 8.

2For the precise definition of degeneracy, see [20, Sec. 2.2]. In practical
instances that are affected by noise, the data is usually non-degenerate.



3.2. Computing step size

Henceforth represents a significant departure from poly-
hedron collapse. From x̂, the new estimate is obtained as

x′ = x̂ + α∆x. (13)

Naturally, x′ must remain feasible, but we would also like
to find the α that reduces the median error the most.

Along ∆x and starting from x̂, the constraints can be
rewritten as a function of α:

ri,j(α) =
aTi,j(x̂ + α∆x) + bi,j

cTi (x̂ + α∆x) + di
:=

ui,jα+ vi,j
wiα+ zi

, (14)

where ui,j , vi,j , wi and zi are constants calculated from
the data; ri,j(α) is again a linear fractional function, which
is quasiconvex [2]. Trivially, the reprojection error ri(x)
along direction ∆x and starting from x̂ is

ri(α) = max(ri,1(α), ri,2(α), ri,3(α), ri,4(α)), (15)

with the usual condition wiα + zi > 0 on the denomina-
tor. Since each of the max operands in (15) is quasiconvex,
ri(α) is quasiconvex; Fig. 1(a) illustrates.

The problem of determining α can be formulated as

α∗ =argmin
α∈R+

median
i∈{1,...,N}

ri(α),

s.t. wiα+ zi > 0 ∀i ∈ {1, . . . , N},
(16)

i.e., a quasiconvex LMS problem defined over α. Solv-
ing (16) exactly to find α∗ remains theoretically intractable.
Nonetheless, since we are dealing with only one dimension,
there are “tricks” to do this efficiently.

Characterization of the solution Where can we expect
α∗ to lie? We first define several geometrical concepts.

Definition 1 (Extremity). The extremity mi of ri(α) is the
point at which ri(α) attains the minimum. Since ri(α) is
a linear fractional function, it is actually pseudoconvex (a
stronger condition than quasiconvexity) [2], implying that
mi is unique; see Fig. 1(a). The extremity can be obtained
analytically by intersecting all the constraints

ui,jα+ vi,j
wiα+ zi

=
ui,j′α+ vi,j′

wiα+ zi
, j, j′ ∈ {1, . . . , 4} (17)

from ri(α), and finding the roots. The smallest root that is
not below ri(α) is then installed as mi.

Definition 2 (Intersection). An intersection between ri(α)
and ri′(α) is a point where the two error functions intersect.
Note that for quasiconvex functions, there are in general
more than one intersection. We let Iki,i′ denote the k-th in-
tersection between ri(α) and ri′(α). The intersections can
also be found analytically, by pairing the constraints from
ri(α) and ri′(α), and solving the quadratic equations.

Definition 3 (Boundary). The boundary αmax is the largest
α such that wiα+ zi > 0 for all i.

Definition 4 (Events). The events are a set that consists of
• all extremities mi in the range [0, αmax].
• all intersections Iki,i′ in the range [0, αmax].
• the boundary point (αmax,median i ri(αmax)).

We call an item of E an event point.

The following identifies the possible locations of α∗.

Theorem 2. The minimizer α∗ of problem (16) is an event
point of the problem.

Proof. In the feasible range [0, αmax], let

g : [0, αmax] 7→ {1, . . . , N} (18)

give the index of the error corresponding to the median, i.e.,

rg(α)(α) = median
i

ri(α). (19)

The function g partitions the feasible range [0, αmax] into
segments (s1, s2, . . . ), where α’s from the same segment st
yield the same index, i.e.,

g(α1) = g(α2) for α1, α2 ∈ st; (20)

see Fig. 1(b). In turn, the segments give rise to a sequence of
error functions (rg1 , rg2 , . . . ) that correspond to the median.
It is thus sufficient to examine this sequence.

If an error function rgt(α) in the sequence achieves its
minimum (or extremity) mgt in the segment st, then mgt is
a local minimum of the median error; see Fig. 1(b).

Any two successive error functions rgt(α) and rgu(α)
in the sequence give rise to an intersection Ikgt,gu . If the
gradient of rgt(α) and rgu(α) have opposing signs at Ikgt,gu ,
then Ikgt,gu is a local minimum; see Fig. 1(b).

Lastly, the median error may achieve a local minimum at
the boundary point; see Fig. 1(b).

The above are all the possible local minima of (16), and
one of them is the global minimum.

Based on Theorem 2, a simple approach to solve (16)
would be to visit all event points, and calculate the median
error at each event point. In the following, a more efficient
technique that avoids recomputing the median is described.

Quasiconvex plane sweep Plane sweep is a basic tech-
nique for many geometric problems, such as Delaunay tri-
angulation [8]. Souvaine and Steele [27] developed an LMS
line fitting algorithm based on plane sweep. However, their
method is not directly applicable to quasiconvex LMS (16),
due to several critical differences:
• A pair of quasiconvex curves may have multiple inter-

sections (see the curves in Fig. 1(b)), while two lines
have at most one intersection;
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Figure 1. (Panel a) Reprojection error as a function of α. The black dashed curve is ri(α) and the other four curves are the four constraints
ri,j(α) corresponding to ri(α);mi is the extremity of ri(α). (Panel b) The black solid curve is the median over 7 reprojection errors ri(α).
Within each segment st, the median is defined by one of the error functions: rgt(α). Here, δ1, δ3 and δ4 are local minima corresponding
respectively to an extremity, an intersection, and the boundary. δ2 is an intersection, but not a local minimum. (Panel c) Demonstrating
plane sweep: the events are shown as dots. The sweep line is initialized at L1, with the ordering List = [1, 2, 3, 4, 5, 6, 7]; the center item
is 4, thus r4(α) is the median. As the sweep line passes through event point e1, indices 3 and 4 swap places; at L2, the ordering becomes
List = [1, 2, 4, 3, 5, 6, 7], and r3(α) is the median. After passing through e2, List = [1, 4, 2, 3, 5, 6, 7], and r3(α) remains the median.

• At an intersection, two quasiconvex curves may not
cross (i.e., they are tangent to each other), while two
lines necessarily cross at their intersection
• A quasiconvex function may achieve a minimum in the

feasible range, while a line is unbounded.
Here, we develop a novel plane sweep algorithm for (16),
to be used as routine STEPSIZE in Q-sweep.

The idea is as follows: imagine a vertical line L in the
plane [0, αmax] × R≥0 that is “swept” from α = 0 to
α = αmax; see Fig. 1(c). At each position of L, the error
functions ri(α) can be ordered based on their height along
L; the ordering is called the List. The median error is ex-
actly the height of the median point in L. In plane sweep,
we visit the event points incrementally and query List.

A crucial observation is that List changes only when L
passes through an event point that is a non-tangential in-
tersection. In fact, when sweeping past an non-tangential
intersection Iki,i′ , only ri(α) and ri′(α) swap orders along
L; see Fig. 1(c). Thus, List can be maintained and updated
efficiently as the sweep line passes through the event points.

Algorithm 3 describes the proposed quasiconvex plane
sweep algorithm in detail. Programmatically, an event point
e ∈ E is endowed with attributes α, i and i′, where
• e.α is the α value of the event point e.
• if e is an extremity, e.i returns the index of the error
ri(α) that gives rise to e (here, e.i′ is null);
• if e is an intersection, e.i and e.i′ are the indices of the

errors ri(α) and ri′(α) whose intersection forms e.
Note that, as in most plane sweep-type algorithms [8], the
sweep line L is not explicitly realized.

Complexity analysis The runtime of Algorithm 3 de-
pends on the size of E . Since there are at most N extrem-

Algorithm 3 STEPSIZE to optimize step size.
Require: Input data {Ai,bi, ci, di}Ni=1, current estimate

x̂, and current descent direction ∆x.
1: Convert reprojection errors to 1D version (15).
2: α∗ ← 0. /* Current estimate of α */
3: E ← set of event points sorted ascendingly by {e.α}.
4: List← indices of error functions ri(α), i = 1, . . . , N ,

in descending order of error value ri(α∗) at α∗.
5: K ← dN/2e.
6: r∗ ← rList(K)(α

∗). /* Current median error */
7: for each event point e ∈ E do
8: if e is an intersection then
9: if re.i(α) and re.i′(α) are not tangent at e then

10: Swap the order of e.i and e.i′ in List.
11: end if
12: end if
13: if e.i = List(K) or e.i′ = List(K) then
14: if r∗ > re.i(e.α) then
15: α∗ ← e.α, r∗ ← re.i(e.α). /* Update */
16: end if
17: end if
18: end for
19: return α∗.

ities, E is dominated by the intersections. The following
establishes a bound on the number of intersections.

Lemma 1. The number of intersections of all errors ri(α),
i = 1, . . . , N , is bounded above by 16N2 − 16N .

Proof. Let ri(α) and ri′(α) be two reprojection errors. The
intersection of 2 constraints, respectively from ri(α) and
ri′(α), gives rise to a quadratic function with at most 2 in-



tersections. Thus the number of intersections between ri(α)
and ri′(α) is limited to 32. For all

(
N
2

)
pairs of reprojection

errors, the total number of intersections is bounded above
by 32N(N − 1)/2 = 16N2 − 16N .

By maintaining List in a binary heap equipped with an
auxiliary pointer array [27], looking up the median error
(Step 14) and conducting swapping (Step 10) can be done in
constant time at each event point—the sweep thus consumes
O(N2) time. The cost of Algorithm 3 is thus dominated by
the sorting of E (Step 3), which needs O(N2 logN) time.

3.3. Convergence of Q-sweep to local minimum

In Secs. 3.1 and 3.2 we have described the details of sub-
routines DESCENTDIR and STEPSIZE in Q-sweep (Algo-
rithm 1). Here, we establish the convergence of Q-sweep to
a local minimum of LMS triangulation (9).

Theorem 3. Q-sweep (Algorithm 1) converges to a local
minimum of problem (9).

Proof. Without loss of generality, defineK = dN/2e as the
median index. Given the current estimate x̂, let

r(1)(x̂), . . . , r(K)(x̂), . . . , r(N)(x̂), (21)

be the ordered residuals, where r(p)(x̂) ≤ r(q)(x̂) ∀p < q.
Algorithm 1 terminates when the ∆x returned by Algo-

rithm 2 is null. By [9, Supp. material], x̂ is thus the global
minimizer to the `∞ triangulation problem defined by the
subset of data indexed by {(1), . . . , (K)}, i.e.,

x̂ =arg min
x∈R3

maximum
i∈{(1),...,(K)}

ri(x)

s.t. cTi x + di > 0 ∀i ∈ {(1), . . . , (K)}.
(22)

By assuming non-degeneracy (see proof of Theorem 1),
there is an open subset X of R3 containing x̂ such that

r(K+1)(x) > r(i)(x), i = 1 . . . ,K, ∀x ∈ X , (23)

i.e., r(K+1)(x) is always the (K + 1)-th largest residual in
X . Thus, when the stopping criterion is achieved, Algo-
rithm 1 terminates at a local minimum of the median error.

For x such that cTi x + di > 0, ri(x) is bounded below
by 0. Thus, median i ri(x) is also bounded below by 0 in
the feasible region. Since each iteration of Q-sweep follows
a descent direction and guarantees reduction in the median
error, the algorithm converges to a local minimum.

4. Results
We compared Q-sweep against the following methods

for the triangulation problem:
• Polyhedron collapse [9], which solves (1) and is thus

non-robust—we regard it as the control method;

• Random sampling heuristic [1] with confidence 0.99
and outlier rate 0.5 for the stopping criterion;
• Ke & Kanade’s approximate algorithm for LMS [16];
• Li’s globally optimal method [17];
• The proposed Q-sweep method (Algorithm 1); and
• Q-sweep method with brute force search to solve (16)

for the step size, in place of plane sweep.
Since the originators’ codes were not publicly available, we
implemented polyhedron collapse ourselves in Matlab—
this is sufficient since it is is a very efficient algorithm. For
random sampling, DLT was used as the minimal solver. For
Ke & Kanade, the feasibility test was solved using Matlab’s
LP solver. For Li’s method, polyhedron collapse was used
for basis computations. For Q-sweep, the plane sweep rou-
tine (Algorithm 3) was implemented in C-mex.

All experiments were conducted on a standard machine
with a 3.6GHz Intel i7 CPU and 16GB RAM. Unavoidably,
differences in implementation and programming languages
will affect the relative runtimes of the above methods—in
Sec. 4.1, we will factor out the effects of these differences
by examining asymptotic runtime on synthetic data.

Details on initialization To initialize Ke & Kanade and
Q-sweep, we used the mid-point method (a closed form
solver) [13] on two randomly selected measurements to find
the initial x̂, which was then tested for feasibility.

4.1. Synthetic data experiments

Synthetic datasets for triangulation were generated as
follows: a dataset contained 20 random scene points in R3,
and N cameras {Pi}Ni=1 created with random poses with
the condition that the scene points lay in front of the cam-
eras; see Fig. 2(a). A triangulation instance was formed by
projecting a scene point onto the cameras, and adding Gaus-
sian noise of σ = 3 pixels to the image points. To create
outliers, 30% of the image points were randomly selected,
and Gaussian noise of σ = 9 pixels was added to them.

Fig. 2(b) shows the runtime of all methods plotted
against the size N of the outlier-contaminated triangula-
tion instances (the runtime of each N was averaged over
the 20 instances in the dataset). Expectedly, the runtime
of the global method increased very rapidly. The cost of
random sampling and polyhedron collapse (non-robust) re-
mained more or less constant. Ke & Kanade and Q-sweep
gave similar asymptotic behaviour—note, however, that Ke
& Kanade does not guarantee local optimality, unlike Q-
sweep. Finally, the runtime of Q-sweep with brute force
step size search also grew rapidly, illustrating the significant
computational savings due to plane sweep (Algorithm 3).

Figs. 2(c) and 2(d) show the converged reprojection er-
ror of all the triangulation methods. All LMS algorithms re-
cover the noise level for inliers (3 pixels) while polyhedron
collapse is affected by outliers (errors over 10 pixels). As is
evident in Fig. 2(d), Q-sweep (and brute force variant) gave
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Figure 2. (a) A synthetic dataset with 20 scene points and N = 9 cameras. (b) Average runtime of all algorithms on synthetic triangulation
instances plotted against input size N . (c) Average converged error for all methods. (d) Same as (c) but without polyhedron collapse.

Temple (#p=6927) Courtyard (#p=59562) University (#p=19476) Water Tower (#p=58556)
Algorithm Time (s) OptErr Time (s) OptErr Time (s) OptErr Time (s) OptErr

Polyhedron collapse [9] (non-robust) 3.931 3.604 103.406 12.248 18.443 12.166 96.197 11.414

Random sampling (approx.) 8.927 0.935 109.660 1.906 26.797 4.564 101.905 3.151

Ke & Kanade [16] (approx.) 426.425 1.565 5257.441 4.072 1167.412 5.217 5084.582 4.131

Li [17] (global) 459.258 0.397 N/A N/A N/A N/A N/A N/A

Q-sweep (locally optimal) 2.638 0.734 176.917 1.337 13.998 2.109 223.158 1.775

Q-sweep (brute force, locally optimal) 2.214 0.734 1338.820 1.337 24.586 2.109 2980.607 1.775

Table 1. Results on real datasets. #p: total number of triangulation instances in the dataset. For information regarding the size N of the
instances, see Panel (a) in Figs. 3 to 6. Time: total runtime for solving all triangulation instances (N/A if not finished by 2 hours); OptErr:
the converged reprojection error, averaged over all instances, in pixels.

the lowest error among all approximate LMS algorithms,
due to the ability of Q-sweep to converge to local minima.

4.2. Real data experiments

We used data from [10] (University of Washington, Al-
catraz Courtyard, Alcatraz Water Tower) and [7] (Temple
Ring). Olsson’s SfM implementation [22] was used to esti-
mate the camera poses and initial 3D structure (the input im-
ages were first resized to a factor 0.3). Then, SIFT [19, 29]
was invoked on the original images to produce more feature
correspondences, which were associated to form triangula-
tion instances—these instances were contaminated by out-
liers, since they were not put through the SfM pipeline. The
number of instances generated in this manner is shown as
#p in Table 1, whereas Panel (a) in Figs. 3 to 6 plots the
histogram of the sizes N of the instances—though most of
the instances were small, a non-negligible number of them
were of moderate to large sizes.

Table 1 summarizes the total runtime and average con-
verged reprojection error for all methods.

Accuracy comparison On the smallest dataset (Temple),
the global method expectedly gave the lowest error, fol-
lowed by Q-sweep. However, the global method was not
feasible on the other larger datasets; it was terminated after
reaching the time limit of 2 hours.

On the other datasets, Q-sweep gave the lowest error,

due to its ability to converge to local minima. This was fol-
lowed by random sampling, Ke & Kanade, and polyhedron
collapse. In Courtyard, University and Water Tower, the av-
erage converged error of polyhedron collapse was around
10 pixels, indicating the presence of outliers.

Panel (b) in Figs. 3 to 6 plots the histogram of converged
errors for Q-sweep and polyhedron collapse. Evidently a
large number of instances contain outliers, and the bene-
fit of LMS triangulation with Q-sweep is clearly exhibited.
Panels (c) and (d) in the figures show the triangulated points
from both methods. Observe that there are much fewer spu-
rious points in the results of Q-sweep.

Runtime comparison The recorded runtimes comply
with the trends observed in the synthetic data experiments.
We note again that step size search in Q-sweep with brute
force was much more expensive than plane sweep.

5. Conclusions
Robust triangulation is a vital computer vision problem

that has not been satisfactorily solved. The proposed Q-
sweep algorithm fills a gap in currently available techniques
for LMS triangulation. Unlike random sampling, it guaran-
tees convergence to local minima, thus giving higher quality
outcomes. Unlike global methods, Q-sweep is much more
efficient and practical. At a higher level, our work illustrates
useful adaptation of geometric algorithms to vision.
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Figure 3. Results for Temple Ring dataset. (a) Distribution of instance sizes N . (b) Histogram of converged reprojection errors for
polyhedron collapse, global method, and Q-sweep. (c)(d) 3D structure reconstructed respectively by polyhedron collapse and Q-sweep.
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Figure 4. Results for Alcatraz Courtyard dataset. (a) Distribution of instance sizes N . (b) Histogram of converged reprojection errors for
polyhedron collapse and Q-sweep. (c)(d) 3D structure reconstructed respectively by polyhedron collapse and Q-sweep.
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Figure 5. Results for University of Washington dataset. (a) Distribution of instance sizes N . (b) Histogram of converged reprojection
errors for polyhedron collapse and Q-sweep. (c)(d) 3D structure reconstructed respectively by polyhedron collapse and Q-sweep.
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Figure 6. Results for Alcatraz Water Tower dataset. (a) Distribution of instance sizes N . (b) Histogram of converged reprojection errors
for polyhedron collapse and Q-sweep. (c)(d) 3D structure reconstructed respectively by polyhedron collapse and Q-sweep.
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Chapter 5

Coresets for Triangulation

The work contained in this chapter has been published as the following paper

Qianggong Zhang and Tat-Jun Chin: Coresets for Triangulation. IEEE Transactions
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Coresets for Triangulation
Qianggong Zhang and Tat-Jun Chin

Abstract—Multiple-view triangulation by `∞ minimisation has become established in computer vision. State-of-the-art `∞ triangulation
algorithms exploit the quasiconvexity of the cost function to derive iterative update rules that deliver the global minimum. Such
algorithms, however, can be computationally costly for large problem instances that contain many image measurements, e.g., from
web-based photo sharing sites or long-term video recordings. In this paper, we prove that `∞ triangulation admits a coreset
approximation scheme, which seeks small representative subsets of the input data called coresets. A coreset possesses the special
property that the error of the `∞ solution on the coreset is within known bounds from the global minimum. We establish the necessary
mathematical underpinnings of the coreset algorithm, specifically, by enacting the stopping criterion of the algorithm and proving that
the resulting coreset gives the desired approximation accuracy. On large-scale triangulation problems, our method provides
theoretically sound approximate solutions. Iterated until convergence, our coreset algorithm is also guaranteed to reach the true
optimum. On practical datasets, we show that our technique can in fact attain the global minimiser much faster than current methods.

Index Terms—Coresets, approximation, generalised linear programming, multiple view geometry, triangulation.

F

1 INTRODUCTION

W ITH the basic principles and algorithms of structure-
from-motion well established, researchers have be-

gun to consider large-scale reconstruction problems involv-
ing millions of input images. Arguably such large-scale
problems, which arise from, e.g., photo sharing websites
or long-term video observations in robotic exploration, are
more common and practical. The significant problem sizes
involved in such settings, however, compel practitioners
to either use distributed computational architectures (e.g.,
GPU) to perform the required optimisation, or accept ap-
proximate solutions for the reconstruction.

This paper contains a theoretical contribution under the
second paradigm. We introduce a coreset approximation
scheme (more below) and prove its validity for multiple
view 3D reconstruction, specifically for triangulation.

Triangulation is the task of estimating the 3D coordinates
of a scene point from multiple 2D image observations of the
point, given that the pose of the cameras are known [1].
The task is of fundamental importance to 3D vision, since
it enables the recovery of the 3D structure of a scene.
Whilst in theory structure and motion must be obtained
simultaneously, there are many settings, such as large-scale
reconstruction [2], [3] and SLAM [4], where the camera
poses are first estimated with a sparse set of 3D points,
before a denser scene structure is produced by triangulating
other points using the estimated camera poses.

An established approach for triangulation is by `∞
minimisation [5]. Specifically, we seek the 3D coordinates
that minimise the maximum reprojection error across all
views. Unlike the sum of squared error function which
contains multiple local minima, the maximum reprojection
error function is quasiconvex and thus contains a single
global minimum. Algorithms that take advantage of this
property have been developed to solve such quasiconvex
problems exactly [6], [7], [8], [9], [10], [11], [12], [13]. In

• The authors are with the School of Computer Science, The University of
Adelaide, Adelaide, SA, 5000, Australia.
E-mail: {qianggong.zhang, tat-jun.chin}@adelaide.edu.au

particular, Agarwal et al. [10] showed that some of the
most effective algorithms belong to the class of generalised
fractional programming (GFP) methods [14], [15].

Although algorithms for `∞ triangulation have steadily
improved, there is still room for improvement. In particu-
lar, on large-scale reconstruction problems or SLAM where
there are usually a significant number of views per point
(recall that the size of a triangulation problem is the number
of 2D observations of a scene point), the computational cost
of many of the algorithms can be considerable; we will
demonstrate this in Section 5. A major reason is that the
algorithms need to repeatedly solve convex programs to
determine the update direction, which is of cubic complexity
in worst case. It is thus of interest to investigate effective
approximate algorithms.

1.1 Contributions

As alluded above, our main contribution in this paper is
theoretical. Specifically, we prove that the `∞ triangulation
problem admits a coreset approximation scheme [16], [17]. A
coreset is a small representative subset of the data that ap-
proximates the overall distribution of the data. In the context
of `∞ triangulation from N views, our algorithm iteratively
accumulates a coreset, such that the error from solving the
problem on the coreset is bounded within a factor of (1 + ε)
from the theoretically achievable minimum. Given a desired
ε, we establish a stopping criterion for the algorithm such
that the output coreset gives the required approximation ac-
curacy. This provides a mathematically justified way to deal
with large-scale problems where considering all available
data may not be desirable or worthwhile.

Iterated until convergence, the coreset algorithm is guar-
anteed to attain the globally optimal solution. We experi-
mentally demonstrate that the algorithm can in fact find the
global minimiser much faster than many state-of-the-art `∞
triangulation methods. This superior performance was es-
tablished on publicly available large scale 3D reconstruction
datasets. From a practical standpoint, our algorithm thus
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provides a useful anytime behaviour, i.e., the algorithm can
simply be run until convergence, or until the time budget is
exhausted. In the latter case, we have a guaranteed bound
of the approximation error w.r.t. the optimum.

The existence of coresets for quasiconvex vision prob-
lems was speculated by Li [18]. However, little progress
has been made on this subject since. We provide a positive
answer on one such problem. Our work is also one of
the first to extend the idea of coresets in computational
geometry [16], [17] to computer vision.

2 BACKGROUND

Let {Pi,ui}Ni=1 be a set of data for triangulation, consisting
of camera matrices Pi ∈ R3×4 and observed image positions
ui ∈ R2 of the same scene point x ∈ R3. In this paper,
by a “datum” we mean a specific camera and image point
{Pi,ui}. Let X = {1, . . . , N} index the set of data. The
`∞ technique estimates x by minimising the maximum
reprojection error

min
x

max
i∈X

r(x | Pi,ui), (1)

subject to P3
i x̃ > 0 ∀ i ∈ X .

where

r(x | Pi,ui) =

∥∥∥∥ui −
P1:2
i x̃

P3
i x̃

∥∥∥∥
2

(2)

is the reprojection error. Here, P1:2
i and P3

i respectively
denote the first-two rows and third row of Pi, and x̃ is
x in homogeneous coordinates. The reprojection error is
basically the Euclidean distance between the observed point
ui and the projection of x onto the i-th image plane. The
cheirality constraints P3

i x̃ > 0 ∀i ∈ X ensure that the
estimated point lies in front of all the cameras.

Problem (1) belongs to a broader class of problems called
generalised linear programs (GLP) [19]. Two properties of
GLPs that will be useful later in this paper, are stated in the
context of (1) as follows.

Property 1 (Monotonicity). For any C ⊆ X ,

min
x

max
i∈C

r(x | Pi,ui) ≤ min
x

max
i∈X

r(x | Pi,ui) (3)

given the appropriate cheirality contraints on both sides.

Property 2 (Support set). Let x∗ and δ∗ respectively be the
minimiser and minimised objective value of (1). There exists a
subset B ⊆ X with |B| ≤ 4, such that for any C that satisfies
B ⊆ C ⊆ X , the following holds

δ∗ = min
x

max
i∈B

r(x | Pi,ui)
= min

x
max
i∈C

r(x | Pi,ui) = min
x

max
i∈X

r(x | Pi,ui)
(4)

given the appropriate cheirality contraints. In fact, the three
problems in (4) have the same minimiser x∗. Further,

r(x∗ | Pi,ui) = δ∗ for any i ∈ B. (5)

The subset B is called the “support set” of the problem.

See [18], [19], [20] for details and proofs related to the
above properties. Intuitively, (5) states that, at the solution
of (1), the minimised maximum error occurs at the support
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Fig. 1. Triangulating a point x observed in 10 views. The red ‘+’ is
the `∞ solution x∗. Observe that there are four views/measurements
with the same residual at x∗. The index of the support set is thus
B = {7, 8, 9, 10}.

set B. Fig. 1 illustrates this property. Further, (4) states that
solving (1) amounts to solving the same problem on B.
Many classical algorithms in computational geometry [21],
[22], [23] exploit this property to solve GLPs.

3 CORESET ALGORITHM

We first describe the coreset algorithm and focus on its
operational behaviour, before embarking on a discussion of
its convergence properties in Sec. 3.2 and the derivation of
the coreset approximation bound in Sec. 3.3.

3.1 Main Operation
The coreset algorithm for `∞ triangulation is listed in Al-
gorithm 1. The primary objective is to seek a representa-
tive subset Cs ⊆ X of the data. This is accomplished by
iteratively accumulating the data that should appear in the
subset, where the datum that is selected for inclusion at each
iteration is the most violating datum; see Step 6. The size of
the subset, and equivalently the runtime of the algorithm, is
controlled by the desired approximation error ε. To achieve,
for e.g., a 1% approximation error, set ε = 0.01.

Observe that Algorithm 1 is a meta-algorithm, since it
requires executing a solver for (1) on the data subset indexed
by the current subset Ct (see Steps 3 and 14). Any of the
previous `∞ triangulation algorithms [6], [7], [8], [9], [10],
[11] can be applied as the solver.

There are two terminating conditions for Algorithm 1:

1) Iteration counter t reaches d2/εe.
In this case, the output Cs indexes a coreset with the
desired approximation accuracy ε. Section 3.3 will es-
tablish the error bound for approximating (1) using the
data indexed by Cs.

2) The global minimiser has been found (Step 8).

The satisfaction of the condition in Step 7 implies
that Ct−1 already contains the support set B, since the
largest error across all X is not larger than the value of
(1) on the data indexed by Ct−1; see Property 2.

To aid intuition, a sample partial run of Algorithm 1 is
shown in Fig. 2.
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(a) t = 1 (initialisation) (b) t = 2 (c) t = 3 (d) t = 4

Fig. 2. A sample run of Algorithm 1 on the data displayed in Fig. 1. (a) Four image measurements/camera viewpoints (in red) were selected to form
the initial coreset C1. The current solution x1 is shown as a red cross. (b)–(d) Algorithm 1 progressively inserts new data into the coreset. Data in
the current coreset is shown in black, and the newly inserted datum (chosen according to Step 6) is shown in red. Similary, the previous solutions
xs are shown in black, and the current estimate is shown in red. If terminated at t = d2/εe, the estimate is a ε-approximation of the true optimum.
Iterated until convergence, the global optimum is achieved. For anytime behaviour, the error bound can be backtracked (see Sec. 3.5) to obtain the
approximation error of the last estimate at termination.

Algorithm 1 Coreset algorithm for `∞ triangulation (1).

Require: Input data {Pi,ui}Ni=1, approximation error ε.
1: Randomly permute the order of {Pi,ui}Ni=1, and define
X = {1, . . . , N}.

2: s← 0, γ ←∞, g ← 0, C1 ← {1, 2, 3, 4}.
3: (x1, δ1) ← Minimiser and minimised value of (1) on

data indexed by C1
4: t← 2
5: while t ≤ d2/εe do
6: q ← argmax i∈X r(xt−1 | Pi,ui).
7: if r(xt−1 | Pq,uq) ≤ δt−1 then
8: /* Found global minimum */

s← t− 1, g ← 1, exit while loop.
9: end if

10: if r(xt−1 | Pq,uq) < γ then
11: /* Found a better coreset */

s← t− 1, γ ← r(xt−1 | Pq,uq).
12: end if
13: Ct ← Ct−1 ∪ {q}.
14: (xt, δt) ← Minimiser and minimised value of (1) on

data indexed by Ct.
15: t← t+ 1.
16: end while
17: if g = 0 then
18: q ← argmax i∈X r(xd2/εe | Pi,ui).
19: if r(xd2/εe | Pq,uq) < γ then
20: s← d2/εe.
21: end if
22: end if
23: return Cs, xs and δs.

3.2 Convergence to Global Minimum

If we are only interested in the global minimiser x∗, then ε
should be set to 0 (or a value small enough such that d2/εe ≥
N − 3). We prove that with this setting Algorithm 1 will
always find x∗ in a finite number of steps.

Theorem 1. If d2/εe ≥ N − 3, then Algorithm 1 finds x∗ in
finite time.

Proof. Let q be obtained according to Step 6.
• If q ∈ Ct−1, then, by how xt−1 and δt−1 were calculated

in Step 14, the condition in Step 7 must be satisfied and
xt−1 is the global minimiser.

• If q /∈ Ct−1 and the condition in Step 7 is satisfied, then
equation (4) is implied and xt−1 is the global minimiser.

• If q /∈ Ct−1 and the condition in Step 7 is not satisfied,
then Algorithm 1 will insert q into Ct−1. There are at
most N of such insertions (including the initial four
insertions into C1). If d2/εe ≥ N − 3, in the worst case
all of X will finally be inserted, and Cd2/εe = X and
xd2/εe = x∗.

Note that, whilst Algorithm 1 needs to repeatedly call an
`∞ solver, it only invokes the solver on a small subset Ct of
the data. Second, the way a new datum is selected (Step 6)
to be inserted into Ct−1—basically by choosing the most
violating datum w.r.t. the current solution—enables B to be
found quickly. Section 5 demonstrates that Algorithm 1 can
in fact find the global minimiser much more efficiently than
invoking an `∞ solver [6], [7], [8], [9], [10], [11] in “batch
mode” on the whole input data X .

Utilised as a global optimiser (i.e., set ε = 0), Algo-
rithm 1 can be viewed as a Las Vegas style randomised
algorithm, since it always finds the correct result but a
non-deterministic runtime. In addition, as indicated in the
proof of Theorem 1, in the worst case Algorithm 1 takes N
iterations since it considers each measurement at most once.

3.3 Coreset Approximation
Our primary contribution is to show that the subset Cs
output by Algorithm 1 is a coreset of the `∞ triangulation
problem (1). This is conveyed by the following theorem,
which bounds the error of approximating (1) using Cs.
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Theorem 2. Let Cs, xs and δs be the output of Algorithm 1.
Then

max
i∈X

r(xs | Pi,ui) ≤ (1 + ε)δ∗, (6)

where δ∗ is the minimised objective value for problem (1) on the
full data X .

Intuitively, the above theorem states that the error of
approximating x∗ with xs (the latter was computed using
the Cs output by Algorithm 1) is at most (1 + ε)-times of
the smallest possible error. This provides a mathematically
justified way of dealing with large scale problems. The rest
of this subsection is devoted to proving Theorem 2.

First, we define the set of geometrical quantities in Fig. 3.
For an arbitrary camera matrix P with measurement u, the
reprojection error of a given x is

r(x | P,u) =

∥∥∥∥u−
P1:2x̃

P3x̃

∥∥∥∥
2

= ‖u− fP(x)‖2 , (7)

where fP(x) is the projection of x onto the image. Given
a set of data {Pi,ui}Ni=1, let x∗ be the global minimiser
of (1). Define a disc on the image plane with centre u and
radius r(x∗ | P,u); backprojecting this disc creates a solid
elliptic cone cP(x∗). Define hP(x∗) as the tangent plane on
the surface of cP(x∗) that contains x∗.

Fig. 3. Definition of several geometrical quantities for `∞ triangulation.

We now establish several intermediate results. In the
following, we consider only x ∈ R3 that lies in front of the
camera, i.e., x is never on the same side of the image plane
as the camera centre.

Lemma 1. x is inside cP(x∗) iff r(x | P,u) < r(x∗ | P,u).

Lemma 2. x is on the same side of hP(x∗) as u iff the angle
θ formed by the three points u : fP(x∗) : fP(x) is acute, i.e.,
θ < 90◦.

Lemma 3. x is on the opposite side of hP(x∗) as u iff the angle
θ formed by the three points u : fP(x∗) : fP(x) is obtuse, i.e.,
θ > 90◦.

The above three lemmata can be proven easily by in-
specting Fig. 3. As an extension of Lemma 2, the following
statement can be made.

Lemma 4. The angle ∠(u : fP(x∗) : fP(x)) is acute iff there is
a line segment

S = {x′ | x′ = x∗ + α(x− x∗), 0 ≤ α < 1} (8)

(i.e., S has a start point at x∗ and lies along vector x− x∗) such
that any point x′ on S will give a strictly smaller reprojection
error than x∗, i.e.,

r(x′ | P,u) < r(x∗ | P,u) ∀ x′ ∈ S. (9)

Proof. If ∠(u : fP(x∗) : fP(x)) is acute, then from Lemma 2,
x must be on the same side of hP(x∗) as u. The line segment
joining x and x∗ must thus intersect the inside of cP(x∗);
this intersection gives S. Since S is inside cP(x∗), from
Lemma 1 any x′ ∈ S must give a strictly smaller reprojection
error than x∗.

The reverse direction can be proven by realising that any
x′ which gives a strictly smaller reprojection error than x∗

must lie in cp(x∗). Any line segment that joins x∗ and x
with x′ in the middle must lie on the same side of hP(x∗) as
u. From Lemma 2, ∠(u : fP(x∗) : fP(x)) must be acute.

Of central importance is the following result.

Lemma 5. Let {Pi,ui}Ni=1 be a set of data, x∗ be the global
minimiser of (1) on the data, and δ∗ be the minimised value of (1).
For an arbitrary x ∈ R3 in front of the camera, there exists a
datum {Pj ,uj} such that

∠(uj : fPj (x∗) : fPj (x)) > 90◦. (10)

Via the cosine rule, the above inequality can be re-expressed as

r(x | Pj ,uj)2 ≥
∥∥fPj

(x)− fPj
(x∗)

∥∥2
2

+ r(x∗ | Pj ,uj)2.
(11)

Proof. From (5), at the solution x∗ there must exist a support
set B such that the data indexed by B attain the minimised
maximum residual δ∗.

It is sufficient to consider B. We aim to contradict the
following assumption:

∃x s.t. ∠(ui : fPi
(x∗) : fPi

(x)) < 90◦ ∀ i ∈ B. (12)

Given an x that satisfies (12), Lemma 4 states that for each
i ∈ B, there is a line segment Si that lies completely inside
cPi

(x∗).
Amongst all the segments Si, i ∈ B, pick the shortest

one and call it S̄. The segment S̄ must lie simultaneously in
all of the cones cPi

(x∗), i ∈ B (recall from (8) that all Si’s
begin at x∗ and lie along vector x − x∗). Any x′ ∈ S̄ must
thus yield a strictly smaller reprojection error than x∗ for all
{Pi,ui}, i ∈ B. This contradicts that B is a support set, thus
falsifying (12).

The falsity of (12) implies that for an arbitrary x, there
must be an i ∈ B such that ∠(ui : fPi(x

∗) : fPi(x)) > 90◦—
set j as that i.

Given the above results, we adapt Bǎdoiu and Clarkson’s
derivation [17] to yield the inequality (6) for triangulation.
Define

δ̄ := (1 + ε)δ∗,

λt := δt/δ̄,

kP := ‖fP(x1)− fP(x2)‖2 .
(13)
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Note that 0 ≤ λt ≤ 1. Further, since Ct ⊆ X , from
Property 1, δt ≤ δ∗, thus

λt ≤ δ∗/δ̄ = 1/(1 + ε). (14)

We aim to disprove the following assumption:

@t ≥ 2 such that max
i∈X

r(xt | Pi,ui) ≤ (1 + ε)δ∗. (15)

In words, (15) effectively states that none of the Ct accumu-
lated throughout the iterations in Algorithm 1 gives a (1+ε)
approximation to (1).

For any t ≥ 2, Lemma 5 states that there exists a j ∈ Ct−1
such that

r(xt | Pj ,uj)2

≥
∥∥fPj

(xt)− fPj
(xt−1)

∥∥2
2

+ r(xt−1 | Pj ,uj)2

= (k
Pj

t )2 + δ2t−1

(16)

(recall that j indexes a datum in the support set of the data
indexed by Ct−1, thus r(xt−1 | Pj ,uj) = δt−1). Then

r(xt | Pj ,uj) ≥
√
λ2t−1δ̄

2 + (k
Pj

t )2. (17)

For the q chosen in iteration t (Step 6 in Algorithm 1), via
triangle inequality

r(xt−1 | Pq,uq)
≤ r(xt | Pq,uq) +

∥∥fPq
(xt)− fPq

(xt−1)
∥∥
2
,

(18)

implying that

r(xt | Pq,uq)
≥ r(xt−1 | Pq,uq)−

∥∥fPq
(xt)− fPq

(xt−1)
∥∥
2

= r(xt−1 | Pq,uq)− kPq

t > δ̄ − kPq

t .

(19)

The last inequality follows from the assumption in (15)
which states that none of the Ct for t ≥ 2 gives a (1 + ε)
approximation of (1).

Since both j and q are in Ct, by combining (17) and (19)
we obtain

λtδ̄ = δt ≥ max (r(xt | Pj ,uj), r(xt | Pq,uq))

≥ max

(√
λ2t−1δ̄

2 + (k
Pj

t )2, δ̄ − kPq

t

)
.

(20)

Recall the definition of kPj

t and kPq

t :

k
Pj

t =
∥∥fPj

(xt)− fPj
(xt−1)

∥∥
2
, (21)

k
Pq

t =
∥∥fPq (xt)− fPq (xt−1)

∥∥
2
. (22)

Geometrically, these quantities represent the 2D projection,
respectively on cameras j and q, of the 3D shift ‖xt−xt−1‖2
between the current and previous estimates.

At this juncture, the rest of the proof diverges based on
the following conditions:

k
Pj

t ≥ k
Pq

t or k
Pj

t < k
Pq

t . (23)

Condition 1. kPj

t ≥ k
Pq

t .

Under Condition 1, and following from (20),

λtδ̄ ≥ max

(√
λ2t−1δ̄

2 + (k
Pj

t )2, δ̄ − kPq

t

)

≥ max

(√
λ2t−1δ̄

2 + (k
Pj

t )2, δ̄ − kPj

t

)
,

(24)

where the second inequality follows since kPj

t and k
Pq

t are
both non-negative quantities. Interpreting the arguments in
the second max

√
λ2t−1δ̄

2 + (k
Pj

t )2 and δ̄ − kPj

t (25)

as two functions of kPj

t , observe that the first function
increases with k

Pj

t whilst the second decreases with k
Pj

t .
Therefore, the RHS of (24) achieves its minimum when

√
λ2t−1δ̄

2 + (k
Pj

t )2 = δ̄ − kPj

t . (26)

Solving (26) for kPj

t and replacing it in (24), we arrive at

λtδ̄ ≥
1 + λ2t−1

2
δ̄ =⇒ 1− λt ≤

1− λ2t−1
2

. (27)

The second inequality in (27) can “inverted” as

1

1− λt
≥ 2

(1− λt−1)(1 + λt−1)
(28)

=
1

1− λt−1
+

1

1 + λt+1
>

1

1− λt−1
+

1

2
, (29)

where the last step is due to λt−1 < 1. By recursively
expanding the above from t, t − 1, . . . , 2, and recalling that
0 ≤ λ1 ≤ 1, we obtain

1

1− λt
>

1

1− λ1
+
t− 1

2
> 1 +

t− 1

2
, (30)

which implies

λt > 1− 2

1 + t
. (31)

For t = d2/εe+ 1 the last inequality reduces to

λd2/εe+1 > 1− 2

1 + (2/ε+ 1)
=

1

1 + ε
(32)

which contradicts (14). Thus, (15) cannot be true. Whilst it
may be disconcerting that we have chosen an iteration count
t = d2/εe + 1 that does not exist in Algorithm 1, for the
purpose of a theoretical argument we can always arbitrarily
extend the algorithm by one iteration.

Since (15) is false, there must be a 2 ≤ t ≤ d2/εe (say
t∗) that yields a (1 + ε) approximation. The set index by Cs,
which satisfies

max
i∈X

r(xs | Pi,ui) ≤ max
i∈X

r(xt∗ | Pi,ui) ≤ (1 + ε)δ∗, (33)

is thus a coreset. Assuming Condition 1 is always satisfied,
therefore, the proof for Theorem 2 is complete.

Condition 2. kPj

t < k
Pq

t .

The above derivations for Condition 1 unfortunately do
not cover Condition 2. In other words, if Condition 2 occurs
during the iterations in Algorithm 1, we cannot guarantee
that the output coreset Cs satisfies Theorem 2.

Fortunately this deficiency can be rectified by a small
tweak to Algorithm 1. Specifically, we replace Steps 13 to
15 in the main algorithm with the slightly more elaborate
steps in Algorithm 2. Note that index j in Algorithm 2
is appropriately chosen from Ct−1 according to Lemma 5.
Intuitively, the modification causes Algorithm 1 to “skip a
step” whenever Condition 2 presents itself; namely, the most



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2750672, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Algorithm 2 Pseudo-code to replace Steps 13 to 15 in
Algorithm 1 to accommodate Condition 2.

1: if kPj

t ≥ k
Pq

t then
2: Ct ← Ct−1 ∪ {q}.
3: (xt, δt) ← Minimiser and minimised value of (1) on

data indexed by Ct.
4: t← t+ 1.
5: else
6: Ct−1 ← Ct−1 ∪ {q}.
7: (xt−1, δt−1)← Minimiser and minimised value of (1)

on data indexed by Ct−1.
8: end if

violating datum q is still inserted into the coreset, but the
iteration counter is not incremented.

With the modification above and by Property 1, we have
that two successive coresets Ct−1 and Ct give

δt−1 ≤ δt, (34)

since Ct−1 ⊆ Ct. Thus, all the derivations starting from (20)
will hold, and the output coreset Cs from Algorithm 1 with
the above modification will always satisfy Theorem 2.

3.4 Size of Output Coreset and Runtime Analysis

With the modification to account for Condition 2, we must
anticipate that in general

|Ct| − |Ct−1| ≥ 1, (35)

i.e., there could be occurrences of Condition 2 between any
two successive increments to the iteration counter. This also
implies that the size of the output coreset Cs is

d2/εe+ 3 + V, (36)

where V is the total number of occurrences of Condition 2
throughout Algorithm 1 (recall that C1 is initialised already
with four of the available measurements).

To facilitate the analysis of the runtime, define α as the
probability of Condition 2 occurring at a particular iteration
of the main loop (thus, V = αd2/εe/(1− α)). Therefore, the
number of times the main loop is traversed is

d2/εe/(1− α). (37)

We argue that the value of α is dependent mainly on the
distribution of the cameras and the structure of the scene,
rather than on the number of measurements N itself (see
evidence in Sec. 4). Under this assumption, the number of
effective iterations of Algorithm 1, and hence the size of the
output coreset, depends only on ε.

Of course, the actual runtime of Algorithm 1 depends
closely on the routine used to solve (1) at each iteration.
Many previous studies have shown that (1) can be solved
efficiently [6], [9], [10], more so since the solver need only be
invoked on a small subset Ct at each iteration in Algorithm 1.
Sec. 5 will investigate the actual runtimes of Algorithm 1 on
real image datasets for 3D reconstruction.

3.5 Error Backtracking for Anytime Operation
By anytime mode, we mean the allowance to stop Algo-
rithm 1 prematurely (i.e., before any of the terminating con-
ditions are met) with the ability to bound the approximation
error of the current best estimate xs w.r.t. x∗.

If Algorithm 1 is run up to t = d2/εe (which implies
that global convergence has not occurred before that), then
the bound (6) holds. To facilitate analysis with non-integral
t, we can equivalently state that if Algorithm 1 is run until
at least t = 2/ε, then (6) holds. Inverting the relationship
between t and ε, we can restate the bound as

max
i∈X

r(xs | Pi,ui) ≤ (1 + 2/t)δ∗, (38)

i.e., if Algorithm 1 is run up until an arbitrary t, we can
expect a (2/t)-factor approximation to (1) (note that xs in
this case is the best estimate up to iteration t).

Care must be taken to spell out ”running up until
an arbitrary t”. By this, we mean running the main loop
(Steps 5 to 16) in its entirely (including the modification
summarised in Algorithm 2) under that particular t value,
and then conducting the post-hoc refinement (Steps 17 to 22)
such that the estimate xt from the last coreset Ct has a chance
to be used to update the incumbent xs. If this last update is
not attempted, then (38) is not guaranteed to hold.

4 VALIDATION ON SYNTHETIC DATA

Here we validate our theoretical results above on syntheti-
cally generated data for triangulation.

4.1 Data Generation
We synthesised four types of camera pose distributions:
• Type A: Camera positions were on a straight line.
• Type B: Camera positions were randomly distributed.
• Type C: Camera positions were on a circle.
• Type D: Stereo cameras with fixed baselines and posi-

tions randomly distributed.
For Types B and D, the camera orientations were randomly
generated. For Types A and C, angular noise was added to
the orientation/rotation matrices. In all cases, the cameras
could observe the 3D point to respect cheirality. See Fig. 4 for
sample data instances generated. Type A simulates a robotic
exploration scenario where the robot views a scene from
a directed trajectory [4], Type B simulates large-scale 3D
reconstruction from crowd-sourced images [2], Type C sim-
ulates the usage of a rotating platform for 3D modelling [24],
and Type D simulates large-scale 3D reconstruction using
stereo cameras [25].

For each camera distribution, N image measure-
ment/camera matrix pairs {Pi,ui}Ni=1 are generated by
projecting the 3D point onto each camera and corrupting
the projected point with Gaussian noise σ = 10 pixels.

4.2 Validation of Approximation Accuracy
To experimentally validate Theorem 2, one instance of each
of the camera distribution type in Fig. 4 withN = 100 views
were generated. For each camera distribution, 200 3D scene
points were created (in a way that the 3D points are observ-
able in all N cameras) and projected onto the N cameras.
This created a total of 200 triangulation instances (1).
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(a) Type A (b) Type B (c) Type C (d) Type D

Fig. 4. The four types of synthetically generated triangulation instances. Type A: Camera positions are on a straight line; Type B: Camera positions
are randomly distributed; Type C: Camera positions are on a circle; Type D: Stereo cameras with fixed baselines and positions randomly distributed.
In all cases, the cameras are roughly oriented towards the 3D point to respect cheirality.

On each triangulation instance, we executed Algo-
rithm 1. The approximation error ratio

maxi∈X r(xs | Pi,ui)
δ∗

(39)

achieved by the current estimate xs at each t is plotted;
these are shown as red curves in Fig. 5 (one curve for each
triangulation instance). Note that the horizontal axis begins
at t = 2, since the bound (38) is not guaranteed to hold for
the initial coreset C1. Note also that due to the allowance of
“skipping” by inserting Algorithm 2 into Algorithm 1, each
t can involve several updates to xs; in Fig. 5 we plotted the
error ratio pertaining to final xs in each t.
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Fig. 5. Approximation error ratios (39) across counter t (red curves) for
200 synthetically generated triangulation instances. The blue curve is
the upper bound on the error ratio (1 + 2/t) as predicted by Theorem 2.

By the backtracking formula (38), the approximation
error ratios should lie below the curve

1 + 2/t; (40)

this curve is plotted in blue in Fig. 5. As predicted, the
bound is respected across all t. In Sec. 5, we will further
validate Theorem 2 using real image data.

4.2.1 Illustrating Effect of Condition 2
The effect of Condition 2 on Algorithm 1 is demonstrated
in Fig. 6. On one of the synthetic triangulation instances,
Fig. 6(a) plots the approximation error ratio (39) against
the coreset size, as the coreset is being accumulated in
Algorithm 1 (the horizontal axis thus begins at 5 since the
initial coreset C1 has size 4). The effects of skipping on the

ratio bound (40) to account for Condition 2 is also shown;
specifically, as the coreset is increased from size 8 to 9,
Condition 2 occured and t was not incremented. Hence the
bound (40) does not decrease between these two steps.

Fig. 6(b) plots the approximation error ratios for all the
synthetic triangulation instances from Fig. 5 against coreset
size. In this figure, since Condition 2 occurred at different
iterations for the respective problem instances, the bounding
curve is not plotted. Observe that all the problem instances
converged to a coreset size that is not very much larger than
the value of t at the time of convergence, cf. Fig. 5.
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Fig. 6. (a) Approximation error ratio (39) plotted against coreset size
for one of the synthetic data instances. In this instance, Condition 2 oc-
curred as the coreset was increased from size 8 to 9, thus the bound (40)
does not decrease between these two iterations. (b) Approximation error
ratio plotted against coreset size for all the synthetic data instances.
Since Condition 2 occurred at different iterations for the respective
problem instances, the bounding curve is not plotted.
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4.2.2 Probability of Condition 2

We demonstrate that the probability α of the occurrence of
Condition 2 in any problem instance is mainly affected by
the way the camera poses are distributed, and is not a factor
of problem size N . For a complete execution of Algorithm 1
on the following particular problem instances, we obtain
α empirically as the ratio of the number of occurrence of
Condition 2 over the effective number of iterations in the
algorithm.

The experimental settings were as follows: for each type
of camera distribution, 200 3D points were randomly gener-
ated and projected onto N views, where N was varied from
100 to 10, 000. On each problem instance, Algorithm 1 was
executed 20 times (with random initialisations) and the α
values were recorded. Fig. 7 shows the average α over all
instances as a function of N . Evidently α is almost constant
across N , and the biggest factor in the difference in α is
the type of camera pose distribution (the curves of Types
B and D are similar since they are essentially randomly
distributed camera poses). This supports the analysis in
Sec. 3.4 that the total runtime of Algorithm 1, and hence
the size of the output coreset, is mainly dependent on the
desired approximation factor ε.

The next section will further investigate the size of the
coreset output by Algorithm 1.

0 2000 4000 6000 8000 10000

Number of views - N
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0.6

0.7
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1

,

Type A
Type B
Type C
Type D

Fig. 7. Average α (probability of occurrence of Condition 2) as the
problem size N increases, separated according to the type of camera
pose distribution (see Fig. 4).

4.3 Size of Output Coreset

To investigate the size of the output coreset produced by
Algorithm 1 as a function of the approximation error ε,
we generated triangulation instances for the four types
of camera distribution, with 200 3D points in each in-
stance but with varying problem size (number of views)
N ∈ {100, 500, 1000, 5000}. On each instance, the setting of
ε for Algorithm 1 was varied decreasingly from 1 and the
size of the output coreset was recorded.

Fig. 8 plots the maximum coreset size as a function of
ε, averaged across all instances, but separated according to
type of camera pose distributions and problem size N . The
results show that the coreset size depends mainly on ε and
is independent of the problem size N . Further, for all the
data settings/parameters, the coreset size did not exceed
12. For some of the types of distribution, the coreset size
also converged earlier due to earlier global convergence.

5 EXPERIMENTS ON REAL DATA

We conducted experiments on real data to validate Theo-
rem 2 and investigate the performance of Algorithm 1 for
`∞ triangulation. We used a standard machine with 3.2 GHz
processor and 16 GB main memory.

5.1 Datasets and Initialisation
We tested on publicly available datasets for large scale
3D reconstruction, namely, Vercingetorix Statue, Stockholm
City Hall, Arc of Triumph, Alcatraz, Örebro Castle [26], [27],
and Notre Dame [2]. The a priori estimated camera poses and
intrinsics supplied with these datasets were used to derive
camera matrices. For triangulation, the size of an instance is
the number of observations of the target 3D point. To avoid
excessive runtimes, we randomly sampled 10% of the scene
points in each dataset - this reduces the number of problem
instances, but not the size of each of the selected instances. A
histogram of the problem sizes for each of the above datasets
are shown in the top left panel of Figs. 10 to 15.

Our coreset method was initialised as shown in the
first few steps in Algorithm 1, which amounts to randomly
choosing four data to instantiate x1 by solving (1). For any
other algorithm that requires initialisation, the same x1 or
its current maximum reprojection error were provided as
the initial estimates.

5.2 Validation of Approximation Accuracy
The top right panel in Figs. 10 to 15 show the actual ratio
of errors versus the predicted ratio (using the backtracking
formula in Sec. 3.5) across the iterations of Algorithm 1
for all problem instances in the datasets. Again, the results
confirm the validity of Theorem 2.

5.3 Relative Speed-up of Coreset over Batch
Here we investigate the practicality of Algorithm 1 as a
global optimiser for `∞ triangulation. As described in Sec-
tion 3, Algorithm 1 is a meta-algorithm which requires a
sub-routine to solve (1) on the subset indexed by Ct. We
thus compared running Algorithm 1 with a specific solver
as a sub-routine, and the direct execution of the same solver
in “batch mode” on the whole data. Since the runtime of
Algorithm 1 depends on the efficiency of the embedded
solver, the key performance indicator here is the relative
speed-up achieved by coreset over batch.

Based on the investigations in [10], we have chosen to
use bisection [6] and Dinkelbach’s method [14] (equivalent
to [9]) to embed into Algorithm 1. Although the best per-
forming technique in [10] was Gugat’s algorithm [15], our
experiments suggested that it did not outperform Dinkel-
bach’s method on the triangulation problem. SeDuMi [28]
was used to solve the SOCP sub-problems in [6], [14].

The bottom diagrams of Figs. 10 to 15 show the average
runtime of coreset and batch as a function of problem size
(number of views), for each respective `∞ solver. Observe
that the runtime of batch increased linearly and then expo-
nentially, whilst coreset exhibited almost constant runtime—
the latter observation is not surprising, since Algorithm 1
usually terminated at ≤ 10 iterations regardless of the
problem size at shown in the top right panel.
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(d) N=5000

Fig. 8. Average size of coreset plotted against decreasing ε, separated according to the four types of camera distribution as in Fig. 4. Panel (a),(b),(c),
and (d) are the results respectively for N = 100, 500, 1000, and 5000.

Of course, on all of the datasets, most of the triangulation
instances are small, as shown in the histogram at the upper
left panel of Figs. 10 to 15. However, in these datasets,
there are sufficient numbers of moderate to large problem
instances, such that the total runtime of coreset is still much
smaller than then total runtime of batch. Table 1 shows
the total and average runtime of the variants considered.
Evidently, coreset outperformed batch in all the datasets.

Although in principle any `∞ solver for `2 norm repro-
jection error [6], [7], [9], [10], [11] can be used in Algorithm 1,
we emphasise again that the primary performance indicator
here is the relative speed-up of coreset over batch. If a faster
solver is used, it would likely improve both coreset and
batch by the same factor.

5.4 Extensions to `1 and `∞ Reprojection Error
In the literature, apart from the more “traditional” `2 norm
used in the reprojection error (2), different p-norms have
been considered [10], i.e.,

r(x | Pi,ui) =

∥∥∥∥ui −
P1:2
i x̃

P3
i x̃

∥∥∥∥
p

, p ∈ {1, 2,∞}. (41)

Our coreset theory was developed based on p = 2, thus the
approximation bound (Theorem 2) will not hold for other p.

It is nonetheless feasible to apply Algorithm 1 as a meta-
algorithm for solving `∞ triangulation (1) under different
reprojection errors. Since problem (1) remains a GLP (Sec. 2)
for p = 1 and p = ∞ in (41), global convergence is
guaranteed. It is thus of interest to compare the relative
speed-up given by the coreset method over a batch method
in finding the globally optimal solution.

Table 2 shows the results of repeating the experiment
in Sec. 5.3 with p = 1 and p = ∞. For p = 1, the

Dinkelbach method was used as the embedded solver for
Algorithm 1. For p = ∞, the state-of-the-art polyhedron
collapsed method [13] was used as the embedded solver.
Evidently the results show that the coreset method is able to
significantly speed up global convergence.

6 DEALING WITH OUTLIERS

While the existence of outliers in the measurements (e.g.,
from incorrect feature associations) is transparent to Algo-
rithm 1 (i.e., the error bound in Theorem 2 will still hold),
the result will of course be biased by the outliers—after all,
the `∞ framework is not inherently robust [29].

Nonetheless, Sim and Hartley [20] showed how an ef-
fective outlier removal scheme can be constructed based on
`∞ estimation. Basically, their scheme recursively conducts
`∞ estimation and removes the support set (see Property 2)
from the input data until the maximum residual is below
a pre-determined inlier threshold. The remaining data then
forms an inlier set.

Here, in the context of triangulation with outliers, we
showed how the efficiency of Sim and Hartley’s scheme can
be improved by using Algorithm 1 (with a high ε) as a fast
`∞ solver. Due to the approximation by Algorithm 1, instead
of removing the support set, we remove the 4 measurements
with the largest residuals.

Fig. 9 compares the runtime and number of remaining
inliers produced by Sim and Hartley’s original scheme (with
Dinkelbach’s method as the `∞ solver) and our coreset-
enabled scheme (with ε = 0.4). The results are based on 100
3D scene points projected onto N views (10 ≤ N ≤ 500),
and where 90% of the 2D measurements in each problem
instance were corrupted with Gaussian noise of σ = 5
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Total runtime (seconds)
Bisection solver Dinkelbach solver

Dataset Scene points (number
of triang. instances)

Number of views
(max. triang. size)

Batch Coreset Batch Coreset

Vercingetorix 594 68 57 44 (23%) 23 17 (26%)
Stockholm 2176 43 258 177 (31%) 109 74 (32%)

Arc of Triumph 2744 173 607 243 (59%) 204 89 (56%)
Alcatraz 4431 419 1231 520 (57%) 452 239 (47%)

Örebro Castle 5943 761 4052 800 (80%) 1440 351 (75%)
Notre Dame 7149 715 4148 696 (83%) 2399 582 (75%)

TABLE 1
Comparisons between coreset and batch in terms of total runtime in seconds. For coreset, the number in parentheses indicates the percentage of

reduction in runtime by using the coreset method over the batch counterpart.

Total runtime (seconds)
Dinkelbach (p = 1) Polyhedron (p =∞)

Dataset Scene points (number
of triang. instances)

Number of views
(max. triang. size)

Batch Coreset Batch Coreset

Vercingetorix 594 68 1.61 1.58 (13%) 1.82 1.83 (-1%)
Stockholm 2176 43 10.4 9.87 (19%) 12.2 11.7 (4% )

Arc of Triumph 2744 173 20.5 12 (49%) 23.5 14.1 (40%)
Alcatraz 4431 419 166 40 (73%) 146 28.9 (80%)

Örebro Castle 5943 761 1011 56 (94%) 887 52.2 (94%)
Notre Dame 7149 715 1535 116 (87%) 865 31.7 (96%)

TABLE 2
Comparisons between coreset and batch in terms of total runtime in seconds, under the `1 and `∞ reprojection error (41). For `1 reprojection
error, the Dinkelbach method was used as the embedded solver in Algorithm 1. For `∞ reprojection error, the state-of-art polyhedron collapse

method [13] (“Polyhedron” above) was used as the embedded solver in Algorithm 1. For coreset, the number in parentheses indicates the
percentage of reduction in runtime by using the coreset method over the batch counterpart.

pixels (the inliers), while the remaining 10% were corrupted
with larger noise (σ = 30 pixels) to create outliers. The
inlier threshold was set to 10 pixels. Evidently our coreset
modification significantly improved the efficiency of the
original scheme, without significantly affecting the quality
of the result (number of remaining inliers).

7 CONCLUSIONS AND OPEN QUESTIONS

In this paper, we show that `∞ triangulation admits coreset
approximation. We also provided comprehensive experi-
mental results that establish the practical value of the coreset
algorithm on large scale 3D reconstruction datasets.

There are several open questions:
• A deeper analysis of Condition 2 to hopefully remove

it from consideration in the coreset bound, or at least to
better characterise and predict its occurrence.

• The proof in Sec. 3.3 was inspired by the work of [17]
on minimum enclosing ball (MEB) problems. There,
the coreset size bound d2/εe was proven to be tight
if the dimensionality d is comparable to 1/ε. For lower
dimensional MEBs, tighter bounds have been proposed.
It would be of interest to construct such tighter bounds
for `∞ triangulation (d = 3).

Last but not least, we hope that our work encourages
more effort to seek theoretically justifiable approximate
algorithms for large scale geometric computer vision prob-
lems, especially the class of problems surveyed in [6], which
can be seen as GLPs [19].
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Fig. 9. Comparing Sim and Hartley’s outlier removal scheme [20] with
an exact solver (Dinkelbach’s method) and with Algorithm 1. (a) Average
runtime; (b) Number of inliers remaining in the final inlier set (the dashed
green line to indicate the number of inliers in original input).
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Fig. 10. Results for Vercingetorix Statue. (top left) Histogram of problem sizes. (top right) Approximation error ratio versus error ratio bound.
(bottom left) Runtime of coreset vs batch, for bisection solver. (bottom right) Runtime of coreset vs batch, for Dinkelbach solver.
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Fig. 11. Results for Stockholm City Hall. (top left) Histogram of problem sizes. (top right) Approximation error ratio versus error ratio bound. (bottom
left) Runtime of coreset vs batch, for bisection solver. (bottom right) Runtime of coreset vs batch, for Dinkelbach solver.
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Fig. 12. Results for Alcatraz. (top left) Histogram of problem sizes. (top right) Approximation error ratio versus error ratio bound. (bottom left)
Runtime of coreset vs batch, for bisection solver. (bottom right) Runtime of coreset vs batch, for Dinkelbach solver.
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Fig. 13. Results for Arc of Triumph. (top left) Histogram of problem sizes. (top right) Approximation error ratio versus error ratio bound. (bottom
left) Runtime of coreset vs batch, for bisection solver. (bottom right) Runtime of coreset vs batch, for Dinkelbach solver.
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Fig. 14. Results for Örebro Castle. (top left) Histogram of problem sizes. (top right) Approximation error ratio versus error ratio bound. (bottom left)
Runtime of coreset vs batch, for bisection solver. (bottom right) Runtime of coreset vs batch, for Dinkelbach solver.
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Fig. 15. Results for Notre Dame. (top left) Histogram of problem sizes. (top right) Approximation error ratio versus error ratio bound. (bottom left)
Runtime of coreset vs batch, for bisection solver. (bottom right) Runtime of coreset vs batch, for Dinkelbach solver.
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Abstract

The known rotation problem refers to a special case
of structure-from-motion where the absolute orientations
of the cameras are known. When formulated as a mini-
max (`∞) problem on reprojection errors, the problem is
an instance of pseudo-convex programming. Though theo-
retically tractable, solving the known rotation problem on
large-scale data (1,000’s of views, 10,000’s scene points)
using existing methods can be very time-consuming. In this
paper, we devise a fast algorithm for the known rotation
problem. Our approach alternates between pose estimation
and triangulation (i.e., resection-intersection) to break the
problem into multiple simpler instances of pseudo-convex
programming. The key to the vastly superior performance
of our method lies in using a novel minimum enclosing
ball (MEB) technique for the calculation of updating steps,
which obviates the need for convex optimisation routines
and greatly reduces memory footprint. We demonstrate
the practicality of our method on large-scale problem in-
stances which easily overwhelm current state-of-the-art al-
gorithms1.

1. Introduction

Given a number of scene points that were viewed in a
number of images, the goal of structure-from-motion (SfM)
is to estimate the 3D coordinates of the scene points based
on their measured 2D coordinates in the images. The im-
plicit geometric constraints underpinning the imaging sce-
nario also requires the pose of the cameras (each defined
by a rotation and translation) that captured the images to be
recovered jointly with the 3D scene points.

Many current SfM pipelines employ bundle adjustment
(BA) [32] as a core routine. BA refers to the task of jointly
refining the scene points and camera poses, and it is usually
formulated as a non-linear least squares problem. Most BA
implementations are based on the Levenberg-Marquardt al-

1See the supplementary material for demo program.

gorithm, which enables convergence up to local optimality.
In practice, it is vital for the target variables to be initialised
well to avoid convergence to bad local optima.

An alternative SfM pipeline [13, 28, 33, 16, 21] that has
begun to receive attention is as follows: first, estimate rota-
tions by a rotation averaging method, then, keeping the ro-
tations fixed, estimate the scene points and translations; the
latter problem is called the known rotation problem (KRot).
The strength of this approach is two-fold: first, multiple-
rotation averaging can often be solved much more easily (in
certain cases, up to global optimality [24, 26, 12]); second,
when formulated as a minimax (`∞) problem, KRot be-
comes an instance of pseudo-convex programming, which
is also amenable to exact global solutions [18].

In this paper, we focus on KRot. Although the problem
is tractable, as we will demonstrate later, most existing al-
gorithms [17, 19, 27, 25, 4] are not practical on large-scale
inputs involving 1,000’s of views and 10,000’s scene points,
in contrast to modern BA packages, e.g., [30, 20], which
have been applied successfully on such sizes. The ineffi-
ciency of the previous KRot algorithms stems from their
dependence on convex optimisation to drive the iterative up-
dates (see Sec. 2.2 for details). Although convex solvers are
theoretically efficient, in practice, they incur much compu-
tational and memory overheads. Arguably this has also hin-
dered the usability of the alternative SfM pipeline.

Contributions We propose a fast algorithm for KRot.
The overall structure of our method interleaves the calcu-
lation of scene points and translations [22]—akin to the
resection-intersection approach for BA [32].

The primary feature of our algorithm that enables its su-
perior performance over previous techniques lies in a novel
method for solving each pseudo-convex sub-problem. In-
stead of relying on convex routines to compute the update,
our method calculates descent directions in closed-form
based on a novel minimum enclosing ball (MEB) technique.
This leads to a fast and self-contained algorithm (does not
require external convex solvers). The resection-intersection
structure also makes it inherently parallelisable. As we will
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show in Sec. 4, our algorithm can scale up to input sizes that
are beyond the reach of existing methods.

2. Known rotation problem
We assume calibrated cameras. Let M be the number

of scene points and L be the number of cameras. Let sk
be the 3D coordinates of the k-th scene point, and uj,k be
the 2D observation of sk in the j-th image. The pose of
the j-th camera is defined by the rotation and translation
(Rj , tj). Given the 2D observations {uj,k} and rotations
{Rj}, under the minimax formulation [18], we solve

min
{tj},{sk}

max
j,k

∥∥∥∥∥uj,k −
R1:2
j sk + t1:2j
R3
jsk + t3j

∥∥∥∥∥
p

s.t. R3
jsk + t3j > 0 ∀j, k,

(KRot)

to estimate the scene points {sk} and the camera positions
{tj}. Here, R1:2

j and R3
j are respectively the first two rows

and the third row of Rj (similarly for t1:2j and t3j ). Intu-
itively, KRot aims to minimise the maximum reprojection
error over all 2D observations, and the constraints of the
problem ensure that the estimated {sk} lie in front of all the
cameras. As established in [25], KRot is pseudo-convex.

Missing data and outliers Not every scene point is visi-
ble to all images; simply drop (j, k) pairs that are irrelevant
can handle missing data. Also, like most core SfM routines
(including standard BA [32], KRot is not robust to outliers.
This does not reduce the value of KRot techniques, since
removing outliers is usually and effectively done earlier in
the pipeline, e.g., use RANSAC to estimate relative poses.

Choice of norm We leave the choice of the p-norm ‖ · ‖p
in (KRot) free since KRot is pseudo-convex for any p ≥ 1,
and our algorithm works for any p ≥ 1. In practice, typical
choices of the p-norm include ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ [4, 8].

2.1. Resection-intersection

Instead of solving KRot directly, one can alternate be-
tween solving for {tj} and {sk}. In fact, if {tj} are fixed,
the scene points can be optimised independently, viz.:

min
sk

max
j

∥∥∥∥∥uj,k −
R1:2
j sk + t1:2j
R3
jsk + t3j

∥∥∥∥∥
p

s.t. R3
jsk + t3j > 0 ∀j.

(Intk)

Problem (Intk) is simply `∞ triangulation [15], i.e., inter-
secting back-projected image points. Conversely, if {sk}
are fixed, the translations can also be optimised separately,
viz.:

min
tj

max
k

∥∥∥∥∥uj,k −
R1:2
j sk + t1:2j
R3
jsk + t3j

∥∥∥∥∥
p

s.t. R3
jsk + t3j > 0 ∀k.

(Resj)

Problem (Resj) is a special case of the `∞ camera resec-
tioning problem [18]. The above properties motivate the
resection-intersection method summarised in Algorithm 1.

Algorithm 1 Resection-intersection method for KRot.

Require: Input data {Rj}Lj=1, {uj,k}L, Mj=1,k=1.
1: Initialise {tj}Lj=1 and {sk}Mk=1.
2: repeat
3: For each k = 1, . . . ,M , update sk via (Intk).
4: For each j = 1, . . . , L, update tj via (Resj).
5: until convergence
6: return {tj}Lj=1 and {sk}Mk=1.

By performing what is effectively block-wise coordinate
descent, Algorithm 1 ensures convergence to the global op-
timum of KRot. While resection-intersection is eschewed
for BA due to its slower convergence [32], it is effective for
KRot since each sub-problem is pseudo-convex [25]. By
solving (Intk) and (Resj) exactly, the best “step size” is used
in each descent, which leads to fast overall convergence.

Another advantage of Algorithm 1 is that the sub-
problems within either (Intk) or (Resj) are mutually inde-
pendent given that either structure or camera positions are
fixed. Hence, parallel computation can easily be leveraged
for speed-ups; as we will demonstrate later.

2.2. Previous works

Many previous algorithms for KRot attempt to solve the
overall problem directly (e.g., [18, 25, 4, 6, 11]). This re-
quires to simultaneously update all the 3(L+M) variables
in each iteration, which is cumbersome for large-scale prob-
lems. The resection-intersection approach, first introduced
in [22], allows to partition KRot into small sub-problems
without affecting global optimality guarantees.

However, a more fundamental weakness of many previ-
ous methods [18, 19, 27, 25, 4] is that they need to execute
convex optimisation in each step, e.g., linear programming
(LP) or second-order cone programming (SOCP). Though
theoretically efficient, there are significant overheads in
calling these routines. Even though the methods can be re-
purposed to solve KRot via resection-intersection, for large
L and M the (sub-)overheads quickly add up.

There exist approaches that do not depend on convex
optimisation. Based on a primal-dual interior-point frame-
work, Dai et al. [6] perform a Newton-like descent and step
size-search in each iteration. Although they outperformed
previous methods, the need to calculate Hessians for all the
measurements is a significant per-iteration cost. In contrast,
our method only requires the computation of MEB on at
most four 3D points per iteration (see Sec. 3.1.2).

A proximal splitting approach for KRot was proposed
by Eriksson and Isaksson [11]. In a nutshell, their method
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performs a one-step bundle adjustment (i.e., non-linear least
squares) followed by 1D bisection to evaluate the proximal
operator. The speed of convergence depends on the rate
of increase of a penalty parameter, which needs to be con-
trolled properly to avoid divergence. In practice, we found
that often a conservative rate is required for correct results.

Donne et al. [8] proposed a so-called polyhedron col-
lapse method for `∞ triangulation (Intk). Specialising for
the case of p = ∞, they leverage the linearity of the con-
straints to calculate descent directions in closed-form. Our
proposed algorithms for the sub-problems can compute de-
scent directions in closed-form without restricting p.

3. Fast descent method
One major contribution is a fast algorithm for the sub-

problems in Algorithm 1. With simple manipulations,
both (Intk) and (Resj) can be expressed in the common form

min
x∈R3

max
i

ri(x)

s.t. cTi x+ di > 0 ∀i,
(1)

where x are the variables of interest (3D coordinates or
camera position—both 3D quantities in each sub-problem);

ri(x) =
‖Aix+ bi‖p
cTi x+ di

(2)

is the i-th pseudo-convex residual function, and

Ai =

[
aTi,1
aTi,2

]
∈ R2×3, bi =

[
bi,1
bi,2

]
∈ R2, (3)

ci ∈ R3 and di ∈ R are constants derived from the data (see
the supp. material for details of converting (Intk) and (Resj)
into (1)). Since (2) is pseudo-convex [1], their point-wise
maximum is pseudo-convex. Hence, (1) can be solved glob-
ally using iterative minimisation techniques.

Our algorithm, called fast descent method (FDM), is
summarised in Algorithm 2. The structure is simple—given
an initial feasible estimate x̂, find a direction λ and step
size α to adjust x̂ such that the cost (point-wise maximum
residual) decreases; stop when a valid λ cannot be found.
As mentioned in Sec. 1, the key feature of FDM that en-
ables its superior performance lies in a closed-form method
to compute λ. Details of FDM are in the rest of this section.

3.1. Efficient computation of descent direction

Algorithm 3 describes our routine for finding a descent
direction for a current estimate x̂. Let r̂ be the value of the
objective function at x̂, i.e.,

r̂ = max
i

ri(x̂). (4)

Algorithm 2 Fast Descent Method (FDM) for (1).
Require: Input data {Ai,bi, ci, di}Ni=1, initial soln. x̂.

1: λ← Find descent direction using data and x̂.
2: while λ is not null do
3: α← Find step size using data, x̂ and λ.
4: x̂← x̂+ αλ.
5: λ← Find descent direction using data and x̂.
6: end while
7: return x̂.

Algorithm 3 Find descent direction.
Require: Input data {Ai,bi, ci, di}Ni=1, current estimate

x̂, threshold ε0.
1: G ← Norm. negative active gradient vectors at x̂ (6).
2: m∗ ← Centre of MEB of G.
3: if ‖m∗‖2 ≤ ε0 then
4: λ← null.
5: else
6: λ←m∗/ ‖m∗‖2.
7: end if
8: return λ.

The routine begins by finding the set of active residuals A,
i.e., the set of residuals that have the value r̂ at x̂, i.e.,

A ← {` ∈ {1, . . . , N} | r`(x̂) = r̂}. (5)

Then, we compute the normalised negative gradient vectors
G corresponding to the active residuals

G =

{
g ∈ R3

∣∣∣∣ g = − ∇r`(x̂)
‖∇r`(x̂)‖2

,∀` ∈ A
}

(6)

(see the supp. material on deriving the gradient ∇ri(x) for
all p ≥ 1).

A descent direction λ ∈ R3 is computed as the centre
of the minimum closing ball (MEB) of G. Specifically, the
centre of the MEB of G is the point m∗ ∈ R3 where

max
g∈G
‖g −m∗‖2 = min

m∈R3
max
g∈G
‖g −m‖2. (7)

In the following, we prove the validity of this approach be-
fore proposing an algorithm to calculate MEB.

3.1.1 Validity of descent direction

First, we define some notations: a bolded lower case letter
may refer to a vector or a point, depending on the context.
For any x and y, |xy| is the distance between the pair, i.e.,

|xy| := ‖x− y‖2 . (8)
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4xyz is the triangle formed by three points x, y and z, and
∠xyz is the angle between vectors (x−y) and (z−y), i.e.,

∠xyz := arccos

(
(x− y)T (z− y)

‖x− y‖ · ‖z− y‖

)
. (9)

The following are basic results from optimisation. Inter-
ested readers can refer to [23] and the supp. material.

Lemma 1. A direction λ is a descent direction of a function
f(x) at x̂ iff 〈λ,−∇f(x̂)〉 = −∇f(x)Tλ > 0.

Lemma 2. Given a descent direction λ for a function f(x)
at x̂, the larger 〈λ,−∇f(x̂)〉 is, the faster f(x) is reduced
along the direction x̂+ αλ for α > 0.

Our main theorem is as follows.

Theorem 1. If the centre m∗ of the MEB of G is not equal
to the origin, then m∗ is a descent direction for (1) at x̂.

Proof. Let o be the origin. If m∗ 6= o, then by the defini-
tion of MEB (7), for all g ∈ G

|m∗g| < |og|, (10)

which, by the Law of Sines [2], implies

∠m∗og < ∠om∗g (11)

Since the inner angles of a triangle sum to 180◦,

∠m∗og + ∠om∗g < 180◦. (12)

Combining (11) and (12), ∠m∗og < 90◦ is established,
and thus

〈m∗,g〉 = |og||om∗| cos(∠m∗og) > 0. (13)

By Lemma 1, m∗ is a descent direction for all active resid-
uals at x̂, and thus m∗ is also a descent direction for (1) at
x̂ since it reduces the value of the maximum residuals.

How good a descent direction is the centre of the MEB
of G? The following theorem shows that it is the optimal
descent direction, in the sense of Lemma 2.

Theorem 2. The centre m∗ of the MEB of G is the descent
direction that maximises the rate of decrease of (1) at x̂.

Proof. Following Lemma 2, we aim to show that

m∗ = argmin
m∈R3

max
g∈G

∠gom. (14)

We first construct the following geometric objects to lay the
foundation of the proof (refer to Fig. 1 for intuition):

1. Let H0 be the plane passing through m∗ and orthogonal
to the line segment om∗:

om∗ ⊥ H0 (15)

o

g

w

'

'

g
*m

Figure 1. Diagram to support the proof of Theorem 2.

2. Letω an arbitrary direction from o intersectingH0 at w′.
3. Let H1 be the plane passing through m∗ and orthogonal

to m∗w′, andH1 intersectsH0 at line L; therefore

L ⊥m∗w′. (16)

4. By [5], there must exist a point g on the boundary of the
MEB of G that satisfies

|w′g| ≥
√
|m∗w′|2 + |m∗g|2; (17)

and let g′ be the intersection of line og andH0.
5. Define the angles

µ = ∠w′og′ and θ = ∠m∗og′. (18)

The geometric interpretation of (17) is that g and w′ are
in different half-spheres of the MEB of G divided by H1,
which yields, that on the plane H0, g′ and w′ are on the
different side of L. Therefore, given (16), we get

∠g′m∗w′ ≥ 90◦, (19)

and the Law of Cosines [3] translates (19) into

|w′g′|2 ≥ |m∗g′|2 + |m∗w′|2. (20)

(15) yields

∠om∗g′ = ∠om∗w′ = 90◦, (21)

which, by Pythagorean theorem, implies

|og′|2 = |om∗|2 + |m∗g′|2

and |ow′|2 = |om∗|2 + |m∗w′|2.
(22)

In4w′og′, as in the Law of Cosines,

cos(µ) =
|ow′|2 + |og′|2 − |w′g′|2

2|ow′||og′| . (23)
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Substituting (22) into (23) yields

cos(µ) =
|om∗|2 + |m∗g′|2 + |om∗|2 + |m∗w′|2 − |w′g′|2

2|ow′||og′| .

(24)

Substituting (20) into (24) yields

cos(µ) ≤ 2|om∗|2
2|ow′||og′| =

|om∗|
|ow′|

|om∗|
|og′| . (25)

By (21), |om∗|/|ow′| < 1, thus (25) yields

cos(µ) <
|om∗|
|og′| = cos(θ) =⇒ µ > θ, (26)

therefore, we conclude that for any direction ω other than
m∗, there always exists a point g ∈ G satisfying

∠goω > ∠gom∗, (27)

thus (14) is validated.

3.1.2 Closed-form MEB algorithm

The effort to calculate the MEB of G naturally depends on
the size of (number of vectors in) G. Fortunately, the combi-
natorial dimension of a problem with the form (1) has been
established to be four [10, 29]. Thus the size of the active
set A, and hence the size of set G, is at most four. This
motivates a closed-form algorithm to calculate the MEB.

Let m∗ and f∗ respectively be the centre and radius of
the MEB of G. Due to the small upper bound on the size of
G, the possible solutions for m∗ and f∗ can be enumerated
as follows:
• Case 1: G = {g1} is of size 1.

Trivially, the centre m∗ = g1 and f∗ = 0.
• Case 2: G = {g1,g2} is of size 2.

The centre of the MEB must lie in the middle of the line
segment g1g2 (also a diameter of the MEB), i.e., m∗ =
(g1 − g2)/2, and f∗ is simply ‖m∗ − g1‖2.

• Case 3: G = {g1,g2,g3} is of size 3.
We need to check the following two possibilities to find
the correct MEB (see Fig. 2 for an illustration):

– Case 3.1: The MEB is formed by two of the three
points (as in Case 2 above) and the third point lies
within the MEB. We need to solve Case 2 on the three
possible pairings of the points and check.

– Case 3.2: The MEB is the ball that has g1, g2 and g3

on its surface (also on its great circle). The centre m∗

and radius f∗ of the great circle (also of the ball) can
be computed analytically [34, Chapter V].

• Case 4: G = {g1,g2,g3,g4} is of size 4.
Similar to Case 3, we need to check the following two
possibilities to find the correct MEB:

g21g

3g

*m

(a)

g2
1g

3g

*m

(b)

Figure 2. (a) Case 3.1 when two points determine the MEB and the
third point lies within the MEB. (b) Case 3.2 when three points lie
on the surface (also on a great circle) of the MEB.

– Case 4.1: The MEB is formed by three of the four
points (as in Case 3 above) and the fourth point lies
within the MEB. We need to solve Case 3 on the four
possible selections of triplets of the points and check.

– Case 4.2: The MEB is the ball that contains g1, g2, g3

and g4 on its surface. However, recall that the items
in G are unit vectors, hence the MEB on G must be
centred at the origin (m∗ = o) with radius f∗ = 1.

Degeneracies If the size of G is greater than four, we ar-
bitrarily choose four items in G to calculate the MEB. If
we obtain an m∗ that is a valid descent direction, x̂ will
be updated and the degeneracy will be resolved. If we ob-
tain m∗ = o, then, by the monotonicity of the MEB prob-
lem [5], the centre of the MEB on all of G will also coincide
with o, implying that there are no more descent directions.

3.2. Optimising the step size

Once a descent direction λ is computed in Algorithm 2,
we need to search for a step size α along λ to update x̂. The
residual function parametrised by α is

ri(α) =
‖Ai(x̂+ αλ) + bi‖p
cTi (x̂+ αλ) + di

:=
‖uiα+ vi‖p
wiα+ zi

,

(28)

which remains pseudo-convex for α ifwiα+zi > 0, hence-
fore the search for the step size that provides the biggest
reduction in the objective value can be formulated as the
following one-dimensional pseudo-convex problem

min
α∈R+

max
i

ri(α)

s.t. wiα+ zi > 0.
(29)

Any of the previous methods for pseudo-convex program-
ming (e.g., [25, 4, 18]) can be repurposed for (29), however,
to avoid cumbersome convex sub-problems, we exploit the
fact that (29) is a single variable problem and develop a
modified bisection method searching over α to solve (29).
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Figure 3. Illustration of Algorithm 4. If the current setting of
[lb, ub] yields α1 = (lb+ ub)/2, then by f(α1 − ε2) < f(α1) <
f(α1 + ε2), α1 is known to be on the monotonously increasing
part of f(α), thus the optimal α∗ is smaller than α1 and ub should
be reduced; similarly, lb need to be increased at α2 = (lb+ub)/2.

Algorithm 4 describes our approach; see also Fig. 3 for
an illustration. The lower bound for α is initialised to 0,
while the initial upper bound is obtained as the largest α
such that wiα + zi > 0 is true for all i (this can be done
in linear time by incrementally intersecting the half-lines
wiα + zi > 0). The algorithm leverages the pseudo-
convexity property of (29), namely, the objective function
is strictly either increasing or decreasing on each side of the
global minimum, to progressively refine the bound [lb, ub]
on α. Two convergence thresholds ε1 and ε2 (set to respec-
tively 10−6 and 10−8 in our experiments) that enable a ter-
mination up to any desired precision threshold2.

Algorithm 4 Modified bisection to find step size (29).
Require: Input data {ui,vi, wi, zi}Ni=1, convergence

thresholds ε1 and ε2.
1: [lb, ub]← lower and upper bound of α (see Sec. 3.2).
2: Define f(α) = maxi ri(α).
3: while ub− lb > ε1 do
4: α̂ = (ub+ lb)/2.
5: rl ← f(α̂− ε2).
6: r ← f(α̂).
7: rr ← f(α̂+ ε2).
8: if rl > r > rr then
9: /* α̂ is on the decreasing part of f(α).*/

10: lb← α.
11: else if rl < r < rr then
12: /* α̂ is on the increasing part of f(α).*/
13: ub← α.
14: else
15: /* α̂ is at a stationary point up to precision ε2.*/
16: Break.
17: end if
18: end while
19: return α = (ub+ lb)/2.

2Note that most globally optimal numerical schemes, including algo-
rithms for KRot, guarantee optimality only up to a pre-defined threshold.

3.3. Convergence of FDM

FDM (Algorithm 2) terminates when the centre of the
MEB of G is at the origin. Here, we show that this is the
correct stopping criterion. First, we state another basic re-
sult before proving the main theorem.

Lemma 3. Given two vectors a and b, if 〈a,b〉 > 0, then
there exist a positive value ε that ‖εb− a‖2 < ‖a‖2.

Theorem 3. x̂ is a stationary point of (1) iff the centre m∗

of the MEB of G coincides with the origin o.

Proof. If x̂ is not a stationary point, then the values of the
active residuals can be decreased simultaneously. This, by
Lemma 1, implies the existence of a λ at x̂ that satisfies

〈λ,g〉 > 0 ∀g ∈ G. (30)

Therefore, by Lemma 3, there exists a non-zero ε such that

‖ελ− g‖2 < ‖g‖2 = 1 ∀g ∈ G, (31)

thus the origin o cannot coincide with m∗.
If m∗ does not coincide with o, then by Theorem 1, m∗

is a descent direction at x̂; x̂ is thus not a stationary point.

Due to finite precision, a threshold ε0 (ε0 = 10−8 in our
experiments) is used in Algorithm 3 to test if m∗ is numer-
ically equal to o. Finally, combining Theorem 3 and that
a pseudo-convex function has only one stationary point, it
is guaranteed that FDM will reach the global minimum in
finite steps.

4. Experiments
There are two parts in our experiments: one is dedi-

cated to benchmark the performance of FDM on triangu-
lation sub-problem (Intk), and the other is to benchmark the
resection-intersection (henceforth, Res-Int) algorithm (1)
with FDM solver on KRot. Experiments were done on a
PC with a 3.7GHz Intel 4-core CPU and 16GB RAM.

Choice of p-norm Though our method is applicable to
any p ≥ 1 in (2), most of the previous works focussed on
p = 2. Thus, we fixed p = 2 in our experiments. This
however excluded [8], which is limited to p = ∞. In any
case, [8] is only designed for the special case of triangula-
tion but not our targeted problem—KRot.

Datasets We used 6 publicly available datasets from [9],
covering small to large problem sizes to demonstrate the
scalability of our method. Specifically, we used House
(Small), Lund Cathedral (Small), Lund Cathedral (Large),
Alcatraz Courtyard, Alcatraz Water Tower, and University
of Washington (Large). It is worth noting that for KRot, the
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Figure 4. Runtime of competing methods on synthetic triangula-
tion instances. For each input size L, the runtime was averaged
over M = 20 random instances.

state-of-the-art methods [4, 6, 11] were tested only on rela-
tively small problems: up to M = 23,674 scene points and L
= 67 cameras in [11]. Here, the data we used have one order
magnitude more scene points and two orders of magnitude
more cameras—as we will show later.

4.1. Triangulation

We compared FDM with (1) Gugat’s algorithm [14],
which was shown in [4] to outperform the other meth-
ods that solve convex sub-problems (bisection [18], Dinkel-
bach’s method [7, 25]), (2) Dai’s method [6], and (3) proxi-
mal splitting [11]. All methods (including FDM) were exe-
cuted in Matlab3. We used SeDuMi [31] as the SOCP solver
for the convex feasibility problems in Gugat.

To initialise a specific triangulation instance, we used the
mid-point method (a closed-form solver) [15] on two ran-
domly selected measurements to find the initial estimate.

Synthetic data We generated L cameras with random
poses, and varied L from 2 to 200 (recall that the size of
a triangulation instance is L). For each L setting, we ran-
domly generated M = 20 3D scene points, projected them
onto the cameras, and added Gaussian noise of σ = 5 to the
projected points—using the projected point as data, this cre-
ated M random triangulation instances per L setting. Fig. 4
shows the runtime of all competing methods

It is evident that FDM and Dai’s method significantly
outperformed Gugat and proximal splitting. Comparing just
the two descent methods that do not employ convex sub-
problems, FDM was not only faster than Dai’s method, the
former also scaled much better to large input sizes. As we
will show later in Sec. 4.2, the good scaling property of
FDM is essential for solving large-scale KRot instances.

Real data The real datasets used contain estimated cam-
era poses, which we used to set up triangulation instances.
Statistics of the datasets and runtime results are available
in Table 1. Again, the excellent performance of FDM (avg

3For Gugat, using Agarwal’s implementation [4]. For [6, 11], using our
own implementation since the original authors’ code were not available.

runtime of ≈1 ms) was observed in real data. Note that, al-
though practical triangulation instances are small (L ≤ 20),
it is still crucial to perform triangulation very efficiently due
to the sheer number of triangulation instances.

4.2. Known rotation problem

We compared Res-Int (with FDM for the sub-problems)
with Gugat’s algorithm and proximal splitting, where the
latter two were executed directly on the full KRot problem
(i.e., each iteration updates all 3(L + M) variables). We
did not compare against using Gugat, proximal splitting and
Dai et al. [6] as sub-problem solvers in the Res-Int frame-
work, since as demonstrated in Table 1, these three meth-
ods as sub-problem solvers are much slower than FDM. In
fact, using Gugat and proximal splitting on the full KRot
problem consumed much less time than using them as sub-
problem solvers in Res-Int. For Res-Int, we also tested both
sequential (seq) and parallel (par) versions (using 4 cores).

The major internal computations of the competitors are
solved by third-party packages that were implemented in
C/C++, e.g., SeDuMi for the SOCP feasibility tests in Gu-
gat, and SBA [20] for the bundle adjustment subroutine in
proximal splitting. Therefore, for a fair comparison, we also
implemented FDM in C-Mex for this experiment.

To initialise a KRot instance, we ran 1 iteration of the bi-
section method given a loose upper bound ub = 100 pixels,
as was done in [4].

Table 2 shows the runtime (in seconds) of the methods.
To ensure that we did not exceed the capacity of SeDuMi
in Gugat, we cull scene points that were observed in few
images (i.e., if a scene point was observed by less than a
certain number ‘vis’ of images, it was removed from the
optimisation). Also, if an algorithm was not able to finish
running within the cut-off limit of 3 hours, we terminated
the program.

As in Table 2, Res-Int (both sequential and parallel
variants) significantly outperformed Gugat and proximal
splitting—in fact, Res-Int was able to scale up to input sizes
that were beyond the reach of the two previous methods.
Note that the 4 bigger data in Table 2 are significantly larger
than the examples tested in [4] and [11].

For qualitative results of our method, see Fig. 5.

5. Conclusion
The proposed Res-Int algorithm for known ration prob-

lem partitions the task into multiple 3-variable pseudo-
convex optimisations and introduces a novel fast descent
method based on minimum enclosing ball technique to
solve the sub-problems. Not only the Res-Int algorithm
achieves vastly superior performance to existing KRot
methods, the FDM standalone also becomes the state-of-
the-art triangulation solver. We hope to see both algorithms
be applied to broader vision applications in the future.
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Dataset statistics (for triangulation) Avg runtime (in milliseconds)
Name # points # images avg L Gugat [4] Proximal [11] Dai [6] FDM

House (S) 12,444 12 2.83 28.02 25.29 1.28 0.30
Lund (S) 16,878 17 2.68 28.17 22.01 1.28 0.29

Yard 23,674 133 13.58 57.67 44.14 3.20 1.06
Tower 14,828 172 11.43 53.90 47.57 2.74 0.85

UoW (L) 97,326 692 13.61 64.04 72.49 3.19 1.19
Lund (L) 159,055 1,208 14.60 73.04 99.75 3.58 1.25

Table 1. Average runtime (in milliseconds) per triangulation instance on real data. ‘# points’ is the total number of triangulation instances,
and ‘avg L’ is the average size L of the triangulation instances (NB: not all scene points are observed in each image).

Dataset statistics (for KRot) Avg runtime (in seconds)
Name vis # points M # cameras L # obs Gugat [4] Proximal [11] Res-Int (seq) Res-Int (par)

House (S) 4 2,174 12 12,037 27.80 19.18 3.15 2.97
Lund (S) 4 2,873 17 13,629 24.61 14.49 4.70 3.28

Yard 2 23,674 133 321,554 n/a 3,313.10 782.69 245.10
Tower 2 14,828 172 169,618 n/a 1,374.90 387.24 128.02

UoW (L) 2 97,326 692 1,324,698 n/a n/a 2,347.70 698.84
Lund (L) 8 103,940 1,208 2,002,637 n/a n/a 5,880.40 2,978.25

Table 2. Total runtime (in seconds) for KRot on real data. ‘vis’ is the threshold used to cull scene points that were observed in few images
(i.e., if a scene point was observed in <vis images, it was removed from the optimisation). The purpose of culling is to reduce the overall
problem size 3(M + L) and avoid exceeding the “capacity” of SeDuMi in Gugat. ‘# obs’ is the total number of residual functions. If an
algorithm was not able to finish running on an instance in 2 hours, we terminated the program and label their runtime as ‘n/a’ above.

(a) House (S) (b) Lund (S) (c) Yard (d) Tower

(e) Lund (L) (f) UoW (L)

Figure 5. Reconstruction results of Res-Int (Algorithm 1) on 6 real data. Each red ‘+’ represents the position of a camera. Orientations of
the cameras are not shown because they were not part of the optimisation variables of Res-Int.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has led to significant progress in quasiconvex optimisation and SfM in gen-

eral. On a practical level, state-of-the-art algorithms have been proposed to solve some of

fundamental SfM problems, for example, the meta-algorithm and the coreset algorithm

for large-scale triangulation, the Res-Int algorithm for KRot, and the Q-sweep algo-

rithm for LMS triangulation. On a theoretical level, this thesis has successfully adopted

some interdisciplinary achievements (e.g., concepts and algorithms from computational

geometry) to SfM and advanced the scientific frontier of SfM.

7.2 Future work

7.2.1 ε2 in coresets for triangulation

In Chapter 5, in addition to the dependence on the specified approximation accuracy

ε in the coreset paradigm, the size of coresets for `∞ triangulation also depends on

another factor ε2 — the probability of a certain geometric condition (Condition. 2 in

the published paper) being satisfied. Even though the empirical results suggest that the

value of ε2 is determined by the distribution of input data, no analytical results have

been concluded yet. A deeper analysis of ε2 (ideally removing it from consideration

in the coreset bound, or at least better characterising and predicting its occurrence) is

desirable.
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7.2.2 The fast descent method

Although this thesis is based in the context of two particular SfM problems — trian-

gulation and KRot, the conceptual and practical outcomes therein transfer readily to

general quasiconvex problems. For example, the fast descent method (FDM) proposed in

Chapter 6 can be generalised to broader optimisation problems. The bottleneck of FDM

is the underlying MEB solver, which becomes less efficient as the problem size (e.g., the

number of parameters to be estimated, and the size of input) increases. Nevertheless,

FDM could still be a viable solver for applications with moderate number of to-be-

estimated parameters, e.g., camera resectioning (11 parameters) and two-dimensional

homographies (8 parameters) [29].

7.2.3 The Q-sweep method

The Q-sweep method introduced in Chapter 4 enforces robustness to the `∞ aggregation

of multiple quasiconvex functions; potentially, it can be generalised to other multiple-

view applications with similar formulation as surveyed in [32].

7.2.4 The Res-Int method

The BA procedure (see Section 1.1.1) can either be directly solved as a non-linear

least squares problem, or be solved by the resection-intersection method [54], which

alternates between resection (i.e., camera resectioning, which amounts to estimating

camera poses [29]) and intersection (i.e., triangulation). With respect to the resection-

intersection BA method, a possibly more efficient strategy would be to alternate between

estimating the absolute rotations of cameras (via the relatively easy rotation averaging

procedure) and estimating the camera translations and the structure (via the proposed

Res-Int KRot method).
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