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THE WEYL MAP AND BUNDLE GERBES

KIMBERLY E. BECKER, MICHAEL K. MURRAY, AND DANIEL STEVENSON

Abstract. We introduce the notion of a general cup product bundle gerbe
and use it to define the Weyl bundle gerbe on T × SU(n)/T . The Weyl map
from T × SU(n)/T to SU(n) is then used to show that the pullback of the
basic bundle gerbe on SU(n) defined by the second two authors is stably
isomorphic to the Weyl bundle gerbe as SU(n)-equivariant bundle gerbes.
Both bundle gerbes come equipped with connections and curvings and by
considering the holonomy of these we show that these bundle gerbes are not
D-stably isomorphic.
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1. Introduction

The basic bundle gerbe is defined over a compact, simple, simply connected Lie
group G and has Dixmier-Douady class equal to a generator of H3(G,Z) ≃ Z. In
this work, we will restrict our study to the case where G = SU(n) and use the finite-
dimensional construction of the basic bundle gerbe in this case given by the second
two authors [16], see also [11]. The history of the various constructions of the basic
bundle gerbe and its extensions to other groups can be found in the Introduction
to [16]. As well as the construction of the basic bundle gerbe over SU(n), [16] gives
an explicit connection and curving on this bundle gerbe with three-curvature equal
to 2πi times the basic 3-form

ν = −
1

24π2
tr(g−1dg)3

on SU(n). These explicit formulae will be used extensively in our work.
Our work here can be understood as a follow up to [16]. Namely, we study the

pullback of the basic gerbe over SU(n) from [16] by the Weyl map

p : T × SU(n)/T −→ SU(n)

p(t, hT ) = hth−1

and explain why the pulled back bundle gerbe decomposes into simpler objects.
Our motivation for this is the following observation. The pullback of the basic 3-
form by the Weyl map, p∗ν, defines a class in H3 (T × SU(n)/T ). By the Kunneth
formula, and noting that the cohomology of SU(n)/T vanishes in odd degree [4],
we see that

[p∗ν] ∈ H3(T )⊕
(

H2 (SU(n)/T )⊗H1(T )
)

.

It follows from T being abelian that the restriction of ν to T vanishes. Therefore

[p∗ν] ∈ H2 (SU(n)/T )⊗H1(T ).

For this reason, we expect that the three-curvature of the pullback of the basic
bundle gerbe by the Weyl map to equal a sum of wedge products of 1-forms and
2-forms (modulo exact forms). We are interested in the impact this fact has on the
geometry of the pulled back basic bundle gerbe. It follows from work of Johnson
in [7] that a bundle gerbe whose Dixmier-Douady class is the cup product of a
one-class and a two-class can be realised by a geometric cup product construction
from a U(1)-valued function whose winding class is the one-class and a line bundle
whose chern class is the two-class. We expect therefore that the pullback of the
basic bundle gerbe by the Weyl map is stably isomorphic to a particular product
of these cup product bundle gerbes which we call the Weyl bundle gerbe.

Following Johnson [7] we introduce the cup product bundle gerbe construction.
The Weyl bundle gerbe is then defined as a reduced product (see Section 2.2 below)
of certain cup product bundle gerbes over T ×SU(n)/T for T the maximal torus of
SU(n) consisting of diagonal matrices. We call any such bundle gerbe that is the
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reduced product of cup product bundle gerbes a general cup product bundle gerbe.
In our main theorem (Theorem 6.8), we

(1) describe an explicit SU(n)-equivariant stable isomorphism of the Weyl bun-
dle gerbe and the pullback of the basic bundle gerbe over SU(n) via the
Weyl map p : T × SU(n)/T → SU(n);

(2) explicitly define a 2-form β ∈ Ω2 (T × SU(n)/T ) that satisfies dβ = ωp∗b −
ωc for ωp∗b and ωc the three-curvatures associated to the pullback connec-
tive data on the pullback of the basic bundle gerbe and natural connective
data on the Weyl bundle gerbe, respectively;

(3) show there is no general cup product bundle gerbe that is stably isomorphic
to the pullback of the basic bundle gerbe such that the three-curvature ω′

c

associated to the induced connective data on the general cup product bundle
gerbe satisfies ω′

c = ωp∗b; and
(4) consider the holonomies of our bundle gerbes to show that the pullback

of the basic bundle gerbe and the Weyl bundle gerbe are not D-stably
isomorphic with respect to their natural connective data.

There is a long history of exploiting the attractive features of the Weyl map going
back to Weyl’s proof of the Integral Formula [18] and the K-theory of compact Lie
groups [1]. Cup product constructions similar to ours have been used by Brylinski
[5] to construct projective unitary group bundles, in index theory [10] and in twisted
K-theory [6, 2]. We note also that [9, Section 8.2] gives a general construction of
the cup product bundle gerbe for a decomposable Dixmier-Douady class.

In summary, in Section 2 we briefly review basic results, definitions and notation
from the theory of bundle gerbes. In Section 3, we introduce the notions of cup
product and general cup product bundle gerbes, and study the geometry of the
former. Criteria for general cup product bundle gerbes to be stably isomorphic are
also considered. Next, in Section 4, we apply the theory from Section 3 to construct
the Weyl bundle gerbe over T × SU(n)/T . The pullback of the basic bundle gerbe
is considered in Section 5, and we show that it is also a general cup product bundle
gerbe over T×SU(n)/T . The stable isomorphism between the pullback of the basic
bundle gerbe and the Weyl bundle gerbe is given in Section 6, where we exploit the
results of Section 3 using the fact that both bundle gerbes are general cup product
bundle gerbes. We conclude Section 6 by demonstrating that these bundle gerbes,
with their given connections and curvings, are not stably isomorphic, i.e. they are
not D-stably isomorphic. Our results are summarised in Theorem 6.8.

2. Bundle gerbes

We review some notation and basic facts about bundle gerbes. For more detail
on bundle gerbes see [12, 13, 3].

2.1. Surjective submersions. Let π : Y →M be a surjective submersion. Denote
by Y [p] the p-fold fibre product of Y ; note that the canonical map Y [p] → M is
also a surjective submersion. Define πi : Y

[p+1] → Y [p] by omitting the i-th entry
for each i = 1, . . . , p+ 1. Notice that this means that the two maps Y [2] → Y are
(perhaps confusingly) π1((y1, y2)) = y2 and π2((y1, y2)) = y1. If g : Y [p] → A is a
map to an abelian group A, define δ(g) : Y [p+1] → A by δ(g) = g ◦ π1 − g ◦ π2 + · · ·
and if g : M → A define δ(g) : Y → A by δ(g) = g ◦ π.
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Similarly, if ω ∈ Ωq(Y [p]) is a q-form, define δ(ω) ∈ Ωq(Y [p+1]) by δ(ω) =
π∗
1(ω)− π∗

2(ω) + · · · and likewise δ(ω) = π∗(ω) if ω ∈ Ωq(M). It is straightforward
to check that the fundamental complex defined by

(2.1) 0 → Ωq(M)
δ
→ Ωq(Y )

δ
→ Ωq(Y [2])

δ
→ Ωq(Y [3])

δ
→ · · ·

is exact [12, Section 8]1.
If K → Y [p] is a Hermitian line bundle, define a Hermitian line bundle δ(K) over

Y [p+1] by δ(K) = π−1
1 (K) ⊗ π−1

2 (K)∗ ⊗ · · · . Note that the Hermitian line bundle

δδ(K) over Y [p+2] has a canonical trivialisation. If K is equipped with a connection
∇K , then there is an induced connection δ(∇K) on δ(K).

2.2. Bundle gerbes. Let M be a manifold. Recall that a bundle gerbe over M ,
denoted (P, Y ) or (P, Y, π), consists of a surjective submersion π : Y → M and a
Hermitian line bundle P → Y [2]. The bundle P is equipped with a bundle gerbe

multiplication π−1
3 (P ) ⊗ π−1

1 (P ) → π−1
2 (P ) which is associative in the sense that

the two different ways of mapping

P(y1,y2) ⊗ P(y2,y3) ⊗ P(y3,y4) → P(y1,y4)

agree for any (y1, y2, y3, y4) ∈ Y [4].
If (P, Y ) is a bundle gerbe over M and (Q,X) is a bundle gerbe over N , then

a morphism of bundle gerbes (P, Y ) → (Q,X) is a triple of maps f : M → N ,
g : Y → X and h : P → Q. These have to satisfy: g covers f and thus induces a
map g[2] : Y [2] → X [2] and h : P → Q is a bundle morphism covering g[2].

A bundle gerbe is called trivial if there is a Hermitian line bundle R → Y and an
isomorphism of P to δ(R) = π−1

1 (R)⊗π−1
2 (R)∗ such that the bundle gerbe product

on P commutes with the obvious contraction

(2.2) Ry2 ⊗R∗
y1

⊗Ry3 ⊗R∗
y2

→ Ry3 ⊗ R∗
y1
.

A trivialisation of (P, Y ) is a choice of such a trivialising line bundle R and isomor-
phism (2.2).

If (P, Y ) and (Q,X) are bundle gerbes over M , we define the dual of (P, Y )
by (P ∗, Y ) with the obvious multiplication and their product (P, Y ) ⊗ (Q,X) by
(P ⊗Q, Y ×M X), where Y ×M X is the fibre product of Y →M and X → M and

(P ⊗Q)((y1,x1),(y2,x2)) = P(y1,y2) ⊗Q(x1,x2)

with the obvious multiplication. In the case that X = Y we have the diagonal
inclusion of Y into Y ×M Y and we may use this to pull back P ⊗Q to define the
reduced product (P ⊗R Q, Y ).

We say that (P, Y ) and (Q,X) are stably isomorphic if there exists a trivialisation
of (P, Y )∗ ⊗ (Q,X). Similarly a stable isomorphism from (P, Y ) to (Q,X) is a
choice of such a trivialisation. It is shown in [17] that stable isomorphisms can be
composed. The notion of morphism introduced above of course leads to a notion of
isomorphism, which is much stronger than the notion of stable isomorphism. We use
the notations ∼= and ∼=stab for the notions of isomorphism and stable isomorphism
respectively.

1The proof given there is actually for Y → M a fibration but can be adapted to the case where
Y → M is a surjective submersion using the fact that surjective submersions admit local sections.
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Associated to a bundle gerbe (P, Y ) is a characteristic class called its Dixmier-

Douady class or DD-class, DD(P, Y ) ∈ H3(M,Z), which determines exactly the
stable isomorphism class of the bundle gerbe [15].

If (P, Y ) is a bundle gerbe over M and f : N → M , then f−1(Y ) → N is a
surjective submersion and we have f [2] : f−1(Y )[2] → Y [2]. The pullback of P
by f [2], more conveniently called f−1(P ), then inherits a natural bundle gerbe
multiplication. The bundle gerbe (f−1(P ), f−1(Y )) over N is called the pullback

of (P, Y ) by f . Pulling back preserves products and duals and is natural for the
Dixmier-Douady class. For more details see [3].

Similarly, we can consider the pullback of bundle gerbes over M by morphisms
of surjective submersions over M . These are maps f : X → Y of surjective sub-
mersions X → M and Y → M covering the identity map M → M . If (P, Y ) is
a bundle gerbe we can pull back using f [2] to obtain a bundle gerbe we denote
by (f−1(P ), X) over M . A basic fact [15, Proposition 3.4] is that (f−1(P ), X) is
stably isomorphic to (P, Y ). Moreover, there is a canonical choice of stable iso-
morphism. This implies immediately that the product and reduced product of two
bundle gerbes are canonically stably isomorphic.

Finally, if G is a Lie group we can consider (strongly) equivariant bundle gerbes
where G acts on Y → M and P , preserving all relevant structure, for a precise
definition see, for example, [14]. The notion of stable isomorphism extends to this
case by requiring that R also have a G-action and that the isomorphism δ(R) ∼= P
be G-equivariant. We use the obvious notation ∼=G and ∼=G-stab for G-equivariant
isomorphisms and stable isomorphism between G-equivariant bundle gerbes.

2.3. Connections, curvings and holonomy. Any bundle gerbe (P, Y, π) admits
a bundle gerbe connection ∇ which is a Hermitian connection on P preserving
the bundle gerbe multiplication. As a result of this condition, the curvature F∇ ∈
Ω2(Y [2]) of a bundle gerbe connection satisfies δ(F∇) = 0. It follows from exactness
of the fundamental complex (2.1) that there exist imaginary 2-forms f ∈ Ω2(Y )
satisfying δ(f) = F∇. A choice of such an f ∈ Ω2(Y ) is called a curving for ∇,
and the pair (∇, f) is called connective data for (P, Y ). Notice that the curving is
determined only up to addition of the pullback of a form in Ω2(M). Commutativity
of the maps δ in the fundamental complex with exterior differentiation implies
δ(df) = dδ(f) = dF∇ = 0, so that df = π∗(ω) for a unique ω ∈ Ω3(M) called
the three-curvature of (∇, f). We have that dω = 0 and the class of ω/2πi in de
Rham cohomology is the image of DD(P, Y ) in real cohomology under the de Rham
isomorphism.

Connective data on bundle gerbes naturally induce connective data on dual,
pullback, reduced product and product bundle gerbes. For more on this see [3].

There is a notion of stable isomorphisms of bundle gerbes with connective data.
Following Johnson [7] we say two bundle gerbes (P, Y ) and (Q,X) with connective
data are D-stably isomorphic, denoted (P, Y ) ∼=D-stab (Q,X), if (P, Y ) ∼=stab (Q,X)
and this stable isomorphism preserves connections and curvings. Here the trivial
bundle gerbe P ∗ ⊗ Q is assumed to have trivial connective data, i.e. connective
data of the form (δ(∇R), F∇R

) for ∇R a connection on a line bundle R → Y
with curvature F∇R

. The D-stable isomorphism classes of bundle gerbes over M
(or Deligne classes) are in bijective correspondence with the Deligne cohomology
group H3(M,Z(3)D) [15, Theorem 4.1]. For more on this, see [7, 15].
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If (P, Y ) is a bundle gerbe over an oriented two-dimensional manifold Σ, then
H3(Σ,Z) = 0 and there exists a Hermitian line bundle R → Y trivialising P .
Suppose ∇ is a bundle gerbe connection on P and ∇R is a connection on R. Denote
by δ(∇R) the connection on (P, Y ) induced by the isomorphism P ∼= δ(R). As
both ∇ and δ(∇R) are bundle gerbe connections, it follows that ∇ = δ(∇R)+α for
α ∈ Ω1(Y [2]) satisfying δ(α) = 0. From exactness of the fundamental complex we
can solve α = δ(β) for some β ∈ Ω1(Y ) and thus ∇ = δ(∇R + β). It follows that
we may suppose without loss of generality that δ(∇R) = ∇. Denote by F∇R

the
curvature of ∇R and note that δ(F∇R

) = F∇. Then δ(f −F∇R
) = F∇ −F∇ = 0 so

we have f −F∇R
= π∗(µ) for µ ∈ Ω2(Σ). We define the holonomy of (∇, f) over Σ,

hol(∇, f), by exp
(∫

Σ µ
)

. This is independent of the choice of R and ∇R. Similarly,
if χ : Σ → M and (P, Y ) is a bundle gerbe over M with connective data (∇, f),
we can define the holonomy of (∇, f) over χ, hol(∇, f, χ), to be the holonomy
of the pullback of (∇, f) by χ. Notice that the holonomy depends on the choice
of curving. It is a straightforward calculation that if bundle gerbes over M are
D-stably isomorphic they have the same holonomy.

3. Cup product bundle gerbes

3.1. The cup product bundle gerbe construction. Our aim is to show that,
after pulling back by the Weyl map p : T × SU(n)/T → SU(n), the basic bundle
gerbe decomposes into a product of simpler objects. In this section, we define these
simpler objects (namely cup product bundle gerbes), and consider more generally
the class of bundle gerbes that decompose into such objects (namely general cup

product bundle gerbes).
In [7], Johnson constructed the cup product bundle gerbe (f ∪L, f−1(R)) overM

from a smooth map f : M → S1 and a line bundle L → M . The motivating idea
for this construction was that the Dixmier-Douady class of the cup product bundle
gerbe should be the cup product of the winding class of f and the chern class of
L. The definition is as follows: let R → R/Z = U(1) and note that f−1(R) → M
is a surjective submersion, in fact a principal Z-bundle. As a result there is a well-
defined map d : f−1(R)[2] → Z given by d(x, y) = y − x and satisfying δ(d) = 0,
in the sense of Section 2.1. Johnson’s cup product bundle gerbe is then defined

by (f ∪ L)(m,x,y) = L
d(x,y)
m = L

(y−x)
m . Tensor product gives rise to a bundle gerbe

product via the obvious identification L(y−x)⊗L(z−y) = L(z−x). Note that if n < 0
then we define Ln = (L∗)−n and L0 is the trivial bundle.

For our purposes we need more general surjective submersions. Notice first that
if K → X is a Hermitian line bundle and h : X → Z is a smooth function (that is,
locally constant), then there is a Hermitian line bundle Kh → X defined fibrewise
by

(Kh)x = (Kx)
h(x)

for every x ∈ X . In other words, Kh on each connected component of X is just K
raised to the tensor power determined by the constant value of h on that component.

We consider Y → M a surjective submersion, g : Y [2] → Z with δ(g) = 0 and
L → M a line bundle. Let Lg → Y [2] be (π[2])−1(L)g where π[2] : Y [2] → M . We
will often abuse notation like this and omit obvious projections. The existence of
the bundle gerbe product follows from the fact that δ(g) = 0. We have the following
definition.
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Definition 3.1. Let Y →M be a surjective submersion, L→M be a line bundle,
and g : Y [2] → Z be a smooth map satisfying δ(g) = 0. The bundle gerbe (Lg, Y )
over M is the cup product bundle gerbe over M of L→M and g : Y [2] → Z.

Any use of the term ‘cup product bundle gerbe’ henceforth shall refer to Defi-
nition 3.1, rather than Johnson’s definition mentioned above. More generally we
have the following definition:

Definition 3.2. If (Lgi
i , Y ) are cup product bundle gerbes overM for i = 1, . . . , n,

we call the reduced product ⊗R(L
gi
i , Y ) the general cup product bundle gerbe of

Li →M and gi : Y
[2] → Z for i = 1, . . . , n.

Associated to g : Y [2] → Z is a class in H1(M,Z). This is defined by using the
fundamental complex (2.1) to solve δ(ψ) = g for some ψ : Y → R and taking the
class to be the winding class of the map q : M → U(1) whose value at m ∈ M is
exp(2πiψ(y)), where π(y) = m. This class is represented in de Rham cohomology
by 1

2πiq
−1dq. A straightforward calculation shows that the Dixmier-Douady class

of the cup product bundle gerbe (Lg, Y ) is the cup product of this class and the
chern class of L. Hence it is decomposable in the sense of [?]. More generally, the
Dixmier-Douady class of a general cup product bundle gerbe is a sum of such cup
products.

3.2. Stable isomorphisms of general cup product bundle gerbes. In this
section we will consider sufficient criteria for cup product bundle gerbes and general
cup product bundle gerbes to be stably isomorphic. These results, in particular
Corollary 3.5, will simplify calculations in Section 6. The proofs of the following
are straightforward:

Proposition 3.3. Let (Lg, Y ) be a cup product bundle gerbe. If there exists a

smooth map h : Y → Z such that g = δ(h), then (Lg, Y ) is trivialised by Lh → Y .

Corollary 3.4. Let
(

Lf , Y
)

and (Lg, X) be cup product bundle gerbes over M . If

there exists a smooth map h : X ×M Y → Z such that f − g = δ(h), then
(

Lf , Y
)

∼=stab (Lg, X)

with trivialising line bundle Lh → X ×M Y .

Corollary 3.5. Let (Lfi
i , Y ) and (Lgi

i , X) be cup product bundle gerbes over M for

i = 1, . . . , n. If there exist smooth maps hi : X ×M Y → Z for each i = 1, . . . , n
satisfying fi − gi = δ(hi) for all i = 1, . . . , n, then

n
⊗

R
i=1

(Lfi
i , Y ) ∼=stab

n
⊗

R
i=1

(Lgi
i , X)

with trivialising line bundle
⊗

i L
hi

i → X ×M Y .

3.3. Geometry of cup product bundle gerbes. We next describe connective
data (∇, f) and compute the associated three-curvature ω on a cup product bundle
gerbe. The induced connective data on a general cup product bundle gerbe can
then be easily inferred.

Let (Lg, Y ) be a cup product bundle gerbe over M and ∇ be a connection
on L → M with curvature F∇. Then Lg → Y [2] restricted to each connected
component of Y [2] is a tensor power of L (pulled back to Y [2]) with the power



8 K. E. BECKER, M. K. MURRAY, AND D. STEVENSON

determined by the corresponding value of g : Y [2] → Z. Taking appropriate tensor
powers of ∇ gives a natural connection for Lg which we denote by ∇g. It is easy
to check that this is a bundle gerbe connection and that it has curvature:

F∇g = g π[2]∗F∇.

To construct a curving for this connection we need a small amount of additional
data as follows:

Proposition 3.6. Let (Lg, Y, π) be a cup product bundle gerbe over M , ∇ be a

connection on L→M , and ∇g be the bundle gerbe connection defined above. Then

(1) there exists a smooth function ϕ : Y → R such that δ(ϕ) = g;
(2) the 2-form f ∈ Ω2(Y ) defined by

f = ϕπ∗F∇

satisfies δ(f) = F∇g , so f is a curving for the connection ∇g;
(3) if q : M → U(1) is defined by q = exp(2πiϕ), the three-curvature ω ∈ Ω3(M)

of (∇g, f) is given by

ω =
q−1dq

2πi
∧ F∇;

(4) the real DD-class of (Lg, Y ) is represented by

−
1

4π2
q−1dq ∧ F∇.

Proof. The existence of ϕ follows by exactness of the fundamental complex and
δ(g) = 0. For (2) we have

δ(f) = δ(ψ)π[2]∗(F∇) = gπ[2]∗(F∇) = F∇g .

Equations (3) and (4) follow from definitions. �

Similarly in the general cup product gerbe case we have the following Proposition.

Proposition 3.7. For each i = 1, . . . , n let (Lgi
i , Y, π) be a cup product bundle gerbe

over M , ∇i be a connection on Li →M , and ∇gi
i be the corresponding bundle gerbe

connection defined above. Then

(1) there exist smooth functions ϕi : Y → R such that δ(ϕi) = gi;
(2) the 2-form f ∈ Ω2(Y ) defined by

f =
n
∑

i=1

ϕi π
∗F∇i

satisfies δ(f) =
∑n

i=1 F∇
gi
i
, so f is a curving for the product connection

induced by the ∇gi
i ;

(3) if qi : M → U(1) is defined by qi = exp(2πiϕi), the three-curvature ω ∈
Ω3(M) of the general cup product gerbe of the (Lgi

i , Y, π) is given by

ω =

n
∑

i=1

q−1
i dqi
2πi

∧ F∇i
;

(4) the real DD-class of the general cup product bundle gerbe of the (Lgi
i , Y, π)

is represented by

−
1

4π2

n
∑

i=1

q−1
i dqi ∧ F∇i

.
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4. Cup product bundle gerbes over T × SU(n)/T

4.1. The i-th cup product bundle gerbes. In this section, we will define cup
product bundle gerbes over T ×SU(n)/T called the i-th cup product bundle gerbes,
for T the subgroup of SU(n) consisting of diagonal matrices. Our aim is to construct
their reduced product, which we call the Weyl bundle gerbe. We begin with some
preliminaries. For n ∈ N, let Projn be the set of n-tuples of orthogonal projections
(P1, . . . , Pn), where, for each i, Pi : Cn → Wi for Wi mutually orthogonal one-
dimensional subspaces of Cn. It follows from the characterisation of homogeneous
spaces [8, Theorem 21.18] that there is a bijection SU(n)/T ∼= Projn, which implies
Projn is a smooth manifold diffeomorphic to SU(n)/T .

For each i = 1, . . . , n, let pi : T → S1 be the homomorphism pi(t1, . . . , tn) = ti.
Define Ji → SU(n)/T to be the (homogeneous) Hermitian line bundle associated
to the principal T -bundle SU(n) → SU(n)/T via the action of T on C by t · z =
pi(t

−1)z. Define Ki → Projn, a subbundle of the trivial bundle Cn × Projn, by
(Ki)(P1,...,Pn) = im(Pi) × {(P1, . . . , Pn)}. It can be verified easily that Ji and Ki

are SU(n)-equivariant line bundles with respect to the SU(n)-action on SU(n)/T
defined by left multiplication and the SU(n)-action on Projn defined by

g · (v, P1, . . . , Pn) = (gv, gP1g
−1, . . . , gPng

−1).

By the equivalence of linear representations and equivariant line bundles, there is an
SU(n)-equivariant isomorphism Ji ∼= Ki. Throughout this work, we will continue
to write Ji → SU(n)/T , but will in practice work with the line bundlesKi → Projn.

Denote by XT the subset of (x1, . . . , xn) ∈ Rn which sum to zero. Define a
surjective submersion π : XT → T by

π(x1, . . . , xn) = diag(e2πix1 , . . . , e2πixn).

Note that this defines a surjective submersion πc : XT ×SU(n)/T → T ×SU(n)/T

and that (XT × SU(n)/T )
[2]

= X
[2]
T ×SU(n)/T . Define di : X

[2]
T → Z by di(x, y) =

xi − yi and extend it to X
[2]
T × SU(n)/T by projection with the same name.

The i-th cup product bundle gerbe is defined as follows.

Definition 4.1. The i-th cup product bundle gerbe over T × SU(n)/T for i =
1, . . . , n is the cup product bundle gerbe

(

Jdi

i , XT ×SU(n)/T, πc

)

.

Proposition 4.2. The i-th cup product bundle gerbe is SU(n)-equivariant for the

action of SU(n) on T ×SU(n)/T defined by multiplication in the SU(n)/T factor.

Proof. This follows easily by SU(n)-homogeneity of Ji → SU(n)/T and by not-
ing that the SU(n)-action on each of the spaces in the bundle gerbe is given by
multiplication on the SU(n)/T factor. �

4.2. Geometry of the i-th cup product bundle gerbes. We will now apply
the results from Section 3.3 to the i-th cup product bundle gerbes. The following
standard fact will be used repeatedly: let L→M be a line bundle that is a subbun-
dle of the trivial bundle of rank n. Let P : Cn ×M → L be orthogonal projection.
Then the induced connection ∇ = P ◦ d on L (for d the trivial connection) has
curvature F∇ = tr(PdPdP ).
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Proposition 4.3. There is a canonical line bundle connection ∇Ji
on Ji → SU(n)/T

with curvature F∇Ji
= tr(PidPidPi) for Pi : SU(n)/T × Cn → Ji orthogonal pro-

jection.

Proof. By the standard fact above, we need only show that Ji is a subbundle
of the trivial bundle of rank n. This follows by noting that Ji is a subbundle
of the SU(n)-homogeneous vector bundle (Cn × SU(n))/T → SU(n)/T , which is
isomorphic to the trivial bundle Cn × SU(n)/T → SU(n)/T by the equivalence of
linear representations and equivariant bundles. �

Proposition 4.4. Let ∇Ji
be the connection on Ji from Proposition 4.3. Let

π[2]
c : X

[2]
T × SU(n)/T → T × SU(n)/T

be projection. Then there is a bundle gerbe connection ∇ci on the i-th cup product

bundle gerbe with curvature

F∇ci
= di (π

[2]
c )∗tr(PidPidPi)

for Pi : T × SU(n)/T × Cn → Ji orthogonal projection.

Proof. This follows from our discussion in Section 3.3 and Proposition 4.3. �

Proposition 4.5. Let ∇ci be the connection on the i-th cup product bundle gerbe

from Proposition 4.4. Let Pi : T × SU(n)/T × C
n → Ji be orthogonal projection,

and define a 2-form fci ∈ Ω2 (XT × SU(n)/T ) by

fci(t, gT, x) = −xi π
∗
c tr(PidPidPi).

Abuse notation and denote the pullback of pi to T × SU(n)/T by pi. Then

(1) the 2-form fci satisfies δ(fci) = F∇ci
, so fci is a curving for ∇ci ;

(2) the three-curvature ωci ∈ Ω3 (T × SU(n)/T ) of (∇ci , fci) is given by

ωci = −
1

2πi
p−1
i dpitr(PidPidPi);

(3) the real DD-class of the i-th cup product bundle gerbe is represented by

1

4π2
p−1
i dpitr(PidPidPi).

Proof. Consider the proof of Proposition 3.6. If ϕ(y) = −yi then δ(ϕ)(x, y) =
ϕ(y)− ϕ(x) = xi − yi = di(x, y) and q(x) = exp(−2πixi) = p−1

i . The results then
follow by substitution into the formula in Proposition 3.6 �

By comparing this result to Proposition 3.6, we see that the real Dixmier-Douady
class of the i-th cup product bundle gerbe is the cup product of the winding class
of the map p−1

i : T → U(1) and the chern class of the line bundle Ji → SU(n)/T .

4.3. The Weyl bundle gerbe. We can now define the Weyl bundle gerbe, and
compute its connective data and associated three-curvature using results from Sec-
tion 4.2.

Definition 4.6. The Weyl bundle gerbe over T ×SU(n)/T is the reduced product
of the i-th cup product bundle gerbes, denoted

(Pc, XT × SU(n)/T, πc) :=
n
⊗

R
i=1

(

Jdi

i , XT ×SU(n)/T
)

.
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Proposition 4.7. The Weyl bundle gerbe is SU(n)-equivariant for the action of

SU(n) on T × SU(n)/T defined by multiplication in the SU(n)/T factor.

Proof. This follows from Proposition 4.2 and the fact that the reduced product of
equivariant bundle gerbes is again equivariant. �

We compute connective data and the curvature of the Weyl bundle gerbe as
follows.

Proposition 4.8. Let Pi : SU(n)/T ×T ×Cn → Ji be orthogonal projection and

π[2] : X
[2]
T ×SU(n)/T → T ×SU(n)/T be projection. The i-th cup product bundle

gerbe connections ∇ci from Proposition 4.4 induce a bundle gerbe connection ∇c

on the Weyl bundle gerbe with curvature

F∇c
=

n
∑

i=1

di(π
[2])∗tr(PidPidPi).

Proof. This follows from elementary bundle gerbe theory and Proposition 4.4. �

Using Proposition 4.5 and elementary facts about products of bundle gerbe con-
nections and curvings we similarly obtain the connective data on the Weyl bundle
gerbe.

Proposition 4.9. Let ∇c be the connection on the Weyl bundle gerbe from Propo-
sition 4.8. Let Pi : T ×SU(n)/T ×Cn → Ji be orthogonal projection, and define a

2-form fc ∈ Ω2 (XT × SU(n)/T ) by

fc(x1, . . . , xn, gT ) := −
n
∑

i=1

xiπ
∗
c tr(PidPidPi).(4.1)

Abuse notation and denote the pullback of pi to T ×SU(n)/T by pi. Then

(1) the 2-form fc satisfies δ(fc) = F∇c
, so fc is a curving for ∇c;

(2) the three-curvature ωc ∈ Ω3 (T ×SU(n)/T ) of (∇c, fc) is given by

ωc = −
1

2πi

n
∑

i=1

p−1
i dpitr(PidPidPi);

(3) the real DD-class of (Pc, XT ) is represented by

1

4π2

n
∑

i=1

p−1
i dpitr(PidPidPi).

5. The basic bundle gerbe and the Weyl map

5.1. The basic bundle gerbe. We review the construction of the basic bundle
gerbe over SU(n) in [16]. Our aim is to show that, when pulled back to T×SU(n)/T
by the Weyl map, the basic bundle gerbe is a general cup product bundle gerbe
different to the one defined in 4.6. We will then exploit the techniques from the
first section to construct a stable isomorphism between them.

Let Z := U(1)\{1} and define the manifold

Y := {(z, g) ∈ Z × SU(n) | z /∈ spec(g)} .

Let πb : Y → SU(n) be the surjective submersion defined by projection onto
the second factor. Note that Y [2] can be identified with triples (z1, z2, g) with
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z1, z2 /∈ spec(g), the set of eigenvalues of g. Order the set Z by anti-clockwise
rotation and define the following notions.

Definition 5.1. Let (z1, z2, g) ∈ Y [2] and λ be an eigenvalue of g. Say that λ ∈ Z
is between z1 and z2 if z1 < λ < z2 or z2 < λ < z1. Call (z1, z2, g) ∈ Y [2] positive

if there exist eigenvalues of g between z1 > z2, null if there are no eigenvalues of g
between z1 and z2, and negative if there exist eigenvalues of g between z1 < z2.

Denote the set of all positive, null, and negative triplets in Y [2] by Y
[2]
+ , Y

[2]
0

and Y
[2]
− respectively. Note that (z1, z2, g) ∈ Y

[2]
+ if and only if (z2, z1, g) ∈ Y

[2]
− .

Elements in each of these sets are depicted in Figure 5.1, where we assume for
simplicity that all eigenvalues of g are in the connected component of Z\{z1, z2}
containing λ.

z1

z2

λ

(z1, z2, g) ∈ Y
[2]
−

z2

λ

z1

(z1, z2, g) ∈ Y
[2]
0

λ

z1

z2

(z1, z2, g) ∈ Y
[2]
+

Figure 5.1. Components of Y [2]

We define a Hermitian line bundle Pb → Y [2] as follows. For λ an eigenvalue
of g ∈ SU(n), let E(g,λ) denote the λ-eigenspace of g. Define the vector bundle

L→ Y
[2]
+ fibrewise by

(5.1) L(z1,z2,g) =
⊕

z1>λ>z2

E(g,λ).

For a proof that this is indeed a vector bundle see [16]. Note that L(z1,z2,g) has finite
dimension as a finite sum of finite-dimensional spaces. Therefore we can define

(Pb)(z1,z2,g) =











det(L(z1,z2,g)) if (z1, z2, g) ∈ Y
[2]
+

C if (z1, z2, g) ∈ Y
[2]
0

det(L(z2,z1,g))
∗ if (z1, z2, g) ∈ Y

[2]
− .

By [16], Pb → Y [2] is a smooth locally trivial Hermitian line bundle, and there is an
associative multiplication operation endowing (Pb, Y, SU(n)) with a bundle gerbe
structure.

Definition 5.2. Call the bundle gerbe (Pb, Y, πb) over SU(n) constructed above
the basic bundle gerbe over SU(n), or simply the basic bundle gerbe.

5.2. The pullback of the basic bundle gerbe by the Weyl map. Recall that,
for G a compact, connected Lie group and T a maximal torus of G, the Weyl map2

is the G-equivariant map defined by

p : T ×G/T → G, (t, gT ) 7→ gtg−1.

2So-called because it is used in the Weyl integral formulae in [18].
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The Weyl map has a number of attractive features for our purposes. Firstly, the
action of SU(n) by conjugation on itself lifts to an action of SU(n) on T×SU(n)/T
where it acts only on the left of SU(n)/T . Secondly, if g ∈ SU(n), we can decompose
Cn into a direct-sum of distinct eigenspaces of g. These eigenspaces may change in
dimension as g varies and thus do not extend to vector bundles over the whole of
SU(n). However, on T × SU(n)/T things are much more pleasant. If we consider
(t, hT ) which maps to g = hth−1, then we can write Cn as a direct sum of the one-
dimensional spaces which are multiples of the standard basis vector or eigenspaces
of t. Moreover, if we act on these by h, we decompose Cn into a direct sum
of one-dimensional spaces which are subspaces of the eigenspaces of g. In fact,
these one-dimensional spaces are a decomposition of the trivial Cn bundle over
T ×SU(n)/T into homogeneous vector bundles J1⊕J2⊕ · · ·⊕Jn pulled back from
SU(n)/T . We will make extensive use of these basic geometric facts.

It is straightforward to see that under the identification SU(n)/T ∼= Projn the
Weyl map p : T × Projn → SU(n) is given by

p : (t, P1, . . . , Pn) 7→

n
∑

i=1

pi(t)Pi.

Notice that p−1(Y ) is the collection of all (t, z, gT ) ∈ T × Z × SU(n)/T with
z 6= ti for any i = 1, . . . , n. If we let YT ⊂ T × Z be all (t, z) with z 6= ti for any
i = 1, . . . , n then we have

p−1(Y ) = YT × SU(n)/T.

Our aim in this section is to prove the following Proposition for particular εi
defined below in Definition 5.6, thereby realising the pullback of the basic bundle
gerbe as a general cup product bundle gerbe.

Proposition 5.3. There is an SU(n)-equivariant isomorphism over T ×SU(n)/T

p−1 (Pb, Y ) ∼=SU(n)

n
⊗

R
i=1

(Jεi
i , YT ×SU(n)/T ) .

The proof of Proposition 5.3 relies on the following intermediary isomorphisms over
T × SU(n)/T :

p−1 (Pb, Y )
Prop 5.5
∼=SU(n) (Pb,T ×T SU(n), YT ×SU(n)/T )

Prop 5.9
∼=SU(n)

( n
⊗

i=1

Jεi
i , YT ×SU(n)/T

)

.

We begin with the following proposition and leave the proof of this result as an
exercise. Let Pb,T := (Pb)|Y [2]

T

. The restriction of the basic bundle gerbe to T is

(Pb,T , YT ).

Proposition 5.4 ([16, p. 1582]). Define Pb,T ×T SU(n) to be the set of equivalence

classes in Pb,T × SU(n) under the relation

(v1 ∧ · · · ∧ vk, g) ∼ (tv1 ∧ · · · ∧ tvk, gt
−1)

for all t ∈ T where k is the rank of L in (5.1). Then Pb,T ×T SU(n) is a line bundle

over Y
[2]
T × SU(n)/T , and there is an associative multiplication induced by that on
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(Pb,T , YT ) making

(Pb,T ×T SU(n), YT ×SU(n)/T )(5.2)

an SU(n)-equivariant bundle gerbe over T × SU(n)/T with respect to the SU(n)-
action on T × SU(n)/T defined by multiplication on the SU(n)/T component.

The following proposition is shown in [16, Proposition 7.1].

Proposition 5.5 ([16, Proposition 7.3]). There is an SU(n)-equivariant bundle

gerbe isomorphism over T × SU(n)/T

(Pb,T ×T SU(n), YT ×SU(n)/T ) ∼=SU(n) p
−1 (Pb, Y ) .

Recall that T is the maximal torus of SU(n) consisting of diagonal matrices, and
pi : T → S1 is the homomorphism sending t ∈ T to its i-th diagonal. To define εi
we use the ordering on Z from Section 5.1. Let i ∈ {1, . . . , n} throughout.

Definition 5.6. Define εi : Y
[2]
T → Z by

εi(z1, z2, t) =











1 if z1 > pi(t) > z2

−1 if z2 > pi(t) > z1

0 otherwise.

Notice that εi is a smooth function (that is, locally constant) on Y
[2]
T .

Definition 5.7. Let Cpi
be the space C equipped with the T -action v·t := pi(t

−1)v.

Throughout this section, let C1
pi

:= Cpi
,C−1

pi
:= C∗

pi
, and C0

pi
:= C, where C0

pi
is

equipped with the identity action. The space C∗
pi

can be understood as the dual of
Cpi

, or equivalently as the space C equipped with the dual action v · t = pi(t)v.
Recall that Ji → SU(n)/T is the SU(n)-homogeneous line bundle defined by

setting Ji := C×pi
SU(n) under the relation (z, s) ∼pi

(pi(t
−1)z, st) for all t ∈ T .

Proposition 5.8. There is an associative multiplication making

(Jεi
i , YT × SU(n)/T )(5.3)

a cup product bundle gerbe over T × SU(n)/T . Moreover, this bundle gerbe is

SU(n)-equivariant with respect to the SU(n)-action on T × SU(n)/T defined by

multiplication on the SU(n)/T component.

Proof. To see that this is a cup product bundle gerbe, and hence a bundle gerbe,

it suffices to show that εi : Y
[2]
T → Z satisfies the cocycle condition δ(εi) = 0. This

is trivial to verify on the connected components of Y
[2]
T . The equivariance result

follows easily. �

Proposition 5.9. There exists an SU(n)-equivariant bundle gerbe isomorphism

over T × SU(n)/T

(Pb,T ×T SU(n), YT ×SU(n)/T ) ∼=SU(n)

( n
⊗

i=1

Jεi
i , YT ×SU(n)/T

)

.

Proof. First, we show there is a line bundle isomorphism Pb,T
∼=
⊗

Cεi
pi
× Y

[2]
T . Let

(z1, z2, t) ∈ Y
[2]
T with z1 > z2. Suppose there are eigenvalues of t between z1 and z2.

Denote these eigenvalues by pk1(t), . . . , pkm
(t) for 1 ≤ k1 ≤ · · · ≤ km ≤ n. Then

L(z1,z2,t) = E(t,pk1
(t)) ⊕ · · · ⊕ E(t,pkm (t))(5.4)
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and

(Pb,T )(z1,z2,t) = det(L(z1,z2,t)) =
⊗

z1>λ>z2

det
(

E(t,λ)

)

= E(t,pk1
(t)) ⊗ · · · ⊗E(t,pkm (t)).

Each eigenspace E(t,pk(t))
∼= C is equipped with a T -action v · s := pk(s

−1)v, hence
E(t,pk(t))

∼= Cpk
for each k. Since εki

(z1, z2, t) = 1 for i = 1, . . . ,m and εk = 0
otherwise

(Pb,T )(z1,z2,t)
∼= Cpk1

⊗ · · · ⊗ Cpkm

∼= C
ε1(z1,z2,t)
p1

⊗ · · · ⊗ C
εn(z1,z2,t)
pn

.

By almost identical arguments, this holds over the other components of Y
[2]
T . There-

fore we have an isomorphism Pb,T
∼=
⊗n

i=1 C
εi
pi

× Y
[2]
T , as claimed. This implies we

have an isomorphism

Pb,T ×T SU(n) ∼=
(

⊗

C
εi
pi
× Y

[2]
T

)

×T SU(n),(5.5)

where the latter line bundle is SU(n)-equivariant with T -action defined by

(z1, . . . , zn, u, g) · t = (p1(t
−1)z1, . . . , pn(t

−1)zn, u, gt).(5.6)

It can be verified that the line bundle isomorphism (5.5) is SU(n)-equivariant. This
will act as our ‘intermediary isomorphism’. Next, consider

(

⊗n
i=1 C

εi
pi

)

×T SU(n),
the space of equivalence classes under the T -action defined similarly to (5.6). This
is an SU(n)-homogeneous line bundle over SU(n)/T , and it can be verified that
the natural map

(

C
ε1
p1

⊗ · · · ⊗ C
εn
pn

× Y
[2]
T

)

×T SU(n) → Y
[2]
T ×

(

C
ε1
p1

⊗ · · · ⊗ C
εn
pn

×T SU(n)
)

(5.7)

is a well-defined, SU(n)-equivariant line bundle isomorphism over Y
[2]
T ×SU(n)/T .

It follows by the equivalence of linear representations and equivariant bundles that
there are SU(n)-equivariant line bundle isomorphisms

C
ε1
p1

⊗ · · · ⊗ C
εn
pn

×T SU(n) ∼= (Cε1
p1

×T SU(n))⊗ · · · ⊗ (Cεn
pn

×T SU(n))

∼= Jε1
1 ⊗ · · · ⊗ Jεn

n .

This, combined with (5.7), implies there is an SU(n)-equivariant line bundle iso-
morphism

( n
⊗

i=1

C
εi
pi
× Y

[2]
T

)

×T SU(n) ∼=
n
⊗

i=1

Jεi
i

and hence, by (5.5), we obtain an SU(n)-equivariant isomorphism of line bundles
Pb,T ×T SU(n) ∼=

⊗n
i=1 J

εi
i . It remains to show that this isomorphism preserves the

bundle gerbe product. Suppose (z1, z2, z3, g) ∈ Y [3] with z1 > z2 > z3, and that
there are eigenvalues of g between z1 and z2 and also between z2 and z3. Then
L(z1,z2,g)⊕L(z2,z3,g) = L(z1,z3,g) and the basic bundle gerbe product is induced from

det(L(z1,z2,t))⊗ det(L(z2,z3,t))
∼= det(L(z1,z2,t) ⊕ L(z2,z3,t))

∼= det(L(z1,z3,t)).

From the discussion above and equation (5.4), each L(zi,zj,t) decomposes into ap-
propriate sums of powers of the Jl, so this becomes

n
⊗

i=1

J
εi(z1,z2,t)
i ⊗

n
⊗

i=1

J
εi(z2,z3,t)
i

∼=
n
⊗

i=1

J
εi(z1,z3,t)
i ,

which is the cup product multiplication. The other cases proceed similarly. �
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Clearly, the reduced product of the SU(n)-equivariant bundle gerbes (5.3) will
be an SU(n)-equivariant bundle gerbe. This leads us to our final isomorphism,
which follows from Propositions 5.5 and 5.9.

Proposition 5.3. There is an SU(n)-equivariant isomorphism over T ×SU(n)/T

p−1 (Pb, Y ) ∼=SU(n)

n
⊗

R
i=1

(Jεi
i , YT ×SU(n)/T ) .

5.3. Geometry of the pullback of the basic bundle gerbe. In [16], connective
data (∇b, fb) was defined on the basic bundle gerbe as follows. First, a connection on
the bundle L defined in equation (5.1) was constructed using orthogonal projection
of the flat connection. Taking the highest exterior power of this connection gave rise
to a bundle gerbe connection ∇b on the basic bundle gerbe. Second, the curving
fb was constructed using holomorphic functional calculus. We will not detail this
construction here as we only need the connective data on the pullback of the basic
bundle gerbe which is given by Proposition 5.10 below from [16].

Recall from Section 4.2 that the cup product bundle gerbes (Jεi
i , YT ×SU(n)/T )

can be endowed with a so-called cup product bundle gerbe connection using or-
thogonal projection, similar to Proposition 4.4. This in turn induces a general cup
product bundle gerbe connection on ⊗R(J

εi
i , YT × SU(n)/T ) in the obvious way.

We see that this general cup product bundle gerbe connection and ∇b are both ten-
sor products of or the determinant of connections defined by orthogonal projection
of the flat connection onto subbundles. By the naturality of these constructions it
follows that the pulled back connection on p−1 (Pb, Y ) under the isomorphism in
Proposition 5.3 is the general cup product connection on ⊗R (Jεi

i , YT ×SU(n)/T ).

Proposition 5.10 ([16, Appendix B]). Let ∇p∗b be the connection on the pullback

of the basic bundle gerbe by the Weyl map induced by ∇b. The pulled back curving

and curvature are given by

(5.8) fp∗b =
i

4π

n
∑

i,k=1
i6=k

(logz pi − logz pk + (pk − pi)p
−1
k )tr(PidPkdPk)

and

(5.9) ωp∗b =
i

4π

n
∑

i,k=1
i6=k

(

p−1
i dpi − p−1

k dpk − p−1
k dpi + p−1

k dpkp
−1
k pi

)

tr(PidPkdPk)

−
i

4π

n
∑

i,k=1
i6=k

pip
−1
k tr(dPidPkdPk).

Here logz is the branch of the logarithm defined by cutting along the ray through
z 6= 1 and requiring logz(1) = 0. Note that here and in the remainder of this work,
we abuse notation and let the homomorphisms pi and projections Pi be defined on
the spaces YT × SU(n)/T,XT × SU(n)/T , or (XT ×T YT ) × SU(n)/T depending
on the context.

The formulae in Proposition 5.10 can be simplified in a way that makes them
more comparable to the Weyl bundle gerbe data as follows.
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Proposition 5.11. Let ∇p∗b be the connection on the pullback of the basic bun-

dle gerbe and πp∗b : YT × SU(n)/T → T × SU(n)/T be projection. Define β ∈
Ω2 (T × SU(n)/T ) by

β = −
i

4π

n
∑

i,k=1
i6=k

pip
−1
k tr(PidPkdPk).

Then

(5.10) fp∗b =
n
∑

k=1

(

−1

2πi
logz pk

)

tr(PkdPkdPk) + (πp∗b)
∗β

and consequently

(5.11) ωp∗b = −
1

2πi

n
∑

k=1

p−1
k dpktr(PkdPkdPk) + dβ

Proof. The proof needs a number of ingredients, some of which are proved in the
Appendix. Firstly, we know that

∑n
k=1 Pk = I and thus

∑n
k=1 dPk = 0. Also as

shown in the Appendix if i 6= k then tr(PidPkdPk) = − tr(PkdPidPi). Again from
the Appendix

∑n
k=1 tr(PkdPkdPk) = 0. Using these it is straightforward to show

that (5.8) reduces to (5.10) and (5.9) reduces to (5.11). �

5.4. Other choices of general cup product bundle gerbes. By comparing
the curving and three-curvature of the Weyl bundle gerbe with the curving and
three-curvature of the pullback of the basic bundle gerbe from Proposition 5.11, we
can begin to establish a relationship between these bundle gerbes. To do so, we
require the following key observation.

Lemma 5.12. For each i = 1, . . . , n and (z, w, t) ∈ Y
[2]
T ,

εi(z, w, t) =
1

2πi
(logz pi(t)− logw pi(t)) .

Proof. Recall Definition 5.6. Let (z, w, t) ∈ Y
[2]
T with z > w. If w < pi(t) < z,

logz pi(t)− logw pi(t) = 2πi. Otherwise, this difference is zero. Therefore in general

logzpi(t)− logwpi(t) =











2πi if z > pi(t) > w

−2πi if w > pi(t) > z

0 otherwise.

Dividing through by 2πi, we see that this is precisely the definition of εi. �

It follows from Propositions 4.3 and 3.7 and equations (5.10) and (5.11) that if
we let ϕi = − 1

2πi logz(pi) : YT → R, then δ(ϕi) = εi and we can construct a general
cup product curving f and curvature ω for the pullback of the basic bundle gerbe
which would be

f =

n
∑

k=1

(

−1

2πi
logz pk

)

tr(PkdPkdPk) = fp∗b − (πp∗b)
∗β

ω = −
1

2πi

n
∑

k=1

p−1
k dpktr(PkdPkdPk) = ωp∗b − dβ.
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We can ask more generally if there is a choice of functions fi : Y
[2]
T → Z and

ϕi : YT → R satisfying δ(ϕi) = fi such that the curving f and three-curvature ω of
the resulting general cup product bundle gerbe of Ji and fi satisfy fp∗b = f and
ωp∗b = ω. For this to hold we would require functions αi : T × SU(n)/T → R for
i = 1, . . . , n such that β =

∑n
i=1 αitr(PidPidPi). We claim that for n > 2 this is

not possible.

Proposition 5.13. If n > 2, there do not exist functions αi : T × SU(n)/T → R

for i = 1, . . . , n such that β =
∑n

i=1 αitr(PidPidPi).

Proof. By Lemma A.2, there exists βij such that β decomposes into the sums

β =
∑

i<j<n

(βij − βin + βjn)tr(PjdPidPi)−
∑

i<n

βintr(PidPidPi).

Moreover, the first of these summations is non-zero by Lemma A.2 (3). By Lemma A.1
(4),

∑n
k=1 αktr(PkdPkdPk) =

∑

k<n(αk − αn)tr(PkdPkdPk). Therefore it suffices
to show that

span {tr(PjdPidPi) | i < j < n} ∩ span {tr(PkdPkdPk) | k < n} = {0}.(5.12)

Let Eij be the n × n matrix with a 1 in the (i, j) entry and zeros elsewhere. Set
Oi := Eii. Then

EijEkl = δjkEil(5.13)

OiEkl = δikEkl(5.14)

EklOi = δilEkl.(5.15)

The root spaces for the Lie algebra LSU(n) are spanned by matrices of the form
Aµ

ij = µEij − µEji for µ ∈ C. Let γ(t) = gexp(tX)T be a curve in SU(n)/T
through gT . So

Pi(γ(t)) = g exp(tX)Oi exp(−tX)g−1

and dPi(gX) = g[X,Oi]g
−1. Using this, it can be verified easily that

tr(PjdPidPi)(gX, gY ) = −tr(OjXOiY ) + tr(OjY OiX)

tr(PidPidPi)(gX, gY ) = tr(−OiXY ) + tr(OiXOjY )

+ tr(OjY X)− tr(OiY OjX).

In particular, using equations (5.13) – (5.15), a simple computation yields

tr(PjdPidPi)(gA
µ
in, gA

λ
in) = 0(5.16)

and tr(PidPidPi)(gA
µ
in, gA

λ
in) = δki(λµ− µλ).(5.17)

Consider an element
∑

i<j<n

bijtr(PjdPidPi) =
∑

k<n

αktr(PkdPkdPk)

in the intersection from (5.12). By equations (5.16) and (5.17), evaluating this
element at (gAµ

kn, gA
λ
kn) yields 0 = αk(λµ−µλ). Choosing λ and µ so that αk = 0

for all k proves (5.12). �

By the earlier discussion, the following corollary is immediate.
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Corollary 5.14. Let n > 2. There does not exist a choice of functions fi : Y
[2]
T → Z

and ϕi : YT → R satisfying δ(ϕi) = fi such that the curving f and three-curvature

ω of the resulting general cup product bundle gerbe of Ji and fi satisfy fp∗b = f
and ωp∗b = ω.

6. The stable isomorphism

6.1. Set up of the problem. Our central aim in this section is to prove that the
pullback of the basic bundle gerbe by the Weyl map is SU(n)-stably isomorphic to
the Weyl bundle gerbe, i.e.

p−1 (Pb, Y ) ∼=SU(n)-stab (Pc, X) .(6.1)

By Definition 4.6 and Proposition 5.3, (6.1) is equivalent to

n
⊗

R
i=1

(Jεi
i , YT ×SU(n)/T ) ∼=SU(n)-stab

n
⊗

R
i=1

(

Jdi

i , XT×SU(n)/T
)

Since both of these bundle gerbes are general cup product bundle gerbes, Corol-
lary 3.5 applies to give us the following result.

Proposition 6.1. The pullback of the basic bundle gerbe is SU(n)-stably isomor-

phic to the Weyl bundle gerbe if, for all i = 1, . . . , n, there exist smooth functions

hi : (XT ×T YT )× SU(n)/T → Z such that

εi(z, w, t)− (xi − yi) = hi(y, w, t, gT )− hi(x, z, t, gT )(6.2)

for all (x = (x1, . . . , xn), y = (y1, . . . , yn), z, w, t, gT ) ∈ (XT ×T YT )
[2]

× SU(n)/T .

6.2. Finding the stable isomorphism. It follows from a standard fact in bun-
dle gerbe theory that, if equation (6.1) holds with respect to the connective data
(∇p∗b, fp∗b), (∇c, fc) from Propositions 5.11 and 4.9, there exists a trivialising line
bundle R with connection ∇R and β ∈ Ω2 (T × SU(n)/T ) such that

fp∗b − fc = F∇R
+ π∗β(6.3)

ωp∗b − ωc = dβ

for π : (XT ×T YT )×SU(n)/T → T ×SU(n)/T projection. As in Corollary 3.5 we
take R to be the line bundle

R :=
n
⊗

i=1

Jhi

i → (XT ×T YT )× SU(n)/T

where we implicitly pull Ji back from SU(n)/T to (XT ×T YT )× SU(n)/T . Here,
the functions hi : (XT ×T YT )×SU(n)/T are parameters that we aim to define. In
this situation we can take ∇R to be the product connection and thus

(6.4) F∇R
=

n
∑

i=1

hi tr(PidPidPi).

First we compare the curving and curvature for the two bundle gerbes.

Proposition 6.2. The pulled back connective data for (Pp∗b, YT × SU(n)/T ) from
Proposition 5.11 and the Weyl bundle gerbe connective data for (Pc, XT × SU(n)/T )
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from Proposition 3.6 satisfy

fp∗b − fc =

n
∑

k=1

(

−
1

2πi
logz pk + xi

)

tr(PkdPkdPk) + π∗β

ωp∗b − ωc = −
1

2πi

n
∑

k=1

p−1
k dpk tr(PkdPkdPk) + dβ.

It follows by comparison with equations (6.3) and (6.4) that we want to take

hi(x, z, t, gT ) = xi −
1

2πi
logz pi(t)

for all i = 1, . . . , n. It remains to be shown that these hi satisfy equation (6.2) and
hence define the required stable isomorphism.

Proposition 6.3. For i = 1, . . . , n define hi : (XT ×T YT )× SU(n)/T → Z by

hi(x, z, t, gT ) = xi −
1

2πi
logz pi(t)

for (x = (x1, . . . , xn), z, w, t, gT ) ∈ (XT ×T YT )×SU(n)/T . Then hi is smooth and

εi(z, w, t)− xi + yi = hi(y, w, t, gT )− hi(x, z, t, gT )

for all (x = (x1, . . . , xn), y = (y1, . . . , yn), z, w, t, gT ) ∈ (XT ×T YT )
[2] × SU(n)/T .

Proof. First, note that hi(x, z, t, gT ) ∈ Z since e2πixi = pi(t), so upon exponenti-
ating hi we obtain e2πihi = e2πixipi(t)

−1 = 1. Smoothness of hi follows by noting
that log is smooth over the given range as z 6= pi(t). By Lemma 5.12,

hi(y, w, t, gT )− hi(x, z, t, gT ) = yi − xi +
1

2πi
(logz pi(t)− logw pi(t))

= yi − xi + εi(z, w, t),

so these are the desired functions hi. �

The next result then follows immediately from Propositions 6.1 and 6.3. A more
precise statement of this result will be provided in Theorem 6.8.

Proposition 6.4. The Weyl bundle gerbe is SU(n)-stably isomorphic to the pull-

back of the basic bundle gerbe by the Weyl map, i.e.

(Pc, X) ∼=SU(n)-stab p
−1 (Pb, Y ) .

6.3. Comparing holonomies. Recall that bundle gerbes are D-stably isomorphic

if they are stably isomorphic as bundle gerbes with connective data. It is a standard
fact that, if two bundles gerbes over a surface are D-stably isomorphic, then they
have the same holonomy. Therefore if we can show our bundle gerbes have different
holonomies on a surface Σ ⊂ T×SU(n)/T , then the restriction of our bundle gerbes
to Σ (and hence the original bundle gerbes) cannot be D-stably isomorphic, and
their D-stable isomorphism classes (Deligne classes) will not be equal.

By our choice of trivialising line bundle, the curvings of the pullback of the basic
bundle gerbe and Weyl bundle gerbe satisfy

fp∗b = fc + F∇R
+ π∗βn(6.5)

for βn = −
i

4π

n
∑

i,k=1
i6=k

pip
−1
k tr(PidPkdPk).(6.6)
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Here we introduce the notation βn to emphasise that βn is defined on T×SU(n)/T .
It follows from Proposition 6.4, equation (6.5) and standard facts in holonomy that,
for Σ ⊂ T ×SU(n)/T a surface, the holonomies of the pullback of the basic bundle
gerbe and Weyl bundle gerbe satisfy

hol((∇p∗b, fp∗b),Σ) = exp

(
∫

Σ

βn

)

hol((∇c, fc),Σ).(6.7)

It could be the case that
∫

Σ βn = k2πi for some k ∈ Z, implying these holonomies
are equal. We next show that there exists a surface Σ2 ⊂ T × SU(2)/T for which
∫

Σ2
β2 6= k2πi for any k ∈ Z. We will then generalise this result to obtain a surface

Σn ⊂ T × SU(n)/T for which hol((∇p∗b, fp∗b),Σn) 6= hol((∇c, fc),Σn).

Proposition 6.5. Define a surface Σ2 ⊂ T × SU(2)/T ∼= S1 × S2 by Σ2 :=
{eπi/4} × S2. Then the holonomies of the pullback of the basic bundle gerbe over

SU(2) and the Weyl bundle gerbe over T × SU(2)/T are not equal over Σ2.

Proof. By equation (6.7), we need only show that
∫

Σ2
β2 6= k2πi for any k ∈ Z.

Since P1 + P2 = 1 and p2 = p−1
1 , by setting P := P1 and p := p1 in equation (6.6)

we obtain

β2 =
i

4π
(p2 − p−2)tr(PdPdP ).

It is a standard fact that tr(PdPdP ) is the curvature of the tautological line bundle
over S2, which has chern class minus one, i.e. i

2π

∫

S2 tr(PdPdP ) = −1. Therefore

∫

Σ2

β2 =
ie

iπ
2 − ie−

iπ
2

4π

∫

S2

tr(PdPdP )

=
−e

iπ
2 + e−

iπ
2

2π

=
1

πi
6= k2πi ∀ k ∈ Z,

hence exp
(

∫

Σ2
β2

)

6= 1 and the holonomies are not equal over this surface. �

Corollary 6.6. There exists a surface Σn ⊂ T × SU(n)/T such that

hol((∇p∗b, fp∗b),Σn) 6= hol((∇c, fc),Σn).

Proof. First, note that surface Σ2 = {eπi/4} × S2 from Proposition 6.5 is an em-
bedded submanifold of T × SU(n)/T with respect to the inclusion ι : SU(2)/T1 →֒
SU(n)/Tn−1 defined by

XT1 7→

[

X 0
0 In−2

]

Tn−1.

Here, T1, Tn−1 denote the subgroups of diagonal matrices in SU(2) and SU(n)
respectively, and In−2 is the (n− 2)× (n− 2) identity matrix. Let Σn := ι (Σ). By
equation (6.7) it suffices to show that

∫

Σn

βn =

∫

Σ2

ι∗βn 6= k2πi
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for any k ∈ Z. To do so, we prove that ι∗βn = β2, hence
∫

Σn
βn 6= k2πi by the proof

of Proposition 6.5. We compute ι∗βn as follows. Recall that the maps pi : T → S1

were defined as projection onto the i-th diagonal. Clearly

pi ◦ ι =

{

pi if i = 1, 2

1 if 2 < i ≤ n.

Further recall that Pi was defined to be orthogonal projection onto Ji := C ×pi

SU(n), where pi was the relation (z, s) ∼pi
(pi(t

−1)z, st) for all (z, s) ∈ C×SU(n).
Now, when the maps pi are the constant value 1, this relation is equality, and
Ji → SU(n)/T is isomorphic to the trivial line bundle over SU(n)/T . In this case,
Pi will be the constant projection onto the span of ei, the i-th standard basis vector
of Cn. That is, Pi = Oi for Oi the matrix with a 1 in the (i, i) position and zeros
elsewhere. Therefore

Pi ◦ ι =

{

Pi if i = 1, 2

Oi if 2 < i ≤ n.

Of course, dOi = 0, so any term of the form tr(PkdPidPi) for i > 2 in our expression
for βn in (6.6) will equal zero. Furthermore, any term of the form tr(PidPkdPk) for
i > 2 will also be zero, by Lemma A.1 (2). So ι∗βn = β2 as required. �

The following corollary is immediate from our earlier discussion.

Corollary 6.7. There does not exist aD-stable isomorphism of (Pc, X) and p−1(Pb, Y )
with respect to the connective data (∇c, fc) and (∇p∗b, fp∗b).

The results of Sections 5 and 6 culminate in the following theorem.

Theorem 6.8. Let p−1(Pb, Y ) be the pullback of the basic bundle gerbe (Definition
5.2) by the Weyl map with connective data (∇p∗b, fp∗b) and three-curvature ωp∗b

(Proposition 5.10). Let (Pc, X) be the Weyl bundle gerbe (Definition 4.6) with

connective data (∇c, fc) and three-curvature ωc (Propositions 4.8 - 4.9). Then

(1) there is an SU(n)-equivariant stable isomorphism over T × SU(n)/T

(Pc, X) ∼=SU(n)-stab p
−1 (Pb, Y ) ,

with trivialising line bundle

R :=
n
⊗

i=1

π−1
2 (Ji)

hi → (XT ×T YT )× SU(n)/T

for π2 : (XT ×T YT )× SU(n)/T → SU(n)/T projection and

hi : (XT ×T YT )× SU(n)/T → Z

((x1, . . . , xn), z, t, gT ) 7→ xi −
1

2πi
logz pi(t);

(2) if ∇R is the connection on R induced by ∇Ji
(Proposition 4.3), then

fp∗b − fc = F∇R
+ π∗β

and ωp∗b − ωc = dβ

for π : (XT ×T YT )× SU(n)/T → T × SU(n)/T projection and

β = −
i

4π

n
∑

i,k=1
i6=k

pip
−1
k tr(PidPkdPk)
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where Pi : T × SU(n)/T × Cn → Ji is orthogonal projection;
(3) there does not exist a general cup product bundle gerbe of Ji and some

functions fi : X
[2]
T → Z and ϕi : XT → R with δ(ϕi) = fi whose induced

connective data (following Proposition 4.9) has associated three-curvature

ω = ωp∗b;
(4) there does not exist a D-stable isomorphism of (Pc, X) and p−1(Pb, Y ) with

respect to the connective data (∇c, fc) and (∇p∗b, fp∗b).

Appendix A. Computational lemmas

Here, we present the lemmas used to prove various results in Section 6.

Lemma A.1. Let i, j, k = 1, . . . , n. Then

(1) for distinct i, j, k, tr(PidPjdPk) = 0;
(2) if i 6= j, tr(PidPjdPj) = −tr(PjdPidPi);
(3)

∑n
k=1 tr(PkdPkdPk) = 0;

(4)
∑n

i=1 αitr(PidPidPi) =
∑n−1

i=1 (αi − αn)tr(PidPidPi).

Proof. To prove (1), note that PiPj = 0 if i 6= j, and dPi = dPiPi + PidPi (where
we obtain the second equation by differentiating P 2

i = Pi). So for distinct i, j and
k we have

tr(PidPjdPk) = tr(Pi(PjdPj + dPjPj)dPk)

= tr(PidPjPjdPk)

= tr(PidPjPj(PkdPk + dPkPk))

= tr(PidPjPjdPkPk)

= tr(PkPidPjPjdPk) = 0,

thereby proving (1). Next, by differentiating the identity PiPj = 0, we obtain
dPiPj = −PidPj for i 6= j. Therefore, using (1) and that

∑n
i=1 dPi = 0, we obtain

tr(PidPjdPj) = −tr(dPiPjdPj)

= tr(PjdPjdPi)

= tr
(

Pj

(

−
∑

k 6=j dPk

)

dPi

)

= −
∑

k 6=j

tr(PjdPkdPi)

= −tr(PjdPidPi),
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thereby proving (2). For (3) we use (2). We have

n
∑

k=1

tr(PkdPkdPk) = −
∑

i6=k

tr(PidPkdPk)

= −
∑

i<k

tr(PidPkdPk)−
∑

k<i

tr(PidPkdPk)

= −
∑

i<k

tr(PidPkdPk)−
∑

i<k

tr(PkdPidPi)

= −
∑

i<k

tr(PidPkdPk) +
∑

i<k

tr(PidPkdPk)

= 0.

Lastly, by (2), tr(PkdPldPl) + tr(PldPldPk) = 0. Using this, together with (1) we
obtain

n
∑

i=1

αitr(PidPidPi) =
n−1
∑

i=1

αitr(PidPidPi)− αntr

((

n−1
∑

m=1

Pm

)(

n−1
∑

k=1

dPk

)(

n−1
∑

l=1

dPl

))

=

n−1
∑

i=1

αitr(PidPidPi)− αn

n−1
∑

i=1

tr(PidPidPi)

− αn

n−1
∑

k,l=1
k 6=l

tr(PkdPldPl) + tr(PldPldPk)

=

n−1
∑

i=1

(αi − αn)tr(PidPidPi),

proving (4). �

Lemma A.2. Consider β = − i
4π

∑n
i,k=1
i6=k

pip
−1
k tr(PidPkdPk). Then

(1) there exist coefficients βij such that

β =
∑

i<j≤n

βijtr(PjdPidPi);

(2) if n > 2, these βij satisfy

β =
∑

i<j<n

(βij − βin + βjn)tr(PjdPidPi)−
∑

i<n

βintr(PidPidPi);

(3) if n > 2, these βij satisfy

∑

i<j<n

(βij − βin + βjn)tr(PjdPidPi) 6= 0.
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Proof. It follows from Lemma A.1 (2) that β =
∑

i<j≤n(pjp
−1
i −pip

−1
j )tr(PjdPidPi),

so by setting βij := pjp
−1
i − pip

−1
j we obtain (1). It follows that we can write

β =
∑

i<j<n

βijtr(PjdPidPi) +
∑

i<n

βintr(PndPidPi)

=
∑

i<j<n

βijtr(PjdPidPi)−
∑

i<n

n−1
∑

j=1

βintr (PjdPidPi)

=
∑

i<j<n

βijtr(PjdPidPi)−
∑

i<j<n

βintr (PjdPidPi)

−
∑

j<i<n

βintr (PjdPidPi)−
∑

i<n

βintr (PidPidPi)

=
∑

i<j<n

(βij − βin + βjn)tr(PjdPidPi)−
∑

i<n

βintr (PidPidPi) .

For (3), consider an element

S :=

[

T 0
0 In−2

]

∈ T

for T :=

[

t 0
0 t−1

]

, t ∈ U(1), and In−2 the (n − 2) × (n − 2) identity matrix.

Clearly βij = βin and βjn = 0 if j > 2 evaluated at S. Therefore the only non-zero
coefficient in this summation evaluated at S is β12−β1n+β2n = 2t−2t−1+t−2−t2.
The result then follows by choosing t such that this coefficient is non-zero. �
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