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Abstract Lymphatic vascular development involves specification of lymphatic endothelial

progenitors that subsequently undergo sprouting, proliferation and tissue growth to form a

complex second vasculature. The Hippo pathway and effectors Yap and Taz control organ growth

and regulate morphogenesis and cellular proliferation. Yap and Taz control angiogenesis but a role

in lymphangiogenesis remains to be fully elucidated. Here we show that YAP displays dynamic

changes in lymphatic progenitors and Yap1 is essential for lymphatic vascular development in

zebrafish. Maternal and Zygotic (MZ) yap1 mutants show normal specification of lymphatic

progenitors, abnormal cellular sprouting and reduced numbers of lymphatic progenitors emerging

from the cardinal vein during lymphangiogenesis. Furthermore, Yap1 is indispensable for Vegfc-

induced proliferation in a transgenic model of Vegfc overexpression. Paracrine Vegfc-signalling

ultimately increases nuclear YAP in lymphatic progenitors to control lymphatic development. We

thus identify a role for Yap in lymphangiogenesis, acting downstream of Vegfc to promote

expansion of this vascular lineage.

DOI: https://doi.org/10.7554/eLife.42881.001

Introduction
During embryonic development, the lymphatic vascular network derives chiefly from pre-existing

veins. In the E9-9.5 mouse embryo, complex, multicellular lymphatic vessels are ultimately generated

from a limited pool of lymphatic endothelial cell (LEC) progenitors first specified along the cardinal

veins (Oliver and Srinivasan, 2010; Wigle and Oliver, 1999). LEC progenitors sprout and progres-

sively colonise embryonic tissues over developmental time (Hägerling et al., 2013;

Koltowska et al., 2013). In the zebrafish trunk, a complex lymphatic vasculature is established within

just a few days and from a very limited number of progenitors (Koltowska et al., 2015a;

Nicenboim et al., 2015; Shin et al., 2016). Beginning from around 32–34 hr post fertilisation (hpf),

Grimm et al. eLife 2019;8:e42881. DOI: https://doi.org/10.7554/eLife.42881 1 of 22

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.42881.001
https://doi.org/10.7554/eLife.42881
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


lymphangiogenesis generates a functional lymphatic network by 5 days post fertilisation (dpf)

(Hogan and Schulte-Merker, 2017). To allow this rapid development, multiple molecular pathways

have to instruct and orchestrate cellular behaviour as well as control the growth and proliferation of

the developing tissue.

Precursor cells in the cardinal vein obtain lymphatic identity upon induction of Prox1 expression,

a transcription factor that is essential for development of LECs in both mice and zebrafish

(Johnson et al., 2008; Koltowska et al., 2015a; Wigle and Oliver, 1999). Sprouting of LECs from

the cardinal veins is governed by Vegfc signalling acting through the endothelial receptor Vegfr3

(Flt4) in both mice and zebrafish (Hogan et al., 2009b; Karkkainen et al., 2004; Le Guen et al.,

2014; Veikkola et al., 2001; Villefranc et al., 2013). Zebrafish Vegfc and Vegfd also play partially

compensatory roles in both trunk and craniofacial lymphangiogenesis (Astin et al., 2014;

Bower et al., 2017). Underlining the conservation of this pathway in lymphangiogenesis, mutations

in VEGFC and VEGFR3 cause primary lymphedema in humans (Gordon et al., 2013; Irrthum et al.,

2000; Karkkainen et al., 2000). Ultimately, induction of Vegfr3 signalling in LECs by Vegfc triggers

the activation of multiple downstream intracellular signalling events involved in cell migration, sur-

vival and cellular proliferation (Deng et al., 2015; Zheng et al., 2014). In the zebrafish, Vegfc-Flt4

signalling acts to induce Prox1 expression at the earliest stages of lymphatic specification

(Koltowska et al., 2015a; Shin et al., 2016), although a role in specification remains to be fully

explored in the mouse model. Precisely how LECs contextually interpret growth factor signals and

elicit a number of different, specific cellular responses still remains to be fully understood.

Key regulators of normal and pathological organ and tissue growth are the Hippo pathway and

effector transcription factors, YAP and TAZ, which have been shown to promote proliferation, sup-

press apoptosis and modulate cellular and tissue morphogenesis (Harvey et al., 2013). YAP and its

paralogue TAZ are transcriptional co-factors that drive target gene expression by binding to the

TEAD1-4 transcriptional co-factors (Pobbati and Hong, 2013; Yu and Guan, 2013; Yu et al., 2015).

As potent drivers of cell proliferation, YAP and TAZ have been implicated as oncogenes that are

commonly upregulated in various cancer types including colon and breast cancer (Harvey et al.,

2013; Varelas, 2014). Thus, their activity has to be tightly regulated. The classical HIPPO pathway

inhibits YAP/TAZ signalling by retaining the effectors in the cytoplasm through the activation of a

phosphorylation cascade. The kinase MST1/2 phosphorylates another kinase LATS1/2, which subse-

quently phosphorylates YAP/TAZ. This phosphorylation sequesters YAP/TAZ in the cytoplasm and

leads to their degradation (Yu and Guan, 2013; Yu et al., 2015). Ultimately, YAP and TAZ function

in the cytoplasm, at cell-cell junctions and in the nucleus as core integrators of extracellular stimuli

such as growth factor signalling, mechanical forces and cellular adhesion (Panciera et al., 2017;

Varelas, 2014).

Recent studies have demonstrated that YAP and TAZ play important roles in vasculature

(Kim et al., 2017; Neto et al., 2018; Wang et al., 2017). While Yap knockout mice are lethal due to

developmental arrest of the embryo and severe defects in the yolk sac vasculature (Morin-

Kensicki et al., 2006), endothelial specific deletion of Yap and Taz leads to vascular defects due to

impaired EC sprouting and proliferation (Kim et al., 2017; Neto et al., 2018). In endothelial cells

(ECs), nuclear YAP/TAZ promotes proliferation and cell survival while retention of YAP/TAZ in the

cytoplasm leads to apoptosis (Panciera et al., 2017; Zhao et al., 2011). Moreover, it has been sug-

gested that YAP/TAZ in blood vascular ECs regulate angiogenesis downstream of VEGFA both by

modulating cellular proliferation and controlling adherens junctional dynamics during vessel morpho-

genesis (Neto et al., 2018; Wang et al., 2017). Roles for Yap and Taz have been recently shown in

lymphatic vessel morphogenesis in development and postnatal settings in mice, but the mechanisms

of action remain to be fully appreciated (Cho et al., 2019). YAP has further been found to respond

to altered flow patterns in zebrafish and in cultured blood and lymphatic ECs (Nakajima et al.,

2017; Sabine et al., 2015). Yap1 also contributes to blood vessel maintenance in zebrafish, although

blood vessels still undergo normal angiogenesis in zebrafish yap1 mutant models (Nakajima et al.,

2017). Despite important roles in the vasculature, in the context of early embryonic lymphatic vascu-

lar development, roles for Yap and Taz remain to be fully explored.

Here we utilise zebrafish mutants and live imaging of zebrafish reporters of YAP activity to show

that Yap1 is indispensable for lymphatic vascular development. Yap1 acts in a cell autonomous man-

ner and is necessary at stages of lymphangiogenesis driven by Vegfc/Flt4 signalling. However, unlike

mutants in the Vegfc/Flt4 pathway Yap1 mutants display normal specification of Prox1-positive
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lymphatic progenitors coincident with aberrant cellular behaviours during LEC sprouting. We identify

a central role for Yap1 in Vegfc-induced EC proliferation and show that the nuclear concentration of

YAP changes dynamically in lymphatic progenitors, driven by Vegfc. This work suggests a dynamic

signalling mechanism integrating Vegfc/Flt4 signalling with Yap1 control of LEC proliferation and cel-

lular behaviour during trunk lymphatic vascular development.

Results

YAP is active in developing lymphatics of the zebrafish trunk
To investigate whether zebrafish LEC progenitors display Yap1/Taz signalling, we made use of the

previously published transgenic line, Tg(fli1:Gal4db-TEAD2DN-2A-mCherry); Tg(UAS:GFP), hereafter

called the TEAD reporter (Nakajima et al., 2017). This line reports expression when active, endoge-

nous Yap1 binds to the synthetic TEAD-Gal4db protein and subsequently drives EGFP expression

from a UAS element. Expression was detected throughout the dorsal aorta (DA), the intersegmental

vessels (ISVs) and PCV at 30 hpf, parachordal LEC progenitors (PLs, 2 dpf) and the thoracic duct at 5

dpf (Figure 1A,B, Video 1).

TEAD-reporter activity is observed via a stable EGFP protein, thus does not accurately report

dynamic activity of Yap1. Hence, we used Tg(fli1a:EGFP-YAP);(fli1a:H2B-mCherry) (Nakajima et al.,

2017), hereafter referred to as the YAP reporter line, which expresses human YAP fused to EGFP in

zebrafish vasculature. YAP is regulated at the level of entry into the nucleus and EGFP-YAP used

here has been shown to accurately reflect endogenous YAP (Bao et al., 2011; Nakajima et al.,

2017). We analysed EGFP-YAP fluorescence intensity (average pixel intensity per nucleus) in the

nuclei of PLs relative to the intensity of nuclear H2B-mCherry in the same cells using two different

methods (Figure 1C–G, see Materials and methods for details). Firstly, the EGFP/mCherry fluores-

cence intensity ratio was calculated in 3D, using automated surface masking of the nucleus and mea-

suring the intensities for both channels spanning the full z-stack (Figure 1F and G). Secondly,

fluorescence intensity was extracted from a single Z-plane (2D) at the centre of each nucleus (Fig-

ure 1—figure supplement 1A and D). Both approaches revealed concordant results (Figure 1—fig-

ure supplement 1E). We found nuclear EGFP-YAP in PL nuclei that was highly variable between PLs

within the same embryo (relative to H2B-mCherry), despite both proteins being driven from the fli1a

promoter (Figure 1C–G). Furthermore, we estimated the nuclear to cytoplasmic ratios for EGFP-YAP

between PLs (for the same embryos quantified in Figure 1F). We found that differences in the

nuclear concentration of EGFP-YAP between PLs (calculated as nuclear EGFP-YAP/mCherry) corre-

lated with differences in the nuclear-cytoplasmic ratio of EGFP-YAP (Figure 1H and Figure 1—fig-

ure supplement 1B–C). This suggests that measurement of nuclear concentration can reflect and

serve as a proxy for cytoplasm-nuclear changes. Given the above findings, the variable nature of EC

cytoplasmic distribution, and relative accuracy of nuclear measurements, all further analyses use

changes in nuclear concentration as a proxy for changes in YAP activity.

Interestingly, when we measured nuclear EGFP-YAP intensities using high speed spinning disc

microscopy, we found that EGFP-YAP did not change or fluctuate rapidly over short developmental

time periods (imaged over 90 min of development) (Figure 1—figure supplement 1F–F”, Video 2).

However, quantification of nuclear EGFP-YAP levels in individual PLs over longer periods of develop-

ment revealed dynamic changes (Video 3, Figure 1I, Figure 1—figure supplement 1G). Detailed

cell tracking analyses showed that these changes were not associated simply with breakdown of the

nuclear lamina during cell division (Figure 1I (arrow in cell track two indicates a cell division), Fig-

ure 1—figure supplement 1G). Taken together, these observations suggest that YAP is dynamically

regulated in PLs during lymphatic development.

Yap1 cell autonomously regulates lymphangiogenesis in the zebrafish
trunk
We next examined the formation of the lymphatic vasculature in yap1 mutants. We analysed two dif-

ferent mutant strains: yap1ncv101-/- mutants have a 25 bp deletion in exon1 leading to a frame shift

and stop codon after 71 bp, prior to the TEAD binding domain (Nakajima et al., 2017) and

yap1mw48-/- mutants display a 4 bp deletion after 158 bp, truncating the TEAD binding domain and

leading to a premature stop codon (Miesfeld et al., 2015). Analysis of the two alleles revealed
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Figure 1. Nuclear EGFP-YAP changes dynamically in the developing trunk lymphatic vasculature. (A–B) The TEAD reporter line [Tg(fli1:Gal4db-

TEAD2DN-2A-mC);(UAS:GFP)] shows Yap1 activity in vasculature, parachordal LECs (PLs) and cardinal vein sprouts (arrowhead) of the 2 dpf trunk (A) as

well as in the thoracic duct (TD) at 5 dpf (B). Scale bars: 40 mm. (C) Maximum projection of 8 PLs in a two dpf embryo showing EGFP-YAP in green [Tg

(fli1:EGFP-YAP)] and the nucleus in red (C’), [Tg(flil:H2B-mCherry)] and merge (C”’). Scale bar: 25 mm. (D–E) High power single z-sections of selected PLs

from C, showing nuclear YAP in PL2 and PL3, but low nuclear YAP in PL4 (D–D’) and PL7 (E–E’). Scale bars: 10 mm. (F) Quantification of nuclear EGFP/

mCherry average pixel intensity across individual PLs from multiple embryos at 2 dpf. Each bar represents a single PL (n = 47), each grey shade a

different embryo (n = 5). PLs in (C and D) highlighted in the green box. EGFP/mCherry Ratios have been calculated using mean fluorescent intensities

in 3D. (G) Scatter Plot of the Nuclear EGFP/mCherry average pixel intensity for individual PLs (n = 5 embryos). Each colour indicates PLs from a different

embryo. Values calculated in 3D measurements of the mean fluorescent intensity for EGFP and mCherry (0.66 ± 0.04, n = 47). (H) Pearson Correlation

Plot of the Nuclear EGFP/mCherry Ratio values in F and the Nuclear/Cytoplasmic EGFP Ratio values in Figure 1—figure supplement 1B (r = 0.52, 95%

confidence intervals: 0.27 to 0.70, R square = 0.27, p=0.0002(***)). The two distinct approaches produce correlative measurements. (I) Average nuclear

pixel intensity graphs from cell tracks of single PLs time-lapse imaged from 2 to 3 dpf. EGFP-YAP intensity (green) is compared over time with H2B-

mCherry (red) intensity in individual nuclei. Arrow points to a cell division during time-lapse.

DOI: https://doi.org/10.7554/eLife.42881.002

The following source data and figure supplements are available for figure 1:

Source data 1. Measurements of EGFP-YAP in PLs.

DOI: https://doi.org/10.7554/eLife.42881.005

Figure supplement 1. Measurements of EGFP-YAP intensity in lymphatic progenitor nuclei over time.

DOI: https://doi.org/10.7554/eLife.42881.003

Figure supplement 1—source data 1. Methodological Analysis of EGFP-YAP Intensities in PLs.

DOI: https://doi.org/10.7554/eLife.42881.004
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equivalent phenotypes. Yap1 is maternally depos-

ited and zygotic yap1 mutants (Zyap1-/-) are via-

ble (Cox et al., 2016). Using transgenic lines to

visualise developing veins and lymphatics

(TgBAC(dab2b:EGFP)ncv67, Tg(kdrl:mCher-

ry)ncv502), we observed only subtle lymphatic

defects in Zyap1ncv101-/- mutants with a minor

reduction in thoracic duct formation (Figure 2—

figure supplement 1A,C). To completely deplete

the embryo of Yap1, we generated maternal

zygotic (MZyap1-/-) mutants in several transgenic

backgrounds by crossing heterozygous males to

homozygous mutant females. Strikingly, while the

overall morphology of MZyap1-/- mutants at 5

dpf appeared relatively normal with mutant

embryos displaying subtle craniofacial defects

and a missing swim bladder (Figure 2A),

MZyap1-/- mutants failed to form a mature trunk

lymphatic vasculature (Figure 2B–E). However,

the craniofacial lymphatic network had devel-

oped normally (Figure 2—figure supplement

1B, D) and blood flow remained intact and func-

tional with apparently normal morphology of blood vessels in the 5 dpf trunk (Figure 2B–C). To fur-

ther investigate whether the MZyap1-/- mutants displayed any abnormalities in the formation of the

blood vasculature, we analysed angiogenic sprouting at 24 and 32 hpf (Figure 2—figure supple-

ment 2). Compared with wildtype siblings, MZyap1-/- mutants had a transient, mild reduction in the

number of EC nuclei in intersegmental vessel (ISV) sprouts (Figure 2—figure supplement 2A,D,E),

prominent in the most posterior sprouts analysed (Figure 2—figure supplement 2F) at 24 hpf. How-

ever, the number of ECs in each vessel had largely recovered by 32 hpf (Figure 2—figure supple-

ment 2B,D,E,F). Furthermore, we could see

normal lumenisation of blood vessels in

MZyap1-/- mutants (Figure 2—figure supple-

ment 2C).

The above observations indicate that yap1 is

necessary to form a lymphatic vasculature, but

not blood vasculature. To test whether Yap1

function is cell autonomous in ECs, we next

transplanted wildtype or mutant Tg(fli1a:EGFP)

Video 1. Time-lapse Video of the developing trunk

vasculature of Tg(fli1:Gal4db-TEAD2DN-2A-mC);(UAS:

GFP)] from 30 hpf – 2 dpf. The EGFP signal can be

seen to diminish in major trunk blood vessels but

remains strong in the dorsal posterior cardinal vein

(PCV) and parachordal LECs (PLs).

DOI: https://doi.org/10.7554/eLife.42881.006

Video 2. High-speed time-lapse Video of the

developing parachordal LECs (PLs) in [Tg(fli1a:EGFP-

YAP),(fli1a:H2B-mCherry)] embryos from 2 dpf. EGFP-

YAP signal remains relatively stable over the imaged

time period of 90 min. Z-stacks were acquired every

minute. Fluorescence intensity of EGFP diminishes due

to mild bleaching over time. The right panel shows the

EGFP fluorescent intensity as a heatmap within the PL

nuclei.

DOI: https://doi.org/10.7554/eLife.42881.007

Video 3. Time-lapse Video of developing parachordal

LECs (PLs) in [Tg(fli1a:EGFP-YAP),(fli1a:H2B-mCherry)]

embryos from 2 to 3 dpf with images acquired in 20–22

min intervals. The EGFP-YAP signal in individual PLs

changes over time as shown in the lower panel

displaying a heatmap of the nuclei. Dorsal aorta (DA),

posterior cardinal vein (PCV).

DOI: https://doi.org/10.7554/eLife.42881.008
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Figure 2. Yap1 acts cell autonomously to control trunk lymphangiogenesis in zebrafish. (A) Overall morphology of sibling (left) and MZyap1ncv101-/-

mutant (right) at 5 dpf. Arrowheads indicate mild craniofacial defects and absent swim bladder. Scale bar 200 mm. (B–C) Trunk vasculature of sibling and

MZyap1ncv101-/- mutant embryos at 5 dpf. Veins and lymphatics are displayed in white [Tg(dab2b:EGFP)], erythrocytes show normal blood flow in red [Tg

(gata1:DsRed)]. Asterisks mark absent lymphatic vessels. (C) Trunk vasculature of sibling and MZyap1mw48-/- mutant at 6 dpf. Vascular nuclei are marked

Figure 2 continued on next page
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ECs into wildtype or mutant Tg(fli1a:myrmCherry) hosts (Figure 2F–G). Subsequently, we selected

embryos with EC grafts and scored grafts of similar size (Figure 2H). We scored the contribution of

ECs in vascular grafted embryos to arterial, venous and lymphatic vessels (Figure 2I). Across n = 23

wildtype EC grafts, ECs contributed to arterial and venous structures as well as to lymphatic vessels

at frequencies equivalent to those we have previously reported (Koltowska et al., 2015b). Across

n = 24 mutant EC grafts, MZyap1-/- mutant ECs were able to form arterial grafts at frequencies com-

parable to wildtype EC grafts. However, MZyap1-/- mutant ECs formed venous grafts at a slightly

reduced frequency and failed to contribute to lymphatic vessels except for small numbers of cells in

just n = 2/24 transplanted embryos (compared with n = 10/23 robust contributions in embryos trans-

planted with WT cells) (Figure 2G–I). Overall, this indicates that Yap1 has a cell autonomous role in

trunk lymphangiogenesis.

Yap1 is dispensable for specification but essential for sprouting and
Vegfc-induced proliferation of LECs
LEC progenitors sprout from the PCV in a Vegfc/Flt4 dependent manner and colonise the HM tran-

siently, a period when they are highly proliferative as well as migratory (Bussmann et al., 2010;

Cha et al., 2012; Koltowska et al., 2015a; Yaniv et al., 2006). We scored MZyap1-/- mutants for

ECs sprouting from the PCV at 2 dpf and found a reduction in the total number of ECs departing

the vein (Figure 3A–B). Strikingly, we saw almost a complete loss of PLs, but near normal numbers

of ECs in venous intersegmental blood vessels (Figure 3A,C,D). By 3 dpf, PL numbers in the HM

remained reduced but showed recovery compared with sibling controls (Figure 3E). To investigate

whether this reduction in PL numbers is a result of reduced LEC progenitor specification, we exam-

ined Prox1 expression as a marker of LEC fate. We found that Prox1 expression in the PCV and LECs

departing the PCV was unchanged at 36 hpf (Figure 3F,G). Thus, Yap1 is not required for the induc-

tion of lymphatic identity but is needed to establish normal numbers of LECs in sprouts arising from

the PCV.

To further investigate the cellular behaviours controlled by Yap1, we performed time-lapse imag-

ing from 32 to 65 hpf. We visualised sprouting LECs using Tg(lyve1b:dsRed2; fli1a:nlsEGFP), which

Figure 2 continued

in green [Tg(fli1a:nEGFP)], venous and lymphatic vessels in white [Tg(�5.2lyve1b:DsRed)]. Asterisks indicate absent lymphatic vessels. Scale bars: 50 mm

in B and C. (D) Percentage of TD fragments formed per somite, scored across six somites in total for siblings and MZyap1ncv101-/-mutants at 5 dpf

(sibling: 100% ± 0, n = 23; MZyap1ncv101-/-: 49% ± 7.33, n = 22; p,0.0001). (E) Quantification of the total number of LECs across 6 somites at 6 dpf

(sibling: 37 ± 1.91, n = 11; MZyap1mw48-/-: 8 ± 3.79; p<0.0001). (F) Schematic showing the cell transplantation technique. Blastomere cells are

transplanted from donor (EGFP) into host (mCherry) embryos. This results in a chimeric host embryo (right) with randomly located, transplanted EC

grafts. (G) Representative images of host chimeric trunk vessels at 5 dpf. Wildtype (wt) donor ECs contribute to all vascular EC types, while

MZyap1ncv101-/- mutant ECs show reduced propensity to contribute to lymphatic structures. Asterisk marks missing TD. Scale bars: 50 mm. (H) Graft sizes

analysed for vascular grafts. Numbers within bars represent the number of embryos scored for each graft size. (I) Percentage of embryos with EC grafts

contributing to arterial (wt into wt: 96% ± 4; MZyap1ncv101-/- into wt: 100% ± 0; p=0.31, not significant (ns)), venous (wt into wt: 91% ± 6; MZyap1ncv101-/-

into wt: 67% ± 10; p=0.04 (*)) and lymphatic vessels (wt into wt: 43% ± 10; MZyap1ncv101-/- into wt: 8% ± 6; p=0.005 (**)). Wildtype into wildtype total

number of EC grafts: n = 23; MZyap1ncv101-/- mutant into wildtype total number of EC grafts: n = 24. Dorsal aorta (DA); Posterior Cardinal Vein (PCV);

Thoracic Duct (TD); Intersegmental Lymphatic vessel (ISLV), Dorsal Longitudinal Lymphatic vessel (DLLV).

DOI: https://doi.org/10.7554/eLife.42881.009

The following source data and figure supplements are available for figure 2:

Source data 1. Measurements for the lymphatic phenotype of the MZyap1-/-mutant.

DOI: https://doi.org/10.7554/eLife.42881.014

Figure supplement 1. Zyap1-/- mutants only exhibit mild lymphatic defects in the trunk and MZyap1-/- mutants form facial lymphatics.

DOI: https://doi.org/10.7554/eLife.42881.010

Figure supplement 1—source data 1. Quantification of the lymphatic phenotype of the Zyap-/- mutant trunk and MZyap1-/-mutant craniofacial

phenotype.

DOI: https://doi.org/10.7554/eLife.42881.011

Figure supplement 2. MZyap1-/- mutants do not show major defects in blood vessel formation.

DOI: https://doi.org/10.7554/eLife.42881.012

Figure supplement 2—source data 1. Characterisation of angiogenic sprouting in the MZyap1-/-mutants.

DOI: https://doi.org/10.7554/eLife.42881.013
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Figure 3. MZyap1-/- mutants display defects in LEC numbers but not specification. (A) Trunk vasculature (EC nuclei in green, veins and lymphatics in

white) of sibling and MZyap1mw48-/- mutant at 2 dpf. Arrowheads indicate posterior cardinal vein (PCV) sprouts. Asterisks mark absent parachordal LECs

(PLs). Dorsal aorta (DA). Scale bars: 50 mm. (B) Total number of lyve1-positive ECs departing the PCV across 6 somites at 2 dpf. (C) Number of

endothelial cells in venous intersegmental vessels (vISV) across 6 somites at 2 dpf (sibling: 13 ± 0.94, n = 14; MZyap1-/-: 12 ± 1.33, n = 14; p=0.24 (ns)).

Figure 3 continued on next page
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at these stages spans the period of first detection of dsRed2 expression (Figure 3H, Videos 4–

6). We observed striking abnormal behaviours of sprouts arising from the PCV in MZyap1-/- mutants,

most commonly sprouts appeared thickened, retracted, or turned ventrally and formed abnormal

loops (Video 5, mutant 1). Often venous sprouts formed abnormal connections with other venous

sprouts from adjacent body segments (Video 6, mutant 2). These abnormal behaviours and reduced

sprouting cell numbers likely contribute to fewer PLs accurately seeding the HM during

development.

Yap1 mediates Vegfc-driven proliferation in venous-derived endothelial
cells
YAP is established to control cellular proliferation in diverse contexts, including in ECs

(Panciera et al., 2017; Zhao et al., 2011). To ask whether Yap1 plays a role in EC proliferation

downstream of Vegfc in PLs, as well as mediating normal sprouting behaviour, we used a transgenic

approach. We overexpressed vegfc throughout the trunk under the control of the prox1a promoter

(using TgBAC(prox1a: KalTA4-4xUAS-ADV.E1b:TagRFP)nim5, Tg(10xUAS:vegfc)uq2bh double trans-

genic (vegfc-OE) embryos), which is active in tissues that include muscle, neurons and vasculature

(Koltowska et al., 2015a; van Impel et al., 2014). We then injected a yap1 targeting morpholino

(MO) that has been previously validated (Loh et al., 2014) and phenocopied MZyap1-/- mutants

(Figure 4A,C and data not shown). vegfc overex-

pression resulted in hyper-proliferation of

venous-derived ECs throughout the trunk includ-

ing prominently in the HM, where excessive

numbers of ECs proliferate as previously

described (Figure 4B,C, Koltowska et al.,

2015a). The effect of Vegfc stimulation was

completely blocked upon yap1 MO injection but

not upon p53 (control) MO injection (Figure 4B,

C). Together, these observations are consistent

with a role for Yap1 downstream of Vegfc, func-

tioning in Vegfc-induced proliferation.

To further validate this observation made

with MO-mediated knockdown, we tested the

ability of elevated Vegfc-induced signalling to

stimulate PL proliferation in MZyap1-/- mutant

embryos. We transplanted cells at blastula

stages from vegfc-OE transgenic donor embryos

into wildtype and MZyap1-/- mutant embryos

(Figure 4D–E). Embryos that had engrafted

vegfc-OE cells in muscle adjacent to the HM

were then selected for analysis. The number of

PLs responding to the local graft were scored

Figure 3 continued

(D) Number of PLs scored across 6 somites at 2 dpf (sibling: 3 ± 0.56, n = 14; MZyap1-/-: 0.36 ± 0.23, n = 14; p<0.0001 (****)). (E) Number of PLs scored

across 6 somites at 3 dpf (sibling: 4.5 ± 0.20, n = 14; MZyap1-/-: 3.31 ± 0.36, n = 13; p=0.0075(**)). (F) Immunofluorescence staining for EC nuclei (green)

and Prox1 (red) in sibling and MZyap1mw48-/- mutants at 36 hpf. Arrows point to Prox1+ LEC progenitors. Scale bars: 30 mm. (G) Quantification of

Prox1 +cells in PCV and CV sprouts scored across 6 somites at 36 hpf (sibling: 3.47 ± 0.65, n = 19; MZyap1-/-: 3.31 ± 0.61, n = 16; p=0.86 (ns)). (H)

Maximum projection stills from time-lapse Videos from 32 to 65 hpf. Sibling still images show normal lymphangiogenesis with PCV sprouts, PL

formation, sprout detachment and PL proliferation (upper panels). MZyap1mw48-/- mutant one displays abnormal sprouting and looping of PCV sprouts

that are retained until the end of the Video (central panels). MZyap1mw48-/- mutant two also exhibits abnormal sprouting and PCV loop formation but

also forms PLs (lower panels). Scale bars: 25 mm. Timelapse imaging began at 32 hpf.

DOI: https://doi.org/10.7554/eLife.42881.015

The following source data is available for figure 3:

Source data 1. Cell counts for PCV-derived cells in the MZyap-/- mutants.

DOI: https://doi.org/10.7554/eLife.42881.016

Video 4. Time-lapse Video of the trunk vasculature of a

sibling from 32 to 65 hpf in the [Tg(fli1a:nEGFP);

(�5.2lyve1b:DsRed2)] background showing endothelial

nuclei in green and lymphatic and venous endothelium

in red. Normal lymphangiogenesis involves sprouting

from the posterior cardinal vein (PCV) to form PLs at

the horizontal myoseptum. Dorsal aorta (DA). Scale bar:

25 mm.

DOI: https://doi.org/10.7554/eLife.42881.017
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within the same body segment in wildtype and MZyap1-/- mutant embryos at 3 dpf. Strikingly, the

MZyap1-/- mutant host embryos displayed a vast reduction (although not a complete block) in num-

bers of proliferative PLs adjacent to HM grafts compared with wildtype siblings (Figure 4F,G). These

data, coupled with reduced numbers of ECs in sprouts departing the PCV (Figure 3B), together sug-

gest that Yap1 plays a role in the proliferation of developing lymphatic progenitors stimulated by

Vegfc.

Vegfc signalling promotes nuclear YAP in LEC progenitors
Nuclear localisation of YAP has been linked to EC proliferation (Panciera et al., 2017). We specu-

lated that Vegfc signalling might promote nuclear Yap1 in order to promote LEC proliferation. To

test this, we used a transplantation approach and transplanted vegfc-overexpressing cells (labelled

by TagRFP in host embryos) at blastula stages into embryos carrying the EGFP-YAP reporter

(Figure 5A). We selected embryos with labelled vegfc-OE neurons or muscle cells and found that

these grafts were sufficient to induce local proliferation of adjacent venous ECs and LEC progenitors

(Figure 5B,C). We analysed the localisation of EGFP-YAP in responding PLs local to Vegfc-producing

donor cells. To generate an unbiased quantification that allows for variation in transgene intensity

between embryos, we scored nuclear EGFP intensity in dorsal aorta cells (DA) and used the average

pixel intensity of the DA cells as vegfc-OE unresponsive internal controls (see Koltowska et al.,

2015a). Thus, PL nuclear EGFP intensity is calculated as PL nuclear intensity/average DA nuclear

intensity in the same embryo (Figure 5C’,D). We found that Vegfc responsive PLs displayed an

increase in nuclear EGFP-YAP compared with control PLs (Figure 5C’,D). This increase in nuclear

EGFP-YAP in the vegfc-OE transplanted embryos was concomitant with a higher number of PLs

(Figure 5G). Control PLs were scored in embryos transplanted with donor cells expressing the Kalt4

driver but not carrying the UAS:vegfc element (Figure 5B–D,F–G). Further, we transplanted from

EGFP-YAP reporter donor embryos into vegfc-OE and control recipient embryos (Figure 5—figure

supplement 1A). We selected small vascular EC grafts and examined grafted LECs and VECs for

EGFP-YAP nuclear concentration. Relative to nuclear concentration in grafted vegfc-unresponsive

DA cells, EGFP-YAP was increased in nuclei in lymphatic and venous EC grafts in the vegfc-OE hosts

(Figure 5—figure supplement 1B–E).

Finally, as Vegfc/Flt4 signalling has been previously shown to be transduced via Erk in zebrafish

trunk vasculature (Koltowska et al., 2015a; Shin et al., 2016), we investigated the impact of block-

ing this pathway on EGFP-YAP in PLs. Treatment with SL327, a MEK inhibitor that blocks Erk signal-

ling in zebrafish (Shin et al., 2016), decreased the concentration of EGFP-YAP in the nuclei of PLs,

concomitant with a reduction in PL number (Figure 5E,H–J). This was observed using time-lapse Vid-

eos (Figure 5H, not shown) as well as acquiring images following a single 12 hr treatment to exclude

interference from time-lapse bleaching (Figure 5I). Overall, these observations indicate that the

Vegfc-Erk axis promotes high nuclear Yap1 and drives normal sprouting and proliferation during

zebrafish developmental lymphangiogenesis.

Discussion
Hippo pathway signalling and YAP/TAZ activity are key regulators of cell proliferation and organ

growth and pathway components are frequently dysregulated in cancer (Harvey et al., 2013).

Recent research has broadened our understanding of this pathway, which can function to integrate

stimuli from the cellular environment that ultimately affect cell migration, growth and even cell fate

(Panciera et al., 2017). In ECs, YAP/TAZ signalling has been relatively understudied, yet has still

been reported to have roles in proliferation, survival, migration, adhesion and cellular rearrange-

ments, although the mechanisms that utilise YAP are not completely understood (Kim et al., 2017;

Neto et al., 2018; Wang et al., 2017). We show here that loss of Yap1 has a dramatic effect upon

lymphatic vascular development, as MZyap1-/- mutants fail to form a lymphatic network in the zebra-

fish trunk. Surprisingly, these mutants exhibit a largely normal blood vasculature. The severity of the

MZyap1-/- mutant phenotype indicates that Yap1 is indispensable for lymphangiogenesis and its

paralogue Taz is not able to fully compensate in lymphatic vasculature. While not studied here, it

remains possible that Taz may compensate for the absence of Yap1 in some vascular beds (eg.

blood vessels) and not others (eg. lymphatics). It is also possible that there are tissue specific effec-

tors of Yap1 in lymphatic endothelial cells by comparison to other vascular lineages. Further work is
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clearly needed to determine the mechanisms

underlying the restricted lymphatic phenotype

that we have observed here.

Lymphatic endothelial progenitor cells are

specified in MZyap1-/- mutants but these fail to

sprout normally to the horizontal myoseptum.

The processes that are necessary for departure of

LEC progenitors from the PCV and seeding of

the HM include cell sprouting and directional

migration, both Vegfc-dependent

(Koltowska et al., 2015a; Nicenboim et al.,

2015). Mutants displayed variable and abnormal

cell behaviours including turning of sprouts back

towards the PCV and fusion of adjacent sprouts.

What the precise role of Yap1 is in venous EC

sprouting requires further study, yet recent work

points to regulation of junctional dynamics and

cellular elongation as candidate cellular pro-

cesses in other vessel contexts (Neto et al.,

2018).

In addition to sprouting defects, we see a gen-

eral reduction in the number of ECs that depart the PCV during secondary angiogenesis in the

MZyap1-/- mutants. We further show that Vegfc-induced VEC and PL proliferation (in a transgenic

overexpression model) requires normal levels of Yap1. In previous studies of blood vascular ECs, the

Yap/Taz dependent proliferative response was regulated by Yap/Taz localization in the nucleus,

where they regulate transcription to promote cell proliferation (Neto et al., 2018; Sakabe et al.,

2017; Wang et al., 2017). Here, we report that EGFP-YAP localises to the nuclei of early LEC pro-

genitors in zebrafish. Moreover, in vivo live imaging showed that dynamic changes occur in EGFP-

YAP protein concentration in lymphatic progenitor nuclei. This may indicate active regulation of

nuclear-cytoplasmic localisation of Yap1, as has recently been live-imaged in Drosophila

(Manning et al., 2018). Directly imaging nuclear-cytoplasmic shuttling of EGFP-YAP presented chal-

lenges, chiefly the highly variable morphology of PL cytoplasm, which limited us to calculations and

image analysis in 2D and may have introduced technical variation. Nevertheless, nuclear/cytoplasmic

EGFP-YAP measurements correlated with changes in nuclear concentration of EGFP-YAP between

PLs (Figure 1 and Figure 1—figure supplement

1) and confirmed that PLs display highly variable

concentrations of nuclear EGFP-YAP that likely

reflect differences in Yap1 activation and

upstream signalling. We also note that we did

not observe enrichment of EGFP-YAP fusion pro-

tein at cell-cell junctions and we note a caveat

that YAP may also be regulated at the level of

protein turnover. Importantly, a high concentra-

tion of nuclear EGFP-YAP was promoted by a

local source of Vegfc, concomitant with

increased PL proliferation (Figure 5 and Fig-

ure 5—figure supplement 1). Inhibition of Flt4-

dependent Erk signalling also reduced the

nuclear concentration of EGFP-YAP (Figure 5E–

J). This suggests overall that paracrine Vegfc sig-

nalling activates LEC progenitor Flt4/Erk-signal-

ling and that Yap1 is an essential effector of this

pathway.

The development of the lymphatic vascula-

ture is a remarkable process whereby a limited

pool of progenitor cells in the wall of functional

Video 5. Time-lapse Video of MZyap1mw48-/- mutant 1

from 32 to 65 hpf with endothelial nuclei in green and

lymphatic and venous endothelium in red. Abnormal

sprouts emerge from the posterior cardinal vein (PCV).

Dorsal aorta (DA). Scale bar: 25 mm.

DOI: https://doi.org/10.7554/eLife.42881.018

Video 6. Time-lapse Video of the trunk vasculature in

MZyap1mw48-/- mutant 2 from 32 to 65 hpf, showing

endothelial nuclei in green and lymphatic and venous

endothelium in red. Abnormal sprouts emerge from

the posterior cardinal vein (PCV) anddisplaying loops as

well as fusions with adjacent sprouts. Dorsal aorta (DA).

Scale bar: 25 mm.

DOI: https://doi.org/10.7554/eLife.42881.019
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Figure 4. Yap1 mediates endothelial cell proliferation downstream of Vegfc. (A) Trunk vasculature at 3 dpf displaying endothelial cells (ECs) in green

from uninjected, p53 morpholino (MO) injected and p53 +yap1 MO injected embryos. Asterisks highlight missing parachordal LECs (PLs). Scale bars: 50

mm. (B) Trunk vasculature at 3 dpf from uninjected, p53 MO injected and p53 +yap1 MOs injected embryos of the Tg(prox1a:KalT4xUAS:uncTagRFP);

Tg(10xUAS:vegfc) strain. yap1 MO injection rescues the EC proliferation phenotype. ECs in green. Asterisks mark missing PLs. Scale bars: 50 mm. (C)

Figure 4 continued on next page
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embryonic blood vessels are utilised as progenitors to generate a complex second vasculature. This

inherently presents a tissue growth event that requires extensive, coordinated cellular proliferation

coincident with network morphogenesis. That the HIPPO pathway and YAP would play a role follows

a clear biological rationale. The process of lymphangiogenesis is important in a swathe of disease

settings that include in common cardiovascular diseases and in the metastatic spread of cancer

(Petrova and Koh, 2018). In the later setting, excessive lymphangiogenesis underpins metastatic

spread and is a target of interest for inhibition (Dieterich and Detmar, 2016). Excessive lymphangio-

genesis is also a target of interest in rare diseases such as lymphangioma or lymphatic malformation.

While much emphasis in the development of anti-lymphangiogenic agents has focused on targeting

VEGFC/VEGFR3 signalling, pathways involved in tissue growth and cellular proliferation such as the

Hippo pathway, YAP and TAZ may well represent alternative targets worthy of further investigation.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information/
reagent source

Genetic
reagent (D.rerio)

yap1mw48-/- Miesfeld et al., 2015 RRID:ZFIN_
ZDB-ALT-160122-5

Brian Link (Medical
College of Wisconsin,
Milwaukee, USA)

Genetic
reagent (D.rerio)

yap1ncv101-/- Nakajima et al., 2017 RRID:ZFIN_
ZDB-ALT-170522-16

Naoki Mochizuki
(National Cerebral
and Cardiovascular
Centre
Research Institute,
Suita, Osaka)

Genetic
reagent (D.rerio)

Tg(fli1a:nEGFP)y7 Lawson et al., 2002 RRID:ZFIN_
ZDB-ALT-060821-4

Brant M Weinstein
(National Institute of
Child Health and Human
Development,
Bethesda, USA)

Genetic
reagent (D.rerio)

Tg(- 5.2lyve1b:DsRed)nz101 Okuda et al., 2012 RRID:ZFIN_
ZDB-ALT-120723-3

Phil and Kathy
Crosier (Department
of Molecular Medicine
University of Auckland
School of Medicine)

Genetic
reagent (D.rerio)

Tg(fli1:EGFP-YAP)ncv35 Nakajima et al., 2017 RRID:ZFIN_
ZDB-ALT-170522-18

Naoki Mochizuki
(National Cerebral
and Cardiovascular
Centre Research
Institute, Suita, Osaka)

Continued on next page

Figure 4 continued

Quantification of total EC number across four somites in vegfc-unstimulated (uninjected: 343 ± 9, n = 18; p53 MO: 341 ± 9, n = 18; p53 +yap1 MOs:

248 ± 15, n = 18; p<0.0001(****)) and vegfc-stimulated embryos (uninjected: 811 ± 35, n = 18; p53 MO: 794 ± 38, n = 18; p53 +yap1 MOs: 212 ± 10,

n = 18; p<0.0001(****)). (D) Schematic representation of vegfc-overexpressing cell transplantations for single muscle grafts in [Tg(fli1a:nEGFP);

(�5.2lyve1b:DsRed2)] hosts of siblings and MZyap1mw48-/- mutants. (E) Schematic of transplanted host embryo at 3 dpf. Muscle grafts produce excessive

Vegfc causing a hyperproliferation response in adjacent PLs. (F) Quantification of PL number within one somite responding to the vegfc-OE single

muscle graft at 3 dpf (sibling: 23.00 ± 1.19, n = 18; MZyap1mw48-/-: 6.36 ± 0.71, n = 22; p<0.0001 (****)). (G) Examples of 3 different vegfc-OE muscle

grafts (false coloured) in siblings (left panels) and MZyap1mw48-/- mutants (right panels). Merge images show ECs in green, lymphatic and venous ECs

are red (yellow) [Tg(fli1a:nEGFP);(�5.2lyve1b:DsRed2)]. Scale bars: 25 mm.

DOI: https://doi.org/10.7554/eLife.42881.020

The following source data is available for figure 4:

Source data 1. Measurements of ECs in Vegfc-overexpression embryos.

DOI: https://doi.org/10.7554/eLife.42881.021

Grimm et al. eLife 2019;8:e42881. DOI: https://doi.org/10.7554/eLife.42881 13 of 22

Research article Developmental Biology

https://scicrunch.org/resolver/ZFIN_ZDB-ALT-160122-5
https://scicrunch.org/resolver/ZFIN_ZDB-ALT-160122-5
https://scicrunch.org/resolver/ZFIN_ZDB-ALT-170522-16
https://scicrunch.org/resolver/ZFIN_ZDB-ALT-170522-16
https://scicrunch.org/resolver/ZFIN_ZDB-ALT-060821-4
https://scicrunch.org/resolver/ZFIN_ZDB-ALT-060821-4
https://scicrunch.org/resolver/ZFIN_ZDB-ALT-120723-3
https://scicrunch.org/resolver/ZFIN_ZDB-ALT-120723-3
https://scicrunch.org/resolver/ZFIN_ZDB-ALT-170522-18
https://scicrunch.org/resolver/ZFIN_ZDB-ALT-170522-18
https://doi.org/10.7554/eLife.42881.020
https://doi.org/10.7554/eLife.42881.021
https://doi.org/10.7554/eLife.42881


Figure 5. Vegfc promotes nuclear Yap1 in developing lymphatic progenitors. (A) Schematic showing the transplantation of vegfc-OE cells into EGFP-

YAP reporter hosts. (B) Trunk vasculature of YAP reporter host embryos with neuron and muscle grafts expressing RFP (magenta) at 56 hpf. Control

grafts (left) and vegfc-OE grafts (right). Posterior cardinal vein (PCV); Muscle (M); parachordal LECs (PLs); Neuron (N). Scale bars: 50 mm in B and C. (C)

Heatmaps of maximum projections of EGFP-YAP from B) showing PLs and PCV. Red corresponds to high EGFP-YAP fluorescence. (C’) Lower panels

Figure 5 continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information/
reagent source

Genetic
reagent (D.rerio)

Tg(fli1:Gal4db-
TEAD2DN-2A-mC)ncv36

Nakajima et al., 2017 RRID:ZFIN_
ZDB-ALT-170522-19

Naoki Mochizuki
(National Cerebral and
Cardiovascular Centre
Research Institute,
Suita, Osaka)

Genetic
reagent (D.rerio)

Tg(UAS:GFP)y1 Asakawa et al., 2008 RRID:ZFIN_
ZDB-ALT-011017-8

Naoki Mochizuki
(National Cerebral
and Cardiovascular
Centre Research
Institute, Suita, Osaka).

Genetic
reagent (D.rerio)

Tg(fli1:Myr-mC)ncv1 Kwon et al., 2013 ZFIN ID:
ZDB-FIG-150115–34

Naoki Mochizuki
(National Cerebral and
Cardiovascular Centre
Research Institute,
Suita, Osaka)

Genetic
reagent (D.rerio)

Tg(fli1:H2B-mC)ncv31 Yokota et al., 2015 RRID:ZFIN_
ZDB-ALT-
160323–6

Naoki Mochizuki
(National Cerebral
and Cardiovascular
Centre Research
Institute, Suita, Osaka)

Genetic
reagent
(D.rerio)

Tg(gata1:
DsRed)sd2

Traver et al., 2003 RRID:ZFIN_
ZDB-ALT-
051223-6

Leonard I Zon
(Howard Hughes Medical
Institute, Boston, MA),
European Zebrafish
Resource Center (EZRC),
Zebrafish International
Resource Center (ZIRC).

Genetic
reagent
(D.rerio)

TgBAC(prox1a:
KalTA4-4xUAS-
ADV.E1b:TagRFP)nim5

Dunworth et al., 2014;
van Impel et al., 2014

RRID:ZFIN_
ZDB-ALT-
160323–6

Elke Ober (The Danish
Stem Cell Centre
(DanStem)
University of
Copenhagen)

Continued on next page

Figure 5 continued

show heatmaps of EGFP-YAP in PL nuclei. (D) EGFP intensity for each PL expressed as a ratio to the average of 6 dorsal aorta (DA) cells (unresponsive

to vegfc). six embryos per group: untransplanted host (control) (PL n = 27), transplanted control without the UAS:vegfc construct (TP Control) (PL n = 40)

and vegfc-OE transplanted embryos (TP vegfc-OE) (PL n = 251). Individual embryos indicated by an individual grey shade. (E) Heatmaps of EGFP-YAP

depicting PL nuclei of embryos at 66 hpf that were treated with DMSO (left) and SL327 for 13 hr (hrs) (right). Max projections are from time-lapse

Videos. Scale bars: 30 mM. (F) EGFP mean intensity for each PL/DA in panel D (Control: 1.61 ± 0.13, n = 27; TP Control: 1.93 ± 0.12, n = 40; p=0.08 (ns);

TP vegfc-OE: 3.14 ± 0.07, n = 251; p<0.0001(****)). (G) Quantification of PL number across six somites for each group (Control: 5 ± 0.26, n = 6; TP

Control: 8 ± 0.78, n = 16; p=0.0157 (*); TP vegfc-OE: 44 ± 8.04, n = 16; p=0.0001(***)). (H) Quantifications of the mean EGFP/mCherry fluorescent

intensity ratio in PL nuclei from time-lapse Video stills. Embryos were mounted in DMSO as control (n = 5) or SL327 (15 mM) (n = 5) and continuously

imaged for 12 hr starting at 54 hpf (1 hr drug treatment), finishing at 66 hpf (13 hr) (1 hr DMSO: 0.33 ± 0.02, n = 20; 1 hr SL327: 0.24 ± 0.02, n = 23;

p=0.0036 (**)) (13 hr DMSO: 0.39 ± 0.02, n = 20; 13 hr SL327: 0.26 ± 0.03, n = 16; p=0.0006(***)). (I) Quantifications of mean EGFP/mCherry Ratio in PLs

of embryos at 66 hpf treated with DMSO/SL327 for 12 hr from 54 hpf to 66 hpf without time-lapse imaging (12 hr DMSO: 0.47 ± 0.02, PLs n = 43; 13 hr

SL327: 0.37 ± 0.03, PLs n = 22; p=0.02 (*)). (J) Quantification of PL number in embryos treated with DMSO/SL327 for 12 hr at 66 hpf without time-lapse

imaging (12 hr DMSO: 8.6 ± 1.08, embryo n = 5; 13 hr SL327: 4.4 ± 0.81, embryo n = 5; p=0.014 (*)).

DOI: https://doi.org/10.7554/eLife.42881.022

The following source data and figure supplements are available for figure 5:

Source data 1. Measurements of LEC EGFP-YAP in response to Vegfc.

DOI: https://doi.org/10.7554/eLife.42881.025

Figure supplement 1. The autonomous EGFP-YAP response to Vegfc in transplanted ECs.

DOI: https://doi.org/10.7554/eLife.42881.023

Figure supplement 1—source data 1. Measurements of EGFP-YAP PLs in Vegfc-overexpression embryos.

DOI: https://doi.org/10.7554/eLife.42881.024
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information/
reagent source

Genetic
reagent
(D.rerio)

Tg(10xUAS:
vegfc)uq2bh

Koltowska et al., 2015a RRID:ZFIN_ZDB-
ALT-151208-1

Ben M Hogan
(Institute for
Molecular Bioscience,
The University of
Queensland)

Genetic
reagent
(D.rerio)

Tg(fli1a:H2B-
mCherry)uq37bh

this paper Ben M Hogan
(Institute for
Molecular Bioscience,
The University of
Queensland)

Genetic
reagent
(D.rerio)

TgBAC(dab2b:
EGFP)ncv67

other Shigetomo Fukuhara
and Shinya Yuge
(Nippon Med. School)

Genetic
reagent
(D.rerio)

Tg(kdrl:
mCherry)ncv502

other Naoki Mochizuki
(National Cerebral
and Cardiovascular
Centre Research
Institute, Suita, Osaka).

Antibody chicken anti-GFP Abcam Cat#ab13970 Primary AB,
Alexa Fluor-488
conjugated, 1:250

Antibody C1 anti-GFP Invitrogen Cat#A11039 Secondary AB, 1:400

Antibody rabbit anti-Prox1 AngioBio Cat#11–002 Primary AB, 1:500

Antibody anti-rabbit
IgG-HRP

Cell Signaling Cat#7074S Secondary AB, 1:1000

Sequence-
based reagent

MO4-yap1 Loh et al., 2014 ZFIN ID:
ZDB-MRPHLNO-
140915–5

Genetools, LLC

Sequence-
based reagent

p53 MO Robu et al., 2007 SKU: PCO-
ZebrafishP53-100

Genetools, LLC

Commercial assay or kit TSA Plus
Cyanine 3 System

Perkin Elmer #NEL744001KT Amplification of signal
detection of the Prox1-
AB staining

Chemical compound, drug SL327
(MEK inhibitor)

Sigma-Aldrich S4069;
CAS:305350-87-2

15 mM

Software, algorithm ImageJ ImageJ
(http://imagej.
nih.gov/ij/)

SCR:002285 Image processing
and analysis,
Version 2.0.0-rc-49/1.51d

Software, algorithm Imaris x64 Bitplane SCR:007370 Image processing
and analysis,
Version 9.0.2

Software, algorithm GraphPad Prism GraphPad
Prism
(https://graphpad.com)

SCR:015807 Statistics, Prism7:
Version
7.0 c and Prism8:
Version 8.0.1

Zebrafish
All zebrafish work was conducted in accordance with the guidelines of the animal ethic committee

guidelines at the University of Queensland and of the National Cerebral and Cardiovascular Center

(No.14005 and No.15010). The two different mutant strains used were the yap1ncv101-/- mutant,

which has a 25 base pair (bp) deletion in exon1 leading to a frame shift and stop codon after 71 bp,

prior to the TEAD binding domain (Nakajima et al., 2017), and the yap1mw48-/- mutant, which dis-

plays a 4 bp deletion after 158 bp, truncating the TEAD binding domain and leading to a premature

stop codon (Miesfeld et al., 2015). The transgenic zebrafish lines used were published previously as

following: Tg(fli1a:nEGFP)y7 (Lawson et al., 2002), Tg(- 5.2lyve1b:DsRed)nz101 (Okuda et al., 2012),

Tg(fli1:EGFP-YAP)ncv35 and Tg(fli1:Gal4db-TEAD2DN-2A-mC)ncv36 (Nakajima et al., 2017), Tg(UAS:
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GFP)y1 (Asakawa et al., 2008), Tg(fli1:Myr-mC)ncv1 (Kwon et al., 2013) and Tg(fli1:H2B-mC)ncv31

(Yokota et al., 2015), Tg(gata1:DsRed)sd2 (Traver et al., 2003), TgBAC(prox1a: KalTA4-4xUAS-

ADV.E1b:TagRFP)nim5(Dunworth et al., 2014; van Impel et al., 2014); Tg(10xUAS:vegfc)uq2bh

(Koltowska et al., 2015b). The Tg(fli1a:H2B-mCherry)uq37bh strain was generated for this study using

Gateway cloning and transgenesis. The transgenic line TgBAC(dab2b:EGFP)ncv67 was provided by

Shigetomo Fukuhara and Shinya Yuge (Nippon Med. School). Tg(kdrl:mCherry)ncv502 were generated

using Tol2 mediated transgenesis.

Morpholino injections
The yap1 morpholino (MO) used has been validated and described previously as MO4-yap1

(Loh et al., 2014). To control for yap1 morpholino non-specific effects, we co-injected p53 MO as

previously described (Robu et al., 2007) and both uninjected and p53 MO injected embryos were

used as controls. All MOs were purchased from Genetools, LLC and injected at 5 ng/embryo.

Genotyping of yap1 mutants
Yap1 mutants of the yap1ncv101 allele were genotyped by PCR using a Microchip Electrophoresis Sys-

tem for DNA/RNA Analysis (MCE-202 MultiNA). yap1ncv101 forward primer: TCCTTCGCAAGGC

TTGGATAATTG yap1ncv101 reverse primer: TTGTCTGGAGTGGGACTTTGGCTC yap1 mutants carry-

ing the yap1mw48 allele were genotypes using a KASP genotyping assay following the manufacturer’s

instructions (LGC Genomics).

Drug treatments and immunohistochemistry
Embryos were treated with 15 mM of the chemical inhibitor SL327 (Merk, NJ, USA) diluted in E3

medium with 0.003% 1-phenyl-2-thiourea (PTU) and 1% DMSO (Sigma) and immobilised with Tri-

caine (0.08 mg/ml) and 1% low melting agarose for imaging. Control embryos were kept in E3-PTU

water with 1% DMSO.

Immunofluorescent staining was performed as described in Okuda et al. (2018) with the follow-

ing minor changes to the protocol: 30 min of ProtK treatment (20 ng/ml) was used for 36 hpf old

embryos. For EGFP, the primary antibody used was chicken a-GFP (1:400, Abcam, #ab13970) and

secondary C1 anti-GFP (Invitrogen, #A11039). For Prox1, rabbit a-Prox1 (1:500, AngioBio, #11–002)

was used as primary and a-rabbit IgG-HRP (1:1,000, Cell Signaling, #7074S) as secondary and ampli-

fied the Prox1 signal with TSA Plus Cyanine 3 System (Perkin Elmer, #NEL744001KT).

Transplantations
EC transplantations to test cell autonomy were performed between pre-dome stage donor and host

embryos essentially as previously published (Hogan et al., 2009a). Briefly, only successfully trans-

planted embryos with a normal morphology were selected to be imaged. Despite each transplanted

graft being unique, comparable EC grafts were selected in terms of location and size for each exper-

iment. In Figure 2G–I, the EC graft size was categorized as small, medium or large to keep grafts

comparable between wildtype and mutant embryos studied. ‘Large’ grafts spanned vasculature over

4–5 somites, ‘medium’ sized grafts spanned vasculature over 2–3 somites and ‘small’ grafts over 1–2

somites. Single cell grafts were not included in the analysis. To analyse the response of PLs to locally

transplanted vegfc-overexpressing muscle cell grafts in Figure 4, only single cell muscle grafts adja-

cent to the horizontal myoseptum were considered which spanned one somite. The PL number was

quantified within the same somite. In Figure 5—figure supplement 1, selected host embryos

showed lymphatic or venous ECs as well as transplanted ECs in the dorsal aorta.

All EC graft donor embryos were in-crosses of either wildtype control or homozygous Zyap1ncv101

mutants. For the transplantation of muscle and neurons in Figure 5, donor embryos for the chosen

transgenes [TgBAC(prox1a: KalTA4-4xUAS-ADV.E1b:TagRFP)] as TP control and [TgBAC(prox1a:

KalTA4-4xUAS-ADV.E1b:TagRFP);Tg(10xUAS:vegfc)]as vegfc-OE were all heterozygous. Crosses

between Tg(fli1:EGFP-YAP)ncv35 and Tg(fli1a:H2B-mCherry)uq37bh were used to generate heterozy-

gous host embryos.
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Imaging
All imaged embryos were immobilised with tricaine (0.08 mg/ml) and mounted laterally in 1% low-

melting agarose (Sigma-Aldrich, A9414-100G) for still images and 0.7% agarose for time-lapse Vid-

eos. Zebrafish embryos were imaged at the Australian Cancer Research Foundation’s Cancer Ultra-

structure and Function Facility at the Institute for Molecular Bioscience in Brisbane, Australia using a

Zeiss LSM 710 FCS confocal microscope and an Andor Dragonfly Spinning Disc Confocal microscope

with the Zyla 4.2 sCMOS camera (exclusively for Video 2 and Figure 1—figure supplement 1F), or

at the National Cerebral and Cardiovascular Center Research Institute in Osaka, Japan on an OLYM-

PUS confocal microscope (FluoView FV1000 and FV1200). All embryos analysed for quantification of

signal intensity were heterozygous carriers for each transgene and imaged with the same imaging

settings for each experiment with neuronal and muscle transplantations being the exception.

Image processing and fluorescent intensity analysis
Images were processed with image processing software ImageJ Version 2.0.0-rc-49/1.51d (National

Institute of Health) and Imaris x64 (Version 9.0.2). For Figure 2B, the dorsal longitudinal lymphatic

vessel (DLLV) could not be scored due to interference with skin fluorescence in the TgBAC(dab2b:

EGFP) strain.

To investigate EGFP-YAP activity within ECs, we used three different approaches. The first

method, which we chose to use throughout the study examined nuclear EGFP/mCherry intensity

ratios within ECs. This analysis was performed using Imaris software to extract the average pixel

intensity spanning the entire nucleus in 3D. The nucleus was masked using the red channel

(mCherry). To represent both fluorophores in one graph for each cell track shown in Figure 1I and

Figure 1—figure supplement 1G, the mean mCherry intensity was used to normalize the graphs. In

the second method, nuclear EGFP/mCherry intensity was calculated manually in 2D on a single

z-plane using ImageJ. The chosen z-plane was determined by the centre of each PL nucleus. Intensi-

ties were extracted by thresholding the red channel. The final method calculated the nuclear to cyto-

plasm ratio of EGFP-YAP using the same manual approach with ImageJ with the addition that the

cell outline is manually drawn around each cell and the all values within the thresholded nucleus are

excluded.

For Figure 5, measurements of relative EGFP-YAP intensity, to control for the variation in trans-

gene signal between embryos, the average EGFP fluorescent intensity per pixel for individual PLs

was measured and divided by the mean of 6 DA cells measured within the same embryo. A similar

approach was used for Figure 5—figure supplement 1 with the modification that at least 3 DA cells

were averaged due to graft size limitations.

Figure 5C’ and E, Videos 2–3 and Figure 5—figure supplement 1C”-D” display the EGFP fluo-

rescence intensity as a heatmap within the PL nuclei which was generated using the Imaris surface

function for the red channel to select only the nuclei.

Quantification and statistical analysis
Graphic representation of data and statistical analysis was performed using Prism7 and Prism8

(GraphPad, version 7.0 c for Prism7 and version 8.0.1 for Prism8). All experiments were statistically

evaluated using the unpaired two-sided t-test as comparison of mean unless stated otherwise. Stars

indicate p-values as level of significance in GP style with p�0.0001 (****), p�0.0002 (***), p�0.0021

(**), p�0.332 (*), and p�0.05 (not significant (ns)). All graphs with single dot scatter plots with error

bars showing mean and standard error of the mean (SEM). A pearson correlation analysis and linear

regression has been performed in Figure 1H and Figure 1—figure supplement 1C to compare the

similarity of the different methods to measure the average EGFP intensity.

The EC numbers in Figure 4C and Figure 5G and J were counted using the Spot detection algo-

rithm from Imaris. All other EC numbers were manually counted with ImageJ. The fragments of tho-

racic duct in Figure 2D and the PL abundance in Figure 3D were scored as present (1) or absent (0)

for each somite per embryo and displayed as percentage.
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