
p.tr'q

LIDesign of an ATM Switch and
Implementation of Output Scheduler

Jun Fang, B.Sc.

Thesis submitted for the degree of

Master of Engineer Science

in the department of Electrical and Electronic Engineer

The University of Adelaide

Adelaide, Australia

15 March 1999

1

:

ì

rl

ll

r

Contents

Abstract

Declaration

Acknowledgments

List of Figures

List of Tables

1.1 Trends in the development of telecommunication network

L

1

Chapter L Introduction

1.2 The advantage of ATM .

1.3 ATM switching system

1.3.1 Switch matrix

l.3.2Port controller

1.3.3 Multi-stage switching. .

vII

VIII

IX

x

XII

1

2

3

8

9

1.4 A time scheduling ATM switch 10

I

1.4.I Structure

1.4.2 lnput port controller and header processor

1.4.3 Scheduler. . .

1.5 Description of a Time scheduling Algorithm

1.5.1 Basic algorithm. .

l.5.2Enhancement

1.5.2.1Priority . .

1.5.2.2 Multicasting

1.6Summary......

Chapter 2 The Design of ATM switch

2.I Overview of the ATM switch. . . .

2.1. 1 Design Objective.

2.1.2 Switching process. .

2.1.3 Interface definition. . .

2.2 Switch Matrix.

2.3 Design of the input port controller.

2.3.t Overview of the input port controller.

2.3.2The function of the header processor

2.3.3 The operation of the buffers

2.3.3.1 Temporary buffers.

2.3.3.2 The structure of the main buffers. . . .

L2

10

t2

.13

.t4

18

. .18

19

t9

20

20

.20

,21

23

.25

.28

28

30

30

. .3r

II

32

2.3.3.3 Operation of the main buffers

2.4 Design of the output scheduler. . .

2.4.IThe structure of the output scheduler. . .

2.4.2 Operation of the output scheduler

2.4.2.1 Data flow of the output scheduler

2.4.2.2 Structure analysis.

2.4.2.3 Defeating unfairness.

2.5 Summary

Chapter 3 Investigating Basic

Functional Blocks of the Output Scheduler

3.1 Elementary scheduler

3.1.1 Structure

3.L.2 Operation of the comparison unit

3.1.3 Modifications for Priority

3.1.4 Operation of the schedule register

3.1.5 Input address generation.

3.1.6 Circuit design of the comparison unit.

.33

.40

.42

.43

43

50

5r

53

54

54

.. 56

54

58

59

6l

m

.64

3.1.6.1 Generating the schedule.

3.1.6.2 Updating the output status.

3.1.6.3 Interfacing with subsequent units

3.2Input status register. . .

3.2.1The structure of the input status register. . .

3.2.2 Operction of the input status register. . . .

3.3 Output status register

3.4 Clock generator

64

7T

67

73

73

75

3.5

77

77

82

83

83

Chapter 4

Physical Design of the Output Scheduler

4.1 The design methodology.

4.ZTechniques for high performance digital design.

4.2. I Design specif,tcation

86

86

4.2.2 D esign requirements

IV

87

4.2.3 Design techniques for high speed.

4.2.3.1Floorplanning

4.2.3.2 Clock distribution and skew.

4.2.3.3 Critical path analysis and optimisation.

4.2.3.4General techniques to decrease delay

4.2.4Design techniques for low power dissipation.

4.2.4.1 Logic family selection.

4.2.4.2 Reducing the effective capacitance

4.2.STechniques for reducing the area.

4.2.6VO system Design. .

4.2.7 Power distribution. .

4.3The simulation result of output scheduler

4.3.1 Delay and power dissipation.

4.3.1.1 Simulation environment.

4.3.1.2 Selection of the stimuli.

4.3.1.3 Simulation result.

4.3.2 Size and area

4.4 Summary..

88

9I

88

95

92

.. .101

101

..107

..1t2

tt4

rt4

rt4

..r02

.106

115

l16

118

118

Chapter 5 Discussion

V

120

5.1 Speed-up two 120

5.2 Apossible way to improve the speed. r24

5.3 Challenges on packaging. I27

5.4 129

Chapter 6 Conclusion 131

Reference 133

VI

Abstract

ATM (Asynchronous Transfer Mode) is regarded as the solution for next generation

telecommunication network. ATM switches are the critical parts of an ATM network. In this

project, an experimental 16 x 16 input buffered ATM switch is developed, which employs a

time scheduling algorithm developed by Sarkies and Main. The ATM switch discussed in this

thesis contains four basic functional blocks: switch matrix, output scheduler, input port

controller and output port controller. The output scheduler is the key part of the project, which

is designed to the chip-level. The other parts of the switching system that interface with the

output scheduler are designed to the architecture level. The objective ofthis research project is

not only to design a high-speed output scheduler that can support the switch matrix working at

10Gb/s/channel, but also to design the output scheduler that can provide variable priority

threshold and multicast to improve the performance.

The output scheduler described in this thesis is designed with TSMC 0.25pm CMOS

technology. The entire chip contains over 600,000 transistors. The simulation results show

that delay of the critical path is 20.8ns, which is much less than the design requirements, 40ns.

The estimated power dissipation of the circuits is 0.785w with a 2.5v power supply at l00oC.

The circuit area is 4.g mrr?_ and chip area is about Izmtr'2 .

We demonstrate the output scheduler can coordinate with the other parts in the ATM switch to

provide high quality service

VII

Declaration

This work contains no material which has been accepted for the award of any other degree or

diptoma in any university or other tertiary institution and, to the best of my knowledge and

belief, contains no material previously published or written by another person, except where

due reference has been made in the test.

I give consent to this copy of my thesis made, when deposited in the University Library, being

available for loan and photocopying.

æ2,/p&/ry
SIGNED DATE:

VIII

Acknowledgments

I would like to express my appreciation to the people who made their contributions to the

completion of this resea¡ch. First of all, I would like to thank my supervisor, Dr- Kenneth

Sarkies. He not only gave me invaluable guidance and continued support in the course of my

research, but also gave me many comments on the structure, contents and grammar of my

thesis. Secondly, I also wish to extend my sincere gratitude to Mr Kiet N. To. He patiently

taught me the usage of the CAD tools used in VLSI design. Last but not least my thanks go to

Mr Andrew Beaumont-Smith, Mr Said AlSarawi, Dr. Alireza Moini and Mr. Michael Liebelt

for many discussions in various stages of design.

IX

List of Figures

1 A general model for ATM switch

2 Architecture of crosspoint switch developed by Lowe

3 Architecture of crosspoint switch developed by Savara and Turudic . . .

4 Structure of an input buffered ATM switch . " .

5 Diagram to illustrate the time scheduling algorithm

6 Flow chart of operation switching process

7 HighJevel architecture of an input buffered ATM switch

8 Architecture of crosspoint switch used in this ATM switch

9 Diagram of input port controller

10 Structure of write controller . .

11 Operation of the write controller

12 Structure ofoutput scheduler

13 Detailed structure of output scheduler

14 Flow chart of operation of output scheduler

15 Diagram of the elementary scheduler

16 A column of elementary scheduler

17 Circuit of comparison unit

18 Diagram of input status register

19 Diagram of output status register

20 Diagram of clock generator

2l Timing diagram of signal generator

36

3

7

.26

39

79

22

1l

15

t6

29

65

5

8l

.4r

.44

45

.55

.62

.74

..78

22 Floorplan of elementary scheduler

X

90

23 Structure of buffer distribution

24 The critical path of output scheduler . .

25 Circuit of an NAND gate

26 Avoid extensive bus sharing

27 Placementof pads .

28 Transient current wave form

29 Simulation of critical path.

30 Architecture of an input buffered ATM switch with speed-up two .

31 Diagram for an elementary scheduler group

32 Structure and circuit of elementary scheduler with lookahead

.93

96

,99

105

.. . 108

110

lt7

.12r

t23

XI

List of Figure

1. Truth table of schedule generation . .

2. Truth table of output status updating

3. Truth table of generating fairness signal

4. Truth table of generating interface signal . .

67

69

70

74

xII

Chapter One Introduction

1.1 Trends in the Development of Telecommunication Network

Nowadays, computers have infiltrated all walks of life, such as the home, banks,

manufacturing industries and so on. Although stand-alone computers are still widely

used, in more and more instances they are networked. As a result, both computer and

telecommunication networks are developing rapidly.

Recently, the telecommunication network has acquired two new characteristics: one

is the need to support services of different characteristics, for example digitised

video and image; the other is the need to support all of these services on a single

network [1]. Hence, a new telecommunication network standard is being established,

namely B-ISDN (Broadband Integrated Services Digital NetworÐ. A great deal of

research work is taking place to find a solution for the B-ISDN. Eventually, ATM

(Asynchronous Transfer Mode) was agreed as the target transfer mode for

implementing a B-ISDN [2].

1.2 The Advantage of ATM

ATM is a type of packet switching system that operates at high speed. In an ATM

network, the information is transferred asynchronously in the form of cells, a type of

small, f,rxed length packet. Cells have a length of 53 octets and a¡e comprised of two

1

parts: one is the header that contains the routing infbrmation, the other is the

information fleld that is the cell payload. On the sending end the infbrmation is

organised into cells, on the receiving end the information in the cells is recombined

together. Such a technique provides great flexibility, so that the ATM network is

very suitable for new high-bit-rate services. Real-time video is a typical example for

this kind of service, which is known as variable bit-rate (VBR) service. It is

intuitively obvious that the bit rate generated by a video picture of static scenery is

certainly different fiom that of a racing fbx. When the scene switches from the

scenery to the fox, there is a large burst of information to he transferred. ATM can

allow this variable rate of information generation to be transf-erred eflectively across

the network. Moreover, another inherent advantage of ATM network is niultiplexing

of cells. Cells from diflèrent services can be transf'erred onto one link. That means

the network operator need only provide one connection to the customers and all

services can be provided over this link. Also, as described previously, a signifìcant

characteristic of mo<lern telecommunication networks is to support multimedia

services. ATM networks use a standard size of cell for all media, which means that

switching of the cell streams can be performed at very high rate and this simplifies

the design of the ATM switch considerably. Clearly, ATM ofTers great ease of

integration of sources. It was for this reason that ATM w¿s selected as the transfèr

mode fbr the new generation of high-speed telecommunication network.

1.3 ATM Switching system

Generally, an ATM switching system is conprised of three elements: switch matrix,

an put port con or lnpu

2

for each output port [3]. A diagram that shows these three modules is sketched in

f igure I

Switch Matrix OPC

Figure 1: A general model for ATM switch

1.3.1 Switch Matrix

Clearly, the switch matrix is the core of this switching system, in which the data path

is developed between any input-output-pair. Hence, matrix will signifìcantly affect

the capability of the whole switch. The increasing traffic and muitiple services in the

morJern telecommunication network raise the requirement for high-capability

switches. High-performance switches should present such characteristics as very

high speed, versatility of switching mode (selective and broadcast), ease of control,

small loss, small delay, good signal integrity with little noise and so forth.

Furthermore, for the ATM network the capability of handling asynchronous data is

of importance. The crosspoint switch has proven to be a competent candidate to meet

IPC

these rigorous requirenìents

3

In the past few years, much work has been rJone to implement the high-speed

crosspoint switches that can support ATM switch. We shall describe two different

architectures used in giga-bit crosspoint switches.

ln 1997, Lowe reported a lQGb/s/channel crosspoint switch [4], which employs a

multiplexer/decoder type of architecture. The architecture of this crosspoint switch is

shown in figure 2. As shown in the diagram, the switch consists of l6 selector slices.

In each selector, there is a 4-bit register for the input address, a I 6 : I multiplexer and

an output buff'er. The 4:16 decoder selects the desired output among the l6 selector

slices ¿ccording to the output address. In each input port there are sixteen input data

buff-ers and input address buffers. They are used to drive the cells and addresses to

all the selector slices.

When a cell anives at the switch, its input arJdress and output address are sent to the

input address bufl'ers and clecoder respectively. According to the outpttt address the

decoder selects one of the 16 outputs, namely one of l6 selector slices' Note that the

decoded olltpllt address is latched by a loarl pulse. That means that only when the

loarl pulse is asserted can the output address enter the selector slice. On the other

hand, the input address is buflèred with low impedance amplifiers and driven to all

the slices. 'l'he cell is also broadcast to all the slices. Ret'erring to the detailcd

structure of each slice, we note that the input address is stored in a register and it will

not be sent to the multiplexer until it receives a clock signal from the decoder' When

the load pulse is asserted, the output address is loaded into each selector slice and the

4

4-b¡t
input
address

16 cell
inputs

switched
cells

4-blt
output
address

load pulse input
address

cells

Figure 2 Architecture of crosspoint switch developed by Lowe

and
Selector Slice

and

and

and

È
J
ot
ooo
o
CLort

data buffers

16:1 MultiPlexer4-b¡r
reg¡ster

5

asserted bit will activa[e the register to send the input address to the multiplexer

According to this address, the multiplexer connects one of the cells to the buf'fer

Finally, the buffers drive the cell ottt of the switch'

This broadcast-and-select architecture needs a relatively simple structure, so it can be

implemented in one chip. This characteristic is signifìcant as it improves the speed of

the switch and clecreases the cost of production. However, this architecture also has

some disadvant¿lges. This switch can set Llp only one data path at one time' so it

needs 16 consecutive loarJ pulse to fully reconfigure the whole switch' That means

in one time slot the switch must be programmed 16 times. This increases the

complexity of external control and the complexity of interactions with the data flow.

Savara and Turudic developed another architecture tbr a crosspoint switch in

l995t5l (see fìgure 3). As normal switch, it has input buffers, outptlt bufl'ers and a

crosspoint switch matrix. There are only sixteen l6:l multiplexers in the switch

matrix and each multiplexer corresponds to one outpttt port. A characteristic ol this

switch is the utilisation of confìguration latches and sixteen 4-bit shifi registers to

deal with the input addresses.

The incoming cells are stored in the input butfers, and the 4-bit input addresses are

sent to the address registers. Each arJdress register corresponds to one multiplexer-

The addresses are shifted into registers serially. When all the sixteen 4-bit binary

numbers are stored into the shift registers, the switch control centre sends a signal to

turn on the configuration latch. Each shift register loads the input address into the

ó

switched cells

Cells

Configuration Latch

4-b¡t
shift
register

control
signal

=
!t
oxo

o)
E
Ê
o
U,

SWITCH
MATR¡X

Buffers

16x4

Input addresses

Figure 3 Architecture of crosspoint switch developed by savara and Turudic

7

,T

1ìl

j

multiplexer in parallel. v/ith the input addresses, the niultiplexer will select one of

the 16 inputs and connect it to the output. Thus, 16 nonblocking data paths are

established at the sarne time in the switch matrix'

Clearly this architecture is more efficient than the last one, as the cells that

asynchronously arrive at the 16 input ports within one time slot are transfèrred

through the switch simultaneously. The switch is configured only once per time slot,

which makes its control easy. Hence, this architecture presents a signifìcant

advantage when used in an ATM network.

1.3.2 Port Controller

In order to avoid excessive cell loss in the case of internal collisions, buff'ers have to

be provided in the switching system. Basically, there are two possibilities for the

buffer location:

o located in the output port controllers

. located in the input port controllers'

Diff'erent buflèr location of bufl'ers results in diffèrent performance'

For the output buflèred ATM switch, if the switch matrix can not work fast enough

contention may occur. In this case Several cells are requesting the Same outptlt port

simultaneously. In order to achieve collision free switch, the speed-up factor of N

must be reached for an N x N switch matrix. That is, it must be possible for each

output to pass N cells simultaneously to the bufl'ers. Thus very high speed buflèrs are

I

8
þ

il
','j

needed. This characteristic makes the output buffered ATM switch undesirable fiom

a performance viewpoint.

The input bufl-ered switch woukl not suf-fer from the speed limitations of the output

bufTered switch, but it has its own problems as well. When first-in-flrst-otlt buffèrs

are used in the input port controller, a collision occurs when two or more head-of-

the-line cells compete f'or the same output simultaneously. If so, one cell passes and

the others are blocked. All cells in the blocked queues will be blocked, even if they

are requesting other possibly unused outputs. Consequently the throughput of the

input buff'ered switch is comparatively low. In order to overcome this disadvantàge,

some controller mod¡le or scheduler must be employed to manage the input queues

intelligently. Thus, the input butTered switch is nore practical but harder to control.

1.3.3 Multi-stage Switching

For a large switching system, a single stage switch can not provide enough inputs

and outputs, so à mlllti-stage network is used. A multi-stage network is built of

several stages which are interconnected by internal links in such a way that any

output can be reached tiom any input. According to the number of paths which are

available fbr a cell to reach a destination output tiom a given input, these networks

can be subdivided into two groups: single-path and n-rultiple-path networks. For the

single-path network, due to the lact that only one path exists fiom an input to an

output, routing is very simple. The disadvantage is that when an intemal link is used

by two inputs simultaneously internal blocking is inevitable. For the multi-path
i

9I

I

liom a given input, internal blocking can be reduced or avoided. However, the

possibility exist for cell streams to arrive at the olltptlts with cells placed out of

sequence.

1.4 A Time Scheduling ATM Switch

In rhis thesis, we will discuss an input bufl'ered ATM switch using a time scheduling

algorithm.

1.4.1 Structure

As stated above, fbr a high-performance input buffered ATM switch, a controller or

scheduler should be employed to manage the queuing. As shown in the fìgure 4' -such

an ATM switch consists of these four parts:

1 The switch matrix is the core of a switch. The data path between the input and

output is set up in it;

Z The scheduler selects a suitable time slot in which both the input and output are

available to send the cells so that no contlict could occur within the switch

natrix,

3 The input port controller is the interface between the switch matrix and thc

scheciuler. The controller shouftl coordinate with the scheduler to nlanage the cell

flow. For an input bufïered switch, the data bufTèrs are used here to store the

incoming cell temporarily;

I
10

Gells to
netwrokCells

network

input Port
controller

output Port
controller

requesUschedules

input

t

*

*

Switch Matrix

Output Scheduler

i

*
*

Figure 4 Structure of an input buffered ATM switch

1.5.1 Basic Algorithm

A block diagram is shown in fìgure 5 to illustrate this algorithm. The basic idea of

this algorithm is that in the input port controller and output port controller an input

St¿ìtus array and an output Status array are maintained and updated respectively.

These indicate the usage of the input ports and output ports in successive time slots.

Specifically, a status affay records which time slots have been scheduled to send a

cell for this port and which slots are available for new cell. Referring to fìgure 5,

here we take 1 time slots âs an example. Both the input status array and the output

status afray are maintained in the fbrm of binary number array. In these arrays, -1

represents a time slot that has been scheduled oul, while 0 represents a time slot that

is available for scheduling. When a cell is to be switched lrom an input to an output,

the corresponding input and output porl controller will send the status affays to the

scheduler. The scheduler compares these two status arrays so as to fìnd the first time

slot that both input port ând output port are available. Finally, the scheduler .sends

the scheduling results to the input port controller and output port controller,

respectively.

14

lnput port controller Output port controller

0011011

Scheduler

0001000

Schedulc

0001101

Updated output stôtut arrlyUpdetcd lnput statut tir.Y

Figure 5 Diagram to illustrate the time scheduling algorithm

Comparator

I100f00

lnput rtetu¡ arfaY

I010000

output rtltu! rrfty

15

We can use a flow chart (Figure) to describe this algorithn-t

Figure 6 Flow chart of operation of switching process'

To make this a bit clearer, let us stuily such two arrays shown in the diagram. The

input status array is "0010011" and the output status array is "0000101"' We assume

that the least-signifìcant bits of these affays represent the 1ìrst time slot. When this

input-output pair is requestecl by a cell, these two àrrays are Sent to the comparator in

IPC senr:ls each cell to the switch matrix when its

schetluletl tittte ¡f transmissirln arrives.

The schetlule is sÈnt to the relavant IPC and ÛPC t¡
update the input anrl rrutput rtatus array The cell is

arrangetl in the input bulTer t¡ tleparl at its scheduled tinre

Schecluler rnakÊs a schetlule and generates input

addresses for switch matrix on ihe base rll rrlquest and

inPut and outPut status arraY.

IPC receive a tÈll lrüm nËtwork and stores it tetnporarily;

at the same tifiìe, IFC carries nut header processing t0
generate the scheduling request

16

tlme

slot until a schedule is lbund. For the tlrst bit, both of the arrays are 1 which means

neither of them is available for a schedule. Then the scheduler compares the second

bit, for this bit the input port has been allocated, so no schedule can be made. For the

3'd time slot, although the input port is available the output will be busy, so there is

still no schedule. For the 4'h one, both ports are available, so a schedule is made.

Since the purpose of the comparator is to lind the tìrst time slot available for

switching, the comparàtor stops as soon as a schedule is found.

The con-rparator generates a schedule result and sends the updated input status array

to the input port controller. As show in the diagram, the schedule result is an array of

binary numbers, in which the binary 1 represents the schedule. Also, the 4h bit of the

inpllt status affay is upclated to /. In addition, the comparator sends an updated

outpnt status array to the output port controller. In a similar way to the input Status

aff¿ìy, the 4th bit of the output status array is changed to / which means that this time

slot has been scheduled out. This new output status array will be stored in the output

port controller. Atier this time slot, both the input and output status arrays are shified

by one bit so that the second time slot becomes the tìrst and so on. The bit

corresponding to the 1't time slot is usecl to guide the input port controller to senri the

cell to the switch matrix. The bit corresponding to the l6'h time slot is f'ed a 0 that

means a new time slot is available.

This scheduling algorithm can eftectively avoid conflict among cells that may

otherwise use the same output port at the same time slot. This can decrease the loss

rate and improve the delay performance signifìcantly. Sarkies and Main [6] showed

m ag
Þ

11

status length is sufficiently large. Therefore, this time scheduling algorithm can

ensure high perfbrmànce of the switch

1.5.2 Enhancement

The algorithm can be enhanced by adding priority and multicasting.

1.5.2.1 Priority

Basically, there are two types of priority algorithn-r, namely delay priority and discard

priority. For the fìrst case, the cell with a low priority may suft'er more delay, because

the network always serves the high-priority cell fìrst. Discard priority means that at

cell with lower priority will be more likely to be discarded when compared with a

high-priority cell. Usually, the discard priority is very simple and is easily

implemented. The priority used by this algorithm is discard priority.

Specifìcally, for this algorithni a priority threshold is associated with each time slot.

The high priority cell can use any time slot fbr scheduling, while the low priority cell

can only be scheduled within the time slots that occur bef'ore the threshold. If a cell

with a low priority can not make a schedule within the tin-re slots permitted for it, the

cell will be discarded.

Clearly, this approach is very simple to in-rplement, but the penalty for it is less

f-lexibility. In difterenr ATM networks the threshold for the priority may need to be

set to a ue.

18

scheduler should be designed to be able to support a variable threshold' In other

words, the threshold value can be set to any point and this value is decided by the

priority level.

1.5.2.2 Multicasting

The algorithm also supports multicasting. Multicasting means a cell fiom one input

can be switched through a number of outputs simultaneous. In order to support

multicast, the switch matrix should broadcast a cell to all the 16 outputs. Then input

addresses are Sent to their corresponding output ports, which select and connect one

of the inputs to the output. Clearly, if a number of selector slices select the same

input, the cell fiom this input will be multicast. we will discuss the crosspoint

switch architecture that Supports multicast in a later section'

1.6 Summary

In this chapter, we introduced the basic structure of an ATM switch. The switch

matrix is the core of the ATM switching system. Therefore, we reviewed the

crosspoint switch architecture. Then, we discussed particularly the Structure of an

input bulTered ATM switch with a time scheduling algorithm. Finally, the time

scheduling algorithm employed by this ATM switch is discussed'

In the next chapter, we take up these basic concepts and carry out the design of an

ATM switch scheduler and its interfâces to the rest of the switch-

l9

output
rddresset

and PrloritY
lnfomallon

Cêlls from
nclwofk

l..)
!.,J

Crlls lo
ncùrork

LER

lnput

sclêdules

SWITCH MATRIX

INPUT

,PORT

CONTROLLERS

call!

PORT

OUTPUT

E!-..¡¡ z rriah-tarral arr.lrilantrrre ôf ân inout bUffefed ATM SWitCh

2.1.3 Interface Definition

The simulation results [6] ol rhe time scheduling algorithm used in this switch show

that the switch can achieve adequate throughput when 16 tin-re slots are used for

scheduling. Therefore, the scheduler discussed in this thesis is designed for

scheduling within the l6 subsequent time slots.

Before we càn discuss thc detailed design of each functional block, we should be

clear in what format each functional block interfaces with the others, because it will

affect the structure of the basic tirnctional blocks.

The Format of the OutPut Addressa

As stàted above, to make a schedule for a cell, the schedule needs a copy of the

o¡tput address of this cell. In what form shoukJ we use to describe this oLttpLlt

adrlress? Recall rhat one of the design objectives of this ATM switch is to sttpport

multicast. Multicast means a cell liom an input may be switched to a number of

outputs simultaneously. Therefore, we need an array of binary number that cân select

any number of outputs. Towarcls that end, for an ATM switch with 16 output ports,

we need a l6-bit binary number to rJescribe the output address. In this binary array,

we use 1 to represent a selected output port and 0 to represent a port not selectecl. In

order to minimise the pin count lor the scheduler, this i6-bit array is shified into the

scheduler in series. Therefore, the scheduler should have l6 inputs for the output

addresses, each of thc addresses coming fiom a diflerent lnput port controller

23

a The Format of the Priority Information

As we have discusserl in the first chapter, for such a scheduler with l6 time slots for

scheduiing, we neecl a 16-bit array to describe the threshold value for priority. Note

that we can also use a four-bit binary number to describe such a 16-bit array, and

then the 4-bit binary number can be decoded into the 16-bit affay. As will be shown

in the later chapter, the scheduler should shili in and out the information at à very

high speecl, fÌom a point ol view oI power saving it is advantageous to Llse the 4-bit

addresses instead of 16-bit. Also, fbr this scheduler we assunle that a cell to be

multicast to the diffþrent outputs would have identical priority for all the outptlts,

because it would be very diflicult ro distinguish dift'erent priorities for diffèrent

outp¡ts of a multicast cell. Therefore, only one bit of priority information is required

for any cell. Therefbre, the scheduler has l6 inputs for priority infomation, and each

one is connected to one input port controller.

The Format of the InPut Addresso

We have mentioned that the scheduler shoultl generate the input addresses for each

selector slice in the switch matrix to set up the data path. As with the outpttt address,

a question may be raised regarding the fornat of this input address. Since in one timc

slot one output port can only handle one cell, we should use such an àfray that can

select one input trom sixteen inputs. In order to minimise the hardware of the

scheduler, we LlSe a l6-bit array with one asserted bit to select an input. The input

adclress is shifted out of the scheduler to the switch matrix in serres.

24

a The Format of the Schedule

As we know, the scheduler should return a schedule for each input port controller as

the result of request processing. This array of schedules informs the input potl

controller in which time slot the cell is to be scheduled. For the multicast case, a cell

may be scheduled into a number of time slots to be switched out through difl'erent

ontputs. If this is the case, v/e have to use a 16-bit array to describe which time slots

the cell is scheduled to. Therefore, the scheduler has l6 outpttts for shifting the l6-

bit schedule alray back to the input port controllers.

2.2 Switch Matrix

As descrit.,ed above, the core of the ATM switch is a switch matrix, in which the data

paths are developed between the input and outpttt ports at the request of the cell. In

the first chapter, we have reviewed some possible architectures. In this section, we

will discuss the crosspoint switch architecture that meets the requirement of the

pàrticular scheduler discussed in this thesis. According to the above disctlssion, we

note that the crosspoint switch suitable for this ATM switch should have the

following characteristics:

. high speed;

. supportingmulticast;

¡ interf-aces perf-ectly with the other parts of the ATM switch.

z)

cEttrs ll¡Putl

roül[å$."

rJËËEIs

o1ñþ\ñ

Figure I Architecture of crosspoint switch used in this ATM switch

AELECTON sLrcE

AELECTOF SUCE

sErEgfoR SucE

3ELECTOR SLICE

BUFFERA

cELLg OulPlrls

CELLS

AHIFf FEOFTER

coNROUFAnoil LATCHES

lO:1 lluLÎPLEXER

Br¡tlñ

26

Figure 8 shows a crosspoint Switch architecture, which employs a broadcast and

select architecture. This crosspoint switch consists of l6 cell inputs, 16 cell otttputs

and l6 acldress inputs. The switch is comprised of l6 selector slices, each of which

corresponds to an output. The incoming cells are driven by the buffèrs and

broadcasted to all the selector slices. Each selector slice receives an input address

that informs the selector to select one of the cell inputs and connect it to the output.

The structure of the selector slice is shown at the bottom of the fìgure 5. The selector

inclurJes four parts: a l6-bit shifl register, a confìguration latch, a l6:l multiplexer

and a bufl'er. The input address is shifted into the shifi register in series. When all the

addresses are ready, the confìguration latch is turneil on, and the input address is

loaded into the nultiplexer in parallel. The asserted bit in the address will select one

gf the cell inputs and send it to the buffers. The buffers drive cells to the outptlt port

controller.

On the one hand, the broadcast and select architecture ensures that the switch can

support multicasting and the simple structure makes very-high-speed switching

possible. On the other hand, each selector slice receives a particular input address for

its corresponding oLltput port simultaneously, which means that the switch need only

set up once per time slot. It simplifìes the external control significantly' Moreover,

we employ a 16-bit shifi register to receive the 16-bit input address generated fiom

the output scheduler, to ensure that the switch matrix can intedace with output

scheduler pert'ectly.

21

Currently, the GaAs crosspoint switch as described in the literature can of-fer the

capability of up to l6 input and output ports at l0Gb/s for each [4], so the design of

the scheduler and input port controller shoultl be able to support such very-high-

speed switch matrix.

2.3 Design of the Input Port Controller

In the ATM switching system, the input port controllers which act as the interfäce

between the switch matrix and the olltput scheduler play a signilìcant role in the data

flow control. Now let us look at how an input port controller works. The input port

controllers should coordinate with the output. scheduler and switching f'abrics to

provide not only the basic cell control capability but also the advanced functions

such as multicast and variable threshold fbr priorities.

2.3.1 Overview of the Input Port Controller

As we have discussed, the input port controller is the interfâce between the network

and switch. On the one hand, the controller processes the cell header and deduces the

necessary routing information for switching. On the other hand, the input port

controller coordinates with the scheduler to manage the cell flow. To realise these

two functions, the input port controller consists of two basic fÏnctional blocks: the

header processor and the buflers. A diagram of the input port controller is shown in

fìgure 9.

28

N
@

Cells
From

Output Address

lnformation

Schedule
From
Scheduler

Cells
To
Switch
Matrix

#16 shift register #3 *2 #1

MAIN BUFFERS

temporarY
bulfer

TEMPORARY
BUFFERS

INPUT PORT CONTROLLER

sor

BU

#16

cell buses

Header
Proces

f1

Cell

#3

*2

#16

i

memory

t

Read
Enable

#3

#3

*2

*2

#1

#1

*4

shift register

Write Controller

Wr¡te
Enable

Cells

Figure 9 Diagram of input port controller

2.3.2The Function of Header Processor

When a cell arrives at an input port controller, first of all, it goes through a heacler

processor. Recall that in each ATM cell there is a header that consists of the

properties and the routing information of the cell. The header processor analyses the

header of the cell so as to determine the type of the cell. If the idle cell thât is

inserted by the physical layer anrl contains no Lìser infomration is detected, this cell is

discarded inmediately. However, for the user cell the header processor generates the

necessary information for switching the cell. The routing information is updated and

the cell is passed to the bufÏèrs.

As we have iJiscussed in the previilus section, lor this ATM switch the inlormation

required to switch a cell is the output address that indicates to which outputs the cell

is to be switched, and the priority informarion that describes how many scheduling

resources can be userl by the cell. Recall that because of the need of multicast' the

output adrJress should be in the form of an array of 16-bit binary numbers' Each bit

of this affay cofresponds to an output and an asserted bit represents an outpllt fbr the

cell to be switched ottt. The priority intormation should be a 4-bit binary nunber'

which will be decoded to a 16-bit array in the scheduler. The header processor sends

them to the output scheduler respectively'

2.3.3 The Operation of the Buffers

The buffers in the input port controller not only store the cells but also control the

30

stored in the #l butfer, the cell stored in the #l buffèr is forwarded into the #2

bufl-er. Similarly, at the beginning of the 3"i tine slot, the cells in the #1 and #2

bufþrs are lorwarded into the #2 and #3 buffers respectively and à new incoming

cell is stored in the #l buff'er. At the end of the 3rd time slot, the schedule is

received, and the cell in the #3 buffer is written into the main bufl'er under the

guidance ofthe schedule result'

2.3.3.2 The Structure of the Main Buffers

The block diagrani of the main buffÞrs is shown in figure 9' The main bufter consists

of two basic blocks: one is the memory, the other is the read-write controller'

The memory is comprised of 16 memory units. Each unit can store a cell' The

capability of the main bufl-er is determineo by the scheduling capability of the output

scheduler. Recall that this output schecluler is clesigned to be able to make a schedule

within the subsequent l6 time slots. As we will see later, storing a cell into the main

butlèr is clependent on the schedule for it. If no scheclule is made for a cell, this cell

will not be written into the main buff'er at all. The cell that fails to enter the main

buffèr will be discarded. Therefore, the number of the memory units in the main

buffer is identical to the maximum number of the cells that can be scheduled' In

addition to 16 memory units, there is a temporary buff'er in the main buffers, which

receives the cell from the cell buses and sends it to the switch matrix after one time

slot. The necessity of this temporary butfer will become evident shortly'

32

Associated with the memory, there are two shift regislers, which are the write

controller and read controller respectively (see fìgure 9). Each bit of the shifi register

is connected to a memory unit so aS to control the write and read process'

2.3.3.3 Operation of the Main buffer

In the last subsection, we mentioned that the operation of the main bufl'er relies on

the schedule results. Therefore, we can associate the position of the memory unit

with the time slot. Specifically, each memory unit corresponds to a time slot' Thus,

we can identify the memory address v/ith the time slot'

We shall now discuss the operation of the main bufTer. Similar to other nlemory

devices, it includes two processes: read and write'

Reading Processa

As we know, the cells are scheduled into the subsequent l6 time slots' When a cell is

sent out, the subsequent cell becomes the leading cell in the new time slot'

Therefore, when a cell is saved in a memory unit, the time slot to which this memory

unit corresponds will change with the time. For example, at one moment, the #1

memory corresponds to the fìrst time slot. The #2 memory corresponcls to the second

time slot (re1èr to tìgure 9). In the next time slot, the time slot that the #1 memory

corresponds to becomes the current time slot ancl the cells in #1 memory is sent out'

At the sante time, the #2 memory conesponds to the l'' time slot and all the other

groups now correspon su

33

#2 memory will be sent out and #3 memory will correspond to the I't timc slot'

Therefore, we need a pointer that can indicate which memory corresponds to the

current time slot and activates it to send the cell out'

In order to select the cell to be sent out, we need a read controller. Indeed' this

controller is a circular l6-bit shifi register with the input of the first bit connected to

output of the last bit (see fìgure 9). Thus, the state of this shift register can be rotated

around the register. Each bit of this l6-bit shifi register is connected to the "read

enable" input of a memory.

When the controller is initialiseci with an array of states such as

,,0000_0000_0000_0001". The shitt register is designed to shifi the state in it in a

counterclockwise direction, namely, the state in each bit is moved to the bit on its

left and the left-most bit is shified into the right-most bit. The shifi register is driven

by a signal that is asserted at the beginning of each time slot. Clearly, the state 1 will

be moved around one bit per time slot. We can regard the state 1 in the shift register

as a polnter.

As stated above, each memory unit corresponds to one of l6 subseqllent time slots,

so the menìory unit that has just sent the cells out should correspond to the l6th time

slot, a new time slot f'or scheduling. Therefore, we conclude that the pointer is

always pointing to the memory unit that corresponds to the 16'h time slot'

34

Since the pointer is always moved counterclockwise, the memory unit on the left of

the pointeci one should correspond to the l " time slot. These properties are very

important fbr the operation of write controller. We will come back to this point later.

If we have been clear about the properties of this pointer, it is very easy to

understand the operation of lhe reading process. The pointer is moved around the

register one bit per time slot. The memory pointecl by a pointer will send the cell to

temporary buf¡er #4 the cell buses (ret'er to fìgure 9). After one time slot, the cell in

buffer #4 is fbrwarded into the switch rnatrix. Then a read process is fìnished- Wc

will explain the reason of using this bufl'er #4 in a later section.

Writing processa

The write process is io save the cell held in the #3 temporary bufl-er into the matn

but¡ers. The memory in which the cell is written is controlled by the write controller.

As shown in figure 9, the write controller is also a l6-bit shitl register with the input

of the first bit connected to the outpllt of the last bit. The shift register receives the

schedule in series and sends them out in parallel. Each bit of this shil1 register is

connected to the "write enable" input of a memory unit. This shitt register is

somewhat diflèrent trom a common sertes-in-parallel-out register. We note that the

schedule inpur is directeri to all the l6 bits of the register. That means any bit of the

register can be selected as the entry-point for shifting in the schedule 'àrÍry, but only

one is selected at any one monent. The entry-point of the register is decided by the

pointer.

l
t
1:

r'

35

#15#16 #1#2#3

#16 #3 #1#2

WRITE CONTROLLER

READ CONTROLLER

from pointer

Figure 10 Structure of write controller

schedule

schedule

from pointer

'.¡

rd
'' t;

¡

Flip-flop Flip-flop0

1

I

r 36

q

,l

I

part of this shifÌ register is shown at the bottom of fìgure 10. Note that there is a 2: I

multiplcxer between each flip-f1op. The control signal of this multiplexer comes

from the pointer. When the pointer is /, the input of the flip-f1op is connected to the

schedule, so the 11ip-f1op pointed by the pointer becomes the entry-bit and the

schedule shifts into the shift register. At the same time, the multiplexer blocks the

signal lrom the prececling flip-flop. On the other hand, those 1ìip-f1ops that are not

pointed to by the pointer will receive the signal from its preceding stage, whose

operation is identical to an ordinary shift register. The reason for using such a

structure will become evident shortly.

Note that the output of the #3 temporary buff'er is connected to the input of all the 16

memory units in the main buffer. That means the cell can be sent into any number of

enabled memory units simultaneously. This is clue to the need for multicast, in which

the cell fiom one input may be scheduled to a number of diflþrent time slots. Since

we associate the nìemory place with the time slot, it makes a good sense to save the

cell into the memory unit that corresponds to the time slots scheduled by the cell. For

example, if a multicast cell is scheduled into both the 1" and 2'"1 time slots, we

should save the cell into the group that currently corresponds to the l'' and 2nd time

slot. Clearly, due to this association relationshiP, we can use the schedule array to

select the memory units and write the cell into then-r. SpecilÌcally, the asserted bits in

the schedule array represent schedules. The asserted bits will turn on the "write

enable" of certain memory units and the cell is written in'

If we use the schedule array as the write address of the main bufTers, we have to
i

! 31

time slot. The time slot to which each memory unit corresponds is always changing,

which is under control of the pointer. Therefore, a write controller is necessary to

select the entry-point of the schedule.

The write controller is a shifl register with variable shifi-in bit. Here we assume that

the schedule array is always shifteil into the register counterclockwise. For example,

the schedule result in #2 bit register is shifted to #3 bit; the schedule result in #3 bit

is shifted ro #4 bit; the schedule result in #i6 bit is shilied to the #1 bit. In addition'

we assume that the n-rost-signifìcant bit of the schedule array is shified into the

register 1ìrst, and the least-signitìcant bit is shilted in last'

On the basis of the above assumption, we note that no rnatter liom which bit the

schedule array is shifted in, the final result will follow such regularity: the schedule

result thât corresponcls to the tìrst time slot (least-signifìcant biÐ is always stored in

the entry-bit register; thc schedLrle result that corresponds to the 2n'l time slot is

stored in the register to the lef t of the entry-bit; the schedule result corresponding to

the l6'h time slot (most-significant bit) is stored in the register to the right of the

entry-bit. An example is shown in figure 10. The diagram shows the entry-point,

shifiing direction and the flnal result. For this example the entry-point is the #3

register. When all the bits are shitted in, the bit corresponding to the tirst time slot is

stored in the #3 register. The bit corresponding to the 2"'l time slot is in the left of the

entry-point, #4 register, and the bit corresponding to the l6'h tin-re slot is in the right

ol'the entry hit, #2 register.
r
I
I

¡

I
38

wr¡te controller

#16 #4 #3 #2 #1

14
2 I 16 15

11
first

time slot
sixteenth
time slot

Figure 11 Operation of the write controller
t

39

We have concludecl that the time slot to which a memory unit comesponds is decided

by the pointer in the read controller. The memory unit ref-erenced by the pointer

always conesponds to the l6'h time slot and its left one corresponds to the first time

slot. Therefore, we can simply use the read controller to select the entry-point of the

schedule in the write controller. A diagram is shown on the top of fìgure 10. We note

that each output of the read control is connected to a tristate buff'er. The tristate

buflèr that is turned on will develop a path for the schedule to the write controller

and the register connected to this butl'er will become an entry-point. We note that the

#N bit of the read controller is connected to the #(N+l) bit of the write controller. In

other words, when the pointer of the reacl controller is pointing to the #N bit, the

#(N+l) bit in the write controller will be selected às the entry-point for the schedule.

The writing operâtion is very straighttbrward. The pointer in the read controller turns

on a tristate buffer. The schedule is shifted into the write controller iÏom the selected

entry-point. At the end of the time slot, all the schedules are ready in the write

controller and they are loaded into the memories. The cell trom the temporary #3

buffer is written into the selected memory units. The write process is accomplished.

2.4The Design of the Output Scheduler

As discusse{ in the fìrst chapter, the most arlvantageous features of this ATM switch

are due to the time scheduling algorithm, and this algorithm is realised by the output

scheduler.

40

Bp"Sn#m8?,I'

Prlorllv lnformatln
from lñgul pon
controlþr

oulDut eddl€st
ftoffì lnDn Don
contfollef

lule
ut
rlþr

Sche(
lo lnD
Dort'
bonln

Þ

OUTPUT SCHEDULER

INPUT

sTAlus
REGISTER

PULSE

GENEFATOR

OUTPUT STATUS REGISTER

elemontery 3cheduþr

16 x 15 ELEITENTARY SCHEDULER ARRAY

Figure 12 Structure of output scheduler

2.4.1The Structure of the Output Scheduler

A firnctional block diagran-r of the output scheduler is shown in fìgure 12. The

exanrple output scheduler shown in the diagram, has 32 input ports and 32 otltput

ports. The inputs include 16 output addresses and l6 priority information codes. All

of this input information comes fÌom the input port controller. There are l6 output

ports connected to the 16 input port controllers, which send the schedules to the

controllers. The other l6 output ports are connected to the switch matrix. Each of

these ports passes to the switch oLltputs, the input address to which the switch outptlt

is to be connected.

Basically, this output scheduler is composed of four n-rain firnctional blocks: the

elementary scheduler, the input Status register, the output status register and the

clock generator. As shown in the diagram, the scheduler consists of a l6xl6 array of

elementary schedulers. Each row of the elementary schedulers conesponds to an

input, ancl each column of the elementary schedulers conesponds to an outpllt. Each

elementàry scheduler conesponds to an input-otttptlt pair. The function of the

elementary scheduler is to conpare the input status array with the outpttt st¿ìtlls array.

To minimise the amount of infbrmation to be exchanged between the output

scheduler and outside, we can simply maintain the input statu.s array and outplìt

statlls array within the output scheiluler. The input status array and output status

arrays are storecl in the input status register and output status register respectively

(see fìgure l2). In addition to storing and updating the input status alray, the input

42

Moreover, a 4:16 decoder and a 16-bit address register are also integrated into the

input status register, although they have a separàte firnction. Another part of this

output scheduler is a clock generator. This generator receives the clock signal tiom

outside and it bulters and distrìbutes it every clocked circuit on the chip. It also

generàtes the assertion pulses which are needed both by the status register and the

elementary schedulers.

2.4.2 Operation of the Output Scheduler

A more detailed diagram of this output scheduler is given in figure 13, which shows

dataflow among each functional block. The aim of this section is to illustrate how

each fÏnctional block interfaces and coordinates with others. The detailed design

within each functional block will be discussed in the next section.

2.4.2.1Data flow of the Output Scheduler

In this section we will discuss how the output scheduler works. Before we step into

the detailed discussion of operation, a llow chart (see figure 14) can help us to

unclerstand the basic finction of scheduler'

The operation of àn outp¡t scheduler can be divicled into three steps and each step

takes one time slot. The flrst step is to import the request fiom the input status

register; the second Step iS to comp¿lre the status arràys; the last step is to send the

scherluling result out. Clearly, in order to achieve the best etliciency, shifting in the

+1

L

-9
=!,o
.coo
tt

CL

=o
o
oL

oãL
Q
!t
-9
õ
oo
ç,
o

.9lr

E

t ¡Hfr

g

I
6

rI IÊE

¡
o

Ë
Ë

õ

FE

EËE

EËE

Er
fË.dE

Er
EË
Hg

Ec

Eil

nË

ËË

¡E

Èt

HH-
ã6
ÍË

ìt

f;f,

lt I

FËfr

ìf;il

Er

Id
EHE

Er

Id'

I
d

Èn

EË

44

olltp¡t addresses and priority infbrmation, comparing the status arrays and senrling

the input addresses and schedules out are all carried out in a pipelined manner'

Figurel4 Flow chart of operation of output scheduler

Scherluling results are sÊnt harlR to update the input
and rlutput statr.ls rEgislers.

input anr:l r:rutput status arrays and scheduling rÊque:;ts
arrt sÈnt to the rllÈrnrlntary srlhÈdulÊrs t¡ rnake

schEdules. r//hen tv/r:r rlr rnrlrrl inpuls requEsts rletnanrl

the same orltput, the scherluler at that output makEÊ

sevÉral sDheduling decisions.

Shilf the input rEquests c0nta.ining the destinatinn
rrutput adrlress into the nr-ttput scheduler

45

a Importing the Request

As mentioned above, the function of the output scheduler is to compare the input and

o¡tput status arrays so as to tìnd the first time slot available tbr both the requested

input and output. The status arrays are comparecl within the elementary scheduler

that corresponds to the requested input-outpllt pair, so we need some infomration to

fìnd the particular elementary scheduler. Moreover, any schedule is made on the

basis of the priority infbrn-ration, so some circuits must be provided in the outptlt

scheiluler to handle this priority information.

Recall that each row of the elementary schedulers corresponds to an input and each

elementary scheduler within this row corresponds to an outptlt. Therefore, we can

use an output address to select pàrticlìlar elementary schedulers and activate them to

compare the status affays. At the beginning of this chapter, we have stated that in

order to s¡pport multicast (in which an input can select a number of otltpLlts

simultaneously), a l6-bit anay is used to clescribe the output address' Ref'ening to

fìgure 13, in each row of the elementary scheclulers, there is a l6-bit shifi register

that receives the output address fiom the input port controller in series and sends it to

each elementary scheduler in this row in parallel. Each bit of this shift register is

connected to the "enable" input of an elementary scheduler. The asserted bit in the

address will activate the corresponding elementary scheduler to perform the

comparison of the status affay.

Let us study an example. If a cell requests to be switchecl to the outputs labelled #l

46

"1000_0000_0000_0001". Ir takes one time slot to shill it into the shift register. At

the beginning of the next time slot, the address is sent out in parallel. Each bit of this

array is sent to the corresponding elementary scheduler' In this example, the

elementary schedulers corresponding to the first and last olltput receive a logical 1,

so they are turned on and will compare the input and output status àffay' In contrast,

the other elementary schedulers that receive 0 are turned off. In other words' when

the status arrays flow through them they perform no operation and keep the status

arrays intact.

Reièrring to fìgure 13, we note that we have provided a decoder with each row of the

elementary schedulers. This decoder is utilised here to turn the 4-bit binary number

that describes the priority information into a l6-bit arrây. As defined at the beginning

of the chapter, we use a 4-bit ¿rrray to describe the priority information, which is

shifled into the output scheduier in series. This priority information describes the

threshold value of the time slot that a cell can use. As shown in a later section, the

elementary scheduler needs a 16-bit array to be used conveniently. Hence, we shottld

turn this 4-bit binary number into a 16-bit array. This is done by the 4:16 decoder.

As we have cliscussed, in this output scheduler we assunle tha[a cell to be multicast

should possess the identical priority infbrmation. Therefore, we can siniply send the

decoded priority infbrmation for a multicast cell to all the 16 elementary schedulers

in a row (see figure l3).

O Comparing Status ArraYs

4'l

When both the output addresses and priority infornation is available, the output

scheduler is ready for the next step which is request processing. This step is the

essential step lbr the operation of the output scheduler. We discuss its basic

operation fìrst, then we will analyse its drawbacks and improve it.

At the beginning of the next time slot, both the output address and the decoded

priority information are sent to the elementàry schedulers. Simultaneously, the input

status registers load the status arrays into all the elementary schedulers in its

corresponciing row. The output status registers send the output st¿ltLls arrays to one of

elementary schedulers in its column (re1'er to fìgure l3). The outpllt status array will

go through all the elementary schecluler in this column one by one and the output

status array is comparecl with the input status array in the ¿ictivated schedulers.

Note that the operation of each column of the elementary schedulers is identical, so

let us study the operation of one column, which is suffìcient to mirror the operation

of the whole outpllt scheduler. For simplicity, we assume that the output status array

is loailed into the elementary scheduler in the first row. We will have a more general

discussion on this topic in later section'

For example, if the fìrst elernentary scheduler in a column is activated' the output

and input status is compared in it. If there is a schedule made, the elementary

scheduler wor¡ld update the output status array and send an updated copy of the

olttput status arr¿ìy to its subsequent elementary scheduler, the one in the second row'

:^ l,.L^ll^,1 Vt Qi-r"ltrnonrrclr¡ the
ln Ilgure I J LIlc Ltpuatgu uutljLlt òL4LLIò 4rr aJ rù r4t/wrrvu u r¡

48

elementary scheduler generates a schedule array (labelled e in the diagram) in which

1 represents a schedule and 0 means no schedule. This schedule array will coordinate

with other schedule arrays generated by the other elementary schedulers in thi's row

to produce a fìnal schedule array for the input status reglster.

The updated output status array xl is sent to the elementary scheduler in the second

row. If this elementary scheduler is also turned on' the output Status array will be

compared with the input status array that is stored there' Assume that in this

comparison no schedule is made, So the output Statlls array will be kept intact and go

to the next elementary scheduler. At the same time, the elementary scheduler outputs

a schedule array. Since no schedule is macle, it is just an ¿lrrày of zeros'

Subsequently, assume that no other elementary schedulers in this column are turned

on, then the outpnt Status array will flow through each of them and return to the

output status register with a value that is irJenticai to the value of x1' Since no

schedule can be made in a disabled elementary scheduler, the schedule outputs of

elementary schedulers are all arrays of zeros'

At the end of this time slot, the input status registers f-etch the value from the e-btts'

Indeed, the value on the e-btts is the logical oR of all the schedule results

corresponding to the same time slot and difterent output' We will explain late'r why a

logical OR should be used. The input status register uses the scheduling results to

modity the input status afrays stored in them. on the other hand, the output status

register stores the new output status array in it'

49

a Exporting the Scheduling Results

As we know, the input port controller needs the schedule array to place the cell into

the bufÏer and the switch matrix needs the input address to switch the cell. We have

discussed the generation of the schedule result. We will discuss the generation of the

input address in a later section. The third step is to send them out. At the end of the

3"ì time slot, the output scherJuler processes a reqllest'

2.4.2.2 Structure Analysis

In the last section, we discussed how the output scheduler works. In this section, til

gain insight into the operation of the switch, we will discuss why it is appropriate for

the schedule to Ðperate in this way..

One question may be why the input status array is sent to all the elementary

scheclulers in a row, while the output status affays are f'ed to one scheduler and it

ripples through the whole column.

As the name 'butput scheduler" implies, all the schedules made in this scheduler

correspond to the output ports. In other words, what is scheduled is the operation of

the output port. One output port can only handle one cell at one time slot, so it

demands the output scheduler to schedule only one cell into a time slot. In the output

scheduler, the output status arrays are employed to indicate the state of the outpttt

were a

50

p

immediately. The 1 in the output status array represents a time slot that has been

schecluled ollt. Therefore, this 1 will give its subsequent elementary scheduler no

chance to make further schedules into that time slot. Thus, this structure ensures that

only one cell is scheduled to a time slot, in other words, no conllict may occur on the

outplrt port.

On the other hand, consicier the input status affays. As we know, this switch should

provide the multicast function, so it is not surprising for one input port to send a cell

to a few output ports simultaneously. In the section discussing the operation of the

switch matrix, we have seen that in the crosspoint switch the inputs just broadcast

the cells to all the outpLìts, and the outplrt will select one of them according to lhe

input a<ldress that comes from the olltplrt scheciuler. This architectLlre implies that

trom the point of view of the input port of the switch matrix there is no diftÞretlce

bet'ween switching the cell to one output or to sixtcen outpLlts. Therefore, we just

senci the input status array to all the elementary schedulers in a row simultaneously.

Each elementary scheduler in this row will generate an affay of schedule results.

Therefore, we use a logical OR of all the corresponciing bits of the l6 arrays as the

tjnal schedule result and send it to the input status register. This explains why the

flnal schedule result should be the logical OR of all the individual results.

2.4.2.3 Defeating Unfairness

Now we have understoorl the necessity of rippling the output status array through the

column of elementary schedulers, another question related to it will appear: since

-h

elemenf¿ry sched¡ler can onlyreceive the trpdaterJ output stâtlls array fronl its

51

upper one, the upper elementary scheduler has a greater chance to nìake schedr'rles as

it receives the output àrray earlier. In other words, there is unlãirness between each

elementary scheduler in a column. In order to solve this problem, we have to change

the entry-scheduler of the output Status array frequently and regularly so th¿ìt each

elenentary scherJuler in a column has an equal opportunity on average to achieve the

best service as well as the worst service.

Towards that end, the scheduler is designed to be able to load the status ârray lnto

any one of the clementary schedulers in one column and consequently, the updated

olttpltt Status array can be returned tiom any elementary scheduler (see figure l3)'

Clearly, in one time slot only one of them shoukJ be turned on to receive and return

the status array. Therefore, we need a signal to select it. We employ a l6-bit shift

register to act as â pointer in the signal generator' We have cliscussed the operation ol

a poirrter in the previous Section. Each bit of this register is connecter] to a fÙw of

elementary scheduler. When the pointer is pointing to À row' the row below the

pointed row woulcl be the entry scheduler of the output status àrrays for this time

slot. Thus, it receives the output status array fiom the output st¿rtus register directly'

The other ones will receive the Status array fÌom its upper scheduler' When the

output Status array goes through all the 16 elementary schedulers in a column' it is

returned to the output status register through the scheduler in the row pointed to' The

entry elenìentary scheduler is changed in each time slot, so tha[atter 16 tinle slots,

each elementary scheduler in a column achieves the identical average chance lbr

servlce.

52

2.5 Summary

In this chapter, we discussed the operation of the ATM switch at the highest level-

Four basic functional blocks are introduced and their coordination with each other is

demonstrated. Then, we cliscussed the structure and operation of the input port

controller. From the discussion of the input port controller, we understand how the

controller generates the request and manages the cell flow according to the schedule

results. Subsequently, we discussed the architectural design of the output scheduler,

lrom which we understand the basic scheduling process. With a good understanding

of the high-level operation, we will now investigate the detailed design in a lower

level

,)
ü
',tJ

I

I 53

Chapter Three

Investigating Basic Functional Blocks

of the Output Scheduler

Now that we have discussed the architecture of this output scheduler and studied

how each module coorclinates with others, we are ready to have a close look at the

operation of each functional block.

3.1 ElementarY Scheduler

3.1.1 Structure

First of all, let us study the interface of an elementary scheduler with the outside

world. The block diagram of an elementary scherluler is shown in fìgure l5' Since

the basic function of an elementary scheduler is to compare the input stàtus array and

output status àrfày,each elementary scheduler has two l6-bit inputs fbr the input and

output Status array respectively. As we have mentioned, the priority intormation also

takes part in the comparison, so a l6-bit input for priority information that is

decoded from a 4-bit binary number is neeclecl. The elementary scheduler also needs

an "enable" input which is controlled by the output address' In addition' in order to

defeat unfairness, each elementary scheduler is designed to be able to receive the

output status array directly, so a l6-bit input for the output status array and a pointer

,'I

\l
,i,
í

I

I 54

-< -
_==ær

P3x313 P2X2l2 P1Xl11
Pl6 x16116

addfess

outPul

lnput address
to other reglstef

\ñ
¡a)

lnpr¡t eddræs
ftom other reglster

n¡tl6

*

*

*

*

t

*

*

*

*

lnterface

blocking
circuit

Bus€3 to lnput

Statu. reglrtel

blocking
circuit

unit3
parison

¡cheduþ

updated output
3tatus array

blocking
circuit

unit2
son

blocking
circuit

unitl

from or¡lput stetu¡ regl¡ter

!¡gnel for deleatlng
unfalrnes¡

or¡tput ltatus reglstef

address
register

Figure 15 Diagram of the elementary scheduler

input are necessary. Each elementary scheduler has a schedule àrray output and two

output status array outputs one of which is connected to the subsequent elenientary

scheduler and the other is connected to the output status register. Moreover, each

elementary scheduler has a one-bit input and a one-bit output for the input address.

Secondly, let us consider the internal structure of an elementary scheduler. The

elementary scheduler consists of two main parts: the comparators and the schedule

registers. As shown in figure 15, there are 16 comparison units and each unit

corresponds to one time slot. For each unit, there are four inputs: input status, olltput

status, priority infbrmation and the interfacing signal. Note that associated with each

comparison unit there is a blocking circuit, which generates the interface signal to its

subsequent unit. As we know, the scheduler is only conconted with the tìrst tirne slot

in which both input and output port ¿Ìre availablc. The 'ulocking circuit is ernployed

to keep other schedules fiom being reached once the flrst one is found. For the first

unit, the interface signal comes fiom the output address, which determines whether

to enable this elementary scheduler. In addition, each scheduler outpttts a schedule

array and an output status affay. The schedule result has two branches of otttputs, as

shown in fìgure 15. One of them is sent back to the input status register. The other is

f-ed into a 16-bit schedule register, whose firnction wilÌ be discussed later. Moreover,

as shown in the diagram, there is a separàte one-bit register, which is used for the

generation of input addresses.

3.1.2 Operation of the Comparison Units

5ó

'Whether an elenentary schecluler will operâte or not is decided by the "enable"

signal, which is connected to one bit of the output address. If the olltput to which the

elementary scheduler corresponrls is not requested, a logical 0 will be sent to it. Then

this signal is rippled down to each comparison unit through the blocking circuit and

rlisables them. Alternatively, a logical 1 will activate this elementary scheduler. At

the beginning of each time slot, the inpllt status array and the priority infbrmation are

sent to each elementary scheduler, while the output status register will not be

available until it ripples to the elenentàry scheduler. When all these three sets of

inputs appear on an elementary scheduler, the scheduler is activated. What we are

interested in is the llrst tin-re slot that is available for both input and outpLlt, so the

comparison operation begins fiom the unit corresponding to the first time slot anrJ

passes along to the one coffesponcling to the last time slot. In other words, no

decision can be reached fbr a comparison unit r¡ntil it receives the interfacing signal

from its preceding unit.

Now let us study a simple scheduling example without consideration of priority

information. Assuming that an input status array, 0000-0000-0111-1101, and an

output status array ll11_0000_0000_llll appears on the input of an activated

elementary scheduler. Here we regard the least signitìcant bit as the first time slot.

The fìrst bit of each array is 1 which means that in this time slot both input and

output are busy. Then the first unit's blocking circuit sends a logical 0 to the

following unit to inform it that no schedule is yet fbund. With this signal, the second

comparison unit is activated and begins to compare the second bit of the arrays.

ver, SS no u

51

responsibility to its next unit. Thus, the comparison is carried out one by one until a

schedule is found. For these two arrays, in the 8'h time slot both alrays are 0 that

means both input and output are available. The 8'h coniparison unit generates a

logical 1 as the schedule result and updates the 8th bit of the output status array into

1. Simultaneously, its blocking circuit sends a 1 to its subsequent unit and this signal

wi¡ be passed through all its subsequent units. This signal prevents the subsequent

units fiom making any schedules, although both ports are available in the th to l2th

time slots.

3.1.3 Modifications for PrioritY

From the last example we are clear about the basic operation of the comparator. Now

let us look at how the priority information aff'ects scheduling. In the last example, tve

diil not consider the eflèct fÌom the priority mfornation. we can regard this situation

as that each cell has high priority, in which case Lhe cell can be scheduled into any

one of the i6 time slots. In this câse, the priority inf'ormation should be

,'1000_0000_0000_0000". As assumed above, the most signifìcant bit corresponds to

the 16th time slot, so this priority information me¿ìns the cell can not use the time

slots afterthe l6th. Thus all the l6 time slots are available forit.

A cell with a low priority can only use some of the time slots, which is decided by

the threshold value set by the priority information. Let us still consider the two arràys

in the last example to study how the priority information aflècts the scheduling

results. For convenience, we write it here again, the input Stàttls array:

58

consider the priority information "0000-1000-0000-0000"' This arrày means the

cell can use the lirst 12 time Slots. As we have cliscussed above, the cell would be

scheduled into the 8th time slot, so this cell obtains a schedule within the limit of

resoufces. The priority information would have no aft'ect on the schedule results' On

the other hand, if the elementary scheduler receives such an array of priority

infbrmation âs "0000-0000-0100-0000", the result will be diff'erent' This priority

information limits the time slots available to the cell to the lirst seven, while there is

no schedule for it until the 8'h time slot. Thus, even though there are plenty of

schedule resoLlrces are available from the 8'h to 12'h time slots, the cell is still going

to be discarded because its low priority prevents it from using them'

3.1.4 Operation of the Schedule Register

As mentioned above, the outpltt scheduler shoultl generate an input address f'or each

output of the switch matrix to set up a data path fbr the cell. In order to generate the

input adilress, we neecl a copy of schedules. Towards that end, one copy of the

schedule results are sent to the input status register, which contributes to update the

input Status arrays stored in both the input Stattls register and input port controller'

The other copy of the schedule array is directeil to a sixteen-bit schedule register'

Each bit of the register corresponds to a time slot. Since each bit of this register

obtains the schedule State fiom a comparison unit, the contents of this register unit

should correspond to the same time slot as the comparison.

The scheclule register is used here to record the scheclule history of the elementary

SC w

59

O

elementary scheduler. As we have mentioned, each elementary scheduler

corresponds to one input-output pair. When a schedule is made in an elementary

scheduler, it means that a cell is scheduled to be switched between this input-outpttt

pair. Indeed, the states in this schedule register indicate in which time slot this inptlt-

output pair will switch a cell.

Clearly, the schedule array is the accumulation of the results of the schedule array

that come from the comparison units. We should use the schedule array to update the

stàtes in the schedule register. Towards that end, an OR gate is used. What is written

into the schedule register is the logical OR of schedule aray and the previous state in

the schedule register. Since the new state always relies on its previous state, all the

states in the schedule register should be set to 0 when the scheduler is powered up,

which means no schedule has been macle. When a new schedule, a logical l, appears

in the schedule array, it will niociify the state in the corresponding bit of the register.

If no schedule comes in, the States in the schedule register are kept intact.

Furthermore, as stated above, the shift register is adopted to indicate the scheduling

history of the following l6 time slots, so the binary array stored in the register should

be shifted one bit per time slot so that the state in the register can oorrespond to the

proper time slot. Hence, the shifi register is shified one bit per time slot. The last bit

which corresponds to the l6'h time slot is loaded with a 0, and the state stored in the.

first bit of the register is loaded into another shifl register, as shown in figure 15.

This register is also a parallel-in-series-out shifl register, whose function is to shifl

the input address out of the output scheduler.

60

3.1.5 Input Address Generation

As mentioned above, the purpose of keeping a copy of schedule array in the

scheduler register is to generate the input a<ldress to be passed to the switch at the

correct time when a cell is to be switched. In this section, we will discttss how to

generate the input address fiom the schedule arrays. To solve this problem, we

should put the elementary scheduler into a column of elementary schedulers, which

is sketched in 1ìgure 16. Each elementary scheduler in this column includes a shifi

register unit and they are connected together into a l6-bit shiTt register. This shifi

register achieves the schedule result fîom the first bit of the schedule register in the

elementary scheduler in parallel and shifts them out to the switch matrix. What is

loaded into this shift register is just the input address for the cell to be switched in

the current time slot. This address is scnt to the corresponding output port of the

switch matrix to select the inPut.

Recall that each column of elementary schedulers corresponds to an outpttt, and each

row of elementary schedulers corresponds to an input. Also, in the elementary

scheduler each comparison unit conesponds to a time slot. Now let us consider the

l6 comparison units fiom different rows, which comespond to the same time slot,

say rhe firsr rime slor. They are highlighted in fìgure 16 by a box. In this module

there are sixteen single-bit shifl registers, which indicate whether there is a schedule

made for its corresponding input port. Thus, if we associate this array of schedules

together, it just indicates which input port is scheduled to send the cell to this output

port. For example, such an aff¿ry as "0000-0000-0001-0000" is stored in these 16

re coffes

ó1

lnput addross

Schedule Register

Comparator

Schedule Reg¡ster

Comparator

Schedule Register

Comparator

rddre!¡
r€glSter

Schedule Register

Comparator

Figure 16 A column of elementary scheduler

62

schedule made for the 9'h input port, so consequently the input port controller

corresponding to the 9'h input port would send the cell to the switch matrix at the

beginning of next time slot. The array of schedules provide switch matrix

information to the output port, which then uses this information to select the

appropriate cell lrom the input port. The array of schedules eff'ectively provides an

input address to the output port of the switch matrix.

Some words are worthwhile to explain that a cell and its corresponding input address

always ¿irrive at the switch matrix in the same time slot. As mentioned above, the

input address is generated according to the schedule. When a schedule is generated it

is written into one bit of the scheclule register that corresponds to the scheduled time

slot. Recall that the other copy of schedule result is sent to the input port controller,

which helps to write the cell into a memory unit that corresponds to the scheduled

time slot. A1'ter r:ach time slot, the state in the schedule register is shifted by one bit

so that each bit conesponds to its preceding time slot. Similarly, the pointer in the

main bufÏèrs shifts one bit after each time slot and all the cells stored in main butf'ers

correspond to their preceding tinie slot. When the scheduled time slot becomes the

current time slot, the scherlule result stored in the schedule register is loaded into the

shift register, which acts as the input address. At the same time, the pointer in the

main buf}'ers moves to the memory unit that stores the corresponding cell of this

schedule ancl the cell written into a temporary buffer.

As it takes one tirne slot to shift the input address in series into the switch matrix, the

cell fiom the main buflers have to be stored in the temporary buff-ers #4 for one time

ó3

of the switch matrix and they âre loaded into the multiplexer. Simultaneously, the

cell is sent to the switch matrix. Therefore, a cell and its corresponding input address

always arrive at the switch matrix in the same time slot.

3.1.6 Circuit Design of the Comparison Unit

In order to understand the operation of the comparison unit, we have to step to a

lower level, namely, circuit level, to See how the Status arrays are compared.

The circuit of the comparison unit and its blocking circuit are shown in fìgure 17.

From the point of view of the inputs I (input status) and x (output status), there are

three paths and each path takes charge of a particular function. Specifìcally, path I

will compa¡e the input and output status and generates the schedule result; path 2

will compare the input and output status and update the output status alrây

conditionally; path 3 takes charge of generating the interlace signal to the subsequent

unrt

3.1.6.1 Generating the Schedule

The path labelled I is to generate the schedule. The operation can be readily

described with the following equations:

e=iNORx

e_tmp-eANDup'

64

P
up

x+-
Prlh

Plrh 2

down

Prlo?lly Clrcull

r_tmP

r_lmP

I (tþ¡î output ¡llh¡. raglrtd)

t (to outPutrt lu¡rogl.tlr)

lrlmoat
lo rchcdub

Xout

Figure 17 Circuit of comparison unit

0l 0l

I'"c

I

T_t

65

The purpose of the fìrst equation is to compare I and -x. Specifically, when both the

input Statlls I anil output status x àre 0, which n-reàns both input and output port are

available, the result e (schedule candidate) will be 1. That means this time slot is

suitable to make a schedule. However, it is only a candidate, whether it can become a

real schedule or not is dependent on whether this comparison unit is âctivated. As we

rliscussed above, for the first comparison unit, the enable signal comes fion1 the

olltput acldress and for the other units the enable signal comes from the interfâce

signal of the upper unit. We employ a logical AND between the ¿ and rtp (tnterÍrce

signal fiom upper unit) and their result is a real schetlule result. For example, when

the up is 1 that means this comparison unit is ciisabled , the e-tmp will defìnitely be 0'

no matter what the signal ¿ is. When the ttp is 0, then e-tmp would follow the value

of ¿. Therefore, if ttpis l, a schedule candidate (e=l) will becorne a schedule. Note

ttrat the signal e_ttnp has two branches: one is connected to the schedule register and

,i.ne other ilirects to an NMOS transistor. For the first câsc, we have described the

reason of why we should store this schedule result. Now let us study the other

branch.

In the previous section we have explained that what the input status register recelves

is the result of a logical OR of sixteen schedule results that correspond to the same

time slot but ditterent output ports. This transistor is used here to realise the wired

OR. Note that the "gate" of this N-transistor is connected to the schedule signal; the

"SOLlrCe" iS COnneCted tO the Vdd; the "drAin", E-out, iS COnneCted to a buS' ThiS buS

connects the input of the input status register with 16 schedule result olltpttts

corresponding to the same time slot ancl rlifferent outpttt. ports. 'When the e-tmp is a

o

66

I

the transistor and pull it up to 1; on the other hand, if the e-tmp is a 0, the transistor

will be turned off and output a high impendence that does not afTêct the state of the

bus. In order to realise a logical OR of these 16 schedule results, we should

discharge the bus to logical 0 at the beginning of each time slot. If one or more

schedule results connected to this bus is 1, they will pull the bus up and the input of

the input status register would be a -1. Altematively, when none of these l6 schedule

results rre I , all of them will output high impedance and the bus will keep the state

0. Thus the input status register will achieve a 0.

We can also use truth table to explain the operation:

Where Z'represents high impedance, and 1'represents "dont care".

Table 1 Truth table of schedule generation

3.1.6.2 Updating the Output Status

Since we have understood how the schedule result is made, let us go on to study the

up

1

0

0

0

0

x

0

1

0

1

0

0

1

1

e_tmp e out

L

U
',i
I

0

I

0

0

0

Z

1

Z

Z

z

seco 1S

61

L

I

output st¿ttus, if a schedule is macle. The operation of this path can be described with

the following equation

x-tmp - (i' AND r'ry') OR x

Where l'represents the inverted i, ttp'means inverted up and x-tmp represents the

new output stâtus. This equation informs us that when the enable signal up is a

logical 1, in other words, this comparison unit is not requested to work, the result of

(i' AND r.¿p) woultl certainly be 0. Consequently, x-tmp will fbllow the previous

value of output status x. In contrast, if this elementary scheduler is activated, namely,

Ltp=0, then last equation can be rewritten like this:

x-tmp = i' oR x

The reason is that when ltp=Q, the result of (j, AND up) will always be decided by

the value of i '. When i is equal to 1, this means the input port has been scheduled by

another cell, so no schedule can be made and x-tmp will follow the previous x. If this

time slot for this input has not been scheduled out, the signal i would be 0. In thi.s

cùse, x_tmp is equal to 1, which means a schedule will be made and the outptlt st¿ltus

is updated to 1.

The finction described above can also be described with a truth table'

I

*
68

up x_tmp

Where :'represent "dont c'àre".

Table 2 Truth table of output status updating'

Here we have achieved the updated output status, -r-tmp, next we discuss how this

signal is distributed. Recall that in order to def'eat untäit'ness, the output st¿lttls arrays

are loaded into the different elementary scheduler in e¿ich time slot a.nd consequently

the r.rpdated output status arrays are returned to the outpllt stattts register tionl

difl'erent elementary schedulers in each time slot. This distribution circuit is

employed here just for realising these functtons.

As shown in ligure ll, the distribution circuit is a combination of a 2:l

demultiplexer and a l:2 multiplexer. The signal x-r.mp has two branches of otttpttt:

one is Xottt andthe other is r. Clearly, we need a demultiplexer here to decide which

branch the signal should be directed. On the other hand, as vr'e see in the circuit

diagram, the signal Xout is rlriven by two sources: one is from the x-tmp and the

I x

1

0

0

0

0

I

0

1

0

1

0

0

1

1

1

0

0

0

,,i
fi'l

j

t
I

;{

1S ou

69!

t
I

;

them we neecl a mnltiplexer here. Both the multiplexer and the deniultiplexer are

controlled by the signal labelledfairness', because all of these operations are to def'eat

unfairness.

When a row of elementary schedulers receives a logical 1 fiom signal fairness', (see

fìgure 17) that meàns the next row of elementary schedulers will act as the entry-

scheduler for the output status array. For this case, the output Xo¿¿l should be

connected to the output status from the output status register. The other source of the

Xottt Trom x_tmp should be latched. The output status goes through all the

elementary scheduler in a column will go back to the output status register fiom the

entry-point. Hence, the signal x_tmp is connected to the output th¿it directs to the

output statlts register. From the tìgure l7 we find that when the signal/ainte.ç'ç is a

logical 1, it will tum on the pass transistor betweeri the/and lhe Xout ancl the pass

transistor between x_tmp to t.

Also, we can describe it with a truth table.

fairness Xout

X_tmp Z

X_tmp

'Where Z'represents high impedance.

Table 3 Truth table of generating fairness signal.

t

f

0

1

t
10

On the other hand, for the common case the elementary scheduler does not act as the

entry-scheduler, So it just receives the output status array fÌom its upper elementary

scheduler, and sends it to its next one. It is not aware of the existence of the olltput

status register. For this occasion, the signal fairnes's is a logical 0 and it develops a

path between the x_împ and Xottt (see tìgure 17). At the same time, this signal

latches the signal fTom the output status register and output high impedance to the

output status, which makes this elementary scheduler neither rnodify the states of the

output status array, nor be aff'ected by the status array. This completes the description

of how the output status array takes part in comparison and how it is ciistributed-

3.1.6.3 Interfacing with Subsequent Unit

Finally, let us analyse the blocking circuit that interfaces with the comparison unit

corresponding to the next time slot. The blocking circuit takes charge of infbrming

its subsequent unit whether they are requestecl to compare the status array. If the

interface signal down ts a 0, its subsequent unit is enabled to compare the status

array. In contrast, iÍ down is a 1, the subsequent units will be disabled. There are

three factors that may atf'ect the value of the intertace signal, that is ttp, p and the

comparison result of i anrj x. Theretbre, the blocking circuit needs these signals as

inputs. (see fìgure l7)

The operation of the blocking circuit can be described with the following equatlon

down= (iNORx)ORpORup

1T

v/here ¿rp'represents the inverted up

This equation shows the contribution fÌom these three factors clearly. If this

elenrentary scheduler is disabled, namely, up=O then signal up'wlll be 1' No matter

what is the comparison result of i and x, signal down will certainly be 1. Then the

subsequently unit will be disabled. If the signal up rs a 1, the interface signal down is

decided by the other fàctors. If the signal p is a 1, which means the priority

information prevents the cell from using the subsequent time slot, the signal down

will also be 1. Thus, the subsequent unit will be disabled. If both p and up' àÍe 0, the

signal down is decicled by the comparison result of i and x. When both of them are 0,

this time slot will be scheduled. Since a schedule has been found, it is not necessary

for the subsequent unit to do anything. Therefore, signal down passes a 1 to the

subsequent unit to disable it. On the otlier hand, if no schedule is achieved in this

conrparison unit, namely (i NOR -r) is equal to 0, then the signal down wlll be 0. It

informs its subsequent unit to go on comparing the input and output status arrays'

The fïnctionality of this part of circuit can also be described by the truth table.

12

I down

Where 1'represent 'dont care".

Table 4 Truth table of Generating interface signal.

3.2 Input Status Register

In the output scheduler, the input status arrays are maintained and updated in the

input status register. 'We have discussed the basic function of the input stâtus register

in the previous section. In this section the structure and operation of the input status

register will be discussed in more details.

3.2.1 The Structure of Input Status Register

Figure 18 shows the diagram of an input status register. The input status register has

16 inputs which receive the schedule anay fïom the elementary schedulers. There are

l6 outputs that send the input status array to the elementary schedulers.

x up

1

0

0

0

0

0

p

1

0

0

0

0

I

1

0

0

1

1

1

0

0

0

0

1

0

1

13

Schedules
lrom

Elcmentary
Schcdulcr -- .-

Unitl6

INPUT STATUS REGISTER

Unit2

Unit3

lnput Status Register Unitl

lnput
Status
Aney

to
Elcmontary
Scheduler

Schedule
to preceding
time slot

Schedule
from subsequent

unlt

lnput statug
to procading
t¡me slot

lnput status
lrom subsoquent

unlt

lnput statug

Schsdulc

Figure 18 Diagram of input ståtus register

new_l
OR *2

74

The input status register is comprised of l6 input status register units. Each unit

corresponds to a fixed time slot. Recall that in the main bufl-er, each memory unit

corresponds to a floating time slot. Here, each input status register corresponds to a

particular time slot. For example, the l" unit corresponds to the first time slot, the 3"t

unit corresponds to the third time slot and so forth. As shown in the diagram, each

unit receives a schedule bit and outputs an input status bit'

The diagram of an input status register unit is shown at the bottom of fìgure 18.

Basically, each input st¿ttus register unit contains two parts: one is the schedule status

shift register, the other is the input status register. The schedule status register in

each unit is connected in series into a l6-bit shift register. The inpllt status register is

comprised of an OR gate and a register. The OR gate is used to change the schedule

status into the input status, as explained below. The register is eniployecl to store and

shift the input status array.

3.2.2 Operation of the Input Status Register

First of all, let us look at the operàtion of the schedule status shifl register. This l6-

bit shifi register srores the l6-bit schedule anay in parallel at the beginning of a time

slot. This 16-bit wide array is shified out to the input port controller in series. This

schedule array is userl to place the cells into the buflèrs in the input port controller as

explained in a prevìous secLion.

Secondly, we will concentrate on the discnssion of input status register. Ref'er to the

75

From the diagram, we note that the register in each unit is connected one by one.

They comprise a 16-bit shift register. The shifi register forwards the state in it one bit

per time slot, namely the state in the l6th unit is loaded into the 15'h unit, the state in

the 3'd unit is loaded into 2''d unit and so on. The reason for this operation is

straightforward. As mentioned above, each unit of the input status register

corresponds to a fix time slot. After each time slot, each bit of the input status array

should correspond to a ne\ / time slot. Theretbre, in order to keep each bit of the

input status array always corresponds to the correct time slot, they should be moved

into the register units that correspond to the appropriate tin-re slot. In this input status

register, the top unit is designed to correspond to the first time slot, and the bottom

one conesponds to the l6'h time slot. Afier a time slot, each bit of the input status

array should correspond to its preceding time slot. Therefbre at the beginning of a

time slot, cach bit of the input status array is shifted into the upper unit. And the l6th

bit is f'ed a 0 that represents a new time slot to be scheduled (see fìgure 18)'

Note that besicles the state loaded into the register, there are another two branches for

the input status. One of them is sent out of the input status register. This copy of

input stàtus is sent to the elementary schedulers and will be compared with the

output status.

The other copy is sent to an OR gate. Recall that the input status register receives the

schedule array, but maintains and sends out the input status aray. Therefore, we

shoulcl change the scheclule status into the input status before it is stored in the

16

previous state of the input st¿ttus is the logical 0 and a schedule is made f'or this time

slot, namely alogical 1 is received, then the logical OR of these two states is 1. This

state is written into the register, which updates the previous state in the register. If

the previons status is the logical 0 and no schedule is made for this time slot, namely

a logical 0 is received, the input status will keep its previotts vàlue, logical 0. If the

previous value of the input status is logical 1, which means this time slot has been

scheduled out, it is impossible to make a lurther schedule. Theref'ore the schedule

should be 0 and the input status is stili 1.

3.3 Output Status Register

As the name implies, the out status register is used to maintain and drive the outpttt

status array. A diagran of the output status register with the detailed structure of rhe

register unir is show in figure 19. InrJeed, the output status register is tr simplified

version of the input stàtus register. The output status register needs not shift anything

out, so there is no shifier register for shiliing the schedule array out. Moreover, the

olltpLtt status register receives and stores the output status array and maintains the

olrtput status àrray, so the output status is written into the register directly. Except for

the above diff'erence, the operation of the output status register is identical to that of

input status register.

3.4 Clock Generator

The clock generator acts as the generator of all necessary signals for the operation of

1'l

Output
Status

Array
from

Elementary
Scheduler

Unit16

OUTPUT STATUS REGISTER

Unit3

Unit2

Output Status Register Unitl

OutPut
Statug
Array

to
Elementary
Scheduler

Output status
uodated

output status

Output status
to preceding
t¡me slot

lromnlt

Figure 19 Diagram of output ståtus register

78

Clock lnPut

pulses for chiP

pulses

for

defeating

unfairness

Figure 20 Diagram of clock generator

SHIFT SHIFT

79

Basically, it is comprised of two identical l6-bit shift registers. Both of them are set

to such a state as "0000_0000_0000_0001" when the chip is powered on. Moreover,

the tlrst bit and the last bit of either register are connected so that the states in it can

be rotated round and round. Indeed, both of them operate like a pointer used in the

read controller of input port controller.

The shift register #l is used to generate the assertion pulse, which is necessary in the

operation of the input status register and elementary scheduler. For example, the

input status register needs an assertion signal at the beginning of each time slot so

that the input status array is forwardecl one step. This signal can be realised using the

shitl register #1. This register is driven by the clock signal, which asserts l6 times

per tin-re slot (we will define tht: clock frequency ln the later section). At the

beginning of a tirne slot, the fìrst bit of the shift register #l is set to l; all other bits

are set to 0. The output of the lirst bit of the shilt register #1 will be thc asscrtion

signal that we need. Using this register, we can achieve any assertion pulse that we

need.

A tiniing diagram of the signal generator is shown in tigr,rre 21. -fhe shiii register #1

is driven by the clock signal, so the set bit shilis once every clock cycle. We use the

o¡tput of the shift register #l to control operation of the whole scheduler. In

ar1dition, the signal Al(1" bit of shift registerl) is used to drive the shift register #2,

which generates a signal for defeating unfairness. As shown in the diagram, Al is

asserted at the beginning of each time slot. When Al is asserted, it drives the shift

register2 to shifi one bit.

80

l6 cìock cycles

-ÎÚclock

cYcles
-163lõek-cycìes

Clock signal

1" bit of shift registcrl. (signal A1)

2"d bit of shift registerl. (signal A2)

3'd bit of shift registerl. (signal A3)

l" bit of shitt register2. (signal B1)

2nd bit of shift register2. (Signal B2)

3"r bit of shitl register2. (Signal B3)

Figure2l Timing diagram of signal generator.

8l

Chapter Four

Physical Design of the Output Scheduler

In the previous chapters, we discussed the operation of the output scheduler in detail.

As we mentioned in the fìrst chapter, this output scheduler is designed to the circuit

level, so this chapter we will discuss some VLSI (Very Large Scale Integrated circuit

design) circuit design issues.

V/e will rliscnss three topics in this chapter. First of all, the design methodology is

illustrated, which shows the design flow of this output scheduler. Secondly, we will

discuss some techniques used in the VLSI design to achieve high speed,

comparatively low power dissipation and reasonably compact area- Then, we will

give the simulation results of this olltput scheduler.

4.1 The Design MethodologY

The design of this output scheduler lollows a top-down methodology, which is

widely used in modern ASIC (Application Specilìed Integrated Circuit) design [8]

[9]. Specifìcally, it includes the following steps:

High-level design specification and partition: According to the role of the

output scheduler to be played in an ATM switching system and the time

scheduling algorithm, we specily the tunction of the outptlt scheduler. Then this

a

on ls V1

83

a

above, the output scheduler is dividect into 4 basic functional blocks, namely

elementary schecluler, input status register, output status register and clock

generator.

Develop and validate functional models: In this design, the models of the

output scheduler are developed with VHDL (Very high speed integrated circuit

Hardware Description Language). We use VHDL to describe the behaviour of

each basic firnctional block and combine them together according to the

architecture detìned in the last step. The models are simulated to make sure that

they can realise the functions that we expect. Basically, modelling has three

functions: fìrstly, it can verify the conectness of the design specifìcation at high-

level abstraction; secondly, the moclels can be used as the source for synthesis;

thirdly, the stimuli that will be used fbr functional verifìcation can be generated

lrom the models

Schematic design and simulation: In order to achieve the best performance, the

schematic of the scheduler is designecl manually, instead of being synthesised

trom the VHDL code. The schematic is simulated to the switch level to ensure

the correctness of its function. The schematic design can not provide such

infomration as the RC delay due to the contacts and wires, so we can not achieve

any àccurate simulation result. Therefore, switch level simulation is carried ottt,

which ignores the non-linear efl'ects of the transistor. It only shows the functional

validity. We can use the stimuli generated from VHDL models to simulate the

circuit àutomatically.

Layout design and simulation: The layout is also drawn manually to achieve

high-speed, low power and small area. The layout is designed on the basis of the

a

a

SC a t S an

84

ln So a

a

a

included all the delay infomration, we use Hspice to conduct full-analog

simulation, fiom which we can achieve accurate delay and power dissipation

estimates. As Hspice considers the non-linear eff'ects in the operation of the

transistor, it is very accurate but expensive in calculation time. Therefore, it is

not f-easible to simulate the whole chip or very large-scale circuit. Usually,

Hspice is used to analyse and simulate the critical path of the circuit.

Functional Verification: In order to guarantee that the circuit can realise the

functions we expect, we use the switch-level simulator again to verily the

function of the circuits. Similarly, we can use the stimuli generated from the

VHDL codes to verify the firnction.

Layout Verification: Layout verification includes two steps: LVS (Layout Vs

Schenatic) and DRC (Design Rule Check). Since the layout is designed on the

basis of the schematic, it makes sense that they have identical netlists. Theref'ore,

we should compare the layout and the schematic. As we know, the final

fabrication of the circuit on the wafèr relies on the layout of the circuit. For each

technology, there àre some specilic electronic rules for the circuit layout. If some

rules are violated, it may callse son-re malfïnctions of the circuits. Hence, a DRC

of the overall circuit is necessary.

Compared with the bottom-up design methodology, the most signifìcant advàntage

of top-down design is earlier error detection. As stàted above, the design begins with

the high-level abstract modelling liom which we càn detect errors before any

detailed design is begun. Afier we make sure that the models are correct, we step to

the lower level, schematic rlesign. Similarly, the layout design is not carried out until

15 prove co

85

Lls, w

fabrication, the probability of error will be very low. Earlier error detection results in

the reduction of the development costs and increases the chance of first pass success'

In this section, we introduced the methodology of ASIC design. With à general

understanding of ASIC design flow, we will discuss some specific design topics in

the next section.

4.2 Techniques for High Performance Digital Design

In the second chapter, we discussed the operation of the output scheduler in the

domain of functional description. Relèning to the design llow introduced in the last

section, we have finished the schematic design. In the next f-ew sections, we will

discuss some issues on layout design, because the layout will decide the final

perfbrmance of the chip.

4.2.1 Design Specifïcation

Before v/e start to discuss the particular design issues, we should specily some

parameters

The scheduler is driven by a clock whose fiequency is 400 MHz. In other words, the

perioj of each clock cycle is 2.5 ns. This value is decided according to the design

objective. Recall that the output scheduler should be designed to support a

l0Gb/s/Channel switch matrix. For each ATM cell, there are 53 octets, namely 424

86

switch an ATM cell. In order to support such a high-speed switch matrix, the

scheduler has to llnish one scheduling process within 42.4 ns. We have de|ned the

time for switching one cell as one time slot. Therefore, for convenience we specity

each time slot to be 40 ns. As defined in the last chapter, the 16-bit output address,

schedule array and input address should be shitted into or out of the scheduler in

series within one time slot. Clearly, each time slot should include l6 clock cycles.

Therefbre, the period of each clock cycle should be 2.5 ns. In order to simplity the

design, the scheduler is driven by a single-phase clock signal.

The target process technology of the olrtput scheduler is 0.25uni TSMC CMOS

technology with 5 metal layers and single poly. The power supply is 2.5 V.

4.2.2 D esign Requirements

Basically, the quality of a VLSI chip is decided by three fãctors, nanely speed,

power dissipation and area. Just like many other engineering flelds, it is impossible

to achieve the best perfbrmance on every factor, because some factors always

conflict with others. Therefore, an optimal design is a compromise between those

factors.

For example, sttppose we are designing the CPU for a PC. For a PC, we need not be

too concerned about low power and we can install a fan to cool down the processor.

Moreover, we have sufllcient room fbr à processor. Therefbre, we cân trade the

power dissipation and area for the speed. On the other hand, if we are designing a

-PU

fix a portãtrle eonpmeçwhosepower supply comes from the battery;we have

87

to minimise the power dissipation of the processor so as to increase the lil'etime of

the battery. In addition, portability requirenents dictate that the processor be

designed as compactly as possible. Hence, the power dissipation and area are the key

factors to be satisfied.

As mentioned above, the objective of this design is to support the switch matrix that

works at a speecl of l0Gb/s/Channel. Consequently, the scheduler should llnish a

scheduling process within 40 ns. In each scheduling process, the output status array

should ripple through all the 16 elementary schedulers in one column. It is really a

challenge! Therefore, the speed should be akey factorto beconsidered in the design

process. On the pren-rise of a satisfactory speed, we can try to minimise the power

6issipation anrJ area. Therefbre, all the design decisions are based on this basic

principle.

4.2.3 Design for High Speed

As stated above, the output scheduler should 1ìnish one scheduling process within

40ns and the requests and the scheduling results have to be shifted into or out of the

scheduler within one time slot. Atl of these require that the circuit must be designed

with much care. In this section, we will discuss some techniques used in the layout

design of the schecluler.

4.2.3.1Floorplanning

88

Floorplanning is the exercise of arranging blocks of layout within a chip so ¿ìs to

minin'rise the area ancl/or maximise the speed. Many detailed design decisions are

closely related to the high-level topology of the functional blocks, so u/e discuss the

floorplan of the scheduler first. A diagram of the scheduler floorplan is shown in

ligure 22. ln the centre of the scheduler is the clock generator. There is one input

status register in each row of elementary schedulers and the register lies in the

niidiile of this row. The shill register tbr outpltt addresses and the decoder lor

priority intorn'ration are integrated into the input status register. There is one output

statlls register in each column of elementary schedulers anil the registers are placed

in the middle of each column. As shown in the tiiagran, the input status registers and

outp¡t status registers comprise a cross that divides the l6xl6 elementary scheduler

array into tbur parts. Each part consists of an 8x8 array of elementary schedulers.

That the input status registers and the output status registers are placed in the middle

of the row or column where they lie makes the structure of the outputscheduler more

symmetric. Since the input statlls register and output status register should exchange

information with the elementary schedulers frequently, this synlmetric structure

helps to reduce the RC rlelay from the wiring. Also, it is advantageous for power

conservation (we will come back to this point later)'

The reason fbr putting the clock generator in the centre of the output scheduler is to

simplify the clock distribution. As stated above, the clock generator takes charge of

buffering the clock signal and generates the assefiion pulse. Each

Il9

ES ES
input
status
register

ES ES

ES ES
input
status
register

ES ES

ES ES ES ES

ES
input
status
register

r¡a

¡
I
t

I
t
I

clock
gene

a a
I
t

¡r¡

¡ta

ES ES

Figure 22 Floorplan of elementary scheduler

90

lunctional block neecls some assertion pr.rlses or clock signals and ¿ill of these signals

come fiom the clock generator. Clearly, when we put the clock generator in the

centre of the chip, the assertion pulses and clock signals can reach each functional

block with the minimun distance and best symmetry. Also, it is helpful to minimise

the skew. We will discuss this topic in the next section.

4.2.3.2 Clock Distribution and Skew

In the output scheduler, both the input and outpltt status registers are sequential

circuits. They consist of a large number of registers and latches. All of them should

be driven by the clock signal or assertion pulse. This hugc fan out acts as a large

capacitive loacl on the clock signals and assertion pulses. The load is lìrther

increased by ttre capacitance from the wire itself, which is distributed fiom the clock

generator to e¿ch corner of the chip. Therefbre, we need sLrfficient butl'ers to amplify

the signals and drive them into functional blocks.

A closely related problem is skew. Some wires tor clock distribution may rezrch a

length of centimetres. Such long clock wires introduce a substantial series resistance,

even if we use the metal layer. A clock line thus behaves as a distributed RC line- As

the delay of an RC line is a function of the length, the flip-fìop connected to the same

clock signal may observe diflèrent transition times due to their different distance

lrom the driver. This etlèct is clock skew [9]. Skew can severely att'ect the

perfbrmance of the sequential circuit. In the actual design, it is very difflcult to make

the skew zero. The most important issue is to limit the skew to lhat which the circuit

91

can tolerant. As the output scheduler works at ¿ì very high speed, this makes it very

sensitive to the skew. Theretbre, we have to try to minirnise the skew.

A practical v/ay to solve the skew problem is to route the clock signal caretully and

use a hierarchical clock-bufl'ering scheme. Figure 23 shows the structure of a buffer

tree that is used in the output scheduler. Note that the clock signal is driven by the

buf'fers stage by stage fÌom the signal source to fìnal circuit. Specifically, the signal

is amplifìed to rlrive the bufl-ers in each column. The buffers in each column drive

the signtrl to the bufters in each elementary scheduler. The buf'fers in each

elenentary scheduler drive the signal to each flip-f1op. Clearly, this approach does

not result in a zero skew, but it decreases the skew substantially. The reàson is that

the intermediate buftèrs isolate the local clock nets fiom upstream load inipedànces

a.ncl an-rplify the clock signals degraded by the RC network. Therefore, lhe skew is

decreased and the signal slope is kept steep.

4.2.3.3 Critical Path Analysis and Optimisation

In a circuit, there are a large number of paths and each path has a characteristic

clelay. 'When we talk about the delay of a circuit, what we relèr to should be the

maximum delay trom all these paths. The path with the maximum delay is called the

critical path. The critical path will determine the speed of the whole circtrit.

Therefbre, we should analyse the circuit to find the critical path and optimise it to

achieve the minimum delay.

92

Clock
Generator

Figure 23 Structure of buffer distribution

93

a Identifying the Critical Path

In the last chapter, we have noted that in the scheduling process the outpllt status

array ripples through 16 elementary scheduler in a column and is compared with the

16 input status arrays. The input status arrays and the priority information âre sent to

each elementary scheduler at the beginning of each time slot, while the output statlls

array goes through each elementary scheduler one by one. This implies that the input

status arrays and the priority information will not bring any delay, as they are always

waiting fbr the output status affay. Thus, we should only analyse the flow of the

output status array to look for the critical path. After the status arrays are compared

in an elementary scheduler, the elementary scheduler generates a schedule aray and

an updated output status array. The generated schedule anay is logical ORed with

other schedule arrays that are generated by the elementary schedulers in the same

row to prociuce a final schedule àrrày, then the operàtion in this parh is lìnished.

However, the updated output statlls anay will be compared with other input status

arrays in the subsequent elementary schedulers of this column. Clearly, the critical

path will be one of the paths in the flow of output status array.

A column of elementary schedulers is shown in fìgure 24. We assLìme that the

comparison begins fÌom the top elementary scheduler and fìnishes at the bottom

elementary scheduler. As we have discussed, in each elementary scheduler the input

and output status arrays are compared fiom the #l unit to the #16 unit. In the

column, the output status array is compared with the input status arrays lrom the top

elementary scheduler to the bottom elenentary scheduler as shown in the diagram.

\l
';j
I

I

ore, ntaxlm

94!

\
il

.T

!d

i

that the status arrays appear on the #l unit of the top elementary scheduler to the

mo1¡1ent that the #16 unit in the bottom elementary scheduler outputs the output

status.

Now let us study the delay quantitatively. Each comparison unit receives the output

statLls fÌom the unit corresponding to the same time slot in the upper elementary

scheduler. The unit compares the received output status array with the waiting input

status array, then sends the updated output status àffay to the subsequent unit. We

define this delay as tl. Each unit receives the interface signal from the unit in the

same elementary scheduler corresponding to the preceding time slot. The unit

modifìes this interfâce signal and passes it to its subsequent unit. This delay is

deünerJ as t2. Refèrring to 1ìgure 24,we note that there are a large number of paths

tÌom the #l unit in the top elementary scheduler to the #16 unit in the bottom

elementàry scheduler. With a careful analysis, we tìnd th¿rt the cielay is identical for

all paths. The total delay is

Delay=lJ x tl + 15 xt2

For example, in the Path I the delay is 15 x tl + 15 xt2',ln the Path 2 the delay is 2

xt¡+15xrl+13xt2; in the Path3 the rlelay is15xr2+15x tl.Allof these

paths result in the same delay. Therefbre, v/e can conclude that any path between the

#l unit in the top elementary scheduler and the #16 unit in the bottom elenentary

scheduler can be the critical path. The final delay is decided by the delay from etich

unit, t1 and t2.

I

*
95

Delay path

path 3

Figure 24The critical path of output scheduler

schedule
afray

Delay
path

:r

I
I

I

path 1

/ 6 #3 #1#2

6

6

path 2

I

6

i

* 96

li

a Optimising the Critical Path

Basically, we have two Ìvays to optimise the critical path: one is to use lookahead

among the comparison units in the elementàry scheduler so as to minimise the delay;

the other is by careful layout design. In this section, we focus on the layout design

techniques, So we leave the fìrst way to be discussed in a later.section.

According to the analysis in the last section, the delay of the critical path is

determined by the delay fiom updating output st¿ttus (tl) and the delay fÏom the

interfãce circuit (t2). As the total delay is l5 times Ll+tL, any small decrement on tl

or t2 will have a signilìcant reduçtion on the total delay'

Design Priority

Recall that in each comparison unit, there àre three paths: interfãcing with the

subsequent unit, updating output statLls and generating the schedule result. The

former two paths are in the critical path, so we should give them a better priority in

the layout design to niinimise their delay and leave the path of generating the

schedule array to suffer more delay. This idea is mainly represented in the placement

of layout and the selection of the layers to be used lbr interconnection.

For example, we v/¿Ìnt to connect two gates that are in the critical path, but there are

some other gates physically between them and the layout of these gate is not "metal

transparent". As we know, the metal layer has a very small resistance, so it is the

most sllitable layer fbr connection. However, as in this case the metal can not go

9l

throu-qh the circuit between two gates, v/e can not use it. But the poly layer can do

that. Compared with the metal layer the poly layer has a very large resistance and

consequently it \ /ill callse a large RC deiay. On such occasions, we should move the

gates between the two gates to somewhere else and place these two gates in the

critical path as close as possible to each other so that they can be connected to the

metal layer. It may result in more delay forthose gates that were displaced.

Distinguishing the fast gate and slow gate

Usually, fbr a logical gate with a number of fan-ins, the signal will not appear on the

inputs simultaneously. Some signals appear earlier and some appear later. Vy'e can

take a two-input NAND gate as an example, which is shown in lìgr.rre 25. Note that

there are two n-transistors connected together in series. Assume that both inputs are

initialised to 0. If inpú in.0 receives a logical 1 Íirst, it will turn on the n-transistor

connected to it. At this moment, the in I is still 0, so no path to GND is developed

and ottt is still 1. At some moment, the inl receives a .1, then its connected n-

transistor is turned on. Since two n-transistors are all turned on, the out is discharged

to 0. For this case, the current should go through two n-transistors to discharge the

ottt when the in\ receives a 1. If the input inl receives the 1 flrst, it turns on its

connected n-transistor. Note that as soon as this transistor is turned on, it will

clischarge the point a to 0. Thus, when the input in} receives a / and turns on the

second n-transistor, the current only goes through one transistor to discharge the ot'tt

node. It is certainly fãster than the lìrst case. Therefbre, we define the in} as the fast

gate, and the inl as the slow gate.

98

vdd

gn

vdd

WP WP

Figure 25 Circuit of an NAND gate

out

in0

inl
WN

a

WN

99

The signals in the critical path usually arrive later than the other signals in the same

logic gate. Therefore, we always connecl the signals in the critical path to the fast

gates. Although the improvement lion each gate is very small, it still contributes tcl

reduce delay.

4.2.3.4 General Techniques to decrease delay

Sone other techniques are wirlely used in the layout design of the olltptltscheduler

Carefully sizing the transistora

As statecl above, this output scheduler is designed manually. A signifìcant advantage

of custom design is that the size of the transistor can be selected flexibly according

to its fan-out. Thus, we can use large transistors to drive large loads, so as to achieve

high speed.

Stage Ratio

In some case, the buflèrs have to drive a very large capacitance, such as a bus or an

off--chip capacitive load. A small buffer will take more time to charge it, so a large

buff-er is needed. In order to achieve the best speed, we can use a chain of inverters

where each successive inverter is made larger than the previous one until the last

inverter in the chain drives the large load. The ratio by which each stâge is increased

in size is called the stage ratio. It has been shown that when the stage ratio is in the

100

PMOS transistor, its voltage rises fiom 0 to Vdd, and a certain amount ol energy is

drawn from the power supply. During the high-to-low transition, the capacitor is

discharged, and the stored energy is dissipated in the NMOS transistor. We can

compare it with dynamic logic. The power consumption in a dynamic network is

solely determined by the signal-value probabilities, not by the transition

probabilities. In other words, in the dynamic logic we should always precharge the

gates no matter if there is a transition or not. Consequently, the dynamic logic will

sink more power than the static CMOS[9].

4.2.4.2 Reducing the Effective Capacitance

The dynaniic consumption of the static CMOS can be expressed with the following

equ¿ìtlon

where c represents the load capacitance, v represents the voltage of the power supply

ancl / nìeâns the lrequency of a gate to be switched. For a particlllar technology, the

voltage of the power supply is 1ìxerJ and decreasing the voltage niay aflèct the noise

margin and af'Íect the circuit speed. With the advance of technology, smaller

propagation delays are becoming achievable. Consequently the switching fÌequency/

is increasing. In order to reach very high speed, we can not reduce the trequency f to

lower the power consumption. Therefore, the most efTective way to reduce power

dissipation is by reducing the capacitance.

2.p=cv J

t02

Carefully sizing the transistors

In the previous section we have ciiscussed how the transistor size alfects the

switching speed. Since each switching operation of the combinational static CMOS

is actually charging or rlischarging a capacitor, it is clear that the smaller the

capacitor charged, the less power is consumed. Toward that end, each gate in the

output scheduler is carefully sized to be as small as possible. When all the transistors

are designed to be the minimum size, the power dissipation is minimised. However,

that will aflèct the speed of the circuit. Therefore, when a gate is required to drive a

large capacitance, the transistor must be sized up.

Carefully sizing the wiresa

As we know, in CMOS technology, delay is basically caused by charging or

discharging capacitance. In addition to the capacitance conres fiom transistors, long

wire is another major source of capacitance. We should caretully size the width of

long wires or wires connected to a large load. V/e seek to make the wire to be as

narrow as possible. However, if the wire is connected to a large capacitor load or the

wire itself is very long. we need a large buft'er to drive it to achieve high speed. A

large butf'er implies a large current. The metal has a limitation on current density

(usually it is 0.4 mA./um to L0 mA/um). If the cunent density of a current-carrying

conductor exceeds the threshold value, the conductor atom will nove in the direction

of the cllrrent flow, and the conductor may eventually like a fuse. If we simply select

a very wl m AS wlre, 1t wl

103

ome a

power. Therefore, we should estimate the current needed fbr charging the capacitor

and decide the width of the metal accordingly.

Avoid the extensive sharing of the busa

Another approach to reducing the physical capacitance is to avoid the extensive

sharing of the bus. In order to illustrate this point, let us analyse an example. Recall

that in each row of elementary schedulers we use the discharged buses to realise the

logical OR of the sixteen schedule arrays from elementary schedulers; and the fìnal

result. is sent to the input status register. Clearly, this bus should be as long as the

width of the output scheciuler so as to connect all the sixteen elementary scheclulers.

No mattcr which elementùry scheduler makes a schedule, it has to charge the whole

bus so that the input status register can sense a,1. The diagram is shown on the top of

figure 26.To charge such a long bus it not only takes time, but also wastes po\Mer.

In order to avoid this drawback, we can divide the bus into two parts and each of

them is connected to an OR gate (refer to the diagram in the bottom of figure 26).

Each bus is still discharged to act as the logical OR of schedule arrays fÏom its

connected elementary scheduler. Indeed, we used this divided bus to realise a logical

OR of the result of two buses that is the logical OR of 8 schedule affays. Clearly, the

divided buses have identical fïnction to that of a signal bus, bttt each bufl'er should

only drive a load half the load of the previous bus case. Therefore, this approach

reduces the power dissipation.

t04

elementary
schedular

bufferB

Slngle Bus

Dlvlded Bur

OR

bufler¡

elom€ntary
schedulor

Figure 26 Avoid extensive bus sharing

105

4.2.5 Techniques for reducing the area

Usually, the area is the last factor to be considered for high perfbrmance circuit

design and we often trade area f'or high speed and low power dissipation, but

we can also reduce the area by carefïllayout. Clearly, optimally sizing the transistors

is an efTective way to achieve small area. In addition to that, some other techniques

are used

One approach is to carefully design the wires. In the modern CMOS technology

multiple metal layers are employed so that the wires can be routed above the circuits,

which helps to reduce the area. In very complex or very compact rlesign, sometimes

the available metal layers are not enough to route all the wires above the circuit; in

this case, we have to place the wires in the spare places, which will take more area.

In tlie layout design of the output scheduler, we need many wires trl connect the

subcells. For example, we need wires to connect the elementary schedulers in a

column lor the output statlls
^rrày

we need wires between the elementaryschedulers

and the input status register fbr priority inforrnation, input status array and scheduler

àrray. In order to minimise the area, we hope to place these wires above the circuit

layout. Towards that enrJ, the width of the wires are calculated according to their

current load, the space between wires is minimised and the placement and direction

of the wires are well organised. All of these techniques ensure that most of the wires

in the output scheduler are routed above the circuits.

Another approach is to divide the large buffer into a number of smaller parallel

ers

10ó

capacitive load. Ref'erring to fìgure 22,we note that all of the layout is organised into

many slices. The width of the slice may not be sufÏcient to place a very large buflèr,

so we divide the large buff-er into a number of smaller butl'ers whose size is suìtable

for the height of the slice. Thus, no màtter how large are the bufÏers, they can always

be placed into the required dimension. Clearly, dividing large buffers into smaller

ones can not reduce its absolute area, but it makes the subcell of the layout very

regular. The cells with regular din'rension ancl similar size are helpful to minimise the

area.

4.2.6UO System Design

In this subsection, we will discnss another factor that signitìcantly af'fects integrated

circuit performance, UO systenì

Pads are the interfaces between the chip and the outside world. In the output

scherJuler lbur types of pads are used, namely, input pads, output pads, power pads

and parJ ring pads. The input anil output pads are employed to exchange signals with

other chips; the power pads are used to provide the power supply for the circuits; the

pad ring pads are used to supply the power for the input and output pads.

Figure 27 shows the topology of the pads for the output scheduler. As we have

mentioned above, there are 32 inputs and 32 outputs. Therefore, we needs 32 input

pads and 32 output pads. On the top of the chip, there are 16 output pads for input

addresses; the input pacls for priority information and output addresses are placed on

p

107

LIL

CHIP

pâd ringa

MPú Þ¡d¡
lqlnpúúdlg

ffix
ffiE
lS7ì mno¡a
I - | lotr*tltur

ffi
ffixE
ffix
-T-lI I I t¡pur¿¡

-

ldúMI I I ddr¡..
rT-1

X
ffi
ffix
ffi
ffiX
ffiEX
ffi

XXXKXXXX XXXXXXXX

MNMNMNMN ffi MNMNMNMN

ExE
ffixEEXE
ffiXE
ffixEEXE
ffix
ffi
ffiXE

odÞú Fdr
ld a¿'haduþ

lnDú dù
loi FloÉtYlrldilþn

Xl outputpad

ffi ¡nputpad

pad rlng pad

n PowerPad"vDo

M powerPad'GND

Figure 27 Placement of Pads

108

evenly on the right and lefl side as well (see figure 27).In addition to those pads, an

input pad is used for the clock input, which is placed at the bottom of the chip. There

are eight power pads for VDD and eight power pads for GND. Moreover, we note

that at each corner and in the centre of the top of the chip there are fìve pad ring

pads. Each pad ring pad includes both the VDD pad and GND pad.

Note that between the circuits and the pads, there are two pad rings. These two rings

are two metal rings to provide the power for all the input and output pads. One of the

pacl rings is connected to VDD, and the other is connected to GND. All the input and

olltput pads are powerd fiom the pad rings. The pad rings are connected to the pad

ring pads. The reason for using à separate power supply for the pads is to reduce the

noise. As we know, the output pads are required to drive large capacitors, and

provide high current dive fbr short periods. It may cause power bounce. If we use the

same power supply as the circuits, these currents may flow through internal circuitry

causing power and ground bounce. Moreover, note that one pad ring pad is put in the

centre of the top of the chip. The output pads need a high current capability to drive

the off chip capacitance. Typically, every pad ring pad used in this outpllt scheduler

can only provide enough pov/er fbr eight output pads, so one pad ring pad is put

there. On the lefi and right sides, there are only eight outpttt pads and sixteen input

pails that need only drive a small capacitance and sink little power, so fhe pad ring

pads on the corner are enough to provide them powcr.

Note that we use eight pads lbr VDD and eight pads for GND. The number of the

power pacis is determined by two factors: the maximlln current of the chip and the

ange cLlrren

109

I

I

I

L

I

I

.t

rl
r¡

iii
ilrl

rìl

irll,

iiì\i
tiiilril
rl\
1ll
rl

I

1

I

i

I

I

¡

r¡. 1

Itljl
Irl
ìlll'

ri

I

r,it
lrtlrì
lll.ltl
/ lr rrìl
illrrrl
tlLl \ rl

il I |l ir/lti
ri I | 'ril

Wave
D0:A0:i(vdd)

sYmbori

rtllll
ìtì L tl
ll ll tl
rrlr
li [f
ul rr

rti
r'l
'l

rlilr1i'-

0

lr
ili

ir

lì

,rr Ír
;iii irr

lit ti ii

i,li,,lii
iiiriirl ti'

-10m

-2Om

-30m

-40m

-50m

-60m

-70m

-80m

-90m

-100m

-1 10m

-120m

-130m

.E:
Ø
Co
lo

I

I

I

I

.t-

I

'l-'

I

I

i
I

I

I

I _.

I

I

I

I

I

I

I

I

¡_
I

I

I

I

l-

I

I

I

I

I

I

I

I

I

I

I

t_

I

I

.t-

I

I

I
'¡

I

i

I

-t_
I

I

I

I

I

I

¡

I

I

I

i

I

I

i

t'
I

I

I

I

I

I

I

I

I

.l

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

¡

I

¡

¡

I

I

¡

I

I

I

¡

I

I

I

I

t.

I

I

L

I

t-
I

I

I

I

I

I

I

I

I

_l
I

I

I

-l

I

I

I
-l

I

I

I

I

I

-l
¡

I

I

I

I

I

I

I

I

'L

I

I

I

I

I

I

I

I

I-l

I

I

I

I

I

I

l

I

I

I

'I

I

!

I

l
I

I

I

I

I

I-I

¡l'

I

I

I

I

I

I

I

I

i

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

(

,..t --.-.

,ll
rll
,ll-tl
rli
rll
¡l
ri, ú1, .' Ij
'|rl

--'tl
rl
rl
I

L

Figure 28
Transient currer

waveform-'¡ -- -ì- | - | -- r-- ' l----- I - l-- '---l-l
80n 90n 100n 110n

120n
I

1

I
0 0n 20n 30n 40n 50n 60n 70n

Time (lin) (TIME)

column of elementary schedulers. Note that the maximum current is about l25mA.

The overall circuit includes seventeen such units, so the overalÌ maximum cuffent

clrawn from VDD is about 2.125A. The maximun.ì current that each power pad used

here can proviiie is about 0.54. Thus, we need only fìve power pads to provide

sufTìcient power for the chip.

However, we note that such a large current is drawn from the power supply within a

very short period. The change of voltage caused by the inductance of the bond wire

IS

DV= L di/dt

where di/dt is the rate of current change with respect to time. A rapid change of

current results in a large voltage change possibly enough to cause the state tlf the

circuits to be changed. In order to avoid that, we irave to provide enough power pads

to share the large cllrrent so that in each pad the di/dt can be reduceil and the voltage

change limited to a tolerable range.

The number of pad can be calculated according to the transient cuffent wave in

fìgure 28. The maximum cti/clt Tor the simulated part of the circuit is about 2.3 x 108

A/s and a typical value for inductance of a bond wire is about lnH. Thus, the voltage

change can be estimated fiom the above equation as 0.23v. That means if we use one

pad to provide the power to this part of the circuit, there is a maximum voltage

swing of 0.23v. Since we are using a 2.5v power supply and complementary logic

with a gate threshold around 1.25v, the permissible maximum ground an pov/er

bounce is 0.5v. Hence we can use a single pad to provide power fbr up to twice the

am o clrcul u 1n

l1l

examS

seventeen such parts, so we use eight powcr pads to provide the power to the total

circuit and so ensure that the ground power bounce is not more 0.5v. That is the

reason why we use eight VDD pads and eight GND pads.

4.2.7 P ow er distribution

Finally, we will discuss power distribution in the outpllt scheduler. In the design of

the power distribution system of the output scheduler, two main factors àre

considered: one is IR voltage drop and the other is noise.

As shown above, the output scheduler requires high instantàneous po\iler handling

capability at the beginning of each time slot, so IR voltage drops along the power

lines shoulcl be consiciered. The IR voltage drops degrade the circuitb noise margin

and make the circuit less reliable. This becornes v/orse when the supply voltage is

scaled down, because the magnitude of the voltage drops that can be tolerated are

even smaller. An eff'ective way to reduce the IR voltage drop is to reduce the

resistance of the power line. In the design of oLttput scheduler, we use the topnost

and thickest metal level (Metal 5) which has a smaller sheet resistance compared

with other metal layers to distribute the power. In addition, since this layer is used

solely for power distribution, we can make it wide enough to reduce the resistânce to

an acceptable level.

Another factor that may affèct the performance of the circuit is the noise on the

power supply. We have illustrated that in order to reduce the noise on power supply

we Ltse power p

112

power supply f'or the pads so that no power or ground bounce caused by the pads czrn

flow into the internal circuits.

As we have discussed, each input status register should shift the schedule out of the

chip with a liequency of 400MHz, which is power hungry. In addition, each input

status register should drive the output address, priority infbrmation and input status

array into all the elementary scheduler in a row, so there are a number of large

buflers in it. Therefore, the input status register will sink much more power than an

elementary scheduler. Moreover, most of the power is drawn within a very short

period, such as at the beginning of each time slot, so large power and ground bounce

may happen. In order to reduce that, we provide sufficient capacitance between the

power line and the substrate. When a power or ground bounce occllrs, the connected

bypass capacitor will be chargetl or tlischarged, which reduces the magnitude of

po\Mer anil ground bounce. The capacitors are placed close to the large bufl'ers so that

charging and discharging may be carrierl out effbctively. Thus, the noise on the

power supply is reduced signifìcantly.

In this section, we mentioned that in order to improve the perfbrmance, many design

parameters are selected on the basis of estimation. All the subcells of the circuits

were simulatecl with Hspice to verify the correctness of estimation. If the estimàted

parameter is not good enough, it will be modified according to the simulation results.

r 13

4.3 The Simulation Result of the Output Scheduler

In the last f'ew scctions, we have addressed the techniques used to improve the

performance of the chip. In this section, we give the simulation results for the circuit'

4.3.1 Detay and Power Dissipation

As we have discussed above, because the speed of a circuit is decided by its critical

path, we should only simulate the delay of the critical path. According to the

previous explanation, we note that the delay ol the critical path is between the

moment that the olttput status register sends the outpllt st¿ltus array to the moment

that the updated output status array appears on the input of the outpttt st¿lttls register.

4.3.1.1 Simul ation Environment

The ilelay of this critical path is simulateil with Hspice. As we have mentioned,

Hspice is suitable for accurate simulation of small circuits. We can not simulate this

critical path in the environment of the whole output scheduler. Therefore, only a

column of the elementary scheduler is simulated. Fortunately, it is enough to reflect

the delay of the outpllt scheduler. The entire power dissipation of the outpllt

scheduler can be estinated from the simulated part of the circuit.

Another point that should be mentioned is the selection of simulation parameters.

o Simulation model: As we know, the circuit will be fabricated on a waf'er. The

propertles o

rl4

v er may vary

a

a

we Llse a ditlèrent model to simulate it. Basically, this consists of using models

such astypical model, fast NMOS and fast PMOS, fast NMOS and slow PMOS,

slow NMOS and tast PMOS, and finally slow NMOS and slow PMOS. Since

we are simulating static digital circuit that is not very sensitive to the

environment, the simulation is simply carried out with the typical model.

Temperature: Usually, we have three choice for the temperature, namely 25"C,

75oC or 100'C, in which 25'C is the best case, 75oC is typical and l00oC is the

\r/orst cast. The scherJuler is simulated in the environment of 100'C'

Processing Technology: Thc technology for fäbricating this scheduler is TSMC

0.25¡tm. technology.

4.3.7.2 Selection of the Stimuli

Recall that fbr each elementary scheduler to work it needs such signals as the input

status arräy, priority information, an enable signal and the output stàttts àrray. Since

our purpose of this simulation is to fìnd out the maximum delay of the critical path,

the stimuli must be selected carefirlly so as to achieve the worst delay of the

scheduling.

The input Status affay and outpllt Status array ¿Ìre selected às

"0000 0000 0000 0000". This value ensures that the elementary schedulers have

sufÏcient scheduling resources. The priority information is set to

"0000 0000 0000 0000" and all the 16 elementary schedulers in the column are

enabled. These values make sure that each comparison unit in this column will take

\t
1_.

l

I

part in the scheduling. Therefore, we can achieve the worst delay from thesc stimuli

t
115

4.3.7.3 Simulation Result

The delay of the critical path can be deduced from tìgure29.The figure shows the

two voltage curves: enable signal (dotterl line) and l6th bit of the updated output

status array (real line) that is the critical path delay. As shown in the fìgure, fiom Ons

to 40ns, the enable signal is 1, that means in the first time slot all the elementary

schedulers are enabled. The real line shows that the l6'h bit of the updated outpllt

status array is turned to 1 afier 20.8ns. That means the outpLlt scheduler can tìnish

one time scheduling process within only half of the time needcd to support

lQGbisiChannel. This ensures that the scheduler can potentially support the switch

rnatrix with even higher speed.

As stated above, the critical path delay consists of two parts: one comes fÌom the

blocking circuits in the elementary scheduler, the other is the delay between each

elementàry scheduler. From figure 29, we can fìnd how much each delay is. At 40ns,

the enable signal tllms to 0, which will turn off the elementary scheduler. Since the

schecluler is turnerJ ofï, the last bit of the outpllt status array should be its previotts

value 0, instead of being updated. Therefore, the l6'h bit of the output status array

will turn to 0 afier the enable signal turns to 0. The enable signal will go through all

the blocking circuits in an elementary schecluler and finally reach the l6'h unit. The

f igure shows that the delay between response of the l6'h bit of the output status array

and the change of the enable signal is 7.8ns, which is just the delay caused by the

'qr

''i

I
i

11óÌ

- --.<{=

Wave
D0:40:v(test)

D0:A0:v(decode)

<

'-
I

I

__--t---
I

I

I

I

I

I

I

I

I

I

I

I

I

_t
I

I

I

I

I

I

I

I

I

I

''l

I

I

I

I

. ¡-
I

I

I

I

.t

I

I

I

I

I

I

I

_t-

I

I

À,
I

r

2.6

2.4

2.2

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

2

éþnent X=4.78þ-08
Current Y=1 .25e+00
Dbrivative=-1.6h e+09

il

lt

lt

I
il

ll

il

ll

ll

it

ìt

il

it

ll

ll

il

ll

ìl

il

il

ll

il

lt

il

I

I

I

(
(

1.8

1.6

1.4

1.2

-E

Øoo,
(ú
!o

-J

I

I

I

I

I

I

I

I

I

I

I-
I

I

I

I

- - - ... -, - -t
I

I

I

I

..1

I

¡

I

I

¡

¡

I

I

I

I

lôurient x=ä.oae-oa "

Current Y=J.25e+00
Der¡vative=fl .'l7e+09

B00m

600m

400m

200m

0

Figure 29
lation result

I

I

I

I

I

I

I

0

I

50n20n 40n
Time (lin)(TIME)

I

I

ï

I

critical pathI

-t-

30n'l0n

-200m

blocking circuit. The time that the output status array takes to ripple through all the

l6 elementary schedulers should then be 13.Ons.

The overall power dissipation of the output scheduler can be achieved by the

following equation:

P=I*V

Where I is the average ourrent of the output scheduler and the V is the voltage of the

power supply. The current is 3l4mA and V is equal to 2.5v. Therefbre, the estimated

power dissipation is 0.785w. The estimated power dissipation of the pads is about

0.lw. Clearly, this power dissipation is reasonably small, and it should not cause any

trouble in packaging.

4.3.2Size and Area

The whole outpnt scheduler consists of about 600,000 transistors. The dimension of

the circuit that does not include the pins is 2.8lmm x 1.75mm. The area of the circuit

is 4.9mm2. Given the size of the circuit, this is a very compact design. The area of

the chip that includes the pads can be calculated fiom figure26. According to cllrrent

technology, the minimum centre to centre distance between each pad is about l50p

m. Vertically, there are 27 pads and horizontally there are 20 pads' Thus, its

dimension is 4.05mm x 3.00n-rm and the area is about 12.15 mm2.

4.4 Summary

r 18

Chapter Five Discussion

In this section, we will cliscuss three approaches that can further improve the

performnnce of this ATM switch.

5.1 Speed-up Two

At the architectural level, Sarkies and Main [6] showed that the switch performance

is improved if the switch has an internal speed-up of two. With a speed-up of two,

each time slot can be scheduled with two cells and two cells are switched out

simultaneously through the switch. This makes the switch work more like an ideal

output butl'ered switch with all its advantages.

The diagram of an ATM switch with a speed-up of two is shown in Figure 30. Note

that each input port controller (IPC) sends two cells to the switch matrix at the same

time. Therefore, a 16 x 16 switch matrix should be used fbr a 8 x 8 ATM switch.

Similar to the switch without speed-up two, each inpLtt port controller sends an

output address and priority information to the output scheduler. However, since two

cell can be scheduled in one time slot, the scheduler needs two scherlules to describe

the scheduling results for each input port controller (see fìgure 30). In addition, the

output schedule generate eight pairs of output addresses for the switch matrix.

120

tPc oPc

I output Ports8 input ports

prioritv
inïormafion

Figure 30 Architecture of an input buffered ATM switch with speed'up two

Output

Scheduler
output add

two input
addresses

SWITCH

CROSSPOINT

16x16

tzt

In order to support the speeil-up, the internal structure of the outptlt scheduler should

also be changed accordingly. Since speed-up two permits two cells to be scheduled

into one time slot, we need two input status arrays (A and B) and two output status

arrays (A and B) to describe the states of the input and output ports. Clearly, for each

time slot there are four possible combinations of scheduling status, namely AA, AB,

BA, BB. Therefore, we need fbur elementary schedulers for each input-output pair to

make a schedule for it. We can defìne it as an elementary scheduler group. A

diagram of an elementary scheduler group and its corresponding input and outpttt

status registers are shown in lìgure 3 l. The comparison unit and the schedule register

in each elementary scheduler are identical to that described in the previotts chapters.

Each elementary scheduler in a group still receives the input status array directly

trom the input status register. Each elementary scheduler also receives the output

status array liom its upper elementary scheduler. The input status register collects a

logical OR of the schedule arrays fiom each elementary scheduler.

The diflèrence is that each elementary scheduler employs a signal to interface with

other elementary scheduler in the group (see figure 31). This signal is used to prevent

that one cell being scheduled into the same time slot multiple times. For example, if

the input stàtus and output status are all 00,both elementary scheduler AB and AA

may make a schedule. If this happens, the cell is scheduled twice into the same time

slot. It wàstes the scheduling resource and may cause a problem in switching.

Therefbre, we need some interface signals to make sure that only one of the four

elementary schedulers is enabled in each time slot. In other words, the scheduling

process in a scheduler group should be carried out one by one. The inlerface signal is

g1c

122

B
BB

Elementary
Scheduler

BA

Elementary
Scheduler

input
status
register

A AB

Elementary
Scheduler

AA

Elementarv
Schedulei

output status reglster
B

output status register
A

AB
enable

enable

Figure 3l Diagram for an elementary scheduler group

BB

group
énable

enable
BA

123

schedule is tound in an elementary scheduler, it will disable all its subsequent

elementary schedulers. If not, it will inform its subsequent elementary scheduler to

go on scheduling. Such a sequence is arbitrarily selected: AA, BA, AB and BB. The

enable signal of elementary scheduler AA is connected to the grollp enable. That

means, il this group is selectecl, the elementary scheduler AA will be enabled and the

status in input status register A and output status register A will be compared within

elementary scheduler AA. If no schedule is made in AA, BA is enabled, then AB is

turned on and so on. If a schedule is made in AA, all the subsequent elementary

schedulers will remain disabled.

Besides the addition of the interface signals, another dilference liorn the scheduler

without speed-up two is that only the fìrst row of elementary schedulers in each

group can receive the output status array directly from the output st¿lttìs register,

which is used to def'eat unfairness.

Moreover, due to speed-up two, an olltput scheduler with an array of 16x16

elementary schedulers, l6 input status registers and l6 output status registers

becomes an output scheduler that has only 8 x 8 elementary scheduler groups, with

eight input and output st¿ttus register pairs. Therefore, such an output scheduler can

only support an 8x8 ATM switch.

5.2
^

Possible Way to Improve the Speed

Although the current circuit is fast enough to satisfy the design objective, we still

S can

124

in the elementary scheduler. From the discussion in chapter two, we note thàt each

comparison unit only interfaces with its immediately subsequent unit and the

interlace signal ripples through all the 16 units one by one. In other words, each r¡nit

only passes its scherJuling result to its immediately subsequent unit. Ref'erring to

figure lJ, we note that each blocking circuit results in two gate-delays. That nìeâns

the overall delay fiom the blocking circuit is thirty gate-delays.

If we Llse some lookaheacl among the comparison units, the delay caused by the

blocking circuits can be reduced. In this case, each comparison unit should interface

with all its subsequent units, instead of its immediately subsequent one. In other

words, each unit inlorms all its subsequent units of the comparison result. A diagran-t

that illustrates this approach is shown in the tigure 32. Note that the tìrst comparison

unit sends the interface signals to all of the subsequent l-5 units, tlnit2 sends the

interfãce signal to its subsequent 14 units and so on. Part of the circuits with

lookahead is shown at the bottom of the fìgure. The figure shows the circuits of four

comparison units. Note that the circuits of unitl are identical to that without

lookahead. The di1l'erence is that its interfäce signal (down.l) is sent to all its fìfieen

subsequent units. Similarly, the unit2 sends its interface signal (down2) to all its

fourteen units. Now let us str-rdy how each unit interfaces with its preceding units.

Since unit2 should only interface with one preceding unit, unitl, its interface signal,

ttp2, is connectecl to the signal downl directly. Unit3 should receive the intertace

signal from both unitl and unit2. Therefore, its interface signal up3 receives the

logical OR of downl and down.2. For the same reason, unitl6 should use a 15-input

OR gate to interface with all its preceding units (see figure 32). From the circuit

t25

unlt4 uni(l

I

unlül unltl

unltl6

E.
|.)o\

tt

uPt

¿ú
ri

u93
úC

uplt

dl da

Figure32 Structure and c¡rcuit of elementary scheduler w¡th lookahead

s6

shown in figure 32, we can estimate the delay for this approach. The critical path

shouldbeginatthe enahle signalandend alxl6. Notethatthispathincludesseven

gates. According to our previous discussion, we know that there are about 30 gate-

delays introduced by the blocking circuits. Clearly, lookahead can reduce delay fiom

the blocking circuits signilicantly.

Nevertheless, what we pay for the high speed is greater area and design effort. V/ith

the lookahead, each unit should interfäce with a f'ew units, so each unit should add an

OR gate to collect the interface signals. This takes more room. Since the outpttt

scheduler includes 256 elen-rentary schedulers. any addition of each elementary

scheduler's area will all'ect the whole circuit very much. Moreover, we note that each

unit's circuit will be somewhat different, which implies that each unit should be

designed separately. In acldition, lookahead results in ¿r more. complicated layout

design for the comparison unit.

In the design of this output scheduler, we have comfortably satisfìed the

requirements of the speed, so we did not employ lookahead. However, if the speed

requirement is very strict, it is worthwhile to trade area, power dissipation and other

lactors fbr speed.

5.3 Challeng€s on packaging

Packaging is as important às, and ofien even more critical than, transistors in

determining the overall performance of a system. As we have mentioned above, the

o

127

fiequency. In order to support such high fiequency, packaging technology should be

selected carefirlly

In trarjitional packaging technologies, the circuit is fabricated on a silicon die and the

die is put into a chip carrier, then the chip carrier is placed on a print circuit board

and interf¿ices with other chips. t101. The large parasitic inductance of the bonding

wires and the transmission lines will cause noise on the signals. The reason can also

be illustrated from the following equation:

dV = L di/dt

The current used to charge and discharge bond wire and transmission line may

change with high fiequency, so di/dt would be substantially high. Due to the large

inductance, L, tÌom the bonding wires and transmission lines, the signal voltage

signal will be changed and this is a source of noise. On the other hand, the.

capacitance of the boncl wire and transmission line is quite large. The outpttt pads

take more time to charge or clischarge such a large capacitor to exchange inlormation

with other chips. Therefore, it increases the delay of the chip and lin-rits the highest

frequency that the pads can reach.

In order to reduce the noise on the signal and improve the speed, an efÏèctive way is

to minimise the inductance and capacitance from the bonding wire and transmission

lines. Multichip Module (MCM) technology is a solution. In MCM, a number of

chips are placed on one substrate, which provides smaller inductance and

capacitance electrical connections among the dice than that provided by traditional

single-chip carriers and PCB.

128

There are a number of alternatives of MCM. The one that is appropriate for

packaging this ATM switch is silicon-on-silicon hybrid tl0l. A silicon substrate is

used as an interconnection medium to hold multiple chips. Thin fìlm

interconnections are fabricated on a waf-er, and separately processed dice are

mounted on this silicon substrate. A signilìcant advantage is that chips fabricated in

dilferent technologies (CMOS, bipolar or GaAs) can be placed on the same hybrid

package. The silicon substrâte can also potentially contain active devices that serve

as chip-to-chip driver, and bus and VO n-rultiplexers.

The ATM switch discussed in this thesis may contain chips fabricated with ditl'erent

technologies. For example, the scheduler is designed with CMOS and the switch

matrix is most likely fãtrricated with GaAs. This is one reason that this packaging

technology is suitable for this ATM switch.

Here we only present a basic irJea on the selection of packaging technology, there are

many topics should be further researched to make each chip communicates with

other chips pert-ectly at high fiequency.

5.4 Summary

In this chapter we discnssed three topics: speed-up two, lookahead, and packaging.

We discussed the speed-up two and the corresponding modilication of the

scheduler's structure to support speed-up two. Then, we discussed a possible way to

uce yca oè

t29

packaging is a critical part that will afl'ect the performance of the chip. Since the

output scheduler works at a very high speed, a high quality package is necessary to

ensure the high performance of the chip. A possible Multi-chip Module technology

is discussed in this chapter. We mentioned some advantage over conventional

packaging technolo gies.
I

i

I

I

i

130

Chapter Six Conclusion

In this thesis, we discnssed the design of an input-buff-ered high-perlormance ATM

switching system, which employs a time scheduling algorithm developed bySarkies

and Main t6l. This research has achieved the following design objectives:

the architectural of an input-buttered ATM switch. The switch includes four

major parts, the input port controller, switch ntatrix, scheduler and output port

controllcr. The scheciuler is a key part of this project, so it is designed to the

circuit level. The input port controller and switch matrix that interface with the

scheduler is designed to the architecture level. We demonstrated that each part of

the switch can coordinate with others perfèctly.

o

a

a

demonstrate that the input port controller can not only realise such basic

functions as generating the scheduling request and processing the scheduling

result, but also ot'fer some advanced f unctions such as variable priority threshold

and multicasting that is an enhancement to the algorithm.

According to the time scheduling algorithm and the design requirement of this

ATM switch, the architecture of the output scheduler is designed. Subsequently,

we design the VHDL models, schematics and layout of the scheduler.

The simulation results of the layout show that the maximum delay of a

schetiuling process is about 2lns. Clearly, it is fast enottgh to satisfy our design

a

131

a

objective, 40ns. The whole output scheduler includes 600,000 transistors. The

estimated power dissipation of the circuitry is about 0.785 watts and the power

dissipation for the pads is about 0.1w. Given such a big circuit that works at very

high speed, this power dissipation is reasonably low' The dimension of the

circuit that doesn't include the pads is 4.9mm2. The overall area that includes the

pads is about l}n'tmz.

Finally, we discussed the speed-up two that improves the performance of the

algorithm and the corresponding modifìcÀtion of the structure due to the speed-

up two is analysed; the circuit with lookahead is discussed to improve the speed

of the output schedule; a possible way to package the circuit is disoussed;

The dcsign satisfìes all the objective of the project and the. circtlit of the outptlt

scheduler can potentially support even an higher speed switch mâtrix.

t32

Reference:

l. F.Halsall, "Data comnunication, Computer Networks and Open systems"

ADDISON-V/ESLEY, 1992.

2. L.G.Cuthbert, "ATM: the broadbancl telecommunication solution": Institute of

Electrical Engineering, 1990

3. R.Handel, M.N. Huber, "Integrated Broadband networks": ADDISON-

WESLEY, 1991

4. K.S.Lowe, "A GaAs HBT 16x16 bit 10-Gb/s/sChannel Crosspoint Switch", In

IEEE Journal of Solid-State Circuits,VLO32, No.8, August 1997

5. R.Savara, A.Turudic, "A 2.5 Gb/s 16 x 16 Bit Crosspoint Switch with Fast

Programming", IEEE GaAs IC Symposium, 1995, pp.47-48

6. J.Main and K.Sarkies, "Cell Scheduling Using Status Arrays in Input Buflèred

ATM Switches", IEEE BSS'95, Poznan, April l9-21 , 1995, pp.333-339.

7. N.McKeown,M.lzzarfl "The Tiny Tera: A packet Switch Core" IEEE Micro pp

26-33 January 1996

t33

8. N.H.E. Weste, K.Eshraghian, "Principles of CMOS VLSI Design: A systems

Perspective", ADDISON WESLEY, 1993

g. J. M. Rabaey, "Digital Integrated Circuits: A Design Perspective", PRENTICE

HALL, 1996.

10. H.B.Bakoglu, "Circuits,Interconnections, and Packaging for VLSI", ADDISON-

WESLEY, 1990.

t34

