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Abstract

Recently, Markov random fields (MRFs) have gained much success in sparse

signal recovery. One of the challenges is to adaptively estimate the MRF

parameters from a few compressed measurements in compressive sensing (CS).

To address this problem, a recently developed method proposes to estimate the

MRF parameters based on the point estimation of sparse signals. However, the

point estimation cannot depict the statistical uncertainty of the latent sparse

signal, which can result in inaccurate parameters estimation; thus, limiting

the ultimate performance. In this study, we propose a one-step MRF based

CS that estimates the MRF parameters from the given measurements through

solving a maximum marginal likelihood (MML) problem. Since the marginal

likelihood is obtained from averaging over the latent sparse signal population,

it offers better generalization over all the latent sparse signals than the point

estimation. To solve the MML problem effectively, we approximate the MRF

distribution by the product of two simpler distributions, which enables to produce

closed-form solutions for all unknown variables with low computational cost.

Extensive experiments on a synthetic and three real-world datasets demonstrate

the effectiveness of the proposed method in recovery accuracy, noise tolerance,

and runtime.
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1. Introduction

Compressive sensing (CS) provides an advanced sampling strategy to acquire

a high-dimensional signal at a sub-Nyquist rate. It has been the core of new

signal acquisition and compression systems, e.g. imaging and radar systems, data

compression, and telecommunications. To realize the sub-Nyquist rate sampling,5

CS aims at recovering a sparse signal x of high dimensionality N from a few

noisy, linear measurements y of size M (e.g., M � N), i.e. y = Ax+ n where

A ∈ RM×N is a measurement matrix and n is the small perturbation. The sparse

signal recovery often requires an appropriate prior, such as the sparsity structure

of the sparse signal, to achieve good reconstruction [1, 2]. Recently, Markov10

random fields (MRFs) have been used in the recovery of sparse signal in CS to

achieve state-of-the-art performance [1–10]. In these works, MRFs represent the

structure of signals with a graphical model where a Boltzmann machine (BM) is

used as the probability distribution because of its ability to model different signal

distributions. The parameters of the BM and the underlying graph structure15

of the MRFs are estimated from extensive training examples. However, the

performance of these MRFs is constrained by the amount of information in these

training examples, as the BM parameters and the underlying graph of the MRF

cannot adapt to new signal structures.

To address the lack of adaptiveness, a line of research [11–21] resorts to20

data-adaptive models without the necessity for training. The majority of these

approaches employ clustered sparsity models [11–19] where a mixture model such

as beta-Bernoulli is used to model signal distribution, because the closed-form

updates for the model parameters are available. However, these works are limited
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to signals with the assumed clustered structure only, i.e., the signal coefficients25

group in clusters; hence, the clustered sparsity models are not as flexible as the

MRFs. The other approaches [20, 21] consider developing data-adaptive MRF

priors. In particular, the work in [20] models signal structure with an MRF,

but the MRF contains only the pairwise potentials of the BM. Although the

parameters of pairwise potentials can be adaptively estimated, the underlying30

graph of this MRF is fixed and cannot adapt for new structures.

Recently, the work in [21] proposes to adaptively adjust both the BM parame-

ters and the underlying graph of the MRF where the full BM with both pairwise

and unary potentials is employed to model signal distribution. Consequently,

this adaptive MRF-based approach offers the higher flexibility to capture and35

adapt to any signal structure, compared to all the previous approaches [3–20].

To adaptively estimate an MRF for a signal structure, this method employs

two major estimation steps—i) sparse signal estimation, and ii) based on the

resulting sparse signal, the MRF parameters estimation which includes the BM

parameters and the underlying graph of MRF estimations. Hence, we refer to40

this method as Two-steps-Adaptive MRF. However, Two-steps-Adaptive MRF

has two main problems :

(i) The estimated MRF parameters do not always capture the underlying

structure of the latent sparse signals: The MRF parameter estimation is

only based on the point estimation of the latent sparse signal population.45

However, the point estimation cannot depict the statistical uncertainty of

the latent sparse signals.

(ii) High computational cost: The Two-steps-Adaptive MRF iteratively per-

forms the two estimation steps, MRF estimation and signal estimation,

until convergence. Thus, the total cumulative computational cost is high.50

To address these problems, we propose to take a Bayesian approach to provide
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Figure 1: Comparison between the two frameworks. Our One-step-Adaptive MRF directly
estimates the parameters from measurements based on Bayesian estimation, while the Two-
step-Adaptive MRF [21] estimates the parameters based on the point estimation of sparse
signal.

a better generalization over the population of latent sparse signals. This process

is shown in Figure 1. Our approach captures the statistical uncertainty by consid-

ering the marginal likelihood for the MRF parameters given the measurements.

The marginal likelihood is obtained by integrating out all the unknowns, which55

can be seen as weighted averaging with the probability of each variation of sparse

signals. Thus, this offers better generalization over the latent sparse signals than

the point estimation. As the latent sparse signals are integrated out, the MRF

parameters are estimated directly from the measurements in one-step. Thus, our

method is referred to as One-step-Adaptive MRF.60

To implement this, we, first, approximate the BM with a new MRF distribu-

tion which is the product of two simpler priors to enable a closed-form update

for MRF parameter estimation. The two priors are Bernoulli model [16] and

pairwise MRF [20]. The Bernoulli model represents the bias toward zero for each

signal coefficient, while pairwise MRF represents the correlation between these65

coefficients. Then, the parameters of the new MRF distribution are estimated

from solving a maximum marginal likelihood (MML) problem. More importantly,

the estimation of all the unknown variables resulted from the MML problem

gains closed-form updates with low computational cost.

Figure 2 compares the effectiveness in signal recovery and the MRF param-70
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(a) Signal recovery improvement (b) MRF estimation improvement

Figure 2: Performance comparison between (proposed) One-step Adaptive MRF and Two-steps
Adaptive MRF in (A) signal recovery and (B) MRF parameter estimation. The performance
is measured by the KL-divergence with respect to the ground truth distribution.

eters estimation between them. The effectiveness is evaluated based on 1000

synthesized sparse signals sampled from a known distribution.The accuracy of

MRF parameters estimation is measured by the KL-divergence with respect to

the ground truth. As our One-step-Adaptive MRF takes the Bayesian approach,

it offers a better generalization over latent sparse signals. Therefore, it can75

further minimize the recovery error and KL-divergence than Two-steps-Adaptive

MRF. Meanwhile, Two-steps-Adaptive MRF is based on the point estimation

of sparse signals; thus, it lacks the generalization over the latent sparse signals,

which can result in early convergence. Extensive experiments demonstrate the

superior performance of our method (see Section 6).80

In summary, this study makes the following contributions:

1. We propose a new MRF distribution that approximates the Boltzmann

machine (BM) of MRFs to enable closed-form updates for the MRF param-

eters with a low computational cost. To achieve this, our distribution is

the product between a Bernoulli model and a pairwise MRF. We provide85

both theoretical and empirical results showing that our proposed MRF

distribution can well approximate the BM (see Section 5.1) The proposed

MRF distribution can achieve the best approximation to BM as compared
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to using the Bernoulli model [16] or the pairwise MRF [20] alone (see

Section 6.4).90

2. With our MRF distribution, we propose One-step-adaptive MRF to better

generalize the latent sparse signals, by solving the maximum marginal

likelihood (MML) problem to obtain the MRF parameters from given

measurements. The marginal likelihood offers the better generalization over

the latent sparse signals. We employ a variational expectation maximization95

(EM) [22] to efficiently solve the MML problem. Thus, we improve (i) the

generalization in MRF estimation and (ii) the runtime as the estimation

for all the unknowns gains closed-form updates (see Section 6.5).

3. We demonstrate state-of-the-art recovery performance on three benchmark

datasets: i) MNIST, ii) CMU-IDB, and iii) CIFAR-10 images in terms of100

recovery accuracy, noise tolerance, and runtime performance (see Section 6).

2. Related works

Our one-step-adaptive MRF is related to the following lines of research, but

moves beyond their respective limitations.

MRF-based approaches [3–10] employ Markov random fields (MRF) for105

their flexibility to model various types of signal structures. In these approaches,

BM parameters and the underlying graph of MRFs are learned from training

data. By using the trained MRF as a prior in signal recovery, support estimation

is computationally demanding in general. Different approaches [3–10] aim to

reduce the computation in the support estimation. Nevertheless, the trained110

MRFs are effective only when the structure of testing data are similar to those

of training data. Unlike these approaches, our work has the mechanism to adapt

the MRFs to effectively exploit different signal structures.
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Clustered-sparsity based approaches [11–19] use clustered sparsity mod-

els to capture the structure of sparse signals. This sparsity models represent115

the clustering of non-zero coefficients in sparse signals with probabilistic mod-

els such as Gaussian-Bernoulli [11, 13, 16]or Gaussian-inverse Gamma [14, 15]

[17, 18].These probabilistic models often employ Gaussian distribution to model

the distribution of the amplitude of sparse signal coefficients given the structure

of non-zero coefficients. Meanwhile, the structure of non-zero coefficients is cap-120

tured by a prior probability distribution such as inverse Gamma and Bernoulli

distribution.The model parameters of these mixture models can be estimated

with EM algorithms which result in closed-form formulations. However, due to

the limited structure assumption, the underlying structure of clustered sparsity

models is fixed and cannot adapt to an actual sparse signal structure. On the125

contrary, our method uses an MRF able to capture any structures, and its

underlying graph can be adapted for actual signals. Adaptive MRF based

approaches [20, 21] improve the performance of MRF-based approaches [3–10]

to be able to adapt the MRF for any signal structure. Wang et al. [20] employs

an MRF, but the BM of the MRF contains only pairwise potentials to enable130

closed-form formulations to update the model parameters. This MRF and the

method in [20] are called pairwise MRF in this paper. However, the pairwise

MRF has two limitations: (i) it is not as flexible as the MRF with the full BM;

and (ii) its underlying graph is fixed and cannot adapt to a new structure. Two-

steps-Adaptive MRF [21] is more flexible than other models [11–20], because it135

uses an MRF with a full BM and adaptively adjust both the BM parameters and

the underlying graph. With many unknown parameters, this method iteratively

performs sparse signal estimation and MRF parameter estimation based on the

point estimate of the sparse signal, until convergence. However, this can lead to

high computational cost. Also, the point estimation cannot depict the statistical140
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uncertainty of the latent sparse signals. Our research objective shares a similar

spirit to [21]; however, we avoid these problems by enabling close-form updates

for all the unknown variables and improving generalization over the latent sparse

signals.

In the following, we present the observation model for graphical CS in145

Section 3. Signal modelling with our proposed MRF distribution is presented

in Section 3.1. We present One-step-Adaptive MRF to estimate the MRF

parameters in Section 4. Then, we provide the theoretical result to show how

well the proposed MRF distribution can approximate the BM and the algorithm

complexity in Section 5. To this end, we evaluate the performance of the proposed150

method and the proposed MRF distribution by experiments in Section 6.

3. Graphical compressive sensing

Inspired by [11–14, 16], we decompose the sparse signal x ∈ RN into a

support vector s ∈ {0, 1}N with a scale vector t ∈ RN , which can be denoted as

x = t� s. The support vector s indicates the position of non-zero coefficients

in the sparse signal x. Thus, our goal is to recover t and s from the linear

observation model

y = A(t� s) + n. (1)

The small perturbation n is modelled with additive Gaussian white noise with

the noise precision σ−1
n . Thus, the corresponding observation likelihood is

p(y|t, s;σn) = N (A(t� s), σ−1
n I), (2)

where I is an identity matrix with proper size. Generally, given appropriate

priors, p(s) and p(t), the latent s and t are inferred by solving the MAP problem
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{ŝ, t̂} = max
s,t

p(t, s|y) ∝ (y|t, s)p(t)p(s). (3)

To represent the flexible distribution of the sparse signal coefficients, a Markov

random field (MRF) prior is imposed on the support s. In connection with this,

a statistical model is imposed on the signal scale t. In the following section, we155

will discuss the models p(s) and p(t), respectively.

3.1. Markov random field based support prior

This section, first, reviews Boltzmann machine, the commonly used probabil-

ity distribution in MRFs and, then, presents our MRF distribution.

Since MRFs are flexible and expressive enough to model complex dependency,

the majority of the existing works [3–10, 20, 21] employ the MRF to capture

the underlying structure of a sparse representation through its support s. The

MRF represents the dependency between support coefficients by defining the

probability distribution over an undirected graph. Let G = {V,E} denotes the

underlying undirected graph of the MRF, where V and E is the set of nodes and

undirected edges in G. Each coefficient is mapped one-to-one to a node in the

graph G. The probability distribution is defined as Boltzmann machine (BM):

p(s) = 1
Z

∏
c

∏
i∈Nc

exp(siδci + si
∑
j∈Ei

γcijsj) (4)

where Z(·) is a normalizing constant; {δci , γcij} are local parameters that model160

the interaction among signal coefficients. δci defines bias toward zero for each si.

γcij weights the dependency between si and its adjacent sj which is defined by

the local edge set Ei where the edge set E = {Ei}i∈V . The neighborhood set Nc

defines how these parameters are shared among support coefficients.

An important key for applying the MRFs is to estimate the parameters165

{δci , γcij} in Eq. (4). Generally, the parameters of the MRFs are learned from

9



the training data, but the learned model cannot adapt for new signal structures.

The work [21] proposes to adaptively estimate the parameters based on a point

estimate of the sparse signal. However, both the parameter and sparse signal

estimations are performed in every iteration, which requires high computation.170

To address this problem, we propose to approximate the BM Eq.(4) with a new

probability distribution. Inspired by [23], we assume conditional independence

between each node given its adjacent nodes. Thus, the joint distribution is

written as the products of conditional probabilities. Then, we approximate each

conditional probability distribution with the product of two simpler distributions.

Each of them corresponds to the unary and pairwise potentials in the BM

distribution. The proposed MRF distribution for support s is given as

p(s) =
∏
c

∏
i∈Nc

p(si|sEi
, θci ),

where log(p(si|sEi
, θci )) ∝ φu(si|θui ) + φp(si|sEi

θpi )).

(5)

φu(si|θui ) = log(pu(si|θui )) and φp(si|sEi
, θpi ) = log(pp(si|sEi

, θpi )). Here, p(si|sEi
, θci )

is the conditional distribution of a support si given sEi where sEi = [sj ]j∈Ei

contains the support coefficients connected to the node si with the edges speci-

fied by Ei. It is approximated with the product of pu(si|θui ) and pp(si|sEi
, θpi )

which are associated with the unary φu(·) and pairwise φp(·) potentials. In the175

following, we will introduce the specific forms of pu(si|θui ) and pp(si|sEi
, θpi ).

Unary potential. To control local sparsity in a fixed-size neighboring

region, we employ the Bernoulli model [16] where every support coefficient in

the neighboring region shares a common parameter bc, i.e.,

pu(si|bi) = Bernoulli(si|bi) with bi = bc ∼ Beta(α, β) ∀i ∈ Nc. (6)

bc defines the tendency toward non-zero according to the setting of α and β.
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The distribution pu(si) alone reflects the bias toward zero on support coefficients

within a neighborhood, but it cannot reflect the interaction between them. The

connection between Bernoulli distribution and the BM is explained in details180

in .1.

Pairwise potential. To reflect interaction between support coefficients, we

employ the pairwise MRF [20], where the connection between the ith support

coefficient and the other coefficients is defined by Ei. The pairwise MRF is

pp(si|sEi ;wi) = 1
Q(wi, sEi)

exp(si
∑
j∈Ei

wisj), (7)

where wi weights the dependency between si and other coefficients sEi
, and

Q(wi, sEi
) = 2cosh(wi

∑
j∈Ei

sj). The edge set E = {Ei} defines the pairwise

connection between nodes in the entire underlying graph G.

With the defined probability distributions associated with the unary and

pairwise potentials, we represent our MRF distribution of s as

p(s|b,w) ∝
∏
c

∏
i∈Nc

pu(si; bi)pp(si|sEi ;wi) =
∏
c

p(sNc
|bc,wNc

), (8)

where pu(si; bi) = Bernoulli(si|bi) with bi = bc ∼ Beta(α, β) ∀i ∈ Nc and185

pp(si|sEi
;wi) = 1

Z(wi,sEi
) exp(si

∑
j∈Ei

wisj). sNc
= [si]i∈Nc

and wNc
= [wi]i∈Nc

represent the vector of support coefficients and pairwise parameters in Nc.

Because the distributions associated with the unary and pairwise potentials

are separately modelled in Eq. (8), their parameters can be separately estimated.

This benefits simplify the following MRF parameter estimation with using a190

variational expectation-maximization (EM) in Section 4. The parameters of the

Bernoulli model obtain a closed-form solution in inference, and the parameters of

pairwise MRF are obtained by solving an maximum marginal likelihood (MML)

problem, which is also resulted in a closed-form formulation. More details will
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be further clarified in Section 4.195

The proposed MRF distribution Eq. (8) can be viewed as a surrogate for

the BM Eq. (4) where δci = δc ∀i ∈ Nc and γcij = γi ∀j ∈ Ei. The effectiveness

of our MRF distribution in approximating the BM can be measured by the

Kullback-Leibler (KL) divergence between them. We can demonstrate the KL-

divergence can be bounded under a small constant, under the assumption that200

the proposed MRF is used to model sparse signals (see Section 5.1). We also

provide empirical performance in approximating the BM where the empirical

KL-divergence of the proposed MRF is compared it with that of some existing

approximation schemes [16, 20] in Section 6.4. The KL-divergence of our MRF

distribution is smaller than those of the existing schemes. Then, we evaluate205

the similarity/difference between the learned MRF parameters of our proposed

MRF distribution (Eq. (8)) and those of the BM (Eq. (4)) based on real data.

This shows that Our MRF distribution Eq. (8) can well approximate the BM.

3.2. The signal scale prior

In connection with the support model, we impose statistical models to the

signal scale coefficients in each neighborhood site. Specifically, let tNc
= [ti]i∈Nc

be a vector of scale coefficients in Nc. We impose an iid Gaussian distribution

as a prior of the scale coefficients tNc
as follows

p(tNc
;σt,c) =

∏
i∈Nc

N (ti|0, σt−1
i I), where σti = σtc ∼ Gamma($, ξ). (9)

σtc is the signal precision shared among scale coefficients in Nc. Here, Gamma210

distribution is used a hyperprior over the hyperparameter σtc where $ and ξ are

constant with appropriate settings [20, 24]. This model weakly imposes structure

among {ti}i∈Nc
to help controls sparsity level in addition to the unary potentials.
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3.3. The hyperprior for noise precision

To facilitate the inference for σn, the Gamma prior is imposed on σn since the215

perturbation n is assumed to be Gaussian white noise, i.e., σn ∼ Gamma($0, ξ0).

4. One-step-Adaptive-MRF Inference

With the hyperpriors p(bi;α, β), p(σtc;$, ξ), and p(σn;$0, ξ0), the posterior

of the unknown sparse signal scale t and support s, given measurements y is

p(t, s|y,Θ) ∝ p(y|t, s,Θ)p(t, s|Θ)p(Θ)

= p(y|t, s, σn)
∏
c

p(tNc
, sNc
|σtc, bc,wNc

)p(σtc;$, ξ)p(bc;α, β)p(σn;$0, ξ0)

(10)

where p(tNc
, sNc
|σtc, bc,wNc

) = p(tNc
|σtc)p(sNc

|bc,wNc
);

Θ = {σn,σt, b,w}; σt = [σtc ], b = [bc], w = [wNc
]. Most existing MRF-

based methods [3–10] estimate these unknown Θ with training samples. However,220

the resulting Θ cannot adapt for actual sparse signals. The two-steps method

in [21] adaptively estimates Θ based on the point estimation of sparse signals,

which, however, cannot depict the statistical uncertainty of the latent sparse

signal. To address this problem, we estimate Θ directly from the measurements

with a statistical inference process described in the following. Then, given Θ,225

the sparse signal is estimated by solving MAP Eq.(3).

4.1. Adaptive MRF parameter estimation with variational EM

Our objective is to adaptively estimate the unknown parameters Θ directly

from measurements y. With the hyperprior imposed on σn,σt, and b, these

unknowns can be considered as the unknown random variables; meanwhile, w is

the only unknown parameter. Thus, we aims to solve the following maximum

13



marginal likelihood (MML) problem

max
w

ln p(y|w) ∝
∫

ln p(y,Λ|w)dΛ. (11)

where Λ = {t, s, σn,σt, b} is the set of all unknown variables. To solve this

MML problem, all the unknown variables in Λ are to be integrated out. Since

calculating the integral in Eq. (11) is intractable, we resort to the variational230

EM [22] to estimate the unknown parameters.

In the variational EM, the unknown parameters are obtained by solving a

bound maximization problem. The lower bound of the log-likelihood function

ln p(y|w) is obtained by introducing a pseudo probability over the unknown

variables. Here, we denote the pseudo probability as q(Λ). With the pseudo

probability q(Λ), Eq. (11) can be written as [22]:

ln p(y|w) = F (q,w) +KL(q||p), (12)

where F (q,w) =
∫
q(Λ) ln p(y,Λ|w)

q(Λ)
dΛ is the lower bound of ln p(y|w), and

KL(q||p) = −
∫
q(Λ) ln p(Λ|y,w)

q(Λ)
dΛ is the Kullback-Leibler divergent between

p(Λ|y,w) and q(Λ). Since it is always that KL(q||p) ≥ 0, it holds that F (q,w)

is the lower bound of ln p(y|w). This suggests that if the pseudo probability q(Λ)235

has a very close approximation to p(Λ|y,w), KL(q||p) approaches zero. There-

fore, we turn to maximize the lower bound F (q,w), by iteratively performing [22]:

(i) Expectation: q(Λ) is assumed to have a factorized form with respect to each

partition: q(Λ) = q(σn)q(t)q(s)
∏
c q(σtc)

∏
c q(bc). The optimal distribution of

a latent variable Λp follows

q̂(Λp) = 〈p(y,Λ|w)〉
q(Λ\Λ

p
). (13)

14



(ii) Maximization: Given q̂(Λ) from the expectation step, the unknown pa-

rameter w is estimated by solving the following problem:

ŵ = arg max
w

F (q̂(Λ),w), (14)

where 〈f(·)〉Λ\Λ
p

represents the expectation of f(·) with respect to the distri-

bution q(Λ\Λp) where Λ\Λp represents the set Λ without Λp.240

As a result, each unknown variable in Λ = {t, s, σn,σt, b} is calculated

through approximating the true posterior p(y,Λ|w) in Eq. (13) (Expectation

step). As t and s are estimated in the Expectation step, there is no needed to

solve MAP Eq. (3). The updating rule for each parameter in w is calculated by

maximizing the lower bound F (q,w) Eq. (14) (Maximization step). Due to the245

conditional independence assumption, each wi can be estimated separately.

4.2. Optimization details

In this part, we give the optimization details for all unknown variables. In

the following, the updates from 4.2.1 to 4.2.5 belong to the expectation step,

while the update in 4.2.6 is the maximization step. To adapt for a new signal250

structure, we update the underlying graph which is the edge set E = {Ei} in

4.2.7. Here, we employ the graph update technique from [21] since it requires

low computation.

4.2.1. Update for t

Given the update parameters and variables (i.e., σ̂t, ŝ, and σ̂n), and according

to Eq.(13), we obtain the following update equation for t:

q̂(t) ∝ 〈p(y|t, s, σn)p(t|σt)〉q(Λ\t). (15)

Substituting the prior of coefficient scale t Eq. (9) and the observation

15



likelihood Eq. (2) into Eq. (15), we obtain N (ut,C−1
t ) with

ut = σ̂nC
−1
t ŜA

Ty; Ct = Σ̂t + σ̂n〈ŜATAŜ〉q(s), (16)

where Ŝ = diag(ŝ); ŝ is the update value of s from previous iteration;

〈ŜATAŜ〉q(s) = ŜATAŜ + (ATA � diag(ŝ � (1 − ŝ))); and Σ̂t = diag(σ̂t).

The calculation of means and covariance of t are similar to those of [11–14, 16],

as the support and the scale vector are decomposed from the sparse signal in

the same manner. Thus, the update for t:

t̂ = ut. (17)

4.2.2. Update for s255

Given σ̂t, σ̂n, t̂ and ŵ, and ŝ, the log posterior probability of each si is

q̂(si) ∝ 〈p(y|t, s, σn)p(s|w, b)〉q(Λ\si). (18)

The probability when si = 1 is given as

ln q̂(si = 1) ∝ −σn2 (yTy + 〈t2i 〉aTi ai − 2t̂iaTi (y −
∑
j 6=i

aj t̂j ŝj))) + wi
∑
j∈Êi

ẑj

− ln(2 cosh(wi
∑
j∈Êi

ẑj)) + 〈ln(pu(si = 1|bc))〉q(bc),

(19)

The probability when si = 0 is given as

ln q̂(si = 0) ∝ −wi
∑
j∈Êi

ẑj − ln(2 cosh(wi
∑
j∈Êi

ẑj)) + 〈ln(pu(si = 0|bc))〉q(bc),

(20)

where ẑi = 2ŝi−1, and 〈t2i 〉 ∝ t̂2i+var(t̂i). var(t̂i) is the variance of t̂i which is from

Eq. (16), i.e., var(t̂i) = diag{inv(Ct)}i,i. The update for 〈ln(pu(si = 1))〉q(bi)
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and 〈ln(pu(si = 0))〉q(bi) are in Eq. (23). The update for si is:

ŝi = q̂(si = 1)
q̂(si = 1) + q̂(si = 0) (21)

Then, update ẑi = 2ŝi − 1 and x̂ = t̂� ŝ.

4.2.3. Update for pu(si|bc)

q̂(bc) ∝〈
∏
j

∏
i∈Nj

pu(si|bj)p(bj |α, β)〉q(Λ\bj=c) ∝ Beta(α̂, β̂), (22)

which performs expectation over all unknown random variables, except every

term that involves with bc. Since Bernoulli and Beta distributions are conjugate

pair, the posterior hyperparameters in Eq. (22) are given as α̂ = α+
∑
i∈Nc

ŝi,

and β̂ = β + |Nc| −
∑
i∈Nc

ŝi. Thus, we have

ln(pu(si = 1|bc))〉q(bc) = ψ(α̂)− ψ(α̂+ β̂)

〈ln(pu(si = 0|bc))〉q(bc) = ψ(β̂)− ψ(α̂+ β̂),
(23)

where ψ(x) = (d/dx) ln Γ(x).

4.2.4. Update for σtc

The update of σtc is obtained as follows:

q(σtc) ∝ 〈
∏
j

∏
i∈Nj

p(ti|σtj)p(σtj |$, ξ)〉q(Λ\σtj=c) ∝ Gamma($̂, ξ̂). (24)

As Gaussian and Gamma distributions are conjugate pair, the posterior hyper-

parameters in Eq. (24) are given as $̂ = $+ |Nc|
2 , and ξ̂ = ξ +

∑
i∈Nc

(t̂2i +var(t̂i))
2 .

The update for σtc is therefore: ∀i ∈ Nc,

σ̂ti = σ̂tc = $̂

ξ̂
. (25)
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Then, Σ̂t = diag(σ̂t) where σ̂t = [σ̂t1, ..., σ̂tN ].260

4.2.5. Update for σn

Given t̂ and ŝ , the update for σn is obtained according to Eq. (14)

q̂(σn) ∝ 〈p(σn|$0, ξ0)p(y|t, s, σn)〉q(Λ\σn) ∝ Gamma($̂0, ξ̂0) (26)

where the hyperparameters of the posterior distribution are given as $̂0 = $0+M
2

and ξ̂0 = ξ0 +
〈‖y−A(t�s)‖2〉

q(t),q(s)
2 . Here, the expectation 〈‖ y −A(t� s) ‖2

〉q(t),q(s) = yTy − 2(t̂� ŝ)TATy + 1T [〈ssT 〉 � 〈ttt〉 � 〈ATA〉]1, where 〈ssT 〉 =

ŝŝT + diag(ŝ� (1− ŝ)) and 〈ttt〉 = t̂t̂
T + Σ̂t, and Σ̂t = diag(σ̂t). The update

for σn is therefore:

σ̂n = $̂0

ξ̂0
. (27)

4.2.6. Update for w

Give the updated ẑ, wi is estimated by solving

ŵi = arg max
wi

〈ln pp(zi|zÊi
, wi)〉q(zi)

≡ ẑiwi
∑
j∈Êi

ẑj − ln(exp(wi
∑
j∈Êi

ẑj) + exp(−wi
∑
j∈Êi

ẑj)).
(28)

Take gradient with respect to wi, and equate it to zero, the update of wi is

ŵi = 1
2
∑
j∈Êi

ẑj
ln
(

1 + ẑi
1− ẑi

)
. (29)

4.2.7. Update edge set Ê:

Inspired by [16, 21], we can update the underlying graph (i.e., edges set)

constructed based on the non-zero coefficients. Since ŝi has a continuous value, i.e.

ŝi ∈ [0, 1], the binary support vector for ŝ is obtained by performing thresholding

over ŝ. Let d represent a binary vector corresponding to ŝ. We assign binary
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Algorithm 1: Update edge set Ê
Initialization: Ê = ∅.

Input :Binary support vector d
1. Set each entries in d being nodes in a graph G
2. For every node from i = 1 to N , find the adjacent nodes of the ith
node located within its neighborhood N that are non-zero;

3. Establish edges from the ith node to these non-zero nodes, and then,
collect these edges in Êi. If adjacent nodes are all zeros, Êi is empty.

Output : Ê = {Êi}Ni=1 .

Algorithm 2: One-step-Adaptive MRF (OA-MRF)
Input :A measurement signal y, A , {Ei}initialized.
Initialization: Σt = IN×N , σn = 1, s = 1 , w = 0 and t = 0 ;
while a stopping criterion is not satisfied do

1. Update t̂ as Eq. (17) ;
2. Update ŝ by Eq. (21) ;
3. Update b̂ as Eq. (23) ;
4. Update σ̂t as Eq. (25) ;
5. Update σ̂n as Eq. (27) ;
6. Update ŵ as Eq. (29) ;
7. Update the edge set {Êi}Ni=1 ;

end
Output :Recovered x = t� s

value to d by Eq. 30 where the logic ’0’ is assigned to di, if the coefficient ŝi

has a negligible value. The logic ’1’ is assigned to di, if otherwise. The value

of si is considered as being negligible, if absolute value of si is less than a

threshold Ts. Here, we set Ts to a mean absolute value of coefficients in ŝ, i.e.

Ts = 1
N

∑N
1 abs(si), where abs(si) denotes the absolute value of si. We update

d as follows:

d̂i =


1, if abs(ŝi) > Tŝ

0, otherwise.
(30)

With the binary vector d, each of the binary coefficients is mapped to a node in

the graph G, and each edge is connected from one node to other non-zero nodes265

within a neighboring region N. The procedure is summarized in Algorithm 1.
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Solving Eq. (11) with the EM [22] is summarized in Algorithm 2. The update

rules for calculating Expectation-Maximization steps are performed iteratively

until convergence. In most cases, the convergence of the EM is guaranteed.

5. Theoretical result.270

5.1. How well the proposed MRF distribution can approximate the BM.

In this section, we provide a theoretical result to demonstrate how well the

proposed MRF distribution (Eq. (8)) can approximate the original BM (Eq. (4))

based on the KL-divergence. We can show that the KL-divergence between the

proposed MRF distribution and the BM can be bounded under a small value,275

under the assumption that the proposed MRF distribution models sparse signals.

According to [6], a sparse coefficient can be modelled with the BM Eq. (8)

under an assumption that p(si = 1)� 0. Therefore, the unary parameters bi is

negative, and the number of edges in the underlying graph of the BM Eq. (8) is

often small [7]. Let q and p denote the probability of a support with the BM

Eq. (8) and the proposed MRF distribution Eq. (4). Then, we have that

q1 =
exp(bi +

∑
j∈Ei

wjsj)
exp(bi +

∑
j∈Ei

wjsj) + 1; and q0 = 1
exp(bi +

∑
j∈Ei

wjsj) + 1 .

p1 =
exp(bi +

∑
j∈Ei

wjsj)
(exp(bi) + 1)(exp(

∑
j∈Ei

wjsj) + 1) ; and

p0 =
1 + exp(bi) + exp(

∑
j∈Ei

wjsj)
(exp(bi) + 1)(exp(

∑
j∈Ei

wjsj) + 1) .
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The KL-divergence between the proposed MRF distribution and the BM is

KL(p||q) = p1 log(p1

q1
) + p0 log(p0

q0
)

= p1 log
(

1 + exp(bi +
∑
j wjsj)

(exp(bi) + 1)(exp(
∑
j∈Ei

wjsj) + 1)

)
+

p0 log

1 + exp(bi) + exp(
∑
j∈Ei

wjsj)

 .

(31)

The first term is negative; thus, the KL-divergence is bounded by the second

term, i.e.,

KL(p||q) ≤ p0 log

1 + exp(bi) + exp(
∑
j∈Ei

wjsj)

 (32)

With the sparsity assumption, the unary parameters bi is negative, and the

number of edges in the underlying graph of the BM Eq. (4) is often small [7].

Thus, it is always that exp(−|bi|) ≤ 1. exp(
∑
j∈Ei

wjsj) can be bounded to a

small constant under the assumption that the number of edges are small. For280

example, if |Ei| = 0, then exp(
∑
j∈Ei

wjsj) = 1. Therefore, KL(p||q) can be

bounded by a small constant.

It is worth mentioning that we can draw a similar conclusion from the

experiment result in Section 6.4 where we studied the empirical KL-divergence

of the proposed MRF distribution with respect to the BM. Our experiment285

shows that the empirical KL-divergence increases with the edges and the sparsity

levels. Nevertheless, the KL-divergence of the proposed MRF Eq. (8) is much

smaller in comparison with the KL-divergence of the existing approximation

schemes [16, 20] that use the Bernoulli or the pairwise MRF model alone.
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5.2. Computational complexity290

All the update steps in Algorithm 2 are in closed-form solutions. Most of

which requires matrix-vector productions. The matrix inversion in Eq. (16)

with the computational cost of O(N3) dominates other costs. This cost can be

reduced to O(M3) where M � N by applying matrix a inverse property. Thus,

Eq. (16) can be rewritten as

C−1
t = P−1 − P−1Ŝ

T
AT (σ−1

n I +AŜP−1Ŝ
T
AT )−1ASP−1, (33)

where P = Σt + σn

(
diag(ŝ� (1− ŝ))� (ATA)

)
is a diagonal matrix whose

inverse can be easily computed. The matrix inversion complexity is reduced

to O(M3). Our complexity is much less than Two-steps-Adaptive MRF [21],

i.e., O(c12M3 + c2|G|+ c3C(G)) that includes sparse recovery c12M3, support

estimation c2|G|, and MRF parameter estimation c3C(G)) with using [23], where295

|G| denotes the size of a graph G. c1 and c2, and c3 are the maximum iteration

numbers for executing the three subroutines.

6. Experimental Result

The performance of our One-step-Adaptive MRF is studied through three

different experiments to evaluate: (i) the effectiveness of our MRF distribution in300

Section 6.4; (ii) the effectiveness of MRF parameter estimation in Section 6.5; and

(iii) the performance evaluation with state-of-the-art algorithms in Section 6.6.

The details for datasets, settings, and comparison methods are as follows.

6.1. Datasets

The performance of our One-step-Adaptive MRF is evaluated on three305

benchmark datasets: (i) MNIST [25], a handwritten image dataset; (ii) CMU-

IDB [26], a face image dataset; and (iii) CIFAR-10 [27], a natural image dataset.
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Figure 3: MINST. The ground truth handwritten digit images.
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Figure 4: CMU-IDB. (a) The ground truth natural images; (b) examples of wavelet (c) DCT,
and (d) PCA signal; and (e) the decay of signal coefficients in wavelet, DCT, and PCA domain.
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Figure 5: CIFAR-10. (a) The ground truth natural images; (b) examples of wavelet (c) DCT,
and (d) PCA signal; and (e) the decay of signal coefficients in wavelet, DCT, and PCA domain.

The images selected from each dataset are shown in Figure 3, 4a, 5a. The

MNIST images are strictly sparse; thus, the compression is applied onto the

images directly. The sparse representations of CMU-IDB and CIFAR-10 images310

are obtained by using wavelet transform, discrete cosine transform (DCT), and

principal component analysis (PCA). The examples of these representations are

in Figure 4b, 4c, 4d and Figure 5b, 5c, 5d, for CMU-IDB and CIFAR-10. Notice

that CIFAR-10 images are not sparse in PCA domain. Meanwhile we report

the signal recovery performance evaluated based on these image signals, our315

discussion will focus only on MNIST images, CMU-IDB images in PCA domain,

and CIFAR-10 images in wavelet domain, whose the representations are sparse

(see Figure 4e, 5e); thus, they can better reflect the signal recovery performance.

6.2. Settings

Experiment setting: In compression, the sparse signal x is sampled by a ran-320

dom Bernoulli matrix A to generate the linear measurements y. The sampling

rate (M/N) are set to 0.2-0.4 to test the performance across different measure-

ment sizes. To simulate the noise corruption in y, three levels of Gaussian white

noise are added into y, which results in the signal to noise ratio (SNR) of y to
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be 30dB, 20dB, 10dB. The lowest SNR (10dB) indicates highest noise corruption.325

Evaluation criterion: The performance is evaluated based on the recovery

accuracy, which is measured by peak signal to noise ratio (PSNR) and structural

similarity index (SSIM), and the runtime performance which is the total runtime.

Algorithm setting: One-step-Adaptive MRF is initialized as follows: The330

hyperparameters $ and ξ in Eq. (24) and $0 and ξ0 in Eq. (26) are set to 10−6.

The initial value for α and β in Eq. (22) is set according to [16]. Notice that all

the images from these datasets are gray-scale images. The compression process

is applied on these images directly. To efficiently perform image processing on

these images, we normalize the pixel value to a value between zero and one. The335

proposed method can be applied to reconstruct 2D and 1D-vectorized image

signal. In our experiment, we reconstruct 1D-vectorized image. Regardless of

whether the reconstructed image signal is 1D or 2D, spatial correlation can

always be captured by configuring the edge set E = {Ei}. To capture spatial

correlation in 2D signals, i.e., handwritten and wavelet images, Nc and N are set340

to cover 8-neighbors of each node. For 1D signals, i.e., PCA and DCT signals,

Nc and N are set to cover two adjacent nodes. At the first iteration, the edge set

E = {Ei} is initialized as an empty set. The algorithm stops when the minimum

update difference, i.e. ||x
prev−xnew||2
||xprev||2 , is less than 10−3, or when the iteration

reaches 200.345

6.3. Comparison methods

Our method is compared with 7 state-of-the-art competitors: (i) Adaptive-

MRF based methods: Two-step-Adaptive MRF (TA-MRF) [21] and Pairwise

MRF[20]1 ; (ii) MRF-based methods (Non-Adaptive): MAP-OMP [7] and
1For TA-MRF, Pairwise MRF,and Bernoulli model, we use the same setting for neighboring

set Nc, as described in Algorithm setting in Section 6.2
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Gibbs [4] 2; (iii) Cluster sparsity-based methods: Bernoulli model [16]350

1 ; (iv) Sparsity-based methods: RLPHCS[28] and OMP[29]. All of the

comparison methods, except Pairwise MRF [20], are implemented by the code of

the authors with tuned parameters to the best performance. The Pairwise MRF

is coded by ourselves and uses the same setting for N and terminating criterion

to our work.355

To show the best possible result using ground truth support, we use the

oracle estimator in [7] that uses the ground truth support to estimate the

signal via Eq. (17) with homogeneous noise and signal parameters. All the other

methods do not have the access to the ground truth support.

6.4. Effectiveness of our MRF distribution360

In the following paragraphs, we (i) study the effectiveness of our MRF distri-

bution in approximating the BM Eq. (4) and (ii) evaluate the difference/similarity

between our MRF distribution Eq. (8) and the BM Eq. (4) based on real data.

6.4.1. Effectiveness of our MRF distribution in approximating the BM

This section demonstrates the effectiveness of our MRF distribution Eq. (8)365

in approximating the Boltzmann machine (BM) Eq. (4) by measuring the KL-

divergence between them. The effectiveness is evaluated based on modelling

sparse signals with different levels of sparsity and sparse coefficients dependency .

The proposed distribution is compared with some of the existing approximation

schemes: the Bernoulli model [16] Eq. (6) and the Pairwise MRF [20] Eq. (7).370

Our evaluation is based on one thousand synthesized sparse signals that are

generated from a handcrafted BM distribution in order to control the level of

sparsity and sparse coefficients dependency in sparse signals. One thousand BM

distributions are synthesized and used in our experiments.
2The graphical model, noise and signal variance parameters provided to MAP-OMP and

Gibbs is from training data.
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Averaged KL-divergence wrt. the BM Eq. (4)
Sparsity (k) Our dist. Eq. (8) Bernoulli [16] Eq. (6) Pairwise [20] Eq. (7)

10 0.0020 0.0281 3.0179
20 0.0025 0.0617 2.1777
30 0.0026 0.1103 1.4552

(a) Approximating the BM Eq. (4) across different sparsity levels.

Num. Averaged KL-divergence wrt. the BM Eq. (4)
of edges (|E|) Our dist. Eq. (8) Bernoulli [16] Eq. (6) Pairwise [20] Eq. (7)

2†N? 0.0036 0.0671 0.7409
10†N? 0.0125 0.0781 0.5337
20†N? 0.0743 0.1219 0.1039

†2, 10, and 20 are the number of pairwise edges connecting to each node.
?N is the signal dimension

(b) Approximating the BM Eq. (4) across different number of edges.

Table 1: Effectiveness of our MRF distribution Eq. (8) in approximating the BM Eq. (4) vs.
existing approximation schemes: the Bernoulli model [16] Eq. (6), and the pairwise MRF [20]
Eq. (7) across (a) different sparsity levels and (b) number of edges.

Ground truth BM. To generate sparse signals with sparsity levels (k) of375

10, 20, and 30, we configure the unary parameters of the BMs (Eq. (4)). The

unary parameters are selected from three N (µb, 1) with µb = −2.5,−2,−1.5

corresponding to three sparsity levels. The pairwise parameters are selected from

N (−0.1, 1). The number of edges are fixed to 200. To synthesize sparse signals

with different levels of dependency, we vary the number of pairwise edges (|E|)380

of the ground truth BMs, i.e. |E| = 2N , 10N , and 20N where N = 200. The

unary and pairwise parameters are randomly selected from N (·, 1) with mean

of -1 and -0.3. We measure the empirical KL-divergence based on the sparse

signals modelled by the proposed MRF and those ground truth sparse signals.

One thousand ground truth sparse signals are generated from each BM. The385

KL-divergence is then averaged over one thousand BMs.

Experimental Results. Table 1a and Table 1b demonstrate the approxi-

mation to the BM with (i) different sparsity levels (k) and (ii) number of edges

(|E|). In Table 1a, the KL-divergence of our MRF distribution is less than
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(a) FP rate acorss sparsity levels (b) FP rate acorss number of edges

Figure 6: False positive rates (FPR) comparison: (a) FPR across different sparsity (k), i.e. k =
10, 20, 30, 40, and (b) FPR across different number of edges (|E|), i.e. |E| = 2N , 10N , 20N .

one order and three order of magnitude in comparison with Bernoulli model390

and Pairwise MRF. In Table 1b, the KL-divergence of our MRF distribution is

smaller than the others. When |E| < 20N , the KL-divergence of the proposed

MRF which is 0.0125 is at most 17% of the Bernoulli model that is 0.0781. The

KL-divergence of the proposed MRF is at most 3% of the Pairwise MRF’s, which

is 0.5337. When |E| = 20N , our KL-divergence is approximately 60% and 70%395

of Bernoulli model and Pairwise MRF. With both unary and pairwise parts,

our MRF distribution (Eq. (8)) can best approximates the BM (Eq. (4)) across

different configurations with the smallest KL divergence.

It is noticeable that the KL-divergence of the proposed MRF distribution

increases with the sparsity levels and number of edges which agrees with our400

theoretical result in Section 5.1. The KL-divergence of the Bernoulli model

follows a similar pattern to the proposed MRF; however, this is not the case

for Pairwise MRF whose KL-divergence increases when the sparsity levels and

number of edges decrease. To further investigate, Figure 6a and 6b compare the

false positive rates of each model in associated with Table 1a and 1b.405

Figure 6a provides the false positive rate of each model across different
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sparsity levels. The false positive rate of the proposed MRF and Bernoulli

increase with the sparsity levels. However, the false positive rate of Pairwise

MRF increases as the sparsity level decreases. This is due to that Pairwise MRF

does not have a unary part to control the sparsity of the modeled sparse signal.410

Figure 6b shows the false-positive rate across different number of pairwise edges.

Although Pairwise MRF has the pairwise part to control the dependency level

according to the number of edges, it does not have a unary term to model the

sparsity of signals when number of edges is low. Because the proposed MRF

distribution contains both unary and pairwise parts, its false positive rate is415

much lower than the Bernoulli model and Pairwise MRF.

6.4.2. Differences analysis of our proposed MRF to the BM

In this experiment, we evaluate (i) the differences/similarity of unary and

pairwise parts of the proposed MRF distribution (Eq. (8)) and those of the BM (

Eq. (4)) on 10 MNIST images and (ii) the quality of the supports estimated from420

each probabilistic model. Structural similarity (SSIM) index is used to measure

the differences. Thus, in the former case (i), the SSIM calculated with respect

to the learned pairwise and unary of the BM; whereas in the latter case (ii), the

SSIM is calculated with respect to the ground truth images. Figure 7 and 8

compares pairwise and unary potentials of the proposed MRF and the BM. The425

SSIM between the learned pairwise of the proposed MRF and those of the BM

are higher than 0.94, and the SSIM between the learned unary potentials of the

proposed MRF and those of the BM are higher than 0.98. Figure 9 compares the

quality of the estimated supports from the proposed MRF and the BM. It is clear

that the supports estimated from the proposed MRF are similar to those of the430

BM. These estimated supports accurately represent the ground truth supports

with the SSIM value equal to 1. Thus, the results from Figure 7, 8, and 9

suggest that the proposed MRF Eq. (8) functions similarly to the BM Eq. (4).
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SSIM: 0.9485 0.9772 0.9484 0.9697 0.9438 0.9554 0.9491 0.9683 0.9577 0.9630

Proposed
Eq.(5)

Original
Eq.(4)

Difference
map
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Figure 7: Sum of the pairwise potentials at each image pixel. Compairson between the learned
pairwise potentials of the proposed MRF Eq. (8) and those of the BM Eq. (4), and the
difference map between them. SSIM is calcualted with respected to learned pairwise potentials
of the BM Eq. (4).

SSIM: 0.9964 0.9856 0.9959 0.9906 0.9862 0.9928 0.9852 0.9902 0.9955 0.9905

Proposed
Eq.(5)

Original
Eq.(4)

Difference
map

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 8: Unary potentials at each image pixel. Compairson between the learned unary
potentials of the proposed MRF Eq. (8) and those of the BM Eq. (4), and the difference map
between them. SSIM is calcualted with respected to learned unary potentials of the BM Eq. (4)
.

Ground
truth

SSIM: 1 1 1 1 1 1 1 1 1 1

Proposed
Eq.(5)

SSIM: 1 1 1 1 1 1 1 1 1 1

Original
Eq.(4)

Figure 9: Estimated support. Compairson between those estimated support using the proposed
MRF Eq.(5) and the original BM Eq.(4). (SSIM is calcualted with respected to the ground
truth images.)
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(a) Parameter estimation (b) Support estimation (c) Sparse Signal Recovery (d) Speed

Figure 10: Compressibility. Comparison between our One-step-Adaptive MRF and Two-steps-
Adaptive MRF [21] in (a) quality of MRF parameter estimation, (b) accuracy of support
estimation, (c) accuracy of sparse signal recovery, and (d) average runtime across different
sampling rates. Noise level (SNR) is 30 dB.

(a) Parameter estimation (b) Support estimation (c) Sparse Signal Recovery (d) Speed

Figure 11: Noise tolerance. Comparison between our One-step-Adaptive MRF and Two-steps-
Adaptive MRF [21] in (a) quality of MRF parameter estimation, (b) accuracy of support
estimation, (c) accuracy of sparse signal recovery, and (d) average runtime across different
noise levels. Sampling rate is 0.3.

6.5. Effectiveness of MRF parameters estimation: One-step vs Two-step

We compare the effectiveness of our One-step-Adaptive MRF versus Two-step-435

Adaptive MRF [21] in estimating MRF parameters for 10,000 signals sampled

from 10 distribution. The evaluation is based on the parameter estimation

measured by KL-divergence and the final performance by F1-score, recovery

accuracy, and runtime. Figure 10 and 11 show the results across different sampling

rates (M/N) and noise levels (in SNR). In Figure 10, the KL divergence of our440

One-step-Adaptive MRF is at most 25% of the Two-steps-Adaptive MRF. Our

method also yields higher F1-score3 by at least 5%, higher accuracy by at least 2

dB, and less runtime as all the update equations are in closed form. In Figure 11,
3For our algorithm, F1-score is calculated from the binary support obtained from Eq. (30).
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the KL divergence of our method is at most 30% of Two-steps-Adaptive MRF.

Our method yields higher F1-score 3 and accuracy, by at least 5% and 3 dB,445

with less runtime. With the improved MRF estimation, our method is more

efficient.

6.6. Performance Evaluation

This section provides the performance of our One-step-Adaptive in comparison

with the state-of-the-art algorithms on MNIST, CMU-IDB, and CIFAR-10.450

Compressibility. Figure 12 and 13 shows the average PNSR and SSIM

curves across different sampling rates (M/N). The noise level is 30 dB. In

Figure 12, the proposed One-step-Adaptive MRF offers the highest performance

in most cases. The proposed One-step-Adaptive MRF exceeds the second best

method by at least 2 dB on MNIST, when M/N > 0.25. For CMU-IDB, it455

exceeds the second best method by at least 1 dB, 0.5 dB, and 2 dB in wavelet,

PCA, and DCT domains. For CIFAR-10, it exceeds the second best method

by at least 0.25 dB and 2 dB in wavelet and DCT domains. In Figure 13, our

One-step-Adaptive MRF offers the highest SSIM to the ground truth images

across different datasets. On MNIST images and PCA signals of CMU-IDB,460

our One-step-Adaptive MRF performs well across different sampling rates. On

CMU-IDB, it exceeds the second best method by at least 0.1 and 0.5 in DCT and

wavelet domains. For CIFAR-10, it exceeds the second best method by at least

0.25 and 0.2 in wavelet and DCT domains. To further examine visual results,

Figure 16a, 17a, 18a, and Figure 16b, 17b , 18b provide the images reconstructed465

from top five algorithms when M/N = 0.3 and 0.2. Our One-step-Adaptive

MRF (OA-MRF) offers the best visual results that contains more details and

less noise in most cases. We provide all the reconstructed images from each

dataset in .3.

Noise tolerance. Figure 14 provides the average PNSR curves across470
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different noise levels (in SNR). M/N = 0.3. Our method achieves the superior

noise tolerance over the other methods across different datasets: On MNIST

images, our One-step-Adaptive MRF outperforms the second best method by at

least 2 dB, when SNR > 5 dB. For CMU-IDB, it exceeds the second best method

by at least 2 dB, 1 dB, and 1 dB in wavelet, PCA, and DCT domains. For475

CIFAR-10, it exceeds the second best method by at least 1 dB and 2 dB in wavelet

and DCT domains. Note that for the recovery of MNIST images and CIFAR-10

images in DCT domain, our One-step-Adaptive MRF even outperforms the oracle

estimator. This is because our One-step-Adaptive MRF enables heterogeneous

noise parameters obtained from the adaptive noise estimation. Meanwhile, the480

oracle estimator uses the homogeneous noise parameters obtained from the

training data. This indicates that the adaptive mechanism provides a good prior

to separate signal information from noise.

Runtime. Figure 15 provides average runtime curves across different sam-

pling rate (M/N). The noise level is 30 dB. Our method requires a moderate485

runtime in most cases. On MINST, the average runtime of our One-step-Adaptive

MRF is moderate compared with the others. It is faster than Two-step-Adaptive

MRF, MAP-OMP, and Pairwise-MRF; it is comparable to RLPHCS, but is

slower than Bernoulli and OMP. For CMU-IDB and CIFAR-10, the runtime per-

formance of our One-step-Adaptive MRF is much better than many structured490

CS methods. The runtime performance is similar across the wavelet, DCT, and

PCA domains: our One-step-Adaptive MRF is faster than Two-step-Adaptive

MRF, MAP-OMP, Bernoulli, and Pairwise MRF. Its runtime is comparable with

RLPHCS and only slower than OMP. Note that OMP and RLPHCS require
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Figure 12: Compressibility. The PSNR curves across different sampling rates on three datasets.
Noise level (SNR) is 30 dB.

Figure 13: Compressibility. The SSIM indices across different sampling rates on three datasets.
Noise level (SNR) is 30 dB.

33



Figure 14: Noise tolerance. The PSNR curves across different noise levels (SNR) on three
datasets. Sampling rate is 0.3.

Figure 15: Runtime performance. Total runtime curves across different sampling rates on
three datasets. Noise level (SNR) is 30 dB.

34



OMP Bernoulli Pairwise-MRF MAP-OMP TA-MRF OA-MRF(ours) Ground Truth
37.65 dB 40.18 dB 43.40 dB 44.31 dB 46.50 dB 47.09 dB

(a) MNIST: Sampling rate of 0.3.
OMP Bernoulli Pairwise-MRF MAP-OMP TA-MRF OA-MRF Ground Truth

13.17 dB 17.39 dB 16.47 dB 30.64 dB 16.27 dB 46.19 dB

(b) MNIST: Sampling rate of 0.2.

Figure 16: MNIST: Visual results of selected handwritten images by top 6 algorithms when
noise level (SNR) is 30dB at the sampling rate of (a) 0.3 and (b) 0.2.

OMP Bernoulli Pairwise-MRF MAP-OMP TA-MRF OA-MRF Ground Truth
32.32 dB 28.25 dB 26.47 dB 31.42 dB 34.33 dB 34.82 dB

(a) CMU-IDB: Sampling rate of 0.3.
OMP Bernoulli Pairwise-MRF MAP-OMP TA-MRF OA-MRF Ground Truth

29.80 dB 28.07 dB 18.60 dB 29.24 dB 31.12 dB 31.27 dB

(b) CMU-IDB: Sampling rate of 0.2.

Figure 17: CMU-IDB: Visual results of selected face images recovered in PCA domain by top
6 algorithms when noise level (SNR) is 30dB at the sampling rate of (a) 0.3 and (b) 0.2.

OMP Bernoulli Pairwise-MRF MAP-OMP TA-MRF OA-MRF Ground Truth
20.50 dB 16.55 dB 12.48 dB 16.31 dB 23.15 dB 23.52 dB

(a) CIFAR-10: Sampling rate of 0.3.
OMP Bernoulli Pairwise-MRF MAP-OMP TA-MRF OA-MRF Ground Truth

18.34 dB 15.21 dB 10.10 dB 12.25 dB 15.60 dB 19.36 dB

(b) CIFAR-10: Sampling rate of 0.2.

Figure 18: CIFAR-10: Visual results of selected natural images recovered in wavelet domain by
top 6 algorithms when noise level (SNR) is 30dB at the sampling rate of (a) 0.3 and (b) 0.2.
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low computation in general because they do not exploit the structure in sparse495

signal coefficients.

7. Conclusion

We have presented a novel one-step Markov random field (MRF) based

structured CS to estimate the parameters of an MRF from a few measurements.

A recent method estimates the MRF parameters based on a point estimation of500

the sparse signals, but cannot depict the statistical uncertainty of the latent sparse

signals. Therefore, we propose to estimate the MRF parameters from solving

a maximum marginal likelihood (MML) problem to offer better generalization

over the latent sparse signals. A new MRF distribution is proposed to enable

closed-form formulations for all the unknowns in the MML problem. Extensive505

experiment demonstrates the state-of-the-arts results of the proposed method.
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Appendices

.1. Connection between Bernoulli distribution and the BM Eq. (4)

The Bernoulli model can well substitute the unary potentials si in the BM

Eq. (4). Without the pairwise part, the BM distribution becomes a Bernoulli

distribution as follows [6]

p(s) =
∏
c

∏
i∈Nc

1
Zi

exp(siδci )

=
∏
c

∏
i∈Nc

Bernoulli(si)
(34)

36



where Zi =
∑
j∈{0,1} exp(sjδci ) = exp(δci ) + 1 and

Bernoulli(si) =


exp(δc

i )
1+exp(δc

i
) , if si = 1

1
1+exp(δc

i
) , otherwise

(35)

The proposed MRF contains both the unary and pairwise parts which are similar

to those of the BM Eq. (4). The only difference between the proposed MRF

Eq. (8) and the BM Eq. (4) is the denominator. In the next section, we will show515

how well the proposed MRF Eq. (4) can approximate the BM Eq. (4) based on

the KL-divergence between them.

.2. Performance comparison with clustered sparsity-based approaches

In the following, we provide additional performance comparison with clustered

sparsity-based approaches, i.e. pattern-coupled sparse Bayesian learning (PC-520

SBL) and Block-sparse Bayesian learning (B-SBL), on three datasets used in

Section 6.6.

To evaluate the success rate, we define a successful trial as the one where

its relative mean squared-error is in the lowest 25 percentiles. Here, we use

the 25 percentiles of MSE because the different quality of reconstructed images525

from different datasets. The mean squared-error is also used to evaluate the

performance across different sampling rates and noise levels. Here, we did not

compare the performance with approximate message passing for block sparse

signal (AMP-B-SBL) because of the difficulty in implementation: more than six

parameters are needed to be specifically tuned for each image.530

Figure 19 and 20 provide the curves of the success rate and the relative mean

squared-error (in percentage) across different sampling rates (M/N), when the

noise level is low. It is noticeable that our One-step-Adaptive MRF can work

well across different datasets. Because our One-step-Adaptive MRF employs
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BSBL-EM PCSBL One-step-Adaptive-MRF (Proposed)

Figure 19: Low noise cases. The %MSE curves across different sampling rates on three
datasets.

Figure 20: Low noise cases. The success rates curves across different sampling rates on three
datasets.

the flexible MRF that can adapt for different types of signals, it achieves the535

highest success rate and the lowestMSE in most cases. Meanwhile, PC-SBL and

BSBL-EM employ clustered sparsity models. They achieve a good performance

on MNIST images whose sparse coefficients group in clusters. However, because

the clustered sparsity models are fixed and cannot adapt for different sparse

signals, the performance of PC-SBL and BSBL-EM are limited, and thus, the540

resulting MSE are mostly higher than 25 percentile. As a result, they can

achieve lower success rate compared to One-step-Adaptive MRF.

Figure 21 provide the curves of the MSE across different noise levels. Notice

that the higher SNR signifies the less noise corruption. Our One-step-Adaptive

MRF offers the highest noise tolerance in most cases. This is due to the high545

flexible and adaptive MRF that can better represent the signals against noise.

This experiment has demonstrated that the proposed method can work well

38



Figure 21: Noisy cases. The %MSE curves across different noise levels in SNR on three
datasets. Sampling rate is 0.3.

across different types of sparse signals, it not the main objective. This conclusion

complies with our performance comparison with various methods including the

clustered sparsity models-based approaches in Section 6.550

.3. Full image reconstruction results

This section provided all the reconstructed images from MNIST, CMU-IDB,

and CIFAR-10 datasets.

MNIST. The reconstruction of the MINST’s handwritten images are pro-

vided in Figure 22 and 23 when the sampling rate is 0.3 and 0.2, respectively. It555

is clear that the proposed One-step-Adaptive MRF achieves the best reconstruc-

tion results across different MNIST handwritten digit samples in most cases.

It provides the highest PSNR improvement over the second most competitive

method by 5.60 dB on digit no. 5 in Figure 22, and by 15.55 dB on digit no. 7

in Figure 23. This visual results are consistent with the numerical results of the560

PSNR in the Figure 12.

CMU-IDB. The reconstruction of CMU-IDB images in PCA, wavelet, and

DCT domains are provided in Figure 24, 26, 28, and Figure 25, 27, 29 when

the sampling rate is 0.3 and 0.2, respectively. The proposed One-step-Adaptive

MRF can provide the best results on sparse signal recovery in most cases. On565

recovering CMU-IDB images in PCA domain, the proposed One-step-Adaptive

MRF yields the highest PSNR improvement over the second most competitive
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method by 2.4 dB in the 7th row from the top of Figure 24, and by 2.24 in the

3rd row of Figure 25 at the sampling rate of 0.3 and 0.2. In wavelet domain, the

proposed method yields the highest PSNR improvement over the second most570

competitive method by 2.54 dB in the 2nd row from the top of Figure 26, and

by 2.46 dB in the 10th row from the top of Figure 27 at the sampling rate of

0.3 and 0.2. In DCT domain, the proposed method yields the highest PSNR

improvement over the second most competitive method by 2.02 dB in the 8th

row from the top of Figure 28, and by 1.32 dB in the 5th row from the top of575

Figure 29 at the sampling rate of 0.3 and 0.2. This visual results are consistent

with the numerical results of the PSNR in the Figure 12.

CIFAR-10. The reconstruction of CIFAR-10 natural images in wavelet and

DCT domains are provided in Figure 30, 32 and Figure 31, 33, when the sampling

rate is 0.3 and 0.2, respectively. The proposed One-step-Adaptive MRF can580

provide the highest reconstruction quality across different sparse representation

in most cases. On recovering CIFAR-10 images in wavelet domain, the proposed

One-step-Adaptive MRF yields the highest PSNR improvement over the second

most competitive method by 1.16 dB in the 10th row from the top of Figure

30, and by 2.86 dB over the second best method in the 6th row from the top of585

Figure 31, at the sampling rate of 0.3 and 0.2, respectively. In DCT domain, the

proposed method provides the highest PSNR improvement over the second most

competitive method by 2.50 dB in the 3rd row from the top of Figure 32, and by

2.69 dB in the 2nd row from the top of Figure 33 at the sampling rate of 0.3 and

0.2, respectively. This visual results are consistent with the numerical results of590

the PSNR in the Figure 12.

In conclusion, these visual results (Figure 22- Figure 34) indicate that our

One-step-Adaptive MRF offers the best results among all the methods in the

most cases, both visually and numerically.
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

12.49 dB 18.40 dB 30.26 dB 40.36 dB 20.50 dB 41.69 dB 42.22 dB 44.25 dB

40.57 dB 47.75 dB 46.79 dB 46.00 dB 19.62 dB 46.24 dB 53.29 dB 54.76 dB

36.52 dB 29.57 dB 39.37 dB 42.76 dB 17.78 dB 24.93 dB 44.36 dB 46.12 dB

37.16 dB 40.06 dB 39.18 dB 44.63 dB 18.16 dB 44.66 dB 46.45 dB 48.50 dB

12.99 dB 16.14 dB 27.62 dB 31.51 dB 17.85 dB 42.42 dB 43.55 dB 45.17 dB

37.48 dB 43.82 dB 44.14 dB 42.48 dB 18.17 dB 25.96 dB 43.30 dB 49.74 dB

34.00 dB 22.87 dB 23.59 dB 42.30 dB 20.68 dB 43.35 dB 45.56 dB 45.38 dB

37.65 dB 41.30 dB 40.18 dB 43.40 dB 19.01 dB 44.31 dB 46.50 dB 47.09 dB

12.24 dB 19.83 dB 22.85 dB 35.85 dB 18.00 dB 40.48 dB 40.12 dB 42.91 dB

31.97 dB 27.78 dB 31.13 dB 34.91 dB 17.99 dB 40.81 dB 42.68 dB 44.86 dB

Figure 22: Visual results of MNIST handwritten digit images (at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

11.89 dB 14.88 dB 15.10 dB 13.72 dB 17.01 dB 14.49 dB 15.34 dB 18.09 dB

37.90 dB 26.06 dB 25.01 dB 24.15 dB 18.97 dB 47.68 dB 50.10 dB 52.78 dB

12.03 dB 16.20 dB 18.89 dB 15.25 dB 16.85 dB 15.68 dB 16.07 dB 14.79 dB

12.49 dB 17.96 dB 25.29 dB 18.05 dB 17.18 dB 22.21 dB 43.66 dB 41.04 dB

10.66 dB 14.98 dB 16.24 dB 14.74 dB 16.63 dB 14.26 dB 15.88 dB 17.53 dB

14.05 dB 16.55 dB 17.35 dB 16.54 dB 17.41 dB 23.57 dB 17.45 dB 15.42 dB

12.59 dB 16.35 dB 15.86 dB 14.87 dB 17.34 dB 13.94 dB 17.04 dB 15.62 dB

13.17 dB 16.28 dB 17.39 dB 16.47 dB 17.51 dB 30.64 dB 16.27 dB 46.19 dB

9.53 dB 13.05 dB 16.60 dB 12.82 dB 15.26 dB 12.66 dB 12.80 dB 13.47 dB

10.93 dB 12.69 dB 13.95 dB 12.09 dB 16.11 dB 12.99 dB 12.39 dB 11.92 dB

Figure 23: Visual results of MNIST handwritten digit images (at M/N = 0.2, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

30.08 dB 30.85 dB 31.95 dB 20.55 dB 23.94 dB 28.94 dB 31.39 dB 32.46 dB

32.32 dB 32.86 dB 28.25 dB 26.47 dB 26.40 dB 31.42 dB 34.33 dB 34.82 dB

30.80 dB 32.25 dB 31.33 dB 24.03 dB 24.77 dB 29.56 dB 32.90 dB 33.26 dB

30.37 dB 32.11 dB 27.65 dB 21.92 dB 25.23 dB 29.67 dB 32.91 dB 33.44 dB

28.96 dB 30.63 dB 30.51, dB 20.11 dB 23.35 dB 28.22 dB 31.62 dB 32.20 dB

29.99 dB 31.49 dB 28.84 dB 20.69 dB 23.24 dB 28.98 dB 32.27 dB 31.87 dB

29.65 dB 31.47 dB 30.33 dB 22.61 dB 26.25 dB 28.45 dB 31.58 dB 33.98 dB

28.19 dB 30.01 dB 25.79 dB 20.52 dB 23.39 dB 28.58 dB 31.48 dB 33.18 dB

28.60 dB 30.12 dB 28.69 dB 20.80 dB 22.62 dB 28.56 dB 31.91 dB 33.52 dB

31.68 dB 32.10 dB 29.14 dB 23.89 dB 24.13 dB 29.83 dB 33.07 dB 34.15 dB

Figure 24: Visual results of CMU-IDB face images from PCA sparse signal reconstruction (at
M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

29.33 dB 26.68 dB 26.81 dB 13.22 dB 21.19 dB 26.33 dB 30.25 dB 30.08 dB

29.80 dB 30.46 dB 28.07 dB 18.60 dB 23.60 dB 29.24 dB 31.12 dB 31.27 dB

27.92 dB 28.47 dB 25.15 dB 17.06 dB 21.83 dB 26.59 dB 28.72 dB 30.96 dB

27.60 dB 27.95 dB 26.61 dB 16.08 dB 22.27 dB 26.89 dB 30.59 dB 30.91 dB

27.86 dB 27.12 dB 22.60 dB 16.79 dB 20.79 dB 26.59 dB 29.99 dB 29.41 dB

28.08 dB 27.18 dB 20.58 dB 16.10dB 20.54 dB 26.46 dB 29.24 dB 30.06 dB

27.12 dB 27.63 dB 22.84 dB 18.81 dB 22.69 dB 25.32 dB 28.93 dB 31.05 dB

26.37 dB 26.58 dB 26.17 dB 13.29 dB 20.57 dB 24.931 dB 27.38 dB 27.22 dB

27.50 dB 26.59 dB 23.79 dB 16.91 dB 19.94 dB 24.91 dB 28.30 dB 28.22 dB

29.02 dB 29.53 dB 27.60 dB 19.07 dB 21.26 dB 28.44 dB 32.00 dB 33.69 dB

Figure 25: Visual results of CMU-IDB face images from PCA sparse signal reconstruction (at
M/N = 0.2, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

17.83 dB 17.49 dB 16.96 dB 14.91 dB 5.78 dB 17.61 dB 19.42 dB 19.81 dB

19.83 dB 20.95 dB 20.03 dB 19.13 dB 7.81 dB 19.06 dB 21.34 dB 23.88 dB

15.08 dB 16.97 dB 14.56 dB 14.97 dB 6.69 dB 16.08 dB 17.18 dB 19.387 dB

15.94 dB 15.65 dB 17.41 dB 14.10 dB 5.88 dB 16.66 dB 17.30 dB 19.01 dB

16.61 dB 17.82 dB 18.25 dB 16.12 dB 6.19 dB 16.68 dB 18.97 dB 20.37 dB

16.74 dB 16.52 dB 14.76 dB 15.85 dB 6.03 dB 17.49 dB 18.15 dB 18.70 dB

16.91 dB 17.28 dB 19.50 dB 15.50 dB 4.94 dB 17.8 dB 18.91 dB 19.16 dB

14.04 dB 16.06 dB 13.76 dB 13.81 dB 4.74 dB 14.48 dB 15.41 dB 17.53 dB

16.91 dB 16.59 dB 16.02 dB 15.77 dB 5.36 dB 17.45 dB 18.44 dB 19.75 dB

17.30 dB 17.60 dB 15.11 dB 15.63 dB 6.80 dB 17.30 dB 18.98 dB 20.38 dB

Figure 26: Visual results of CMU-IDB face images from wavelet sparse signal reconstruction
(at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

16.23 dB 16.67 dB 17.22 dB 12.79 dB 5.26 dB 16.17 dB 16.21 dB 18.47 dB

19.18 dB 20.25 dB 18.95 dB 17.48 dB 7.45 dB 18.61 dB 19.68 dB 22.47 dB

14.81 dB 15.98 dB 14.21 dB 12.38 dB 6.65 dB 13.75 dB 15.65 dB 16.80 dB

12.96 dB 14.71 dB 12.21 dB 11.60 dB 5.99 dB 13.66 dB 15.33 dB 15.76 dB

14.97 dB 15.82 dB 16.38 dB 12.84 dB 6.25 dB 14.61 dB 15.99 dB 18.48 dB

14.82 dB 15.47 dB 12.38 dB 10.93 dB 5.76 dB 15.42 dB 16.20 dB 17.72 dB

16.41 dB 16.23 dB 14.90 dB 12.95 dB 4.78 dB 16.14 dB 15.79 dB 18.11 dB

12.70 dB 14.07 dB 11.69 dB 11.29 dB 4.55 dB 13.18 dB 13.55 dB 14.65 dB

12.91 dB 14.59 dB 11.43 dB 11.71 dB 5.34 dB 14.46 dB 15.99 dB 17.24 dB

15.71 dB 17.30 dB 16.02 dB 13.98 dB 6.54 dB 16.68 dB 17.29 dB 19.76 dB

Figure 27: Visual results of CMU-IDB face images from wavelet sparse signal reconstruction
(at M/N = 0.2, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

19.65 dB 20.86 dB 17.46 dB 17.86 dB 11.95 dB 21.05 dB 21.14 dB 22.42 dB

23.85 dB 24.40 dB 20.32 dB 21.08 dB 16.99 dB 24.97 dB 24.74 dB 25.42 dB

18.50 dB 20.31 dB 18.95 dB 18.55 dB 12.59 dB 20.25 dB 20.29 dB 22.15 dB

18.34 dB 18.85 dB 18.62 dB 16.29 dB 11.65 dB 21.10 dB 20.86 dB 21.99 dB

19.05 dB 19.22 dB 16.79 dB 17.22 dB 12.74 dB 19.89 dB 19.52 dB 21.16 dB

16.96 dB 18.41 dB 16.40 dB 16.42 dB 13.04 dB 18.64 dB 19.00 dB 20.27 dB

17.35 dB 19.74 dB 16.39 dB 17.09 dB 11.93 dB 19.39 dB 19.93 dB 21.69 dB

18.03 dB 18.73 dB 16.54 dB 15.27 dB 11.24 dB 19.58 dB 19.71 dB 21.73 dB

18.51 dB 18.75 dB 16.58 dB 14.15 dB 9.92 dB 20.11 dB 20.23 dB 20.70 dB

17.85 dB 18.61 dB 18.18 dB 18.18 dB 14.42 dB 20.0 dB 19.42 dB 21.19 dB

Figure 28: Visual results of CMU-IDB face images from DCT sparse signal reconstruction (at
M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

17.94 dB 19.85 dB 17.70 dB 15.10 dB 12.04 dB 17.90 dB 18.90 dB 19.51 dB

22.59 dB 23.16 dB 21.34 dB 16.91 dB 16.64 dB 22.79 dB 23.07 dB 23.31 dB

18.26 dB 18.62 dB 17.28 dB 13.96 dB 12.82 dB 18.61 dB 19.70 dB 20.48 dB

17.58 dB 17.52 dB 16.64 dB 14.02 dB 11.68 dB 16.72 dB 18.20 dB 19.08 dB

18.03 dB 18.89 dB 17.38 dB 12.94 dB 13.07 dB 17.79 dB 18.87 dB 20.21 dB

15.65 dB 17.78 dB 14.40 dB 12.79 dB 12.92 dB 15.88 dB 16.85 dB 18.32 dB

16.48 dB 18.62 dB 17.93 dB 14.43 dB 12.29 dB 17.12 dB 17.98 dB 19.18 dB

15.31 dB 16.33 dB 11.12 dB 13.53 dB 11.33 dB 16.37 dB 16.73 dB 17.57 dB

16.72 dB 16.51 dB 16.51 dB 13.47 dB 10.30 dB 17.33 dB 17.70 dB 17.61 dB

16.85 dB 17.69 dB 14.58 dB 13.32 dB 14.02 dB 16.97 dB 18.14 dB 18.32 dB

Figure 29: Visual results of CMU-IDB face images from DCT sparse signal reconstruction (at
M/N = 0.2, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

20.50 dB 18.36 dB 16.55 dB 12.48 dB 1.17 dB 16.31 dB 23.15 dB 23.52 dB

16.32 dB 15.37 dB 15.15 dB 12.79 dB 1.98 dB 16.31 dB 18.35 dB 18.80 dB

19.04 dB 19.09 dB 17.95 dB 14.09 dB 1.59 dB 17.68 dB 22.00 dB 22.87 dB

18.19 dB 16.52 dB 19.06 dB 13.25 dB 2.67 dB 14.25 dB 19.29 dB 18.638 dB

18.47 dB 17.42 dB 20.39 dB 12.96 dB 1.19 dB 14.86 dB 19.52 dB 19.90 dB

18.37 dB 17.84 dB 17.07 dB 14.40 dB 1.58 dB 15.87 dB 19.27 dB 19.86 dB

16.39 dB 14.56 dB 17.57 dB 10.30 dB 1.82 dB 14.84 dB 18.14 dB 18.13 dB

15.02 dB 15.05 dB 13.25 dB 11.93 dB 4.26 dB 13.66 dB 17.96 dB 18.233 dB

24.04 dB 23.62 dB 22.28 dB 18.50 dB 6.09 dB 22.48 dB 24.46 dB 26.23 dB

19.32 dB 19.79 dB 18.72 dB 16.20 dB 5.29 dB 18.65 dB 21.12 dB 22.28 dB

Figure 30: Visual results of CIFAR-10 from wavlet sparse signal reconstruction (at M/N =
0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

18.34 dB 16.09 dB 15.21 dB 10.10 dB 1.45 dB 12.25 dB 15.60 dB 19.36 dB

15.67 dB 13.26 dB 11.83 dB 9.46 dB 2.29 dB 11.47 dB 15.32 dB 16.38 dB

18.33 dB 17.50 dB 16.39 dB 13.68 dB 1.61 dB 13.50 dB 18.24 dB 20.03 dB

15.64 dB 14.02 dB 11.22 dB 8.28 dB 2.29 dB 10.83 dB 16.33 dB 17.90 dB

15.80 dB 14.72 dB 16.86 dB 10.48 dB 1.38 dB 11.11 dB 16.60 dB 16.43 dB

15.37 dB 15.65 dB 14.00 dB 10.12 dB 1.54 dB 11.70 dB 15.68 dB 18.54 dB

13.56 dB 10.56 dB 8.24 dB 7.05 dB 2.31 dB 10.59 dB 15.17 dB 14.86 dB

13.49 dB 12.21 dB 8.28 dB 9.82 dB 4.61 dB 11.00 dB 16.27 dB 14.68 dB

22.25 dB 20.95 dB 21.72 dB 14.35 dB 5.91 dB 17.12 dB 20.96 dB 23.53 dB

18.63 dB 17.41 dB 11.35 dB 9.20 dB 5.20 dB 14.84 dB 19.59 dB 20.08 dB

Figure 31: Visual results of CIFAR-10 from wavlet sparse signal reconstruction (at M/N =
0.2, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

19.30 dB 18.03 dB 15.51 dB 14.12 dB 11.01 dB 16.50 dB 20.08 dB 20.64 dB

16.09 dB 15.87 dB 16.56 dB 13.55 dB 10.57 dB 14.33 dB 18.33 dB 19.64 dB

20.12 dB 19.51 dB 19.39 dB 14.95 dB 13.11 dB 16.73 dB 20.81 dB 23.31 dB

15.32 dB 15.41 dB 13.47 dB 13.71 dB 7.76 dB 14.18 dB 17.15 dB 17.89 dB

18.66 dB 18.82 dB 16.16 dB 14.13 dB 10.46 dB 17.31 dB 19.71 dB 20.82 dB

15.56 dB 15.57 dB 12.43 dB 11.63 dB 8.68 dB 13.31 dB 16.81 dB 18.90 dB

18.57 dB 18.17 dB 20.03 dB 14.36 dB 7.70 dB 15.74 dB 19.05 dB 20.85 dB

14.77 dB 15.51 dB 17.95 dB 13.53 dB 9.80 dB 13.86 dB 16.90 dB 19.59 dB

23.38 dB 22.98 dB 22.90 dB 17.24 dB 14.70 dB 20.71 dB 23.59 dB 24.36 dB

19.39 dB 20.96 dB 19.19 dB 17.00 dB 12.68 dB 17.21 dB 21.14 dB 23.24 dB

Figure 32: Visual results of CIFAR-10 natural images from DCT sparse signal reconstruction
(at M/N = 0.3, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

17.35 dB 15.84 dB 15.33 dB 8.67 dB 9.15 dB 12.68 dB 17.08 dB 18.92 dB

14.01 dB 14.11 dB 13.10 dB 9.28 dB 8.80 dB 11.88 dB 14.89 dB 17.58 dB

18.75 dB 19.55 dB 15.71 dB 11.96 dB 11.08 dB 14.05 dB 17.95 dB 20.22 dB

13.81 dB 13.95 dB 13.67 dB 9.77 dB 7.23 dB 11.64 dB 14.24 dB 16.14 dB

16.65 dB 15.89 dB 16.52 dB 8.34 dB 9.05 dB 13.09 dB 18.30 dB 20.39 dB

14.61 dB 14.22 dB 10.46 dB 9.63 dB 8.26 dB 12.06 dB 14.99 dB 17.53 dB

15.81 dB 15.41 dB 14.67 dB 11.16 dB 6.86 dB 13.27 dB 16.73 dB 17.53 dB

12.70 dB 12.56 dB 6.71 dB 8.94 dB 8.64 dB 13.52 dB 14.84 dB 16.74 dB

20.49 dB 21.53 dB 21.85 dB 15.23 dB 12.99 dB 17.43 dB 20.13 dB 22.72 dB

19.43 dB 18.39 dB 18.68 dB 12.44 dB 11.71 dB 16.17 dB 20.04 dB 20.87 dB

Figure 33: Visual results of CIFAR-10 natural images from DCT sparse signal reconstruction
(at M/N = 0.2, SNR = 30 dB).
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OMP RLPHCS Bernoulli Pairwise Gibbs MAP-OMP TA-MRF OA-MRF Ground
MRF (Ours) Truth

2.98 dB 0.76 dB 1.23 dB 0.91 dB 2.80 dB 2.83 dB 1.07 dB 0.57 dB 1.24 dB

2.10 dB 0.86 dB 1.56 dB 0.05 dB 2.77 dB 2.29 dB 0.44 dB 0.26 dB 0.76 dB

1.56 dB 1.45 dB 1.13 dB 0.28 dB 3.03 dB 0.76 dB 0.76 dB 0.33 dB 0.47 dB

1.77 dB 1.25 dB 1.02 dB 0.30 dB 2.79 dB 2.06 dB 0.31 dB 0.04 dB 0.75 dB

0.86 dB 1.11 dB 1.46 dB 0.05 dB 2.74 dB 0.98 dB 0.49 dB 0.03 dB 0.45 dB

1.71 dB 1.66 dB 1.38 dB 0.62 dB 3.46 dB 1.54 dB 0.03 dB 0.67 dB 0.03 dB

0.65 dB 1.77 dB 0.47 dB 0.58 dB 3.03 dB 0.75 dB 0.48 dB 0.37 dB 0.42 dB

0.69 dB 2.31 dB 1.15 dB 1.28 dB 4.04 dB 0.69 dB 0.05 dB 1.16 dB 0.77 dB

0.11 dB 3.20 dB 0.83 dB 2.02 dB 5.38 dB 0.53 dB 1.24 dB 1.95 dB 1.22 dB

0.12 dB 3.01 dB 0.81 dB 2.41 dB 4.61 dB 0.70 dB 1.56 dB 2.31 dB 1.66 dB

Figure 34: Every algorithm fails in reconstruction of CIFAR-10 natural images in PCA domain
(at M/N = 0.3, SNR = 30 dB).
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