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Abstract

Dose-response studies are used throughout pharmacology, toxicology and in clinical

research to determine safe, e↵ective, or hazardous doses of a substance. When in-

volving animals, the subjects are often housed in groups; this is in fact mandatory

in many countries for social animals, on ethical grounds. An issue that may conse-

quently arise is that of unregulated between-subject dosing (transmission), where a

subject may transmit the substance to another subject. Transmission will obviously

impact the assessment of the dose-response relationship, and will lead to biases if not

properly modelled. Here we present a method for determining the optimal design

– pertaining to the size of groups, the doses, and the killing times – for such group

dose-response experiments, in a Bayesian framework. Our results are of importance

to minimising the number of animals required in order to accurately determine dose-

response relationships. Furthermore, we additionally consider scenarios in which the

estimation of the amount of transmission is also of interest. A particular motivat-

ing example is that of Campylobacter jejuni in chickens. Code is provided so that

practitioners may determine the optimal design for their own studies.
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1. Introduction

A group dose-response experiment involves exposing subjects to a range of doses1

of a substance (for example, an infectious agent, or bacteria or a drug) and measuring2

their responses (for example, if they became colonised) [2]. These experiments are3

routinely used to characterise the relationship between the dose of a substance and4

the response in a subject, known as the dose-response relationship.5

Studies of this type have been widely used throughout pharmacology [27], toxi-6

cology [3] and in clinical trials [1], and methods for characterising the dose-response7

relationship developed [28]. However, a recent study by Conlan et al. noted a poten-8

tial issue with such analyses when considering infectious agents [7]: in some cases,9

subjects may transmit their dose to other subjects, hence complicating the analysis.10

The motivating example is of Campylobacter jejuni in chickens.11

The Campylobacter genus of bacteria is the most common cause of food-borne12

diarrhoeal disease in developed and developing countries – surpassing Salmonella and13

Shigella spp. [12]. Group dose-response experiments with C. jejuni in chickens are a14

useful tool in understanding the dose-response and transmission characteristics of the15

bacteria, allowing sensible measures to be put in place to contain, or eradicate, the16

infection in livestock used for human consumption. Chickens are social animals, and17

thus ethically are required to be co-housed [14]. Conlan et al. [7] noted that previous18

statistical analyses of the dose-response characteristics of C. jejuni in chickens had19

neglected the potential for transmission between co-housed subjects – resulting in20

incorrect estimation of the dose-response relationship.21

The presence of transmission in these experiments leads to an “all-or-nothing”22

response if the subjects are observed too late – that is, once at least one subject23

is infected within a group, transmission to the initially uninfected chickens leads to24
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more chickens being colonised than is representative of the administered dose. This25

yields a lower estimated ID50 (i.e., the dose required to infect 50% of the population,26

on average), and steeper slope-at-half-height – common statistics used to charac-27

terise dose-response curves [7]. To limit between-subject dosing, one might attempt28

to sample the chickens after a very short period of time following initial dosing.29

However, there exists a latent period between a chicken being challenged and it be-30

coming colonised (i.e., it presenting its response), thus this also provides inaccurate31

assessment of the number of colonised subjects. Finally, a chicken is “observed” via32

post-mortem caecal sampling, meaning that only one observation of each subject is33

possible.34

Studies of this form – grouped dose-response experiments with the potential for35

between-subject dosing – are common, and given the ethical, financial and physical36

constraints associated with such studies, determining their optimal experimental37

design in order to obtain the most information about the dose-response relationship38

is important. One must consider the allocation of the number of subjects to groups,39

possibly di↵erent doses, and the associated time(s) to observe the process, in order to40

gain the most information about the dose-response relationship. In particular, using41

these optimal design tools, we can quantify the trade-o↵ in information between42

allocating many individuals to few groups (doses), or few individuals to many groups43

(doses). We furthermore give consideration to scenarios in which the estimation of44

the transmission rate is also of interest – highlighting the potential for these tools to45

inform design of experiments where the purpose is understanding the transmission46

dynamics of a pathogen (e.g., avian influenza as in [26]).47

We work within a Bayesian framework, allowing for use of prior information48

concerning the various components of the dose-response study, and transmission49

dynamics. Our method involves a novel continuous-time Markov chain model for50

the dynamics within such a study, combined with recently-developed methods for51

Bayesian optimal experimental design [20, 21]. MATLAB code is provided so that52
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practitioners may determine the optimal design for their own studies.53

2. Methodology54

2.1. Modelling of Group Dose-response Experiments55

The first step in determining the optimal experimental design for these exper-56

iments is determining suitable models to represent the dynamics amongst a group57

of subjects. In determining a suitable model, we must ensure we account for the58

experimental aspects we wish to determine as part of our optimal designs. First and59

foremost, we are interested in the optimal doses to allocate to subjects in order to60

gain the most information about the dose-response relationship. Hence, we must61

represent the dose-response relationships we believe are possible given the substance62

and subjects being studied. This is achieved by specifying a suitable prior distribu-63

tion for the model parameters, which results in a range of dose-response curves we64

believe may eventuate from the experiment (examples given in Section 3).65

We must also determine when to observe the process, to measure the response –66

in this example, we count the number of infectious chickens in each group (i.e., our67

data is the number of infectious individuals in each group). There are three impor-68

tant considerations when determining the optimal observation time for these group69

dose-response experiments. First, observation here is assumed to involve killing the70

subject; hence, we have only one observation for each subject. Second, transmission71

may occur which may in turn increase the number of colonised subjects we observe72

for a given dose, thus skewing the dose-response relationship to appear steeper, and73

reducing the estimate of the ID50 [7]. Hence, this suggests we should observe the74

process early enough in order to mitigate transmission. However, the earlier ob-75

servation time due to transmission is in direct competition with the third and final76

consideration: the latent period. That is, there is a delay between exposure to a dose77

(say via injection, or ingestion) and colonisation. Thus, in determining the optimal78

observation time, we must allow su�cient time for the subject to pass through this79
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latent period, but still observe the process early enough to ensure that there has80

not been significant amounts of transmission between subjects. With regards to the81

design, we choose one dose and observation time for all chickens within a group –82

that is, each chicken within a group receives an identical dose, and is killed at the83

same time.84

In order to cover these three important aspects – the dose-response relationship,85

a latent period, and transmission – we propose a continuous-time Markov chain86

model to incorporate each of these stages. We use the beta-Poisson model for the87

probability of infection, Pinf, for a subject given dose D. That is,88

Pinf(D;↵, �) ⇡ 1�

✓
1 +

D

�

◆�↵

. (1)

This follows as the approximation to the hypergeometric model used by [7] – suitable

when � >> max(↵, 1). Common statistics used to characterise a dose-response

relationship are the ID50 and the Slope-at-half-height (SHH). The ID50 represents

the dose required to infect 50% of the population, and the slope-at-half-height is a

measure of the susceptibility of the host to the pathogen [7]. The ID50 and SHH can

be evaluated with respect to ↵ and � as follows:

ID50 = �(21/↵ � 1), and, SHH =
log(10)

2
↵

 
1�

✓
1

2

◆1/↵
!
.

Note that the slope-at-half-height is independent of �.89

The model we consider takes into account both the latent period of infection, as90

well as transmission between subjects. We propose a SEkI Markov chain epidemic91

model, where: subjects begin the process as healthy; then, the subjects move into92

either the (first, of k) exposed class (with probability Pinf, i.e., they are colonised by93

the design dose), or the susceptible class (with probability 1 � Pinf) otherwise. We94

choose to have more than one exposed class (k > 1) to allow the distribution of time95

spent in the latent period to follow an Erlang distribution – a more representative96

distribution of the latent period than the exponential distribution (e.g., [30, 23]).97
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Once a subject has passed through the k exposed classes, they transition into the98

infectious class. Once a subject is in the infectious class, they may transmit some99

dose to uncolonised subjects, where � is the e↵ective transmission rate. Figure100

1 provides a graphical representation of this process. In the example considered101

herein, we use k = 2 and � = 2, in order to achieve a mean time between exposure102

and infectiousness of 1 day (and probability 0.9 of being infectious by day 2) [5],103

consistent with values reported in [6] on data from [29].104

S E1 E2 · · · Ek I

H

�SI

N�1

� � � �

1� Pinf Pinf

Figure 1: Diagram illustrating the progression of subjects through the complete model. Subjects

begin as Healthy (H), and after being dosed, move to the first Exposed class (E1) with probability

Pinf, or otherwise they move to the Susceptible class (S). Once exposed, the subjects pass through

k exposed classes (E1, . . . , Ek), each at rate �, to reach the Infectious class (I). Once in the

infectious class, the subject can transmit the infection to subjects in the susceptible class with

e↵ective transmission rate �.

Note that we need to keep track of all but one of the compartments, as we have

a fixed population size, N ; hence, the state corresponding to the infectious class is

omitted from our state space and rate description. We define the transition rates for

the SEkI Markov chain model on the state space,

S = {(s, e1, . . . , ek) : 0  s, e1, . . . , ek, s+ e1 + · · ·+ ek  N}

6



as follows:

q(s,e1,...,ek),(s�1,e1+1,...,ek) = �
s(N � s�

Pk
l=1 el)

N � 1
,

q(s,...,ej ,ej+1,... ),(s,...,ej�1,ej+1+1,... ) = �ej, for j = 1, . . . , k � 1,

q(s,...,ek),(s,...,ek�1) = �ek.

An individual subject begins as ‘exposed’ with probability Pinf. Hence, the proba-

bility of having m initially exposed subjects follows a binomial distribution with N

trials, and probability of success Pinf(D;↵, �). That is, the initial state of our process

is given by,

P (s = N �m, e1 = m, ej = 0, for j = 2, . . . , k) =

✓
N

m

◆
P

m
inf(1� Pinf)

N�m
.

The Markov chain model is then initiated from the state {s = N �m, e1 = m, e2 =105

0, . . . , ek = 0}. We assume that subjects can only be identified as colonised once106

they enter the infectious class, which is an important assumption when it comes to107

determining the optimal observation times later.108

2.2. Background: Optimal Experimental Design109

The aim of optimal experimental design is to determine the best experimental110

setup in order to maximise some utility of the experiment. To achieve this aim, we111

specify a utility function U(✓,x, d), where d is an experimental design chosen from112

the set of all designs D, ✓ is the model parameters and x is the data. This utility113

function represents how we ‘value’ a design. We are interested in the expected utility114

of using design d, over the unknown model parameters and data. That is, we wish115

to evaluate the following,116

u(d) = E✓,x[U(✓,x, d)] =

Z

x

Z

✓

U(✓,x, d)p(x | ✓, d)p(✓)d✓dx, (2)

where p(x | ✓, d) is the likelihood function of the unobserved data, under design d,

and p(✓) is the prior distribution of the model parameters. The optimal design d
⇤
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maximises the expected utility over the design space D,

d
⇤ = argmax

d2D
u(d).

The utility function is chosen to represent those aspects of the experiment deemed117

to be of importance. See [4] and [25] for a review of Bayesian optimal experimental118

design.119

2.3. Choice of Utility120

In this work, we investigate two utility functions with the purpose of parameter121

estimation, namely the Kullback-Leibler divergence (KLD), and the Mean Absolute122

Percentage Error (MAPE) of a point estimate from the posterior distribution (here,123

we use the posterior median).124

The Kullback-Leibler divergence is given by:125

U(x, d) =

Z

✓

log

✓
p(✓ | x, d)

p(✓)

◆
p(✓ | x, d)d✓, (3)

where p(✓ | x, d) is the posterior distribution having observed data x at design126

d. The Kullback-Leibler divergence is the most commonly used utility function127

when the purpose of the experiment is parameter estimation (e.g., [8], [15], [10],128

[24], [19], [20]). This is perhaps due to its independence to model parameterisation,129

or the convenient interpretation: designs which maximise the EKLD maximise the130

increase in information between the prior and the posterior distributions, which can131

be interpreted as maximising the amount learned from the experiment. However, of132

concern is the potential for this utility to select designs that maximise the divergence133

as a consequence of biases in the likelihood that are more likely, or stronger, for those134

particular designs. As an alternative, we propose the following utility with the aim135

of estimating model parameters accurately.136

The Mean Absolute Percentage Error (MAPE) for true (known) parameters ✓ =137

(✓1, ✓2, . . . ✓p) and estimated parameters ✓̂ = (✓̂1, ✓̂2, . . . ✓̂p) is given by:138

U(x, d) =
1

p

pX

j=1

|✓j � ✓̂j|

✓j
, (4)
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where we choose as our parameter estimates ✓̂ the median a posteriori estimate from139

the posterior distribution p(✓ | x, d). We choose the median over the mode, as evalu-140

ating the mode of a high-dimensional distribution can be computationally ine�cient141

and cumbersome (e.g., [10]). In this work, we are only considering experimental142

design for the purpose of parameter estimation, where it is assumed that the model143

is known. One could include model uncertainty in this process, or, if the purpose144

was to best discriminate between a number of competing models, alternative utility145

functions exist for this purpose (e.g., [9]).146

Unfortunately, analytic evaluation of the expected utility function u(d) can rarely147

be achieved. Hence, we evaluate approximations to equations 3 and 4, and hence the148

expected utility for each design in equation 2, using the following algorithm [20].149

2.4. Evaluation of Utility: The ABCdE Algorithm150

To evaluate the utility, we take the approach used within the ABCdE algorithm of151

[20], which has proven beneficial for this type of discrete data problem. The method152

utilises an Approximate Bayesian Computation (ABC) approach to approximating153

the posterior distribution, which relies on simulations of the model (e.g., [16]).154

Note that the data in this example are the number of infectious individuals in each155

group, e.g., xj = (i1j, i2j, . . . ), where ikj is the number of infectious individuals in156

the jth simulation of the kth group for a given design. We provide a brief description157

below, but direct the reader to the original manuscript for full details.158

For each design, we use each set of the pre-simulated data as the “observed159

datum” one-by-one, and evaluate the utility using all the Npre data as “simulated160

data”. This creates a set of posterior samples having observed every set of simulated161

data for a particular design. That is, for simulated data x1,x2, . . . ,xNpre under162

design d, we determine ABC posteriors [p̂(✓ | x1, d), p̂(✓ | x2, d), . . . , p̂(✓ | xNpre , d)]163

using Algorithm 1 (Appendix 6.1). For the current design, we pre-simulate all Npre164

simulated data sets corresponding to sampled parameter values, and thus we can165
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pass pre-simulated data and corresponding parameter values to Algorithm 1 to form166

the posterior distributions.167

We evaluate the utility using each of these Npre posterior distributions under a168

particular design, and take the average of these Npre values to be our estimate of169

the expected utility for that design. The optimal design is then the design that170

returns the largest expected utility. The full algorithm is outlined in Appendix 6.1171

(Algorithm 2). We propose that the number of simulations Npre and ABC tolerance172

✏ be chosen in the same way as one would choose the number of simulations and173

tolerance when using ABC for inference (see, for example, [18]).174

For gridded parameter values ✓1,✓2, . . . ,✓l (allocated prior to running the algo-175

rithm, and fixed for all designs), we evaluate a Monte-Carlo approximation to the176

Expected Kullback-Leibler divergence (EKLD) as:177

u(d) =
1

Npre

NpreX

i=1

lX

j=1

log

✓
p(✓j | xi, d)

p(✓j)

◆
p(✓j | xi, d). (5)

Similarly, the average MAPE for design d, where the ith simulation (i = 1, . . . , Npre),178

xi ⇠ p((✓i1, . . . , ✓ip)), has median a posteriori ✓̂i = (✓̂i1, . . . , ✓̂ip), is estimated by:179

u(d) =
1

p⇥Npre

NpreX

i=1

pX

j=1

|✓ij � ✓̂ij|

✓ij
. (6)

Note that inference under a particular design will be identical for the same set180

of observed data. For this reason, when dealing with discrete data, we evaluate a181

posterior distribution corresponding to each unique data set and use this distribution182

when evaluating (5) and (6). The frequency of that set of observed datum under the183

current design is then used to weight the contribution to the expected utility.184

2.5. Design Search: The INSH Algorithm185

The optimisation routine to find the optimal designs is detailed in [21], however186

we provide a brief description here.187
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The Induced Natural Selection Heuristic (INSH) is an optimisation heuristic to188

e�ciently search across a high-dimensional design space and find (near-) optimal189

designs. At each iteration of the algorithm we consider a number of designs, and190

through some mechanism, we retain some designs (e.g., top ⇢%, or best r designs)191

– thus, inducing selection. Each of the retained designs then populate the next it-192

eration of the algorithm by sampling m designs around each of them from some193

distribution. By not combining the accepted samples at each iteration, we are able194

to e�ciently explore multiple regions of the design space simultaneously. Parallel-195

computing is used to e�ciently generate the data and evaluate the utility of each196

design at each iteration. The initial designs used to start the algorithm can be197

allocated across a grid, or randomly selected over the design space (e.g., via latin198

hypercube sampling). Here, prior information regarding regions of the design space199

with high-utility can be incorporated to allocate these initial designs. The algorithm200

is outlined in Appendix 6.1 (Algorithm 3). Choices of each component of the algo-201

rithm (i.e., initial designs, acceptance criteria, sampling distribution and stopping202

criteria), are detailed in Section 3.203

2.6. Case Study204

Of particular interest in this paper are group dose-response challenge experiments205

to monitor the spread of the bacteria Campylobacter jejuni amongst chickens. C.206

jejuni is zoonotic, meaning it spreads from animals to humans, and is a common cause207

of intestinal disease in humans [22]. Incidence of C. jejuni infection amongst humans208

could be dramatically reduced through the prevention of food-borne transmission209

[31]. Thus, a solid understanding of the dynamics of the bacteria through a flock of210

chickens, which are to be used for human consumption, is paramount.211

2.7. Prior Distributions212

In the following examples, we consider two scenarios: 1) where we have a reason-213

ably informative prior distribution, and 2) where we have a relatively uninformative214
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prior distribution. In order to more closely represent a practical example, we place215

prior distributions on the ID50 and SHH, rather than ↵ and � in the dose-response216

model. In order to motivate the prior distributions for the ID50 and SHH in these217

examples, we use the estimated distributions of the 2- and 14-day old chicks re-218

ported in [7] (specifically, Fig 3a on page 8) – in particular, the prior distributions219

in the informative scenario represent the estimated distributions for the 2-day old220

chicks, whereas the prior distributions specified in the uninformative scenario span221

the reported distributions of both the 2- and 14-day old chicks.222

In the informative scenario, we place independent normal prior distributions on223

each of the ID50 and SHH – N(4.10, 0.225), and N(0.51, 0.08), respectively – and a224

log�N(0.7, 0.25) prior distribution on �. In the uninformative scenario, we induce225

a correlation between the two parameters through a multivariate normal copula,226

such that the marginal prior distributions of ID50 and SHH are Gamma(14.5, 0.35)227

and Gamma(12, 0.025), respectively, with a correlation of -0.85. The uninformative228

prior distribution for � is U(1, 3). When sampling from the prior, lower limits were229

specified to ensured positive values were sampled, and an upper limit on the slope-230

at-half-height was enforced at (1/2)log(10)log(2), so as to not violate the hypothesis231

of independent action [7]. The resulting prior distributions for the two scenarios232

are shown in Figure 2. The experimental design method and all inference examples233

herein, are with respect to the ID50, SHH, and transmission rate � (where applicable).234

2.8. Design Space235

Consider a scenario where we are limited by resources – e.g., a fixed number236

of chickens, doses or maximum time over which we may conduct the experiment.237

Specifically, assume we are able to dose at most N = 40 chickens. We are interested238

in determining optimal Bayesian experimental designs with respect to the number239

of groups to allocate the fixed number of subjects to, the dose to allocate to each240

group, and the time to sample each group. The ranges of these design parameters are241

presented in Table 1. Note, we are dealing with a social animal, and as such, subjects242

12
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(a) Prior distributions on ID50 and Slope-at-half-height (SHH) under both the informative

and uninformative scenarios.
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(b) Prior distributions on transmission rate, �, under both the informative and uninfor-

mative scenarios

Figure 2: Prior distributions for ID50, SHH and � in the informative and uninformative scenarios

described above.

must be co-housed. That is, we assume that the chickens are allocated amongst at243

most five groups. Due to limitations by which one can generate a dose of infectious244

bacteria (e.g., growing colonies, dilution, etc.), we consider doses in step sizes of245

0.5 log10CFU as practically feasible [13]. However, we note that improvements in246

microfluidics technology will lead to the ability to produce more precise inocula in247

the future [13], and so we also present results on a finer grid in the Supplementary248

Material.249
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Table 1: Typical values of design parameters considered when determining the optimal experimental

designs.

Design aspect Typical Values

Number of groups (G) {2,3,4,5}

Dose allocation (A) {0.5,1.00,1.50,. . . ,10.00} log10CFU

Observation times (T ) {0.05,0.10,0.15,. . . ,6.00} days

We consider only the number of groups G, rather than the number of groups250

and the number of chickens in each group – specifically, we assume that the N = 40251

chickens are to be divided evenly among two, three, four or five groups (that is, 20,252

13, 10 or 8 chickens per group). Note that throughout we refer to the dose in units253

of log10 colony forming units (CFU), i.e., we refer to a dose of 104 CFU, as a dose254

of 4. We allow any number of groups to receive the same dose, and each group can255

have a di↵erent observation time – however, each individual within a group has the256

same dose and observation time.257

We note that the Bayesian optimal designs are specific to the prior distributions258

chosen; hence, the results we provide are not comprehensive. We will provide dis-259

cussion, where appropriate, to the sensitivity of the optimal designs to the choice260

of prior distributions, and provide MATLAB code for individuals to determine optimal261

designs for their own experiments.262

3. Results263

Recall, we consider two scenarios: 1) where we have an informative prior dis-264

tribution on the model parameters, and 2) where we have an uninformative prior265

distribution. For both scenarios, we consider the optimal designs with respect to266

both 1) the EKLD, and 2) the MAPE. Furthermore, we also establish the optimal267

designs when we are interested in either 1) the dose-response parameters only, 2)268
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the dose-response and the transmission rate parameter, and 3) the transmission rate269

parameter only. That is, in total, we consider 12 di↵erent sets of results. We present270

the optimal designs obtained via the INSH algorithm, in each example, and provide271

figures demonstrating the regions (with respect to the dose and observation time)272

that each group should be allocated to – akin to sampling windows considered in273

pharmacokinetic experiments (e.g., [11], [17], [21]). We describe these regions by274

taking the “top” designs from the INSH algorithm output, and drawing a convex275

hull around each group – here, we consider the top 0.05% of designs considered by276

INSH, ranked by their utility (corresponding to approximately 135 designs).277

We demonstrate how well each design performs with regards to inference for all278

parameters. In particular, for 200 simulated experiments, we evaluate the bias (of279

the posterior median estimate) and variance of the posterior distributions evaluated280

under each design for each simulated experiment. The posterior distributions were281

evaluated using a standard ABC-rejection algorithm (Algorithm 1 in Appendix 6.1)282

with 2,000,000 simulations, and a tolerance of ✏ = 0.25⇥G. Figures illustrating the283

convergence of the INSH algorithm – with respect to the number of designs of each284

group size being considered, and the utility of all designs under consideration at each285

wave – for each scenario are presented in Appendix 6.3.286

3.1. Optimal Designs from the INSH Algorithm287

For this problem, we have a number of di↵erent choices for the INSH algorithm.288

In particular, the allocation of the initial designs, the acceptance criteria, the per-289

turbation kernel (to sample new designs), and the stopping criteria. Steps 3-10 of290

Algorithm 2 (ABCdE) are used to evaluate the utility for each design, as this ap-291

proach has proven e�cient for discrete data sets as we consider here. We allocate the292

initial designs according to a uniform distribution across the range of the design vari-293

ables (given in Table 1), for each number of groups (G = 2, 3, 4, 5). We specify the294

number of initial designs for each group size according to our belief about the location295

of the optimal design, and the size of the design space within each group size. In each296
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example considered herein, we begin with 50, 100, 150, 500 designs for G = 2, 3, 4, 5,297

respectively (a total of 800 designs in the first iteration). At each iteration, we ac-298

cept the best rw = (150, 75, 30) designs, and sample mw = (3, 6, 15) new designs299

around each accepted design (thus, considering 450 designs at each iteration), for 30,300

15 and 15 iterations each (i.e., first 30 iterations are exploring the space, accepting301

the best 150 designs and sampling three new designs around each accepted design).302

New designs are sampled according to a truncated-multivariate normal distribution303

(truncated to the limits of the design space), centred on the retained designs, with304

standard deviation for the dose allocation (A), �A
w = (1.0, 0.75, 0.5) and observation305

time (T), �T
w = (0.1, 0.075, 0.05), for 30, 15 and 15 iterations, as above. The updat-306

ing of r, m, �A and �
T across each iteration is done in order to reduce exploration307

and increase exploitation, as the algorithm progresses. Table 2 contains the resulting308

optimal experimental design for each scenario.309

Figures 3 and 4 show the dose and time combination for each group of the designs310

(i.e., the coloured groups 1, . . . , G represent the G groups in the design). The figures311

show convex hulls around the top designs with respect to the EKLD and MAPE312

(respectively). The designs have been jittered slightly so that one can identify where313

more design points for each group are clustered.314
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Scenario Utility
Target

G
Optimal Design: A: Dose (log10 CFU);

Parameters T: Obs. Time (days)

1 EKLD (ID50, SHH) 5
A = (0.50, 1.00, 1.50, 2.00, 9.00)

T = (1.30, 1.30, 1.15, 1.05, 0.90)

1 MAPE (ID50, SHH) 2
A = (1.50, 2.00)

T = (1.95, 1.90)

1 EKLD (ID50, SHH, �) 5
A = (0.50, 1.00, 2.50, 5.50, 6.00)

T = (1.45, 1.30, 0.75, 0.85, 0.85)

1 MAPE (ID50, SHH, �) 2
A = (0.50, 1.00)

T = (4.20, 3.70)

1 EKLD (�) 5
A = (0.50, 1.00, 1.50, 3.00, 8.50)

T = (1.40, 1.30, 0.95, 0.90, 0.85)

1 MAPE (�) 2
A = (2.40, 2.45)

T = (5.00, 4.90)

2 EKLD (ID50, SHH) 5
A = (0.50, 1.00, 1.50, 3.00, 7.50)

T = (1.35, 1.45, 1.50, 0.90, 0.90)

2 MAPE (ID50, SHH) 2
A = (2.00, 2.50)

T = (1.75, 1.80)

2 EKLD (ID50, SHH, �) 5
A = (0.50, 1.00, 1.50, 2.50, 5.00)

T = (1.45, 1.55, 1.05, 0.95, 0.95)

2 MAPE (ID50, SHH, �) 2
A = (0.50, 2.50)

T = (4.45, 2.05)

2 EKLD (�) 5
A = (0.50, 1.00, 1.50, 2.50, 9.00)

T = (1.40, 1.45, 0.95, 0.85, 0.85)

2 MAPE (�) 2
A = (0.50, 1.00)

T = (4.15, 4.05)

Table 2: Optimal designs corresponding to two di↵erent scenarios ((1) informative and (2) un-

informative prior distributions), according to two di↵erent utility functions (EKLD and MAPE),

where the parameters of interest are either just the dose-response parameters (ID50,SHH), both the

dose-response and transmission rate parameters (ID50,SHH,�), or the transmission parameter (�).
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(a) Scenario 1, Target (ID50, SHH)
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(b) Scenario 2, Target (ID50, SHH)
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(c) Scenario 1, Target (ID50, SHH, �)
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(d) Scenario 2, Target (ID50, SHH, �)
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(e) Scenario 1, Target (�)
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Figure 3: Convex hull plots demonstrating the dose-time pairing for each group, for the best 0.05%

of designs according to the EKLD from the INSH algorithm, for Scenarios 1 and 2, when targeting

each of (ID50,SHH), (ID50,SHH,�), and (�).
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(a) Scenario 1, Target (ID50, SHH)
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(b) Scenario 2, Target (ID50, SHH)
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(c) Scenario 1, Target (ID50, SHH, �)
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Figure 4: Convex hull plots demonstrating the dose-time pairing for each group, for the best 0.05%

of designs according to the MAPE from the INSH algorithm, for Scenarios 1 and 2, when targeting

each of (ID50,SHH), (ID50,SHH,�), and (�).
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3.2. Performance of Optimal Designs315

3.2.1. Scenario 1: Informative Prior Distributions316

Figures 5 and 6 show the performance of the two optimal designs (i.e., with respect317

to the EKLD and MAPE), for targeting the dose-response parameters, dose-response318

and transmission parameters, or the transmission parameter only (i.e., (ID50, SHH),319

(ID50, SHH, �), or (�)), with informative prior distributions. Performance is assessed320

with respect to the bias in the median of the posterior distribution (i.e., posterior321

median - known parameter value used to simulate the experiment), and the posterior322

variance, of 200 simulated experiments.323
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Figure 5: Scenario 1 (informative prior distributions). Boxplots of the posterior distribution median

bias in estimates of each of ID50, SHH and � (rows), corresponding to 200 simulated experiments,

calculated at each of the optimal designs evaluated with respect to the EKLD and MAPE, when

targeting each of the dose-response parameters, (ID50, SHH), transmission rate and dose-response

parameters, (ID50, SHH, �), or only the transmission rate parameter (�) (columns).

20



(ID50,SHH) (ID50,SHH,β) (β)

V
a

ria
n

c
e

 ID
5
0

V
a

ria
n

c
e

 S
H

H
V

a
ria

n
c
e

 β

EKLD MAPE EKLD MAPE EKLD MAPE

0.04

0.05

0.06

0.005

0.010

0.1

0.2

0.3

0.4

0.5

Optimal Design Target

V
a
ri

a
n
c
e

Figure 6: Scenario 1 (informative prior distributions). Boxplots of the variance of the posterior

distribution of each of ID50, SHH and � (rows), corresponding to 200 simulated experiments,

calculated at each of the optimal designs evaluated with respect to the EKLD and MAPE, when

targeting each of the dose-response parameters, (ID50, SHH), transmission rate and dose-response

parameters, (ID50, SHH, �), or only the transmission rate parameter (�) (columns). The horizontal

line in each figure corresponds to the prior variance.

3.2.2. Scenario 2: Uninformative Prior Distributions324

Figures 7 and 8 show the performance of the two optimal designs (i.e., with respect325

to the EKLD and MAPE), for targeting the dose-response parameters, dose-response326

and transmission parameters, or the transmission parameter only (i.e., (ID50, SHH),327

(ID50, SHH, �), or (�)), with uninformative prior distributions. Performance is328

assessed with respect to the bias in the median of the posterior distribution (i.e.,329

posterior median - known parameter value used to simulate the experiment), and330

the posterior variance, of 200 simulated experiments.331
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Figure 7: Scenario 2 (uninformative prior distributions). Boxplots of the posterior distribution

median bias in estimates of each of ID50, SHH and � (rows), corresponding to 200 simulated

experiments, calculated at each of the optimal designs evaluated with respect to the EKLD and

MAPE, when targeting each of the dose-response parameters, (ID50, SHH), transmission rate and

dose-response parameters, (ID50, SHH, �), or only the transmission rate parameter (�) (columns).
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Figure 8: Scenario 2 (uninformative prior distributions). Boxplots of the variance of the posterior

distribution of each of ID50, SHH and � (rows), corresponding to 200 simulated experiments,

calculated at each of the optimal designs evaluated with respect to the EKLD and MAPE, when

targeting each of the dose-response parameters, (ID50, SHH), transmission rate and dose-response

parameters, (↵, �,�), or only the transmission rate parameter (�) (columns). The horizontal line

in each figure corresponds to the prior variance.

4. Discussion332

First of all, we wish to reiterate that the results here are prior-specific, and333

therefore di↵erent trends may be apparent when considering other prior distributions334

than those we have considered here.335

The designs returned under the two di↵erent utility functions in Figures 3 and 4336

show distinct di↵erences. In particular, the EKLD designs consistently prefer more337

groups (with less replicates in each), whereas the MAPE designs prefer more repli-338

23



cates within less groups. The designs under the EKLD each show a similar pattern,339

with low-dose groups being observed at a marginally later observation time (around340

1.5-2 days post-inoculation), while groups that receive a larger dose are observed341

earlier (around 0.85-1.25 days post-inoculation). The marginally later observation342

time in the low-dose groups is indicative of the smaller probability of colonisation343

in these groups, thus, suggesting it is beneficial to wait marginally longer than the344

mean time to progress through the exposed classes (⇡ 1 day), in order to successfully345

observe the colonised chickens. The groups receiving larger doses can feasibly be ob-346

served earlier, as there are a greater number of chickens that will be colonised (and347

so we will have a negligible probability of observing no colonised chickens), while also348

avoiding the possibility of transmission occurring.349

In contrast, the MAPE designs are all preferentially allocating chickens to only350

two groups, and show obvious di↵erences depending on which parameter combina-351

tions are of interest. Designs considering only the dose-response relationship (i.e.,352

ID50 and SHH) are allocated to relatively small doses, and observed at later obser-353

vation times (note that with the Erlang(2,2) distribution of time to pass through354

the exposed classes, there is approximately a 90% chance of having progressed to355

the infectious class by 2 days post-inoculation). When considering only the trans-356

mission rate parameter, �, the designs are vastly di↵erent – with lower doses and357

later observation times, allowing the potential for more transmission events to occur358

and su�cient time to observe a second-wave of infectious chickens that would likely359

be due to transmission. Finally, when considering both the dose-response relation-360

ship and transmission dynamics, the designs attempt to balance the two previous361

extremes. Under this example of informative prior distributions, the design resem-362

bles that of considering only the transmission rate parameter, suggesting that more363

information can be obtained about � than could be obtained for the ID50 or SHH.364

This can be observed in the posterior variances in Figure 8, where the variance for365

these dose-response parameters resembles both that of the EKLD designs, and the366
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prior variance, however there is a considerable improvement in the posterior vari-367

ance for � compared to both the EKLD and prior variance. Note that there are no368

distinct di↵erences in the posterior bias estimates under the designs from the two369

utility functions. Under the uninformative prior distribution however, we can see370

that the optimal design is to actually allocate our resources between these two re-371

gions – one group with a low-dose and late observation time in order to learn about372

the transmission dynamics, and a second group with an earlier observation time and373

a higher-dose in order to learn about the dose-response parameters.374

Figures 6 and 8 demonstrate the posterior variance for each parameter, having375

conducted the experiment under each of the di↵erent optimal designs, compared376

to the variances of the prior distribution. Again, it appears as though the MAPE377

designs outperform the EKLD designs – that is, the posterior distributions have378

smaller variance, on average. In fact, in some cases, the posterior variance under379

the EKLD designs appears marginally worse than that of the prior distribution –380

suggesting that this allocation of resources provides no further information about the381

system than was achievable under the prior distribution. The only instances that382

the EKLD designs out-perform the MAPE designs appear to be with regards to the383

slope-at-half-height of the dose-response relationship. Under the uninformative prior384

distributions, the posterior variance of SHH is worse under the MAPE design than the385

corresponding EKLD design, once consideration is also given to the transmission rate386

parameter � (a marginal di↵erence for (ID50,SHH,�), however more notable when387

considering only (�)). Furthermore, the EKLD design appears to outperform the388

MAPE design with respect to the posterior variance of ID50 when considering only �389

– however, this is not unexpected as the MAPE design is targeting only �. Note that390

each case where EKLD outperforms the MAPE, is where MAPE is not targeting the391

parameter which has a larger posterior variance. The larger variances in each case are392

made up by considerably reduced variance for the parameter of interest, compared393

to the EKLD design. This suggests that the MAPE utility is clearly prioritising the394
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parameter of direct interest, and sacrifices estimating other parameters well in order395

to gain improved accuracy for those parameters under consideration. Conversely,396

the posterior variances evaluated at the EKLD designs do not appear to change397

considerably when targeting di↵erent parameter combinations – not surprising, since398

the designs returned under various scenarios for the EKLD utility were all very399

similar. Thus, if only a subset of the model parameters are of interest, it appears400

as though these can be more accurately targeted using the MAPE utility, rather401

than the EKLD utility. Similar patterns exist in the informative scenarios, but to a402

lesser degree (as there is a smaller margin for improvement) – in particular, note the403

improved posterior variances for � under the MAPE designs, in the scenarios where404

� is targeted, compared to the EKLD designs.405

5. Conclusion406

Group dose-response challenge experiments are routinely used to assess safe, ef-407

fective, or hazardous doses of a substance. However, the possibility for transmission408

can lead to incorrect estimation of the dose-response relationship. Here, we have409

utilised optimal experimental design theory to demonstrate how to pre-determine a410

suitable experimental design in order to target di↵erent aspects of the dose-response411

relationship, or transmission dynamics.412

Within the experimental design framework, the Mean Absolute Percentage Er-413

ror (MAPE) appears to be a suitable alternative to the Expected Kullback-Leibler414

Divergence (EKLD) as a choice of utility, in some situations, when evaluating op-415

timal designs for the purpose of parameter inference. The designs evaluated under416

the EKLD and MAPE have quite distinct features, most notably in the number of417

preferred groups, which appears to correlate with better estimation of targeted pa-418

rameters under the MAPE designs. It appears as though by allocating all subjects419

to only two groups, we obtain more certain estimates of the dose-response relation-420

ship at those doses, by reducing the uncertainty within each group. However, this421
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often comes at the cost of reduced information about other parameters that were not422

directly being targeted – thus careful consideration needs to be given at the design423

stage to the dynamics that are of interest when using the MAPE utility.424

With regards to the MAPE designs, if there is interest in the transmission rate as425

well as the dose-response relationship, then resources are directly allocated to esti-426

mating the transmission rate. However, the amount of resources that should be used427

to estimate the transmission rate parameter is governed by the level of prior informa-428

tion that is available for the parameters. If we have informative prior distributions429

for the dose-response parameters, then all resources are allocated to estimating the430

transmission rate parameter (i.e., lower doses and late observation times). Inherently,431

some information will still be available on the dose-response relationship from this432

design, however the quantity of information that can be obtained about the trans-433

mission rate parameter is greater than that regarding the dose-response relationship.434

Conversely, if we have less-informative prior distributions on each parameter, then435

the resources are allocated between the two regions – targeting the transmission436

rate parameter (low dose and late observation time), or the dose-response param-437

eters (higher dose and an earlier observation time), with a trade-o↵ between the438

information gain for each aspect of the underlying dynamic.439

Here, we have used state-of-the-art experimental design methodology to provide440

a tool to design group dose-response challenge experiments in the presence of trans-441

mission. Code to implement this method in MATLAB is available as Supplementary442

Material.443
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6. Appendix454

6.1. Algorithms455

Algorithm 1 ABC Algorithm: Fixed tolerance

Input: Observed data x, simulated data y = (y1
, . . . ,yN), corresponding parameter

values ✓i
, i = 1, . . . , N , and tolerance ✏.

1: Evaluate discrepancies ⇢i = ⇢(y,xi), creating particles {✓i
, ⇢

i
} for i = 1, . . . , N .

2: Using the posterior sample of parameters ✓i such that ⇢i < ✏, evaluate utility.

Output: Utility for current design, having observed x, U(d,x).
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Algorithm 2 ABCdE Algorithm

1: Choose grid over the parameter space for the discrete estimate of the utility,

number of simulations Npre, and tolerance ✏.

2: Sample Npre parameters ✓ from p(✓).

3: For each of the Npre parameters, and under every design d in the design space

D, simulate process and store XNpre⇥|D|(✓, d).

4: for i = 1 to |D| do

5: Consider the unique rows of data Y (✓, di) = unique(X(✓, di)).

Note: We let Ki be the number of such unique data, and nki be the number

of repetitions of the k
ith unique data, for k

i = 1, . . . , Ki.

6: for k
i = 1 to K

i
do

7: Pass ‘observed data’ yki = [Y (✓, di)]ki , ‘simulated data’ X(✓, di), Npre

sampled parameters, and tolerance ✏ to Algorithm 1, and return contri-

bution U(yki
, d

i) to the expected utility, for kith unique datum (‘observed

data’) and i
th design.

8: end for

9: Store u(di) = 1
N

P
ki nkiU(yki

, d
i); the average utility over all parameters and

data for design d
i.

10: end for

Output: The optimal design d
⇤ = argmax

d2D
(u(d)).
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Algorithm 3 INSH Algorithm

1: Choose an initial set of designs. D (e.g., a coarse grid of design points across the

design space, or randomly sample).

2: Specify the number of generations (iterations) of the algorithmW , a perturbation

function f(d | d
0), and the acceptance criteria.

3: for w = 1 to W do

4: For each design d
i
2 D, sample parameters ✓ ⇠ p(✓), and simulate data xi

from the model.

5: Evaluate utility u(di), for each design d
i
2 D.

6: Set D0 to be the designs which satisfy the acceptance criteria, and the current

optimal design d
⇤ (even if it occurred in a previous generation).

7: Sample m designs from f(d | d
0), for each d

0
2 D

0. Set D to be these newly

sampled designs.

8: end for

Output: Set of designs d, and corresponding utilities u(d) (and hence, the optimal

design d
⇤ = argmax

d2D
(u(d))).

6.2. Derivation of Pinf Approximation.456

Consider the confluent hypergeometric function,

1F1(↵,↵ + �,�D) =

Z 1

0

e
�Dt �(↵ + �)

�(↵)�(�)
t
↵�1(1� t)��1

dt.

Let t = y/�, and hence dt = dy/�. Then we have,

1F1(↵,↵ + �,�D) =

Z �

0

e
�yD/� �(↵ + �)

�(↵)�(�)

⇣
y

�

⌘↵�1 ⇣
1�

⇣
y

�

⌘⌘��1 dy

�
.

For large �,
�
1�

�
y
�

����1
is approximately equal to e

�y. Hence we have,

1F1(↵,↵ + �,�D) ⇡

Z �

0

e
�yD/�


�(↵ + �)

�↵�(�)

�✓
y
↵�1

�(↵)

◆
e
�y
dy.
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Employing Stirling’s approximation to the expression inside the square brackets,

we get,

�(↵ + �)

�↵�(�)
⇡

p
2⇡(↵ + �)↵+��1/2

e
�↵��

p
2⇡(�)��1/2e��

⇥
1

�↵

=
(↵ + �)↵+��1/2

e
�↵

(�)↵+��1/2

= e
�↵
⇣
1 +

↵

�

⌘↵+��1/2

= 1,

since
�
1 + ↵

�

�↵+��1/2
is approximately equal to e

↵ for large �, and small ↵ relative to457

�.458

Note, Stirling’s Approximation for the gamma function is: �(z) =
p

(2⇡/z)(z/e)z(1+459

O(1/z)). The error of order 1/z is ignored since we consider large �.460

Hence, we have,

1F1(↵,↵ + �,�D) ⇡

Z �

0

e
�yD/�

✓
y
↵�1

�(↵)

◆
e
�y
dy

=

Z �

0

e
�y(1+D/�)

✓
y
↵�1

�(↵)

◆
dy.

Let u = y
�
1 + D

�

�
, and hence dy =

�
1 + D

�

��1
du. Then, we have,

1F1(↵,↵ + �,�D) ⇡

Z �+D

0

 
u�

1 + D
�

�
!↵�1

e
�u

�(↵)

du�
1 + D

�

�

=

✓
1 +

D

�

◆�↵ Z �+D

0

e
�u

u
↵�1

�(↵)
du.

Since e�uu↵�1

�(↵) is the pdf for a random variable with a Gamma(↵,1) distribution, and

for large �, Z �+D

0

e
�u

u
↵�1

�(↵)
du ⇡

Z 1

0

e
�u

u
↵�1

�(↵)
du = 1,

we get that,

1F1(↵,↵ + �,�D) ⇡

✓
1 +

D

�

◆�↵

.
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Hence, given dose D, and model parameters ↵ and �, we can write the probability461

of infection as,462

Pinf(D;↵, �) ⇡ 1�

✓
1 +

D

�

◆�↵

. (7)

6.3. Results: INSH Algorithm463

Figures 9 and 10 shows the progression of the INSH algorithm towards regions464

of the design space of high-utility, for each of the four scenarios for both the EKLD465

and (negative) MAPE.466
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Figure 9: Estimated utility (EKLD) of designs considered at each wave of the INSH algorithm, for

Scenarios 1 and 2, when targeting each of (ID50,SHH),(ID50,SHH,�), and �, respectively.
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Figure 10: Estimated utility (MAPE) of designs considered at each wave of the INSH algorithm,

for Scenarios 1 and 2, when targeting each of (ID50,SHH), (ID50,SHH,�), and �, respectively.

Figures 11 and 12 show the proportion of the total designs considered that are467
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made up of each of G = 2, 3, 4, 5 groups, across each wave of the INSH algorithm.468
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Figure 11: Proportion of the designs being considered at each wave of the INSH algorithm (EKLD),

coloured by how many groups in each design, for Scenarios 1 and 2, when targeting each of

(ID50,SHH), (ID50,SHH,�), and �, respectively.
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Figure 12: Proportion of the designs being considered at each wave of the INSH algorithm (MAPE),

coloured by how many groups in each design, for Scenarios 1 and 2, when targeting each of

(ID50,SHH), (ID50,SHH,�), and �, respectively.
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1. Supplementary Results: Finer grid on dose-allocation

These supplementary results mirror those presented in the manuscript, however,
here we consider both prior distributions placed on the parameters ↵ and � directly,
and a finer grid across the dose-allocation, in order to demonstrate the results that
we can obtain should we be able to feasibly derive doses to this precision.

1.1. Prior Distributions

In the following examples, we consider two scenarios: 1) where we have a reason-
ably informative prior distribution, and 2) where we have a relatively uninformative
prior distribution. Table S1 contains the choice of prior distribution for each param-
eter, in the two scenarios.

Table S1: Choice of prior distributions for dose-response model parameters, (↵, �) and transmission
parameter �.

Parameter
Scenario ↵ � �

1 U(0.15, 0.25) log -N(4.825, 0.25) log -N(0.7, 0.25)
2 U(0.10, 0.70) U(75, 250) U(1, 3)

Email address: david.j.price@alumni.adelaide.edu.au (David J. Price)



Figures S1a and S1b demonstrate the resulting dose-response curves under the
specified prior distributions for (↵, �). The viable curves are demonstrated using the
end points of the prior distribution for uniformly distributed parameters, and the
(0.025, 0.975)-quantiles of the prior distribution otherwise.
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(a) Dose-response relationship under informative
prior distributions.
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(b) Dose-response relationship under uninforma-
tive prior distributions.

Figure S1: The shaded region demonstrates the prior-predictive dose-response relationship under
(a) informative, or (b) uninformative prior distributions.

1.2. Design Space

Consider a scenario where we are limited by resources – e.g., a fixed number
of chickens, doses or maximum time over which we may conduct the experiment.
Specifically, assume we are able to dose at most N = 40 chickens. We are interested
in determining optimal Bayesian experimental designs with respect to the number
of groups to allocate the fixed number of subjects to, the dose to allocate to each
group, and the time to sample each group. The ranges of these design parameters
are presented in Table S2. Note, we are dealing with a social animal, and as such,
subjects must be co-housed. That is, we assume that the chickens are allocated
amongst at most five groups.

Table S2: Typical values of design parameters considered when determining the optimal experi-
mental designs.

Design aspect Typical Values
Number of groups (G) {2,3,4,5}
Dose allocation (A) {0.05,0.10,0.15,. . . ,8.00} log10CFU

Observation times (T ) {0.05,0.10,0.15,. . . ,6.00} days

2



We consider only the number of groups G, rather than the number of groups
and the number of chickens in each group – specifically, we assume that the N = 40
chickens are to be divided evenly among two, three, four or five groups (that is, 20,
13, 10 or 8 chickens per group). Note that throughout we refer to the dose in units
of log10 colony forming units (CFU), i.e., we refer to a dose of 104 CFU, as a dose
of 4. We allow any number of groups to receive the same dose, and each group can
have a di↵erent observation time – note that each individual within a group has the
same dose and observation time.

2. Results

In the following, we consider two scenarios: 1) where we have an informative
prior distribution on the model parameters, and 2) where we have an uninformative
prior distribution. For both scenarios, we consider the optimal designs with respect
to both 1) the EKLD, and 2) the MAPE. Furthermore, we also establish the optimal
designs when we are interested in either 1) the dose-response parameters only, 2)
the transmission rate parameter only, and 3) the dose-response and the transmission
rate parameter. That is, in total, we consider 12 di↵erent sets of results. We present
the optimal designs obtained via the INSH algorithm, in each example, and provide
figures demonstrating the regions (with respect to the dose and observation time)
that each group should be allocated to – akin to sampling windows considered in
pharmacokinetic experiments (e.g., [1], [2], [3]). We describe these regions by taking
the top n designs from the INSH algorithm output, and drawing a convex hull around
each group (here, n = 35).

We demonstrate how well each design performs with regards to inference for all
parameters. In particular, for 200 simulated experiments, we evaluate the bias (of
the posterior median estimate) and variance of the posterior distributions evaluated
under each design for each simulated experiment. The posterior distributions were
evaluated using a standard ABC-rejection algorithm with 1,500,000 simulations, and
a tolerance of ✏ = 0.25⇥G.

Figures illustrating the convergence of the INSH algorithm – with respect to the
number of designs of each group size being considered, and the utility of all designs
under consideration at each wave – for each scenario are presented in Appendix 4.1.

2.1. Optimal Designs from the INSH Algorithm

The same setup for the INSH algorithm is used in these examples, as those
reported in the main results.

Table S3 contains the resulting optimal experimental design for each scenario.
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Scenario Utility
Target

G
Optimal Design: A: Dose (log10 CFU);

Parameters T: Obs. Time (days)

1 EKLD (↵, �) 5
A = (3.50, 3.95, 4.20, 4.25, 4.30)
T = (1.30, 1.40, 1.80, 1.55, 1.60)

1 MAPE (↵, �) 5
A = (3.60, 4.00, 4.20, 4.30, 4.65)
T = (1.35, 1.45, 1.90, 1.45, 1.55)

1 EKLD (↵, �, �) 5
A = (3.75, 3.90, 4.15, 4.20, 4.25)
T = (1.25, 1.35, 1.50, 1.70, 1.65)

1 MAPE (↵, �, �) 2
A = (2.50, 2.55)
T = (4.50, 4.25)

1 EKLD (�) 5
A = (4.00, 4.10, 4.25, 4.30, 4.35)
T = (1.35, 1.50, 1.80, 1.60, 1.40)

1 MAPE (�) 2
A = (2.40, 2.45)
T = (5.00, 4.90)

2 EKLD (↵, �) 5
A = (4.20, 4.45, 4.70, 5.05, 6.55)
T = (0.95, 0.95, 1.15, 1.10, 0.90)

2 MAPE (↵, �) 2
A = (3.25, 3.40)
T = (1.55, 1.75)

2 EKLD (↵, �, �) 5
A = (4.55, 4.65, 4.75, 5.00, 5.15)
T = (1.10, 1.05, 1.00, 0.95, 0.85)

2 MAPE (↵, �, �) 5
A = (2.20, 2.25, 3.25, 3.40, 3.50)
T = (3.05, 3.55, 1.70, 1.90, 1.70)

2 EKLD (�) 5
A = (4.45, 4.70, 4.85, 5.10, 6.25)
T = (1.05, 1.15, 1.10, 1.10, 0.85)

2 MAPE (�) 2
A = (1.95, 2.00)
T = (5.25, 5.00)

Table S3: Optimal designs corresponding to two di↵erent scenarios ((1) informative and (2) uninfor-
mative prior distributions), according to two di↵erent utility functions (EKLD and MAPE), where
the parameters of interest are either just the dose-response parameters (↵, �), the transmission
parameter (�), or both the dose-response and transmission rate parameters (↵, �,�).

Figures S2 and S3 show the dose and time combination for each group of the
designs (i.e., the coloured groups 1�G represent the G groups in the design). The
figures show convex hulls around the “best” 35 designs with respect to the EKLD
and MAPE (respectively). The designs have been jittered slightly so that one can
identify where more design points for each group are clustered.

4



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

0.75

1.00

1.25

1.50

1.75

3 4 5 6 7 8
Dose

Ti
m
e

Group
●●

●●

●●

●●

●●

1

2

3

4

5

(a) Scenario 1, Target (↵, �)
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(b) Scenario 2, Target (↵, �)
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(c) Scenario 1, Target (↵, �,�)
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(d) Scenario 2, Target (↵, �,�)
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(e) Scenario 1, Target (�)
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(f) Scenario 2, Target (�)

Figure S2: Convex hulls demonstrating the dose-time pairing for each group, for the 35 “best”
designs according to the EKLD from the INSH algorithm, for Scenarios 1 and 2, when targeting
each of (↵, �), (↵, �,�), and (�).
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(a) Scenario 1, Target (↵, �)
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(b) Scenario 2, Target (↵, �)
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(c) Scenario 1, Target (↵, �,�)
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(d) Scenario 2, Target (↵, �,�)
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(e) Scenario 1, Target (�)

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

2 3 4 5
Dose

Ti
m
e

Group
●●

●●

1

2

(f) Scenario 2, Target (�)

Figure S3: Convex hulls demonstrating the dose-time pairing for each group, for the 35 “best”
designs according to the MAPE from the INSH algorithm, for Scenarios 1 and 2, when targeting
each of (↵, �), (↵, �,�), and (�).
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2.2. Performance of Optimal Designs

2.2.1. Scenario 1: Informative Prior Distributions
Figures S4 and S5 show the performance of the two optimal designs (i.e., with

respect to the EKLD and MAPE), for targeting the dose-response parameters, dose-
response and transmission parameters, or the transmission parameter only (i.e.,
(↵, �), (↵, �, �), or (�)), with informative prior distributions. Performance is assessed
with respect to the bias in the median of the posterior distribution (i.e., posterior
median - known parameter value used to simulate the experiment), and the posterior
variance, of 200 simulated experiments.
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Figure S4: Scenario 1 (informative prior distributions). Boxplots of the posterior distribution me-
dian bias in estimates of each of ↵, � and � (rows), corresponding to 200 simulated experiments,
calculated at each of the optimal designs evaluated with respect to the EKLD and MAPE, when
targeting each of the dose-response parameters, (↵, �), transmission rate and dose-response param-
eters, (↵, �,�), or only the transmission rate parameter (�) (columns).
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Figure S5: Scenario 1 (informative prior distributions). Boxplots of the variance of the posterior
distribution of each of ↵, � and � (rows), corresponding to 200 simulated experiments, calculated at
each of the optimal designs evaluated with respect to the EKLD and MAPE, when targeting each of
the dose-response parameters, (↵, �), transmission rate and dose-response parameters, (↵, �,�), or
only the transmission rate parameter (�) (columns). The horizontal line in each figure corresponds
to the prior variance.

2.2.2. Scenario 2: Uninformative Prior Distributions
Figures S6 and S7 show the performance of the two optimal designs (i.e., with

respect to the EKLD and MAPE), for targeting the dose-response parameters, dose-
response and transmission parameters, or the transmission parameter only (i.e.,
(↵, �), (↵, �, �), or (�)), with uninformative prior distributions. Performance is as-
sessed with respect to the bias in the median of the posterior distribution (i.e.,
posterior median - known parameter value used to simulate the experiment), and
the posterior variance, of 200 simulated experiments.
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Figure S6: Scenario 2 (uninformative prior distributions). Boxplots of the posterior distribution
median bias in estimates of each of ↵, � and � (rows), corresponding to 200 simulated experi-
ments, calculated at each of the optimal designs evaluated with respect to the EKLD and MAPE,
when targeting each of the dose-response parameters, (↵, �), transmission rate and dose-response
parameters, (↵, �,�), or only the transmission rate parameter (�) (columns).
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Figure S7: Scenario 2 (uninformative prior distributions). Boxplots of the variance of the posterior
distribution of each of ↵, � and � (rows), corresponding to 200 simulated experiments, calculated at
each of the optimal designs evaluated with respect to the EKLD and MAPE, when targeting each of
the dose-response parameters, (↵, �), transmission rate and dose-response parameters, (↵, �,�), or
only the transmission rate parameter (�) (columns). The horizontal line in each figure corresponds
to the prior variance.

3. Discussion

The designs that are obtained under the EKLD utility are demonstrated in Figure
S2. In each case, the EKLD utility appears to suggest allocating the chickens amongst
five groups, with doses that correspond to the prior ID50. Note that the doses under
the informative prior distribution are allocated across a narrower range compared to
those for the uninformative prior distribution, corresponding to the increased prior
belief in the location of the dose-response relationship. In Scenario 1 (informative
prior distribution), the optimal observation times for each group are marginally later
than those corresponding to Scenario 2 (uninformative prior distribution). This is
perhaps due to the increased confidence in the dose-response relationship, meaning
that we can confidently wait longer without the potential for all chickens in a group
to appear infectious following a single (or few) transmission event(s) (i.e., if the dose
corresponds to a very high probability of infection).
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The designs obtained under the MAPE utility are interesting. Under an infor-
mative prior distribution, targeting only the dose-response parameters results in a
similar design to that obtained under the EKLD – five groups with observation times
of roughly 1.5 (marginally after the mean time to pass through the latent-period),
and doses allocated near to the ID50. However, once consideration is also given to
the transmission rate parameter, �, the optimal designs are those that allocate all
chickens to only two groups, with lower doses (i.e., less initially exposed chickens),
and later observation times (i.e., allow more transmission events to occur).

Under an uninformative prior distribution, the optimal design corresponding to
only the dose-response parameters is to allocate all individuals to only two groups
at the middle of the doses which could correspond to the ID50 (see Figure S1b).
However, once again, considering the transmission parameter � changes the opti-
mal designs. In particular, consideration of only the transmission parameter cor-
responds to low dose and late observation time – similar to under the informative
prior distribution – however, when considering both the dose-response parameters
and transmission rate parameter, the optimal design allocates five groups amongst
these two distinct regions. Moreover, the second group is allocated between tar-
geting the transmission rate parameter (small dose, late observation time), and the
dose-response parameters (higher dose, earlier observation time) – highlighting the
obvious trade-o↵ between better estimation of the dose-response parameters, or the
transmission parameter.

In each case, it appears as though the designs found using the MAPE utility
out-perform the corresponding designs under the EKLD utility. The bias in each
parameter estimate is not considerably di↵erent under the di↵erent designs (EKLD
vs. MAPE). As the simulation studies are conducted using parameters sampled from
the prior distribution, it is not unexpected that each posterior distribution is centred
on the correct value on average, as a random sample from the prior distribution
would also achieve this. Where we can observe a di↵erence in the bias between the
designs resulting from the two di↵erent utilities is when we have uninformative prior
distributions. In particular, the MAPE designs appear to have a smaller bias, on av-
erage, for the dose-response parameter ↵, when the designs were evaluated to target
(↵, �), or (↵, �, �), and for � when the designs were evaluated to target (↵, �, �) or
(�) (Figure S6).

Figures S5 and S7 demonstrate the reduction in variance for each parameter, hav-
ing conducted the experiment under each of the di↵erent optimal designs, compared
to the variances of the prior distribution. Again, it appears as though the MAPE
designs outperform the EKLD designs – that is, the posterior distributions have
smaller variance, on average. In fact, the posterior variance under the EKLD designs
is marginally worse than that of the prior distribution – suggesting that this allocation
of resources provides no further information about the system than was achievable
under the prior distribution. The only instance that the EKLD designs out-perform
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the MAPE designs appear to be with regards to the dose-response parameter ↵.
Under the informative prior distributions, the posterior variance of ↵ is worse under
the MAPE design than the corresponding EKLD design, once consideration is also
given to the transmission rate parameter � (i.e., considering (↵, �, �) or (�)). Note
also that in the case where (↵, �, �) are being considered, the less-improved variance
for ↵ is made up by considerably reduced variance for �, compared to the EKLD
design. Under the uninformative prior distributions, the EKLD design only appears
to outperform the MAPE design with respect to the posterior variance of ↵ when
considering only � – that is, when not considering ↵ at all. This appears reasonable,
as the MAPE design is clearly targeting only those parameters of interest, and thus
loses accuracy about ↵ in order to improve accuracy about the other parameters.
Conversely, the posterior variances evaluated at the EKLD designs do not appear to
change considerably when targeting di↵erent parameter combinations. Thus, if only
a subset of the model parameters are of interest, it appears as though these can be
more accurately targeted using the MAPE utility, rather than the EKLD utility.
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4. Appendix

4.1. Results: INSH Algorithm

Figures S8 and S9 shows the progression of the INSH algorithm towards regions
of the design space of high-utility, for each of the four scenarios for both the EKLD
and (negative) MAPE.
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Figure S8: Estimated utility (EKLD) of designs considered at each wave of the INSH algorithm,
for Scenarios 1 and 2, when targeting each of (↵, �), (↵, �,�), and �, respectively.
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Figure S9: Estimated utility (MAPE) of designs considered at each wave of the INSH algorithm,
for Scenarios 1 and 2, when targeting each of (↵, �), (↵, �,�), and �, respectively.

Figures S10 and S11 show the proportion of the total designs considered that are
made up of each of G = 2, 3, 4, 5 groups, across each wave of the INSH algorithm.
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Figure S10: Proportion of the designs being considered at each wave of the INSH algorithm (EKLD),
coloured by how many groups in each design, for Scenarios 1 and 2, when targeting each of (↵, �),
(↵, �,�), and �, respectively.
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(f) Scenario 2, Target (�)

Figure S11: Proportion of the designs being considered at each wave of the INSH algorithm
(MAPE), coloured by how many groups in each design, for Scenarios 1 and 2, when targeting
each of (↵, �), (↵, �,�), and �, respectively.
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