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Abstract

Background: Anal sphincter injury leads to fecal incontinence. Based on the regenerative capability of laser and
human adipose-derived stem cells (hADSCs), this study was designed to assess the effects of co-application of these
therapies on anal sphincter recovery after injury.

Design: Male rabbits were assigned to equal groups (n = 7) including control, sphincterotomy, sphincterotomy
treated with laser (660 nm, 90 s, immediately after sphincterotomy, daily, 14 days), hADSCs (2 × 106 hADSCs injected
into injured area of the sphincter immediately after sphincterotomy), and laser + hADSCs. Ninety days after
sphincterotomy, manometry and electromyography were performed, sphincter collagen content was evaluated,
and Ki67, myosin heavy chain (MHC), skeletal muscle alpha-actin (ACTA1), vascular endothelial growth factor A
(VEGFA), and vimentin mRNA gene expression were assessed.

Results: The laser + hADSCs group had a higher resting pressure compared with the sphincterotomy (p < 0.0001), laser
(p < 0.0001), and hADSCs (p = 0.04) groups. Maximum squeeze pressure was improved in all treated animals compared
with the sphincterotomized animals (p < 0.0001), without a significant difference between treatments (p > 0.05). In the
laser + hADSCs group, motor unit numbers were higher than those in the laser group (p < 0.0001) but did not differ from
the hADSCs group (p = 0.075). Sphincterotomy increased collagen content, but the muscle content (p = 0.36) and
collagen content (p = 0.37) were not significantly different between the laser + hADSCs and control groups. Laser +
hADSCs increased ACTA1 (p = 0.001) and MHC (p < 0.0001) gene expression compared with laser or hADSCs alone and
was associated with increased VEGFA (p = 0.009) and Ki67 mRNA expression (p = 0.01) and decreased vimentin mRNA
expression (p < 0.0001) compared with laser.

Conclusion: The combination of laser and hADSCs appears more effective than either treatment alone for promoting
myogenesis, angiogenesis, and functional recovery after anal sphincterotomy.
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Introduction
The anal sphincter provides both resting contractile tone
and voluntary contraction for its role in closing the anal
canal and maintaining fecal continence [1]. Anal sphinc-
ter injury caused by trauma (e.g., during vaginal delivery)
or surgical sphincterotomy can lead to fecal incontin-
ence (FI) [2], a condition that affects women (8.9%)
more than men (7.7%), and is associated with social iso-
lation, low self-esteem and depression, and impaired
quality of life [3, 4]. Surgical repair of the anal sphincter
[5] has satisfactory short-term outcomes, but recurrence
is common over the longer term [6, 7]. Other treatments
such as artificial sphincters or mesh may carry complica-
tions including discomfort, infection, and implant failure
[8]. Bulking agents are prone to displacement, emboli
formation, and granulation [9, 10]. Therefore, reconsti-
tution of muscle tissue, utilizing stem cells that are cap-
able of differentiating into various cell types, would
appear an ideal strategy to improve long-term outcomes
in FI. Human adipose-derived stem cells (hADSCs) are
an easily accessible and abundant source of the stem
cells (106 cells/g of fat tissue) [11], with a high prolifera-
tive rate [12, 13]. The paracrine effect of hADSCs leads
to anti-apoptotic, anti-inflammatory, anti-fibrotic and
immunomodulatory, and angiogenesis properties [14]
that cause host tissue muscle regeneration. On the other
hands, their capability to differentiate into muscle fibers
has been demonstrated in vitro [12, 15].
Silent satellite cells in the basement membrane of

muscle fibers play an important role in muscle regener-
ation. A low-level laser (LLL) can activate these cells
preparing the division phase and finally contributing to
the muscular repair process [16, 17]. Furthermore, LLL
has anti-apoptotic properties [18] and can activate fi-
broblasts to FGF and IGF-1 secretion [19, 20], contrib-
uting to the repair and regeneration of muscle tissue.
Therefore, co-application of hADSCs and LLL may be
an effective strategy for anal sphincter repair. This
study was designed to assess the effects of each therapy
individually, and when applied together, on anal
sphincter recovery and function after experimental
injury.

Materials and methods
Animals
Thirty-five male albino New Zealand rabbits weighing
2.5–3.0 kg were purchased from Pasteur Institute of Iran.
Animals were kept in standard conditions of ambient
temperature (21 ± 3 °C) and 12-h dark-light cycle, with
free access to fresh water and food based on the ethical
rules for care and handling of laboratory animals of Iran
University Ethical Committee, code 94-04-182-27064.
Animals were randomly assigned to five equal groups
(n = 7):

1- Control group: animals received no intervention
2- Sphincterotomy group: animals underwent

sphincterotomy without any other intervention
3- Laser group: animals underwent sphincterotomy

and low-level laser irradiation
4- hADSCs group: animals underwent sphincterotomy

and 2 × 106 hADSC injection into the injured anal
sphincter

5- Laser + hADSCs group: animals underwent
sphincterotomy and hADSC injection into the
injured anal sphincter followed by low-level laser
irradiation

Isolation and immunophenotyping of hADSCs
Human subcutaneous abdominal adipose tissue was taken
from female candidates aged 25 to 35 years old and trans-
ferred to a sterile dish containing FBS, DMEM/Ham’s F-12
10%, and streptomycin/penicillin (P/S) 5%. Isolation of
hADSCs followed a protocol described for our previous
studies [21–24]. In brief, fat tissue was rinsed twice in P/S
1% prepared with warm PBS to remove vessels and connect-
ive tissue. The samples were then transferred to 50-ml tubes
containing collagenase 0.1% and BSA 1% prepared in warm
PBS for 60min to achieve tissue digestion. After a 5-min
centrifugation in 12,000 rpm to remove RBCs, the resulting
pellet was suspended with RBC lysis buffer for 10min and
re-centrifuged. Finally, after a PBS wash, the cells were cul-
tured to DMEM/Ham’s F-12 in FBS 10% and P/S 1%
medium. The cell flasks were kept in an incubator at 37 °C
with 5% CO2 and 98% humidity, and in the third passage,
hADSCs were characterized with flow cytometry (CD29+,
CD73+, CD105+, CD34−, and CD45−) (Additional file 1:
Figure S1).

Sphincterotomy model
Our model was selected to achieve the equivalent of a
grade 4 anal sphincter tear [tear of the external anal
sphincter (EAS), internal anal sphincter (IAS), and anal
mucosa] according to Sultan’s classification [25]. Under
general anesthesia with ketamine (80 mg/kg) and xyla-
zine (10 mg/kg), animals were put in the lithotomy pos-
ition. The perineal skin and anus were thoroughly
washed with povidone iodine and normal saline solu-
tions, and a 1-cm incision was made with a surgical
blade in the left side of the anal sphincter.

Labeling of hADSCs
Before transplantation in the third passage, hADSCs
were suspended in 1 ml PBS, and 5 μl of Dil solution
(containing 50 μg Dil powder in 50 μl DMSO) was
added and the cells were incubated for 5 min at 37 °C
with 5% CO2 and 98% humidity, and then for 20 min at
8–10 °C.
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hADSC administration and LLL irradiation
In the hADSCs group, 2 × 106 hADSCs/40 μl PBS was
injected immediately after sphincterotomy into the in-
jured sphincter within 2 min using a Hamilton syringe
equipped with a 25-gauge needle. In the LLL group, a
CW laser diode with 660-nm wavelength and 100-W
power (Heltschl, model ME-TL10000-SK) was mounted
on a metal rod to maintain a distance of 2 cm between
the radiation source and the target site. Irradiation
commenced (90 s) immediately after sphincterotomy
and hADSC transplantation and was repeated daily for
14 days.

Manometry
Ninety days after sphincterotomy, anal sphincter man-
ometry was performed by means of a standard 4.7-
mm anorectal catheter and a pressure transducer
(Mui Scientific, Canada) by an operator blinded to
the treatment allocation. The probe was inserted into
the animal rectum without any anesthesia induction,
and the balloon baseline pressure was established;
then, the probe was withdrawn at a constant rate of
0.05 cm/s, and the sphincter pressure profile (resting
and maximum squeeze pressures) was recorded.
When the probe was inserted into the animal rectum,
we stimulate the external anal sphincter with tingling
(natural stimulus) and squeezing pressure was re-
corded. The procedure was repeated at least three
times for each animal.

Electromyography
Electromyography (EMG) was also performed 90 days
after sphincterotomy using a Synergy on Nicolet EDX
system (Natus Medical Corporation, USA), with adhe-
sive electrodes applied to a 0.02-mm2 recording area
in the hairless part of the rabbit’s earlobe, with a dis-
posable needle (30 gauge, 0.3-mm diameter, 25 mm
long; Ambu Copenhagen, Denmark). The animal was
fixed in the lithotomy position without anesthesia or
muscle relaxants. The EMG needle was inserted per-
pendicularly into the anal skin to a depth of 5 mm,
adjacent to the mucosal border. The EMG sweep and
sensitivity were set at 10 ms/cm and 100–200 mV,
respectively. Afterwards, the number of motor unit
action potentials (MUAPs) was assessed within a 20-s
time window.

Histological assessment
Ninety days after sphincterotomy, three randomly se-
lected animals from each group were sacrificed with in-
tracardial perfusion with 4% paraformaldehyde under
deep anesthesia (80 mg/kg ketamine and 10mg/kg xyla-
zine). The anal sphincter was excised intact, fixed over-
night with 4% paraformaldehyde, set in paraffin, and cut

into 10-μm transverse serial sections. The remaining
four animals in each group were deeply anesthetized in
the lithotomy position, and the anal sphincter was ex-
cised and transferred fresh into cold PBS then to a −
80 °C freezer for ensuing real-time PCR technique.

Mallory’s trichrome staining and quantitative assay of
muscle and collagen content
Three sections from each animal (n = 3 in each group)
were selected and stained with Mallory’s trichrome
method. After imaging under a light microscope (× 40),
the area occupied by Mallory’s trichrome stain (blue
color) was measured using ImageJ software (Fiji 1.46),
and the percentage of the total area positive for collagen
and muscle was calculated by dividing Mallory’s tri-
chrome area by the total area of the section [22].

Immunohistochemistry
Ki67 primary antibody (Thermo Fisher Scientific,
MA5-14520), myosin heavy chain (MHC) primary
antibody (Sigma, M4276), skeletal muscle alpha-actin
(ACTA1) primary antibody (Sigma, A5228), vascular
endothelial growth factor A (VEGFA) primary anti-
body (Abcam, ab1316), and vimentin primary anti-
body (Sigma, V6630) were used. Alexa Fluor 594
goat anti-mouse IgG (Biolegend, 405326) was used
to detect the primary antibody. Briefly, after antigen
retrieval (citrate buffer pH = 6, temperatures below the
boiling point, 10min) and washing (PBS three times), a
15-min incubation with H2O2 10% diluted in methanol
was performed. After washing (PBS three times), blocking
in goat serum 10% (Sigma, USA) for 30min at 37 °C was
performed. After incubation of the samples with the pri-
mary antibody (24 h at 4 °C, humidified environment) and
washing (PBS three times), the samples were incubated (2
h in the dark, 37 °C, humidified environment) with the
secondary antibody. Finally, DAPI staining was performed
to stain the cell nuclei. The slides were photographed
using a fluorescence microscope equipped with a camera
(× 10).

Gene expression analysis by real-time PCR
The total RNA was extracted using a RNA extraction
kit (EURx Company, Poland) followed by reverse
transcription of RNA using EURx cDNA synthesis
kits and a random hexamer primer. Using the Cyber-
green kit (Qiagen Company, USA), the primers of
ACTA1, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), MHC, VEGFA, vimentin, and Ki67 were
used to analyze the gene expression using ABI StepO-
nePlus™ Real-Time PCR (Applied Biosystems Com-
pany, USA). Gene expression data were normalized
using the GAPDH gene as an internal control. The
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sequence of primers is shown in a supplementary file
(Additional file 1: Table S1).

Statistical analysis
Data were analyzed in SPSS 21.0 and presented as means
and standard errors. Two-way repeated measures ANOVA
was used to compare the mean of the manometric findings.
One-way ANOVA was used to assess the histological
assays. Bonferroni post hoc was applied in all analyses and
p < 0.05 was considered significant.

Results
Resting pressure and maximum squeeze pressures
As shown in Fig. 1, sphincterotomy led to a significant
decrease in resting pressure (df = 8, 60; F = 81.6; p <
0.0001). Three months after sphincterotomy, the resting
pressure significantly increased in the hADSCs (29.0 ±
1.2), laser (21.7 ± 0.8), and laser + hADSCs (35.0 ± 1.4)
groups (p < 0.0001) but did not reach the level of the
non-sphincterotomy control (43.3 ± 0.8) group (p < 0.01).
The resting pressure in the hADSCs group was higher
than that in the laser-treated group (p = 0.05). In addition,
it was higher in the laser + hADSCs group than in either
the laser (p < 0.0001) or hADSCs (p = 0.04) groups.
The maximum squeeze pressure in sphincterotomized

animals (10.0 ± 0.6) was dramatically decreased (df = 8, 60;
F = 400.3; p < 0.0001). After 3 months, maximum squeeze
pressure increased in the laser (101.1 ± 1.4), hADSCs
(107.4 ± 1.2), and laser + hADSCs (108.2 ± 2.2) groups
(p < 0.0001) but did not reach to controls (127.4 ± 1.2)
(p < 0.0001). No significant difference in maximum
squeeze pressure was seen between the laser (p = 0.06),
hADSCs (p > 0.99), and laser + hADSCs groups (Fig. 1).

Motor unit numbers
EMG testing showed motor unit number reduction in
the sphincterotomy group (df = 4, F = 280.4; p < 0.0001).
The laser (8.1 ± 0.7; p < 0.0001), hADSCs (16.6 ± 0.7; p <
0.0001), and laser + hADSCs groups (20.0 ± 2.2; p <
0.0001) displayed substantially more motor units than
the sphincterotomy group (1.0 ± 0.2; p < 0.0001), with a
higher number in the hADSCs (p < 0.0001) and laser +
hADSCs (p < 0.0001) groups than in the laser group,
without any difference between hADSCs and laser +
hADSCs (p = 0.075) (Fig. 1).

Collagen content in the injured sphincter
The collagen content, which was reduced in all treat-
ment groups (92.7 ± 1.1; df = 4, F = 162.8; p < 0.0001), in-
creased 3 months after sphincterotomy. Among the
treatments, the hADSCs group (59.4 ± 1.9) had less
collagen than the laser group (66.2 ± 1.8) (p = 0.02). Add-
itionally, the laser + hADSCs group (49.9 ± 1.5) showed

the least collagen content, the same as the control group
(45.5 ± 0.6) (p = 0.37) (Fig. 2).

Muscle tissue content in the injured sphincter
The muscle content of the anal sphincter decreased 90
days after sphincterotomy in all groups (7.3 ± 1.0; df = 4,
F = 192.8; p < 0.0001). However, it was increased in all
treatment groups. Among the treatment groups, the
hADSCs group (40.6 ± 1.9) had more muscle content
than the laser group (33.7 ± 1.7) (p = 0.021). It is worth
mentioning that the muscle content of the laser +
hADSCs group (51.1 ± 1.4) was not different from that
of the control group (54.5 ± 0.7) (p = 0.36) (Fig. 2).

ACTA1 gene expression
Real-time PCR showed that sphincterotomy (0.03 ± 0.005)
decreased ACTA1 mRNA gene expression compared with
the control group (1.4 ± 0.4) (df = 4, F= 13.4; p= 0.001). The
laser + hADSCs group (2.3 ± 0.2) had increased ACTA1
expression compared with the sphincterotomy group (p=
0.001), while there was no difference between the laser
(0.8 ± 0.2; p= 0.49) and hADSCs (0.7 ± 0.1; p= 0.58) groups
compared with the sphincterotomy group. The immunohis-
tochemical findings followed the same pattern (Fig. 3).

MHC gene expression
Like actin gene expression, MHC mRNA gene expres-
sion was reduced with sphincterotomy (df = 4, F = 43.5;
p < 0.0001). Both the hADSCs (1.1 ± 0.2; p = 0.001) and
laser + hADSCs (2.3 ± 0.1; p < 0.0001) groups had in-
creased MHC expression compared with the sphincter-
otomy group (0.01 ± 0.003), and the laser + hADSCs
group had greater MHC mRNA gene expression than ei-
ther the laser (0.4 ± 0.05) or hADSCs group (p < 0.0001).
Finally, the hADSCs group had greater MHC gene ex-
pression than the laser group (p = 0.04). Immunohisto-
chemical findings followed the same pattern (Fig. 4).

VEGFA gene expression
VEGFA gene expression was reduced 3 months after
sphincterotomy (df = 4, F = 23.7; p < 0.0001). The hADSCs
(1.3 ± 0.2; p < 0.0001) and laser + hADSCs (0.8 ± 0.2; p =
0.005) groups had increased VEGFA mRNA gene expres-
sion compared with the sphincterotomy group (0.02 ±
0.003). The laser + hADSCs group had greater VEGFA ex-
pression than the laser group (0.1 ± 0.05; p = 0.01) but did
not differ from the hADSCs group (p = 0.18). The
hADSCs group also had greater VEGFA expression than
the laser group (p < 0.0001). Immunohistochemical find-
ings again followed the same pattern (Fig. 5).

Vimentin gene expression
The vimentin mRNA gene expression was increased
after sphincterotomy (df = 4, F = 13.9; p < 0.0001). The
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hADSCs (0.1 ± 0.05), laser (0.4 ± 0.2), and laser +
hADSCs (0.1 ± 0.03) groups had decreased vimentin ex-
pression compared with the sphincterotomy group
(1.6 ± 0.3; p < 0.0001); such expression was similar to the
control group (0.01 ± 0.002; p > 0.99). Immunohisto-
chemical findings followed the same pattern (Fig. 6).

Ki67 gene expression
Although sphincterotomy (0.005 ± 0.001) had no effect on
Ki67 mRNA gene expression (p > 0.99), the hADSCs (2.2 ±
0.6; p = 0.007) and laser + hADSCs (2.1 ± 0.4; p = 0.009)
groups showed greatly increased Ki67 expression compared
with controls (0.2 ± 0.1) (df = 4, F = 11.4; p = 0.001) (Fig. 7).

Fig. 1 Effect of laser, human adipose-derived stem cells (hADSCs), and combination of laser and hADSCs (laser + hADSCs) on resting and squeeze
anal sphincter pressures and number of motor units in the anal sphincter based on electromyography. Data are presented as means ± SEM (n = 7
animal per group). ***Significant level at p < 0.0001 with the sphincterotomy group. ###Significant level at p < 0.0001 with the control group
(intact animals). ##Significant level at p < 0.01 with the control group. $$$Significant level at p < 0.0001 with the laser + hADSCs group. $Significant
level at p < 0.05 with the laser + hADSCs group. ††Significant level at p < 0.01 with the hADSCs group

Sarveazad et al. Stem Cell Research & Therapy          (2019) 10:367 Page 5 of 15



Fig. 2 Amount of collagen and muscle tissues in injury site of the external anal sphincter after laser, human adipose-derived stem cells (hADSCs),
and combination of laser and hADSCs (laser + hADSCs) treatments. Data are presented as means ± SEM (n = 3 animal per group). ***Significant
level at p < 0.0001 with the sphincterotomy group. ###Significant level at p < 0.0001 with the control group (intact animals). $$$Significant level at
p < 0.0001 with the laser + hADSCs group. †Significant level at p < 0.05 with the hADSCs group. Mallory’s trichrome staining, external anal
sphincter, rabbit (× 20)
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Discussion
The findings of the present study showed that the
combination of laser and hADSC therapy improved

anal sphincter function after experimental injury more
than either treatment alone. The efficacy of the com-
bination therapy appears to relate to an increase in

Fig. 3 Gene and protein expression of actin in injury site of the external anal sphincter after laser, human adipose-derived stem cells (hADSCs), and
combination of laser and hADSCs (laser + hADSCs) treatments. hADSCs labeled by DiI (red). α-actin expression is observed in the hADSCs and laser
groups (green). Data are presented as means ± SEM (n = 4 animal per group). ***Significant level at p < 0.0001 with the sphincterotomy group.
###Significant level at p < 0.0001 with the control group (intact animals). #Significant level at p < 0.05 with the control group (intact animals) $$$Significant
level at p < 0.0001 with the laser + hADSCs group. Real-time PCR, immunohistochemistry, and western blotting, anal sphincter, rabbit (× 10)
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Fig. 4 Gene and protein expression of myosin in injury site of the external anal sphincter after laser, human adipose-derived stem cells (hADSCs),
and combination of laser and hADSCs (laser + hADSCs) treatments. hADSCs labeled by DiI (red). Myosin expression is observed in the hADSCs
and laser groups (green). Data are presented as means ± SEM (n = 4 animal per group). ***Significant level at p < 0.0001 with the sphincterotomy
group. **Significant level at p < 0.01 with the sphincterotomy group. ###Significant level at p < 0.0001 with the control group (intact animals).
$$$Significant level at p < 0.0001 with the laser + hADSCs group. $$Significant level at p < 0.01 with the laser + hADSCs group. †Significant level at
p < 0.05 with the hADSCs group. Real-time PCR, immunohistochemistry, and western blotting, external anal sphincter, rabbit (× 10)
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Fig. 5 Gene and protein expression of VEGF in injury site of the external anal sphincter after laser, human adipose-derived stem cells (hADSCs),
and combination of laser and hADSCs (laser + hADSCs) treatments. hADSCs labeled by DiI (red). VEGF expression is observed in the hADSCs and
laser groups (green). Data are presented as means ± SEM (n = 4 animal per group). **Significant level at p < 0.01 with the sphincterotomy group.
###Significant level at p < 0.0001 with the control group (intact animals). #Significant level at p < 0.05 with the control group. $Significant level at
p < 0.05 with the laser + hADSCs group. †††Significant level at p < 0.001 with the hADSCs group. Real-time PCR, immunohistochemistry, and
western blotting, external anal sphincter, rabbit (× 10)
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the number of motor units, decreased ratio of scar
tissue to myofibril content, and an increase in the ex-
pression of myogenic, angiogenic, and proliferative
markers.

The relative contribution of the EAS and IAS to rest-
ing anal pressure is typically about 15% and 85% respect-
ively, while maximum squeeze pressure is mainly
generated by the EAS [26]. In our study, both resting

Fig. 6 Gene and protein expression of vimentin in injury site of the external anal sphincter after laser, human adipose-derived stem cells
(hADSCs), and combination of laser and hADSCs (laser + hADSCs) treatments. hADSCs labeled by DiI (red). Vimentin expression is observed in the
hADSCs and laser groups (green). Data are presented as means ± SEM (n = 4 animal per group). **Significant level at p < 0.01 with the
sphincterotomy group. ##Significant level at p < 0.01 with the control group (intact animals). Real-time PCR, immunohistochemistry, and western
blotting, external anal sphincter, rabbit (× 10)
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Fig. 7 Gene and protein expression of Ki67 in injury site of the external anal sphincter after laser, human adipose-derived stem cells (hADSCs),
and combination of laser and hADSCs (laser + hADSCs) treatments. hADSCs labeled by DiI (red). Ki67 expression is observed in the hADSCs and
laser groups (green). Data are presented as means ± SEM (n = 4 animal per group). **Significant level at p < 0.01 with the sphincterotomy
group. #Significant level at p < 0.05 with the control group (intact animals). $Significant level at p < 0.05 with the laser + hADSCs group.
†Significant level at p < 0.05 with the hADSCs group. Real-time PCR, immunohistochemistry, and western blotting, external anal sphincter,
rabbit (× 10)
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and maximum squeeze pressures were greatly decreased
after sphincterotomy compared with the control group
[25]. However, the resting pressure of the anal sphincter
was improved with either laser or hADSC therapy, and
it was more prominent in combination therapy. Laser
treatment can induce muscle repair through satellite cell
proliferation and differentiation [27], through increase in
myofibril numbers [28], through anti-apoptotic [27] and
anti-inflammatory [29] properties, and by stimulating
angiogenesis [17]. Our results confirmed that laser ther-
apy aids muscular repair via increased ki67 (proliferation
factor) and VEGF mRNA gene expression compared
with the sphincterotomy group. Mitochondria are recog-
nized as the main photoreceptors within the cell, and
the abundance of mitochondria in skeletal muscle (EAS)
compared to smooth muscle (IAS) explains the different
effects of laser therapy on the two sphincters [30].
Ehrreich et al. reported in 1968 that smooth muscle
(other than vascular smooth muscle) exhibits very little
sensitivity to visible and ultraviolet radiation [31]. This is
consistent with our finding that resting pressure increase
in the laser group is less than that in the hADSCs group.
By contrast, hADSCs have the potential to repair both
skeletal and smooth muscles, so the hADSCs group dis-
played higher resting pressure hADSCs compared with
the laser group.
The fact that laser therapy promotes migration, prolif-

eration, paracrine activity, and differentiation of hADSCs
[32–34] explains why the combination therapy had a
greater increase in resting anal pressure than hADSCs
alone. Our immunohistochemistry and mRNA expres-
sion findings showed more expression of α-actin and
myosin heavy chain, in the combination group than the
laser or hADSCs alone. Escalating effects of the laser on
Ki67 and VEGFA expression could be due to their short
half-lives (1 to 1.5 h [35] and 30 to 45min [36] respect-
ively). As a result, a difference in expression of these in-
dicators of proliferative and paracrine activity might
have been observed, if hADSC gene expression had been
examined immediately after laser therapy at the end of
the second week.
We found that the laser, hADSCs, and combination

groups had increased maximum squeeze pressure com-
pared with the sphincterotomy group, without any dif-
ferences between them. The maximum squeeze pressure
is the result of the EAS, despite of the resting pressure,
which is the result of both EAS and IAS. There is no
significant difference among the effects of the laser,
hADSCs, and laser + hADSCs on EAS. If the maximum
squeeze pressure (similar to the resting pressure) came
from the contractility tone of the two muscles, the same
results would be expected.
Our EMG findings showed that sphincterotomy dra-

matically decreased the number of motor unit numbers

compared with the control animals, consistent with our
observations of a high collagen content at the site of in-
jury. The laser, hADSCs, and combination therapy
groups showed a significant increase in motor units,
consistent with a surge of myofibrils in the injured areas
and a reduction in collagen content. Both Roth et al. and
Weiss et al. demonstrated that injured areas of muscle
were filled with new myofibrils capable of contractile ac-
tivity [28, 37]; additionally, Shefer et al. showed that laser
irradiation could stimulate the satellite cells near myofi-
brils and form new myofibrils for muscular repair [27].
Moreover, laser irradiation could modulate the collagen
content in injured areas through nuclear factor kappa-B
(NF-kB) gene expression, collagen I and III remodeling
[38], and a reduction in collagen content in skeletal
muscles [39]. Rodriguez et al. indicated that the hADSCs
could repair a posterior tibialis muscle injury via forma-
tion and fusion of new myotubes [40]. Liu et al. ascer-
tained that hADSCs express the myogenic biomarkers
(MyoD, myogenin, and MYH) which could differentiate
hADSCs to myotubes. They also showed the myotube
fusions and hADSC contribution in muscular repair
[41]. Pecan et al. demonstrated that hADSCs could in-
crease myofibril numbers in injured areas. This results
from both differentiation of hADSCs into myogenic lines
and the activation, division, and differentiation of satel-
lite cells through hADSC paracrine activity, including
IGF-1, VEGF, and HGF secretion [42]. In addition to the
myofibril formation at the site of the lesion, other para-
crine activities of hADSCs (regulation of TGF-β1 and
TGF-β2 via HGF secretion) have anti-fibrotic effects, re-
ducing collagen deposition at the site of the muscle le-
sion [23, 43].
In our study, motor unit numbers in the combination

group were higher than those in the laser treatment
alone. This may be due to the additive effect of the laser
and hADSCs on collagen content reduction and myofib-
ril surge. In the hADSCs treated group, the motor unit
number increased. It may be related to the role of stem
cells in muscle healing, either differentiating into muscle
cells, having anti-fibrotic effects, or promoting and facili-
tating satellite cell differentiation by other mechanisms
[27–29]. The results of immunohistochemistry and gene
expression markers for skeletal muscles (MHC and α-
actin) have confirmed these effects.
Along with the collagen synthesis, a key step in wound

healing is the remodeling of collagen, in which the bio-
mechanical properties of the scar are optimized [44]. Re-
modeling is usually initiated 2 to 3 weeks after injury
and continues for more than 1 year [45]. Vimentin is an
intermediate filament that is necessary for the collagen
formation and remodeling in response to injury [44, 46].
In the present study, the highest collagen and vimentin
expression was seen in the sphincterotomy group, which
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may relate to vimentin’s role in the remodeling of colla-
gen. However, vimentin expression during the regener-
ation stage of the skeletal muscle is inversely proportional
to the number of mature myofibrils. It means that intact
skeletal muscle with myotube cross-linking and mature
myofiber lacks vimentin expression [47]. In the present
study, the strong reduction in vimentin expression in the
laser, hADSCs, and combination groups may indicate ma-
ture myofibrillar replacement in the injured areas. The
resting and maximum squeeze pressures, expression of
specific skeletal muscle genes (α-actin and MHC), EMG,
and collagen content assessment are consistent with a
significant surge of mature myofibrils.
In our study, hADSCs were used. Some animal studies

show that xenograft transplantation of mesenchymal
stem cells can reduce the immunomodulation [48] and
efficacy of these cells [49]. However, the use of hADSCs
has been usual in preclinical studies [50–52] and its effi-
cacy is proven. The findings of the present study also
show that xenograft transplantation of hADSCs in the
anal sphincterotomy model in rabbit improves sphincter
function and tissue repair. It is recommended to com-
pare the efficacy of xenograft and allograft transplant-
ation of ADSCs in future studies.
A fourth-degree anal sphincter injury usually occurs

after a vaginal delivery, iatrogenic injury, pelvic injury in
a motor vehicle accident, or blast injury. hADSC prepar-
ation and transplantation is a time-consuming process.
Therefore, the hADSCs could not be an ideal option for
acute-phase injury. However, laser therapy is a non-
invasive and more suitable method in acute anal sphinc-
ter injuries.
The range of light used in LLL ranges from 600 to

1070 nm. The effect of different wavelengths of a laser
varies depending on the site and depth of injury. In our
sphincterotomy model, the skin, mucosa, and muscle
were incised. According to the study of Chung et al.
[53], the optimum laser wavelength in repairing superfi-
cial tissues is 600 to 700 nm. Therefore, like many other
articles on muscle repair [54–56], we used a 660-nm
laser. The reason for the selection of the 660-nm wave-
length is optimum efficacy in inflammatory processes,
angiogenesis, fibroblast proliferation, and cytokine secre-
tion, while such effects are not observed at higher wave-
lengths (940 and 808 nm) [57].
Although we confirmed the survival of transplanted

cells at the end of 90th day, the survival rate was not
compared in the different groups and the effect of LLL
on hADSC survival in the combination group was not
clear. Laser is a non-invasive treatment compared to cell
therapy. However, the effect of laser on some parameters
such as anal sphincter resting pressure is less than that
of hADSCs. We suggest that different protocols for laser
irradiation including different durations of the laser

irradiation in each session or shorter/longer wavelengths
be studied in future trials. We measured the squeeze
pressure when the probe was inserted into the animal
rectum, and then we stimulated the external anal
sphincter using the tingling method. Although recording
squeezing pressure during EMG stimulation is a better
method, we have used the tingling method to mimic a
natural stimulus (such as coughing or striking the exter-
nal anal sphincter) that causes squeeze pressure of the
anal sphincter. Therefore, lack of a significant difference
between the treated groups may be due to the method
of squeeze pressure measurement. Overall, it seems that
the measurement of squeeze pressure in animal studies
is not reliable.

Conclusion
The present study indicates that co-application of laser
and hADSC therapy immediately after anal sphincter
damage could improve subsequent sphincter function.
Moreover, combined therapy appears more effective for
regaining resting anal pressure, and stimulating myogen-
esis and angiogenesis, than either laser or hADSCs alone.
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