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Abstract

Fuel cell vehicles combine the benefits of fuel cell stacks and energy storage systems to

achieve fuel economy and zero emission. Energy management systems are vital to fuel

cell vehicles in fuel economy and system durability since it determines the distribution

of power from the fuel cell stack and energy storage system.

In this thesis, we propose three novel energy management system designs for fuel cell

vehicles to improve the vehicle energy system stability, optimality and durability.

We first present a non-myopic energy management system for controlling multiple

energy flows in fuel cell hybrid vehicles. The control problem is solved by convex pro-

gramming under a partially observable Markov decision process based framework.

We propose an average-reward approximator to estimate a long-term average cost in-

stead of using a model to predict future power demand. Thus, the dependency be-

tween the system closed-loop performance and the model accuracy for predicting the

future power demand is decoupled in the energy management design for fuel cell ve-

hicles. The energy management scheme consists of a real-time self-learning system,

an average-reward filter based on the Markov chain Monte Carlo sampling, and an

action selector system through the rollout algorithm with convex programming based

policy. The performance evaluation of the energy management strategy is conducted

via simulation studies using data obtained from real-world driving experiments and

its performance is compared with three benchmark schemes.

To increase the applicability of the energy management system to various driving sce-

narios and multiple drivers, we propose an energy management scheme in fuel cell

vehicle systems. The energy management problem is cast in the form of a nonlinear

infinite-time optimisation problem. A model-based fuzzy control method is employed

to design the control law. By linear matrix inequality approach, sufficient conditions

are proposed to design the control strategy such that the energy system is robustly

stable with a desired mixed H2/H∞ performance. The effectiveness and potential of

the new design technique developed are demonstrated by different real-world driving

scenarios.
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Abstract

By using optimal control principle, we further improve the energy management sys-

tem performance in terms of reducing hydrogen consumption while maintaining the

battery state of charge under practical operating constraints and uncertain future power

demand. The fuzzy modelling approach is employed to describe the nonlinear power

plant and a robust model predictive based control is designed to achieve the desired

system performance. Moreover, traffic condition is incorporated into the energy man-

agement controller design to further improve the system performance. The effective-

ness and advantages of the proposed control scheme are illustrated by a simulator

developed based on real-world experimental data.

Finally, we investigate the problem of controlling energy flow in fuel cell vehicles by

considering system stability, optimality, and durability. The energy management prob-

lem is transformed into a nonlinear optimisation problem with multi-objectives to im-

prove fuel economy, maintain battery state of charge, and reduce the incidence of fac-

tors affecting the fuel cell performance degradation. A robust model-predictive-based

fuzzy control method is employed to design the nonlinear control law. The energy

management system is capable of coordinating with a fuel cell stack state of health es-

timator and an energy storage system scheduler to achieve the optimisation objectives

in the presence of uncertainty of the driver’s power demand. The effectiveness of the

new design technique developed is demonstrated by conducting studies on control

performance over typical urban/highway driving scenarios.
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Chapter 1

Introduction

ENERGY management system is a core technology for the electrification

of traditional internal combustion engine vehicles. Fuel cells receive

growing attention from the industrial and academic community as promis-

ing alternative energy systems for environment-friendly transportation ap-

plications. This introductory chapter offers a brief background of fuel cell

vehicles, research problems of the energy management system design, mo-

tivations and contributions of the thesis, and the thesis outline.
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Chapter 1 Introduction

1.1 Fuel cell vehicle introduction

In recent years, the energy efficiency of traditional vehicles has been markedly im-

proved. Dependence on fossil fuels and pollution is significant shortcomings of tradi-

tional vehicles. One solution is the electrification of internal combustion engine vehi-

cles.

In the automotive market, there is considerable interest in developing advanced electri-

fied vehicles, including battery electric vehicles (BEVs), hybrid electric vehicles (HEVs)

and fuel cell vehicles (FCVs) (Kasimalla and Velisala 2018, Axsen and Kurani 2013).

They share similar vehicle control technologies but differ in the energy sources used to

propel the vehicle.

Battery electric vehicles use an electric motor for traction, and batteries as the sole

energy source to power the vehicle. battery electric vehicles offer many advantages

over traditional internal combustion engines vehicles (ICEVs), such as zero emissions,

high efficiency, independence on fossil fuels (Yan et al. 2006). However, they suffer

from limited driving mileage and require long battery charging time.

Hybrid electric vehicles propulsion systems are equipped with two energy sources,

the engine with a chemical fuel in liquid or gaseous form, and a rechargeable energy

storage system (typically batteries or supercapacitors) that can serve as an energy stor-

age buffer and recover vehicle kinetic energy during vehicle braking (Onori et al. 2016,

Krithika and Subramani 2018). Hybrid electric vehicles offer longer driving mileage

and greatly lower emissions compared to internal combustion engines vehicles but

fossil fuel dependence and pollution from the engine are critical concerns.

Enhancing fuel economy with alternate fuel has led to usage of fuel cells as advanced

power sources for transportation (Daud et al. 2017, Ehsani et al. 2018, Burke 2007).

Fuel cells are efficient and cleanly convert the chemical energy to electric energy with

high efficiency and much significantly lower greenhouse-gas emission as compared to

traditional internal combustion engines (Wang and Jiang 2017). To improve the dy-

namics response and durability of fuel cell systems, hybridization of fuel cells with

energy storage systems such as lithium-ion batteries or supercapacitors is necessary

(Motapon et al. 2013).

Fig. 1.1 shows the basic layout of a typical a fuel cell drive train. Its propulsion system

comprises a fuel cell stack and an energy storage system to drive the vehicle. Thus,
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Figure 1.1. Basic configuration of a typical a fuel cell drive train

this kind of propulsion system combines the advantages of BEVs and HEVs and offers

efficient, pollution-free and long range driving experience.

1.2 Research problems

In an FCV, an effective energy management system is vital to the system since it deter-

mines the distribution of power from the fuel cell system and energy storage system

at each instant in the vehicle while meeting several constraints (Sulaiman et al. 2018,

Hrovat et al. 2012).

Fuel cell systems use hydrogen and oxygen to generate electricity and emit only wa-

ter. Consequently, they receive growing attention from the industrial and academic

community as a promising alternative energy system for environment-friendly appli-

cations. Those promising converters, however, suffer from a limited lifespan due to

performance degradation that impedes their widespread deployment.

The first research problem is how to reduce the negative factors caused fuel cell perfor-

mance degradation during driving. The power demand during driving is determined

by the driver’s driving behaviour. In practice, predicting a human’s behaviours is al-

ways a challenge.

Second, as a transportation application, how to minimise the fuel (hydrogen) con-

sumption and maintain the battery SoC within the admissible range under practical

operating constraints and uncertain future power demand?

Page 4



Chapter 1 Introduction

Third, how to design a real-time energy management system to respond instanta-

neously to the power demand ?

Designing an effective energy management system to address the three energy man-

agement problems in the primary objective in this research work.

1.3 Motivation

The main practical challenge of the prediction-based energy management system de-

sign in FCVs is that the control system may perform poorly when the future power

demand is not well described by the predictive model. From an energy point of view,

the power demand is determined by the driver’s driving behavior. In real-world driv-

ing scenarios, drivers have quite different driving behaviors. It is challenging to predict

human’s behavior even if the driving conditions are given.. Finding an efficient and

effective way to design a universal energy management system for all driving condi-

tions without explicit prediction of future power demand has been the first motivation

of this research.

The energy management system design for traditional hybrid vehicles is well-developed.

Nevertheless, the new requirements render the approaches not easy to be implemented

in fuel cell vehicles since we should consider the dynamic performance of the fuel cell

systems, and the efficiency of auxiliary devices, such as the boost converter, in fuel

cell vehicles. Overcoming the shortcoming of the method compatibility and the model

accuracy in traditional hybrid vehicle based energy management system has been the

second motivation of this research.

Developing an effective real-time energy management controller to reduce the inci-

dence of factors affecting the fuel cell performance degradation while improving sys-

tem optimality has been the third task in the energy management system design for

fuel cell vehicles.

1.4 Summary of contributions

This thesis offers the following contributions:
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• A novel technique to solve the energy management problem for fuel cell vehicles

under a partially observable Markov decision process framework is proposed,

which decouples the dependency between the system closed-loop performance

and the model accuracy for predicting the future power demand in the energy

management design.

• A novel control law is developed by considering system stability, system optimal-

ity for charge-sustaining fuel cell vehicles and a fuzzy-model based energy man-

agement controller capable of providing H∞ control performance for the charge

sustenance of the battery pack and H2 control performance for reducing the total

fuel consumption over various driving scenarios.

• A robust fuzzy model predictive based control scheme with the T-S fuzzy mod-

elling framework that optimises the power distribution in fuel cell vehicles while

maintaining battery charge-sustaining in the presence of disturbance, a theoret-

ical analysis for stability, robustness and performance that is applicable to the

energy management system design in fuel cell vehicles, and an improved robust

fuzzy model predictive control by incorporating traffic condition for further im-

proving the system performance in terms of fuel consumption.

• Finally, a reformulated T-S fuzzy modelling framework is proposed to transform

the energy management system for fuel cell vehicles into a nonlinear control law,

which allows to concurrently take battery state of charge sustenance, fuel cell

stack durability and vehicle fuel economy into account in the energy manage-

ment system design and a novel fuzzy robust-model-predictive based energy

management controller is developed, which ensures Lyapunov stability of the

vehicle power system for all driving conditions and offers the compatibility with

the state estimation and dynamic optimization.

1.5 Thesis outline

The thesis is organised as follows.

Chapter 2 gives a literature review of the energy management system design for fuel

cell vehicles. Firstly, the historical background of the development of the fuel
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cell vehicles is presented. Then, the chapter overviews the energy management

system design for fuel cell vehicles in the literature.

Chapter 3 presents an energy management system for fuel cell vehicles under par-

tially observable Markov decision process where a Markov chain Monte Carlo

sampling-based approximator is developed to predict long term average power

demand and the energy management problem is then solved by convex program-

ming. Since the predictive model of the future power demand is not required in

the energy management strategy, the dependency between the system closed-

loop performance and the model accuracy for predicting the future power de-

mand is decoupled in the energy management design.

Chapter 4 provides a mixed H2/H∞ control based energy management system for fuel

cell vehicles to increase the system’s applicability over various driving scenarios.

The energy management problem is cast in a mixed H2/H∞ framework in which

H2 control improves the fuel economy to achieve optimal performance and H∞

control maintains battery charge sustainability in the presence of system uncer-

tainty and disturbance to achieve robustness specifications.

Chapter 5 proposes a robust model predictive based control scheme under a fuzzy

modelling framework to design the energy management system for fuel cell ve-

hicles. The fuzzy modelling approach is employed to describe the nonlinear en-

ergy system and a robust model predictive based control is designed to achieve

the desired system performance. By using receding horizon control principle,

the available driving information is leveraged in the energy management system

design to reduce fuel consumption.

Chapter 6 incorporates the fuel cell system optimisation into the energy management

system design. The energy management system consists of a fuel cell stack state

of health estimator, an energy management system scheduler, and an energy

management controller. The energy management problem is transformed to a

nonlinear optimization problem with multi-objectives to improve fuel economy,

maintain battery state of charge, reduce deterioration in fuel cell performance

and the fuzzy robust model predictive control is employed to design the energy

management controller.
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Chapter 7 concludes this study and discusses some directions for future research to

achieve optimal system performance in terms of fuel economy and energy system

durability.
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Chapter 2

Literature Review

THIS chapter provides a brief review of the historical background of the

fuel cell vehicle development and literature review of the energy man-

agement system design for fuel-cell electric vehicles.
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2.1 Introduction

Owing to increased public awareness of environmental and energy crisis concerns, ve-

hicle manufacturers are turning to the electrification of traditional internal combustion

engine vehicles in an effort to reduce greenhouse gas emissions, embrace alternative

energy and increase energy system efficiency. Fuel cells have been attracting signif-

icant attention as a potential alternative to the combustion engine for the absence of

CO2 emissions during vehicle operation.

Besides this, compared with battery-powered electric vehicles, fuel cell vehicles promise

benefits for drivers/owners among multiple dimensions (Rücker 2020):

• Quick charging time. Less than five minutes (like for internal combustion en-

gine engines) will be needed to refill the tank compared to the longer duration

expected to recharge battery-powered electric vehicles.

• Longer driving range. With more than 450km of driving allowance, fuel cell ve-

hicles are already commercially attractive and, on average, they support larger

ranges than battery-powered electric vehicles.

• Applicability of various driving condition. The range of fuel cell vehicles does

not deteriorate in cold weather.

This chapter presents a short review of the historical background of the fuel cell vehicle

development in Section 2.2 and the literature review of the energy management system

design for fuel cell vehicles in Section 2.3.

2.2 Fuel cell vehicle development

The concept of using fuel cells to generate electricity was first invented in 1839 by Sir

William Grove, a Welsh physicist (Andújar and Segura 2009). The first notable com-

mercial fuel cell application was developed a century later in the early 1960s. NASA’s

Gemini spacecraft uses fuel cells to provide electrical power during manned space

missions (Cook 2002, Burke 2003). In 1966, General Motors tested the Electrovan, the

world’s first hydrogen-powered fuel cell vehicle (Rodrigues et al. 2010). The vehicle

provides a range of 120 miles and 70 mph maximum speed.
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Table 2.1. List of the latest fuel cell vehicles commercially produced

FCV model Vehicle

Power

(ps)

FCS

power

(kW)

Range

(km)

Battery

capacity

(kWh)

Toyota Mirai 2019 151 114 502 1.6

Hyundi NEXO 2019 163 95 611 1.56

Honda Clarity 2020 174 103 580 -

Mercedes-Benz GLC F-CELL 2019 217 - 478 13.5

Audi A7 Quattro 220 - 500 8.8

Although fuel cell applications were still limited to the aerospace industry in the 1970s-

1980s, the 1970s oil crisis brought significant research into hydrogen fuel cells. By

1990s, many car manufacturers, such as Daimler Chrysler, General Motors, Hyundai,

and Toyota, had demonstrated their fuel cell vehicle prototypes. In the 2000s, commer-

cial fuel cell vehicles began to appear in the automotive leasing market. Some examples

are: Honda(FCX-V4,2002-2007), Ford (Focus FCV, 2003-2006), Chevrolet (Equinox FC,

2007-2009), Mercedes-Benz (F-Cell 2007-2009).

With the rapid iteration of the fuel cell system, energy storage system and other im-

provements, substantial progress has been made in fuel cell vehicle development in

the last decade. Table 2.1 summarises the latest fuel cell vehicle models in the market

(Yoshida and Kojima 2015, Nassif and de Almeida 2020, Tanaka et al. 2020, Kurtz et al.

2019).

Although fuel cell vehicles reach the first stage of commercialisation with more than

6500 on the road in the US for a wide array of transportation purposes in 2019 (Thompson

and Papageorgopoulos 2019), research and development in the area of energy system

performance and durability in fuel cell vehicles remain a top priority (Borup et al. 2020).

2.3 Energy management system design

Energy management systems are the brain of the fuel cell vehicles since it regulates the

power flow between the fuel cell stack and energy storage system. Developing a new

generation of fuel cell vehicle energy management system to reduce the fuel consump-

tion, optimise the durability of the fuel cell stack, and improve vehicle performance

remains the primary task of scientific research (Teng et al. 2020).
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In the energy management system design for FCVs, there are two main categories

proposed to address the energy management problem, that is, heuristic-based and

optimisation-based control techniques.

Heuristic-based control techniques, such as equivalent consumption minimisation strat-

egy (ECMS) (Paganelli et al. 2002, Yu et al. 2011) and fuzzy logic (Tekin et al. 2007,

Zandi et al. 2010, Martinez et al. 2011), decompose the task of control design into a

group of local tasks and solve optimization the problem in real-time. As model-free

based control techniques, the control schemes are simple and straightforward and easy

for implementation. These techniques are suitable in a real application, but one major

shortcoming is that the optimality can only be guaranteed in few driving cycles since

the fuzzy rules or factors must be chosen in advance.

The optimisation-based control techniques are based on minimising/maximising a

cost function over a finite predictive horizon (Lewis et al. 2012, Sethi and Thompson

2000). Commonly used optimization methods, such as convex programming and dy-

namic programming, have been implemented to achieve optimality. For example,

in (Ansarey et al. 2014), multi-dimensional dynamic programming is adopted to ad-

dress the energy management problem in fuel cell vehicles. In (Chen et al. 2013),

dynamic programming with two neural network modules is proposed to design the

energy management system for hybrid vehicles. In (Hu et al. 2013, Elbert et al. 2014,

Nüesch et al. 2014), the energy management problem is cast into a convex form and

solved by convex programming. Those primary shortcomings of the EMSs based on

those methods required prior information of the future power demand and heavy com-

putational burden, thus they are challenging to apply in a real vehicle.

Finding an energy management controller to overcome the limitations of the above

techniques has been one major motivation in the EMS design for FCVs.

To tackle the problem, adaptive and stochastic features are incorporated into the en-

ergy management system design for FCVs, with an aim to improve fuel economy by

leveraging available driving information while maintaining battery charge in an ad-

missible range.

A widely used strategy is the adaptive optimal supervisory control technique. It is

based on heuristic-based control techniques, such as fuzzy logic, Pontryagin’s Mini-

mum Principle(PMP) and ECMS. The main improvement of the control technique is

that the co-state/fuzzy-rules is estimated online as driving scenarios vary, which is
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called co-state adaptation (Nguyen et al. 2018, Li et al. 2019). For example, in (Musardo et al.

2005, Sun et al. 2017), adaptive ECMS based EMSs are proposed in which the equiva-

lence factor is updated online based on the driving condition. In (Ou et al. 2018, Onori

and Tribioli 2015), the adaptive-PMP based energy manage management strategy is

developed to minimise the fuel consumption and maintain the battery charge level

in hybrid vehicles. In (Chen et al. 2016, Yin et al. 2016), the adaptive fuzzy logic con-

trol strategy is proposed to adjust the fuzzy system membership function online for

improving the system applicability.

Future information of the driving power demand is not readily exploited by tradi-

tional optimal control strategies, but model predictive control (MPC) appears to be

one suitable control technique for this purpose. The idea behind MPC is to formu-

late the optimal control problem over a finite time-interval and repeatedly optimise

a control sequence over a receding horizon by predicting future system behaviour

(Shen et al. 2020b, Zhang et al. 2017, Golchoubian and Azad 2017, Huang et al. 2017).

For instance, in (Cairano et al. 2014), a stochastic model predictive control is adopted

to design an EMS for FCVs. The power demand is represented by a Markov-chain

based predictive model; then the optimisation problem is solved online in a stochas-

tic finite horizon with stability constraints. In (Wang et al. 2016), a model predictive

based control is proposed to solve the energy management problem in a hybrid elec-

tric tracked bulldozer. In (Zeng and Wang 2015), the authors proposed a stochastic

MPC based EMS using the prediction of the vehicle location, travelling direction, and

terrain information.

Another recent approach is to use control Lyapunov functions to design energy man-

agement control laws. Unlike the prediction-based approach, control-Lyapunov based

approach focuses on system stability and treats the vehicle power request as a distur-

bance to the power system (Shen et al. 2020a). In (Mura et al. 2015, Sampathnarayanan et al.

2014), the energy management problem is cast in the form of a nonlinear optimal reg-

ulation (with disturbance rejection) problem (Haddad and Chellaboina 2011), and a

control Lyapunov function is used to design the control law. In (Song et al. 2017), a

Lyapunov function based sliding-mode controller is proposed to regulate the power

flow in electric vehicles. In (Zhang et al. 2019), a control-Lyapunov based nonlinear

control is proposed for regulating the power flow between the fuel cell stack and the

Li-ion battery in fuel cell vehicles.
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Owing to increased public awareness of environmental and energy crisis concerns,

fuel-cell based electrochemical converters receive growing attention from the indus-

trial and scientific community as a promising internal combustion engine substitute for

environment-friendly transportation applications. Unlike conventional internal com-

bustion engine, fuel cell system dynamics brings model uncertainty to the system and

impacts on the control performance of the EMS. The dynamic behavior of the fuel cell

is affected by the operating condition of the stack, such as inlet pressure, humidity,

temperature, fuel stoichiometry and load variation (Mueller et al. 2007, Yan et al. 2006).

The results shown in (Wu et al. 2017) shows that up to 5% fuel economy improve-

ment on New York city cycle by incorporating fuel cell dynamics in the EMS de-

sign. This is an indication of the effects of fuel cell dynamics on energy manage-

ment design in FCVs. Moreover, those promising converters suffer from a limited

lifespan due to performance degradation that impede their widespread deployment

(Mueller et al. 2007, Yan et al. 2006, Bressel et al. 2016). Prolonging fuel cell life is another

important consideration when designing the EMS (Wang et al. 2019, Liu et al. 2019).

Developing an EMS considering fuel cell system optimisation is generally formulated

as a multi-objective problem. The objectives of the EMS consist of is not only improving

fuel economy and maintaining battery charge level but also prolonging the system

lifespan (Yue et al. 2019). Because these objectives are often conflicting, a compromise

needs to be taken with trade-offs among the multiple objectives.

The fuel cell system optimisation has been considered in both heuristic-based and

optimisation-based EMSs for FCVs in recent years.

Heuristic-based EMSs aim to find efficient operation points that reduce the energy

system degradation in their local tasks/rules. For instance, in (Marx et al. 2017), a

fuzzy logic based energy management strategy is proposed to reduce energy system

degradation by using multi-stack fuel cell architecture where the fuzzy rules decide

how many fuel cell stacks should be turned on and the corresponding output power

level. However, the optimality of the system has not been discussed in the paper. In

(Marx et al. 2017), a frequency split EMS has been proposed by using wavelet trans-

forms. Since the frequencies of the attributed signals are in the range of admissible

frequencies, the fuel cell system and battery pack can operate in their health modes.

However, the autoregressive integrated moving average model used in the method

requires expert knowledge and cannot be generalised.
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Optimisation-based EMSs usually take the energy system degradation factor into ac-

count in their cost functions or set several constraints into the control actions to reduce

the energy system degradation. In (Garcı́a-Triviño et al. 2016), a multi-objective optimi-

sation problem is formulated by combining energy system operational cost, efficiency

and lifetime. The optimisation problem is then solved by particle swarm optimisa-

tion method where three objectives were integrated into a single cost function through

weight aggregation approach. In (Arce et al. 2009), model predictive control is pro-

posed for the energy management system design where fuel cell system degradation

is limited by setting the threshold of fuel cell output power and reduce its start-ups and

shut-downs frequency. However, the various operation conditions and heavy compu-

tational burden impede their widespread deployment in real-time implementation.

2.4 Chapter summary

This chapter introduces the historical background of fuel cell vehicle development and

energy management system design for fuel cell vehicles in the literature. Two main cat-

egories, heuristic-based control techniques and optimisation-based control techniques,

that proposed to address the energy management problem are given, as well as the

fuel cell system optimisation in the energy management system development.

The next chapter will present our first energy management system design under a

partially observable Markov decision process framework for fuel cell vehicles. Based

on this control scheme, the dependency between the system closed-loop performance

and the predictive model accuracy can be decoupled.
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Chapter 3

Energy Management
System Design under
POMDP Framework

THE main problem of previous predictive based energy management

systems is that the closed-loop performance of the control system is

highly dependent on the predictive model. In this chapter, we propose a

novel energy management system for fuel cell vehicles, an average-reward

approximator under a partially observable Markov decision process frame-

work to improve system optimality in terms of fuel consumption and bat-

tery charge-sustaining. A vector of random variables describing the long-

term average power demand to be the unobservable state. A Markov chain

Monte Carlo sampling method based average-reward filter is developed,

along with observations, to determine the posterior distribution of the un-

observable state. Then an optimal action is selected by convex program-

ming based on a long-term average cost. The simulation result shows that

the proposed energy management system provides 8% - 12% improvement

compared with a standard charge-depleting charge-sustaining energy man-

agement system in terms of fuel consumption over five real-world driving

experiments.
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3.1 Introduction

The power demand in fuel cell vehicles is determined by a driver’s driving behavior.

In real-world driving conditions, it is a challenge to predict specific future human’s

behavior in a receding horizon even if the driving route is known in advance. To better

understand this issue, we conducted a real-world driving experiment and collected

the raw data of the power demand from a golf cart prototype in a four-lap (fixed route)

driving experiment on a campus with the same driver at a weekend (few students on

the campus). Fig. 3.1 shows the power demand in the four-lap driving experiment. In

the experiment environment, we assume that the driving conditions in the four laps are

almost the same. As observed from the plots, the driver performed different driving

behavior in four laps. It is clear that even when the environment of driving is almost

the same, the power demand is difficult to predict.

In order to deal with the problem of the coupling between the closed-loop performance

and the model predictive accuracy, we propose a novel technique to solve the energy

management problem for fuel cell vehicles. The action selector is based not on a predic-

tive model forecasting the future power demand, but on an average-reward distribu-

tion representing the long-term average power demand. Given the measurements of

the driver’s performance in a driving route, we determine the average-reward distribu-

tion using an average-filtering method under a partially observable Markov decision

process (POMDP) framework.

This chapter is organised as follows. Section 3.2 describes the energy management

problem of a fuel cell hybrid vehicle. Section 3.3 explains the design of the new EMS

for HEVs, where the control problem is solved under a POMDP based framework, and

an average-reward filter is designed. In Section 3.4, the proposed energy management

system is implemented in a vehicle simulator based on real-world driving experiments,

and the results are evaluated against three benchmark solutions.

3.2 Problem formulation

This work relates to controlling the energy flow from a fuel cell based hybrid vehicle

in response to the real-time power demand during driving. For simplicity, the DC-

DC converter efficiency ηdc and the auxiliaries power requirement Pa taken as constant

average values.
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Figure 3.1. Power demand by the golf cart in a four-lap driving experiment on a campus

To formulate the EMS design problem, we first present the system dynamic model.

3.2.1 System energy flow

The vehicle model used in this chapter is a fuel cell hybrid golf cart prototype (Tolj et al.

2013). The electric motor is used as the propulsion system of the vehicle which is

powered by hybrid power sources including a proton-exchange-membrane fuel cell

system (PEMFCS) and a lithium-ion battery pack system. The DC-DC converter, which

links the PEMFCS and the DC-BUS, plays the role of an actuator between the PEMFCS

and the lithium-ion battery pack system to regulate the energy flow.

The total energy balancing equation in the system is

Pf cs + Pbo ≥ Prequire + Pa (3.1)

Prequire = Pv + Peloss (3.2)

where Pf cs is the output power (kW) from the PEMFCS, Pbo is the output power (kW)

from the battery pack, Prequire is the power demand (kW) by the electric motor, Pa is the
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power consumption of the auxiliary systems, Pv is the power demand (kW) from the

vehicle, and Peloss is the electric motor internal power loss (kW).

Combining (3.1) and (3.2) yields the system energy flow

Pf cs − Pdcdc + Pbo − Pa − Peloss ≥ Pv (3.3)

where Pdcdc denotes the output power (kW) from the DC-DC converter. The left hand

side of (3.3) represents the power provided by the power sources, and the right hand

side of (3.3) represents the power demand from the vehicle.

The function of an EMS is to regulate the energy flow from Pf cs and Pbo via the DC-DC

converter such that the energy flow meets the power demand Prequire and minimises

certain cost function J, such as the fuel consumption. Fig. 3.2 shows the schematic

diagram of the fuel cell hybrid vehicle.

3.2.2 System modelling and convexification

This section describes the system model corresponding to the energy flow in (3.3)

and formulates the multiple energy flow control problem under a convex optimisa-

tion framework.

The convexification of power sources found in (Hu et al. 2015, Egardt et al. 2014, Mur-

govski et al. 2012) is adopted in our EMS design. The system model is as follows.

Power-demand Pv

We define the vehicle power-demand Pv as the output power from the electric motor

to the drive wheel or the generated power from the drive wheel to the electric motor.

Pv is obtained by

Pv =
τ ·ω

9.5488
(3.4)

where τ is the motor output torque in N.m, and ω is the motor rotational speed in

rpm. The calculation of τ and ω is based on the dynamic of the vehicle system. Fig. 3.3

shows a vehicle system. The forces experienced by the vehicle are modeled as,

Ft = Fw + Ff + Fi + Fa (3.5)
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where Ft denotes the driving force, Fw denotes the air resistance, Ff denotes the rolling

resistance, Fi denotes the ramp resistance, and Fa denotes the acceleration resistance.

These forces are obtained from

Ft = τ· i0· ik· ηr/Rwheel

Fw =
1
2
· ρ·Cdrag· A· v(t)2

Ff = m· g·CrollR· cos α

Fi = m· g· sin α

Fa = ε·m· dv(t)
dt

(3.6)

where i0 and ik are the transmission ratio, Rwheel is the vehicle wheel radius, m is the

vehicle total mass, ηr denotes the transmission efficiency, ρ denotes the air density

(kg/m3), Cdrag denotes the air resistance coefficient, v(t) denotes the vehicle speed

(m/s), g denotes the acceleration of gravity (m/s2), α denotes the road slope angle

(rad), CrollR denotes the rolling resistance coefficient, A denotes the car frontal area

(m2), and ε denotes the rotating mass conversion factor.

Substituting (3.6) into (3.5) yields the expression for the motor output torque τ

τ =
Rwheel · (Fw + Ff + Fi + Fa)

i0· ik· ηr
(3.7)

The motor rotational speed ω is calculated from

ω = 2.653 · v(t) · i0 · ik
Rwheel

(3.8)

Substituting (3.7) and (3.8) into (3.4) gives the vehicle power-demand Pv. Accordingly,

the following remark is obtained.

If all the model parameters of a specific vehicle are known in advance, the vehicle

power-demand Pv is determined by the vehicle’s velocity and the road information.

Power-supply Ps

The vehicle power-supply Ps is defined as the power provided by the power system to

drive the vehicle and to overcome the power loss through the DC-DC converter and

the electric motor. That is,

Ps = Pf cs + Pbo − Pa − Peloss − Pdcdc (3.9)

The convexification of the PEMFCS, the battery pack, and the electric motor in FCVs is

presented as follows.
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Figure 3.2. Schematic diagram of a fuel cell hybrid vehicle

Fuel cell system Fuel cell stack modeling is an indispensable tool for designing fuel-

cell-powered systems. Numerous modeling techniques, from electrochemical-based

to electrical-based, are used to develop fuel cell stack models (Springer et al. 1991,

Corrêa et al. 2004). In this study, our focus is on the energy management design, and

the fuel cell stack is assumed to operate at optimal conditions. Thus, using the rela-

tionship between input power Ph2 and output power Pf cs of a PEMFCS under optimal

conditions is sufficient for our EMS design.

To analyse the convexification of a fuel cell system model, a 15kW PEMFCS from Bal-

lard Power Systems FCvelocity ®-9SSL is used as the test model, and the experiment

is performed on the Greenlight Innovation FCATS™-G500 stack testing station. When

the fuel cell stack operates at optimum conditions and all recommendations and re-

quirements specified in the product manual and integration guide from Ballard Power

Systems (Inc. 2011) are met, the relationship between hydrogen input power Ph2 and

output power of the PEMFCS Pf cs is described in Fig. 3.4. We observe that a quadratic

function can be used to describe the relationship

Ph2(t) ≥ b0· P2
f cs(t) + b1· Pf cs(t) + b2 (3.10)

where b0, b1 and b2 are the constant fitting parameters in the model.
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Figure 3.3. Schematic diagram of a vehicle system: a two-axle longitudinal vehicle model (top) and

a transmission system (bottom)

Battery pack A battery cell can be modeled by an open-circuit voltage (OCV) usoc in

series with an internal resistance R.

Pbin(t) = usoc(t) · i(t) (3.11)

Pbloss(t) = R · i2(t) (3.12)

Pbo(t) = Pbin(t)− Pbloss(t) (3.13)

where i(t) is the instantaneous cell current (positive for discharge, negative for charge),

Pbin denotes the cell internal power, and Pbloss denotes the cell internal power loss.
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Figure 3.4. Relationship between fuel cell system output power and hydrogen power consumption

Substituting (3.11) and (3.12) into (3.13) yields

i(t) =
1

2R
( usoc(t)−

√
u2

soc(t)− 4RPbo(t) ) (3.14)

i(t) ∈ [imin, imax] (3.15)

Pbo ≤
u2

soc(t)
4R

(3.16)

where [imin, imax] is the permissible range of current. The residual energy in a cell is

defined by the state of charge (SoC), which is the ratio of the residual capacity to the

nominal capacity of the cell, where the residual capacity is the number of ampere-hours

that can be drawn from the battery at room temperature at the C/30 rate before it is

fully discharged (Plett 2004).

A standard calculation of a cell’s SoC is coulomb counting, that is, by measuring the

battery current and integrating it in time. The model of the SoC is described and con-

strained by

SoC(t) = SoC(0)−
∫ t

0

ηbi(ζ)
Cn

dζ (3.17)

SoC(t) ∈ [SoCmin, SoCmax] (3.18)

where SoC(0) is the cell’s SoC at the initial time, SoC(t) is the cell’s SoC at time t, Cn is

the cell’s nominal capacitor, ηb is the cell’s Faraday efficiency, and [SoCmin, SoCmax] is

the permissible range of the cell’s SoC.
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To analyse the convexification of a battery cell model, we use a 20Ah lithium-ion poly-

mer battery for charge and discharge experiments on the Arbin Instruments BT2000

battery test station. The experimental results of the relationship between SoC and usoc

are shown in Fig. 3.5. The curve illustrates the non-linear characteristics of usoc related

to the cell SoC. It is clear that a typical battery cell model is non-convex.

To make the battery model convex, an energy concept εsoc is introduced to replace SoC.

With the total number of cells assumed to be γ,

εsoc = γ ·
SoC∫
0

u(ζ)d(ζ) (3.19)

Furthermore, the range of the SoC is set to between 20% and 80%. Thus the relationship

between OCV and SoC in a single battery cell is approximated (as shown in Fig. 3.5)

by

usoc = c0· SoC + c1 (3.20)

where c0 and c1 are the fitting parameters of the model. Substituting (3.20) into (3.19)

gives

εsoc = γ · ( c0

2
· SoC2 + c1· SoC) (3.21)

Combining (3.11), (3.17), (3.19), (3.20) and (3.21), we have

εsoc =
γ

2c0
· (u(soc)2 − c2

1) (3.22)

dεsoc

dt
=

dεsoc

dSoC
· dSoC

dt
= −Pbin(t)

Cn
(3.23)

Substituting (3.11) and (3.22) into (3.12), we have

Pbloss(t) =
R· Pbin(t)2

2c0· εsoc + γ· c2
1

(3.24)

Pbo(t) = Pbin(t)− Pbloss(t) (3.25)

As (3.24) is in quadratic-over-linear form, Pbloss has the required convexity property.

The constraints on Pbloss and εsoc are

Pbloss ≤ γ · R · i2
max (3.26)

εmin ≤ εsoc ≤ εmax (3.27)
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3.2 Problem formulation

where [εmin, εmax] is the available range of the battery pack.

Substituting (3.24) into (3.26) gives

Pbin ≥ imin· γ·
√

2· c0· εsoc

n
+ c2

1 (3.28)

Pbin ≤ imax· γ·
√

2· c0· εsoc

n
+ c2

1 (3.29)

Since the geometric mean is a concave function and imin ≤ 0, the inequalities provide

the convexity property.

Figure 3.5. Relationship between OCV and SoC of the Lithium-ion polymer battery pack

3.2.3 Objective function for energy management system

The objective of an EMS in FCVs is to control the energy flow between multiple power

sources that minimises a cost function while satisfying constraints from each compo-

nent, such as maintaining battery charge, providing acceptable driving performance,

and ensuring the durability of power sources.

To decouple the dependence on the accuracy of the predictive model, we adopt the

following average-reward cost function

J = lim
th→∞

[
1
th

∫ th

t0

ṁ f (ut)dt] (3.30)

where ṁ f is the instantaneous fuel flow rate, [t0, th] is the time horizon, and ut is the

control action which is selected by the EMS.
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We are ready to state the problem addressed in this chapter. The energy management

problem in a fuel cell hybrid vehicle is to design an EMS that regulates the energy flow

between the fuel cell stack and the battery pack to minimise the long-term average cost

(3.30), subject to meeting system dynamics (3.3) and (3.10), and constraints (3.25)-(3.29).

3.3 Energy management design for fuel cell vehicles

This section presents a novel EMS design method for an FCV based on an average-

reward approximator to optimise the long-term average cost (3.30) under a POMDP

framework by convex programming without forecasting future power demand.

First, we describe the following tuples in the POMDP used in this study.

• Unobservable state is the long-term average power demand described by a vec-

tor of random variables.

• Action is the output power from the fuel cell stack for regulating the energy flow

via the DC-DC converter.

• Measurements (observations) are obtained from current velocity Vc, driver’s driv-

ing behavior ρavg and road information αavg.

• Transition function is approximated by an average-reward filter that updates the

belief state. The filter includes a self-learning system which provides a recursive

update mechanism on measurements, and an approximator, which is based on

the MCMC sampling method to estimate the posterior distribution of the belief

state.

• Reward function is represented by the long-term average cost function (3.30).

The POMDP-based EMS design framework is shown in Fig. 3.6.

We describe the belief state by a posterior average-reward distribution instead of a

posterior probability distribution since we do not seek to forecast the future power

demand. That is, the belief state in this study does not play the role of the predictive

function of the future power demand but represents the power demand on average

described by a vector of random variables. Given the measurements (Vc, ρavg, αavg),
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Figure 3.6. Block diagram of the POMDP for energy management strategy design

we determine the belief state using an average-filtering method. More specifically, we

use the MCMC sampling method to calculate the posterior distribution.

The block diagram of the EMS is shown in Fig. 3.7. Presented below are the details of

the EMS design.

3.3.1 Average-reward filter design

Cost function (3.30) is to minimise the long-term average cost. How to design an

average-reward filter for optimisation is addressed here.

The average-reward filter comprises two subsystems: a self-learning system and an

approximator.

Self-learning system

The self-learning system provides a recursive update mechanism on the observations.

According to the law of large numbers, the average of the results obtained from a large

number of trials should be close to the expected value when more tests are performed

(Hsu and Robbins 1947). Thus, if the measurements (Vc, ρavg, αavg) is updated recur-

sively, the value finally converges to the real average driving performance.
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Figure 3.7. Block diagram of the POMDP based power control unit

We present the recursive update mechanism of each measurement as follows.

Real-time velocity Vc All the vehicle velocity values are segmented into discrete ve-

locity classes of a 1 km/h bin width

V =

[0 ≤ Vc ≤ 1]︸ ︷︷ ︸
V1

, [1 ≤ Vc ≤ 2]︸ ︷︷ ︸
V2

, ..., [(vmax − 1) ≤ Vc ≤ vmax]︸ ︷︷ ︸
Vn

 (3.31)

where vmax is the maximum value of the vehicle velocity.

Then, we define the transition probability matrix (TPM) based on the kth-order Markov

chain Φ,

Φ =

V1, V2, ..., V n
Update

from real-time

vehicle velocity


κ1

κ2

...

κi
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where κi is defined as the velocities in previous k time steps and arranged in lexico-

graphic order.

When a new Vc is observed, its location in Φ is identified, and the probability distribu-

tion in that row is updated.

Road information αavg From Section 3.2.2, we know that the vehicle velocity and the

road information are the two main factors that affect the vehicle power-demand Pv. Al-

though we do not need to predict the specific future power demand in our EMS design,

a more accurate average-reward approximator could be achieved by using the road in-

formation. One way to represent both the vehicle velocity and the road information is

to build a 2-D Markov transition probability matrix. In the 2-D case, Φ is defined by

two states: v(t) and α(t), where α(t) belongs to the discrete observation space for the

road information Ω. Therefore, Φ is the transition probability from the velocity and

the road information in previous k time steps to velocity class Vj and road information

class Ωj in the next time step. Note that this 2-D matrix was introduced and analysed

in (Lee et al. 2011) and (Silvas et al. 2016).

In practice, as the dimensionality of the matrix increases, the amount of data grows

exponentially with the dimensionality. To contain the dimensionality problem, we use

the average value of the road information in our EMS design. The use of average

values is compatibly with the use of the long-term average cost function in the reward

function.

Driving behavior Let ρavg denote the driving behaviors. We define ρavg based on the

following eight validation criteria

ρavg = [vmean, vstd, acmean, demean, acstd, destd, acperc, deperc]

where vmean is the average velocity, vstd is the average standard deviation velocity,

acmean is the average acceleration, demean is the average deceleration, acstd is the average

standard deviation acceleration, destd is the average standard deviation deceleration,

acperc is the average driving time under acceleration, and deperc is the average driving

time under deceleration.
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Furthermore, if the road information is available, we include additional four validation

criteria: average slope αmean, average standard deviation slope αstd, maximal slope αmax

and minimal slope αmin.

To trade off between the computational burden and the timeliness of updating infor-

mation, we only update ρavg after each driving cycle.

Approximator

The function of the approximation is to estimate belief state δp.

We adopt the MCMC sampling method (Gilks 2005) for the approximation. This MCMC

technique has been successfully applied in the driving cycle generation (Lee et al. 2011,

Silvas et al. 2016) and the power system (Hansen et al. 2018).

First, we denote the vehicle velocity and the road slope as

v(t) ∈ V = {V1, V2, · · ·, Vn}

α(t) ∈ Ω = {Ω1, Ω2, · · ·, Ωm}

where V is defined in (3.31) and Ω is defined in the same way of V by segmenting all

the road information values into m classes.

Therefore, the new 2-D TPM Φnew ∈ RN×M has N rows for the vehicle velocity classes

and M columns for the road information classes. Each entry of the Φnew consists of a

(N ×M) matrix and is denoted by φ ∈ RN×M. It represents the transition probability

from current step sk to the next step sk+1.

Based on the sampling mechanism of the MCMC method, vk+1 and αk+1 are selected

by a randomly generated number µ ∈ [0, 1] to be in the interval of the cumulative

vector Ψvk,αk(z) of Φnew, that is

vk+1 = V(d z
M
e) (3.32)

αk+1 = Ω(z− bz− 1
M
c ·M) (3.33)

where z is the index selected by the MCMC sampling, b c denotes the floor function

and d e stands for the ceil function.

After selecting vk+1 ∈ Vi and αk+1 ∈ Ωj, the new velocity sample v̂k+1 and the new

road slope α̂k+1 are obtained by

v̂k+1 = vavg(σ) for all σ ∈ Vi (3.34)
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Table 3.1. Parameters used in approximator generated cycle

Parameter Tolerance

Initial velocity (km/h) set to Vc

Standard deviation velocity (km/h)

±10%

Average velocity (km/h)

Average acceleration (m/s2)

Average deceleration (m/s2)

Standard deviation acceleration (m/s2)

Standard deviation deceleration (m/s2)

Percentage of driving time under acceleration (%)

Percentage of driving time under deceleration (%)

Additional parameter (if road information is included) Tolerance

Standard deviation slope (degree)

±10%
Average slope (degree)

Maximal slope (degree)

Minimal slope (degree)

α̂k+1 = αavg(σ) for all σ ∈ Ωj (3.35)

where vavg and αavg are the average values the permissible range of class σ by assum-

ing a normal distribution within each class. The flow chart of the cycle generation is

presented in Fig. 3.8. A random sampling µ ∈ [0, 1] is selected to generate new sam-

ples until the desired sampling length and criteria in ρavg are reached. In Table 3.1, we

define the criteria of ρavg for the generated cycle. Since the first point of the generated

synthetic cycle is the current power demand of the driver, the generated synthetic cycle

is able to satisfy the dynamic demand of the driver.

Note that the sampling length in the average-reward filter can be set arbitrarily. Thus,

we could solve the optimisation problem in a short receding horizon. We use the 1-D

Markov transition probability matrix with the average value of the road information

instead of a 2-D model for reducing the computational complexity.
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Figure 3.8. Flow chart of the average-reward filter process

3.3.2 Optimisation

The objective function Fco to minimise the equivalent fuel consumption cost is

Fco = βh2·
N

∑
k=1

Ph2(k)·∆t + βb·
N

∑
k=1

Pbin(k)·∆t (3.36)

where βh2 is the price of hydrogen, βb is the price of electricity, ∆t is the time step, and

N is the length of the generated cycle at every time step.

The optimisation problem is solved under the constrained convex optimisation frame-

work.

min
u

Fco (3.37)

subject to
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Pf cs + Pbo − Peloss − Pdcdc − Pa ≥ Pv (3.38)

Ph2(t) ≥ b0· P2
f cs(t) + b1· Pf cs(t) + b2 (3.39)

Pbloss(t) =
R· Pbin(t)2

2c0· εsoc + γ· c2
1

(3.40)

Pbo(t) = Pbin(t)− Pbloss(t) (3.41)

Peloss ≥ a0(ω(t))τ2(t) + a1(ω(t))τ(t) + a2(ω(t)) (3.42)

dεsoc

dt
= −Pbin(t)

Cn
(3.43)

Psoc ≥ imin· γ·
√

2· c0· εsoc

γ
+ c2

1 (3.44)

Psoc ≤ imax· γ·
√

2· c0· εsoc

γ
+ c2

1 (3.45)

εmin ≤ εsoc ≤ εmax (3.46)

Pf cs(min) ≤ Pf cs ≤ Pf cs(max) (3.47)

4Pf cs,min ≤ 4Pf cs(t) ≤ 4Pf cs,max (3.48)

εsoc(t f ) = εsoc(target) (3.49)

where 4Pf cs(t) is the increase rate of the output power of the PEMFCS. We impose

this limitation to extend the durability of the fuel cell stack. Specifically, the con-

vex programming is applied on the cycle generated by the approximator at each time

step, and then the optimal action is selected via the rollout algorithm (Bertsekas and

Castanon 1998). The optimisation process of the proposed EMS at each time step is as

follows

• Step 1: Update ρavg and Φnew based on new observations Vc, αavg

• Step 2: Generate a cycle by the approximator based on Φnew and ρavg

• Step 3: Calculate the posterior average-reward distribution δp based on the gen-

erated cycle according to (3.4), (3.7) and (3.8)

• Step 4: Solve the convex optimisation problem in (3.37) on the average-reward

distribution and obtain optimal action u1

• Step 5: Send the command u1 to the DC-DC converter to control the energy flow

To deal with the errors of the model, first, we adopt the receding horizon principle

for optimisation. That is, we take new measurements at each time step to compensate
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for unmeasured disturbances and model inaccuracy, both of which cause the system

output to be different from the distribution generated by the average-reward filter.

Second, we impose a hard constraint on the final value of battery SoC in the optimisa-

tion process at each time step. Namely, we enforce the final value of battery SoC to the

reference value (see equation (3.49)) to maintain the battery’s SoC.

The closed-loop performance is dependent on long-run average power demand in the

energy management system design, which is represented by an average-reward dis-

tribution under the POMDP framework that we present in this section. Therefore, the

dependence between the closed-loop performance and the predictive model of future

power demand is decoupled.

3.4 Simulation results

3.4.1 Experiment and simulation

To verify the performance of the proposed EMS, we simulate the driving dynamics of

a golf cart in MATLAB. Although the simulation result cannot entirely reflect the situa-

tion in real-world experiments, all the simulations and models in our design are based

on the data collected from the trials of driving on the golf cart in a driving experiment

on a campus by the same driver. Therefore, the simulation is provided with a realistic

driving environment for verifying the proposed EMS design.

The experimental conditions are set as follows:

• A fuel cell hybrid golf cart prototype (Tolj et al. 2013) is used for the driving ex-

periments.

• All the experiments are operated by the same driver.

• The golf cart is operated with a predefined route, which is shown in Fig. 3.9.

• Six-lap driving experiments are conducted, and the driving data are shown in

Fig. 3.10.

• The initial value of the residual battery energy in each lap is set to the end value

of the previous driving cycle.
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Figure 3.9. Route of the experimental drive

To compare the performance of the proposed EMS, three other EMSs are used as the

benchmarks. They are

• CD-CS. The standard charge-depleting charge-sustaining EMS used in FCVs.

• IMPC1. The method provides the globally optimal solution on each driving cy-

cle. The optimisation problem in (3.37) is solved by convex programming by

assuming the future power demand in each driving cycle is known in advance.

• IMPC2. The method is similar to IMPC1 for providing the global optimal solution

on each driving cycle except that IMPC2 takes εsoc(t) as the final target value of

the battery’s final residual battery energy in (3.49), where εsoc(t) denotes the real

final residual battery energy by implementing the proposed EMS.

We show an example of the cycle generated by the approximator (yellow line) and

the future driving velocity (dotted line in blue) in 300 time steps in Fig.3.11. Since

the generated cycle represents the driver’s average driving performance by a vector

of random variables instead of predicting the future power demand, we observe that
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Lap 1 Lap 2

Lap 3 Lap 4

Lap 5 Lap 6

Figure 3.10. Route of the experimental drive

the cycle generated by the approximator does not match the plot of the future driving

velocity.

Table 3.2 shows the specifications of the power sources used in this simulation study.

Although the capacity of power sources influences the efficiency of the system perfor-

mance, our focus is on the performance of the new EMS on a predefined propulsion

system.

The data collected from the driving experiment Lap 1 is used for training our approx-

imator and the driving experiments of the following five laps are used for the perfor-

mance verification. Although Lap 1 is not long enough for the training data of MCMC

since Lap 1 cannot reflect the long-run average power demand well, the self-learning
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Figure 3.11. Average-reward distribution at time step 186 in Lap 2 driving experiment

system provides an update mechanism to train the unobservable measurements recur-

sively.

The results are shown in Table 3.3, including the norm of the hydrogen consump-

tion (H2 cons.(g)), the difference of the residual battery energy from the target value

(∆(Energy)), the equivalent fuel consumption cost (Equiv. cost), and the improvement

of the equivalent fuel consumption cost based on CD-CS.

The results show that IMPC1, IMPC2 and our EMS (called Enew) offer better fuel econ-

omy than CD-CS in five driving cycles. Since the future power demand is known in

advance, IMPC1 and IMPC2 are the top two in terms of performance among all the

EMSs. Compared with CD-CS, IMPC1 provides 12 % to 15 % improvement in the five

driving experiments, and IMPC2 shows 8 % to 11 % improvement. As for Enew, we

observe that the performance is close to IMPC2 in all the experiments. In other words,

Enew provides an approximated globally optimal solution in the experiments.

Figs. 3.12 - 3.13 show the power demand of the real driving and simulation data, and

the performance comparison of the four EMSs in terms of battery residual energy in

five driving experiments. We observe that Enew presents good performance in Lap 2

driving experiment, while the trajectories of the battery residual energy between Enew
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Table 3.2. Specifications of the power sources

Parameter Value

PEMFCS maximum power [kW] 15

PEMFCS maximum increase power [kW/s] 1

Average DC-DC efficiency [%] 95

Cell capacity [Ah] 20

Cell maximum discharging current [A] 100

Cell maximum charging current [A] 80

Initial battery SoC [%] 50

Maximum battery SoC [%] 80

Target battery SoC [%] 50

Minimum battery SoC [%] 20

Number of battery in series 14

Number of battery in parallel 2

Lap 2 Lap 2

Lap 3 Lap 3

Figure 3.12. Results of Laps 2-3 driving experiments: the power demand of the real driving and the

simulation data (left), and the performance of four EMSs in terms of battery residual

energy (right)

and IMPC2 show some differences in Laps 3 - 6 driving experiments. The reason is

that Enew is based on the average-reward approximator described in Section 3.3.1. The
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Table 3.3. Simulation results of five laps driving experiments

H2 cons. ∆(Energy) Equiv. cost Improvement

(g) ($) (%)

Lap 2 driving experiment (588s)

CD-CS 109.0097 0.0817 1.4126 0

IMPC1 92.7469 0 1.2028 14.85

IMPC2 97.6726 0.5901 1.2584 10.92

Enew 97.8699 0.5901 1.2609 10.74

Lap 3 driving experiment (581s)

CD-CS 97.0254 0.0572 1.2659 0

IMPC1 84.1004 0 1.0991 13.18

IMPC2 88.6117 0.5504 1.1498 9.17

Enew 88.7976 0.5504 1.1522 8.98

Lap 4 driving experiment (609s)

CD-CS 96.6017 0.059 1.2079 0

IMPC1 80.5447 0 1.0523 12.88

IMPC2 85.2378 0.5797 1.105 8.52

Enew 85.4768 0.5797 1.1081 8.26

Lap 5 driving experiment (589s)

CD-CS 97.4852 0.056 1.2717 0

IMPC1 84.0596 0 1.0983 13.64

IMPC2 87.336 0.401 1.1352 10.73

Enew 87.596 0.401 1.1385 10.47

Lap 6 driving experiment (592s)

CD-CS 102.1035 0.0821 1.3287 0

IMPC1 89.0186 0 1.1601 12.69

IMPC2 91.8863 0.3483 1.1924 10.26

Enew 92.044 0.3483 1.1945 10.1
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Lap 4 Lap 4

Lap 5 Lap 5

Lap 6 Lap 6

Figure 3.13. Results of Laps 4-6 driving experiments: the power demand of the real driving and the

simulation data (left), and the performance of four EMSs in terms of battery residual

energy (right)

hidden state δp in the driving experiments is estimated by the driver’s historical data.

From Fig. 3.10, we observe that the driving behaviors in Lap 1 (our initial training

model) and Lap 2 are similar, whereas the driving behaviors in Laps 3 - 6 are somehow

different from the driver’s previous behavior.

3.4.2 Computational consideration

Computational time is one central issue for practical implementations. In the proposed

EMS design, the MCMC sampling method used in the approximator and the convex
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Table 3.4. Computational time of IMPC1 and IMPC2

Total CPU time(s) CPU time per iteration(s)

Lap 2 driving experiment

IMPC1 11.33 0.28

IMPC2 10.08 0.27

Lap 3 driving experiment

IMPC1 18.30 0.44

IMPC2 18.25 0.43

Lap 4 driving experiment

IMPC1 18.52 0.43

IMPC2 17.12 0.4

Lap 5 driving experiment

IMPC1 20 0.47

IMPC2 13.98 0.36

Lap 6 driving experiment

IMPC1 18.89 0.44

IMPC2 17.49 0.41

programming in the optimisation process are computationally intensive. We can re-

duce the computational need by implementing a short horizon optimisation via the

MCMC technique.

The average computational time required to solve the optimisation problem with IMPC1,

IMPC2 and Enew are shown in Table 3.4 and Table 3.5. The data are collected from the

simulation studies in a Windows 7 Enterprise PC with Intel® i7-6700 3.40GHz proces-

sor, 16GB RAM and MATLAB R2016b. We use CVX toolbox with SDPT3 solver (Grant

and Boyd 2020) to solve the convex programming problem.

Tables 3.4-3.5 show that the processing times for IMPC1 and IMPC2 are significantly

higher than Enew. The higher computational time is due to the fact that IMPC1 and

IMPC2 are required to find a unique optimal solution over the entire driving length

horizon.

In addition to using the short time horizon optimisation process, the computational

time of Enew can be further decreased by reducing the sampling length. For example,

using a length of 200 instead of 500 samples can reduce computational time by 37%.
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Table 3.5. Computational time of Enew

CPU time

Sample length Total CPU time(s) per iteration(s) Success

100 0.42 0.01 N

200 0.478 0.02 Y

300 0.545 0.02 Y

400 0.628 0.02 Y

500 0.762 0.02 Y

Note that the sampling length cannot be too short - the approximator may fail to gen-

erate required cycle if it cannot meet the validation criteria in a short time horizon.

3.5 Chapter summary

This chapter presents a novel energy management system. The energy management

problem is cast as a convex optimisation problem. An average reward approximator is

developed to optimise the long-term average cost without forecasting future power de-

mand under a partially observable Markov decision process framework. The proposed

method shows good performance in simulation using data obtained from real-world

driving experiments over a known driving path. However, since the proposed energy

management system is based on an average-reward model, the main disadvantage of

the method is that it is not applicable to the situation with highly varied driving con-

ditions.

The next chapter will present a mixed H2/H∞ control based energy management sys-

tem to increase the applicability of the energy management system over various driv-

ing scenarios.
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Chapter 4

Mixed H2/H-infinity
Control for Energy

Management System
Design

THIS chapter presents a real-time energy management system to guaran-

tee system stability and optimality over various driving scenarios and

could implement in a real vehicle. A mixed H2/H∞ control technique is

used to design the energy management controller under the T-S fuzzy mod-

elling framework. Then, the proposed control law is implemented in a ve-

hicle simulator, and the performance of the energy management system is

shown in simulation against the dynamic programming based benchmark

solution. From the result, the proposed energy management system pro-

vides the capability of reducing fuel consumption, smoothing fluctuation

of the power delivered from the fuel cell stack, and maintaining the battery

charge in an admissible range in various driving scenarios.
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4.1 Introduction

4.1 Introduction

Driver’s future driving behaviour is a primary uncertainty in energy management sys-

tem design, which affects the charge-sustaining function of batteries as well as optimal

energy flow control in fuel cell vehicles. The charge-sustaining function of batteries

is related to stability robustness which can be measured by H∞ norm, while optimal

energy flow control is related to fuel economy which is appropriately measured by

H2 norm. Therefore, it is natural to cast the energy management problem in FCVs

into a mixed H2/H∞ control problem. Mixed H2/H∞ control design has been studied

by researchers over the past decades (Chen et al. 2000, Orukpe et al. 2007, Tseng and

Chen 2003, El-Sousy and Abuhasel 2016). The primary purpose of the mixed H2/H∞

control problem is to achieve a desired H2 optimal control when the upper bound

of the disturbance is implemented under an H∞ disturbance attenuation constraint

(Chen et al. 2000). This control design has the advantages of achieving both the H2 op-

timal performance and the H∞ robustness specifications within a unified framework.

In practice, the powertrain in fuel cell vehicles is nonlinear, which increases the diffi-

culty of incorporating optimal energy management system design into a mixed H2/H∞

objective. Takagi-Sugeno (T-S) fuzzy model, which uses a local linear system descrip-

tion for each rule, is appealing for nonlinear systems. By employing the T-S fuzzy

model to approximate a nonlinear plant, we can devise a control methodology using

the linear control designs that range from optimal control to robust control paradigms

(Nguang and Shi 2003, Shi et al. 2016a, Shi et al. 2016b, Lu et al. 2015).

Motivated by the mixed H2/H∞ control design and T-S fuzzy model approach, we

present a new method in this paper to design a real-time energy management system

for fuel cell vehicles. The EMS guarantees optimality and stability for any driving cy-

cle and easily implements in a real vehicle. Specifically, the T-S fuzzy model is used

to approximate the nonlinear power system in fuel cell vehicles. Then, a fuzzy mixed

H2/H∞ energy management controller is developed to achieve the suboptimal H2 con-

trol performance under the H∞ disturbance rejection constraints.

The chapter is organised as follows: the problem of regulating energy flow in a fuel

cell vehicle is described in Section 4.2. The design of the new energy management

system for fuel cell vehicles, where a control law is developed, based on mixed H2/H∞

control performance is illustrated in Section 5.3. The effectiveness and potential of the

proposed design technique are illustrated by various driving scenarios in Section 4.4.

Page 46



Chapter 4 Mixed H2/H-infinity Control for Energy Management System Design

4.2 Problem formulation

A fuel cell hybrid vehicle uses hydrogen as fuel to power vehicles. The vehicle’s en-

ergy management system performs the function of regulating the energy flow from

multiple power sources in some optimal fashion, such that the total fuel consumption

is minimized, the battery state of charge (SoC) is maintained in a certain level for any

driving cycle, and the durability of the fuel cell system is considered.

We first present the control system model, operational constraints and objective func-

tion to formulate the EMS design problem.

4.2.1 System dynamics model

A fuel cell hybrid vehicle with parallel structure is used in this study. At sample time

k, we have

Pdc + Pbout ≥ Pdrive (4.1)

where Pdc is the output power from the fuel cell boost converter, Pbout is the power

delivered from the battery pack, and Pdrive is the power demand from the driver. The

dynamic behaviors of the battery pack, fuel cell stack and DC-DC converter are simu-

lated as follows.

Battery model

The battery is described by the RC-Branch equivalent circuit in Fig. 4.1. The battery’s

SoC is estimated by coulomb counting, that is

SoC(k + 1) = SoC(k)−
η f · ib(k)
3600Cn

∆t (4.2)

where k is the discrete time step, ib(k) is the instantaneous battery current (we denote

positive for discharge and negative for charge), ∆t is the sampling period, SoC(k) is

the battery’s SoC at time k, Cn is the battery nominal capacitor, and η f is the battery

Faraday efficiency.

Diffusion resistor current iR1 is expressed as

iR1(k + 1) = exp(
−∆t
R1C1

)iR1(k) + (1− exp(
−∆t
R1C1

))ib(k) (4.3)

Page 47



4.2 Problem formulation

R0

Ebatt

C1

R1 iR1 Vbatt

ib

Figure 4.1. Equivalent circuit of the battery with one distinct time constants, internal resistance,

and open circuit voltage

where R1 and C1 are the value of the resistor and capacitor in the RC-branch in Fig. 4.1,

respectively

Moreover, provided the battery SoC is bounded from 20% to 80%, the relationship

between the cell’s SoC and open circuit voltage Ebatt is approximated by the following

linear equation,

Ebatt(SoC) = b0SoC + b1 (4.4)

where b0 and b1 are the fitting parameters. Thus, we have

Vbatt(k + 1) = b0SoC(k) + b1 − R0ib(k)− R1iR1(k) (4.5)

Pbout(k) = ns · np ·Vbatt(k) · ib(k) (4.6)

where Vbatt is the battery terminal voltage, R0 is the internal resistance, and ns and np

are the number of cells in series and in parallel in the battery pack, respectively.

Fuel cell model

The dynamic behavior of the fuel cell is described by considering activation losses

and ohmic losses (Larminie et al. 2003). Provided the fuel cell stack is operated under

normal temperature and pressure, the fuel cell dynamic is described by

Vf c(k) = E f c − A f cln(
i f c(k)

i0
)− i f c(k)R f c (4.7)

Pf cs(k) = n f cs ·Vf c(k) · i f c(k) (4.8)

Page 48



Chapter 4 Mixed H2/H-infinity Control for Energy Management System Design

mH2(k) = θ · i f c(k) · n f cs (4.9)

where Vf c is the output voltage of a single fuel cell, E f c is the fuel cell open-circuit volt-

age, A f c is the Tafel slope, i f c is the fuel cell output current, i0 is the exchange current

density, R f c is the internal ohmic, n f cs is the number of cells in the fuel cell stack, Pf cs

is the power delivered from the fuel cell stack, mH2 is the hydrogen consumption in

slpm, and θ is a constant parameter.

DC-DC converter

The boost converter is modelled by its efficiency map. From (Hegazy et al. 2012, Chiu

and Lin 2006, Pahlevaninezhad et al. 2012), we observe that the boost converter op-

erates efficiently when Pdc(k) is greater than a certain level ν, and it is reasonable to

assume the efficiency of the boost converter to be a constant in the situation. There-

fore, we describe the efficiency map of the boost converter as

ηdc(k) =

η̄dc, if Pdc(k) ≥ ν

fdc(Pdc(k)), otherwise
(4.10)

where fdc(Pdc) is a nonlinear function that associates Pdc.

4.2.2 Objective function and constraints

To achieve energy efficacy, the system performance index is defined to optimise the

following objective function J(k)

J(k) =
Tn

∑
k=0

mH2(k) (4.11)

where Tn is the finite driving time.

Meanwhile, the battery SoC should be maintained at a certain level over the trip

SoC(k + Tn|k) ∈ Ωb (4.12)

where Ωb is the terminal set of the battery SoC.

For the power sources, instantaneous constraints are imposed on the battery and fuel

cell due to their physical operation limitations, that is, at all time k >= 0

Pbout,min ≤ Pbout(k) ≤ Pbout,max (4.13)
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4.2 Problem formulation

SoCmin ≤ SoC(k) ≤ SoCmax (4.14)

i f cs,min ≤ i f cs(k) ≤ i f cs,max (4.15)

where (·)min and (·)max denote the minimum and maximum limitations of power de-

livered from the battery pack, battery SoC, and fuel cell output current, respectively.

The operational limitations of the power sources are highly dependent on component

size in the vehicle. In this study, we assume that the fuel cell vehicle has capable of

driving in the battery-only mode. Thus, we only consider the constraints (4.14) and

(4.15).

4.2.3 T-S fuzzy modelling framework

To formulate the energy management problem in FCVs, the states, control input, and

disturbance acting on the system are defined as follows

x1(k) = SoC(k)− SoCre f , x2(k) = Vbatt − b0SoCre f − b1, x3(k) = iR1(k)

u(k) = i f c(k), w(k) = Pdrive(k)

From (4.1) - (4.10), we have

x(k + 1) = Ax(k) + B(k) fu(u(k))u(k) + C(k)w(k) (4.16)

where x = [x1, x2, x3]
T

A =


1 0 0

b0 0 −R1

0 0 exp(−∆t/R1C1)



B(k) =
ηdc(k)
nsnp


η f ∆t/(3600Cn fx2(k))

R0/ fx2(k)

(−1 + exp(−∆t/R1C1))/ fx2(k)



C(k) =
1

nsnp


−η f ∆t/3600Cn fx2(k)

−R0/ fx2(k)

(1− exp(−∆t/R1C1))/ fx2(k)


fx2(k) = x2(k) + b0SoCre f + b1

fu(u(k)) = n f cs · (E f c − A f cln(u(k)/i0)− R f cu(k))
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To approximate the nonlinear system, the T-S fuzzy modelling approach (Tanaka and

Wang 2004) is adopted to guarantee the mixed H2/H∞ control performance index can

be expressed in terms of stability, control performance and robustness.

First, we define premise variable z(k) = 1/ f (x2(k)) and the maximum and minimum

value of z(k) are zmax and zmin under the constraint on z(k), respectively.

From zmax and zmin, z(k) is represented by

z(k) = 1/ fx2(k) = M1(z(k))zmax + M2(z(k))zmin (4.17)

where M1(z(k)) and M2(z(k)) are the membership functions and can be calculated by

M1(z(k)) =
1/ fx2(k) − zmin

zmax − zmin
, M2(z(k)) = 1−M1(z(k))

Then, the following nonlinear model is constructed by interpolating local linear models

with the fuzzy membership functions:

Rule 1:

If z(k) is “big”,

Then x(k + 1) = Ax(k) + B1(U(k) + υ(k)) + C1w(k)

Rule 2:

If z(k) is “small”,

Then x(k + 1) = Ax(k) + B2(U(k) + υ(k)) + C2w(k)

where U(k) = f (u(k))u(k),

B1 =
η̄dc

nsnp


η f ∆tzmax/(3600Cn)

R0zmax

(−1 + exp(−∆t/(R1C1))zmax



B2 =
η̄dc

nsnp


η f ∆tzmin/(3600Cn)

R0zmin

(−1 + exp(−∆t/R1C1))zmin



C1(k) =
1

nsnp


−η f ∆tzmax/(3600Cn)

−R0zmax

(1− exp(−∆t/R1C1))zmax



C2(k) =
1

nsnp


−η f ∆tzmin/(3600Cn)

−R0zmin

(1− exp(−∆t/R1C1))zmin


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The defuzzification is carried out as

x(k + 1) =
2

∑
i=1

hi(z(k))(AiX(k) + Bi(U(k) + υ(k)) + Ciw(k)) (4.18)

where h1(z(k)) = M1(z(k)) and h2(z(k)) = M2(z(k)).

Remark 4.1. We introduce a bounded disturbance υ(k) ≤ ν on the control input. Since the

disturbance is considered in the controller design, we can set a saturation on control input to

enforce Pdc to ν when Pdc < ν. Therefore, we can guarantee that the boost converter operates

efficiently, and the boost converter efficiency can be estimated by η̄dc, that is, ηdc(k) = η̄dc.

The input nonlinearity is given by

U(k) = f (u(k)) · u(k) (4.19)

where f (u(k)) is the operational fuel cell voltage.

To address the input nonlinearity, we construct q local regions of local lower bounds

Sr and upper bounds S̄r of f (u(k)) by using T-S fuzzy model approach

Rule r: IF u(k) is Lr, THEN S = Sr, S̄ = S̄r

where Lr is the fuzzy term that associates u(k) in rule r.

Therefore, the global sector for control input can be aggregated as one summation

S =
q

∑
r=1

vr(u(k))Sr, S̄ =
q

∑
r=1

vr(u(k))S̄r

where vr(u(k)) is the fuzzy membership function of rule r.

The input nonlinearity U(k) is described by

U(k) =
11

∑
r=1

vr(u(k))(Sr + ∆Sr) · u(k) (4.20)

where Sr = (Sr + S̄r)/2 and ∆Sr represents the uncertainty of the operational fuel cell

voltage.

Substituting (4.20) to (4.18), we have

x(k + 1) =
2

∑
i=1

hi(z(k))
11

∑
r=1

vr(u(k))(Aix(k) + Bi((Sr + ∆Sr)u(k) + υ(k)) + Ciw(k))

(4.21)
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Figure 4.2. Block diagram of the energy management control system

Consider the fuzzy state-feedback controller

u(k) =
2

∑
i=1

hi(z(k))Kix(k) (4.22)

the closed-loop system becomes

x(k + 1) =
2

∑
i=1

hi(z(k))
11

∑
r=1

vr(u(k))
2

∑
j=1

hj(z(k)))

× ((Ai + Bi(Sr + ∆Sr)Kj)x(k) + Biυ(k) + Ciw(k)) (4.23)

Remark 4.2. The fuel cell dynamic is intricate which is affected by operating conditions of the

stack, such as inlet stoichiometry, inlet pressure, humidity, and temperature. To handle the fuel

cell dynamic, we introduce the time-varying parameter ∆Sj on Sj to describe the uncertainty of

the fuel cell stack operational voltage response.

4.3 New energy management design

In this section, we present a novel control law design with a desired H2/H∞ control

performance to address the energy management problem in FCVs. The block diagram

of the energy management controller design is shown in Fig. 4.2.

The H2 and H∞ performance indexes are defined as follows

JH∞ =
Tn

∑
k=0

(zT(k)z(k)− α2(wT(k)w(k) + υT(k)υ(k))) (4.24)
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JH2 =
Tn−1

∑
k=0

(uT(k)Wcu(k)) + xT(Tn)Px(Tn) (4.25)

where z(k) = x1(k) = CzX(k), α2 is the H∞ attenuation level to reject the disturbance

on battery SoC, Wc is the weighting scalar on control input, and P is the terminal cost

on states.

The input constraint is defined as follows

uT(k)u(k) ≤ µ2 (4.26)

To address the fuel cell dynamic uncertainty, we first define

∆Sr = HF(k)Er

where H and Er are known matrices with appropriate dimensions and F(k) is an un-

known matrix but satisfies

F(k) ∈ Ω := {F(k)|FT(k)F(k) ≤ I}

Then, we rewrite the state-space representation of the closed-loop system (4.23) as

x(k + 1) = Acx(k) + Bhe(k) + Bυυ(k) + Cww(k) (4.27)

e(k) = F(k)g(k) (4.28)

g(k) = CgX(k) (4.29)

where

Ac =
2

∑
i=1

hi(z(k))
11

∑
r=1

vr(u(k))
2

∑
j=1

hj(z(k))(A + BiSrKj)

Bh =
2

∑
i=1

hi(z(k))BiH Bυ =
2

∑
i=1

hi(z(k))Bi

Cw =
2

∑
i=1

hi(z(k))Ci Cg =
11

∑
r=1

vr(u(k))
2

∑
j=1

hj(z(k))ErKj

Now, we present the main result in this paper as follows.

Theorem 4.1. Consider the system of (4.23). Assume that system initial condition is zero, H∞

attenuation level α2 is specified, Q = QT > 0, λ ∈ (0, 1], and ‖x(k)‖ ≤ φ2. Then there exists

a unique, admissible robust fuzzy controller (4.22), where

Ki = YiQ−1 (4.30)
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that stabilizes system (4.23) with H∞ attenuation level α2, minimizes the upper bound of the

H2 control performance index (4.25) and subjects to the constraint uT(k)u(k) ≤ µ2 at all time

k ≥ 0. Q and Mi are obtained by solving the following optimisation problem:

minimize
Q,M1,M2

β2

subject to

Q = QT > φ2 I (4.31)

Q ? ? ? ? ? ?

0 λI ? ? ? ? ?

0 0 β2 I ? ? ? ?

0 0 0 β2 I ? ? ?

Φ51 Φ52 Φ53 Φ54 Q ? ?

Φ61 0 0 0 0 Wc ?

Φ71 0 0 0 0 0 1/λ


≥ 0 (4.32)



Q ? ? ? ? ? ?

0 λI ? ? ? ? ?

0 0 α2 I ? ? ? ?

0 0 0 α2 I ? ? ?

Φ51 Φ52 Φ53 Φ54 Q ? ?

CzQ 0 0 0 0 I ?

Φ71 0 0 0 0 0 1/λ


≥ 0 (4.33)

[
Q YT

i

Yi µ2 I

]
≥ 0 (4.34)

i ≤ j subject to hi ∩ hj 6= ∅

where ? denotes terms readily inferred from symmetry and

Φ51 = AQ +
BiSrYj + BjSrYi

2
Φ52 =

Bi + Bj

2
H Φ53 =

Bi + Bj

2

Φ54 =
Ci + Cj

2
Φ61 = Wc

Yi + Yj

2
Φ71 = Er

Yi + Yj

2

Proof. The proof is given in the Appendix A.

Remark 4.3. Zero initial condition is feasible in practice. We can adjust reference battery SoC

(SoCre f ) to be initial SoC (SoC(0)) in each vehicle.
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Remark 4.4. In the mixed H∞/H2 control design, JH∞ performance index places importance

on sustaining battery charge while JH2 performance index concerns fuel consumption. The

main advantage of this methodology is that the proposed EMS can be used in any driving cycle

without explicit prediction of future power demand.

Remark 4.5. Unlike the emphasis on heuristics and reasoning in fuzzy logic control, fuzzy

model based control in this study is used to approximate the nonlinear power system. Therefore,

control specifications that can be expressed in terms of stability, performance, robustness to

modelling error can be guaranteed. The desired mixed H2/H∞ control performance index works

as an objective function to improve fuel economy and guarantee charge sustainability.

4.4 Verification examples

Figure 4.3. Driving route and corresponding power demand used in the simulation
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Figure 4.4. (a) Fuel cell equivalent circuit model (b) Battery equivalent circuit model

4.4.1 Experiments and simulation environment

To verify our new energy management controller for FCHVs, we use a closed-loop sim-

ulation in the MATLAB/Simulink environment with Powertrain Blockset™and LMI

(Gahinet et al. 1994) toolbox with SDPT3 solver (Tütüncü et al. 2003). Although the

simulation environment cannot entirely reflect the real-world situation, the models in

our system are based on a golf cart prototype (Tolj et al. 2013), and the data of power

demand is collected from the trials of driving on the golf cart. Shown in Fig. 4.3 are the

driving route used.

Equivalent circuit models, as shown in Fig 4.4, are used to represent battery and fuel

cell in the simulator. To estimate parameters of the equivalent circuit models, we con-

ducted the following experiments based on a 15kW Ballard FCvelocity-9SSL fuel cell

stack and a 20Ah lithium-ion Polymer battery:

• Fuel cell: Load current from 0A to 100A are applied to the fuel cell stack and the

corresponding terminal voltage response data is collected.

• Battery: Discharge current pulses from 40A down to 0A are applied to the battery

prototype and the corresponding terminal voltage response data is collected.

Based on the results, the parameters that used in the controller design are set as follows:
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Figure 4.5. Voltage response from the model in the simulator and the fuzzy model in our controller

design

• Battery: b0 = 0.6526, b1 = 3.402, ns = 28, np = 2, Cn = 20, R0 = 0.0091,

R1 = 0.0017, C1 = 3.0027e04, SoCre f = 0.5

• Fuel cell: n f cs = 75, E f c = 0.9277, A f c = 0.0325, R f c = 4.3341e− 4, i0 = 0.3665

• Others: ∆t = 1, φ = 0.005, η̄dc = 0.9, λ = 0.3, Er = 2, H = 1, α2 = 0.003,

Cz =
[
1 0 0

]
.

Moreover, the fuel cell boost converter is described by its efficiency map, and a uniform

random number (ρ ∈ [−2%,+2%]) is added to simulate the efficiency uncertainty. To

simulate fuel cell dynamic that affected by operating conditions, we add a random

noise that follow a Gaussian distribution N(µ = 0, σ = 0.5) on the fuel cell operational

voltage response in the fuel cell model.

4.4.2 Effectiveness of the fuzzy modelling framework

To verify the effectiveness of the fuzzy model, we apply load current from 0A to 300A

to the fuel cell model in the simulator and the fuzzy model in our controller design,

respectively. We then compare the voltage response from the models. The results are

shown in Fig. 4.5. It is clear that by considering the uncertainty of the fuel cell stack

operational voltage response ∆Sr, the fuzzy model has capable of handling the fuel
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Figure 4.6. Battery SoC and hydrogen flow rate in average under five difference values of Wc and

DP

cell dynamic that can affect the robust stability of the whole system. Therefore, the

conclusion given in Remark 4.2 is verified.

4.4.3 Energy management controller performance

In this controller design, Weight Wc is a parameter that can be tuned in the simula-

tion. It measures the contribution of the control input (hydrogen consumption) cost by

comparing with the terminal cost on the state (battery SoC). Fig. 4.6 shows the system

response (battery SoC and hydrogen average flow rate) by implementing five different

Wc in the controller design. We observe that weight Wc can be increased in order to

achieve better fuel economy, but it also brings the decline of the disturbance rejection

ability to maintain the battery SoC under unknown power demand.
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Figure 4.7. Output power delivered from the fuel cell stack and the normal distribution fit of the

rate of power change under different Wc and DP

Furthermore, the performance of the controller is evaluated against the optimal global

solution obtained from dynamic programming (DP) (Sundstrom and Guzzella 2009).

The numeric results are shown in Table 4.1. Since we assume that DP knows the future

power demand in advance, it shows the best control performance under the driving

cycle as expected. It should be highlighted that the hydrogen flow rate on average

under the proposed controller can consume only 2% more than the DP based EMS by

relaxing the SoC variation. Since we introduce the noise on fuel cell stack and DC-DC

converter in the simulator, we observe that the battery SoC doesn’t exactly reach the

reference value (50%) under the DP based EMS in the simulation.

The dynamic behavior of the fuel cell stack is highly affected by various operating

conditions such as temperature, humidity, gas stoichiometry and pressure. Smoother

fluctuation of the load will reduce the work of the fuel cell controller to deal with

potential complex phenomena, such as water flooding and air starvation.
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Table 4.1. Numeric results of battery SoC and hydrogen flow rate in average under different energy

management systems

Strategy SoC (%) H2 flow rate (SLPM)

DP 49.74 31.7324

Wc = 1 49.95 36.0438

Wc = 5 49.79 35.7013

Wc = 10 49.55 35.2653

Wc = 30 48.61 33.9931

Wc = 50 47.50 32.4085
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Figure 4.8. Fuel cell stack dynamic response with the proposed controller with Wc = 30 under three

standard driving cycles

In this study, we propose a state-feedback energy management controller that mainly

associates the battery SoC. Since the battery SoC is a slowly time-varying state com-

pared to the power demand from drivers, the controller has capable of reducing the

rate of power change from the fuel cell stack during the operation. In Fig. 4.7, we
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Figure 4.9. H∞ and H2 performance of proposed controller with Wc = 30 under three standard

driving cycles

present the output power delivered from the fuel cell stack and the normal distribu-

tion fit of the rate of power change under different Wc and DP. It is clear that our pro-

posed energy management controller demonstrates smoother fluctuation of the power

delivered from the fuel cell stack compared to DP.

To further verify the effectiveness of the controller, we implement the controller with

Wc = 30 in the simulator under the following standard driving cycles:

• Four-lap European driving cycle ECE-15

• One-lap World Harmonized Vehicle Cycle (WHVC)

• One-lap Worldwide Harmonised Light Vehicle Test Procedure (WLTP): Class 1

where Powertrain Blockset™in Simulink is used for the vehicle dynamic simulation

and power demand calculation.
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Figs. 4.8-4.9 show the fuel cell stack dynamic response and the controller performance

corresponding to H∞ and H2 performance indexes, respectively. Although the power

demand in each driving cycle is different, the controller provides the functionality of

disturbance rejection that stabilizes the battery SoC at a certain level in all driving

cycles. Therefore, the conclusion given in Remark 4.4 is verified.

4.5 Chapter summary

This chapter describes a real-time energy management system for fuel cell vehicles

over various driving scenarios. A T-S fuzzy model is used to approximate the nonlin-

ear energy system and then a mixed H2/H∞ energy management controller is devel-

oped to achieve suboptimal H2 control performance under the H∞ disturbance rejec-

tion constraints. The energy management controller offers good control performance

to improve the fuel economy while maintaining the battery SoC in an admissible range

over various driving scenarios. The potential of the new design technique developed

is demonstrated by various real-world driving scenarios.

In the next chapter, we will further investigate how to incorporate traffic condition

into the energy management controller design to further improve optimisation perfor-

mance.
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Chapter 5

Robust Model Predictive
Control for Energy

Management System
design

IN this chapter, we present a new approach for energy management in fuel

cell vehicles. Robust model predictive control technique is used for the

energy management system design to achieve the desired system perfor-

mance in terms of reducing hydrogen consumption while maintaining bat-

tery state of charge under practical operating constraints and uncertain fu-

ture power demand. The optimisation problem is cast into a convex optimi-

sation problem in the form of linear matrix inequalities and solved online.

Furthermore, traffic condition is incorporated into the energy management

controller design to further improve fuel economy. MATLAB/Simulink

based simulation serves to illustrate the effectiveness of the control scheme.
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5.1 Introduction

The partially observable Markov decision process based control approach in Chapter

3 shows significant potential for fuel cell vehicle’s energy management system design,

especially in fixed driving scenarios (such as the bus driving route). Nevertheless,

several challenges remain before their practical use in automotive applications. These

practical challenges include:

• The control system may perform very poorly when the future power demand is

not well described by the model. In fuel cell vehicles, the future power demand

is determined by the driver’s driving behaviour. From an energy point of view, it

is challenging to predict human’s behaviour even the external driving conditions

are given.

• How to further mitigate the computational burden in the nonlinear optimisation?

• How to blend theoretical development and practical issues to guarantee stability,

robustness and optimality of energy management design in fuel cell vehicles?

Motivated by these practical challenges, we propose a novel robust fuzzy model pre-

dictive control (MPC) based approach in this chapter to design an energy manage-

ment system in fuel cell vehicles. Unlike previous fuzzy logic based control strategies

(Sorrentino et al. 2011, Schouten et al. 2003, Tanaka and Wang 2004), Takagi-Sugeno (T-

S) fuzzy approach (Tanaka and Wang 2004, Rhee and Won 2006) is used as a systematic

modelling methodology to approximate the nonlinear power system in fuel cell vehi-

cles. The approach enables the use of most linear control design tools to address sta-

bility analysis, systematic design and performance analysis. In addition, the T-S fuzzy

approach renders itself naturally to Lyapunov based system analysis with linear ma-

trix inequalities (LMIs)(Boyd et al. 1994, Lian et al. 2020, Lian et al. 2019), where LMIs

are used to express constraints in convex optimisation, and the optimisation problem

can be solved in polynomial time.

Furthermore, the robust model predictive control (RMPC) technique is employed in

this study for the power control unit design. Compared with the stochastic model pre-

dictive control based approaches from the preceding review, advantageous features of

robust model predictive control are twofold: the control technique has capable of ad-

dressing uncertainties and disturbances in the application, and the optimisation per-

formance of the approach is decoupled from the predictive model as the optimisation
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is to minimise the upper bound of the performance index instead of minimising the

objective function over the prediction horizon. In the literature, there have been many

research findings on robust model predictive control and fuzzy systems. A review of

robust model predictive control approaches is given in (Kothare et al. 1996, Bempo-

rad and Morari 1999). The features of recent research on robust and stochastic model

predictive control are discussed in (Mayne 2016, Mesbah 2016). In (Yang et al. 2014,

Xia et al. 2010), model predictive control based approaches with T-S fuzzy modelling

framework are discussed.

The chapter is organised as follows. In Section 5.2, the energy management problem

in fuel cell vehicles is formulated as an optimisation problem under a fuzzy modelling

framework. In Section 5.3, the robust fuzzy model predictive control based control

scheme is presented to design the power control unit for fuel cell vehicles. We then

extend the control scheme to incorporate traffic condition for further improving the

fuel consumption. Simulation result is given in Section 5.4 to illustrate the effectiveness

of the control schemes.

5.2 Problem formulation

5.2.1 System dynamics of the power system in fuel cell vehicles

Fig. 5.1 shows the typical parallel structure of the power plant in the current FCV

market (Nonobe 2017) and Fig. 5.2 presents the power flow in the system. At sampling

time k, we have

Pmotor(k) = Pbatt(k) + Pboost(k) (5.1)

Pf cs(k) = i f cs(k) ·Vf cs(k) (5.2)

Pboost(k) = idc(k) ·Vbus(k) (5.3)

Pbatt(k) = ib(k) ·Vbus(k) (5.4)

ηboost(k) = Pboost(k)/Pf cs(k) (5.5)

η f cs(k) = Pf cs(k)/Ph2(k) (5.6)

where Pmotor is the power demand from the motor, Pboost is the output power of the

boost converter, Ph2 is the output power of the hydrogen tank, Pbatt is the power deliv-

ered from the battery pack, Pf cs is the power delivered from the fuel cell system, i f cs
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Figure 5.1. Fuel cell vehicle with parallel hybrid system configuration
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Figure 5.2. Power flow in a fuel cell vehicle with parallel energy configuration

is the output current of the fuel cell stack, Vf cs is the terminal voltage of the fuel cell

stack, idc is the output current of the boost converter, ib is the output current of the bat-

tery pack, Vbus is the terminal voltage of the battery pack, ηboost is the boost converter

efficiency, and η f cs is the fuel cell system efficiency.

Hydrogen consumption increases with current and is dependent on the number of fuel

cells in the stack, which can be calculated by

mh2(i f c) = co f c · i f c · N f c (5.7)

where mh2 is the hydrogen consumption in standard liter per minute, co f c is the corre-

sponding constant coefficient and N f c is the number of fuel cells.
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Now, we are ready to present the system dynamic model in this study.

Battery model

Fig. 5.3(a) shows the battery model in this study due to the simplicity and the focus of

energy-efficient driving. Vbus is, thus, defined as

Vbus(k) = nsb · (Ebatt(k)−
ib(k)
npb
· Rb) (5.8)

where nsb is the number of cells in serial and npb is the number of cells in parallel.

The battery state of charge (SoC) is estimated by the coulomb counting method

Sbatt(k + 1) = Sbatt(k)−
ηi · ∆t

Cn · npb
ib(k) (5.9)

where ηi is the faraday efficiency of the cell, Sbatt is the cell SoC, ∆t is the sampling time

period, Cn is the cell capacity, and ib(k) is the instantaneous current delivered from the

battery.

Furthermore, the battery open-circuit voltage Ebatt is assumed to be a linear depen-

dence of the SoC with parameters pa and pb when the battery SoC is between 20% and

80%

Ebatt(Sbatt) = pa · Sbatt + pb, for Sbatt ∈ [0.2, 0.8] (5.10)

Fuel cell model

The fuel cell model is shown in Fig. 5.3(b) where we assume that the fuel cell stack

operating under normal temperature and pressure. In the model, Vf c is the terminal

voltage of the fuel cell, Eoc models the open-circuit voltage of the fuel cell, Rohmic mod-

els the ohmic losses, and Ract models the activation losses. The voltage drop ∆Vact

caused by activation overvoltage is given by

∆Vact = A f c · ln(
i f c

i0
) (5.11)

where i0 is the exchange current density on a proton exchange membrane, A f c is the

Tafel slope, and i f c is the current delivered from the fuel cell.

To summarise, the voltage response of the fuel cell stack is described by

Vf cs(k) = N f c · (Eoc − A f c · ln(
i f c(k)

i0
)− i f c(k) · Rohmic) (5.12)
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Figure 5.4. Efficiency map of a fuel cell boost converter

Fuel cell boost converter model

Since we focus on energy-efficient driving, the fuel cell boost converter is modelled by

its efficiency map. Based on (Hegazy et al. 2012), a typical efficiency map of a fuel cell

boost converter can be described by Fig. 5.4. The boost converter efficiency is given by

ηboost(k) = f (Pboost(k)) (5.13)

where f (Pboost) is the relationship function between the load and the boost converter

efficiency.
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The optimality of the power distribution in FCVs is defined by minimising hydrogen

consumption, which is represented by the following performance index J(k)

J(k) =
Tn

∑
k=0

mh2(i f c(k)) (5.14)

where Tn is the travel time.

The stability of the power plant is defined by maintaining the battery SoC at a certain

level over the trip

Sbatt(k + Tn|k) ∈ Ωb (5.15)

where Ωb is the terminal constraints set of the battery SoC.

5.2.2 Fuzzy modelling framework of fuel cell vehicles

To build a fuzzy modelling framework, we reformulate the energy management prob-

lem in FCVs to minimise the output power from the hydrogen tank during a driving

mission. The objective function consists of two parts: The first part represents the con-

trol input efforts over the driving mission. The practical meaning of the part is the total

energy consumed from the fuel cell stack over a driving mission. The second part rep-

resents the cost of the states at the terminal point only. Consequently, the performance

index J(k) is rewritten by

J(k) =
Tn−1

∑
i=0

PT
h2(k + i|k)Lh2Ph2(k + i|k) + νt(x(k + Tn|k)) (5.16)

νt(x(k + Tn|k)) = x(k + Tn|k)TPx(k + Tn|k) (5.17)

where Lh2 is the weighting scalar, P is the weighting matrices, and νt is the terminal

cost on states.

We define the states, control input, and disturbance acting on the system as follows.

x1(k) = Sbatt(k)− Sbatt·re f

x2(k) = Vbus(k)−Vbus·re f

u(k) = Pf cs(k)

w(k) = Pmotor(k)
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where Sbatt·re f and Vbus·re f are the reference values of the cell SoC and DC-BUS voltage,

respectively.

Substituting (5.6) to (5.16), we have

J(k) =
Tn−1

∑
i=0

uT(k + i|k)Luu(k + i|k) + νt(x(k + Tn|k)) (5.18)

where Lu = (1/η f cs)
2 · Lh2.

The objective J(k) consists of finding the control u(k) that leads to the minimisation of

the fuel consumed over the driving mission while maintaining the battery SoC within

certain admissible range at the terminal point Tn.

Remark 5.1. From an energy point of view, the power demand is determined by the driver’s

driving behaviour. Poor control performance may occur if the future power demand is not well

predicted. However, it is challenging to predict human behaviour even if the external driving

route is given. A compromise is to use a fixed reference value for the final states to deal with all

driving scenarios. It will lead to sub-optimal results, but the setting increases the controller’s

applicability to handle all driving conditions found in the real application.

Combining (5.1) - (5.13), we have the following system dynamic model

x1(k + 1) = x1(k)−
ηi · ∆t

Cn · npb
· w(k)− ηboostu(k)

x2(k) + Vbus·re f
(5.19)

x2(k + 1) = nsb(pax1(k)−
Rb
npb
· w(k)− ηboostu(k)

x2(k) + Vbus·re f
) (5.20)

In this study, the fuzzy model is constructed by the approach of the local sector non-

linearity in fuzzy partition spaces (Tanaka and Wang 2004). Shown in Fig. 5.5 is a local

sector nonlinearity. To find a local sector for a nonlinear system

x(k + 1) = f (x(k)) ∈
[

a1 a2

]
x(k)

where x(k) ∈
[
d1 d2

]
, we approximate the nonlinear function by the local sector using

fuzzy membership functions.

The steps to construct the fuzzy model is as follows.

Equations (5.19) and (5.20) can be written as

x(k + 1) =

[
1 0

nsb pa 0

]
x(k) +

 ηi∆tηboost
Cnnpb(x2(k)+Vbus·re f )

Rbηboost
npb(x2(k)+Vbus·re f )

 u(k)−

 ηi∆t
Cnnpb(x2(k)+Vbus·re f )

Rb
npb(x2(k)+Vbus·re f )

 w(k)

(5.21)
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Figure 5.5. Local sector nonlinearity

where x(k) = [x1(k), x2(k)]T.

Since nsb, pa, ηi, ∆t, Cn, npb, Rb are known constants, the only nonlinear term in the sys-

tem is 1/(x2(k) + Vbus·re f ) if ηboost can be assumed as a constant. For the nonlinear

term, define z(k) = 1/(x2(k) + Vbus·re f ). Then, we have

x(k + 1) =

[
1 0

nsb pa 0

]
x(k) +

 ηi∆tηboost
Cnnpb

z(k)
Rbηboost

npb
z(k)

 u(k)−

 ηi∆t
Cnnpb

z(k)
Rb
npb

z(k)

 w(k) (5.22)

Next, we calculate the maximum and minimum values of z(k) under x2(k) ∈ [x2·min, x2·max],

that is,

zmax = 1/(x2·min + Vbus·re f )

zmin = 1/(x2·max + Vbus·re f )

For their maximum and minimum values, z(k) is represented by

z(k) = 1/(x2(k) + Vbus·re f ) = M1(z(k)) · zmin + M2(z(k)) · zmax (5.23)

where M1(z(k)) + M2(z(k)) = 1.

From (5.23), the membership functions can be defined as

M1(z(k)) = (z(k)− zmax)/(zmin − zmax)

M2(z(k)) = (z(k)− zmin)/(zmax − zmin)

We denote the membership functions “Large” and “Small”. Then, the nonlinear system

(5.21) is represented by the following 2-rule fuzzy model

RULE A:
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IF z(k) is “Small”

x(k + 1) = Ax(k) + B1u(k) + E1w(k) (5.24)

RULE B:

IF z(k) is “Large”

x(k + 1) = Ax(k) + B2u(k) + E2w(k) (5.25)

where

A =

[
1 0

nsb pa 0

]
B1 =

 ηi∆tηboost
Cnnpb(x2·max+Vbus·re f )

Rbηboost
npb(x2·max+Vbus·re f )

 B2 =

 ηi∆tηboost
Cnnpb(x2·min+Vbus·re f )

Rbηboost
npb(x2·min+Vbus·re f )


E1 =

 −ηi∆t
Cnnpb(x2·max+Vbus·re f )

Rb
npb(x2·max+Vbus·re f )

 E2 =

 −ηi∆t
Cnnpb(x2·min+Vbus·re f )

Rb
npb(x2·min+Vbus·re f )


From Fig. 5.4, we observe that the boost converter operates efficiently when the output

power of the boost converter is higher than a certain level εp1 (around 10% of its maxi-

mum power). In this situation, it is reasonable to assume the boost converter efficiency

ηboost a constant. In addition, a fuel cell system (Staunton et al. 2006, Wipke et al. 2012,

Gemmen and Johnson 2006) shows the similar efficiency characteristic, that is, a fuel

cell system operates efficiently and η f cs can be assumed as a constant when the power

delivered from the fuel cell system is higher than a certain value εp2.

Therefore, we introduce a bounded uncertainty ∆u ≤ max(εp1, εp2) on the input part

to guarantee that the fuel cell system and the boost converter operate efficiently. By

considering the uncertainty ∆u in the system, we can enforce Pboost to εp1 when Pboost <

εp1 and Pf cs to εp2 when Pf cs < εp2. We rewrite the T-S fuzzy model in (5.24) - (5.25) by

x(k + 1) =
r

∑
i=1

hi(z)(Ax(k) + Bi(u(k) + ∆u) + Eiw(k)) (5.26)

where r is the number of fuzzy rules (r = 2 in our case) and

h1(z) = M1(z(k)) h2(z) = M2(z(k))

In addition, the constraint on control input is considered

u(k + i|k) ∈ U, i = 0, 1, ..., Tn − 1 (5.27)

where U is a constraint set of the power delivered from the fuel cell stack.
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Remark 5.2. To employ T-S fuzzy approach as the approximator for the power system in FCVs,

an intuitive solution is to take i f c as the control input, Sbatt as the state, and then linearise

the control system under a T-S fuzzy modelling framework. However, the solution suffers

from computational burden since the premise variables have to be the functions of the input

variables which introduces a complicated defuzzification process of fuzzy controllers (Tanaka

and Wang 2004). Therefore, we adopt the alternative approach (5.24)-(5.26) to build the fuzzy

modelling framework.

Remark 5.3. Battery SoC is normally estimated and monitored by a battery management sys-

tem in an FCV. Its estimated state is sent to the power control unit via CAN bus. In this study,

we follow this concept and assume the battery SoC is observable.

In summary, the energy management problem in this study is to minimise the cost

function J(k) in (5.18), subject to the system dynamic model in (5.26) and constraints

in (5.15) and (5.27).

5.3 Control scheme of fuzzy model predictive control

In this section, we describe our proposed control scheme to address the energy man-

agement problem posed in Section 5.2. A robust MPC based approach is proposed

to minimise the upper bound of the cost function J(k) in (5.18) with a state-feedback

controller

u(k) =
r

∑
i=1

hi(z(k))Kix(k) (5.28)

5.3.1 Recursive feasibility

The first issue that we address is the recursive feasibility of the control scheme in the

presence of disturbance and uncertainties. In this study, we adopt the concept of ro-

bust positively invariant (RPI) set (Blanchini 1999, Mayne et al. 2006, Valmorbida and

Anderson 2017) to design the control law, which provides sufficient conditions to guar-

antee the recursive feasibility.

Definition 5.1 (RPI for discrete-time systems (Blanchini 1999)). For the system x(k +

1) = f (x(k), w(k)), a set Υ ⊂ Rn is robust positively invariant if for all x(0) ∈ Υ and all

w(k) ∈W, the solution is such that x(k) ∈ Υ for k > 0.
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For the fuzzy system in (5.26), we define the candidate invariant set Υ as follows.

Υ = {x ∈ Rn : xTPx ≤ ξ} (5.29)

Derived from the results in (Alessandri et al. 2004), the set in (5.29) is an RPI set if

1
ξ

x(k)TPx(k) ≥ w(k)Tw(k) + ∆u(k)T∆u(k)
γ2 + δ2 (5.30)

implies

1
ξ

x(k + 1)TPx(k + 1) ≤ 1
ξ

x(k)TPx(k) (5.31)

where γ and δ are known constants that, for all k ≥ 0,

w(k)Tw(k) ≤ γ2 (5.32)

∆u(k)T∆u(k) ≤ δ2 (5.33)

Using the S-procedure technique (Yakubovich 1992, Iwasaki et al. 2000), (5.31) holds if

there exists λ ∈ (0, 1] such that

1
ξ
(x(k + 1)TPx(k + 1)− x(k)TPx(k))

− λ(
w(k)Tw(k) + ∆u(k)T∆u(k)

γ2 + δ2 − 1
ξ

x(k)TPx(k)) ≤ 0 (5.34)

The following theorem shows that the conditions in (5.34) can be cast in the form of

LMIs to guarantee Υ is a robust positively invariant set for the system in (5.26).

Theorem 5.1. The state feedback matrices Ki in (5.28) to ensure Υ being an RPI for the system

in (5.26) are given by

Ki = MiQ−1 (5.35)

where λ ∈ (0, 1], Q > 0 and Mi are obtained from the following matrix inequality
(1− λ)Q ? ? ?

0 λ/(γ2 + δ2) ? ?

0 0 λ/(γ2 + δ2) ?

AQ +
Bi Mj+Bj Mi

2
Bi+Bj

2
Ei+Ej

2 Q

 ≥ 0

for i ≤ j subject to hi ∩ hj 6= ∅ (5.36)

where ? denotes terms readily inferred from symmetry.
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Proof. See Appendix B.1.

Remark 5.4. The feedback matrices Ki computed from Theorem 5.1 are capable of ensuring that

the candidate invariant set Υ is an RPI set for the system in (5.26). According to Definition

5.1, the path constraints on the states are imposed by the RPI set.

Moreover, we impose the following conditions on the terminal cost νt to achieve sta-

bility:

νt(x(k + 1 + i|k))− νt(x(k + i|k))

≤ α2(w(k + i|k)Tw(k + i|k) + ∆u(k + i|k)T∆u(k + i|k))− uT(k + i|k)Luu(k + i|k)
(5.37)

where α is a positive scalar. The stability and optimality analysis of the control system

will be given in the following sections.

5.3.2 Optimality and constraints

Summing (5.37) from i = 0 to i = Tn − 1,

J(k) =
Tn−1

∑
i=0

uT(k + i|k)Luu(k + i|k) + νt(x(k + Tn|k))

≤ νt(x(k|k)) + α2
Tn−1

∑
i=0

(w(k + i|k)Tw(k + i|k) + ∆u(k + i|k)T∆u(k + i|k)) (5.38)

From (5.32) and (5.33), we have

Tn−1

∑
i=0

(w(k + i|k)Tw(k + i|k) + ∆u(k + i|k)T∆u(k + i|k)) ≤ Tn(γ
2 + δ2) (5.39)

Thus, we obtain

J(k) ≤ νt(x(k|k)) + α2Tn(γ
2 + δ2) (5.40)

Consider

νt(x(k)) = x(k)TPx(k) ≤ ξ (5.41)

the upper bound of the cost function J(k) is minimised by solving

min ξ, subject to νt(x(k)) ≤ ξ (5.42)
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and the input constrain is defined as follows.

uT(k)u(k) ≤ µ2 (5.43)

The following theorem gives us LMIs conditions for existence of the appropriate P

satisfying (5.37) and input constraint (5.43), and the corresponding state feedback ma-

trices Ki.

Theorem 5.2. The state feedback matrices Ki in (5.28) that minimise the upper bound of the

performance function J(k|k) at time step k and subject to the constraint uT(k)u(k) ≤ µ2 at

all time k ≥ 0 are given by (5.35), where Q > 0 and Mi are obtained by solving the following

optimisation problem

min ξ

subject to

Q ? ? ? ?

0 ξα2 ? ? ?

0 0 ξα2 ? ?

AQ +
Bi Mj+Bj Mi

2 ξ
Bi+Bj

2 ξ
Ei+Ej

2 Q ?
Mi+Mj

2 Lu 0 0 0 ξLu


≥ 0

for i ≤ j subject to hi ∩ hj 6= ∅ (5.44)[
Q MT

i

Mi µ2 I

]
≥ 0 (5.45)

and[
1 xT(k)

x(k) Q

]
≥ 0 (5.46)

Proof. See Appendix B.2

Fig. 5.6 shows the block diagram of the RMPC based control scheme, and the proce-

dure for the control scheme is shown as follows.

• Step 1: At time step k, control law (5.28) is yielded by the solution of the following

optimisation problem with the fuzzy membership values hi:

min ξ (5.47)

subject to (5.36), (5.44), (5.45), (5.46)
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Figure 5.6. Block diagram of the robust fuzzy model predictive control based control scheme

• Step 2: At time step k + 1, the new measurement x(k + 1) is taken, and Step 1 is

repeated.

Remark 5.5. The range of the RPI set Υ can be calculated off-line from (5.47). Since the path

constraints on the states are imposed by Υ, if the maximum range of Υ does not exceed the

battery SoC limitation, then the battery will not be fully depleted or overloaded over the trip.

5.3.3 Stability analysis

In this section, we adopt the input-to-state stability framework (Sontag and Wang 1995,

Jiang and Wang 2001, Magni et al. 2006) for analysing the stability of the proposed

RMPC based control scheme. First, we give the following definitions:

Definition 5.2. If a function κ : R ≥ 0 → R ≥ 0 is continuous, strictly increasing, it is

called a K function; If a function κ : R ≥ 0 → R ≥ 0 is a K function and κ(k) = ∞ as

k→ ∞, it is called a K∞ function.

Definition 5.3. Consider the discrete-time system

x(k + 1) = f (x(k), u(k), w(k)) (5.48)
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Provided that the disturbance is bounded by w ∈ W. A function V(∗) : Rn → R ≥ 0 is an

input-to-state practical stability Lyapunov function if it satisfies

θ1(‖x‖) ≤ V(k) ≤ θ2(‖x‖) (5.49)

V(x(k + 1))−V(x(k)) ≤ −θ3(‖x‖) + φ(‖w‖) (5.50)

where θ1, θ2, θ3 are K∞ functions, φ is a K function, and ‖x‖ and ‖w‖ are norms of given

vectors x and w, respectively.

Lemma 5.1 (Input-to-state practical stable (Limón et al. 2006)). If there exists an input-

to-state practical stability Lyapunov function V(k) that satisfies (5.49) and (5.50) for system

(5.48), then the system is called input-to-state practical stable.

Lemma 5.2. If there exists a feasible solution of the optimisation problem in (5.47) at sampling

time t = k, then the solution is also feasible for all time t > k.

Proof. Since (5.46) is the only matrix inequality in the optimisation problem that de-

pends on the state, we only need to prove that (5.46) is feasible for all time t > k.

The feasibility of (5.46) implies x(k|k)TPx(k|k) ≤ ξ. Thus, for any time t > k, we must

prove

x(k + i|k)TPx(k + i|k) ≤ ξ for all i > 0 (5.51)

As shown in (5.31), the matrix inequality in (5.36) implies

x(k + i|k)TPx(k + i|k) ≤ x(k|k)TPx(k|k) for all i > 0

Thus, (5.51) is guaranteed for any time t > k and the proof is completed.

Theorem 5.3. Provided that a feasible solution exists for the optimisation problem in (5.47) at

time k = 0, then the system in (5.26) is input-to-state practical stable.

Proof. First, from Lemma 5.2, we can guarantee the recursive feasibility of the control

law. Then, to guarantee input-to-state practical stable of the system in (5.26), we only

need to find an input-to-state practical stability Lyapunov function V(k) that satisfies

(5.49) and (5.50).

Consider optimal control gain K∗(k) and P∗(k) at sampling time k, we have

ν∗t = xT(k)P∗(k)x(k) (5.52)
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λmin‖x‖2 ≤ ν∗t ≤ λmax‖x‖2 (5.53)

where λmin and λmax represent minimal and maximal eigenvalues of P∗(k), respec-

tively.

Moreover, from (5.37), we obtain

ν∗t (x(k + 1|k))− ν∗t (x(k|k)) ≤α2(w(k|k)Tw(k|k) + ∆u(k|k)T∆u(k|k))

− xT(k|k)K∗(k|k)LuK∗(k|k)x(k|k) (5.54)

which satisfies (5.50).

Thus, νt is an input-to-state practical stability Lyapunov function of the system, and

the proof is completed.

5.3.4 Controller design by incorporating traffic condition

The major disadvantage of using the above RMPC based control scheme for energy

management systems is its conservatism since the control law intents to minimise the

upper bound of the performance index in (5.40) where γ defined in (5.32) should cover

the maximum power that the vehicle can provide.

In some driving scenarios, the upper bound of the power demand is much smaller than

the maximum power that the vehicle can provide. For example, in the scenario when

the vehicle is stuck in a traffic jam, the upper bound of the power demand is passively

limited by the poor traffic condition.

Motivated by the potential feasibility to relax the conditions of the RMPC based control

scheme, we incorporate traffic condition into the energy management controller design

to further improve the fuel consumption.

To process, we make the following assumption.

Assumption 5.1. There exists a power upper bound mapping system such that traffic condi-

tions are capable of mapping to the different upper bound of the vehicle power demand by several

associative rules.

An example of the power upper bound mapping from a set of rules is as follows.
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• Rule1: If traffic condition is ‘excellent’, then γ(k) = θ1

• Rule2: If traffic condition is ‘good’, then γ(k) = θ2

• Rule3: If traffic condition is ‘bad’, then γ(k) = θ3

• Rule4: If traffic condition is ‘poor’, then γ(k) = θ4

Given that the mapping between the traffic conditions and the upper bound of the ve-

hicle power demand can be analysed off-line, and that live traffic information service is

widely available in many countries, it is reasonable and practical to make Assumption

5.1.

Extended from Fig. 5.6, the block diagram of the new control scheme is shown in Fig.

5.7. Since the upper bound γ is adjustable based on different traffic conditions, the

performance index J(k) in (5.38) becomes:

J(k) ≤ νt(x(k|k)) + α2(γ∗(k)2 + δ2) (5.55)

where γ∗(k) is the upper bound of the power demand at sampling step k based on the

traffic condition.

Intuitively, since γ∗(k) ≤ γ , the new control scheme is capable of achieving better

control performance in terms of the performance expressed in (5.38) than the RMPC

based control scheme with constant γ, but how could we guarantee robust stability

and feasibility in the new control scheme?

We first give the procedure for the design of the new control scheme:

Since the upper bounds γ and δ only appear in the matrix inequality in (5.36) of the

optimisation problem in (5.47) in the RMPC based control scheme, we only need to

rewrite the matrix inequality in (5.36) by
(1− λ)Q ? ? ?

0 λ
γ∗(k)2+δ2 ? ?

0 0 λ
γ∗(k)2+δ2 ?

AQ +
Bi Mj+Bj Mi

2
Bi+Bj

2
Ei+Ej

2 Q

 ≥ 0 (5.56)

Therefore, the procedure for the new control scheme is summarised as follows.
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Figure 5.7. Block diagram of the robust fuzzy model predictive control with driving scenario recog-

nition

• Step 1: At sampling step k, control law (5.28) is obtained by solving the following

optimisation problem with the fuzzy membership values hi:

min ξ (5.57)

subject to (5.44), (5.45), (5.46), (5.56)

• Step 2: At time step k + 1, new measurement x(k + 1) and measurements γ∗(k +

1) are taken, and go to Step 1 again.

To prove recursive feasibility and stability of the new control scheme, the following

useful lemma is given.

Lemma 5.3. For the system in (5.26), if there exists a solution to the optimisation problem in

(5.47) at sampling time t = k, the solution of the optimisation problem in (5.57) is also feasible

for all t ≥ k.

Proof. Suppose that the solution of the optimisation problem in (5.47) is feasible, con-

dition (5.34) must be satisfied. Since γ is defined as the upper bound of w(k) for all
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k ≥ 0, we must have

γ∗(k)2 + δ2 ≤ γ2 + δ2 (5.58)

Substituting (5.58) into (5.34) yields

1
ξ
[x(k + 1)TPx(k + 1)− x(k)TPx(k)] ≤ λ[

w(k)Tw(k) + ∆u(k)T∆u(k)
γ2 + δ2 − 1

ξ
x(k)TPx(k)]

≤ λ[
w(k)Tw(k) + ∆u(k)T∆u(k)

γ∗(k)2 + δ2 − 1
ξ

x(k)TPx(k)] (5.59)

As shown in Theorem 5.1, the condition in (5.59) can be cast in the form of LMIs (5.56)

to guarantee that Υ in (5.29) is a robust positively invariant set for the system. The rest

of proof is similar to that of Lemma 5.2 and thus is omitted.

Theorem 5.4. The feasible control law obtained by solving the optimisation problem in (5.57)

robustly stabilises the T-S fuzzy system in (5.26).

Proof. Lemma 5.3 states the recursive feasibility of the optimisation problem (5.57). The

rest of proof is similar to that of Theorem 5.3 and thus is omitted.

Remark 5.6. Since (5.59) implies that (5.56) relaxes the condition of (5.36), the RMPC with

varied γ shows less conservative LMI conditions of the close-loop system than the RMPC based

control scheme with constant γ. Therefore, by incorporating traffic condition, the RMPC based

energy management controller is capable of achieving better control performance with regard to

minimising the performance index J(k) in (5.18).

5.4 Case study

5.4.1 Simulation environment

To illustrate the effectiveness of the proposed control schemes, MATLAB Powertrain

BlocksetTM is used in the simulation studies. Since the software has not supported

LMI toolbox and provided fuel cell models, it is used mainly to simulate the power

demand from the driver and then develop a power plant model based on real-world

experimental data for verifying the effectiveness of our control schemes. The data

acquisition and processing time resolution is set to one second.
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Figure 5.8. Two RC-branch equivalent circuit model in the vehicle simulator
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Figure 5.9. Parameters estimation and verification of the battery model

EOCRact

Cdy
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Figure 5.10. Equivalent circuit model in the vehicle simulator

In order to build a high-fidelity model of the fuel cell vehicle system, the following

experiments are conducted to build the battery model and fuel cell model in the simu-

lator:
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The battery in the vehicle simulator is modelled by a two RC-branch equivalent circuit

as shown in Fig. 5.8. A 20Ah prototype lithium-ion Polymer battery is used to estimate

and verify the parameters of the model. Discharge current pulses from 40A down to

0A are applied to the prototype, and the corresponding terminal voltage response data

is then collected.

The fuel cell is modelled by the equivalent circuit model in Fig. 5.10, by assuming fuel

cells operate at optimal condition. A Ballard FCvelocity-9SSL fuel cell stack is used for

model verification. Similar to the battery experiment, load current from 0A to 100A are

applied to the fuel cell stack, and the corresponding terminal voltage response data is

collected.

The results of simulated data from the models and measured data from the prototypes

are shown in Fig. 5.9 and Fig. 5.11, respectively. We observe that the battery model

and the fuel cell model are capable of capturing the dynamic characteristics of two

prototypes well.
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Figure 5.11. Parameters estimation and verification of the fuel cell model

The YALMIP toolbox (Lofberg 2004) with SDPT3 solver (Tütüncü et al. 2003) is used

to solve the optimisation problems. In the power plant, The battery pack contains 78
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Figure 5.12. Driving cycle used in the case study (top) and power demand of the vehicle in the

simulation (bottom)

cells (20Ah) in series then 5 strings in parallel and the fuel cell stack includes 210 cells

in series.

In the RMPC based control scheme, the term γ represents the upper bound of the

maximum power of the vehicle propulsion system. The term δ represents the upper

bound of the uncertainty ∆u on the control input to enforce the fuel cell system and the

boost converter operate efficiently. Based on the physical constraints of the system, we

set γ = 60 kW and δ = 2 kW.
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Moreover, the term λ is the parameter in Theorem 5.1 to ensure Υ is an RPI set. The

term Lu is the weighting scalar on control input to balance the control effort (fuel con-

sumption) and the terminal cost on the state (battery charge-sustaining). The term α2

is a parameter before the disturbance part in (5.37) which plays a role to determine the

disturbance rejection level of the control system. The primary principle to select λ, Lu

and α2 is to ensure that LMIs (5.44)-(5.46) have a feasible solution while λ is in (0, 1]

and α2 is desired to be small to maintain high-disturbance rejection level. In the case

study, we set α2 = 9e− 5, Lu = 1.2e− 9 and λ = 0.06.

To assess the performance of the proposed control strategy over different driving sce-

narios, we set a combined driving cycle consisting of one Worldwide Harmonised

Light Vehicles Test Procedure (WLTP) Class 3b that was developed by the United Na-

tions Economic Commission for Europe, one Federal Test Procedure 75 (FTP-75) that

was defined by US Environmental Protection Agency (EPA), one EPA Highway Fuel

Economy Driving Schedule (HWFET), and one EPA New York City Cycle (NYCC). By

using the vehicle dynamic model in MATLAB Powertrain BlocksetTM, the power de-

mand of the vehicle is simulated. Fig. 5.12 shows the driving velocity and the power

demand of the vehicle over a duration of 5641 seconds covering the total distance of

59.44 km. For benchmarking the effectiveness of the proposed control strategies, a dy-

namic programming (DP) based algorithm, in which the driving cycle is assumed to

be a priori known, is used.

5.4.2 Effectiveness of the fuzzy model

To verify the accuracy of the fuzzy model, we compare the battery SoC response (cor-

responding to state x1) and DC-BUS voltage response (corresponding to state x2) be-

tween the fuzzy model and the simulator over the driving cycle in the battery-driven

mode. Since MPC has the ability to take new measurements (x1 and x2) at each sam-

pling time, we further compare the effectiveness of the off-line fuzzy model and fuzzy

MPC model in the case study.

The results of the fuzzy model performance are shown in Fig. 5.13. We observe that

both the off-line fuzzy model and the fuzzy MPC model work effectively to approx-

imate the nonlinear system. The fuzzy MPC model offers better control performance

than that of the off-line fuzzy model. The reason being that new measurements (x1 and
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Figure 5.13. Battery SoC output comparison between the off-line fuzzy model and the simulator

(top-left), battery SoC output comparison between the fuzzy MPC model and the

simulator (top-right), and DC-Bus voltage output comparison between the fuzzy MPC

model and the simulator (bottom)

x2) taken at each sampling time in the fuzzy MPC model enables further model inaccu-

racy correction and disturbance compensation, where else there is no similar capability

in the off-line fuzzy model.
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Figure 5.14. Power demand of the vehicle in the case study and upper bound estimation of the

power demand under RMPC and RMPC with varied γ (top) and battery state of

charge response under RMPC, RMPC with varied γ, and DP (bottom)

5.4.3 Control performance

Shown in Fig. 5.14(a) are two scenarios considered in the case study: a) RMPC with

constant γ = 60 (called “RMPC”), and b) RMPC with vaired γ.
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Table 5.1. Numerical results of three control schemes over the driving cycle

WLTC

Control scheme Terminal SoC [%] MPGe

DP 49.00 61.16

RMPC 50.11 54.33

RMPC (varied γ) 50.07 54.66

WLTC+FTP-75

Control scheme Terminal SoC [%] MPGe

DP 50.78 57.46

RMPC 49.99 58.27

RMPC (varied γ) 49.99 58.55

WLTC+FTP-75+HWFET

Control scheme Terminal SoC [%] MPGe

DP 49.29 62.13

RMPC 50.08 59.13

RMPC (varied γ) 50.06 59.38

WLTC+FTP-75+HWFET+NYCC

Control scheme Terminal SoC [%] MPGe

DP 50.00 59.79

RMPC 50.00 58.57

RMPC (varied γ) 50.00 58.79

Fig. 5.14(b) shows the battery SoC response of the system in the presence of distur-

bance (power demand). We observe that the battery SoC is maintained to the reference

value at the end of the driving cycle under all control schemes.

To assess the optimisation performance of the control schemes, we use miles per gallon

gasoline equivalent (MPGe) that defined by US EPA to measure the average distance

travelled per unit of energy consumed. The formulation to calculate MPGe is

(total mile driven)× (energy of one gallon of gasoline)
total energy consumed

Fig. 5.15 shows the result of the optimisation performance. We observe that the pro-

posed control schemes are capable of achieving good performance compared to the
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global optimal solution that DP provided. While RMPC with varied γ demonstrates

the ability to outperform RMPC, which verifies the statement given in Remark 5.6.
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Figure 5.15. Energy consumption comparison among RMPC, RMPC with varied γ, and DP

Furthermore, the numerical results of battery SoC at the terminal points and MPGe

of the FCV under three control schemes over the driving cycle are shown in Table

5.1. Since the optimization horizon is the whole driving cycle under the DP based

approach, it is clear that battery SoC is maintained at the terminal point for the whole

driving cycle, but not at the terminal point of each separate driving cycle.

When comparing with MPGe of DP, we observe that the proposed controllers achieve

sub-optimal results. The results in Table 5.1 show that the controllers are applicable

for all driving cycles to maintain battery SoC within certain admissible range near the

scheduled reference SoC with competitive MPGe performance.

5.4.4 Computational time

Computational burden at each sampling step is a critical limiting factor for a real-time

EMS design. Fig. 5.16 shows the computational time of RMPC with varied γ required

to calculate the control law u(k) at each sampling time over the driving cycle on a PC

with Intel® i7-6700 3.40GHz CPU processor, 16GB RAM, using Simulink R2019a. We

observe that the average time to solve the LMI optimisation problem at each sampling
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Figure 5.16. Computational time of the RMPC (varied γ) based control scheme in the case study

step is 0.2621s and the maximum time is 0.3877s. The low computational cost shows

its applicability in practice.

For the dynamic programming based approach, it takes 83.3116s to solve the optimi-

sation problem since the whole driving cycle is required to consider in the computa-

tion. Although the dynamic programming based approach is capable of providing the

global optimal solution, the heavy computational burden and the requirements of the

prior information of the future power demand limit its ability in a real application.

5.5 Chapter summary

This chapter blends the theoretical analysis and practical issue to develop a new ap-

proach for energy management in fuel cell vehicles. The approach is formulated by

the T-S fuzzy modelling framework and robust model predictive control technique

to leverage real-time driving condition for the energy management controller design.

The energy management problem is cast as a convex optimisation problem where the

state-feedback control law is obtained online by minimising the upper bound of the

cost function, subject to real-time traffic condition system constraints. The advantages

of the proposed control scheme have been illustrated by a simulator developed based

on real-world experimental data.
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In the next chapter, the fuel cell optimisation will be introduced in the energy manage-

ment system design for prolonging fuel cell lifespan.
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Chapter 6

Energy Management
Design with Fuel Cell
Lifespan Optimisation

IN this chapter, we present a novel control scheme for energy management

design in fuel cell vehicles. The energy management problem is trans-

formed to a nonlinear optimisation problem with multi-objectives in order

to improve fuel economy, maintain battery state of charge, and reduce the

incidence of factors affecting the fuel cell performance degradation. A ro-

bust model-predictive-based fuzzy control method is employed to design

the nonlinear control law. The energy management system is capable of

coordinating with a sigma-point Kalman filter based fuel cell stack state of

health estimator and an energy storage system scheduler to achieve the op-

timisation objectives in the presence of uncertainty of the driver’s power

demand. Furthermore, we conduct a comparative experiment and simula-

tion study under three typical urban/highway driving scenarios to verify

the effectiveness and potential of the control scheme.

Page 95



6.1 Introduction

6.1 Introduction

The robust fuzzy model predictive control based control technique is Chapter 5 shows

promising potential for real-time energy management system design in fuel cell vehi-

cles. The remaining practical challenge, fuel cell system optimisation, is not consid-

ered in the control scheme. Developing an effective energy management controller to

concurrently optimise fuel economy and fuel cell lifespan has been one primary moti-

vation of this study.

To design an effective energy management system in fuel cell vehicles, there are two

primary challenging control system requirements:

How to increase the fuel cell system operating efficiency and maintain the battery

charge level in an admissible range under various driving scenarios and uncertain fuel

cell system state of health?

How to reduce the computational cost of the energy management system in order to

respond instantaneously to the power demand input?

To address the challenges, we present a novel energy management system for fuel cell

vehicles in this chapter. An online fuel cell state of health estimation and an energy

storage system scheduler are incorporated into the energy management system design

to achieve optimal control in terms of battery state of charge maintenance, fuel cell

durability protection and fuel economy in fuel cell vehicles. The energy management

problem is elegantly cast into a trajectory tracking problem under adjustable control

input constraints and the robust model predictive control technique under fuzzy mod-

elling framework is employed to design the energy management controller.

The chapter is organised as follows. The energy management problem formulation in a

fuel cell vehicle is described in Section 6.2. The design of the new energy management

system for fuel cell vehicles is illustrated in Section 6.3. The effectiveness and potential

of the proposed design technique are illustrated by various driving scenarios in Section

6.4.
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6.2 Problem formulation

We first present the control system model, operational constraints and objective func-

tion to formulate the EMS design problem.

6.2.1 System dynamics model

DC-DC

Li-ion 
battery pack

Fuel cell stack

Electric motor

Auxiliaries

Ph2 Pfcs

Pb

Pdc

Pd

Hydrogen 
tank

Energy magement 
controller

u

Wheel

Wheel

Vbus DC-BUSPaux

Figure 6.1. Block diagram of a fuel cell vehicle with parallel hybrid configuration

Fig. 6.1 shows the major components of the power system in an FCV where the fuel

cell and the battery operate in parallel. At sample time k, we have

Pdc,k + Pb,k = Pd,k + Paux,k (6.1)

where Pdc is the output power from the fuel cell boost converter, Pb is the power de-

livered from the battery pack, Pd is the power demand from the driver, and Paux is the

power consumption for the drive train losses and supply of the auxiliary systems.

Battery dynamic model

The battery is described by an open-circuit voltage vb in series with an internal resis-

tance Rb as the energy management problem emphasises on energy system efficiency.
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6.2 Problem formulation

The battery’s state of charge (SoC) is estimated by coulomb counting, that is

SoCk+1 = SoCk −
η f ib,k

Cn
∆t (6.2)

where ib is the instantaneous battery current (we denote positive for discharge and

negative for charge), vb,k is the cell’s open-circuit voltage, ∆t is the sampling period,

SoCk is the battery’s SoC at time k, Cn is the battery nominal capacity, and η f is the

battery Faraday efficiency.

The relationship between the cell’s SoC and open-circuit voltage vb is represented by

vb,k(SoCk) = a0 −
a1

SoCk
− a2SoCk + a3 ln(SoCk) + a4 ln(1− SoCk) (6.3)

where a0, a1, a2, a3, a4 are the parametric fitting coefficients. Since the battery pack is

passively connected on the DC-BUS, the battery pack output current Ib,k is calculated

by

Ib,k =
Pd,k + Paux,k − Pdc,k

Vbus,k
(6.4)

where Vbus is the battery terminal voltage. The battery terminal voltage is updated by

Vbus,k+1 = ns(vb,k(SoCk)− Rb
Pd,k + Paux,k − Pdc,k

npVbus,k
) (6.5)

where ns and np are the numbers of cells in series and in parallel in the battery pack,

respectively.

Fuel cell model

To develop an effective health estimator, the following empirical model is used to de-

scribe the fuel cell’s V-I characteristic

Vf = E f − b f ln
I f + il

il
− r f I f − b0(eb1 I f − 1) (6.6)

where Vf is the fuel cell stack voltage, I f is the stack output current, E f is the open-

circuit voltage, b f is the Tafel constant, r f is the overall resistance of the cell, il is the

exchange current density, and the term b0(eb1 I f − 1) represents the mass transfer loss

with two parametric fitting coefficients b0 and b1.

According to (Bressel et al. 2016) regarding the effect of the performance degradation

on the electrochemical parameters’ value, overall resistance r f exhibits significant vari-

ations when the performance degradation occurs during the operation compared with
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Table 6.1. Primary factors for fuel cell performance degradation

Operational condition Proportion [%]

Sudden load changes 56.8

Frequent start-stop 33

Long-time idling 4.7

Continuous high-power delivery 5.8

other parameters. We thus use the overall resistance as the indicator for the fuel cell’s

state of health.

Furthermore, based on the fuel cell lifetime evaluation studies in (Pei and Chen 2014,

Yu et al. 2012), we identify four operational conditions that are contributing to the per-

formance degradation of the fuel cells. Table 6.1 shows these four conditions and their

effects on the degradation.

The design of a fuel cell system is complex. A fuel cell system consists of a fuel cell

stack, a fuel processor, power conditioners, air compressors, and humidifiers. Based

on the test result provided in (Höflinger et al. 2017), the efficiency characteristics of a

fuel cell stack and the fuel cell system are described in Fig. 6.2. The peak efficiency

of the whole fuel cell system occurs around one third of its maximum load. The air

compressor, water pump and hydrogen recirculation pump are taken into account in

the system’s efficiency calculation.

6.2.2 Objectives and challenges

An effective EMS for FCVs should provide the following capabilities during driving

operation in the presence of uncertain power demand from the driver and unobserv-

able State of health (SoH) information of the fuel cell stack:

1. maintenance of battery SoC within the admissible range

2. reduction of the negative factors of fuel cell performance degradation shown in

Table 6.1 that causes the fuel cell performance degradation

3. maximisation of the vehicle’s fuel economy

4. real-time capability to respond instantaneously to the power demand input.
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Figure 6.2. Efficiency characteristics of the fuel cell stack and the fuel cell system

Design an effective EMS for FCVs to achieve these objectives in the presence of the

constraints is the focus of this study.

6.3 New energy management system design

The block diagram of the proposed energy management system is shown in Fig. 6.3.

The system consists of a fuel cell stack SoH estimator, an energy management system

scheduler, and an energy management controller.

6.3.1 Fuel cell stack state of health estimator

The fuel cell stack SoH estimator provides high-fidelity estimation of fuel cell stack

health status to energy management controller for reducing the negative factors that

cause the fuel cell performance degradation.

Recall from Section 6.2.1 that the overall fuel cell internal resistance r f is defined as

the health indicator for fuel cell performance degradation. We extract E f , b f , il, r f , b0, b1
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Figure 6.3. Block diagram of the energy management system for fuel cell vehicles
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estimation

from the empirical model in (6.6) by parameters fitting according to the fuel cell polar-

isation curve provided in the stack user manual. The obtained r f is used as the fuel cell

overall resistance benchmark value.

To estimate r f of the fuel cell stack in real time, we use the sigma-point Kalman filtering

technique (Wan et al. 2001, Wan and Van Der Merwe 2000, Kandepu et al. 2008). Its
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6.3 New energy management system design

state estimation usually outperforms that of the extended Kalman filter (EKF), since

the sigma-point Kalman filter is based on derivativeless statistical linearisation. Since

the fuel cell overall resistance change slowly, we model r f as a constant with some

added small zero mean white noise perturbation ρk

r f ,k+1 = f (rk, ρk) = r f ,k + ρk (6.7)

The output equation for the sigma-point Kalman filter is

Vf ,k = h(I f ,k, r f ,k, vk) = E f − b f ln
I f ,k + il

il
− r f ,k I f ,k − b0(eb1 I f ,k − 1) + vk (6.8)

where vk models the sensor and modeling error.

Let p be the dimension of input x. We first form 2p + 1 augmented sigma points as the

set χa+
k

r̂a+
k = {r̂+k , ρ̄, v̄} Σa+

r̃,k = diag(Σ+
r̃,k, Σρ̃, Σṽ) χa+

k = {r̂a+
k , r̂a+

k + γ
√

Σa+
r̃,k , r̂a+

k − γ
√

Σa+
r̃,k }

where r̂a+
k is the augmented a posteriori state estimate vector for the previous time step,

Σa+
r̃,k is the augmented a posteriori covariance estimate, r̂+k is the posteriori estimated

state for the previous time step, ρ̄ and Σρ̃ are the mean and covariance of the noise ρk,

v̄ and Σr̃ are the mean and covariance of the noise vk, and γ is a scaling parameter.

Next, the a priori state estimate r̂−k+1 and covariance estimate Σ−r̃,k+1 are computed as

r̂−k+1 ≈
2p

∑
i=0

αi f (χr+
k,i , χ

ρ+
k,i ) =

2p

∑
i=0

αiχ
r−
k+1,i

Σ−r̃,k+1 =
2p

∑
i=0

βi(χ
r−
k+1,i − r̂−k+1)(χ

r−
k+1,i − r̂−k+1)

T

where αi and βi are the weighting scalars for each sigma point, and χr+
k,i and χ

ρ+
k,i are

the state portion and process-noise portion in χa+
k , respectively.

Then, the output estimate V̂f ,k and the covariance estimate Σṽ,k are obtained from

V̂f ,k ≈
2p

∑
i=0

αih(I f ,k, χr+
k,i , χv+

k,i ) =
2p

∑
i=0

αiνk,i

Σṽ,k =
2p

∑
i=0

βi(νk,i − V̂f ,k)(νk,i − V̂f ,k)
T
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Table 6.2. Fuel cell SoH health rating level

Excellent Good Average Poor

r̂k ≤ r1 (r1, r2] (r2, r3] > r3

ri∈[1,3] is the reference value for each health rating level

The Kalman filter gain Lk is computed as

Σ−r̃ṽ,k =
2p

∑
i=0

βi(χ
r−
k+1,i − r̂−k+1)(νk,i − V̂f ,k)

T

Lk = Σ−r̃ỹ,k × Σỹ,k

Combining the fuel cell stack terminal voltage measurement and the output estimate

yields the a posteriori state estimate and the error covariance

r̂+k = r̂−k + Lk(Vf ,k − V̂f ,k) (6.9)

Σ+
x̃,k = Σ−x̃,k − LkΣṽ,kLT

k (6.10)

With the numerical value r̂+k obtained from (6.9) at k, we classify the operation of the

stack SoH into the following four health rating levels, in which “Excellent” represents

the best health status and “Poor” is the lowest rating. The selection of ri∈[1,3] is based

on the overall resistance benchmark value r f extracted by parameters fitting from the

fuel cell polarisation curve in the user manual.

To summarise, the estimation procedure for the operation of the fuel cell stack SoH is

as follows.

• At time k, new measurements Vf ,k and I f ,k are taken.

• The Kalman filter gain matrix Lk is updated and the overall fuel cell internal

resistance r̂+k is estimated.

• By comparing r̂+k with ri∈[1,3] in Table 6.2, the fuel cell SoH health rating level is

indicated.

6.3.2 Energy storage system scheduler

The energy storage system scheduler optimises the energy stored in the battery pack

and indicates the desired SoC set-point of the battery pack to the energy management
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controller for assisting the fuel cell stack to optimally track the high-efficient area of

the fuel cell system. Fig. 6.3 illustrates their connection and data flow.

First, based on the efficiency characteristics of the fuel cell system in Fig. 6.2, we set

the desired fuel cell system output power Pf cs,r to one-third of its maximum load (peak

efficiency) as

Pf cs,r =
ηdc
3

Pf cs,max (6.11)

where Pf cs,max is the fuel cell system admissible maximum load and ηdc is the efficiency

of the fuel cell boost converter at the power point.

Substituting (6.11) into (6.1) yields

Pb,k = Pd,k + Paux,k − Pf cs,r (6.12)

Then, substituting (6.12) into (6.2) gives optimal battery SoC level reference SoCr,k+1 as

follows

SoCr,k+1 = SoCk −
η f ∆t
Cn
×

Pd,k + Paux,k − Pf cs,r

Vbus,k
(6.13)

The scheduler is constrained by

(SoCr,k+1 − SoCr,k) ∈ ∆SoCr, SoCr,k ∈ [30%, 70%]

The main challenge to obtain the optimal battery SoC reference in (6.13) is the uncer-

tainty of Pd,k. In practice, Pd,k is determined by the driver’s driving behaviour, but

predicting human behaviour is always challenging.

To better explain the point, we conducted a real-world driving experiment in our previ-

ous work (Shen et al. 2020b). In the experiment environment, one driver took a four-lap

driving with a golf cart prototype in a campus following a fixed route at a weekend

(few students on campus). Fig. 6.5 shows the raw power demand data collected from

the golf cart over the driving experiment. As shown from the result, the driver per-

formed different driving behaviors in four laps even the exterior information is almost

the same.

To address the issue, we proposed a frozen-time scheduler where power demand Pd

and system bus voltage Vbus are assumed constant at adjacent sampling points. That

is, in the optimal battery SoC reference calculation in (6.13), we have

P̂d,k + P̂aux,k ≈ Pd,k−1 + Paux,k−1
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Figure 6.5. Power demand from the golf cart prototype in a four-laps driving experiment

V̂bus,k ≈ Vbus,k−1

where P̂d,k + P̂aux,k, and V̂bus,k are the prediction of the power demand and system bus

voltage at time k, respectively.

Furthermore, by using receding horizon principle, new measurements are taken at

each time step to compensate the predictive inaccuracy.

To validate the performance of the frozen-time scheduler, the following two energy

storage system schedulers are proposed as the benchmark

• Proportional scheduler (P scheduler). The battery SoC reference SoCr,k is sched-

uled according to some proportionality to the difference between the desired set-

point Pf cs,r and the current measured power demand Pf cs,k, that is,

If Pf cs,k < Pf cs,r, then we increase SoCr,k with an admissible increment ∆SoCr,k.

If Pf cs,k > Pf cs,r, then we decrease SoCr,k with the admissible increment ∆SoCr,k.

• Constant scheduler. The battery SoC reference SoCr,k is set to a constant.
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6.3.3 Energy management controller

The energy management controller is to regulate the power flow between the fuel cells

and energy storage system in real-time during vehicle driving. The critical functions

that an effective energy management controller are required to perform to meet the

control objectives in Section 6.2.2 are (i) to track the generated battery SoC reference

trajectory and (ii) to incorporate the fuel cell SoH estimation into the controller design

to reduce the negative factors affecting fuel cell performance degradation.

To achieve the objectives, the following practical challenges remain:

• How to track the reference SoC trajectory effectively subject to online adjustable

input constraint and uncertain power demand in various driving scenarios.

• The energy system dynamic is nonlinear which may cause the high computa-

tional cost to solve the energy management optimisation problem.

To address the challenges, we propose a novel robust-model-predictive based energy

management controller under a fuzzy modelling framework.

In the controller design, we adopt the robust control technique to provide the function-

ality of disturbance rejection. Model predictive control technique is used to cover the

adjustable control input constraint in the optimisation and compensate the predictive

inaccuracy in the frozen-time scheduler. By using the T-S fuzzy model, we blend the

local linear tasks to deliver the overall model. Consequently, we are able to devise a

robust model predictive control methodology to address the challenges with low com-

putational complexity.

In the following, we use the fuzzy modelling framework to approximate the nonlinear

plant. Then, we incorporate the fuel cell SoH estimator and energy storage system

scheduler into the control design. We complete this section by describing the nonlinear

control law design and discussing theoretical analysis for stability and feasibility of the

controller.
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Fuzzy modelling framework

We first define the system states, control input and disturbances acting on the system

as follows.

x1,k = SoCk x2,k = Vbus,k uk = Pdc,k wk = Pd,k + Paux,k

From (6.2) - (6.5), we have,

x1,k+1 = x1,k −
η f ∆t
npCn

1
x2,k

(wk − uk) (6.14)

x2,k+1 = nsvb,k(x1,k)−
nsRb
np

1
x2,k

(wk − uk) (6.15)

To approximate the nonlinear system, a T-S fuzzy model is constructed by using sector

nonlinearity. The underlying idea of sector nonlinearity is as follows.

Consider a nonlinear function f (xk), where f (x) ∈ [a2, a1]x. At any xk in the boundary,

the nonlinear function is represented by

f (xk) = h1(xk)a1 + h2(xk)a2

where h1(xk) + h2(xk) = 1. Therefore h1(xk) and h2(xk) can be calculated as

h1(xk) =
f (xk)− a2

a1 − a2
h2(xk) =

a1 − f (xk)

a1 − a2
(6.16)

In the system model in (6.14) and (6.15), the nonlinear terms are vb,k(x1,k) and 1
x2,k

.

Consequently, we define h1,k ≡ vb,k(x1,k) and h2,k ≡ 1
x2,k

. Then, we have

xk+1 =

[
1 0

nsh1,k 0

]
xk +

 η f ∆t
npCn

h2,k
nsRb

np
h2,k

 uk −

 η f ∆t
npCn

h2,k
nsRb

np
h2,k

 wk

where x = [x1, x2]
T.

By considering operational limitations x1,k ∈ [20%, 80%] and x2,k ∈ ns[vb(0, 2), vb(0, 8)],

we calculate the boundary of h1,k and h2,k as

h1,k ∈ [h1,min, h1,max]x1, h2,k ∈ [h2,min, h2,max]

where hmax and hmin are the maximum and minimum values of h, respectively. Conse-

quently, h1,k and h2,k are represented by

h1,k = M1(h1,k)h1,max + M2(h1,k)h1,min
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h2,k = N1(h2,k)h2,max + N2(h2,k)h2,min

Following (6.16) yields

M1(h1,k) =
h1,k − h1,min

h1,max − h1,min
M2(h1,k) =

h1,max − h1,k

h1,max − h1,min

N1(h2,k) =
h2,k − h2,min

h2,max − h2,min
N2(h2,k) =

h2,max − h2,k

h2,max − h2,min

We name the membership functions “High” and “Low”, “Big” and “Small” for M and

N, respectively. The nonlinear system model is thus approximated by the following

fuzzy model

Model Rule 1:

IF h1,k is “High” and h2,k is “Big”

THEN xk+1 = A1xk + B1uk + C1wk

Model Rule 2:

IF h1,k is “High” and h2,k is “Small”

THEN xk+1 = A2xk + B2uk + C2wk

Model Rule 3:

IF h1,k is “Low” and h2,k is “Big”

THEN xk+1 = A3xk + B3uk + C3wk

Model Rule 4:

IF h1,k is “Low” and h2,k is “Small”

THEN xk+1 = A4xk + B4uk + C4wk

Here,

A1 = A2 =

[
1 0

nsh1,max 0

]
, A3 = A4 =

[
1 0

nsh1,min 0

]

B1 = B3 =

 η f ∆t
npCn

h2,max
nsRb

np
h2,max

 , B2 = B4 =

 η f ∆t
npCn

h2,min
nsRb

np
h2,min


C1 = C3 = −

 η f ∆t
npCn

h2,max
nsRb

np
h2,max

 , C2 = C4 = −

 η f ∆t
npCn

h2,min
nsRb

np
h2,min


The defuzzification is carried out as

xk+1 =
4

∑
i=1

m(zi,k)(Aixk + Biuk + Ciwk) (6.17)
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where

m(z1,k) = M1(h1,k)× N1(h2,k) m(z2,k) = M1(h1,k)× N2(h2,k)

m(z3,k) = M2(h1,k)× N1(h2,k) m(z4,k) = M2(h1,k)× N2(h2,k)

To track the battery SoC reference set-point, the fuzzy system output is defined as

yk = Hxk H = [1, 0] (6.18)

Remark 6.1. The fuzzy model here is used as an approximator of nonlinear functions in which

the membership function is constructed based on the nonlinear terms in the system. Conse-

quently, the model-based fuzzy control can make use of a large number of powerful control tools

available for linear systems.

Problem reformulation

To incorporate the fuel cell SoH estimator and the energy storage system scheduler into

the control design, we reformulate the system model in which the controlled object is

the increment of the FCS output power instead of the original stack output power.

Define

x̃k = xk − xk−1, ũk = uk − uk−1, w̃k = wk − wk−1,

τr,k = SoCr, k, τ̃r,k = τr,k − τr,k−1, ξk = yk − τr,k,

ψk = [x̃k, ξk−1]
T, κk = [w̃k, τ̃r,k]

T

Then, the system model in (6.17) expressed in terms of the fuzzy system is as follows:{
ψk+1 = ∑4

i=1 m(zi,k)(Aiψk + Biũk + Ciκk)

ξk = Dψk + Eκk
(6.19)

where

Ai =

[
Ai 0

H I

]
,Bi =

[
Bi

0

]
, Ci =

[
Ci 0

0 −I

]
,D =

[
H, I

]
, E =

[
0,−I

]

The energy management controller is designed as

ũk =
4

∑
i=1

m(zi,k)Kiψk (6.20)
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where Ki are the feedback gains of the controller.

Note that controller (6.20) is called the fuzzy state-feedback controller and is nonlinear

in general.

Thus, the control design problem is cast as a reference trajectory tracking problem sub-

ject to satisfying input constraint:

Design a real-time fuzzy state-feedback controller of form (6.20) for fuzzy system (6.19)

such that theH∞ attenuation level δ2 is minimised to adapt to parametric changes. The

optimisation problem is subject to the following control performance index

sup
κk 6=0

||ξk||L2

||κk||L2

≤ δ2 (6.21)

and the control input constraint

ũT
k ũk ≤ ū2

k (6.22)

where ūk denotes the upper bound on the control input at sampling time k.

Remark 6.2. In the problem formulation, the fuel cell stack SoH estimator is incorporated into

the control input constraint (6.22) via setting the upper bound for the input constraint ūk, while

the energy storage system scheduler is taken into account in the system output ξk = yk − τr,k

which affectsH∞ control performance of the system in constraint (6.21).

Remark 6.3. The system operational cost is optimised by the energy storage system scheduler

in terms of tracking the battery SoC reference set-point. Consequently, we only consider the

problem of disturbance attenuation in the energy management controller design with no cost

imposed on the control input.

Energy management controller design

To address the formulated control problem given in (6.21), the model predictive con-

trol principle (Mayne 2014, Kwon and Han 2006) and robust positively invariant (RPI)

set (Blanchini 1999, Mayne et al. 2006) concept are adopted in the controller design to

provide sufficient conditions to guarantee the optimisation recursive feasibility and

system stability.

The definition of RPI for discrete-time systems is given in Definition 5.1 in Chapter 3.
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We define the candidate invariant set Ψ for the fuzzy model (6.19) as follows

Ψ = {ψ ∈ Rn : ψTPψ ≤ 1} (6.23)

where P is a positive definite matrix.

We then introduce the following RPI set lemma, which will be used in Theorem 6.1.

Lemma 6.1 ((Alessandri et al. 2004)). The set Ψ in (6.23) is an RPI set if

ψT
k Pψk ≥

κT
k κk

σ2
0

(6.24)

implies

ψT
k+1Pψk+1 ≤ ψT

k Pψk (6.25)

where σ0 is the known upper bound of κk for all time k > 0, that is

κT
k κk ≤ σ2

0 (6.26)

Using the S-procedure technique (Iwasaki et al. 2000), the condition specified in (6.24)

implies that (6.25) holds if there exists a constant λ ∈ (0, 1] such that

ψT
k+1Pψk+1 − ψT

k Pψk − λ(
κT

k κk

σ2
0
− ψT

k Pψk) ≤ 0 (6.27)

Remark 6.4. The upper bound σ0 of the disturbance κk consists of two elements. The first

element w̃k indicates the maximum increment of the power demand. The second element τ̃r,k

provides the maximum increment of the SoC reference ∆SoCr in (6.13) for battery SoC reference

scheduling.

To incorporate the fuel cell SoH estimation into the controller design, we make the

following assumption:

Assumption 6.1. There exists a constant upper bound ū0 on the control input such that such

that for all time k, the following constraint is imposed

ũT
k ũk ≤ ū2

0 ≤ ū2
k (6.28)

Remark 6.5. In practice, Assumption 6.1 is feasible where ū0 provides the baseline (minimal

constraint) that we can impose on the increment of the fuel cell output power according to the

estimated fuel cell performance degradation.
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Now, we present the first result of this chapter as follows. For notational convenience,

the star in Theorem 6.1 denotes the transposed matrices for symmetric positions.

Theorem 6.1. Consider the fuzzy system in (6.19). Suppose that the candidate invariant set

for the fuzzy system is defined by (6.23) and a scalar λ satisfies λ ∈ (0, 1], then the fuzzy state

feedback matrices Ki∈[1,4] in control law (6.20) that minimise theH∞ attenuation level δ on the

control performance function specified in (6.21) and ensure Ψ in (6.23) is an RPI set for the

fuzzy system, are given by

Ki = YiQ−1 (6.29)

where the matrices Yi and Q > 0 are obtained by solving the following linear objective minimi-

sation problem

min
Q,Y1,...,Y4

δ2

subject to:
Q 0 ? (DQ)T

0 δ2 (
Ci+Cj

2 )T ET

AiQ+BiYj+AjQ+BjYi
2

Ci+Cj
2 Q 0

DQ E 0 I

 ≥ 0 (6.30)


(1− λ)Q 0 ?

0 λ/σ2
0 (

Ci+Cj
2 )T

AiQ+BiYj+AjQ+BjYi
2

Ci+Cj
2 Q

 ≥ 0 (6.31)

[
Q YT

i

Yi ū2
0

]
≥ 0 (6.32)[

1 ψT
k

ψk Q

]
≥ 0 (6.33)

for i ≥ j subject to m(zi, k) ∩m(zj, k) 6= ∅

Proof. The proof is given in Appendix C.

Thus the energy management controller design has been redefined to repeatedly solv-

ing the optimal control problem in Theorem 6.1 over a receding horizon where the

nonlinear fuzzy state-feedback control law to minimise the H∞ attenuation level δ on

the control performance function is obtained at each sampling time k.
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We give the following corollary to prove the feasibility of the optimisation in Theorem

6.1 over the receding horizon manner.

Corollary 6.1. Any feasible solution of the optimisation in Theorem 6.1 at sampling time k

is also feasible for all times t > k. Consequently, if there exists a feasible solution of the

optimisation problem in Theorem 6.1 at time k, then the problem is feasible for all times t > k.

Proof. Provided the optimisation problem in Theorem 6.1 is feasible at time k, the LMI

in the optimisation problem in Theorem 6.1 depends explicitly on the measured state

ψk of the system is (6.33). Consequently, to prove the corollary, we only need to prove

that this LMI is feasible for time k + 1.

Using Lemma 6.1, LMI (6.31) ensures that (6.23) is an RPI set. Consequently, we must

have

ψT
k+1Pψk+1 ≤ 1

which implies [
1 ψT

k+1

ψk+1 Q

]
≥ 0

Hence, the optimisation problem is feasible at time k + 1 and the corollary is proved.

In Theorem 6.1, we consider the constant upper bound ū0 on the control input (the

increment of the fuel cell output power). Based on the estimated fuel cell stack health

status, the control input constraint can be further relaxed by implementing varied up-

per bound ūk as in (6.28). With the relaxed constraint on the control input, the con-

troller is capable of achieving better control performance in terms of the H∞ control

performance index in (6.21).

We now state the algorithm of the energy manage system, which concurrently incor-

porates the fuel cell SoH estimator and the energy storage system scheduler into the

energy management controller design.

Algorithm 6.1 (Fuzzy model predictive control). Consider the fuzzy system in (6.19) sub-

ject to input constraint (6.1). The energy management control law is calculated at time step k

as follows

Page 113



6.3 New energy management system design

1. The fuel cell stack SoH estimator evaluates the fuel cell stack health status and identifies

the upper bound of the control input constraint (ūk).

2. The energy storage system scheduler evaluates the fuel cell system operational efficiency

and indicates the tracking reference (τr,k).

3. The energy management controller computes the fuzzy state feedback matrices Ki∈[1,4] by

using Theorem 6.1 with the following input constraint to replace (6.32):[
Q YT

i

Yi ū2
k

]
≥ 0 (6.34)

The following corollary is used to prove the feasibility of the optimisation in Algorithm

6.1.

Corollary 6.2. If a feasible solution of the minimisation problem in Theorem 6.1 exists at

sampling step k, then the optimisation problem in Algorithm 6.1 is feasible for all times t > k.

Proof. To prove the corollary, we need only to prove that (6.34) is feasible at time k

under Assumption 1. Suppose that the optimisation problem in Theorem 6.1 is feasible

at time k and Assumption 6.1 holds. Then, from (6.28), we have

4

∑
i=1

m(zi,k)
4

∑
j=1

m(zj,k)ψ
T
k (

1
ū2

k
KT

i Kj − P)ψk

≤
4

∑
i=1

m(zi,k)
4

∑
j=1

m(zj,k)ψ
T
k (

1
ū2

0
KT

i Kj − P)ψk ≤ 0 (6.35)

Following the proof in Theorem 6.1, condition (6.35) implies (6.34). Thus, the corollary

is proved.

A critical problem encountered in the control law design is that asymptotic stability of

the origin cannot be established when the disturbances are merely bounded, the best

that can be achieved is robust asymptotic stability of a set Z (Mayne et al. 2005). The

stability analysis of the controlled system follows.

Theorem 6.2. The feedback control law given by Algorithm 6.1 drives the state ψk in fuzzy

system (6.19) asymptotically to the invariant set Ψ.
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Proof. Suppose that the set Ψ in (6.23) is an RPI set for the controlled system. From

(6.27), we have

ψT
k+1Pψk+1 − ψT

k Pψk ≤ λ(κT
k κk/σ2

0 − ψT
k Pψk) (6.36)

Since the disturbance is bounded by (6.26), we obtain

κT
k κk/σ2

0 ≤ 1 (6.37)

In the case that the state ψk is out of the set Ψ, that is, ψT
k Pψk > 1, we must have

κT
k κk/σ2

0 − ψT
k Pψk ≤ 0 (6.38)

Substituting (6.38) into (6.36) yields

ψT
k+1Pψk+1 − ψT

k Pψk ≤ 0

Consequently, ψT
k+1Pψk+1 is a Lyapunov function for the controlled system regarding

to the set Ψ. Theorem 6.2 is thus proved.

6.4 Case studies

To verify our EMS design for FCVs, we use a vehicle driving simulation in the MAT-

LAB/Simulink environment with Powertrain Blockset™(MathWorks 2020) and LMI

toolbox with SeDuMi solver (Lofberg 2004).

Fig. 6.6 shows the set of fully assembled reference electric vehicle system (provided

by Powertrain Blockset™) used in the simulation. In the vehicle simulator, the energy

system consists of a 90-cell proton-exchange membrane fuel cell stack where a Ballard

FCvelocity®–9SSL fuel cell stack (Ballard 2020) is used as the prototype and a lithium-

ion battery pack made up of 5 parallel packs and each containing 88 cells in series

where the 2Ah, INR18650 lithium-ion cylindrical cell from (CALCE 2020) is used as

the prototype. Table 6.3 shows the primary vehicle parameters in the vehicle simula-

tor. The proposed EMS is then implemented into the controller block in the vehicle

simulator for performance validation.

Although the simulation environment cannot entirely reflect the situation in real-world

experiments, the vehicle simulator provides a realistic driving environment for verify-

ing the proposed energy management system design.
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Figure 6.6. Electric vehicle system provided by Powertrain Blockset

Table 6.3. Primary vehicle parameters in the vehicle simulator

Parameters Values

Vehicle mass [kg] 1850

Drag coefficient 0.28

Frontal area [m2] 2.27

Lift coefficient 0.1

Center of gravity (CG) height above axles [m] 0.5

Horizontal distance from CG to front axle [m] 1.188

Horizontal distance from CG to rear axle [m] 1.512

By using the battery experimental data collect from (CALCE 2020) and the fuel stack

performance benchmark given by the product manual (Ballard 2020), we first estimate

the parameters in our battery OCV-SoC model (6.3) and fuel cell V-I model (6.6). Shown

in Fig. 6.7 is the estimation results where the parameters used in the models are a0 =

2.3898, a1 = 0.0922, a2 = −1.8513, a3 = −0.7924, a4 = −0.0124, a5 = 0.0200, E f =

0.965, b f = 0.0486, il = 1.9513, b0 = 0.0001, b1 = 0.02.

Furthermore, the parameters used for the controller design in Theorem 6.1 is set as

follows. The term λ ∈ (0, 1] in (6.31) is set to 0.1, the upper bounds σ0 of the disturbance

in (6.31) is set to [40, 0.001] where the first element denotes the maximum incremental

power (kW/s) of the vehicle while the second provides the maximum SoC reference

increment (%/s). The parameters in Table 6.2 are set to r1 = 0.0003, r2 = 0.0004,

r3 = 0.0005 to classify the stack SoH, and the upper bound of the control input ū0 are
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Figure 6.7. Parameters estimation in the battery and fuel cell models

set to 2kW, 3kW, 4kW, 5kW and 6kW in ‘Poor’, ‘Average’, ‘Good’, ‘Excellent’ status,

respectively.

6.4.1 Fuzzy model performance

The control law for the FCV system is obtained under the T-S fuzzy model framework

given in Section 6.3.3. It is necessary to validate the effectiveness of the fuzzy model

that approximates the FCV nonlinear system and we conduct the following compari-

son experiment

• Input the dynamic current profiles from the battery experimental data in (CALCE

2020) into the fuzzy model specified in (6.19).
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• Compare the voltage response (x2) and SoC (x1) between the battery experimen-

tal data and fuzzy model output.

Furthermore, two fuzzy models are used in the approximation comparison.

• Off-line fuzzy model. The model approximates the nonlinear system via build-in

model (6.19) only.

• MPC fuzzy model. The fuzzy model given in (6.19) incorporates with receding

horizon principle to approximate the nonlinear system.

Fig. 6.8 shows the comparison result. It shows that the fuzzy model approximates the

battery dynamic response effectively. Moreover, compared with off-line fuzzy model,

MPC fuzzy model offers better performance to approximate the FCV nonlinear sys-

tem. The reason being that new measurements taken at each step with receding hori-

zon principle compensates for the model inaccuracy and disturbance interference due

to the uncertain power demand from the driver, whereas there is no corresponding

disturbance-compensation functionality in the off-line mode.

6.4.2 Fuel cell stack state of health estimator performance

We assess the estimation accuracy of the proposed fuel cell stack SoH estimator by the

following experiments

• Given a dynamic overall internal resistance, we compare the estimated resistance

from the estimator with the hypothetical true value based on the stack dynamic

V-I response in the simulation.

• We observe the stack SoH estimator performance based on a set of real-world

fuel cell experimental data.

Shown in Fig. 6.9 is the simulation result. We observe that the proposed fuel cell stack

SoH estimator works effectively in terms of the precision to estimate the stack internal

resistance based on the fuel cell empirical model. The results of the estimator perfor-

mance based on the experimental data are shown in Fig. 6.10. Compared with the V-I
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Figure 6.8. Battery dynamic current profiles in the experiment (top), battery SoC (x1) comparison

between the experiment data and fuzzy model output (middle), and battery voltage

(x2) response between the experiment data and fuzzy model output (bottom)

response in the simulation, we observe that there are some atypical measurements in

the experimental data caused by sensor measurement error and stack slow dynamic

response. From the results, the SoH estimator shows the ability to estimate internal

resistance in the presence of senor measurement error and uncertainty and indicates

the unusual situations by its 3-sigma error bounds of the estimates.
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Figure 6.9. Simulated fuel cell stack dynamic response (top); Estimated overall internal resistance

with confidence bounds compared with true value (bottom)

6.4.3 Energy management controller performance

We assess the performance of the energy management controller in the developed vehi-

cle simulator under three driving scenarios. They are the Highway Fuel Economy Test

(HWFET) to simulate highway driving condition, the Urban Dynamometer Driving

Schedule (UDDS) to simulate urban driving condition, and the New York City Cycle

(NYCC) to simulate low-speed city driving condition. Fig. 6.11 shows the velocity and

power demand profiles of the driving cycles.

The battery reference SoC tracking illustrates theH∞ control performance in (6.21) that

we adopted in our controller design. The battery SoC responses in Fig. 6.12 show that

Page 120



Chapter 6 Energy Management Design with Fuel Cell Lifespan Optimisation

0 2000 4000 6000 8000
Iteration

40

60

80

100

120

C
ur

re
nt

 [A
]

V
ol

ta
ge

 [V
]

Current Voltage

60 80 100 120
Current [A]

0.6

0.65

0.7

0.75

0.8

0.85
I-V characteristic

0 2000 4000 6000 8000
Iternation

0.8

0.9

1

1.1

1.2

1.3

1.4

In
te

rn
al

 r
es

is
te

nc
e 

(m
)

Estimate

0 2000 4000 6000 8000
Iteration

0.8

1

1.2

1.4

1.6

1.8

2

In
te

rn
al

 r
es

is
te

nc
e 

(m
)

Bounds

Measurement error

Slow dynamic response

Figure 6.10. Estimated overall internal resistance with the error bounds based on the experimental

data

the energy management controller shows the capability to maintain the battery’s SoC

in an admissible range to track the constant reference under four estimated stack SoH

status in all driving scenarios. Consequently, we conclude that even if the estimation

performance of the fuel cell stack SoH estimator is poor, the energy management con-

troller shows the ability to maintain the battery SoC in the constant reference tracking

case.

Next, we assess the control performance in terms of control input limitation measures

to show the fuel cell stack power increment response under the four stack health sta-

tus. As shown in Fig. 6.13, the load fuel cell stack output power increment is limited
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Figure 6.11. Velocity and power demand of the driving cycles used in the simulation

as expected when the fuel cell stack health deteriorating is observed. The observation

shows that the energy management controller is capable of effectively reducing sud-

den load change of the fuel cell stack, which is the primary factor that results in the

performance degradation of the fuel cell shown in Table 6.1.
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Figure 6.12. Battery SoC response among four stack health status under three driving conditions

6.4.4 Energy management system performance

We assess the overall EMS control scheme (as shown in Fig. 6.3) performance in com-

plex driving scenarios. The following driving route is given in the case study: NYCC -

UDDS - HWFET - UDDS - NYCC.

Shown in Fig. 6.14 illustrates the EMS control performance under the two energy stor-

age system schedulers introduced in Section 6.3.2 concerning fuel cell system opera-

tional range. Compared with the constant scheduler, the EMS effective to move the

Page 123



6.4 Case studies

0 100 200 300 400 500 600 700 800
-0.1

-0.05

0

0.05

0.1

F
C

S
 p

ow
er

 r
at

e 
of

 c
ha

ng
e 

[k
W

/s
]

Poor
Average

Good
Excellent

0 100 200 300 400 500 600
-0.05

0

0.05

0.1

0.15
Poor
Average

Good
Excellent

0 200 400 600 800 1000 1200 1400
Time [s]

-0.1

-0.05

0

0.05

0.1
Poor
Average

Good
Excellent

HWFET

NYCC

UDDS

Figure 6.13. Fuel cell system output power change rate among four stack health status

fuel cell system output to the described high-efficient operating range by incorporat-

ing the proposed energy storage system schedulers to optimise battery SoC reference

set-point. Moreover, Table 6.4 shows the numerical result of the fuel cell stack oper-

ational condition under the three energy storage system schedulers. We observe that

the negative factors affecting the fuel cell stack performance degradation (according to

Table 6.1) is significantly reduced with the frozen-time scheduler.
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Figure 6.14. Fuel cell system output power during the trip under the three energy storage system

schedulers (left) and the proportion of the fuel cell system operating range (right)

The EMS control performance in terms of battery SoC reference tracking is shown in

Fig. 6.15. The result shows that both constant and varied battery SoC references are

well tracked during operation. Since the EMS enables the fuel cell stack with a faster

dynamic response in the ‘Excellent’ status, we observe that the ‘Excellent’ condition

outperforms other three conditions.
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Figure 6.15. Battery SoC reference tracking performance under three energy storage system sched-

ulers in four fuel cell stack state of health status

6.4.5 Computational time

We assess the fourth objective of the EMS design in Section 6.2.2, that is, the compu-

tational cost of the EMS. A real-time system is one that must process information and

produce a response within a specified time. For a typical sampled data system, the in-

formation process should be completed within one sampling interval. In our case, the
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Table 6.4. Fuel cell stack operational condition under the three energy storage system schedulers

Frozen-time P Constant

Load change [kW/s] 0.0073 0.0218 0.0164

Start-stop proportion [%] 0.02 4.11 12.49

Idling-time proportion [%] 19.1 24.48 31.26

High-power proportion [%] 7.54 16.58 17.18
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Figure 6.16. Average computational time of the EMS during 20 times driving simulation

sampling interval is one second. Consequently, we set one second as the benchmark to

verify the EMS computational performance.

Fig. 6.16 shows the average EMS time consumed during 20 times simulation on a win-

dows PC with Intel® i7-6700 CPU and 16GB Memory. Apart from high time consumed

at the initial point due to optimization toolbox initialization, the average computa-

tional time to obtain the control gain is 0.2399s during the 20 times driving simulation

and maximum computational elapsed time is 0.4388s. The good computational effi-

ciency presents its applicability in real vehicle implementation.
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6.5 Chapter summary

6.5 Chapter summary

This chapter presents a novel control scheme for energy management design in fuel

cell vehicles. The energy management system consists of a fuel cell stack state of health

estimator, an energy management system scheduler, and an energy management con-

troller in order to achieve optimal control in terms of optimising system efficiency,

extending the durability of the fuel cell stack and maintaining battery charge level.

The energy management problem is cast as a trajectory tracking problem under online

adjustable control input constraints and addressed by the robust fuzzy model predic-

tive control technique. The effectiveness of the energy management system has been

demonstrated over typical urban/highway driving scenarios
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Chapter 7

Thesis Conclusion

THE research presented in this thesis focuses on addressing the energy

management problem in fuel cell vehicles. Four novel energy manage-

ment systems for fuel cell vehicles have been developed and validated to

achieve optimal control in terms of improving fuel economy, optimising

fuel cell systems and maintaining battery pack charge level. This chapter

concludes this thesis and indicates possible future work.
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7.1 Summary

In Chapter 3, we propose a novel energy management system design for fuel cell hy-

brid vehicles. The predictive model of the future power demand is not required in our

new energy management strategy. Instead, a novel framework is designed that uses an

average-reward approximator under a partially observable Markov decision process to

minimise the long-term cost.

Since the proposed energy management system is based on an average-reward model,

the main disadvantage of the method is that it is not applicable to the situation with

highly varied driving conditions. However, when the driving path is fixed, such as

the bus driving route or in the situation that at the beginning of a trip, the origin, des-

tination and itinerary can be obtained from the navigation unit, the proposed energy

management system can achieve high performance.

To increase the applicability of the energy management system for fuel cell vehicle

over various driving scenarios, we blend the theoretical analysis and practical issue to

develop a new approach for energy management in fuel cell vehicles in Chapter 4. The

energy management problem is cast in a mixed H2/H∞ framework in which H2 control

regulates the fuel economy and H∞ control maintains battery charge sustainability in

the presence of system uncertainty and disturbance. The proposed optimal control law

is implemented in a vehicle simulator, and the performance of the energy management

system is shown in simulation against the dynamic programming based benchmark

solution.

To further improve the energy management system optimality, we propose an online

optimisation-based energy management system in Chapter 5 in order to leverage avail-

able driving information. The approach is formulated by the T-S fuzzy modelling

framework and robust model predictive control technique. The optimisation prob-

lem is cast in the form linear matrix inequalities and solved online. At each sampling

step, the state-feedback control law is obtained by minimising the upper bound of

the cost function, subject to system constraints. Furthermore, we incorporate traffic

condition into the controller design to further improve optimisation performance. A

MATLAB/Simulink based simulation serves to illustrate the effectiveness of the con-

trol scheme. Although the energy management design is based on fuel cell vehicles in

this study, the approach is extensible to traditional hybrid vehicle applications.
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Chapter 7 Thesis Conclusion

In Chapter 6, we incorporate the fuel cell optimisation into the energy management

system design for achieving optimal control in terms of battery state of charge mainte-

nance, fuel cell durability protection and fuel economy in real time. The energy man-

agement problem is cast as an on-line optimal control problem that incorporates an

online fuel cell stack state of health estimator based on the sigma-point Kalman fil-

tering technique for stack health estimation, an energy storage system scheduler for

vehicle fuel economy improvement, and a fuzzy robust-model-predictive based en-

ergy management controller to ensure system Lyapunov stability. A comprehensive

MATLAB based simulation with experimental data serves to validate the effectiveness

of the energy management system.

7.2 Future work

Future research includes the following three aspects.

Fuel cell lifetime improvement

The dynamic behaviour of the fuel cell is affected by operating conditions of the stack,

such as inlet pressure, humidity, temperature, fuel stoichiometry and load variation

(Mueller et al. 2007). An effective fuel cell system controller that comprises of fuel,

thermal and water management reduces fuel cell performance degradation and im-

prove system durability (Daud et al. 2017), which further increases the fuel cell vehicle

driving performance and decreases system maintenance costs. Taking energy manage-

ment system and fuel cell system controller under a unified control scheme could be

explored further.

Energy system degradation modelling

High-fidelity models to describe the performance degradation of the energy storage

system and fuel cell system have been developed in the literature (Chen et al. 2019,

Wang et al. 2020, Zaccaria et al. 2016, Yang et al. 2017, Li et al. 2020). However, in the ex-

isting energy management system design for fuel cell vehicles, the energy system opti-

misation is limit to the restriction on battery’s state of charge, battery charge/discharge
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current or the output power increment of the fuel cell system, which hardly quantifies

the performance degradation of the energy systems. Incorporating a high-fidelity per-

formance degradation model of the energy system into the energy management system

design has a tremendous research potential.

Driving behaviour prediction

In the energy management system design in Chapter 6, the energy storage system

scheduler optimises the energy stored in the battery pack for assisting the fuel cell

stack to optimally track the high-efficient area of the fuel cell system. Exploring a high-

fidelity driving behaviour prediction model is a suitable forward step. This model can

be incorporated into the energy storage system scheduler for predicting future power

demand of the driver and then indicating the desired SoC set-point of the battery pack

to the energy management controller.
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Appendix A

Proof of Theorem 4.1 in
Chapter 4

THIS appendix chapter provides the proof the Theorem 4.1 in Chapter 4.

Section A.1 gives the proof of LMIs (4.32) in terms of H∞ control perfor-

mance. Then, Section A.2 provides the proof of the LMIs (4.33) regarding

to H2 performance. We complete this section by giving the proof of LMIs

(4.34) concerning system input constraints.

Page 133



Page 134



Appendix A Proof of Theorem 4.1 in Chapter 4

A.1 Proof of H∞ control performance

Suppose there exists a quadratic function V(x(k)) such that

V(x(k)) = xT(k)Px(k), P > 0. (A.1)

For (4.27), H∞ attenuation level α2 such that, for all k,

V(x(k + 1))−V(x(k)) + zT(k)z(k)

− α2(wT(k)w(k) + υT(k)υ(k)) ≤ 0 (A.2)

Assuming that x(0) = 0, from summation in (A.2) in k from 0 until Tn, we have
Tn

∑
k=0

(zT(k)z(k)− α2(wT(k)w(k) + υT(k)υ(k))) ≤ 0 (A.3)

Therefore, the H∞ performance index of (4.24) is less than zero if (A.2) holds. We now

derive a sufficient linear matrix inequality (LMI) condition from (A.2). The condition

(A.2) is equivalent to

xT(k)(P− CT
z Cz)x(k) + α2(wT(k)w(k) + υT(k)υ(k))

− (AcX(k) + Bhe(k) + Biυ(k) + Ciw(k))T

× P(AcX(k) + Bhe(k) + Biυ(k) + Ciw(k)) ≥ 0 (A.4)

for all x(k) and e(k) satisfying

eT(k)e(k) ≤ xT(k)CT
g Cgx(k) (A.5)

Applying the S-procedure technique (Iwasaki et al. 2000), (A.4) and (A.5) hold if there

exists λ ∈ (0, 1] such that

xT(k)(P− CT
z Cz)x(k) + α2(wT(k)w(k) + υT(k)υ(k))

− (AcX(k) + Bhe(k) + Biυ(k) + Ciw(k))T

× P(AcX(k) + Bhe(k) + Biυ(k) + Ciw(k))

+ λ(eT(k)e(k)− xT(k)CT
g Cgx(k)) ≥ 0 (A.6)

We obtain the following LMI condition by dropping [xT(k), eT(k), υT(k), wT(k)]T and

using the Schur complement on (A.6):

P− CT
z Cz − λCT

g Cg ? ? ? ?

0 λI ? ? ?

0 0 α2 I ? ?

0 0 0 α2 I ?

Ac Bh Bυ Cw P−1


(A.7)
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A.2 Proof of H2 control performance

which is equivalent to 

P ? ? ? ? ? ?

0 λI ? ? ? ? ?

0 0 α2 I ? ? ? ?

0 0 0 α2 I ? ? ?

Ac Bh Bυ Cw P−1 ? ?

Cz 0 0 0 0 I ?

Cg 0 0 0 0 0 1/λ


≥ 0 (A.8)

where ? denotes terms readily inferred from symmetry. Multiplying the left hand

side and the right hand side of (A.8) by a block-diag [Q, I, I, I, I, I, I, I] and abstract-

ing membership functions ∑2
i=1 hi(z(k))∑11

r=1 vr(u(k))∑2
j=1 hj(z(k))) give (4.32), where

Q = P−1.

From (4.32), we have

V(x(k + 1))−V(x(k))

− α2(wT(k)w(k) + υT(k)υ(k)) ≤ 0

Based on the definition of input-to-state practical stable in (Limón et al. 2006), closed-

loop system (4.23) is input-to-state practical stable and V(k) in (A.1) is the input-to-

state practical stability Lyapunov function for the system.

A.2 Proof of H2 control performance

Suppose there exist a positive scalar β2 and x(0) = 0. For all k, we have

V(x(k + 1))−V(x(k)) + uT(k)Wcu(k)

− β2(wT(k)w(k) + υT(k)υ(k)) ≤ 0 (A.9)

Summing (A.9) from k = 0 to k = Tn − 1, we have

JH2 =
Tn−1

∑
k=0

uT(k)Wcu(k) + V(x(Tn)) (A.10)

≤ β2
Tn−1

∑
k=0

(wT(k)w(k) + υT(k)υ(k)) (A.11)
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Appendix A Proof of Theorem 4.1 in Chapter 4

Therefore, the upper bound of the H2 control performance index JH2 is minimized by

solving the following optimization problem

min β2, subject to (A.9)

We now derive a sufficient linear matrix inequality (LMI) condition from (A.9). The

condition (A.9) is equivalent to

xT(k)(P− KhWcKh)x(k) + β2(wT(k)w(k) + υT(k)υ(k))

− (AcX(k) + Bhe(k) + Biυ(k) + Ciw(k))T

× P(AcX(k) + Bhe(k) + Biυ(k) + Ciw(k)) ≥ 0 (A.12)

for all x(k) and e(k) satisfying

eT(k)e(k) ≤ xT(k)CT
g Cgx(k) (A.13)

where Kh = ∑2
i=1 hi(z(k))Ki.

The rest of proof is similar to that of H∞ control performance above and thus is omitted.

A.3 Proof of Control input constraint

Since we assume that the fuel cell vehicle has capable of driving in the battery-only

mode and x1 is represented rate of change of the battery SoC during driving. Based on

the component size, we can set a quantity φ that guarantee the states are limited the

upper bound φ at each step, that is, xT(k)x(k) ≤ φ2. Therefore, we have

xT(k)Px(k) ≤ 1 (A.14)

if

P−1 ≥ φ2 I (A.15)

Substituting (4.22) into (4.26), we have

1
µ2

2

∑
i=1

hi(z(k))
2

∑
j=1

hj(z(k))xT(k)KT
i Kjx(k) ≤ 1

Therefore, if

1
µ2

2

∑
i=1

hi(z(k))
2

∑
j=1

hj(z(k))xT(k)KT
i Kjx(k) ≤ xT(k)Px(k)

then (4.26) holds. Substituting P = Q−1 and Yi = KiQ, we can obtain (4.31) and (4.34)

by the Schur complement, and thus the proof is completed.
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Appendix B

Proof of Theorems in
Chapter 5

THIS appendix chapter provides the proof the Theorem 5.1 and Theorem

5.2 in Chapter 5. The first section gives the proof of LMIs (5.36) to

provide sufficient conditions for ensuring the recursive feasibility and the

second section provides the proof of LMIs in (5.44)-(5.46) for the control law

design.
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Appendix B Proof of Theorems in Chapter 5

B.1 Proof of Theorem 5.1

For notational convenience, we denote hr
i = ∑r

i=1 hi(z(k)).

From (5.29) - (5.34), if there exists λ ∈ (0, 1] such that (5.34) is guaranteed, then Υ

defined in (5.29) is a robust positively invariant for system (5.26). Substituting (5.26)

and (5.28) into (5.34) gives:

1
ξ
[x(k + 1)TPx(k + 1)− x(k)TPx(k)] + λ[

1
ξ

x(k)TPx(k)− 1
γ2 + δ2 w(k)Tw(k)

− 1
γ2 + δ2 ∆u(k)T∆u(k)]

=
1
ξ
{hr

i hr
j [(Ai + BiKj)x(k) + Bi∆u(k) + Eiw(k)]}T

× P{hr
i hr

j [(Ai + BiKj)x(k) + Bi∆u(k) + Eiw(k)]} − 1
ξ

x(k)TPx(k)

+ λ[
1
ξ

x(k)TPx(k)− 1
γ2 + δ2 w(k)Tw(k)− 1

γ2 + δ2 ∆u(k)T∆u(k)]

=
1
ξ
[xT(k) ∆uT(k) wT(k)]{hr

i hr
j

[
Ai + BiKj Bi Ei

]T

× P{hr
i hr

j

[
Ai + BiKj Bi Ei

]
}


x(k)

∆u(k)

w(k)

− [xT(k) ∆uT(k) wT(k)]

×


1−λ

ξ P ? ?

0 λ
γ2+δ2 ?

0 0 λ
γ2+δ2




x(k)

∆u(k)

w(k)

 ≤ 0

Using the Schur complement yields
1−λ

ξ P ? ? ?

0 λ/(γ2 + δ2) ? ?

0 0 λ/(γ2 + δ2) ?

hr
i hr

j(Ai + BiKj) hr
i Bi hr

i Ei ( 1
ξ P)−1



= hr
i hr

j


1−λ

ξ P ? ? ?

0 λ/(γ2 + δ2) ? ?

0 0 λ/(γ2 + δ2) ?

A +
BiKj+BjKi

2
Bi+Bj

2
Ei+Ej

2 ( 1
ξ P)−1


≥ 0
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B.2 Proof of Theorem 5.2

Therefore,


1−λ

ξ P ? ? ?

0 λ/(γ2 + δ2) ? ?

0 0 λ/(γ2 + δ2) ?

A +
BiKj+BjKi

2
Bi+Bj

2
Ei+Ej

2 ( 1
ξ P)−1

 ≥ 0

for i ≤ j subject to hi ∩ hj 6= ∅ (B.1)

Substituting P = ξQ−1, Q > 0, Mi = KiQ into (B.1) and then multiplying block-diag[
Q I I I

]
on both sides of (B.1), we have (5.36) and the proof is completed.

B.2 Proof of Theorem 5.2

For convenience, we denote

xk(i) = x(k + i|k), ∆uk(i) = ∆u(k + i|k), wk(i) = w(k + i|k) .

The terminal cost function νt on state is required to satisfy (5.37). Substituting (5.26)

and (5.28) into inequality (5.37) yields

hr
i hr

j [(A + BiKj)xk(i) + Bi∆uk(i) + Eiwk(i)]TP× hr
i hr

j [(A + BiKj)xk(i) + Bi∆uk(i) + Eiwk(i)]

− xT
k (i)Pxk(i)− hr

i hr
j [x

T
k (i)K

T
i LuKjxk(i)]− α2[wk(i)Twk(i) + ∆uk(i)T∆uk(i)]

≥ hr
i hr

j [(A + BiKj)xk(i) + Bi∆uk(i) + Eiwk(i)]TPhr
i hr

j [(A + BiKj)xk(i) + Bi∆uk(i) + Eiwk(i)]

− xT
k (i)Pxk(i)− hr

i [x
T
k (i)K

T
i LuKixk(i)]− α2[wk(i)Twk(i) + ∆uk(i)T∆uk(i)]

= [xT(k) ∆uT(k) wT(k)]{hr
i hr

j

[
A + BiKj Bi Ei

]T

× P{hr
i hr

j

[
A + BiKj Bi Ei

]
}


x(k)

∆u(k)

w(k)

− [xT(k) ∆uT(k) wT(k)]

×


P− hr

i (K
T
i LuKi) ? ?

0 α2 ?

0 0 α2




x(k)

∆u(k)

w(k)


≥ 0
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From the Schur complement, we have


P− hr

i (K
T
i LuKi) ? ? ?

0 α2 ? ?

0 0 α2 ?

hr
i hr

j(Ai + BiKj) hr
i Bi hr

i Ei P−1

 =



P ? ? ? ?

0 α2 ? ? ?

0 0 α2 ? ?

hr
i hr

j(A + BiKj) hr
i Bi hr

i Ei P−1 ?

hr
i KiLu 0 0 0 Lu



= hr
i hr

j



P ? ? ? ?

0 α2 ? ? ?

0 0 α2 ? ?

A +
BiKj+BjKi

2
Bi+Bj

2
Ei+Ej

2 P−1 ?
Ki+Kj

2 Lu 0 0 0 Lu


≥ 0

Therefore, 

P ? ? ? ?

0 α2 ? ? ?

0 0 α2 ? ?

A +
BiKj+BjKi

2
Bi+Bj

2
Ei+Ej

2 P−1 ?
Ki+Kj

2 Lu 0 0 0 Lu


≥ 0

for i ≤ j subject to hi ∩ hj 6= ∅ (B.2)

Substituting P = ξQ−1, Q > 0, and Mi = KiQ into (B.2), and then pre- and post-

multiplying by block-diag
[

Q I I I
]

on (B.2), we have (5.44).

From (5.42), we can readily obtain (5.46). Now, It remains to prove (5.45). Substituting

(5.28) into (5.43) gives

1
µ2 hr

i hr
j x

T(k)KT
i Kjx(k) ≤ 1

From (5.41), we have

1
ξ

xT(k)Px(k) ≤ 1

If

1
µ2 hr

i hr
j x

T(k)KT
i Kjx(k) ≤

1
ξ

xT(k)Px(k) ≤ 1
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B.2 Proof of Theorem 5.2

then (5.43) holds. Moreover, since

hr
i hr

j x
T(k)KT

i Kjx(k) ≤ hr
i xT(k)KT

i Kix(k)

if

hr
i xT(k)[

1
µ2 KT

i Ki −
1
ξ

P]x(k) ≤ 0 (B.3)

(5.43) holds. Substituting P = ξQ−1, Q > 0, and Mi = KiQ into (B.3) gives (5.45) by

the Schur complement, and thus the proof is completed.
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Appendix C

Proof of Theorem 6.1 in
Chapter 6

THIS appendix chapter provides the proof the Theorem 6.1 in Chapter

6. Section C.1 gives the proof of LMIs (6.31) in terms of RPI set. Then,

Section C.2 provides the proof of the LMIs (6.30) regarding to the control

performance. We complete this section by giving the proof of LMIs (6.32)

and (6.33) concerning system input constraints.
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Appendix C Proof of Theorem 6.1 in Chapter 6

For notational convenience, we denote Λi = ∑4
i=1 m(zi,k).

C.1 Proof of robust positively invariant set

We first derive a sufficient LMI condition from (6.27):

λ(
κT

k κk

σ2
0
− ψT

k Pψk)− (ψT
k+1Pψk+1 − ψT

k Pψk)

=
λ

σ2
0

κT
k κk − {ΛiΛj(Ai + BiKj)ψk + ΛiCiκk}T

× P{ΛiΛj(Ai + BiKj)ψk + ΛiCiκk}+ (1− λ)ψT
k Pψk

=
[
ψk κk

]T
[
(1− λ)P 0

0 λ/σ2
0

] [
ψk

κk

]
−

[
ψk κk

]T
{ΛiΛj

[
Ai + BiKj Ci

]
}T

× P{ΛiΛj

[
Ai + BiKj Ci

]
}
[

ψk

κk

]
≥ 0

From the Schur complement, we obtain the following LMI condition
(1− λ)P ? ?

0 λ/σ2
0 ?

ΛiΛj(Ai + BiKj) ΛiCi P−1

 = ΛiΛj


(1− λ)P ? ?

0 λ/σ2
0 ?

Ai+BiKj+Aj+BjKi
2

Ci+Cj
2 P−1


where ? denotes terms readily inferred from symmetry. Therefore,

(1− λ)P ? ?

0 λ/σ2
0 ?

Ai+BiKj+Aj+BjKi
2

Ci+Cj
2 P−1

 ≥ 0

i ≥ j s.t. m(zi, k) ∩m(zj, k) 6= ∅ (C.1)

Multiplying the left hand side and the right hand side of (C.1) by a block-diag
[

Q I I
]
,

LMI (6.31) is obtained, where Q = P−1.

C.2 Proof of control performance

Suppose, for system (6.19), there exists a quadratic function Vψk = ψT
k Pψk, P > 0 such

that for all k,

Vψk+1 −Vψk + ξT
k ξk − δ2κT

k κk ≤ 0 (C.2)
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C.2 Proof of control performance

From summation in (C.2) in k from 0 until Tn − 1, we have

Tn−1

∑
k=0

(Vψk+1 −Vψk + ξT
k ξk − δ2κT

k κk) ≤ 0 (C.3)

Assuming that initial condition ψ0 = 0, we have

VψTn
+

Tn

∑
k=0

(ξT
k ξk − δ2κT

k κk) ≤ 0 (C.4)

Since VψTn
≥ 0, this implies

||ξk||L2

||κk||L2

≤ δ2 (C.5)

Therefore, the H∞ performance index (6.21) is less than zero if (C.2) holds. We now

derive a sufficient LMI condition from (C.2).

δ2κT
k κk − ξT

k ξk − (Vψk+1 −Vψk)

= δ2κT
k κk − (Dψk + Eκk)

T(Dψk + Eκk) + ψT
k Pψk

− {ΛiΛj(Ai + BiKj)ψk + ΛiCiκk}TP{ΛiΛj(Ai + BiKj)ψk + ΛiCiκk}

=
[
ψk κk

]T
[

P−DTD DTE
ETD δ2 − ETE

] [
ψk

κk

]

−
[
ψk κk

]T
{ΛiΛj

[
Ai + BiKj Ci

]
}T × P{ΛiΛj

[
Ai + BiKj Ci

]
}
[

ψk

κk

]
≥ 0

We obtain the following LMI condition by using the Schur complement
P−DTD ? ?

ETD δ2 − ETE ?

ΛiΛj(Ai + BiKj) ΛiCi P−1

 =


P ? ?

0 δ2 ?

ΛiΛj(Ai + BiKj) ΛiCi P−1

−

DT

ET

0

 [
D E 0

]
≥ 0

The LMI condition is equivalent to
P ? ? ?

0 δ2 ? ?

ΛiΛj(Ai + BiKj) ΛiCi P−1 ?

D E 0 I


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Appendix C Proof of Theorem 6.1 in Chapter 6

= ΛiΛj


P ? ? ?

0 δ2 ? ?
Ai+BiKj+Aj+BjKi

2
Ci+Cj

2 P−1 ?

D E 0 I

 ≥ 0

Consequently, 
P ? ? ?

0 δ2 ? ?
Ai+BiKj+Aj+BjKi

2
Ci+Cj

2 P−1 ?

D E 0 I

 ≥ 0

i ≥ j s.t. m(zi, k) ∩m(zj, k) 6= ∅ (C.6)

Multiplying the left hand side and the right hand side of (C.6) by a block-diag
[

Q I I I
]
,

LMI (6.30) is obtained, where Q = P−1.

C.3 Proof of control input constraint

Assume that

ψT
k Pψk ≤ 1 (C.7)

Then,

1− ψT
k Pψk ≥ 0 (C.8)

The inequality (C.8) is transformed into (6.33) by the Schur complement procedure.

From the constraint on the control input in (6.22), we have

ũT
k ũk = ΛiΛjψ

T
k KT

i Kjψk ≤ ū2
0

there

1
ū2

0
ΛiΛjψ

T
k KT

i Kjψk ≤ 1

If

1
ū2

0
ΛiΛjψ

T
k KT

i Kjψk ≤ ψT
k Pψk ≤ 1
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C.3 Proof of control input constraint

then (6.22) holds. Therefore, we have

ΛiΛjψ
T
k (

1
ū2

0
KT

i Kj − P)ψk ≤ 0 (C.9)

From (C.9), we have

Λi

[
P KT

i

Ki ū2
0

]
≥ 0 (C.10)

Multiplying the left hand side and the right hand side of (C.10) by a block-diag
[

Q I
]

yields

Λi

[
Q YT

i

Yi ū2
0

]
≥ 0 (C.11)

Thus we arrive at condition (6.32).
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