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Three-dimensional scattering of ocean surface waves
in the marginal ice zone (MIZ) is determined in the
time domain. The solution is found using spectral
analysis of the linear operator for the Boltzmann
equation. The method to calculate the scattering
kernel that arises in the Boltzmann model from the
single-floe solution is also presented along with new
identities for the far-field scattering, which can be
used to validate the single-floe solution. The spectrum
of the operator is computed, and it is shown to
have a universal structure under a special non-
dimensionalization. This universal structure implies
that under a scaling wave scattering in the MIZ
has similar properties for a large range of ice types
and wave periods. A scattering theory solution using
fast Fourier transforms is given to find the solution
for directional incident wave packets. A numerical
solution method is also given using the split-step
method and this is used to validate the spectral
solution. Numerical calculations of the evolution of a
typical wave field are presented.

This article is part of the theme issue ‘Modelling of
sea-ice phenomena’.

1. Introduction
Vast areas of the polar ocean surface are frozen into a
thin layer (centimetres to metres thick) known as sea
ice. Sea ice plays an important role in the global climate,
affecting heat fluxes between the atmosphere and ocean,
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and ocean circulation. Large-amplitude storm waves generated in the open ocean penetrate up to
hundreds of kilometres into the sea ice-covered ocean—in the so-called marginal ice zone (MIZ)—
and break up large ice floes (discrete chunks of sea ice) into floes with diameters comparable
to the dominant wavelength. Modelling the propagation and attenuation of waves in the ice-
covered ocean is relevant to the safe operation of ships [1] and climate science [2]. In recent years,
technological advances, specifically the ability to deploy remote wave buoys that relay wave
spectra, buoy position, etc., via satellite, has allowed accurate measurements over unprecedented
scales [3,4]. These experimental results have shown the importance of wave effects.

There are two established paradigms for modelling attenuation of linear waves: wave
scattering and dispersion relations [5]. Scattering models resolve the individual floes and are
valid for large floes. They have been developed for over 20 years, beginning with [6], and
have recently progressed to the point at which three-dimensional geometries involving realistic
floe size distributions can be modelled [7,8], so that the waves spread directionally as well as
attenuate [9]. Note that the waves are two dimensional as they exist at the ocean surface, with
motions in the water column providing the third dimensions. Dispersion relation models treat the
ice cover as a continuum (assuming small floes), with attenuation due to parametrized viscosity.
They were originally proposed by Keller [10], and have recently been developed by, for example,
Wang & Shen [11], including being tuned using field measurements [4]. While nonlinear effects
can be included and are potentially important for large-amplitude waves [12], it is standard to
assume linear motions.

Scattering is a three-dimensional phenomenon since the action of scattering is to redistribute
wave energy directionally. However, two-dimensional scattering theory (i.e. one horizontal
dimension and the vertical dimension) is the one which has found application in practical
attenuation models. The first two-dimensional model was developed by Kohout & Meylan [13],
and has been used been used in the WAM wave model [14] and the HYCOM ice–ocean model [15].
Similar models have been integrated into the most widely used community sea ice and wave
models: respectively, CICE [16] and WAVEWATCH III [4]. Somewhat paradoxically, the first
scattering models were three dimensional [17–20]. Large-scale wave prediction codes now require
three-dimensional models to be implemented, primarily because of the need to include angular
(directional) spreading. There are significant observations of angular spreading [21] and this effect
has been shown to be important in recent three-dimensional simulations with large numbers of
floes [7,8]. The three-dimensional scattering equation for wave propagation is given by a linear
Boltzmann equation which models both dissipation and angular redistribution of wave energy.
This model was independently proposed by Masson & LeBlond [17] and Meylan et al. [18], which
were shown to be equivalent, after correcting errors in both models in [20]. The Boltzmann
model was validated in [22] using laboratory experiments, and the diffusion limit for this
model was considered in [23]. It should be noted that three-dimensional models require the
solution of the three-dimensional scattering from an elastic ice floe and this is challenging to
compute [24–27].

The linear Boltzmann equation is a classical model for a range of scattering phenomena. In
nuclear physics, it models a low-density flow of neutrons [28]. It also often arises as a limiting
case of energy transport in random media [29]. A method to solve the so-called Milne problem,
in which the scattering is from a semi-infinite region with the solution isotropic in the transverse
y-direction, was developed in [30]. Solutions for toy problems were computed, and an example
of the kind of calculation which could give insights into scattering in the MIZ was given.

The present work aims to outline how the three-dimensional scattering of waves in the MIZ
can be calculated in the time domain using a linear Boltzmann model. Section 2 presents the
Boltzmann equation model. Section 3 shows how to compute the scattering from a single floe
and how this leads directly to the kernel in the Boltzmann equation. In §4, we show how the
solution for this Boltzmann equation in space and time can be found for the half-space problem.
Section 5 presents some example calculations showing the evolution of a typical directional wave
field. Section 6 is a brief conclusion. We also give an alternative time-marching solution method
in appendix A.
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2. Problem formulation
The wave energy balance equation is

∂tN(x, t, k, θ ) + cgθ · ∇N(x, t, k, θ ) = −cgαs(x, t, k, θ )N(x, t, k, θ )

+ cg

∫ 2π

0
Sk(x, t, k, θ , θ ′)N(x, t, k, θ ′) dθ ′, (2.1a)

which is also known as the linear Boltzmann equation. Here, the Cartesian coordinate x = (x, y)
denotes location on the ocean surface, ∇ = (∂x, ∂y) is the gradient operator, t is time, N is the
so-called wave action density, k is the wavenumber (modulus of the wave vector), θ is the wave
direction vector (argument of the wavenumbers in the x- and y-directions), cg is the group velocity,
αs is the energy loss and Sk is the scattering kernel that redistributes wave energy in different
directions. As scattering is an energy-conserving process, the redistribution of energy is exactly
the loss of energy in the given wave direction, so that

αs(x, t, k, θ ) =
∫ 2π

0
Sk(x, t, k, θ , θ ′) dθ ′. (2.1b)

Non-conservative effects could easily be included by modifying the expression for αs.
We assume that the scattering is isotropic, in the sense that S(x, t, k, θ , θ ′) ≡ S(x, t, k, θ − θ ′),

anticipating this condition will hold approximately and on average in a typical MIZ over sufficient
spatial and/or temporal scales, as ice floes are orientated randomly. Equations (2.1) become

∂tN(x, t, k, θ ) + cgθ · ∇N(x, t, k, θ ) = −cgαs(x, t, k, θ )N(x, t, k, θ )

+ cg

∫ 2π

0
Sk(x, t, k, θ − θ ′)N(x, t, k, θ ′) dθ ′ (2.2a)

and

αs(x, t, k, θ ) =
∫ 2π

0
Sk(x, t, k, θ − θ ′) dθ ′, (2.2b)

respectively. In this study, we achieve isotropic scattering by using modelling the ice floes as being
circular. Non-circular models (e.g. [25,26,31]) could be used, but only with the additional burden
of averaging the scattering characteristics.

3. Calculation of the scattering kernel

(a) Solution for a circular floe
We briefly summarize the eigenfunction matching solution method proposed by Peter et al. [27]
for a circular elastic plate model of an ice floe, floating on a three-dimensional water domain,
which has finite depth and stretches to infinity in both horizontal directions. The plate has radius
a and uniform thickness h, although varying thickness could be incorporated using the method
of Bennetts et al. [32]. Assuming that all motions are time harmonic with radian frequency ω, the
velocity potential of the water, φ̄, can be expressed as

φ̄(x, t) = Re {φ(r, θ , t) e−iωt}, (3.1)

where the reduced velocity potential φ is complex-valued, and (r, θ , z) is a cylindrical polar
coordinate system, assumed to have its origin at the centre of the circular plate. The reduced
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potential satisfies the boundary value problem

�φ + ∂2
z φ = 0, −H< z< 0,

∂zφ = 0, z = −H,

∂zφ = αφ, z = 0, r> a,

(β�2 + 1 − αγ )∂zφ = α φ, z = 0, r< a,

{�− (1 − ν)r−1(∂r + r−1∂2
θ )}∂zφ = 0, z = 0, r = a,

{∂r�− (1 − ν)r−2(∂r + r−1)∂2
θ }∂zφ = 0, z = 0, r = a

and
√

r(∂r − ik)(φ − φI) → 0, r → ∞,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

where
�= ∂2

r + r−1∂r + r−2∂2
θ (3.3)

is the Laplacian operator in the horizontal plane, k is the open water wavenumber (defined
below), φI is the incident potential, and α =ω2/g is a frequency parameter, in which g ≈ 9.81 m s−2

is the constant of gravitational acceleration. The parameters β and γ are

β = Yh3

12(1 − ν2)ρg
and γ = ρih

ρ
, (3.4)

where ρ ≈ 1025 kg m−3 is the water density, Y ≈ 6 GPa is Young’s modulus of the plate, ν ≈ 0.3 is
its Poisson’s ratio and ρi ≈ 992.5 kg m−3 is its density. The incident potential is set to be a plane
wave with displacement amplitude A, travelling in the positive x-direction, i.e.

φI(r, θ , z) = A
i
√
α

ek0xφ0(z) =
∞∑

n=−∞

A
i
√
α

In(k0r)φ0(z).einθ . (3.5)

The potential is expanded in its eigenfunctions as

φ(r, θ , z) = φI +
∞∑

n=−∞

∞∑
m=0

amnKn(kmr) einθφm(z), r> a (3.6)

and

φ(r, θ , z) =
∞∑

n=−∞

∞∑
m=−2

bmnIn(κmr) einθψm(z), r< a, (3.7)

where In and Kn are modified Bessel functions of order n. The wavenumbers km and κm are the
roots k̂ and κ̂ of the dispersion equations

k̂ tan(k̂H) = −α and κ̂ tan(κ̂H) = −α
βκ̂4 + 1 − αγ

, (3.8)

respectively [33]. The first dispersion relation has a unique purely imaginary solution in the
upper half of the complex plane, denoted k0 = ik, and an infinite number of positive real solutions
denoted k1 < k2 < · · · . The second dispersion relation also has a unique purely imaginary solution
in the upper half of the complex plane, κ0, and an infinite number of positive real solutions,
κ1 < κ2 < · · · . It also has two complex roots in the upper-half complex plane, denoted κ−2 and
κ−1, where κ−1 = κ̄−2. We define associated vertical eigenfunctions as

φm(z) = cos km(z + H)
cos kmH

, m ≥ 0, (3.9)

for the open water region, and

ψm(z) = cos κm(z + H)
cos κmH

, m ≥ −2, (3.10)

for the plate-covered region.
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As the problem is axisymmetric, we can solve for the amplitudes amn and bmn of each angular
mode n separately, and we also note that the amplitudes for positive and negative n are complex
conjugates so that solving for n ≥ 0 is sufficient. For a given value of n, the amplitudes are obtained
in the standard way, by matching the potential and its radial derivative at r = a for −H< z< 0,
taking inner products with respect to φm (m = 0, 1, . . .), and truncating the resulting system of
equations and all infinite sums to m ≤ M. The system is closed by applying the plate free edge
conditions, which are the antepenultimate and penultimate conditions of equation (3.2).

(b) Scattering kernel from the single-floe solution
Meylan et al. [18] gave the following justification for calculating the scattering kernel from the
scattering produced by a single floe (based on the work of [29]). Each floe scatters energy, and
the energy radiated per unit angle per unit time in the θ direction for a wave incident in the θ ′
direction, E, is given by

E(θ − θ ′) = ρωgA2

4k
|D(θ − θ ′)|2, (3.11)

where D(θ − θ ′) is the scattered amplitude. At a large distance from the scatterer, the asymptotic
amplitude of the outgoing wave in the θ direction, for an incident wave travelling in the θ ′
direction, is given by

AD(θ − θ ′)√
r

. (3.12)

The scattering kernel, Sk, is found by dividing E by the rate of energy passing under the ice
floe. The rate of energy passing under the floe is given by the product of the wave energy density
( 1

2ρgA2), the effective area occupied by a floe (Af/fi, where Af is the area of the floe and fi is the
fraction of the surface area of the ocean which is covered in ice), and the wave group speed (ω/2k).
Thus,

Sk(θ − θ ′) = ρωgA2

4k
|D(θ − θ ′)|2 fik

ρgA2Afω
= fi

Af
|D(θ − θ ′)|2. (3.13)

Using the asymptotic results for Bessel functions with large arguments, the far-field wave
amplitude is

D(θ ) =
∞∑

n=−∞
a0n

√
π

2k
i einθ =

∞∑
n=0

en cos(nθ ), (3.14)

where we have used the property that the solutions for positive and negative n are complex
conjugates. For the purposes of calculations in wave prediction code, values of D can be efficiently
stored using only a small number of en values.

(c) Identities
Here we derive identities for the solution of the circular ice floe problem, which are (to our
knowledge) not known in the literature, and help validate our numerical results. The identities
apply to the far-field calculation for anybody with circular symmetry. They follow from noticing
that if the incident wave was a Hankel function of the second kind, then the outgoing wave at
infinity would have to be a Hankel function of the first kind with the same amplitude (possibly
with a different phase). As the incident wave is written as inJn(Kr), it follows that

|1 + iπ (−1)na0,n| = 1, (3.15)

which means that
|1 −

√
2πke0| = 1 (3.16)

and ∣∣∣∣∣1 −
√
πk
2

(−1)nen

∣∣∣∣∣= 1, n ≥ 1. (3.17)
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Figure 1. The absolute value of the far-field scattering |D(θ )| for an ice floe of radius a= 25 m (a), a= 50 m (b), a= 100 m
(c) and a= 200 m (d). The floe thickness was 1 m. The periods were T = 6, 8, 10, 12 s as shown. (Online version in colour.)

(d) Numerical results for far-field scattering
Figure 1 shows the absolute value of the far-field scattering function, |D(θ )|, for a h = 1 m thick ice
floe of radius (a) a = 25 m , (b) a = 50 m, (c) a = 100 m and (d) a = 200 m, and wave periods T = 6, 8,
10 and 12 s. This figure shows that the scattering is highly dependent on wave period, noting that
from equation (3.13) the square of |D(θ )| controls the scattering of wave energy. As the floe radius
increases, the scattering becomes more complicated with respect to angle, but given the variation
in floe size in an MIZ this effect will be removed by averaging. The scattering is strongest in the
θ = 0 direction, which is related to the so-called shadow zone behind the floe, where the scattered
wave almost cancels the incident wave.

Figure 2 shows |D(θ )| for an ice floe of thickness (a) h = 0.5 m, (b) h = 1 m, (c) h = 1.5 m and
(d) h = 2 m. The floe radius is a = 50 m, and the wave periods are T = 6, 8, 10 and 12 s. The
figure shows that variations in floe thickness affect the scattering for small thicknesses, but,
above a critical thickness, scattering becomes insensitive to thickness changes. This insensitivity is
because the floe bending is negligible above the critical thickness. The critical thickness is period
dependent and increases as the period increases. The behaviour is also illustrated in figure 3,
where we vary the thickness rather than the period in each subplot.

It is informative to plot αs, as it determines the strength of the scattering. Note that, if all the
scattered wave energy was removed from the system, then the wave field would decay as e−αsx.
Figure 4 shows αs as a function of wave period for various thicknesses and floe radii. The plot is
on a log scale in αs, and shows that the scattering depends strongly on period but only weakly on
the other parameters. The sharp dips indicate resonances and would be removed by averaging
with respect to the floe properties. The figure shows that the wave period has the strongest control
over scattering.
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Figure 2. The absolute value of the far-field scattering |D(θ )| for a floe of thickness (a) h= 0.5 m, (b) h= 1 m, (c) h= 1.5 m
and (d) h= 2 m. The floe is of radius a= 50 m, and wave periods are T = 6, 8, 10 and 12 s. (Online version in colour.)

4. Temporal solution of the half-space scattering problem
Consider the half-space scattering problem for the wave energy balance equation (2.2), in which
Sk = 0 for x< 0, and Sk = Sk(t, k, θ − θ ′) �= 0 for x< 0, i.e. open water exists for x< 0 and a spatially
homogeneous MIZ exists for x> 0. Further, we assume that the solution is independent of the
y-coordinate.

(a) Transformation to a discrete problem
We approximate the integral operator appearing in the wave energy balance equation (2.2) using
2n angular values

θi = (i − 1)
2π
2n

− π

2
+ π

2n
, 1 ≤ i ≤ 2n,

where n is odd to ensure that we do not have θi �= ±π/2, which would cause singularities. (A
modified solution method for this case is given by Meylan [30].) Equation (2.2a) becomes

− i∂tN = iD∂xN + χ(0,∞)iSN, (4.1)

where

N(x, t) =

⎛
⎜⎜⎝

N(x, t, θ1)
...

N(x, t, θ2n)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

N1(x, t)
...

N2n(x, t)

⎞
⎟⎟⎠
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Figure 3. The absolute value of the far-field scattering |D(θ )| for a wave of period (a) T = 6 s, (b) T = 8 s, (c) T = 10 s and
(d) T = 12 s. The floe is of radius a= 50 m, and thicknesses h= 0.5, 1.0, 1.5 and 2.0 m. (Online version in colour.)

is the discrete intensity, χΓ (x) is the characteristic function, which is zero for x /∈ Γ and unity
for x ∈ Γ , and D is a diagonal matrix, which is self-adjoint but not positive, and S is a positive
self-adjoint matrix. The entries of D and S are, respectively,

dij =
{

cg cos θ i, i = j,

0, i �= j,
and sij =

{
cgα̂s − cgS(θi − θi)wi, i = j,

−cgS(θi − θj)wj, i �= j,
(4.2)

where wi is the weight associated with the chosen quadrature rule (we use the trapezium rule so
wi = π/n) and

α̂s =
2n∑

j=1

cgS(θi − θj) wj. (4.3)

Symmetry means α̂s is independent of i and α̂s is a numerical approximation of αs consistent with
our discretization, ensuring energy is conserved. Further, the matrix S is a circulant matrix.

(b) Non-dimensionalization
Non-dimensionalizing the problem makes the numerical scheme more stable, and, as will be
shown, the time and length scales we use control the gross behaviour of the solution. We scale
the temporal coordinate with respect to 1/s11. For a large number of angles (n 
 1), we note that
s11 ≈ cgα̂s ≈ cgαs, which is the exponential decay rate in time in the case that all scattered wave



9

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170334

.........................................................

a = 25
a = 50
a = 100
a = 200

10–8

10–6

10–4as

as

10–2

1

10–8

10–6

10–4

10–2

1

10–8

10–6

10–4

10–2

1

10–8

10–6

10–4

10–2

1

6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20

6 8 10 12 14
T T

16 18 20 6 8 10 12 14 16 18 20

(a) (b)

(c) (d)
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(c) h= 1.5 m and (d) h= 2.0 m. (Online version in colour.)

energy is lost. We scale the spatial coordinate so that in the non-dimensional problem the group
velocity is unity. Therefore, we transform time and space as

t′ = t
t�

and x′ = x
x�

, where t� = 1
s11

and x� = cgt�. (4.4)

For a large number of discrete angles, x� ≈ α̂−1
s ≈ α−1

s , which is the length scale of the exponential
decay in space if all the scattered waves are removed. Under this non-dimensionalization,
equation (4.1) becomes

− i∂tN = iD�∂xN + χ(0,∞)iS
�N, (4.5)

where the entries of D� and S� are

d�ij =
{

cos θ i, i = j,

0, i �= j,
and s�ij = sij

t�
. (4.6)

Thus, the entries of the matrices vary between −1 and 1, and we have s�ii = 1. This makes the
numerical schemes stable and the same discretization can be used in space and in time. We will
drop the star from now on.

(c) Solution using scattering theory
The solution of equation (4.5) can be written in abstract form as

N(x, t) = exp(iLt)N0(x), where L= iD∂x + iχ[−∞,0]S (4.7)

is an operator that defines a continuous semi-group, for which Meylan [30] outlined a method
to diagonalize. Here, we focus on calculations of the spectrum of the operator L to show
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how important this is for controlling wave scattering. We note that if μ ∈ spec {L}, then eiμt ∈
spec {exp(iLt)}. We will show how to compute this semi-group using a modified scattering theory,
for the case of an incident wave group, which is initially zero in the MIZ (x> 0).

The spectrum of L is defined by

spec {L} = {λ : Lv(x) = λv(x)}. (4.8)

Separating the spectrum in the two regions x> 0 and x< 0, we obtain

iD∂xv(x) =
{
λv(x), x< 0,

(−iS + λ)v(x), x> 0.
(4.9)

Solving, we obtain

v(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2n∑
j=1

c−
j w−

j (μ, j) eζ
−
j x, x< 0,

2n∑
j=1

c+
j w+

j (μ, j) eζ
+ijx, x> 0,

(4.10)

where w−
j are the eigenvectors of the matrix −iD−1λ and ζ−

j are the corresponding eigenvalues,

and w+
j are the eigenvectors of the matrix −iD−1(−iS + λ) and ζ+

j are the corresponding

eigenvalues. The constants c±
j are at this stage arbitrary.

At first sight, it appears that there will be a solution of (4.8) for every value of λ. However,
we need to impose the condition that the solution is bounded at x = ±∞. From symmetry, in
both cases the eigenvalues come in plus and minus pairs, meaning we can eliminate half the
eigenvectors and this leaves us only 2n unknowns. Matching at x = 0, we obtain 2n homogeneous
equations, for which there will only exist a trivial solution. However, if either ζ−

j or ζ+
j is purely

imaginary, we will have one extra unknown (as we can keep both the plus and minus solutions).
As the number of unknowns is one greater than the number of homogeneous equations, we will
have a non-trivial solution. This non-trivial solution is determined up to a constant and this will
lead to the spectrum of the operator L. The corresponding functions for the eigenvalues of L are
known as generalized eigenfunctions.

For λ ∈ R, the solution for x< 0 gives ζ−
j ∈ i R. We denote the corresponding generalized

eigenfunctions (with multiplicity n) by v−
i , where

v−
i (λ, x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

e−iλx/Dii

...
0

Tnjeiλx/Dnn

...
T1jeiλx/D11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for x< 0, and v−
i (λ, x) =

n∑
j=1

c+
j w+

j eζ
+
j x for x> 0,

where the summation for x> 0 is over eigenvalues with negative real part only, i.e. Re(ζ+
j )< 0.

The generalized eigenfunctions v−
i are chosen to be non-zero only in a single incoming direction,

which makes subsequent calculations easier. The n equations obtained by matching the solution
for the first n rows at x = 0 uniquely determine the coefficients c+

j . Subsequently, by matching the
second n rows at x = 0 the elements of the matrix Tij are found.
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The complex spectrum of L consists of λ such that

det{−iD−1(−iS + λI) − (iμ)I} = 0, (4.11)

where I is the identity matrix, for a given μ ∈ R. Equation (4.11) can be solved by finding the
eigenvalues of the matrix −μD + iS for μ ∈ R. Therefore, the complex spectrum consists of n lines
in the complex plane, which lie in the upper-half plane so that the semi-group is a contraction.

The generalized eigenfunctions for the complex spectrum are zero in the incident directions,
so that energy is allowed to leave the MIZ only. The eigenfunctions are v+

j , where

v+
j (μ, x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

Tnjeiλ/Dnn

...
T1jeiλ/D11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for x< 0

and

v+
j (μ, x) = w+

n+1e−iμx + c+
n w+

n eiμx +
n−1∑
j=1

c+
j w+

j eζ
+
j x for x> 0,

where, as before, the summation for x> 0 is over eigenvalues with negative real part only,
i.e. Re(ζ+

j )< 0. As the ordering of the eigenvectors for x> 0 is arbitrary, we choose, without
loss of generality, that eigenvectors corresponding to iμ and −iμ have numbering n and n + 1,
respectively. Further, we choose the values of c+

j so that the solution is zero in the incoming
directions. The elements of the matrix Tij are then found by matching the second n rows at x = 0.

Figures 5 and 6 show the branches of the spectrum of the operator L for different values of
the angle truncation parameter n. Figure 5 shows the spectrum for a floe of thickness h = 1 m and
radius a = 50 m, and wave period of T = 8 s. Figure 6 shows the spectrum for a floe of thickness h =
1 m and radius a = 200 m, and wave period of T = 12 s. These figures are the only plots we present
in non-dimensional variables and the reason for this is the following. The imaginary part of this
spectrum represents the decay which is proportional to the diagonal element of S since decay
in this context is spreading. As the non-dimensional diagonal is always unity, we see that the
complex spectrum consists of a vertical branch and lines which all have imaginary part ≈ 1. This
pattern of the spectrum implies that the parameters t� and x� we calculate control the properties
of the solution in time and space, respectively. It is interesting to ask what happens in the limit as
the number of angles tends to infinity. This limit should allow us to compute the spectrum of the
continuous operator which appears in equation (2.2a). Perhaps the spectrum collapses to a single
line, or perhaps it fills a region of the complex plane.

We construct the solution to the time-dependent half-space problem using a version of the
method developed by Meylan [30], which is based on the generalized eigenfunctions v−

i . For
an incident wave which is initially zero in the MIZ, it is possible to use only the real part of
the spectrum of L and only v−

i . Physically, these are the only cases which could be excited, but
mathematically we could start with the initial condition non-zero in the MIZ. We assume the
initial wave action density in the MIZ is zero, i.e. N0(x) = 0 for x> 0, and that it is of the form

N0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(x)
...

fn(x)
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x< 0. (4.12)
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Figure 5. The branches of the complex spectrum for awave period T = 8 s, andfloe of thicknessh= 1 mand radius a= 50 m,
for the number of angles 2n shown. The solution is plotted in non-dimensional space. (a) 2n= 4, (b) 2n= 6, (c) 2n= 8 and
(d) 2n= 10. (Online version in colour.)

Therefore, we represent N0 in terms of the eigenfunctions v−
i (λ, x)

N0 =
n∑

j=1

∫∞

−∞
f̂ −
j (λ)v−

j (λ, x) dλ, (4.13)

and, using the properties of the Fourier transform, we deduce that

f̂ −
j (λ) = 1

2πDjj

∫ 0

−∞
eiλx/Djj fj(x) dx = 1

2π

∫ 0

−∞
eiλxfj(xDjj) dx. (4.14)

Note that the functions f̂ −
j are not exactly the Fourier transform of fj because of the Djj term.

Therefore, the solution is

N(x, t) =
n∑

j=1

∫∞

−∞
eiλtf̂ −

j (λ)v−
j (λ, x) dλ. (4.15)

The integrals in equations (4.14) and (4.15) are calculated using the fast Fourier transform.

(d) Validation via numerical method
To validate the above spectral method based on scattering theory, we solve equation (4.5) using a
so-called split-step method, described in appendix A. Figure 7 shows the evolution of the wave
action density calculated using scattering theory and the split-step method. The incident wave
field is uni-directional, travelling in the direction of the x-axis and with wave period T = 8 s, and
the MIZ contains floes of radius a = 50 m and thickness h = 1 m. We consider the case when there
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Figure 6. The branches of the complex spectrum for a wave period T = 12 s, and floe of thickness h= 1 m and radius a=
200 m, for the number of angles 2n shown. The solution is plotted in non-dimensional space. (a) 2n= 4, (b) 2n= 6, (c) 2n= 8
and (d) 2n= 10. (Online version in colour.)

are 2n = 6 angles, which is unlikely to be sufficient for practical calculations but is enough to
validate the scattering theory. The initial wave profile is the Gaussian

N(x, 0, θ ) = exp

(
−
(

(x + 1000)
270

2
))

δ(θ ). (4.16)

The agreement is generally excellent, with only small deviations at large distances, as the fast
Fourier transform component of the spectral method is periodic, resulting in a residual solution,
evident in figure 7b,c.

5. Numerical results
Numerical results are given for floe radius a = 50 m and thickness h = 1 m, an incident wave field
with period T = 8 s, and shape

N0 = exp

(
−
(

(x/cos θ1 + 1000)
270

2
))

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 θ1
...

cos2 θn

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x< 0, (5.1)
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Figure 7. A comparison of the solution calculated by the scattering theory (solid line) and the split-step method (dots) for the
times shown for the wave action density in the channels shown. The incident wave is of period T = 8 s, radius a= 50 m and
thickness h= 1 m. The initial condition is given by equation (4.16). The number of angles is 6. (a) n= 2, (b) n= 3, (c) n= 4
and (d) n= 5. (Online version in colour.)
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Figure 9. Polar plots of the solution for an initial condition given by equation (5.1) for (a) x = 0 m, (b) x = 500 m, (c) x =
1000 m and (d) x = 1500 m, for wave period T = 8 s, radius a= 50 m and thickness h= 1 m. (Online version in colour.)

as given by Longuet-Higgins [34]. This form is chosen so that the intensity at the edge of the
scattering region gives uni-modal (in angle) input in the direction moderated by a Gaussian in
space, i.e.

N(0−, t, ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 θ1 exp

(
−
(

(cgt + 1000)
270

2
))

...

cos2 θn exp

(
−
(

(cgt + 1000)
270

2
))

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Figure 8 shows convergence plots for the solutions calculated with 2n = 12, 22 and 42, with
a converged solution achieved for 2n = 42. This plot shows that the solution is well converged
for 2n = 42, noting that this is more angles than are normally used in global wave prediction
codes. On this basis, figure 9 shows the evolution of polar plots for 2n = 42. It is apparent that the
amplitude of the scattered field rapidly decreases with distance into the MIZ and that the wave
field becomes isotropic. Figure 10 shows corresponding three-dimensional mesh plots of the wave
field as functions of wave direction.

6. Conclusion
We have investigated a Boltzmann equation model for wave scattering in the MIZ. We have
shown how to derive the scattering kernel appearing in the Boltzmann equation from the
solution for a single circular ice floe and presented new identities to validate it. We developed
a mathematical theory to analyse the structure for the half-space problem under discretization in
angle. We calculated the spectrum of the linear operator and showed that under a particular non-
dimensionalization it has universal properties. We showed that a solution can be found using
a scattering theory for incident waves, and validated the spectral solution against a split-step
method. The method allows computation of the spatial and temporal evolution of wave packets
propagating through the MIZ.
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Appendix A. Time marching solution method
We derive here a time-stepping solution method. We begin with the discrete Boltzmann
equation (4.5), where we will exploit our non-dimensionalization in this numerical scheme. The
equation is

− i∂tN = iD∂xN + iχ(0,∞)SN =LN. (A 1)

(A 1) can be solved by a very simple time-stepping method known as the split-step method. For
small time steps �t, we can approximate eiL�t as follows:

eiL�t � ei�t/2D∂x e−χ(0,∞)S�tei�t/2D∂x . (A 2)

The action of these two operators separately is simple. The operator ei�t/2D(∂/∂x) is simply a shift
by an amount Djj�t/2, which acts on each channel separately, i.e.

ei�t/2D∂x N(x, θj) = N

(
x − Djj�t

2, θj

)
.

Note that because we apply this shift operator as the first and last step we will be calculating
ei�t/D(∂/∂x) except for the first and last step. This is analogous to the trapezium method in
numerical integration. We have non-dimensionalized so that the entries of D are between −1
and 1. This means that if we discretize the space into points spaced equally apart with spacing
�x, then we can set �t =�x and we can approximate as follows:

ei�t/DN(xi, θj) = (1 − Djj)N(xi, t, θj) + DjjN(xi−1, t, θj),

where we are assuming that Djj is positive. The negative case we change from i − 1 to i + 1,
etc. We note that this time-stepping part of the equation is highly optimized in code such as
WAVEWATCH III�.

The matrix exponential e−χ(0,∞)S�t can be calculated from the eigenvectors of S. We know that
the eigenvectors have a very simple structure from circulant matrix theory and they are given by

wj = 1√
2n

(1,ωj,ω
2
j , . . . ,ω2n−1

j )T, j = 0, 1, . . . , 2n − 1, (A 3)

where superscript ‘T’ denotes transpose and ωj = exp(2π ij/2n) are the 2nth roots of unity. The
eigenvectors wj are orthonormal. The corresponding eigenvalues are then given by

λj = s2n1 + s2n−11ωj + sn−2ω
2
j + · · · + s11ω

2n−1
j , j = 0, 1, . . . , 2n − 1,

where sij are the elements of S. Therefore, we can calculate e−χ(0,∞)S�t as

e−χ(0,∞)S�t(u) =

⎧⎪⎪⎨
⎪⎪⎩

2n∑
j=1

(wj · u)e−λj�twj, x ∈ (0, ∞),

u, x /∈ (0, ∞).

Note this expression would be very useful in global wave prediction codes such as
WAVEWATCH III� if scattering by ice floes was to be included.
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