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Thesis Summary 

Excessive exposure to ultraviolet (UV)-B  radiation (290-320 nm), a component of 

sunlight, is considered the major etiological factor in skin cancer, causing detrimental 

alterations in the patterns of tissue remodelling processes, inflammation, angiogenesis 

and lymphangiogenesis. An accumulation of mast cells (MCs) in the peri-tumoural 

stroma is typically a hallmark feature; this has given rise to the important question of 

whether MCs at the peri-lesional interface function to provide a permissive tumourigenic 

environment or to guard against rapid neoplastic progression.  

Recently, we discovered that MCs can negatively regulate inflammatory responses 

caused by chronic low-dose UVB irradiation of the skin (levels which cause skin damage 

and not induce tumours), via a pathway involving the immunomodulatory agent vitamin 

D3 and MC-derived interleukin (MC-IL)-10. Our current studies highlight that mouse 

mast cell protease 4 (mMCP4), the functional homologue of human MC chymase, is an 

important MC-specific mediator that can provide an additional protective mechanism 

against detrimental UVB-induced skin pathology. By implementing chronic high doses 

and excessive exposures of UVB that cause skin tumourigenesis, we demonstrate that 

MC-deficient c-kit mutant KitW/W-v mice engrafted with bone marrow-derived cultured 

mast cells (BMCMCs) from mMCP4 mice yield higher rates of UVB-induced ear 

ulceration and in situ SCCs than wild-type BMCMC-engrafted KitW/W-v mice.  

Interestingly, in response to extensive chronic UVB irradiation, not only mMCP4 

BMCMCKitW/W-v mice, but also our non-pigmented Tyrc-2j–mMCP4 mice, exhibit 

extensive lymphatic vessel dilation in their UVB-exposed ears compared to the 

experimental wild-type counterparts, thereby suggesting a potential role of mMCP4 and 

its substrates in governing protection against pathological lymph vessel dysfunction at 

critical stages during skin tumourigenesis. Moreover, microarray studies demonstrated 

that the loss of mMCP4 causes global changes in mRNA expression in multiple pathways 

especially upregulation of genes involved in cell migration and in the extracellular matrix 

(ECM) 

Taken together, our data provides an important mechanistic insight into the beneficial 

function of dermal MCs and mMCP4 at distinct checkpoints in a setting of UVB 

irradiation driven epidermal neoplasia.  
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LITERATURE REVIEW 
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1.1 Mast cell biology 

Mast cells (MC) were first discovered in human tissue by Paul Ehrlich in 1878 and named 

“mastzellen” due to their abundance of large electron dense granules with metachromatic 

staining properties1,2. In addition to their staining characteristics and morphological 

features, MCs are identified by their cell surface expression of the high-affinity receptor, 

FcRI (high affinity for immunoglobulin [Ig]E) and c-kit (CD117; receptor for stem cell 

factor [SCF]). Since their discovery, our knowledge of MCs has expanded dramatically. 

MCs are found throughout the body particularly at sites that are exposed to the 

environment and they exhibit heterogeneity and plasticity depending on the 

environmental cues they are exposed to. What has also been of great interest is their roles 

and involvement in both physiological and pathophysiological conditions, particularly in 

IgE-dependent diseases settings such as asthma, atopic dermatitis and anaphylaxis3. 

Although the contribution of MCs in allergic settings is well recognised, their roles in 

prominent diseases like cancer are less well understood4. Historically, MCs have gained 

notoriety due to their ability to exacerbate immune responses in certain pathological 

settings such as anaphylaxis. Interestingly, recent developments in the MC field suggest 

that MCs also exhibit anti-inflammatory functions in numerous disease models5-7. Our 

recent study has demonstrated the role of MCs and their mediators8-10 in suppressing 

inflammation, and these studies have opened a new field of research to understand and 

utilise and even manipulate MCs functions for therapeutic use.  

1.1.1 MC progeny and tissue distribution  

Human MC progenitors are derived from CD34+ haematopoietic stem cells (HSC) in the 

bone marrow (BM) and are found as immature MC progenitors (MCP; 

CD34+CD117+CD13+CD14-) in circulation11. Once human MCPs reach their specific 

anatomical location they will mature and differentiate into MCs that exhibit specific 

phenotypes with distinct expression profiles of mediators, receptors and other features 

that reflect the environmental milieu12,13.  

In mice, mast cell development progresses through the following stages. The myeloid 

lineage of Kit+Sca1+ HSCs differentiate into Kit+Sca1loFcRIIloFcRIIIlo common 

myeloid progenitor (CMP) and then to the Kit+Sca1-FcRIII/IIIhi granulocyte monocyte 

progenitor (GMP), which gives rise to all granulocytes, neutrophils, basophils, 
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eosinophils and macrophages. Mouse MCPs were initially suggested to be only originated 

from GMPs14,15. Later studies, however, have demonstrated that MCPs originate directly 

from either HSCs, or CMPs16-18. Interestingly, Chen et al., discovered a 

megakaryocytic/erythrocyte MCP lineage (Lin-c-kit+Sca-1-Ly6c-FcεRI-CD27-

β7+T1/ST2+) in the BM of adult C57BL/6 mice13, and this lineage was found to originate 

from the Kit+Scalo CMP population. A follow-up study by Franco et al., redefined this 

population and confirmed that MC progenitors could indeed be independently derived 

from the CMPs rather than just the GMPs19.  

As explained above, mouse and human MCPs circulate as immature progenitors in the 

blood until they reach the specific anatomical location18. Typically, mature MCs are 

localised in areas of connective tissue, mucosal sites, and vascularised organs in which 

they will ultimately reside (including skin, peritoneum, airway and gastrointestinal tract), 

where they are in close proximity to blood and lymphatic vessels as well as exposed to 

the environment3,18. At these sites, growth factors like SCF and interleukin (IL)-3 play a 

crucial role for the growth and development of MCPs into mature MCs20. To facilitate 

the migration of MCPs to their specific anatomical sites, they are normally guided by 

chemotactic factors, and bind to adhesion molecules such as vascular cell adhesion 

molecule (VCAM-1) and E-selectin expressed by specific tissues21-23.   

1.1.2 MC homing and trafficking 

1.1.2.1 MC progenitor homing 

Due to the low numbers of progenitor cells in situ, the exact mechanisms of how these 

MCPs localise to various sites of tissues is still under investigation24,25. It is understood 

that, like leukocytes, the homing of MCPs is dependent on chemokines and integrins, and 

the requirements of these chemotactic factors and their receptors may vary depending on 

the organ of interest26,27,28. 

The migration of MCPs toward the intestine requires the chemokine receptor CXCR2, as 

suggested by a significant decrease in the number of MCPs observed in the intestines of 

CXCR2-deficient mice23. Recent studies have also implicated that 47 integrin is 

required for MCP migration. This is consistent with observations that both the loss of 

47 and blocking the binding of 47-specific ligands MadCAM-1 and VCAM-1 result 

in a deficiency in MCP populations in the intestine21,29. Furthermore, human MCPs 
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require expression of 1 integrin to facilitate adhesion to VCAM-1 and E-selectin 

expressing endothelial cells of the mucosa30. 

Although homing of MCPs to the skin is not yet clearly understood, recent findings 

demonstrate that homing of MCPs to the peritoneum is dependent on integrins such as 

macrophage-1 antigen (M2) integrin and glycoprotein IIb (IIb3).  Mice lacking 

these specific integrins show a significant reduction (~50-70%) in peritoneal MCs, while 

the number of peritoneal MCs in the spleens and intestine were not affected31-33. 

Additional factors including MC-derived tumour necrosis factor (TNF) are also crucial 

in the up-regulation of the adhesion molecule VCAM-1 and facilitate binding to 47 

integrins34 Furthermore, intradermal (i.d.) injected leukotriene (LT) B4, can recruit 

MCPs to peripheral tissues, via its receptor LTB1a that is not expressed on mature MCs24.  

Once reaching their specific anatomical site in which they will reside, MCPs mature and 

differentiate, and exhibit different phenotypic characteristics. This process is highly 

influenced by the localisation and the surrounding environmental cues of these cells35,36.  

1.1.2.2 Mature MC trafficking 

Mature and differentiated MCs are rarely found in the circulation of healthy individuals, 

but they have been found present in the blood stream of patients suffering from systemic 

mastocytosis37, a condition where MCs have attained activating mutations in the c-kit 

receptor that promote uncontrollable proliferation, activation and degranulation of 

MCs38,39. Recent studies indicate that MCs can migrate to distant sites via the guidance 

of certain mediators. These include chemokines such as monocyte chemotactic factor 

(MCP-1/CC-chemokine ligand [CCL]2)40,41 and Regulated on Activation Normal T cell 

Expressed and Secreted (RANTES/CCL5)41,42. Other mediators involved in MC 

trafficking include anaphylatoxins C3a and C5a43,44, prostaglandins (PG)D2 and 

PGE245,46 as well as cytokines such as  transforming growth factor (TGF)47,48 and 

SCF49,50. Blocking of the TNF and IL-6 receptors expressed on rat peritoneal MCs also 

inhibited the TNF and IL-6 induced chemotaxis of MCs51,52. In addition, a more recent 

study has shown the CXCR4 antagonist AMD3100 is able to block the migration of 

dermal MCs from the skin to the draining lymph nodes following chronic UVB 

irradiation53,54.  
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1.1.3 MC heterogeneity  

MCs exhibit different phenotypes depending on the localisation and environmental cues 

they are exposed. In mice, there are two subsets of MCs; connective tissue mast cells 

(CTMC), which are generally found in the dermis of the skin or peritoneum55,56 and 

mucosal MCs (MMC), which are typically localised in the mucosa linings of the lungs or 

gut55. In addition to their distinct anatomical site, these two subsets of MCs can also be 

differentiated by the expression profile of their granular content, such as MC-specific 

neutral proteases (mMCP). CTMCs express and chymases (mMCP4 and 5, 

mMCP9 [only in uterine localised MCs]), and -tryptase mMCP6 as well as MC-

carboxypeptidase A (MC-CPA3), while MMCs predominantly express tetrameric -

tryptases (mMCP6 and mMCP7) and chymases (mMCP1 and mMCP2)57,58. In 

addition, MMCs typically produce cysteinyl leukotrienes LTD4 and LTB4 and 

prostanoids PGD259, whereas CTMCs primarily produce prostanoids60. 

Similar to mice, human MCs also exhibit a degree of heterogeneity.  The two subsets of 

human MCs are classified by their protease composition. MCs found in the skin or 

intestinal mucosa are classified as MCTC, and they express two classes of (& ) tryptase, 

one () chymase and one MC-CPA361-63. The other subtype, which are normally present 

in mucosal surfaces in the lung and gut, expresses only (& ) tryptase but not chymase. 

Hence these cells are classified as MCT
63. Furthermore, like mouse MCs, MCT appear to 

express only leukotrienes64, while MCTC express prostanoids65.  

As stated above, MC heterogeneity is conferred by their ability to express certain profiles 

of proteases according to the particular environmental cues they encounter in their 

residential tissues66. This was further supported by a study demonstrating that when 

mouse BM-derived cultured MCs (BMCMC) and cultured peritoneal MCs from 

(WB/ReJ×C57BL/6)F1 (WBB6F1) wild-type (WT) mice (both expressing mMCP1, 2, 4, 

5, and 6) were transplanted into the stomach wall of MC-deficient WBB6F1-KitW/W-v mice, 

they appeared in both mucosa (with down-regulated mMCP1, 4, 5 and 6) and muscularis 

propria (with down-regulated mMCP1 and 2). On the other hand, when fully 

differentiated peritoneal MCs from WT mice (expressing mMCP2, 4, 5 and 6) were 

transplanted, they adopted the stomach mucosa profile by down-regulating mMCP4, 5 

and 667. 
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1.1.4 MC development and maturation 

MCs mature and differentiate into distinct subtypes depending on the growth factors 

present in their residential environment. One of the main factors that directs their 

development and maturation is SCF, a growth factor that plays crucial roles in 

haematopoiesis68. The dependency of SCF for MC development and maturation is crucial 

not only in humans but also in mice68-70. This is supported by the in vivo findings that 

mutations of SCF or c-kit receptor (mutations in both steel (Sl) and white spotting (W) 

locus in mice) have significant effects on MC populations, among other deficiencies such 

as gametogenesis, melanogenesis, and haematopoiesis71-74. In humans, mutations in the 

c-kit gene is associated with abnormalities in pigmentation, such as piebladism75,76. Other 

studies have also reported associations between c-kit mutations and rare disease of 

mastocytosis77 and tumour growth and gastric and lung cancers78,79.  

A number of other cytokines are also important for MC development and/or maturation. 

In mice, the T cell-derived cytokine IL-3 is important for the proliferation of mouse 

BMCMC populations from the spleen, intestine and bone marrow13,17,55. In comparison, 

MCs that exhibit a more connective tissue like phenotype in vitro require other factors 

such as SCF and/or IL-480-82. It is worth noting that IL-10, a well-known anti-

inflammatory cytokine, is also an enhancer for the growth of MCs. Although IL-10 by 

itself does not promote proliferation of MCs, it has synergistic effects with IL-3, SCF, or 

IL-4 in the proliferation of mouse BMCMCs82. On the other hand, culturing human MCs 

in vitro requires SCF and IL-6. In the presence of these cytokines, MCs populations can 

be cultured from human cord blood-derived mononuclear cells, CD34+ HSCs and also 

peripheral blood MCPs20,69,82-84. 

1.1.5 MC activation/degranulation   

MCs can be activated by a variety of means, but the most well-known and characterised 

route is through the antigen (Ag) + IgE-dependent pathway. The majority of MCs in the 

body are sensitised by circulating IgE bound to the high affinity receptor FcRI3. When 

FcRI-bound IgE encounters specific multivalent Ag, this leads to crosslinking of the IgE 

molecules and aggregation of the FcεRI receptors. Ultimately, this results in MC 

activation and degranulation, which is a highly controlled release of its granular 

contents85. Depending on the type but also the magnitude of the stimulus, MCs can release 
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all of their granular contents via exocytosis or gradually and selectively through 

piecemeal degranulation86. Furthermore, MCs are capable of participating in multiple 

cycles of activation and degranulation.   

MCs express a wide array of receptors, hence can be activated by a variety of other stimuli, 

including SCF49,87, cytokines such as IL-1, IL-3 and granulocyte macrophage-colony 

stimulating factor (GM-CSF)88,89, and chemokines such as CCL390. Other factors that can 

activate MCs include bacterial-induced anaphylatoxins such as C3a and C5a91,92, 

neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP)93-95, 

as well as pathogen-derived Ags that signal through toll-like receptors (TLR)s, TLR-2, -

3, -4, -7 and -996-98. Unlike IgE + surface Ag-mediated activation, activation of MC by 

non-IgE-related stimuli does not always lead to a complete degranulation and release of 

all mediators. Instead, selective and differential release of mediators can occur. In human 

MCs, IL-1 can induce the degranulation-independent release of IL-699. PGE2 has also 

been reported to promote release of the chemokine CCL2100. Other factors like the 

neuropeptide CGRP triggers piecemeal secretion of the MC-specific protease mMCP-1 

from mouse BMCMCs95. Furthermore, monomeric IgE, in the absence of surface Ag 

stimulation, can also activate mouse BMCMCs and induce the production of pro-

inflammatory cytokines, such as TNFα, IL-6, IL-4 and IL-13101.  

1.1.6 MC mediators 

The mediators released upon MC activation and degranulation fall into three categories; 

1) pre-formed mediators, 2) lipid derived mediators and 3) cytokines, chemokines and 

growth factors.  

1.1.6.1 Preformed MC mediators 

Preformed MC mediators are packed into the cytoplasmic granules and are the first to be 

released upon MC activation, especially in the IgE-dependent pathways. These mediators 

include biogenic amines, neutral proteases and proteoglycans. Notably, the expression 

profile of pre-formed mediators differs depending on the residential localisation and 

phenotype of the MCs. 
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1.1.6.1.1 Biogenic amines 

Serotonin and histamine are both the most well characterised biogenic amines released 

by MCs. Both of these mediators are not only involved in MC-mediated signalling to 

nerve endings, they also exhibit their own unique roles. Histamine is well known to be 

involved in regulating inflammatory responses by promoting vasodilation of blood 

vessels, contraction of smooth muscle, but also induces immunosuppression of contact 

hypersensitivity responses102-105. Serotonin, on the other hand, is suggested to be involved 

in immunological processes via promoting proliferation and function of T cells as well as 

other immune cell types106.  

1.1.6.1.2 Proteases 

Proteases constitute another group of preformed mediators found in the dense granules of 

MCs. The MC-specific neutral proteases are of interest due to their complexity and 

significance in a number of disease settings57, and they can be divided into three 

categories which include tryptases, chymases, and the zinc-dependent matrix 

metalloproteinase MC-CPA3; reviewed in85. In addition to MC-specific neutral proteases, 

non MC-specific proteases such as granzymes, cathepsins, lysozymes and the family of 

Zn+ and Ca2+ - dependent matrix metalloproteinases (MMP)107 can also be found in the 

granules of MCs.  

1.1.6.1.3 Tryptases 

Mast cell tryptases are tetrameric serine proteases that have trypsin-like cleavage 

specificity (Lysine/Arginine residues). Human MCs primarily express two classes of 

secreted tryptases ( and ) and three subtypes of tryptases exist (I, II and III)108. 

Another class of tryptase ( has also been found to be expressed on the surface of human 

MCs after degranualation109. In mice, CTMCs express two types of tryptases, mMCP6 

and mMCP7. Like that observed in human MCs, an additional tryptase that is expressed 

on the cell surface of mouse MCs. To study the biological function of tryptase, many 

approaches have been utilised including usage of purified or recombinant tryptases and 

also the use of tryptase inhibitors in animal disease models63,110. Recently, Thakurdas et 

al., generated an mMCP6-deficient mouse model, which provides a more specific 

approach for defining the role of mast cell tryptases in vivo.  
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1.1.6.1.4 Chymase 

Chymases are monomeric enzymes that exhibit chymotrypsin-like activities (cleave 

aromatic residues) and they are the most well characterised MC-specific proteases. The 

chymase protein is synthesised as a precursor that is inactive due to the binding of acidic 

dipeptide. Cleavage of the acidic dipeptide by depeptidylpeptidase results in 

conformational change and the subsequent activation of the chymase111. The activated 

chymase is then stored in granules. As stated previously, only one -chymase is expressed 

in human MCs. By contrast, mouse MCs express four different kinds of -chymases; 

mMCP1, mMCP2, mMCP4 and mMCP9 (only expressed in uterus) and one -chymase; 

mMCP5. Among the different subtypes of mMCPs, mMCP4 is considered the functional 

mouse homologue of human chymase, based on the expression profile and substrate 

specificities57,61,62,112. 

1.1.6.1.5 MC-CPA3 

MC-CPA3 exhibits exopeptidase-like activity (cleaves amino acid on the C-terminal 

ends)63 and it is the least known member in the three classes of MC-specific proteases. 

MC-CPA3 has been shown to play a role in regulating innate immune responses by 

degrading toxins such as endothelin-1 and snake venom113. In addition, increasing 

expression of MC-CPA3 has been associated with tumour progression in a mouse model 

of chemical-induced skin carcinogenesis114. Notably, only one CPA3 has been identified 

so far across all species, and the expression profile, as well as structural and functional 

properties of MC-CPA3 are conserved between human and mice115,116. Therefore, it is 

less of an issue to compare the function of MC-CPA3 between mice and humans, in 

contrast to chymases and tryptases. Interestingly, although basophils exhibit a distinct 

expression profile of proteases (preferentially mMCP8 and 11) compared to MCs, they 

can also express CPA3117-119.  

1.1.6.1.6 Proteoglycans 

Proteoglycans are core proteins with glycoaminoclycan side chains, and they constitute 

another class of preformed MC mediators, which are normally released in conjunction 

with other mediators such as neutral MC proteases. Proteoglycans are expressed by most 

cell types, and they are localised either on the cell surface where they act as co-receptors 

(syndecan, glypican), or exist in extracellular compartments such as the cartilage or 
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basement membranes (aggrecan, perlican)35,120-122. Serglycin (Srg), an intracellular 

proteoglycan highly expressed by MCs36,123 has been implicated to be critical in 

mediating the storage of MC granules and MC-protease function36. Srg can be released 

upon MC degranulation, or exist in complex with other mediators including MC-chymase, 

MC-CPA3 and also granzyme B124. The attachment of proteases to Srg is thought to be 

required to prevent them from diffusing away from the site of degranulation, hence 

improving presentation of cytokines/chemokines to targeted cells.  Srg can also 

potentially bind to inflammatory compounds that exhibit heparin binding properties and 

allow more advantageous targeting by bound proteases35,36.  

Interestingly, TNF is another preformed mediator that is stored in the granules of MCs. 

When released, TNF can serve as an immediate source of cytokine to promote 

inflammatory responses efficiently and effectively, particularly in IgE-dependent 

responses125.  

1.1.6.2 Lipid derived mediators 

In addition to the release of preformed mediators, the de novo generation of lipid-derived 

mediators can also occur in MCs, typically within min to hr after IgE + surface Ag 

activation126,127. Through the cleavage of arachidonic acids from membrane 

phospholipids, two types of lipid-derived mediators are generated. These include 

prostaglandins PGD2 and leukotrienes (including LTC4 and LTB4). The production of 

prostaglandins begins with metabolism of arachidonic acids by cyclooxygenase enzymes. 

This produces PGH2, which then serves as a substrate for the production of either 

prostaglandin or thromboxane. Upon activation, MCs typically express the enzyme 

prostaglandin D synthase, which then produces PGD2 in large quantities to promote 

chemotaxis of leukocytes in allergy128,129 and vasodilation in asthma130. The production 

of leukotrienes follows a similar pathway but through different enzymes. Cytosolic 

phospholipase A2, 5-lipoxygenase and LTA4 enzymes are capable of generating all 

leukotrienes including LTB4 and LTC4, which undergo further processing by LTC4 

synthase131. LTB4 is a potent chemoattractant that can recruit leukocytes, macrophages, 

eosinophils, macrophages and monocytes132-134. As previously mentioned, LTB4 can also 

recruit immature MCPs to peripheral tissues24.  
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1.1.6.3 Cytokines/chemokines  

Within one hour of MC activation, following the production of leukotrienes and 

prostaglandins, de novo synthesis of cytokines, chemokines and growth factors can occur. 

Cytokines are immunomodulatory mediators secreted by specific cells that carry 

functional signals locally to other cells via engagement of cytokine receptors on target 

cells. Chemokines, on the other hand, exhibit chemotactic properties and regulate 

recruitment of specific cell types that express the corresponding surface receptors. MCs 

are capable of producing an array of different cytokines, chemokines and growth factors 

that stimulate a plethora of different functions; these factors include, but are not limited 

to, IL-2, IL-3, IL-4, IL-6, IL-8, IL-10, IL-13, interferon (IFN)-, TGF-, GM-CSF, basic 

fibroblast growth factor (bFGF) and nerve growth factor (NGF)135-137. Production of 

growth factors, such as IL-3 and IL-4, is crucial for MC development both in vivo and in 

vitro80,138. MCs can also express chemokines such as CCL2 and CCL540-42, which are 

capable of recruiting macrophages and monocytes, while IL-8 recruits neutrophils139. The 

production of the anti-inflammatory cytokine IL-10 has also been shown to be important 

in limiting inflammatory responses8,9. The complexity of MC mediators reflects its 

differential roles in regulating the immune responses, suggesting that MCs are capable of 

eliciting distinct functions in different disease settings via the release of specific 

mediators. However, the exact mechanism of this complicated system is yet to be further 

investigated. 

1.1.7 Mast cell signalling 

1.1.7.1 FcεRI signalling 

FcεRI receptors are composed of one -subunit, one -subunit and two -subunits. Of 

these subunits the -subunit permits specific binding to IgE, while the - and -subunits 

contain immunoreceptor tyrosine-based activation motifs (ITAM). Upon crosslinking and 

aggregation of the FcεRI receptors, ITAMs undergo autophosphorylation, as well as 

recruitment, and phosphorylation of other tyrosine kinases Fyn, Lyn and Syk140. As a 

result, this leads to phosphorylation of adaptor proteins, link for activation of T cells (LAT) 

and GRB2-associated binding protein 2 (GAB2), followed by the activation of 

phospholipase C (PLC) and phosphoinositol 3-kinase (PI3K)141. Subsequent 

phosphorylation events result in the production of diacylglycerol (DAG), inositol-1,4,5-
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triphosphate (IP3) and phosphatidylinositol-3,4,5-triphosphate (Ptd(3,4,5)P3) which 

leads to Ca2+ mobilisation and the activation of protein kinase C (PKC), which ultimately 

results in degranulation and the release of MC granular contents142,143.  

In addition, phosphorylated Syk can also initiate the RAS-mitogen-activated protein 

kinase (MAPK) signalling cascade140,144,145. The RAS-MAPK pathway, consisted of RAS, 

RAF, MAPK kinase (MEK) and MAPKs (e.g. extracellular signal regulated kinase 

[ERK]1/2, c-Jun N-terminal kinase [JNK] and p38), activates a variety of transcription 

factors as well as phospholipase A2 (PLA2, which participates in arachidonic acid 

metabolism), thereby regulating the synthesis of protein and lipid-derived mediators, 

respectively141,146,147. Furthermore, production of Ptd(3,4,5)P3 can also regulate other 

proteins such as Bruton’s tyrosine kinase (Btk) and protein kinase B (PKB, [AKT]) which 

are important in the direct or indirect activation of nuclear factor-κB (NF-κB) and 

transcription of pro-inflammatory cytokines148,149. 

1.1.7.2 c-kit signalling 

In addition to FcεRI signalling, MCs are also dependent on the c-kit receptor for growth, 

development survival activation, as well as immune regulatory function150,151. The c-kit 

receptor is a type III tyrosine kinase receptor, and it is a member of the tyrosine kinase 

superfamily152. Engagement of the c-kit receptor by its ligand SCF leads to dimerisation 

of the receptor, which results in activation of the split tyrosine kinase domain in the C-

terminus152. Upon activation of c-kit, phosphorylated residues in the C-terminal domain 

provide docking sites for associating signalling molecules, similar to the FcRI signalling 

pathway. These include PLC, the p85 subunit of PI3K, Fyn, Lyn152-155, AKT, MAPK 

and BTK156,157. Furthermore, this important role of c-kit receptor is also supported by the 

synergistic effect of SCF and IgE + surface Ag activation in enhancing MC responses157. 

It is important to note that since the IgE bound Ag is not required in c-kit signalling, this 

pathway can be activated and play crucial roles in disease settings such as cancer49,158,159 

(Figure 1.1). In the context of UVB irradiation, it is known that UVB can also activate 

the SCF/c-kit signalosome160, including activating PLCin human lymphocytes161,p38 

MAPK pathway162,163 and PI3K/AKT pathway164. 

 

 



Figure 1.1 FceRI and c-kit receptor signalling in mast cells. 

Cross-linking of FceRI receptors results in phosphorylation of tyrosine kinases Fyn, Lyn and Syk.

Phosphorylation of these tyrosine kinases activates downstream signalling molecules such as PLCg,

MAPK and PLA2. IgE-independent c-kit receptor activation results in similar activation of signalling

molecules. See text for more details. Adapted from Gilfillan et al159.



GAB2

IP3

DAG

Ca2+

DEGRANULATION

- Preformed Mediators

- Biogenic amines

- Proteases

- TNF, IL-15

PI3K

Ras

Raf

MEK

ERK

ARACHADONIC ACID METABOLISM

- Prostanoids

- Leukotrienes

-Platelet-derived factors

PLA2

GENE TRANSCRIPTION

-Cytokine synthesis

-Chemokine synthesis 

-MC growth/survival

-MC migration/adhesion

c-kit receptorLAT1/2

aa

bbg g
ITAM

Lyn

Syk
Fyn PLCg

Ptd(4,5)P2
Ptd(3,4,5)P3

PKC

Btk

Akt

Transcription 

factors

PLCg

FceRI receptor

Jak2

STAT 1/3/5

Grb2

IgE

SCF

Ag



30 
 

1.1.8 Tools used to investigate MC function in vitro 

The advancement of technologies and research techniques has allowed better 

understanding of MCs. However, this process is typically labour intensive and the 

procedures of MC extraction and enrichment can at times change the phenotype of the 

MCs and, more importantly, disrupt their interactions with other cell types. To overcome 

some of these issues, numerous MC cell lines have been generated, including human cell 

lines such as HMC-1, LAD1 and LAD266. The HMC-1 cell line was established from the 

peripheral blood of patients diagnosed with MC leukaemia165. However, this cell line 

exhibits non-physiological characteristics including SCF-independent growth, lack of 

well-formed granules and dysfunctional IgE receptors, and they are more similar to 

immature MCs165.  LAD-1 and LAD-2 cell lines were derived from bone marrow 

aspirates of a patient diagnosed with MC sarcoma/leukaemia166. These cells lines exhibit 

more physiological characteristics including; numerous well-formed granules, respond 

and activate in response to IgE-dependent stimuli and are SCF-factor dependent for cell 

growth and survival166. Cell lines from rats (RBL-2H3) and mice (MC-9 and 

Cl.MC/C57.1) have also been developed to determine the biological roles of MCs66,167. 

It is important to note that cell lines are prone to phenotypic alterations due to 

accumulated mutations, following long-term culturing in the laboratory. MCs derived 

from bone marrow and other tissues of mice can be cultured using conditioned media. 

Within the conditioned media, one of the most critical factors required for mouse MC 

proliferation is T-cell-derived IL-3168. Mouse BMCMCs cultured in IL-3 were initially 

thought to attain a MMC-like phenotype. However, it is now understood that these MCs 

are more heterogeneous and are actually immature. It was also found that their phenotype 

could still be altered when co-cultured with fibroblasts in the presence of IL-3169. It was 

later discovered that the fibroblast-derived factor SCF was a critical MC survival factor 

in mice, and also the key to driving BMCMCs to attain a more connective tissue like 

phenotype170-172.  

1.1.8 Tools employed to investigate MC functions in vivo  

The role of MCs in the development and progression of a particular human disease is 

generally assessed by comparing the number of MCs and/or the level of their released 

mediators between normal and pathological tissues. Mouse models have also been 

developed to investigate the contribution of MCs to the pathology of various diseases. 
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The use of c-kit mutant mice that have a profound reduction in MC populations, together 

with the ever-increasing number of other mouse models of human diseases, has enabled 

the in vivo assessment of MCs73,173. There are currently two widely used MC deficiency 

models: the (WB/ReJ×C57BL/6)F1-KitW/W-v (i.e. WBB6F1-KitW/W-v) mice and the 

C57BL/6-KitW-sh/W-sh mice174. WBB6F1- KitW/W-v mice have multiple mutations in the (W) 

white spotting locus on chromosome 5 which encodes the CD117 (c-kit) receptor. KitW 

corresponds to a heterozygous mutation causing exon skipping and the resulting cell 

surface expression of a truncated c-kit, while KitW-v corresponds to mutations in the 

tyrosine kinase domain of c-kit which causes reduced c-kit signalling. On the other hand, 

C57BL/6-KitW-sh/W-sh mice contain an inversion mutation that affects the transcriptional 

regulatory element upstream of the c-kit transcription start site on chromosome 5. Both 

strains are severely MC-deficient due to the specific mutations in the c-kit receptors, but 

they display distinct additional abnormalities. WBB6F1-KitW/W-v mice have a deficiency 

in melanocyte populations, and are known to have macrocytic anaemia, sterility, reduced 

numbers of BM and blood neutrophils, and lack of interstitial cells of Cajal as well as T 

cell receptor (TCR)γδ cells in the small intestine; and, for the latter, enlarged spleen, mild 

cardiomegaly, and increased numbers of BM and blood neutrophils174. In comparison, 

C57BL/6-KitW-sh/W-sh mice are not anaemic, and have normal populations of TCRγδ cells 

in the intestine. Adoptive cell transfer is a powerful method commonly utilised to assess 

the function of MCs or MC-specific mediators by introducing in vitro-derived, genetically 

compatible WT BMCMCs or genetically altered BMCMCs174-176. By engraftment of 

BMCMCs via systemic intravenous (i.v.) or local intraperitoneal (i.p.) and intradermal 

(i.d.) route, the so-called “MC knock-in” mice differ from their c-kit mutant counterparts 

solely based on the presence of MCs, or variation of a particular MC component, offering 

an invaluable tool in the field of MC research177. Many MC-related studies today employ 

both of these MC-deficient mouse strains to confirm the specific MC-dependent 

function(s) of interest in vivo irrespective of their individual genetic background and 

additional abnormalities. However, based on limitations of the c-kit mutant models, other 

mouse models have been generated to overcome some of these phenotypic abnormalities, 

which may affect our interpretation of the role of MCs in the disease settings being studied.  

 

Recent studies have also sought to develop new mouse models that do not exhibit 

phenotypic abnormalities that relate to the structure or expression of the c-kit receptor. 
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One example is a mouse model generated via the crossing of CPA3-Cre (Cre recombinase 

expressed under the CPA3 [MC and basophil-associated protease] promoter) and mice 

encoding a floxed version of myeloid cell leukaemia sequence-1 (Mcl-1)178,179. By 

conditionally removing the MC survival factor Mcl-1 from MCs or even basophils that 

predominantly express the protease CPA3, these mice show a ~92%-100% reduction in 

both CTMC and MMC populations at anatomical sites of the skin, trachea, lung, 

peritoneum and stomach. A marked reduction in basophil populations (58% in spleen, 74% 

in blood and 75% in bone marrow) was also observed, but, as expected, no effects was 

seen on other immune cell populations178. Similarly, the ‘Cre-Master’ mice have been 

developed by expressing Cre under the control of CPA3 promoter via knock-in strategy, 

along with deletion of the first 28 nucleotides of exon 1 of CPA3. As a result, this 

modification led to a virtual loss of MCs, MC-associated proteases, as well as all MC 

gene expression signature in the peritoneal cavity and the skin180,181. Notably, both of 

these newly developed mouse models exhibited similar phenotypes as the KitW/W-v and 

KitW-sh/W-sh mouse models when the classic MC-dependent responses (i.e. IgE-dependent 

passive cutaneous anaphylaxis [PCA]) were assessed. 

It is worth noting that this newly developed MC-specific Cre system could also be utilised 

to develop mouse models that specifically target MC-derived mediators such as the mast 

cell proteases. This would be advantageous as it would provide a more specific targeting 

of mediators that are expressed in specific tissues. One example of such model is the 

mMCP5-Cre; il-10fl/fl mice. In essence, this mouse model uses a Cre recombinase that is 

expressed under the mast cell specific mMCP5 promoter and crossed with a mouse 

encoding a floxed version of the anti-inflammatory mediator IL-10. This conditional 

knockout deletes the il-10 gene specifically in MCs that predominantly express mMCP5. 

In this case, it is likely to target MCs that typically reside in the skin and peritoneal 

cavity182,183. Moreover, mMCP5-Cre mice have been utilised in numerous studies 

including understanding the role of MCs in contact hypersensitivity responses183, bladder 

infections184, anaphylaxis185, bacterial infections186 and also autoimmunity187,188.  
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1.2 MCs in health and disease 

As stated previously, MCs are normally localised in close proximity to nerve fibres as 

well as blood and lymphatic vessels. Since their mediators have various influences on the 

vasculature and the surrounding environment, MCs play multiple roles in both 

physiological and pathological processes (Figure 1.2).  

1.2.1 MCs in homeostasis 

It is well understood that MCs are involved in the wound healing process by promoting 

inflammation via the recruitment of inflammatory cells189. MCs are also able to promote 

inflammation by inducing angiogenesis through the release of angiogenic factors such as 

vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and 

NGF190-192. However, recent studies by Willenborg et al193 demonstrate that the role of 

MCs in wound healing may not be as crucial as previously thought. Utilisation of mice 

with genetically ablated MC populations showed that, in an excisional wounding model, 

MCs show no effect on the re-epithelialisation, formation of vascularised granulation 

tissue, or scar formation. In addition, a previous study reported increased deposition of 

glycoaminoglycans and extracellular matrix in the ears of naive mMCP4-deficient mice, 

also suggesting a role for MCs and mMCP4 in homeostatic tissue remodelling194. 

1.2.2 MCs in allergy  

Allergy is an abnormal immune response directed against non-infectious environmental 

substances called allergens3. Allergic disorders include anaphylaxis, hay fever, atopic 

dermatitis, allergic asthma and some food allergies, and most, if not all, of these reactions 

are triggered by allergens (e.g. pollens, house-dust-mite faecal particles, animal dander, 

certain foods (e.g. peanuts, fish, milk and eggs, latex and insect venoms) that induce IgE 

production and subsequent “sensitisation” of host MCs144,195. 

The degranulation of MCs plays an essential role in the early-phase allergic reaction, 

which is a type I hypersensitivity response immediately following exposure to allergens. 

Known as a hallmark of allergic response, the release of preformed mediators such as 

histamine and lipid-derived mediators prostanoids and leukotrienes (histamine, PGD2 

LTB4) are responsible for the commonly known features of vasodilation, increased 

vascular permeability and bronchoconstriction during the allergic airway 

inflammation130,195,196. In the meantime, other MC-mediators such as TNF and 



Figure 1.2 Positive and negative regulatory functions of MCs in disease settings. 

MCs are capable of releasing mediators that can elicit either beneficial or detrimental functions.

(Green box: beneficial; Red box: detrimental; Blue box: potentially beneficial and detrimental) . The

stage of the disease and the environmental cues MCs are predisposed to will determine how MCs

respond in the specific context.
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chemotactic factors PGD2, CCL2, CCL3 and CCL5, can promote recruitment of other 

immune cells to the affected site to promote further inflammation, vasodilation, vascular 

permeability, smooth muscle contraction, and bronchoconstriction3,144,197,198. This 

suggests that MCs are key to providing and sustaining not only the recruitment but also 

the activation of these immune cells when exposed to allergen.  

1.2.3 MCs in parasitic infections 

An increase in the number of MCs upon infection with parasites has been previously 

reported199-202. In addition, MC-deficient KitW/W-v mice exhibit longer duration of T. 

Spiralis infection compared to both WT and MC ‘knock in’ mice. The release of MC-

derived TNF and IL-4 was required for clearance of T. spiralis203. Since IL-4 and IL-13 

mediators derived from cell populations such as basophils, T cell and eosinophils have 

been implicated in host defence from helminth infections204, it would be worthwhile to 

investigate whether MC-derived IL-13 (MC-IL-13) also exhibits a similar function205. 

Other MC-derived mediators such as mast cell proteases have also been shown to be 

involved in host defence against parasites. For example, mMCP1 was suggested to be 

involved in the expulsion of parasites by regulating epithelial barrier function and 

vascular permeability206,207. mMCP6 was also shown to be required to initiate immune 

responses against T. spiralis by promoting the recruitment of eosinophils to the site of 

infection, although it was not required for clearance of T. spiralis208. Furthermore, studies 

suggest that IL-3 is critical for expansion of haematopoietic effector cells such as MCs 

and basophils against parasitic infections201,202 

1.2.4 MC in bacterial and viral infections 

There has been a significant amount of evidence demonstrating the involvement of MCs 

in host defence against both bacterial and viral infections. Studies using the KitW/W-v 

mouse model have demonstrated a protective role for MCs in both E.coli and helicobacter 

felis infection199,209. Like that observed in parasitic infections, MC hyperplasia has also 

been reported by many studies upon bacterial infections199,200, and MCs can be activated 

by bacterial Ag through TLR4, phagocytosis of bacterial particles and bacteria-induced 

anaphylatoxins. More importantly, MC-derived TNF, LTC4 and LTB4 were found to 

be crucial for the recruitment of neutrophils to the site of infection, and the release of anti-
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microbial mediators210,211. The release of the antimicrobial peptide cathecidin from MCs 

is also implicated in protection against Streptococcus infection212. 

MCs are known to have both beneficial and detrimental effects in viral infection. It has 

been demonstrated that both human and mouse MCs could be activated by a virus-like 

polyI:C molecule which can promote the production of anti-viral mediators (such as 

IFN and also the release of CCL5 to regulate anti-viral T cell function and the 

recruitment of cytotoxic T cells213-215. Furthermore, upon Dengue virus infection, MCs 

are important in providing a functional innate immune response by producing TNF, 

IFN, CCL5, CXCL12 and promoting the recruitment of natural killer (NK) and NKT 

cells to enhance host defence and viral clearance216. On the other hand, MCs have also 

been reported to assist in viral infection. One prime example is during human 

immunodeficiency virus (HIV) infection. MCPs and mature MCs can be infected by HIV 

and act as a viral reservoir for latent infection217-219.  

1.2.5 Negative regulatory functions of MCs in inflammation 

Coinciding with the well-recognised pro-inflammatory roles, there have been instances 

where MCs are also capable of promoting negative immunomodulatory functions. One 

such example includes the ability of MCs to assist in suppressing the sensitisation of 

contact hypersensitivity (CHS) responses to the hapten 2,4,6-trinitrochlorobenzene in 

(C57BL/6 × DBA/2)-F1-KitW-f/W-f (dermal MC-deficient) mice through the production of 

chronic UVB-induced histamine105. In addition, MCs are also involved in promoting 

peripheral tolerance to skin allografts by recruiting CD4+CD25+FoxP3+ regulatory T cells 

(Treg). MCs are also capable of secreting IL-9 which can suppress allo-reactive functions 

of CD8+ T cells220,221. Interestingly, it has also been found that IgE-dependent MC 

degranulation can inhibit Treg function and promote a T cell-dependent acute rejection 

of established skin allografts222.  

In addition to the above mentioned immune-suppressive functions of MCs, our recent 

studies demonstrated the ability of MCs to limit inflammatory responses via MC-derived 

IL-10 (MC-IL-10) in models of chronic CHS and chronic low-dose UVB irradiation8-10. 

It was found that, in chronic CHS responses, IgG1-FcRI signalling was involved in 

mediating the suppression of CHS inflammatory responses by MC-IL-108. In response to 

chronic UVB, however, our study showed that MC-IL-10 required the vitamin D 



36 
 

receptor-signalling pathway to mediate its protection against UVB induced skin 

inflammation8,9. Chacon-Salinas et al., showed that MC-IL-10 can inhibit the formation 

of germinal centre and follicular T cell and hence limit the humoral response associated 

with regional lymph nodes (LN)223, further supporting the role of MC-IL-10 in supressing 

the immune response. It is interesting to note that, depending on the context of the disease, 

the immune-suppressive function of MC-IL-10 can also have detrimental effects. For 

example, MC-IL-10 was shown to drive localised tolerance in chronic bladder infection 

by limiting the recruitment of Ag presenting DCs and Ig class switching in B cells184. It 

is important to note that IL-10 derived from other sources has also been reported to play 

a detrimental role in cancer by promoting a tumour suppressive microenvironment224. 

1.2.6 MCs in cancer 

Cancer is a disease promoted by the dysregulation of essential pathways which results in 

uncontrolled proliferation of tissue cells and the eventual tumour formation225. So far, 

almost all cell types have been shown to play a role in dysregulating some of the essential 

pathways that are required to keep tumour outgrowth at bay226. MCs have been suggested 

by multiple studies to be involved in various cancer types227,228. It has been shown by 

numerous studies that during tumourigenesis, MCs are one of the most abundant 

inflammatory cells that infiltrate into the stroma of the microenvironment and this has 

been shown to be directly correlated with poor prognosis of patients suffering from 

cancers such as squamous cell carcinomas (SCCs)229-231. However, their actual roles in 

cancer remains controversial as MCs have been reported to play both protective and 

detrimental roles in a context-dependent manner, as summarised in Table 1.14. Although 

still at an early stage, studies have used MC-deficient mice to assess the contribution and 

function of MCs at different stages of neoplastic development/tumourigenesis. For 

example, in WBB6F1-KitW/W-v mice, MCs have been shown to promote the tumour 

formation and lung metastasis of B16-Bl6 melanoma cells232, and 1,2-DMH-induced 

colonic epithelial neoplasms233. MCs have also been found to promote the development 

of Myc-induced pancreatic islet tumours234 and prostate adenocarcinoma235. 
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Cancer model Mouse model Main findings Reference 

Transplant model of 

B16-BL6 

melanoma cells. 

 

WBB6F1-

KitW/W-v 

 

MCs contribute to tumour formation by 

promoting angiogenic and metastatic 

response. 
232 

HPV16-induced skin 

carcinogenesis 

model. 

WBB6F1-

KitW/W-v 

MCs  contribute to tumour development 

and invasiveness by release of pro-

angiogenic and ECM degrading proteases. 

236 

1,2-DMH-induced 

colonic epithelial 

neoplasms. 

WBB6F1-

KitW/W-v 

MCs (an potentially other haematopoietic 

cells [due to c-kit mutation]) contribute to 

growth  of chemically induced tumours. 

233 

Myc-induced 

pancreatic islet 

tumours. 

 

C57BL/6-

KitW-sh/W-sh 

Cromolyn 

treatment of 

WT mice 

MCs and MC-derived mediators promote 

tumour development through angiogenesis 

and proliferation of Myc-induced tumours. 234 

Transplant of well 

differentiated 

prostate 

adenocarcinomas 

from TRAMP mice 

C57BL/6-

KitW-sh/W-sh 

 

MCs contribute to development of well 

differentiated prostate adenocarcinomas 

through release of MC-derived MMP9. 
235 

Two-stage chemical 

carcinogenesis 

model (DMBA and 

TPA) 

WBB6F1-

KitW/W-v  

MCs limit development of chemical 

induced skin papillomas.  6 

Trangenic 

C57BL/6J-APCMin/+:  

model of intestinal 

carcinomas 

 

C57BL/6J-

APCMin/+ 

crossed onto 

WT and 

C57BL/6-

KitW-sh/W-sh 

MCs play a protective role against tumour 

growth by promoting apoptosis. 

 
237 

Transgenic TRAMP 

mice: model of early 

prostate cancer 

 

TRAMP-

C57BL/6-

KitW-sh/W-sh  

MCs and release of mediators protect 

against prostate tumourigenesis. 

 

235 

Table 1.1 Role of MCs in mouse models. 

HPV, human papilomavirus; ECM, extracellular matrix; 1,2-DMH, 1,2-Dimethylhydrazine; 

TRAMP, transgenic adenocarcinoma of the mouse prostate; MMP, matrix metalloproteinase; 

DMBA,  dimethylbenz[a]anthracene; TPA, 12-O-tretradecanoylphorbol-13-acetate; APC, 

adenomatous polyposis coli. 
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On the flip side, MCs can also elicit protective functions in some tumourigenesis models. 

For example, the deficiency of MCs resulted in enhanced tumour growth of intestinal 

carcinoma in a transgenic C57BL/6JAPCMin/+ mouse model, suggesting a protective role of 

MCs against tumour growth by potentially promoting apoptosis237. Further supporting the 

tumour-suppressing function of MCs, using the transgenic TRAMP mouse model of 

prostate adenocarcinoma, Pittoni et al., demonstrated that either removal of MCs or 

inhibition of MC degranulation resulted in higher incidence of anaplastic tumours235.  

Due to the plasticity and complexity of MCs, it is not surprising that they are capable of 

exhibiting differential functions in cancers depending on the tumour type and stage of 

tumour development. However, further work is still required to fully clarify this 

complicated involvement of MCs in cancer. 

1.2.7 MC-mediators in cancer 

MCs can promote tumourigenesis through releasing pro-inflammatory and angiogenic 

mediators such as TNF, IL-6, VEGFs and matrix degrading enzymes49,238. MCs can also 

contribute to cancer development by promoting tumour invasion. This is supported by the 

study by Coussens et al., which demonstrated a role for MCs in assisting the progression 

and invasion of human papillomavirus (HPV)16-induced SCC via chymase- and tryptase-

mediated re-modelling of tissue architecture236,239. In parallel, MCs can contribute to 

tumour development by promoting immunosuppression through MC-IL-10 and TGFβ, as 

well as through enhancing Foxp3+ Treg cells, which ultimately lead to suppression of T 

cells and NK cells49. There has also been in vitro and in vivo evidence suggesting a role 

of other MC mediators such as histamine in promoting tumour growth via immune 

suppression105,240-244.  

On the other hand, MC mediators have also been reported to mediate anti-cancer 

functions. For example, MC-derived tryptases have been shown to disrupt tumour 

formation245. MC-derived heparin can interfere with the growth of human breast cancer 

cells246. Other factors such as histamine can inhibit the proliferation of human primary 

melanoma cells and suppress the ability of CD11b+Ly6G+ immature myeloid cells to 

promote growth of tumour allografts247. Interestingly, IL-6 release can recruit NK and 

CD3+ cells and promote tumour regression248,249. The addition of IL-6 can also enhance 

the anti-tumour functions of histamine250. Recently, we have found that, in response to 

chronic low-dose UVB irradiation, MCs can produce the active form of vitamin D3, 
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1,25dihydroxyvitamin D3
9,10, which has been shown by various studies to exert photo-

protective functions in UVB-induced skin tumourigenesis251-257.  

1.3 Non-melanoma skin cancers 

Australia has the highest incidence of non-melanoma skin cancers (NMSCs) worldwide. 

NMSCs are categorised into basal cell carcinomas (BCCs) and squamous cell carcinomas 

(SCCs). Unlike BCCs, SCCs are less common and tend to metastasise. UVB radiation, a 

component of sunlight, is one of the major factors in promoting the development of 

cutaneous SCCs, which is often thought to be a multistep process. A single dose of UVB 

irradiation (2 kJ/m2) on neonatal transgenic TPras mice was shown to predispose the mice 

to development of melanoma due to a significant reduction in Langerhan cells in the 

neonatal epidermis but also potentially due to the development of an immunosuppressive 

microenvironment258,259. Based on the current findings, one of the key mutations that 

drive the development of cutaneous SCCs is thought to be through mutations of the 

tumour suppressor gene p53260-262. Therefore, it was hypothesised that mutations in p53 

could promote precancerous lesions and serve as a risk marker for SCC development263,264. 

In addition to UVB, other factors such as HPV and chemical carcinogens can also play 

crucial roles in the development of cutaneous SCCs6,265-268.    

1.3.1 Human papillomavirus (HPV)-induced skin carcinogenesis  

HPV belongs to the papillomaviridae family which is consisted of a highly diverse group 

of viruses that has a tendency to infect areas of the skin ( genus) and mucosal epithelia 

( genus). The HPV subtype (including high risk HPV 16 and 17) is predominantly 

(99%) responsible for cervical cancers, which is a result of integration of papillomaviral 

DNA genome into the chromosome of the host cervical epithelial cells269,270. On the other 

hand, the HPV subtype typically responsible for the development of cutaneous SCCs, 

and this predominantly occurs at the area of skin that is exposed to the sun265. 

Similar to cervical cancer-inducing HPV, the E6 and E7 proteins of HPV are considered 

to be the most prominent oncogenes. However, despite the ability of these proteins to 

transform keratinocytes, they have not been proved to directly drive tumourigenesis in 

cutaneous SCCs271,272. Studies have demonstrated that cells expressing HPV E6 and E7 

proteins showed compromised DNA repair mechanisms and mRNA synthesis 

recovery265,273,274. UVB is known to suppress apoptosis of keratinocytes by 
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downregulating the expression of Fas ligand275,276. Hence it is likely that the anti-

apoptotic and DNA-damaging effect of UVB can further promote the accumulation of 

DNA damage in HPV-infected keratinocytes, leading to an increased likelihood of 

tumourigenesis over a long period of time.   

Inflammatory cells, including CD4+ T cells and Gr-1+ granulocytes, have been found in 

premalignant lesions and cancers associated with HPV277,278. Interestingly, MCs have also 

been thought to promote HPV16-induced skin carcinogenesis41,236,267. A study by 

Coussens et al., demonstrated that in a mouse model of HPV16-induced cutaneous SCC, 

MCs are required for the remodelling of tissue architecture through the release of 

chymases and tryptases, allowing tumours to progress and invade into the neighbouring 

tissue236. Additionally, MCs have been shown to be recruited by CCL2 and CCL5 

produced by E7-expressing epithelial cells, which can promote an immunosuppressive 

environment and allow the persistence of E7-induced skin lesions41.  

1.3.2 Chemical-induced skin carcinogenesis 

Chemical carcinogens can promote genetic and epigenetic changes in cells which 

ultimately lead to neoplastic transformation. The two-stage carcinogenesis model is the 

most common model utilised to study chemically-induced skin carcinogenesis268,279-281. 

The first stage of this model involves a single sub-carcinogenic dose of 7,12-

dimethylbenz[a]anthracene (DMBA), which induces an AT mutation of codon 61 of 

H-Ras282. This is then followed by repeated topical application of chemical agents like 

12-O-tretradecanoylphorbol-13-acetate (TPA)283, which promotes many pathways 

including stimulation of PKC, epidermal growth factor (EGF), MAPK signalling284-286, 

increased production of growth factors (e.g. EGF)286-288, oxidative stress289,290 and tissue 

inflammation291-294. These outcomes, in turn, result in clonal expansion of mutated cells 

leading to sustained epidermal hyperplasia which can be observed by an increase in 

nucleated cell layers and an overall increase in the thickness of the epidermis295,296.  

This two-stage carcinogenesis model is widely used as it causes the outgrowth of 

papillomas, and can lead to the conversion from papilloma to invasive SCCs, depending 

on the mouse strain297-299. However, it is important to note that mutations in p53 have 

been suggested to be the main initiating factor for the development of non-melanoma skin 

cancers263, while only 10-20% of BCC and SCC cases are related to ras mutations300-302. 

This poses the question as to whether it truly imitates UV-induced skin carcinogenesis. 
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Nevertheless, interestingly, individuals diagnosed with UV-induced xenoderma 

pigmentosum have been found to show a higher frequency of N-ras mutations303.  

It is well understood that infiltrating immune cells as well as local inflammatory 

responses are critical in contributing to tumour development and growth304,305. MCs are 

also a key cell population that accumulate at the site of tumour microenvironment114,306,307. 

Using the two-stage carcinogenesis model, recent studies have demonstrated that, in 

response to TPA and DMBA treatment, MC-deficient KitW/W-v mice develop greater 

number of tumours compared to MC knock in mice, suggesting that MCs can also limit 

the development of chemical-induced skin carcinogenesis6. 

1.4 UVB-induced skin carcinogenesis 

1.4.1 Solar spectrum 

Chronic sun exposure remains the main etiological factor for the development and 

pathogenesis of SCCs263,308. Within the solar spectrum, the ultraviolet component 

(wavelength: 280-400 nm) consists of UVA (320-400 nm), UVB (280-320 nm), and UVC 

(<280 nm). Both UVA and UVB are only partially filtered by the ozone layer, and they 

are responsible for the acute and chronic effects on sun exposed skin, such as photoaging 

and sunburn309-312. In comparison, UVC, although being the most harmful component of 

UV radiation, is completely filtered out by the ozone layer.  

1.4.2 UVB exposure to the skin 

Chromophores, such as trans-urocanic acid (UCA), melanin 313, 7-dehydrocholesterol 

(precursor to vitamin D3)
314  and DNA264,309, are a group of molecules that have an 

absorption spectra similar to UVB radiation. Due to the ubiquitous expression of 

chromophores in the skin315, UVB can be readily absorbed by the skin, even though it is 

partly filtered out by the ozone layer. 

Depending on the amount or ‘threshold’ of UVB the skin is exposed to, UVB exposure 

of the skin can be either beneficial or detrimental. Exposure to low doses of UVB leads 

to the production of vitamin D3 and melanogenesis, which may protect from further 

cutaneous damage caused by subsequent UVB exposure256,316,317. Alternatively, higher 

doses of UVB exposure can promote detrimental effects including oxidative stress, 

genetic mutations and chronic inflammation309. The threshold of UVB dosage is highly 

dependent on the phototype of an individual’s skin. For example; 10-15 min of sun 
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exposure is considered a low dose for individuals with darker pigmented skin (Type II  

IV), but a medium dose for individuals with pale/fair skin (Type I).  

Due to the short wavelength of UVB, most of the damage is elicited in the epidermis of 

the skin, particularly in keratinocytes in response to UVB exposure. Keratinocytes have 

been reported to produce reactive oxygen species (ROS)318,319 and undergo apoptosis275 

in response to UVB. In addition, the generation of ROS has also been shown to deplete 

anti-oxidant molecules such as vitamin C and E, leaving the skin susceptible to further 

deleterious effects including cellular damage, DNA damage, lipid peroxidation and 

protein damage309,320. In parallel, nitrogen oxide species are also produced, which, 

similarly to ROS, can also promote DNA damage321-323.  

In addition to production of ROS, UVB can also cause direct DNA damage and mutations 

via the generation of DNA cyclobutane pyrimidine dimers and pyrimidine pyrimidone 

photoproducts309,324, which together can generate UVB-induced lesions325-327. In response 

to UVB-induced mutations, cells will respond efficiently by up-regulating the tumour 

suppressor gene p53, which initiates cell cycle arrest and DNA repair328,329. Interestingly, 

numerous studies have shown that both the active and analogues of vitamin D3 can 

provide photo-protection against UVB-induced DNA damage by potentiating p53 

expression251-253,256. Moreover, keratinocytes with non-repairable DNA will undergo 

apoptosis via ROS- and p53-dependent pathways319,330. Mutations often occur in p53 and 

these are considered to be the ‘initiating’ mutations that promote the pathogenesis of 

SCCs331-333. An accumulation of non-repairable mutations, particularly in p53, can disrupt 

cell cycle arrest and DNA damage repair mechanisms which can consequently lead to the 

dysregulated proliferation of DNA damaged cells and ultimately impending tumour 

development334.  

In addition to DNA damage and generation of ROS, inflammation is also another key 

factor in promoting the development of UVB-induced skin cancer. As a result of chronic 

UVB exposure, persistent chronic inflammation can cause significant alterations to the 

skin, which include edema and erythema313. These features are often seen when tissue 

undergoes a series of changes referred to as the ‘metaplasia-dysplasia-carcinoma’ process. 

This common theme is represented as atypical epithelial tissue organisation (metaplasia), 

followed by increasing disorganisation of tissue architecture (dysplasia) and the 
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development of neoplastic in situ cancer cells (carcinoma) that have the potential to 

become invasive226,335. 

1.4.3 UVB-induced angiogenesis and lymphangiogenesis  

As stated previously, UVB can promote edema and erythema, which are characterised by 

fluid accumulation and swelling. The vascular system is comprised of blood and 

lymphatic vessels. The blood vessels play crucial roles in providing nutrients and oxygen 

under homeostatic conditions, while they can also mediate inflammatory responses by 

providing chemotactic mediators and assisting the recruitment of cells to the sites of 

inflammation336. On the other hand, the lymphatic vasculature returns fluid, immune cells 

and proteins back to the circulation to maintain tissue homeostasis and facilitates immune 

surveillance by mediating the mobilisation and trafficking of immune cells to and from 

sites of inflammation337,338. Although both blood and lymphatic vessels are particularly 

important in tissue homeostasis, when dysregulated they can promote both 

tumourigenesis and metastasis339.  

Angiogenesis is primarily promoted by VEGF-A acting through VEGFR-1,-2 receptors, 

and its role in cancer has been documented extensively over the past decade336,339. VEGF-

A is crucial in regulating angiogenesis and is central to tumour development due to its 

ability to promote inflammation and recruitment of inflammatory cells167,340-345. In 

humans, UVB irradiation has been reported to induce dermal angiogenesis which results 

in a dramatic increase in the number of enlarged vessels and profound proliferation of 

endothelial cells346,347. This is correlated with an up-regulation of VEGF-A and a down-

regulation of the angiogenic inhibitor thrombospondin-1 (TSP-1). Moreover, chronic 

UVB irradiation can also cause dilation and leakage of blood vessels and facilitates an 

infiltration of extracellular matrix (ECM) degrading neutrophils, both of which can 

subsequently contribute to exacerbated skin damage346,348.  

Current studies suggest neo-lymphangiogenesis to be a causal factor in promoting tumour 

metastasis349. Elevated levels of the pro-lymphangiogenic factors VEGF-C and –D have 

been shown to promote metastasis of various types of cancers, including SCCs350-354. 

However, the role of lymphangiogenesis in the setting of chronic UVB-irradiation has 

only recently been reported339. To date, few studies have examined the effects of UVB 

exposure on lymphangiogenesis in the skin. Studies by Kajiya et al., demonstrated that 

exposure to both acute (single dose; 40 mJ/cm2) and chronic (cumulative dose; 5.46 J/cm2) 
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UVB irradiation can impair lymphatic function by causing lymphatic vessels to become 

enlarged and leaky by a VEGF-A mediated process, consequently disrupting their ability 

to drain the inflammatory infiltrate from the site of inflammation353,355,356.  

Currently, there is no link between MCs and lymphatic vessels in the pathology associated 

with UVB irradiation. Since MCs can synthesise VEGFs, it is plausible344,357,358 that MCs 

could also regulate lymphangiogenesis as well as angiogenesis in UVB-irradiated settings. 

Interestingly, a study by Schweintzger et al, demonstrate that UVB-induced dermal 

angiogenesis was MC independent359. 

1.5 UVB-induced activation of MCs and MC-mediators in cancer 

1.5.1 UVB-induced activation of MCs 

Resident immune surveillance cells, such as MCs, are the first to initiate inflammatory 

responses. Since UVB radiation has limited potential to transmit to the dermal layer of 

the skin due to its short wavelength, it is thought that UVB can activate dermal MCs 

through indirect pathways307. Studies have proposed that upon UVB-irradiation, the 

chromophore trans-UCA is isomerised to cis-UCA242, which can activate c-sensory never 

fibres that extend from the epidermis to the dermis360. This can lead to the activation of 

MCs via the production of the neuropeptides SP and CGRP360,361. Other UVB-induced 

mediators such as IL-33362 keratinocyte-derived NGF243, SCF49, alpha-melanocyte 

stimulating hormone (α-MSH)363, platelet activating factor (PAF)364, and vitamin D3
9  can 

also induce MC activation (Figure 1.3)307 in the skin.  

1.5.2 UVB-induced MC mediators 

It is known that following UVB irradiation, MCs can be activated and release mediators 

that are involved in limiting pathology and promoting immunosuppression and 

inflammation8,9. However, many of the mediators that might be released by MCs in the 

tumourigenic setting are undefined, particularly at critical stages of incipient neoplasia. 

Based on studies using adoptive cell transfer in c-kit (MC-deficient) mutant mice, MCs 

can release mediators including IL-8365, IL-108,9, TNF366 and histamine367, in response 

to acute UVB exposure.  

UVB irradiation can also induce VEGF-A production, primarily from keratinocytes368 but 

also MCs343,344. In addition, MMP9, another well-known mediator involved in ECM 



Figure 1.3  Ultraviolet-B induced activation of mast cells.

Mast cell activation is thought to be indirect when skin is exposed to UVB radiation. Chromophores

such as urocanic acid (UCA) are one of the main mediators that can promote activation of MCs

through the production of neuropeptides. Other UVB-induced mediators are also known to promote

MC activation. See text for more details. Adapted from Ch`ng et al306.
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remodelling, tumour angiogenesis and tumourigenesis236, can also be released by MCs 

following UVB irradiation369.  

1.6 MC Proteases in physiological and pathological settings 

1.6.1 Tryptase 

Tryptase has been reported to be involved in a wide range of biological processes under 

both physiological and pathological conditions. The ability of human tryptase to generate 

the bioactive vascular dilating peptide bradykinin from prekallikrein has also been 

suggested to be involved in vascular permeability370. In addition, tryptase has been shown 

to degrade bronchodilating neuropeptides vasoactive intestinal peptide (VIP) and 

CGRP371,372 to increase bronchial responsiveness. In mice, mMCP6 can exhibit 

anticoagulating functions through degradation of the coagulating factor fibrinogen373. 

Furthermore, mMCP6 has also been implicated in disease settings of bacterial and 

parasite infection as well as arthritis58,208,374. It is worth noting that mMCP7 is another 

tryptase expressed in mice. However, studies have demonstrated that by knocking out 

mMCP6, expression of mMCP7 is also compromised, suggesting that the differential 

function of these two enzymes requires further investigation374 

1.6.2 MC-CPA3 

Studies using the MC-CPA3-deficient mice found that this enzyme plays an important 

role in degradation and clearance of toxic peptides such as bacteria-derived endothelin-

1375. This was further supported by the use of MC-CPA3 ‘knock in’ mice, which 

demonstrated the involvement of MC-CPA3 in the clearance of endothelin-1 and snake 

venom113,376.  

1.6.3 Chymase 

The generation of chymase-deficient mouse strains (reviewed by Wernersson et al 

2014)85 has provided major new insight to the biological functions of chymases under 

different physiological and pathophysiological settings. mMCP1 has been shown to be 

important in assisting host defence and clearance of T. spiralis parasites206. Mice lacking 

mMCP5 have been shown to exhibit reduced ischemia reperfusion injury in skeletal 

muscle377. It is important to note that, since the loss of mMCP5 can also cause a deficiency 

in MC-CPA3 storage in the MC granules, whether the reported effect was also related to 

the alteration of MC-CPA3 is yet to be clarified.  
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mMCP4 is the most well-characterised mouse chymase due to its functional similarities 

with human chymase (Figure 1.4). Numerous studies demonstrate the protective role of 

mMCP4 in settings including allergic airway inflammation7, poly-microbial sepsis5, 

degradation of toxins378, post-traumatic brain inflammation379, spinal cord damage380, 

ureteral obstruction381 and chemical carcinogenesis114. Interestingly, mMCP4 has also 

been shown to have detrimental effects including potentiating epidermal burns382 and 

HPV-induced skin tumourigenesis236. However, the role of mMCP4 in UVB-induced skin 

tumourogenesis is yet to be delineated.  

 

1.7 Rationale for this study 

Our previous studies have demonstrated a protective role of MCs and MC-IL-10 in 

limiting chronic low dose UVB-induced inflammation in the skin, via limiting pro-

inflammatory cytokines, leukocyte recruitment, and UVB-induced skin pathology8. More 

recently, we have also identified a similar role for mMCP4 in the same setting (data 

unpublished). However, it is important to note that the low dosage of UVB irradiation 

utilised in these studies is not considered to be tumourigenic. Based on our previous 

studies and the preliminary findings that suggest mMCP4 to be protective in a range of 

diseases, this study aims to further investigate whether MCs and mMCP4 could retain 

their protective function following chronic high dose UVB irradiation, and are able to 

protect against the development of UVB-induced skin carcinogenesis. 

Like many other cancer types, the multi-step development and progression of UVB-

induced skin carcinogenesis also involves the hallmark capabilities/features of cancer 

including pathological angiogenesis and lymphangiogenesis. UVB irradiation is known 

to promote angiogenesis, though not much is known regarding its effects on lymphatics. 

More importantly, the role of MCs in lymphangiogenesis is yet to be defined. In this study, 

we will assess how MCs and mMCP4 are involved in the pathological angiogenesis and 

lymphangiogenesis induced by chronic UVB irradiation. 

1.8 Hypothesis 

Mast cells and the MC-specific protease mMCP4 are protective against chronic UVB-

induced skin tumourigenesis. 



Figure 1.4  Dual roles of MC proteases in disease.

Mast cell proteases have been reported to both promote inflammation and protect against inflammatory 

responses. Adapted from Pejler et al57.
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1.9 Aims 

1.9.1 Aim 1: Characterisation of BMCMC derived from mMCP4 mice 

The first aim of the project is to investigate the effect of mMCP4 deficiency on the 

morphological features and functional characteristics of MCs. This part of the study aims 

to ensure that mMCP4 MCs are viable to be used in engraftment studies, and to 

thoroughly investigate the phenotype of mMCP4 mice, thereby allowing us to assess 

the protective function of mMCP4 in chronic UVB-induced skin tumourigenesis in both 

WBB6F1-KitW/W-v and mMCP4mouse models. 

1.9.2 Aim 2: Assessing the role of MCs and mMCP4 in chronic UVB-induced skin 

carcinogenesis 

In order to assess the in vivo function of MCs and mMCP4 in UVB-induced skin 

carcinogenesis, we will implement a MC ‘knock in’ model (MC-deficient WBB6F1-

KitW/W-v engrafted with wild-type or mMCP4BMCMCs) treated with a chronic high-

dose UVB regime (12 x 4 kJ/m2 + 13 x 8 kJ/m2; cumulative dose: 152 kJ/m2) and assess 

the early phases of non-melanoma skin cancer development, such as ear thickening, skin 

damage and necrosis. To further validate our findings, we will also compare the effects 

of this UVB regime in pigmented mMCP4mice and non-pigmented Tyrc-2j-mMCP4 

mice.  

1.9.3 Aim 3: Investigating the role of MCs and mMCP4 in UVB-irradiation 

induced angiogenesis and lymphangiogenesis  

To investigate the role of MCs and mMCP4 in UVB-induced angiogenesis and 

lymphangiogenesis, the consequences of exposure to chronic UVB irradiation on the 

number and calibre of blood vessels and lymphatic vessels will be assessed in WBB6F1-

KitW/W-v engrafted and also pigmented mMCP4mice and non-pigmented Tyrc-2j-

mMCP4 mice. The levels of pro-angiogenic and pro-lymphangiogenic growth factors 

VEGF-A and –D will be compared and the functional integrity of lymphatic vessels will 

be assessed by the draining efficiency of injected Evan’s blue dye, as well as composition 

of the inflammatory infiltrates, will also investigated.  
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1.9.4 Aim 4: Identifying potential mediators of mMCP4 in chronic UVB 

irradiation 

In order to identify potential direct or indirect targets of mMCP4 in chronic UVB initiated 

skin tumourigenesis, microarrays will be performed using tissue from MC-deficient 

KitW/W-v and mMCP4BMCMCKitW/W-v mice, as well as their corresponding controls, 

following 12 UVB exposures. This approach will identify global changes in signalling 

pathways induced by chronic UVB irradiation that are different between control, mast 

cell deficient, and mMCP4BMCMCKitW/W-v mice. Potential target genes identified 

by microarray will be further validated by qRT-PCR.  
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2.1 Commercial Reagents 

2.1.1 Tissue culture reagents 

Dulbecco’s modified eagle medium (DMEM): Life Technologies. 

Penicillin (10,000 U/mL)/Streptomycin (10,000 µg/mL) (Pen/Strep): Life Technologies. 

-mercaptoethanol; 1000X (BME): Life Technologies. 

Fetal bovine serum (FBS): Bovogen. 

Albumin solution from bovine serum; 35% (BSA): Sigma Aldrich. 

Dulbecco’s phosphate buffered saline; 10X (PBS): Life Technologies. 

Dimethyl sulphoxide (DMSO): BDH. 

Human Serum Albumin, dinitrophenol (DNP-HSA): Sigma Aldrich. 

Water for irrigation: Baxter. 

Trypan blue: BDH.  

Monoclonal α-DNP (mouse IgE; clone SPE-7 [cat# D8406]): Sigma-Aldrich. 

2.1.2 Cytokines and recombinant protein 

Recombinant mouse (rm)IL-3: Shenandoah Biotech. 

rmSCF: Made in house and gift from Prof. Angel Lopez. 

2.1.3 Hybridomas 

WEHI-3B Hybridoma: Gift from Stanford University, California, U.S.A. 

SPE-7 Hybridoma: Gift from Stanford University, California, U.S.A. 

2.1.4 -Hexosaminidase degranulation assay reagents 

Phorbol-12 myristate-13 acetate (PMA): Sigma Aldrich. 

Calcium ionophore A23187: Sigma Aldrich. 

P-Nitrophenyl-N-acetyl-Beta-D-glucosaminide (p-NAG): Sigma Aldrich. 
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2.1.5 Enzyme-Linked Immunosorbent Assay (ELISA)/ Enzyme Immunoassays   

(EIA) kits/reagents 

BD OptEIA™ mouse IL-6 ELISA Set (≥ 15.63 pg/mL): BD Biosciences. 

BD OptEIA™ mouse IL-10 ELISA Set ( ≥ 31.25 pg/mL): BD Biosciences. 

BD OptEIA™ mouse TNFα ELISA Set (≥ 15.63 pg/mL): BD Biosciences. 

Mouse TNF ELISA Ready-SET-Go!® (≥ 15.63 pg/mL): eBioscience. 

Mouse IL-6 ELISA Ready-SET-Go!® (≥ 15.63 pg/mL): eBioscience. 

Duokit VEGF-D ELISA kit (≥ 31.25 pg/mL) : R&D Systems. 

Quantikine VEGF-A ELISA kit (≥ 3.096 pg/mL): R&D Systems. 

3,3’,5,5’-tetramethyl-benzidine liquid substrate: Sigma Aldrich. 

Tween-20: Sigma Aldrich. 

2.1.6 Reagents for flow cytometry 

2.1.6.1 Mast cell surface receptor labelling 

FITC-conjugated α-mouse FcεRIα (Armenian hamster IgG; MAR-1 [cat# 17-5898]): 

eBioscience.  

PE-conjugated α-mouse CD117 (c-kit; rat IgG2b ;2B8 [cat# 12-1171]): eBioscience. 

Purified α-mouse CD16/32 (2.4G2 [cat# 553142]): BD Bioscience. 

PE-conjugated Rat IgG2b (rat IgG; [cat# 124321]): eBiosciences. 

FITC-conjugated Armenian hamster IgG isotype control (eBio299Arm [cat# 11-4888]): 

eBioscience. 

2.1.6.2 Reagents for characterising cell populations 

Liberase CTL: Roche. 

Fixation & Permeabilization Kit: eBioscience. 

Live/dead AQUA stain: eBioscience. 



52 
 

2.1.6.3 Antibodies for characterising cell populations 

2.1.6.3.1 T cell populations 

APC-conjugated mouse CD4 (RM4-5 [cat# 553051]): BD Biosciences. 

PE-conjugated mouse CD8b (H35-17:2 [cat# 12-0083]): BD Biosciences. 

FITC-conjugated mouse CD3e (145-2C11 [cat# 12-0031]): BD Biosciences. 

2.1.6.3.2 B cell populations 

PE-conjugated mouse CD3e (145-2C11 [cat# 12-0031]): BD Biosciences. 

FITC-conjugated mouse B220 (RA3-6B2 [cat# 553087]): BD Biosciences. 

PerCy5.5-conjugated mouse NK1.1 (PK136 [cat#561082]): BD Biosciences. 

APC-conjugated mouse CD4 (RM4-5 [cat# 553051]): BD Biosciences. 

APC-Cy7-conjugated mouse CD45 (30-F11 [cat# 557659): BD Biosciences. 

2.1.6.3.3 Granulocyte populations 

PE-conjugated mouse Gr-1 (RB6-8C5 [cat# 553128]): BD Biosciences. 

PerCy5.5-conjugated mouse CD11b (M1/70 [cat# 550993]): BD Biosciences. 

APC-conjugated mouse F4/80 (BM8 [cat# 17-4801]): eBiosciences. 

2.1.6.3.4 Treg cell populations 

PE-conjugated mouse/rat FoxP3 (FJK-16s [cat# 00-5523]): eBiosciences. 

Alexa Fluor 488-conjugated mouse CD25 (PC61.5 [cat# 53-0251]): BD Biosciences. 

APC-conjugated mouse CD4 (RM4-5 [cat# 553051]): BD Biosciences. 

2.1.7 Histochemistry reagents 

Accustain Giemsa and May-Grunwald stains: Sigma Aldrich. 

Toluidine blue O: Sigma Aldrich. 
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DePex mounting medium: BDH.  

2.1.8 Immunofluorescence staining reagents 

Paraformaldehyde: Sigma Aldrich. 

Mounting medium (anti-fade reagent): ProSciTech. 

Blocking  reagent: Roche. 

Sucrose: BDH. 

Newborn FCS: Invitrogen. 

Goat -mouse CCL21/6kine: R&D Systems. 

Rabbit -mouse Ki67 : Abcam. 

Rat -mouse CD31 (PECAM-1; MEC13.3 [cat# 102501]): BioLegend. 

Rabbit -mouse lymphatic vessel endothelial hyaluronan receptor (LYVE-1; [cat#11-

034]): AngioBio. 

Cy3-conjugated -mouse smooth muscle actin (SMA; 1A4 [cat# C6198]): Sigma Aldrich. 

Alexafluor488-conjugated Donkey -rat IgG: Invitrogen. 

Alexafluor 555-conjugated Donkey -goat: IgG: Invitrogen. 

Alexafluo647-conjugated Donkey -rabbit IgG: Invitrogen. 

2.1.9 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 

western blot reagents 

Horse radish peroxidase (HRP)-conjugated -rabbit: Cell Signaling. 

Horse radish peroxidase (HRP)-conjugated -mouse: Cell Signaling. 

Bio-Rad Dc protein assay: Bio-Rad. 

BSA standard: New England Biolabs. 

Precision Plus ProteinTM standards-Kaleidoscope: Bio-Rad. 
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Nitrocellulose membrane: Pall Corporation. 

Amersham enhance chemiluminescence (ECL) Plus Western Blotting Detection System: 

GE Healthcare. 

40% Acrylamide: Bio-Rad. 

Rabbit -mouse mMCP4 serum antibody: Gift from Prof. Gunnar Pejler, Sweden. 

Rabbit polyclonal -mouse MMP9 antibody: Millipore. 

Mouse monoclonal --actin antibody: Cell Signaling. 

Tetramethylethylenediamine (TEMED): Bio-Rad. 

Ammonium Persulphate (APS): Sigma Aldrich. 

2.1.10 PCR reagents 

Proteinase K: Roche. 

GoTaq® Green master 2X master mix: Promega. 

1Kb+ Ladder Marker: Life Technologies. 

GelRedTM Nucleic Acid Gel Stain; 10,000X: Biotium. 

TRIzol® reagent: Invitrogen. 

QuantiTect® reverse transcription kit: QIAGEN. 

QuantiTect® SYBR® Green real-time polymerase chain reaction (RT-PCR) master mix: 

QIAGEN. 

Amplifuor Single Nucleotide Polymorphisms (SNP) genotyping kit: Millipore 

2.1.11 Primers: Geneworks 

All primers were designed using primer3 program and Oligocalc was used to 

confirm self-complmentarity of primer pairs. For quantitative real-time PCR 

primers, forward and reverse primers were designed to span exon-exon junctions. 

Primers were produced by Geneworks.  
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2.1.11.1 Mouse Genotyping primers 

Mouse genotyping Primers (forward and reverse primers used at 20 g/mL) (5` 

3`):  

mMCP4 genotyping: 

mMCP4 Forward: CAAGGTCCAACTAACTCCCTTTGTGCTCC. 

mMCP4 Neo Reverse: GGGCCAGCTCATTCCTCCCACTCATGATCT. 

mMCP4 exon2 Reverse: GGTGATCTCCAGATGGGCCATGTAAGGGCG. 

Tyrosinase genotyping: 

Tyrosinase Forward: GACCTCAGTTCCCCTTCAAAG. 

Tyrosinase Reverse: ACCCATGAAGTTGCCTGAG. 

2.1.11.2 Quantitative Real-time PCR primers 

Quantitative Real-time PCR (qRT-PCR) primers (Both forward and reverse 

primers used at 5 g/mL) (5`3`):  

 

Gene Forward (5`3`) Reverse (5`3`) 

GAPDH ACTTGGCAGGTTTCTCCAG ACATCATCCCTGCATCCACT 

mMCP4 GTGAACCCTCTCTCAGTGGTG TGACCGACACTGGCAAGAT 

VEGF-A TGAGACCCTGGTGGACATCT TATGTGCTGGCTTTGGTGAG 

VEGF-C GCAGCTAACAAGACATGTCCAA CCACAACTAGATGGCCGAAG 

VEGF-D TGCAAGACGAGACTCCACTG GCAGCAGCTCTCCAGACTTT 

Desmocollin2 GAGGGTGGGTCACTGTTAATG   ATTCCCAGAGTTCCAGTACAGC 

Fibulin 2 CATGCTCTCCTGCTGTGAAG TATTGGGCAGTTCAGCCTCT 

Collagen IV GAGGTTGGAATGATGGGCTA TTCCTTTCTCTCCTCGTTCG 

Lysyl oxidase AGGGCGGATGTCAGAGACTA CCATGCTGTGGTAATGTTGG 

CCL3 ACTGCCTGCTGCTTCTCCTACA AGGAAAATGACACCTGGCTGG 

CCL12 CCACACTTCTATGCCTCCTG GCTGCTTGTGATTCTCCTGT 

Table 2.1. List of primers used for qRT-PCR 
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2.1.12 In vivo experimental materials and reagents 

T-PER tissue protein extraction reagent: Thermo Scientific. 

Complete mini EDTA-free (protease inhibitor cocktail tablets): Roche. 

Evan’s Blue Dye: Gurr-Searle Diagnostic. 

Component D lysis buffer: Anaspec. 

UVX-31 spectrophotometer sensor: UV products 

Micrometre: Ozaki MFG. CO., LTD 

2.2 Solutions and Buffers 

2.2.1 Tissue culture medium and reagents 

Flushing Medium: 

2% Pen/strep, 0.1% BME in 1X DMEM. 

Complete DMEM: 

10% FBS, 2% Pen/strep, 0.1% BME in DMEM. 

Bone marrow-derived MC survival media (3 ng/mL IL-3): 

10% FBS, 2% Pen/strep, 0.1% BME, 20% WEHI-3B medium, 1X DMEM up to 500 mL. 

Addition of rmIL-3 to a final concentration of 3 ng/mL and filter sterilised prior to use. 

Bone marrow-derived MC expansion media (4 ng/mL IL-3): 

10% FBS, 2% Pen/strep, 0.1% BME, 20% WEHI-3B medium in 1X DMEM up to 500 

mL. Addition of rmIL-3 to a final concentration of 4 ng/mL and filter sterilised prior to 

use. 

Versican CTGATAGCAGATTTGATGCCTACTGC GTGGTTCTTTGGATAAACTGGGTGATG 

Collagen XII ATAACTTGGGCACCTGTTGG   CAGGTCCTCGCTTTCAGACT   

Cadherin 11 CCAACAGCCCAATAAGGTAT   TGAATTTCTGCTGCGAAGAC   

CXCL11 AGGAAGGTCACAGCCATAGC   CGATCTCTGCCATTTTGACG   
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Connective tissue MC Bone marrow-derived MCs survival media (3 ng/mL IL-3 + 

50 ng/mL SCF): 

10% FBS, 2% Pen/strep, 0.1% BME, 20% WEHI-3B medium in 1X DMEM up to 500 

mL. Addition of rmIL-3 to a final concentration of 3 ng/mL and 50 ng/mL SCF. Filter 

sterilised prior to use. 

Connective tissue MC Bone marrow-derived MCs expansion media (4 ng/mL IL-3 

media + 50 ng/mL SCF): 

10% FBS, 2% Pen/strep, 0.1% BME, 20% WEHI medium in 1X DMEM up to 500mL. 

Addition of rmIL-3 to a final concentration of 4 ng/mL and 50 ng/mL SCF filter sterilised 

prior to use. Filter sterilised prior to use. 

Phosphate buffered saline: 

PBS (10X) in MQ H2O to 1L 

Starvation Media: 

1% Pen/strep, 0.1% BME, 0.1% BSA in 1X DMEM. 

Hybridoma freezing medium 

90% FBS and 10% DMSO. 

2.2.2 -Hexosaminidase degranulation assay 

HEPES buffer: 

1M HEPES in MQ H2O to 100 mL, pH adjusted to 7.4. 

Tyrode’s Buffer:  

10 mM HEPES buffer, 129 mM sodium chloride, 5 mM potassium chloride, 1.4 mM 

calcium chloride, 1 mM magnesium chloride, 8.4 mM D-glucose, 0.1% BSA in MQ H2O, 

filter sterilised, and pH adjusted to 7.4. 

0.5% Triton X-100: 

0.5% triton X-100 in 1X Tyrode’s buffer. 



58 
 

Substrate Buffer: 

155 mM Disodium hydrogen phosphate, 88 mM citric acid, pH adjusted to 4.5 

p-NAG solution: 

4 mM p-NAG, substrate buffer in MQ H2O, heating is applied until p-NAG is completely 

dissolved. Filter sterilised. 

0.2M Glycine: 

0.2M Glycine in MQ H2O, pH adjusted to 10.7 

2.2.3 ELISA/EIA kit buffer 

Blocking buffer: 

10% heat inactivated FBS in 1X PBS. 

Or 

1% BSA in 1X PBS. 

ELISA WASH (PBS-TWEEN): 

0.05% Tween-20 in 1X PBS. 

Stop solution: 

2N (1M) sulphuric acid in MQ H2O. 

2.2.4 Flow cytometry 

FACS washing buffer: 

2% heat inactivated FBS in 1X PBS. 

FACS fixation buffer: 

0.1% Formaldehyde, 2% glucose, 0.02% sodium azide in 1X PBS. 
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2.2.5 Histology/Immunohistochemistry solutions 

10% neutral buffered formalin: 

37% (v/v) Formaldehyde in 1X PBS.  

1% aqueous toluidine blue: 

1% toluidine blue in MQ H2O. 

0.1% acidic toluidine blue: 

0.1% aqueous toluidine blue, 1N hydrochloric acid, pH adjusted to 1.0. 

Haematoxylin stain: Sigma Aldrich. 

Eosin Stain: Sigma Aldrich. 

2.2.6 SDS-PAGE and Western Blotting buffers 

Lower gel buffer: 

1.5M Tris, 0.4% SDS in MQ H2O, pH adjusted to 8.8. 

Upper gel buffer: 

0.5M Tris, 0.4% SDS in MQ H2O, pH adjusted 6.8. 

10% Ammonium persulphate (APS): 

10% APS in MQ H2O. 

10X SDS-PAGE running buffer: 

Tris 0.25M, 2M glycine, 1% SDS in MQ H2O, pH adjusted to 8.3. 

Transfer buffer: 

25 mM Tris, 0.2M Glycine, 20% MeOH.  

5% skim milk (blocking buffer): 

5% (w/v) skim milk in 1X TBST. 

10X Tris-buffered saline (TBST): 
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0.5M Tris, 1.54M sodium chloride, 1% Tween-20, H2O, pH adjusted to 7.4. 

Primary Antibody Buffer: 

5% (w/v) BSA, 0.02% sodium azide in 1X PBS. 

Lysis Buffer: 

50 mM Tris, 0.1M sodium chloride, 5 mM EDTA, 1% NP-40, 67 mM Sodium 

pyrophosphate. pH adjusted to 7.5 and  1X complete protease inhibitor prior to use.  

6X SDS sample loading buffer: 

375 mM Tris, 10% SDS, 50% glycerol, 0.03% bromophenol blue. 

2.2.7 PCR and genotyping buffers 

1 M Tris-HCl:  

1M Tris in MQ H2O, pH adjusted to 8.0. 

Tail lysis buffer: 

100 mM Tris-HCl, 5 mM EDTA, 0.2% SDS, 200 mM sodium chloride in MQ H2O, 

Proteinase K added (1:100 dilution). 

TE (Tris-EDTA) buffer: 

10 mM Tris-HCl (pH 7.5), 1 mM EDTA (pH 8) in MQ H2O. 

Diethylpyrocarbonate (DEPC)-H2O (RNAase-free): 

0.01% DEPC in MQ H2O, bottles are incubated O/N at room temperature (RT) and 

autoclaved the next day. 

50X TAE: 

1.6M Tris, 800 mM sodium acetate, 40.27 mM EDTA in MQ H2O, pH adjusted to 7.4. 

2% agarose gel: 

2% (w/v) Agarose in 1X TAE. 
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GelRedTM nucleic acid gel stain:  

GelRed (10000X stock), 0.1M sodium chloride. 

2.2.8 In vivo experimental reagents 

EDTA-free TPER lysis buffer: 

1 tablet of EDTA-free protease inhibitors in 10 mL of TPER buffer. 

1% Evan’s blue dye: 

1% (v/v) Evan’s blue dye in 0.9% Saline.   

2.2.9 Immunofluorescence staining reagents. 

Maelic acid buffer: 

100 mM Maelic acid, 150 mM sodium chloride in MQ H2O. pH adjusted to 7.5 and filter 

sterilised. 

Blocking reagent: 

20% NewBorn Heat inactivated FBS, 10% Blocking reagent, 60% Maelic acid buffer and 

filter sterilised. 

TBST Washing buffer: 

50 mM Tris-HCl, 150 mM NaCl in MQ H2O and 0.1% Tween-20; pH adjusted to 7.6. 

 

2.3 Mice 

C57BL/6 (B6), C57BL/6-Tyrc-2j (Tyrc-2j) and c-kit mutant, genetically mast cell-deficient 

(WB/ReJ-KitW/+ x C57BL/6-KitW-W/+)F1-KitW/W-v  were obtained from Jackson 

Laboratories (Bar Harbor, ME). To produce genetically MC-deficient mice, WB/ReJ-

KitW/+ heterozygote (het) and C57BL/6-KitW-W/+ (het) were paired together to generate 

WBB6F1-KitW/W-v (KitW/W-v) mice and their wild-type (WT) littermates (WBB6F1-Kit 

[Kit]). B6-mMCP4-deficient (mMCP4) mice were a generous gift from Prof. Gunnar 

Pejler (Swedish University of Agricultural Sciences, Sweden) and were generated by 

gene trapping techniques as previously explained194. Genetically mMCP4-deficient non-
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pigmented mice were generated by crossing B6-mMCP4 (pigmented) with B6-

tyrosinase mutant (B6-Tyrc-2j [non-pigmented]) mice to produce Tyrc-2j–mMCP4 

(mMCP4-deficient non-pigmented mice). Age-matched female and male mice of at least 

9 weeks of age were used for in vivo experiments as explained in section 2.10. All mice 

were bred in house at the Institute of Medical and Veterinary Science (IMVS) animal care 

facility (Adelaide, Australia). All experiments were performed in compliance with the 

ethical guidelines of the National Health and Medical Research Council of Australia and 

with approval from the Institute of Medical and Veterinary Science and University of 

Adelaide animal ethics committee (Univeristy of Adelaide ethics approval number: S-

2012-244). 

2.4 Tissue culture methods 

2.4.1 Generating and culturing BMCMCs 

To generate BMCMCs, mice were humanely sacrificed by CO2 inhalation. Following 

CO2 inhalation, the hind legs of the sacrificed mice were surgically removed and were 

further processed in a Class 2 Biosafety hood.  Bone marrow-derived cells were collected 

by flushing the femurs and tibias with flushing medium. Once collected, bone marrow-

derived cells were cultured in BMCMC 3 ng/mL IL-3 media for a period of 2-3 weeks to 

selectively promote survival of MCs. The cells were subsequently cultured in BMCMC 

4 ng/mL IL-3 media to promote proliferation. MC populations were identified by staining 

for their granular morphology through May-Grunwald Giemsa staining (Section 2.7.1). 

Additionally, MC-specific cell surface marker expression (c-kit+FcɛRI+) was assessed by 

flow cytometry (Section 2.6.2) to confirm and determine the percentage of the MC 

population. After 4-6 weeks of culturing, >95% of the cell population were found to be 

generally c-kit+ and FcRI+ BMCMCs.  

To generate a population of connective tissue-like BMCMCs (CTMCs), cells were 

collected as stated above, but, cultured in media containing 3 or 4 ng/mL IL-3 + 50 ng/mL 

SCF media. To confirm the generation of CTMCs, Western blot analysis of mMCP4 was 

performed as CTMCs typically express higher levels of endogenous of mMCP4 

compared to BMCMCs cultured in IL-3 only.  
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2.4.2 Generating and culturing WEHI-3B hybridomas 

Frozen and stored aliquots of WEHI-3B hybridomas were thawed and cultured in 

cDMEM medium in the first 2 weeks, until all cells appeared healthy and viable. To 

generate IL-3 containing medium from WEHI-3B hybridomas, cells were seeded at  

1.5 x 105 cells/ml and incubated at 37°C/5% CO2 over 5 days, until the cell concentration 

reached ~106 cells/ml. Cells were centrifuged (250 g, 15 min at 4°C) and supernatant was 

collected and centrifuged again (350 g, 20 min at 4°C). After the final spin, harvested 

supernatant was filter sterilised using a Millipore® SteritopTM (0.22m) filter in a Class 

2 Biosafety hood. In addition, a small aliquot of the harvested supernatant was collected 

to assess IL-3 concentration by ELISA and the remaining was stored at -20°C. Typically, 

the concentration of IL-3 in WEHI-3B conditioned medium ranged from 8-12ng/ml of 

IL-3. To store WEHI-3B hybridomas, cells were cultured to ~50% confluence and 

resuspended in WEHI freezing medium (90% FBS, 10% DMSO) slowly in a drop-wise 

fashion, the cells would then be stored in a Mr Frosty freezing container (Nalgene) at  

-80°C and ultimately stored in the IMVS liquid nitrogen storage facility.  

2.5 In vitro procedures/assays 

2.5.1 -hexosaminidase degranulation assay 

To measure IgE-dependent activation of BMCMCs, 5-8 week old BMCMCs were seeded 

to a concentration of 106 cells/mL and sensitised with SPE-7 DNPIgE at 2 g/mL in 

BMCMC 3 ng/mL media and incubated at 37°C/5% CO2 overnight (O/N). Following O/N 

incubation, cells were counted and washed with 1X Tyrode’s buffer, resuspended at a 

concentration of 6.25 x 106 cells/mL and plated in a 96 V-well plate (Costar). Once plated, 

cells were stimulated with DNP-HSA at 1-1000 ng/mL or with PMA (50 ng/mL)/A23187 

(10 M) as a positive control for 1 h at 37°C/5% CO2. After 1 h incubation, the plate was 

centrifuged (250 g for 5 min at 4°C), cell supernatants were collected and cell pellets were 

lysed with 0.5% Triton X-100. Harvested cell supernatants and lysates were incubated 

with p-NAG substrate solution for 1 h at 37°C/5% CO2. hexosaminidase degranulation 

activity was assessed after the addition of 0.2M glycine and the optical density reading 

was recorded at a wavelength of 405nm on an EPOCH ELISA plate reader (BioTek). 

Degranulation activity was presented as % degranulation and was calculated by dividing 

the activity from culture supernatant by total degranulation activity (cell lysates + 

supernatant) x 100%.  
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To examine the BMCMCs ability to degranulate through non-IgE dependent stimulation, 

BMCMCs were also stimulated with SP (1 M-M) and with PMA (50 

ng/mL)/A23187 (10 M) as a positive control for a period of 1 and 24 h at 37°C/5% CO2. 

hexosaminidase degranulation activity was assessed as explained above. 

2.5.2 Measuring cytokine concentration by ELISA or EIA analysis 

To determine the level of cytokine release from BMCMCs, 5-8 week old cultured 

BMCMCs were seeded at 106 cells/mL and preloaded with SPE-7 DNPIgE at 2 g/mL 

in BMCMC 3 ng/mL IL-3 medium at  37°C/5% CO2 O/N as explained in section 2.5.1. 

Following O/N incubation, cells were washed and resuspended in starvation medium at a 

concentration of 106 cells/mL and were plated out (in triplicate) in a 48 well plate and 

stimulated with 20 ng/mL DNP-HSA or untreated for 6 h at 37°C/5% CO2. After 6 h of 

incubation, cell supernatants were harvested and used for ELISA or EIA analysis. 

To determine the cytokine levels released from BMCMCs, cell supernatants from IgE + 

Ag treated BMCMCs were applied to ELISA analysis following the manufacturer’s 

protocols. Prior to measurement of cytokines, depending on the instructions, certain 

ELISA kits required an incubation of specific-cytokine capture Ab with its corresponding 

coating buffer onto high affinity binding 96 well plates (Costar) O/N at 4°C. Following 

the O/N incubation, the coated plate(s) were washed 3 times with PBS-Tween and 

blocked with ELISA blocking buffer prepared according to manufacturer’s protocol for 

1 h at RT. Following the 1 hr incubation, the plate was washed 3 times and incubated for 

2 h with neat/diluted sample and ELISA standards with serial dilutions. Following 

incubation with samples/standards, the plate was washed 3 times  and incubated with 

detection antibody and streptavidin-HRP for 1 h at RT (in darkness); For ELISA/EIA kits 

from eBioscience or R&D systems, the plate was incubated for 1 h with detection 

antibody at RT, and an additional 30 min with streptavidin-HRP with washing in between. 

After incubation with secondary/strep-HRP, plates were washed three times, and 

3,3’,5,5’-tetramethyl-benzidine liquid substrate was added to all wells for colour 

development and the reaction was stopped using stop solution when the top standards 

displayed maximum colour intensity (usually blue precipitates would be observed at the 

bottom of the wells). The optical density readings were obtained at 450 with a reference 

wavelength of 570nm using an EPOCH ELISA plate reader (BioTek). 
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2.6 Flow cytometry 

2.6.1 Cell-surface receptor labelling 

To characterise the expression profile of cell surface markers of the BMCMCs, 106 cells 

were washed with FACS wash buffer, centrifuged (250 g for 5 min at 4°C) and were 

resuspended with 100 L of FACS buffer and Fc receptor binding was blocked by 

incuabting with Fc receptor blocking antibody (Ab)(1:100) on ice for 15 min. BMCMCs 

were stained with PE-conjugated -mouse CD117 (c-kit) (1:100) and FITC-conjugated 

FcRI (1:200) for 30 min on ice (in the dark). Following the labelling of cell surface 

markers, cells were washed with FACS buffer, centrifuged (100 g for 5 min; 4°C) and 

resuspended in 500 L of FACS buffer and analysed freshly on the day of staining. 

Surface-labelled BMCMCs were processed on a FCS 500 Flow Cytometer (Beckman 

Coulter) at the Detmold Imaging Facility (IMVS). Data was analysed on FCS Express 

(version 4.1). 

2.6.2 Assessing cell population by flow cytometry 

The leukocyte populations in the ears and draining lymph nodes of UVB-treated mice and 

no UVB treated mice were analysed as previously described (Grimbaldeston et al 2007 

and 2010)8,9. The skin on the ears were split parallel with the cartilage into two halves, 

cut into fine pieces and incubated in RPMI containing 0.5 mg/ml of Liberase CI (Roche) 

for 2 h at 37°C. A single cell suspension was obtained using a 70 m nylon cell strainer 

to separate undigested tissue. Single cell suspensions were incubated with -mouse 

CD16/CD32 mAb (eBioscience) on ice for 15 min for FcR blocking. Leukocytes were 

then incubated on ice for 40 min with antibodies for cell populations of T cells, B cells, 

NKT cells, Treg cells and granulocytes (Abs listed in 2.1.6.3). All antibodies were diluted 

1:100 (Gates for sub populations were based on single colour staining of the cells to assess 

compensation and non-specific fluorescence). Live dead AQUA stain was used to detect 

dead cells. Only cells negative for AQUA Live/Dead stain were analysed. To calculate 

the number of lives cells of a particular cell type recovered per ear (determined by gating 

on AQUA-negative cells), the following calculation was applied for each population 

quantified: lives cells recovered per ear in a particular subset of leukocytes = (% gated of 

the total cell population in that ear) x (total number of cells recovered form that ear 

[counted using a hemocytometer after tissue digestion and single cell suspension]). All 
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cell population data was analysed on a Gallios Flow Cytometer and data was assessed 

and extrapolated from FACS express 4.  

2.6.3 Intracellular marker staining 

For intracellular staining of FoxP3+ Treg cells, the single cell suspension, was fixed with 

the IC fixation buffer (Fixation & Permeabilization Kit) for 20 min at RT. Cells were then 

washed with and resuspended in 1x permeabilization buffer (diluted with H2O from 10X 

Permeabilization Buffer, Fixation & Permeabilization Kit), and incubated with primary 

Ab(s) -CD3, -CD4 and -CD25 for 30 min on ice and then incubated with -mouse 

FOXP3-PE according to manufacturer’s instructions (eBioscience). When unconjugated 

primary Abs were used, cells were washed with 1x permeabilization buffer following the 

first incubation and subsequently labelled with corresponding fluorochrome-conjugated 

secondary Ab(s) for a further 30 min on ice. In all cases, labelled cells were finally washed 

with 1x permeabilization buffer, resuspended in FACS buffer and analysed on a Gallios 

Flow Cytometer (Beckman Coulter). Flow data was extrapolated and assessed on FACS 

express 4.  

2.7 Cell staining 

2.7.1 May-Grunwald Giemsa staining 

Once BMCMCs were cultured for 4-6 weeks, at least 2.5 x 105 cells were taken and loaded 

onto a cytospin funnel following manufacturer’s instructions. Cells were centrifuged at 

100 g at high acceleration for 5 min. After centrifugation, slides containing cytospun cells 

were stained with May-Grunwald stain for 5 min and washed in PBS for 90 seconds. The 

slides were then stained in Giemsa stain (1:20 in MQ H2O) for 20 min and were briefly 

washed under tap water and air dried for 30 min. After air drying, coverslips were 

mounted on with DePex mounting medium and left to dry O/N. Images of cells were 

taken on an Olympus BX45 microscope.  

2.8 PCR and genotyping procedures 

2.8.1 Genotyping of WT and mMCP4 mice 

Prior to any experimentation, to ensure the correct genotype of the mice, genomic 

(g)DNA was extracted from tail tips of the mice and applied to PCR analysis. Tail tips 

were taken from 2 week-old mice and were lysed in tail lysis buffer containing Proteinase 

K (1:100) O/N at 55°C with gentle rocking/agitation. Tubes containing the lysates were 
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centrifuged (13,000 g for 10 min at 4°C) and lysates were transferred to new Eppendorf 

tubes containing 500 L of 100% isopropanol. Precipitate was formed with gentle 

inversion and centrifuged at 17,000 g for 5 min at 4°C. Following centrifugation, the 

supernatant was removed and the DNA pellet was washed with 70% EtOH and 

subsequently centrifuged again (17,000 g for 5 min at 4°C). Following the spin, the 

supernatant was removed and the DNA pellet was air-dried at RT. gDNA pellets were 

then redissolved at 65°C in 300 μL of TE buffer for 30 min and stored at 4°C or -20°C. 

After gDNA extraction, GoTaq Master mix cocktails containing GoTaq master mix (6.25 

L/sample), nuclease-free H2O (4.85 L/sample), and a primer set consisting of primers 

specific for exon 1 of the mMCP4 gene B6-mMCP4, a common primer, and a primer 

specific for the Neomycin cassette, (which was used to replace exon 1 of mMCP4 and 

generate B6-mMCP4 mice; primer concentration 20 M; 0.3 L/primer/sample). In 0.2 

mL PCR tubes, 12 L of the GoTaq cocktail was mixed with 0.5 L of tail-extracted 

gDNA and subjected to thermocycling as listed below:  

Step 1: 94°C 3 min 

Step 2: 94°C 15sec 

Step 3: 58°C 20 sec 

Step 4: 72°C 20 sec   

Step 5: 72°C 2 min 

Step 6: 8°C hold 

To visualise the PCR products, 5 L of PCR reaction was loaded onto a 2% agarose gel 

and subjected to electrophoresis at 90V for 30 min. The gel was stained with Gel-Red  

(1:10000 in 0.1M NaCl) for 10 min and PCR products were visualised at 320 nm UV 

light (UviTech). A PCR product at 900bp indicated a WT, 320bp indicated a knockout 

(KO), and both indicated as a het.  

2.8.2 Genotyping of Tyrc-2j mice 

Following the protocol from 2.8.1, extracted gDNA from Tyrc-2j mice was mixed with 

Amplifuor SNPS genotyping (Millipore) reagents following the manufacturer’s 

instructions. Customised primer sequences specific for Tyrc-2j mice were used and these 

PCR reactions were subjected to thermocycling as listed below: 

Repeat steps 2-4 for 34 cycles 
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Step 1: 95°C 5 min 

Step 2: 94°C 30 sec 

Step 3: 60°C 30 sec 

Step 4: 72°C 40 sec 

Step 5: 72°C 2 min 

Step 6: 10°C hold 

Following the PCR, to determine the genotype of these mice, fluorescent end point 

analysis was done using the ABI PRISM 7500 thermocycler. PCR reactions using gDNA 

from WT and het mice were used as controls to determine the genotype of mice. 

 

2.8.3 RNA extraction 

To determine mRNA expression of specific genes, RNA was extracted from tissues, 

cDNA generated from which was analysed using quantitative real-time RT-PCR. Tissues 

were harvested and process as explained in section 2.10.6 and sonicated with 500 L 

TRIzol reagent. After the sonication step, an additional 500 L of TRIzol reagent was 

added to the tubes and the same samples were snap-frozen in liquid nitrogen (LN2) and 

stored at -80°C. Samples were later thawed at RT and allowed to equilibrate for 5 min. 

The samples were then centrifuged (12,000 g for 15 min at 4°C) to pellet the tissue and 

debris and the remaining supernatant was transferred to a clean RNase-free Eppendorf 

tube. 200 L of chloroform was added to the tubes and the tubes were vigorously shaken 

for 15 sec and allowed to rest for 5 min. Samples were centrifuged (12,000 g for 15 min 

at 4°C) and 200 L of the aqueous layer was carefully transferred to a new Eppendorf 

tube containing 500 μL of 100% isopropanol. The tubes were then briefly vortexed and 

left on ice for 1 h to allow RNA precipitation. Following RNA precipitation the samples 

were centrifuged (12,000 g for 15 min at 4°C), washed with 75% RNase-free EtOH, 

centrifuged again (7,500 g for 5 min at 4°C), and supernatant was aspirated, while the 

RNA pellet was allowed to air dry for 30 min at RT. The air-dried RNA pellet was re-

dissolved in 20 μL DEPC-treated H2O and RNA concentration was quantified using a 

Nanodrop 1000 spectrophotometer. After quantification, RNA was either stored at -80°C 

or immediately used for complementary DNA (cDNA) synthesis.  

 

Repeat steps 2-4 for 39 cycles 
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2.8.4 Complementary DNA synthesis 

To measure the relative expression of specific genes, cDNA was generated using the 

QIAGEN Quantitect reverse transcription kit. 1 μg of RNA (adjusted to 12 μL with 

DEPC-H2O) was incubated with 2 μL of gDNA Wipeout Buffer for 2 min at 42°C. After 

2 min, the mixture was added to a RT mixture containing 1 μL reverse transcription 

enzyme, 1 μL primer mix and 4 μL of (5x) RT buffer; and incubated for 30 min at 42°C 

followed by 3 min at 95°C. All of the incubation steps were done in a Bio-Rad 

thermocycler. Synthesised cDNA were either stored at -20°C or immediately used for 

qRT-PCR.  

2.8.5 Quantitative real-time RT-PCR 

qRT-PCR was performed in triplicate with cDNA samples at an appropriate dilution 

ranging from 1/6 (samples) to 1/20 (calibrator). Each final reaction (10 µL) consisted of 

2 µL of diluted cDNA, 5 µL of QuantiTech SYBR green master mix, 1 µL of RNase-free 

H2O, and 1 µL of each of the designated forward and reverse primer pair (5 M diluted 

working stock). The level of GAPDH was assessed in all cases as the housekeeping gene 

to allow normalisation of results. Reactions containing RNase-free H2O instead of cDNA 

dilution were also included for each primer pair as negative controls. All RT-PCR 

reactions were carried out in the Rotor-Gene 6000 Real-time Rotary Analyzer (Corbett) 

using conditions as follows: 

Step 1: 95°C 15 min 

Step 2: 95°C 20 secs 

Step 3: 57-60°C 25 secs 

Step 4: 72°C 20 secs 

Step 5: 72°C 60 secs 

Step 5: 72°C 90 secs (Melting) 

            72°C - 99°C at 5 sec/°C 

The relative quantity of the PCR product was analysed using the  

“Comparative Quantitation” method of the Rotor-Gene 6000 Series Software (version 

1.7).  

 

Steps 2-4 for 50 cycles 
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2.8.6 mRNA microarray 

Tissue RNA from UVB and untreated ears were extracted as described in 2.8.3. RNA 

integrity was determined with the Agilent BIOANALYZER. 1 g of RNA was processed 

for use on the microarray by using the Affymetrix GeneChip one-cycle target labeling kit 

(Affymetrix, Santa Clara, CA) according to the manufacturer's recommended protocols. 

All protocols and data analysis were conducted by the Centre for Cancer Biology 

Genomics Facility. 

2.9 SDS-PAGE and Western Blot analysis 

2.9.1 Preparation of whole cell lysates 

Cultured BMCMCs (2-3 x 106 cells/sample) were washed twice with cold PBS, and 

supernatant was removed as thoroughly as possible. Each cell pellet was subsequently 

lysed in ~100 µL of lysis buffer on ice for 20 min, and centrifuged (17,000 g, 10 min, 

4°C) to obtain the clarified cell lysate. The protein content of resultant total cell lysates 

were quantified using Bio-Rad Dc protein assay following the manufacturer’s instructions. 

Once total protein was measured cell lysates were snap frozen using LN2 and stored at -

20 °C until analysed. 

2.9.2 SDS-PAGE 

Cell lysate samples were thawed, mixed with 6X SDS-PAGE sample loading buffer (i.e. 

in a 5:1 ratio), and boiled for 5 min before being subjected to SDS-PAGE (10% SDS-

PAGE; 20-100 µg of protein/lane) at 100 V for 60-90 min in SDS-PAGE running buffer. 

Precision Plus ProteinTM standards-Kaleidoscope markers were loaded in parallel as a 

reference for protein sizes.  

2.9.3 Protein transfer and western blot analysis 

Following SDS-PAGE, proteins were transferred onto a nitrocellulose membrane 300 V 

for 90 min in transfer buffer. The membrane was blocked with 5% skim milk for 1 h at 

RT, and subsequently blotted with designated primary Ab ([rabbit anti-mMCP4 serum, 

1:500, mouse anti--actin, 1:3000, rabbit anti-mouse MMP-9, 1:500] all diluted in 5% 

BSA, 0.02% sodium azide) O/N at 4°C, followed by the corresponding HRP-conjugated 

secondary Ab(s) (anti-rabbit HRP, 1:3000 and anti-mouse, 1:3000) for 1 h at RT. Three 

5 min washes with 1X TBST were carried out after each blotting step. The blots were 
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developed using Amersham ECL Plus Western Blotting Detection System and detected 

using LAS-4000 Luminescence Analyser, and analysed using the Multi Gauge software 

(version 3.1). In cases where membranes needed to be re-probed with another primary 

Ab, they were first briefly washed with 1X TBST and stripped with the stripping solution.  

2.10 In vivo experiments and tissue sample analysis 

2.10.1 Adoptive transfer of BMCMCs into mice 

BMCMCs derived from WT B6-mMCP4 (WT BMCMCs) or B6-

mMCP4(mMCP4 BMCMCs) were cultured as explained in section 2.4.1. Once 

cultured BMCMCs were analysed and determined as >95% c-kit+ and FcRI+ mast cell 

population, they were resuspended in normal DMEM media and were intradermally 

injected (i.d.; 2 injections into each ear of mice, 2 x 106 cells in 25 L DMEM/injection) 

into at least 4-6 week old KitW/W-v mice. For physiological relevance, we allowed 4-6 

weeks for the injected BMCMCs to localise to their pathophysiological locations. 

2.10.2 Chronic UVB irradiation of mice 

For UVB irradiation of mice, a bank of 6 Philips FS40T12 lamps (Ultraviolet Resources 

International) emitting a broad 270–380 nm band of UV, with peak emission at 310 nm 

comprising ~65% of the energy emitted, was used to irradiate mice in individual 

compartments of Perspex cages. The intensity and spectral output of the UVB lamps was 

measured before each irradiation using a UVX spectrophotometer with a UVX-31 sensor 

(UV products). A new sheet of clear PVC plastic film (0.23 mm thick) was taped to the 

top of each perspex cage before irradiation to screen wavelengths <290 nm. The lamps 

were held 15 cm above the cages. 9-13 week-old mice were conscious and had full range 

of movement during irradiation. For chronic exposures the entire mouse (including both 

ears) was irradiated with doses of 4 kJ/m2 to 8 kJ/m2 of UVB every 2 days for a total of 5, 

12 or 25 exposures (total cumulative dose = 20 kJ/m2, 60 kJ/m2 or 152 kJ/m2 UVB, 

respectively). Ear thickness was measured using a micrometer (Ozaki MFG. CO., LTD) 

prior to each UVB irradiation. At the end of each experiment mice were sacrificed by 

CO2 inhalation 3 or 24 h after the final UVB exposure and samples of ear were taken for 

histology (Section 2.10.3), FACS analysis (Section 2.6.2), immunofluorescence staining 

(Section 2.10.7) and cytokine production (ELISA) (Section 2.10.6). 
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2.10.3 Ear tissue histology and numeration of tissue MCs 

Samples of ear pinnae (1 mm-wide strips through the centre) were fixed in 10% buffered 

formalin and embedded in paraffin (with care to ensure a cross-section orientation).  

Paraffin ear sections were cut in a transverse orientation at m thickness using a 

Microtome (Leica) and left to air-dry O/N. Ear sections were dewaxed by being immersed 

sequentially in Xylene (twice; 5 min each), 100% EtOH (twice; 3 and 2 min), 70% EtOH 

(3 min), 50% EtOH (2 min), and H2O (5 min) (until staining); and stained with 0.1% 

acidic toluidine blue (Section 2.10.4) for detection of MCs (cytoplasmic granules appear 

purple).  

2.10.4 Toluidine blue staining 

For toluidine blue staining of ear tissue MCs, dewaxed ear sections (Section 2.10.3) were 

stained with 0.1% acidic (pH 1) toluidine blue solution for exactly 90 sec, thoroughly 

rinsed with H2O, air-dried and then mounted in DePex mounting medium. After toluidine 

blue staining, images were taken on a Hamamatsu NanoZoomer Virtual Microscopy 

System at 40x magnification. Ear pinna MCs and horizontal length of ear cartilage were 

counted and measured on Nanozoomer image software. MC numbers were expressed as 

number of MCs per horizontal length of ear cartilage (mm).  

2.10.5 Haematoxylin and Eosin (H&E) staining 

To examine the presence of in situ SCCs in tissue. Sections taken from UVB-treated and 

no-UVB treated mice were processed and stained in H&E stain. Formalin fixed tissue 

was dewaxed and rehydrated as explained in section 2.10.3. Dewaxed sections were 

stained in Haematoxylin for 6 min and washed in MQ H2O for 10 min. Slides were then 

washed in 0.25% acid alcohol for 3 sec and rinsed under running tap water for 5 min. 

Following the wash, slides were immersed in Lithium Carbonate for 3 sec, rinsed in MQ 

H2O and then counterstained in Eosin for 15 sec. After staining, slides were dehydrated 

in 95% EtOH (2 times, 3 min), 100% EtOH (2 times, 2 min) and rinsed in xylene. 

Coverslips were mounted on slides using DePex mounting medium. Sections were scored 

by SA Pathology dermatopathologist Dr. Jan Ibbetson and A/Prof Michele Grimbaldeston. 
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2.10.6 Ear tissue lysate preparation and cytokine analysis 

To measure the cytokine levels in ear tissues, the ears were finely cut up on an ice cold 

surface, sonicated in 250 µL of Tper lysis buffer containing EDTA-free protease 

inhibitors or PBS containing EDTA-free protease inhibitors and snap frozen with LN2 

and immediately stored at –80 ºC until analysis After thawing at RT, samples were 

centrifuged at 17,000 g (10 min, 4 ºC) and the supernatants were collected. 

Concentrations of VEGF-A, VEGF-D, TNFα, IL-6 and IL-10 in the supernatants were 

measured by ELISA (eBioscience), according to the manufacturer’s instructions 

(detection limit for each ELISA is indicated in section 2.1.5). Data is normalised with 

protein concentration in each sample and expressed as pg/mg (cytokine 

concentration/protein concentration), where total protein concentrations in the 

supernatants were measured by a Bio-Rad Dc protein assay, according to the 

manufacturer’s instructions. 

2.10.7 Immunofluorescence staining of tissue 

UVB-treated and untreated ears were fixed in 4% paraformaldehyde O/N at 4°C with 

gentle rocking. Following fixation, tissues were washed extensively in PBS and 

cryoprotected in 30% sucrose O/N at 4°C with gentle agitation, then frozen in 

TissueTek®  Optimal Cutting Temperature (OCT) compound on dry ice and stored at -

80°C. Sections were cut at -20°C to -25°C using a cryostat (Leica). Cryosections were 

cut in a transverse orientation at 10 m thickness and embedded on superfrost slides. The 

cryosections were stored at -20°C until analysis. Cryosections were blocked in 50 μL (per 

section) blocking solution for 1 h at RT in a humidifying chamber, and stained with 50 

μL of rat -mouse CD31 (1:500) and rabbit -mouse LYVE-1 (1:1000) diluted in 

blocking solution O/N at RT. The stained sections were then washed 3 times in Tris-

buffered Saline containing 0.1% tween-20 and incubated with respective antibodies, -

mouse smooth muscle actin (SMA)-Cy3 (1:1000), donkey -rat Alexafluor488 (1:500) 

and donkey -rabbit Alexfluor647 (1:500) for 3 h at RT. The sections were mounted in 

mounting medium containing an anti-fade reagent. The Immunofluorescently stained 

sections were analysed using a Carl Zeiss LSM700 confocal microscope (Carl Zeiss). 

Quantification of data was done using ImageJ software. 
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To assess Ki67+ cell proliferation markers, tissues were processed as explained above and 

the primary antibodies that were used are the following: rat -mouse CD31 (1:500), rabbit 

-mouse Ki67 (1:250) and goat -mouse CCL21/6kine (1:250); all of which were diluted 

in blocking solution and stained O/N in a humidifying chamber. After O/N incubation, 

slides were washed as explained above and incubated with respective secondary 

antibodies: Alexafluor488-conjugated Donkey -rat IgG, Alexafluor555-conjugated 

Donkey -goat: IgG and Alexafluor647-conjugated Donkey -rabbit IgG (all secondary 

Abs were diluted 1:500) in a humidifying chamber for 3 h at RT. Following incubation, 

all slides were processed and analysed as explained in section 2.10.6. Ki67+ cells in 

lymphatic vessels were counted and normalised to the number of enlarged lymphatic 

vessels per field of view.  

2.10.8 Evan’s blue dye injection 

To determine the functionality of lymphatic vessels, 24 h after the final UVB exposure, 

mice were injected with 10 μL 1% Evan’s blue dye via i.d. ear injection and incubated 

for 1 h at RT. Following the incubation, mice were sacrificed and photos of the ears and 

draining superficial lymph nodes were taken. The ears and draining lymph nodes were 

harvested, weighed and processed similar to that described to section 2.10.6. Following 

processing, the ears and LNs were incubated with 300 L of formamide at 55°C with 

gentle rocking/agitation O/N to extract the Evan’s blue dye. Following the O/N 

incubation, 100 μL of the extracted Evan’s blue dye was plated on to 96 well plates (in 

duplicate) and the absorbance was measured at 610nm. Data was represented as 

absorbance/g of tissue. 

2.11 Statistical analysis 

All data shown in were tested for statistical significance using the unpaired, two-tailed, 

Student’s t-test or the Mann Whitney U test (GraphPad Software, version 5.04) between 

each pair of different treatments. Analysis of variance (ANOVA) for repeated measures 

was used to assess differences in ear thickening among mouse groups in all chronic UVB 

experiments, and other experiments that involved repeated measurements on the same 

animal over a period of time. In all cases, P values less than 0.05 were considered 

statistically significant, and data are presented as either “mean + SEM”, “mean + SD” or 

“median” or “median ± range” as indicated. 



75 
 

Chapter 3 

 

CHARACTERISATION OF BONE 

MARROW-DERIVED CULTURED 

MAST CELLS FROM mMCP4 

MICE    
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3.1 Introduction 

It is well understood that MCs can promote inflammatory responses, but more studies are 

now demonstrating their ability to negatively regulate responses through the release of 

mediators such as IL-108, histamine383 and mast cell proteases5, particularly mMCP4. Our 

preliminary data (unpublished) suggests that mMCP4 could also be protective in a model 

of chronic low-dose (non-tumourigenic) UVB irradiation, similar to what we have 

previously demonstrated in regards to the protective function of MC-IL-108,9. Hence, this 

project aims to determine whether mMCP4 is still protective under carcinogenic doses of 

chronic UVB irradiation.  

The most well-known method of determining the function of mMCP4 at either 

physiological or pathological conditions is utilising genetically modified   

B6-mMCP4 mice, which were generated by gene targeting which removes exon 1 of 

the mMCP4 gene by homologous recombination194. By substituting exon 1 for a 

neomysin cassette this prevented further translation of the mMCP4 gene. 

The generation of genetically-modified mice can exhibit distinct pathologies under 

homeostatic conditions. Studies have shown that B6-mMCP4 mice are generally 

phenotypically normal under physiological conditions, with the exception of increased 

collagen and hydroxyproline deposition in the skin, suggesting that mMCP4 is critical for 

homeostatic tissue remodelling194,384. However, when this homeostasis is disrupted, the 

B6-mMCP4mice do exhibit differential pathology when challenged in experimental 

models such as spinal cord damage380, traumatic brain inflammation379, poly-microbial 

sepsis5, and allergic airway inflammation7.  

Prior to assessing the roles of mMCP4 in our chronic UVB model, it is critical to assess 

if the absence of mMCP4 could influence the function and characterisation of MCs. 

Hence, for this part of the study, the morphological features and basic functions of B6-

mMCP4 and B6-mMCP4 BMCMCs were characterised. The morphological features 

of BMCMCs were assessed by May-Grunwald giemsa stain and expression of MC-

specific cell surface markers by flow cytometric analysis. 

In terms of activation and functionality of MCs, it is well understood that binding and 

cross-linking of antigen with IgE-bound FcRI can induce degranulation and de novo 

synthesis, with the subsequent release of an array of mediators such as proteases, 
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chemokines and cytokines (section 1.1.6) from MCs3. Whilst the activation and 

functional significance of MCs is well characterised in IgE-dependent situations, our 

understanding of MC activation in conditions associated with UVB exposure remains to 

be clarified. However, there is evidence that UVB-induced mediators such as PAF, 

vitamin D3
9,10, cis-UCA360, -MSH363, SP360,385 and CGRP360 can activate MCs.  

Therefore B6-mMCP4 and B6-mMCP4 BMCMCs were first assessed by the well-

defined IgE-dependent mode of activation and measured for degranulation (β-

hexosaminidase release) and de novo synthesis of pro-inflammatory cytokines IL-6 and 

TNF. Subsequently these MCs were also activated in an IgE-independent manner 

through stimulation with the neuropeptide SP, which is known to activate MCs in 

response to UVB exposure360,385.  

3.2 Results  

3.2.1 mMCP4 and mMCP4 mice and BMCMCs are functionally and 

phenotypically comparable. 

To confirm that the gene trapping technique did remove the presence of mMCP4 both at 

the mRNA transcript and protein level, we assessed the mRNA expression by quantitative 

real-time RT-PCR and endogenous protein expression level by western blot analysis. 

qRT-PCR revealed a complete absence of mRNA transcript in B6-mMCP4mice 

compared to B6-mMCP4(WT) mice (Figure 3.1a). mMCP4 is a ~26kDa protein. 

Western blot analysis also confirmed a complete absence of endogenous mMCP4 protein 

expression in B6-mMCP4tissue lysates as no band could be identified at ~26kDa 

compared to B6-WT mice (Figure 3.1b). Additionally, B6-mMCP4 mice did not 

exhibit any distinguishable phenotypic characteristics with respect to appearance of hair, 

body weight and size, and exhibit normal fertility similar to B6-WT mice (Figure 3.1c). 

Phenotypically, studies have demonstrated a complete absence of chymotrypsin-like 

activity in the skin of mMCP4 mice consequently promoting an increase in collagen 

and hydroxyproline deposition in the tissue of the mice suggesting a homeostatic role in 

tissue remodelling194,384.  

Skin pigmentation is typically composed of melanin, which is known to have a critical 

role in photoprotection against the generation of UVB-induced photoproducts386,387,313,388 

hence their associated detrimental effects that can contribute to the induction of  non-
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Figure 3.1 Pigmented B6-mMCP4-/- do not express mMCP4 at the

mRNA or protein level. Absence of mMCP4 does not promote any

detrimental phenotypes under homeostatic conditions. (A) RNA isolated

from naïve B6-WT and B6-mMCP4-/- ear tissue was assessed for relative

mMCP4 mRNA expression and was normalised to the house keeping gene

mouse GAPDH. Data represented as mean + SEM from 2 independent

experiments (n=5-6 mice/genotype). Student’s T test *p<0.05. (B) Tissue

lysates from B6-WT and B6-mMCP4-/- ear tissue were assessed for

endogenous mMCP4 protein by western blot analysis. Representative

immunoblot from 2 independent experiments; b-actin was used as a

loading control (C) B6-mMCP4+/+ and B6-mMCP4-/- exhibit normal size,

coating and viable phenotype.
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melanoma skin cancers. Particularly, loss of the enzymatic activity of tyrosinase, the rate 

limiting enzyme for melanin biosynthesis, has been linked to development of 

NMSCs13,389,390,391. In addition to utilising pigmented mMCP4mice derived from 

C57BL/6 background, non-pigmented mMCP4 mice were also generated by crossing 

albino B6-Tyrc-2j mice with pigmented B6-mMCP4mice. To confirm the absence of 

mMCP4 in mMCP4mice, we again assessed the presence of mRNA transcript and 

endogenous protein expression. We confirmed Tyrc-2j-mMCP4mice do not express the 

mRNA transcript of mMCP4 (Figure 3.2a) and also demonstrated a complete absence of 

mMCP4 endogenous protein expression (Figure 3.2b). Similar to pigmented B6-

mMCP4 mice, Tyrc-2j-mMCP4mice do not exhibit any distinguishable 

characteristics, except for a complete absence of pigment in the skin, hair and eyes 

(Figure 3.2c). 

3.2.2 Absence of mMCP4 does not influence or alter the morphology or cell surface 

expression of mouse bone marrow-derived cultured MCs 

Although there are no additional detrimental phenotypic abnormalities of mMCP4 

mice, we needed to characterise the role of mMCP4 in MCs and see whether it affects the 

morphological features of MCs as well as the cell surface expression of receptors FcRI 

and c-kit. To establish if WT and mMCP4BMCMCs from both pigmented and non-

pigmented genetic backgrounds of mice exhibit similar intrinsic morphological, 

phenotypical and functional properties, BMCMCs were generated from these mice. 

Irrespective of Tyr expression, after 5-8 weeks of culturing, no distinct differences were 

observed between WT and mMCP4BMCMCs in their granular morphology, size or 

shape as seen by May-Grunwald geimsa staining, supporting previous reports85,194 

(Figure 3.3a). We then investigated whether the absence of mMCP4 could influence the 

cell surface expression of mature BMCMC receptors FcRI and c-kit, double positive 

expression of both receptors will indicate the presence of MC populations. Following 

flow cytometric analysis, after 5 weeks of culturing, WTand mMCP4 BMCMCs 

exhibited greater than 90% FcRI+ and c-kit+ populations and no noticeable differences 

in the expression of c-kit and FcRI were observed between WT and mMCP4 

BMCMCs derived from mice of both backgrounds (Figure 3.3b). In addition, after 5-6 

weeks of culturing, a similar number of BMCMCs was attained after they reached >95% 

purity (Figure 3.3c).  
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Figure 3.2. Non-pigmented Tyrc-2j-mMCP4-/- do not express any

mMCP4 at the mRNA or protein level. The absence of mMCP4 does

not promote any detrimental phenotypes under homeostatic

conditions. (A) RNA isolated from naïve Tyrc-2j-WT and Tyrc-2j-mMCP4-/-

ear tissue was assessed for relative mMCP4 mRNA expression and was

normalised to the house keeping gene mouse GAPDH. Data represented as

mean + SEM from 2 independent experiments (n=5-7 mice/genotype).

Students T test *p<0.05. (B) Tissue lysates from Tyrc-2j-WT and Tyrc-2j-

mMCP4-/- ear tissue were assessed for endogenous mMCP4 protein by

Western blot analysis. Representative immunoblot from 2 independent

experiments; b-actin was used as a loading control. Representative

Immunoblot from 1 experiment (n=2) (C) Tyrc-2j-WT and Tyrc-2j-mMCP4-/-

exhibit normal size, coating and viable phenotype.
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Figure 3.3 Absence of mMCP4 does not contribute to any changes in

morphological features or expression of cell-surface markers

c-kit or FceRI in mast cells. (A) WT and mMCP4-/- BMCMCs derived

from pigmented B6 and non-pigmented B6-Tyrc-2j mice were stained with

May-Grunwald geimsa stains to assess cell and granular morphology after 6

weeks of culture; scale bar = 200 mm. (B) After 6 weeks of culturing, c-kit

and FceRI cell-surface expression on WT and mMCP4-/- BMCMCs derived

from pigmented B6 and non-pigmented B6-Tyrc-2j mice was assessed by

flow cytometry; Blue: mMCP4+/+ , Red: mMCP4-/-, Grey: IgG2 isotype

control, Black line: unstained cells (C) Double positive c-kit and FceRI

expressing WT and mMCP4-/- BMCMCs were assessed for overall purity

after 6 weeks of culturing, MC populations have reached at least ~95%

purity.
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3.2.3 BMCMCs cultured in IL-3 and SCF express higher endogenous levels of 

mMCP4 

Due to the phenotypic heterogeneity of MCs in human and mice, the differences in MC 

subtypes are not only differentiated by their ability to express specific classes of MC-

derived proteases but also the localisation and environment they are found in18,85. To 

ensure our work was physiologically relevant to our disease setting of chronic UVB 

exposure of the skin, it was critical to ensure that the BMCMCs we generated exhibited 

a connective tissue phenotype (cultured in presence of IL-3 and SCF)170-172. These 

BMCMCs were also compared to BMCMCs cultured in IL-3 only, which normally 

exhibit a mucosal-like MC phenotype66. 

It is well understood that BMCMCs cultured in IL-3 exhibit a mature phenotype based 

on high expression levels of FcRI and c-kit, but they also express a range of proteases. 

However, depending on the anatomical location of these cells and different factors they 

are exposed to will influence the phenotype of MCs and their mediator expression profile. 

In the case of protease expression profile, BMCMCs that are primarily exposed to IL-3 

will typically express mMCP5, 6, 7 and MC-CPA363. On the other hand BMCMCs that 

are exposed to both in IL-3 and SCF express endogenous mMCP467 in addition to the 

above proteases. Consistent with the literature, our Western blot analysis confirmed that 

BMCMCs cultured in IL-3 and SCF did express higher levels of endogenous mMCP4 

protein compared to BMCMCs cultured in IL-3 only. Furthermore, Western blot analysis 

revealed no endogenous mMCP4 protein in mMCP4 BMCMCs from both backgrounds 

(Figure 3.4). 

3.2.4 The function of BMCMCs is not affected or influenced by the absence of 

mMCP4. 

Activating MCs via crosslinking of IgE bound FcRI by cognate antigen is a routine test 

that determines if MCs function normally. Hence, to assess the functionality of WT and 

mMCP4   BMCMCs, we first investigated the activation of these cells through the IgE-

dependent activation pathway. Typically, MCs are sensitized with the IgE -

dinitrophenol (DNP) mAb (SPE7 clone; 2 g/mL) overnight, followed by stimulation 

with -DNP-human serum albumin (DNP-HSA; 1 ng/mL – 1000 ng/mL). As a typical 

test of degranulation, the release of the granule stored mediator β-hexosaminidase was 



Figure 3.4 WT BMCMCs cultured in IL-3 and SCF express higher

level of endogenous mMCP4 protein compared to WT BMCMCs

cultured in IL-3 only. After 6 weeks of culture, cell lysates were

generated from WT and mMCP4-/- BMCMCs cultured in IL-3

(4 ng/mL) or IL-3 (4 ng/mL) and SCF (50 ng/mL). To assess

endogenous mMCP4 protein expression, cell lysates were loaded onto

10% SDS-PAGE gels and probed for mMCP4. b-actin was used as a

loading control. Representative immunoblot from 2 independent

experiments.
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assessed. Both B6-WT and B6-mMCP4 BMCMCs cultured in IL-3 only exhibited a 

peak degranulation response of ~30-40% β-hexosaminidase release at 10-100 ng/mL 

DNP-HSA. However, no difference in degranulation was observed in the absence of 

mMCP4 (Figure 3.5a). Similarly, when stimulated, BMCMCs cultured in IL-3 (4 ng/mL) 

and SCF (50 ng/mL) showed a similar trend with a peak degranulation response at 10-

100 ng/mL DNP-HSA. However, this peak response was ~20% lower compared to 

BMCMCs cultured in IL-3. Additionally, no difference in β-hexosaminidase 

degranulation was evident between both B6-WT and B6-mMCP4BMCMCs either 

(Figure 3.5b). Similar results were observed in BMCMCs derived from Tyrc-2j-WT and 

Tyrc-2j-mMCP4mice (Figure 3.5c, d). No difference in degranulation between WT and 

mMCP4 BMCMCs of mice from both backgrounds was observed in response to the 

positive controls PMA and the calcium ionophore A23187, was detected irrespective of 

Tyr genotype from which the BMCMCs were generated. 

In addition to their ability to degranulate preformed and granule stored mediators, we also 

assessed the ability of BMCMCs to de novo synthesise proinflammatory cytokines IL-6 

and TNF. IgE sensitised BMCMCs were stimulated with 20 ng/mL DNP-HSA for 6 h, 

which typically allows enough time for cytokine production at detectable levels. As 

shown by ELISA, following 6 h of stimulation, BMCMCs from pigmented mice cultured 

in IL-3 only or IL-3 + SCF released more IL-6 and TNF. No differences were observed 

in the absence of mMCP4 (Figure 3.6a, b). In comparison, a similar trend was observed 

in stimulated BMCMCs from non-pigmented mice cultured in IL-3. No difference was 

observed in the absence of mMCP4. Interestingly, although Tyrc-2j-WT and Tyrc-2j-

mMCP4BMCMCs cultured in IL-3 + SCF also released more IL-6 and TNF 

following stimulation, their response appeared to be lower compared to BMCMCs 

cultured in IL-3 only. Similarly, no difference was observed in the absence of mMCP4 

(Figure 3.6c, d). It was also interesting to see that IgE (SPE7 clone) alone could promote 

cytokine release but at lower levels compared to IgE + Ag stimulation, which support 

previously published studies101. Based on this data, absence of mMCP4 does not appear 

to affect the morphology or IgE-dependent stimulatory responses in vitro.  

 

 



Figure 3.5 The absence of mMCP4 does not influence the

functional characteristics of BMCMC degranulation in response

to IgE-dependent activation. To assess b-hexosaminidase release as a

measure of degranulation, WT and mMCP4-/- BMCMCs derived from

pigmented B6 and non-pigmented B6-Tyrc-2j mice were cultured in (A

and C) IL-3 (4 ng/mL) or (B and D) IL-3 (4 ng/mL) and SCF (50

ng/mL). After 6 weeks of culture, BMCMCs were pre-sensitized with

IgE anti-DNP mAb (2 mg/mL) overnight. Pre-sensitized BMCMCs

were then stimulated with specific antigen DNP-HSA (1-1000 ng/mL)

for 1h and assessed for b-hexosaminidase release. PMA (10 ng/mL)

and A23187 (10 mM) stimulation was used as a positive control. All

experimental data shown as mean % b-hexosaminidase release + SEM

from 3-5 independent experiments. One-Way ANOVA with

Bonferroni’s post test #/*p<0.05, ##/**p<0.01, ###/***p<0.001,
####/****p<0.001 (treatment vs control). No significance between

genotypes observed.
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Figure 3.6 The absence of mMCP4 does not influence the

functional characteristics of BMCMC de novo cytokine synthesis

in response to IgE-dependent activation. To assess de novo

synthesis of cytokines IL-6 and TNFa, WT and mMCP4-/- BMCMCs

derived from pigmented B6 and non-pigmented B6-Tyrc-2j mice were

cultured in IL-3 (4 ng/mL) or IL-3 (4 ng/mL) and SCF (50 ng/mL).

After 6 weeks of culture, BMCMCs were pre-sensitized with IgE

anti-DNP mAb (2 mg/mL) overnight. Pre-sensitized BMCMCs were

then stimulated with specific antigen DNP-HSA (20 ng/mL) for 6 h.

After 6 h of stimulation, supernatants were harvested and (A and C)

IL-6 and (B and D) TNFa release was assessed by ELISA. All

experimental data shown as mean + SEM from 3-6 independent

experiments. One-Way ANOVA with Bonferroni’s post test #/*p<0.05,

**p<0.01, ***p<0.001, ****p<0.001 (treatment vs control; and

between groups).
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3.2.5 Substance P can induce -hexosaminidase release in CTMCs 

Although studies have shown that MCs can be activated by UVB induced-mediators such 

as neuropeptides SP and CGRP360. The direct activation of MCs by chronic UVB requires 

further investigation. Interestingly, the secretagogue receptor for SP has been recently 

discovered and was only found to be expressed on MCs that exhibit a connective-tissue 

phenotype93. For the final aspect of characterising these BMCMCs, we aimed to confirm 

if SP can activate BMCMCs with a connective tissue phenotype (cultured in IL-3 and 

SCF) in vitro, and assess if loss of mMCP4 affects this process. 

Connective-tissue type BMCMCs were stimulated with 10 M – 200 M of SP as 

previously reported93. Typically, the release of -hexosaminidase is measured within 1 h 

of stimulation as IgE mediated Passive Cutaneous Anaphylaxis (PCA) studies exhibit 

maximal ear swelling responses within the first 30 min392. In addition, McNeil et al 

demonstrated that when stimulated with 200 M of SP, mouse peritoneal MCs showed a 

full degranulation response as measured by a rise in intracellular calcium. Therefore, we 

attempted to activate the BMCMCs for 1 h but very minimal degranulation was observed 

at 200 M of SP (Figure 3.7a). We extended the stimulation to 24 h when only started to 

observe a small increase in degranulation of hexosaminidase between 10 - 200 M of 

SP (Figure 3.7b). A viable cell count was carried out after 24 h of stimulation to assess 

if cell death was associated with minimal degranulation observed. The viability of WT 

and mMCP4BMCMCs were both ~90%, suggesting that cell death is not responsible 

for the minimal degranulation response.  

3.3 Discussion 

For this chapter, we have confirmed that both pigmented and non-pigmented 

mMCP4mice show an absence of mMCP4 at the transcript and protein levels. 

Consistent with the literature, phenotypically, these mice appear normal compared to their 

WT littermates194. Therefore these mice were phenotypically comparable, but the basic 

function of MCs in these mice was not known and needed to be investigated. 

Consistent with previous studies, the loss of mMCP4 showed no effects on the size, 

granularity and staining characteristics of BMCMCs194. Additionally, the absence of 

mMCP4 in both pigmented and non-pigmented backgrounds of mice, had no influence 

on cell surface receptor expression of FcRI and c-kit.  
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Figure 3.7 Stimulation of connective tissue MCs with

neuropeptide SP induces degranulation via an IgE-independent

mode of activation. To assess b-hexosaminidase release as a measure

of degranulation via an IgE-independent mode of activation,

BMCMCs derived from Tyrc-2j-WT and Tyrc-2j-mMCP4-/- mice were

cultured in IL-3 (4 ng/mL) + SCF (50 ng/mL) were incubated with SP

(1-200 mM) for (A) 1 h and (B) 24 h. PMA (10 ng/mL) and A23187

(10 mM) stimulation was used as a positive control. All data shown as

mean % b-hexosaminidase release + SD from 1 experiment (2

mice/genotype). One-Way ANOVA with Bronferroni’s post test
###/***p<0.001 (treatment vs control). No significance between

genotypes were observed.
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As previously outlined, to ensure our studies were physiologically relevant, our 

BMCMCs were cultured in IL-3 + SCF to allow them to differentiate into a connective 

tissue-like MC phenotype. As a comparison, we also cultured BMCMCs in IL-3 promotes 

a mucosal-like phenotype. Other additional growth factors that assist in this 

differentiation include IL-10 and IL-482,393. In agreement with the literature, we observed 

that from both pigmented B6 and non-pigmented B6-Tyrc-2j mice, BMCMCs cultured in 

IL-3 and SCF did express much higher levels of endogenous mMCP4 protein compared 

to BMCMCs cultured in IL-3 only. This low level of mMCP4 in BMCMCs cultured in 

IL-3 only is consistent with the literature that suggests these cells are more likely to 

express tryptases rather than chymases (mMCP4)67,85. 

In order to characterise any effect of mMCP4 on the functionality of BMCMCs, we first 

assessed the IgE-dependent MC activation response by measuring degranulation of -

hexosaminidase, and de novo synthesis of IL-6 and TNFα cytokines. In response to DNP-

HSA, we observed a peak degranulation response at a concentration ranging 10-100 

ng/mL in BMCMCs cultured in IL-3 and IL-3 and SCF. This peak response suggests that 

within this concentration range, there is optimal cross-linking of antigen (DNP-HSA) 

with IgE-bound FcRI, thereby allowing optimal signal transduction and subsequent 

degranulation. Additionally, no difference was observed in the degranulation response 

between mMCP4 and WT BMCMCs. Although the level of -hexosaminidase release 

is lower compared to our previous reports9, this likely due to the use of H1-ε26 IgE, 

compared to SPE-7 IgE used in this study, which may lead to different level of responses 

from MCs.  

In addition to degranulation, MCs can also de novo synthesise a range of cytokines. We 

assessed the release of IL-6 and TNFα as a measurement of this pathway. As the ELISA 

data suggests BMCMCs cultured in IL-3 or IL-3 and SCF were responsive to antigen 

stimulation at 20 ng/mL (within optimal concentration range) as shown by enhanced 

release of IL-6 and TNFα. In addition, no difference was observed in BMCMCs derived 

from pigmented B6 and non-pigmented B6-Tyrc-2j mice, in the de novo synthesis pathway 

in the absence of mMCP4. The responses observed as described above were consistent 

with documented responses of functionally normal MCs as previously reported125,394-396. 

It is worth nothing that BMCMCs cultured in IL-3 and SCF showed reduced 

degranulation and de novo synthesis of IL-6 and TNFα (very obvious in B6-Tyrc-2j 
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BMCMCs, and does not happen in the B6 BMCMCs). This is consistent with previous 

studies demonstrating that prolonged exposure of BMCMCs to SCF can down-regulate 

the Src kinase Hck which results in ineffective cytoskeletal reorganisation, leading to a 

reduction in MC-mediator release397. In addition, since the experiments on the pigmented 

B6 BMCMCs and the non-pigmented B6-Tyrc-2j BMCMCs were performed at least two 

years apart, different culturing conditions due to batch-to-batch variations in critical tissue 

culture reagents (e.g. FBS, WEHI-3B, and recombinant SCF) are likely to be a 

contributing factor to the discrepancies observed. Hence it will be ideal to confirm this 

observation by culturing and analysing these BMCMCs from both genetic background 

simultaneously. Moreover, non-pigmented B6-Tyrc-2j mice may exhibit subtle differences 

in genetic background compared to pigmented B6 mice arising from the crossing 

procedure, which could also potentially influence the MC response. Alternatively, it is 

also likely that this difference observed represents a real phenomenon which could 

suggest that non-pigmented BMCMCs from B6-Tyrc-2j mice are functionally different 

from pigmented B6 BMCMCs. 

Piliponsky et al5 reported, using a model of Poly-microbial sepsis, that mMCP4 is 

required to degrade TNFα and prevent further inflammation and detrimental mortality in 

vivo and in vitro. This study showed that in response to IgE and antigen stimulation, 

mMCP4 BMCMCs exhibit elevated levels of TNFα release, which is not consistent 

with our observations (Figure 3.6). These differences observed may be due to utilisation 

of alternative reagents and protocols. In this study, BMCMCs were stimulated for a total 

of 18 h, whilst our stimulation was only 6 h. It is possible that other mediators could 

potentiate TNFα production in the absence of mMCP4 during this 18 h period5. In 

addition, a different clone of IgE was utilised in this study (H1-26)398 compared to SPE-

7 used in our study. It is likely that the use of a different clone of IgE may influence the 

responses of BMCMCs5.  

Following characterisation of the IgE-dependent activation of WT and 

mMCP4BMCMCs, we showed no difference in degranulation and cytokine production 

between these cells, indicating that in the absence of mMCP4, BMCMCs function 

normally in this setting.  

Since UVB irradiation indirectly activates MCs through an IgE-independent mode of 

activation via a number of mediators. We next investigated an IgE-independent activation 
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of BMCMCs with the neuropeptides. Studies using CGRP and SP agonists show that 

presence of these neuropeptides are required to promote at least >50% histamine release 

from peritoneal MCs derived from rats360,385. Furthermore, it was shown that removal of 

neuropeptide producing-C-sensory nerve fibres are crucial for the degranulation of rat 

peritoneal MCs360. More importantly, Rychter et al. have suggested that the stimulation 

of mucosal MCs with the neuropeptide CGRP can induce piecemeal degranulation of the 

chymase, mMCP195. Since connective tissue MCs have recently been reported to express 

the secretagogue receptor Mrgprb2 (human orthologue to MRGPRX2), which is a 

receptor specific to another neuropeptide SP93, we hypothesise that SP may induce 

degranulation and release of mMCP4. 

Based on our results, in response to 24 h of stimulation with SP, BMCMCs cultured in 

IL-3 and SCF showed a small increase in degranulation.  No difference was observed in 

the absence of mMCP4, suggesting that mMCP4 does not affect this particular IgE-

independent mode of activation. Interestingly we observed no degranulation following 1 

h of stimulation with up to 200 M of SP. However, the study by McNeil et al 

demonstrated a full degranulation response following 200 M SP simulations within 30 

min. Additionally, another study by van der Kleij et al. also showed a high degranulation 

response of -hexosaminidase within 30 min. One possible explanation for this 

discrepancy in observations is that the MCs used in both of these studies may exhibit a 

more well-defined phenotype due to their anatomical site for development, which might 

have provided a higher expression of the Mrgprb2 receptor. For example; McNeil et al. 

utilised peritoneal-derived MCs, whilst van der Kleij et al. cultured BMCMCs with IL-3, 

IL-4 and SCF393,399. It is noteworthy to add that pre-sensitisation of MCs with IgE is 

critical for priming MCs IgE-independent activation. This experiment did not utilise this 

feature hence this could also be the reason why we did not observe any noticeable 

degranulation after 1 h stimulation with SP400. 

Taken together, we have shown that in the absence of mMCP4, there is no effect on the 

gross phenotype of the mice. No influence on the MC morphology and cell surface 

receptor expression was observed either. Furthermore, the functional characteristics of 

MCs in both IgE-dependent and –independent activation pathways are normal in the 

absence of mMCP4. Based on these observations, we now have the tools to further assess 

the role of mMCP4 in our chronic UVB irradiation model.  
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Chapter 4  

 

 

mMCP4 IS A CRITICAL 

TUMOUR SUPPRESSOR IN 

RESPONSE TO CHRONIC 

UVB IRRADIATION 
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4.1  Introduction 

Among the ultraviolet components of the solar spectrum (UVA, 320-400 nm; UVB, 280-

320 nm; and UVC, <280 nm), earlier studies have suggested UVB to be the main 

contributor of skin carcinogenesis401. Recently, evidence has emerged to suggest a 

complicated scenario where, even at subinflammatory doses, UV exposure (including 

both UVB and UVA) is able to induce skin carcinogenesis in animal models402.  

 UVB exposure of the skin can be either beneficial or detrimental, depending on the 

amount or ‘threshold’ of UVB the skin is being exposed to. In response to low doses of 

UVB exposure (10-15 min exposure under the sun), it can be quite beneficial and promote 

production of vitamin D3 and melanogenesis316 which is protective against UVB and its 

deleterious effects256,317. Alternatively, higher doses of UVB exposure (constant 

exposure, >15 min) can promote detrimental side effects including oxidative stress, 

genetic mutations and chronic inflammation309.  

Chronic UVB exposure is a key factor in promoting DNA mutations, physical cutaneous 

injury, inflammation, immune suppression and eventually the development of SCCs307. 

There are many hallmark features of SCC development and is typically diagnosed and 

seen through a series of changes in the skin, which is often referred to as the ‘metaplasia-

dysplasia-carcinoma’ process335. This common theme is represented as atypical epithelial 

tissue organisation (metaplasia), followed by increasing disorganisation of tissue 

architecture (dysplasia) and the development of neoplastic in situ cancer cells (carcinoma) 

which have the potential to become invasive335. Coinciding with these changes an influx 

of inflammatory infiltrate and an accumulation of MCs to the site of injury is an additional 

hallmark feature230,307,403,404. 

MCs are known to play an important role in mediating the development and progression 

of multiple cancers. The role of MCs in cancer continues to be a dilemma as both cancer-

supportive and suppressive functions have been reported and this appears to be cancer 

type-specific. Similarly, in the skin, MCs have also been reported to show both positive 

and negative influence in carcinogenesis245,405.  

Despite the growing evidence pointing towards a protective function of MCs in skin 

carcinogenesis, the mechanism involved is yet to be further elucidated. The regulatory 

function of MCs are facilitated through the release of MC-derived mediators. Recently, 
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we have demonstrated that MCs and MC-IL-10 can limit UVB-induced inflammation and 

skin pathology, which are the factors that are responsible for the development of 

cutaneous malignancies like SCCs8. We later showed that MCs can convert 25OHD3 into 

the active form of vitamin D3 125-dihydroxyvitaminD3 via a CYP27B1-dependent 

manner and the 125-dihydroxyvitaminD3 generated in turn activates MCs to produce 

the anti-inflammatory cytokine IL-109. Interestingly, our recent unpublished study also 

suggests that another MC-derived mediator, mMCP4, also possesses protective functions 

similar to MC-IL-10 in response to chronic low-dose UVB (non-tumour promoting; data 

not shown).  

Based on these findings, since our preliminary studies showed similar protective function 

between mMCP4 and MC-IL-10 in response to non-carcinogenic chronic low-dose UVB, 

we propose to assess if mMCP4 retains its protective function when exposed to chronic 

high-dose UVB irradiation and limit the development of UVB-induced skin 

carcinogenesis. 

4.2 Results 

4.2.1 MCs and mMCP4 are crucial in limiting development of UVB-induced in situ       

SCCs 

To determine the function of MCs and mMCP4 in response to chronic high-dose UVB 

irradiation and investigate if mMCP4 and MC-IL-10 retain similar protective function 

that was previously observed in the chronic low-dose UVB setting, adoptive transfer of 

BMCMCs was first utilised.  

BMCMC cultured from syngeneic mice were intra-dermally (i.d.) engrafted into the ears 

of MC-deficient KitW/W-v mice. In order to achieve UVB-induced skin damage and 

consequent characteristics that could further lead to the development of skin cancer, the 

ears of WBB6F1-Kit+/+ (WT), mast cell-deficient WBB6F1-KitW/W-v mice, WBB6F1-

KitW/W-v mice engrafted with genetically compatible ex vivo-derived WT BMCMCs (WT 

BMCMCsWBB6F1-KitW/W-v mice) or mMCP4 BMCMCs 

(mMCP4BMCMCsWBB6F1-KitW/W-v mice) were then exposed to (12 × 4 kJ/m2 +13 

× 8 kJ/m2) UVB every 2 days for a total of 25 exposures (cumulative dose 152 kJ/m2).  

We first investigated whether the pathology in mice lacking MC, MC-IL-10 or mMCP4 

could lead to hallmarks that could drive tumour development by H&E staining (Figure 
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4.1a). H&E staining revealed increased levels of full-thickness epidermal necrosis, which 

comprises of infiltration of inflammatory cells into the epidermal layer, in the ears of 

KitW/W-v and mMCP4 BMCMCsWBB6F1-KitW/W-v mice as indicated by red 

arrowheads, compared to WT and WT BMCMCs WBB6F1-KitW/W-v mice (Figure 

4.1a). More importantly, these characteristics observed in KitW/W-v, 

mMCP4BMCMCsWBB6F1-KitW/W-v  and IL-10BMCMCsWBB6F1-KitW/W-v 

mice also correlate with the presence of in situ SCC’s is indicated by black arrowheads 

(Figure 4.1a). Furthermore, quantification of in situ SCC free survival also suggests an 

earlier onset of in situ SCC in KitW/W-v, mMCP4 BMCMCsWBB6F1-KitW/W-v and IL-

10BMCMCsWBB6F1-KitW/W-v mice after 5 exposures to chronic UVB (Figure 

4.1b).  

Although the observations using the KitW/W-v model confirmed that the protective function 

of both MC-IL-10 and mMCP4 are also retained even against chronic high-dose UVB 

irradiation and they are both able to delay the onset of UVB-induced in situ SCC, the rest 

of the chapter will focus on investigating the role of mMCP4 due to its novelty.  

In order to confirm the successful BMCMC engraftment into the ears of KitW/W-v mice, 

and to determine whether a difference in MC number contributes to pathologies observed 

in response chronic UVB irradiation, MC counts were performed on the Toluidine blue 

stained ear sections (Figure 4.2). Based on the analysis, prior to UVB irradiation, KitW/W-

v mice showed a complete lack of tissue MC populations in the ears, while 20-40 

MCs/mm was observed in the ears of WT, WT BMCMCsWBB6F1-KitW/W-v, 

mMCP4BMCMCsWBB6F1-KitW/W-v, and IL-10BMCMCsWBB6F1-KitW/W-v 

mice, confirming a successful BMCMC engraftment into the ears (Figure 4.2). Over 25 

UVB exposures, a gradual increase in the MC number was observed in WT, WT 

BMCMCsWBB6F1-KitW/W-v, mMCP4BMCMCsWBB6F1-KitW/W-v, and IL-

10BMCMCsWBB6F1-KitW/W-v mice, and an increase was also observed in the ears 

of KitW/W-v mice (Figure 4.2). Most importantly, no significant difference was observed 

in the MC number between WT BMCMCsWBB6F1-KitW/W-v, 

mMCP4BMCMCsWBB6F1-KitW/W-v, and IL-10BMCMCsWBB6F1-KitW/W-v 

mice, suggesting that the difference in pathology observed in these mice are more likely 

due to the release of MC-derived mediators (Figure 4.2). In order to confirm the 

protective function of mMCP4 against the development of UVB-induced in situ SCCs, 



Figure 4.1. Mast cells, mMCP4, and MC-IL-10 are required to

limit UVB-induced in situ SCC development in WBB6F1 mice

(A) Representative images of H&E stained cross sections obtained

from WT, WBB6F1-KitW/W-v, WT BMCMCWBB6F1-KitW/W-v,

mMCP4-/- BMCMCWBB6F1-KitW/W-v, and IL-10-/-

BMCMCWBB6F1-KitW/W-v mice 24 h after the final exposure to 4

kJ/m2 (5 exposures) and 4 kJ/m2 + 8 kJ/m2 (25 exposures). All

images were taken using an Nanozoomer technology microscope

and digitised using Nanozoomer Digital Pathology software. Scale

bar: 1000 mm; inset scale: 500 mm, in situ scale: 200 mm (B) H&E

stained cross sections from UVB-treated WT, WBB6F1-KitW/W-v,

WT BMCMCWBB6F1-KitW/W-v , mMCP4-/-

BMCMCWBB6F1-KitW/W-v and IL-10-/- BMCMCWBB6F1-

KitW/W-v mice were blindly scored for pathological hallmarks of in

situ SCC development. Red arrows indicate full-thickness

epidermal necrosis; Black arrows indicate in situ SCC. *p<0.008

Two-way ANOVA with Bonferroni’s-corrected threshold multiple

comparisons: WT vs WBB6F1-KitW/W-v; WT vs WT

BMCMCWBB6F1-KitW/W-v; WT vs mMCP4-/-

BMCMCWBB6F1-KitW/W-v; WT BMCMCWBB6F1-KitW/W-v vs

mMCP4-/- BMCMCWBB6F1-KitW/W-v; WT vs IL-10-/-

BMCMCWBB6F1-KitW/W-v; WT BMCMCWBB6F1-KitW/W-v vs

IL-10-/- BMCMCWBB6F1-KitW/W-v and WT

BMCMCWBB6F1-KitW/W-v vs WBB6F1-KitW/W-v Data from 2-5

independent experiments. Dr Jan Ibbetson (dermatopathologist)

performed the blind scoring of in situ SCC, A/Prof Michele

Grimbaldeston performed H&E staining on the ear sections.



0 2 4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

WBB6F1-Kit
+/+

WBB6F1-Kit
W/W-v

WBB6F1-Kit
W/W-v

 + WT BMCMC

WBB6F1-Kit
W/W-v

+mMCP4
-/-

BMCMC

WBB6F1-Kit
W/W-v

 + IL-10
-/-

BMCMC

A

B

SCC in situ

SCC in situ

SCC in situ

WBB6F1-Kit+/+

WBB6F1-KitW/W-v

WT BMCMC

KitW/W-v

mMCP4–/– BMCMC

KitW/W-v

IL-10–/– BMCMC

KitW/W-v

5 Exposures 25 Exposures

%
 S

C
C

 i
n

 s
it
u

-f
re

e
-s

u
rv

iv
a

l

4 kJ/m2

WBB6F1-Kit
+/+

WBB6F1-Kit
W/W-v

WBB6F1-Kit
W/W-v

+ WT BMCMC

WBB6F1-Kit
W/W-v

+ mMCP4
-/-

BMCMC

WBB6F1-Kit
W/W-v

+ IL-10
-/-

BMCMC

8 kJ/m2

Number of UVB Exposures



M
a

s
t 

c
e

lls
/m

m

Number of UVB exposures

Number of UVB Exposures

N
u

m
b

e
r 

o
f 

ly
m

p
h

a
ti

c

v
e

s
s

e
ls

0 5 25
0

100

200

300

WBB6F1-Kit
+/+

(WT)

WBB6F1-Kit
W/W-v

WBB6F1-Kit
W/W-v

+ WT BMCMC

WBB6F1-Kit
W/W-v

+ mMCP4
-/-

 BMCMC

**
**

WBB6F1-Kit
W/W-v

+ IL-10
-/-

 BMCMC

Number of UVB Exposures

m
a
s
t 

c
e
ll
s
/m

m
 o

f 
c
a
rt

il
a
g

e
 l
e
n

g
th

0 5 12 25
0

40

80

120

***
****

**** ****

****
****

****

****
****

****

**

**

****

*
*

****

****

**

*

*
*

**

*

*
****

Figure 4.2. Mast cells numbers do not contribute to UVB-induced

skin pathology associated with the loss of MCs and mMCP4 (A)

Mast cell numbers were quantified from Toluidine blue stained cross

sections of the ear pinnae of untreated and UVB-treated WT,

WBB6F1-KitW/W-v, WT BMCMCWBB6F1-KitW/W-v, mMCP4-/-

BMCMCWBB6F1-KitW/W-v, and IL-10-/- BMCMCWBB6F1-

KitW/W-v mice (5, 12 [at 4 kJ/m2] and 25 exposures [at 8 kJ/m2]). Mast

cell counts were normalised to length of the cartilage. Data

represented as median; Mann-Whitney U test. *p<0.05. **p<0.01,

***p<0.001, ****p<0.0001. Data from 2-3 experiments. Images were

taken on an Nanozoomer Technology microscope and visualised using

Nanozoomer Digital Pathology software.
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the non-pigmented mMCP4 (Tyrc-2j-mMCP4 mice were also applied to the same 

UVB irradiation regime as the KitW/W-v mice. Similar to engrafted-WBB6F1-KitW/W-v mice, 

H&E staining of UVB-treated ears of Tyrc-2j-WT and Tyrc-2j-mMCP4mice revealed 

dramatic differences in the tissue architecture, with higher incidences of parakeratoses 

and disorganisation of the epithelial layer as well as full-thickness epidermal necrosis, 

particularly in Tyrc-2j-mMCP4mice (Figure 4.3b, Table 4.1). Furthermore, based on 

blind scoring analysis, the data suggests that Tyrc-2j-mMCP4mice have a greater 

incidence of in situ SCC development compared to Tyrc-2j-WT mice after 25 exposures 

of chronic UVB irradiation (Figure 4.3b). Similar to that observed in the engrafted- 

KitW/W-v mice, no difference in the MC counts was observed in the Tyrc-2j mice between 

genotypes (Figure 4.4). This further confirms that the UVB-induced skin pathology 

observed in these mice is associated with the absence of mMCP4, and not MCs 

themselves. Notably, no in situ SCC development was observed in pigmented B6 mice.  

 

4.2.2 MCs and mMCP4 are protective against UVB-induced ear thickening and skin 

pathology  

In order to denote the level of inflammation and damage, ear-thickening and gross 

damage was monitored prior to each exposure. After 25 exposures of UVB irradiation, a 

Mice

Mice with full–thickness epidermal necrosis

5 exp 12 exp 25 exp

Tyrc-2j-WT 4/15 0/10 7/25

Tyrc-2j-mMCP4–/– 15/18** 0/19### 15/34##

Quantification of full-thickness epidermal necrosis in H&E stained ear cross-sections of 

UVB-treated Tyrc-2j-WT and Tyrc-2j-mMCP4mice after 5, 12 and 25 exposures. Values 

indicate mice whose ears showed evidence of full-thickness epidermal necrosis and, in 

some cases, ulcers, as assessed by histology at the end of the period of UVB exposure (mice 

with necrosis/total mice). **p< 0.01 Tyrc-2j-WT  5 UVB exposures versus the corresponding 

Tyrc-2j-mMCP4–/– mice; or ##p< 0.01; or ###p< 0.001 5 UVB exposures versus 12 or 25 

exposures in the same genotype using Fisher’s exact test. A/Prof Michele Grimbaldeston

performed scoring on the ear sections.

Table 1. UVB-treated non-pigmented Tyrc-2j-mMCP4 mice exhibit higher incidence of 

full-thickness epidermal necrosis

Table 4.1 UVB-treated non-pigmented Tyrc-2j-mMCP4 mice exhibit higher 

incidence of full-thickness epidermal necrosis 



Figure 4.3. UVB-treated non-pigmented Tyrc-2j-mMCP4-/- mice

exhibit earlier onset of in situ SCCs (A) Representative images of

H&E stained ear cross sections from UVB-treated Tyrc-2j-WT and

Tyrc-2j-mMCP4-/- mice (after 5 and 25 exposures). Images were

taken using an Nanozoomer technology microscope and digitised

using Nanozoomer Digital Pathology software. Scale bar: 200mm;

inset:1mm. (B) H&E stained images from UVB-treated Tyrc-2j-WT

and Tyrc-2j-mMCP4-/- mice were blindly scored for pathological

hallmarks of in situ SCC development. Black arrows indicate the

presence of in situ SCC. 2-Way ANOVA with Bonferroni’s post-

test *p<0.01 Tyrc-2j-WT vs Tyrc-2j-mMCP4-/- . Data from 2-5

independent experiments. Dr Jan Ibbetson (dermatopathologist)

performed the blind scoring of in situ SCC, A/Prof Michele

Grimbaldeston performed H&E staining on the ear sections.
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Figure 4.4. Mast cells numbers do not change in the absence of

mMCP4 in response to chornic UVB irradiation. Mast cell

numbers were quantified from Toluidine blue stained cross sections of

the ear pinnae of untreated and UVB-treated non-pigmented Tyrc-2j,

WT and mMCP4-/- mice (5, 12 [at 4 kJ/m2] and 25 exposures [at 8

kJ/m2]). Mast cell counts were normalised to length of the cartilage.

Data represented as median from 2-3 experiments. Images were taken

on an Nanozoomer Technology microscope and visualised using

Nanozoomer Digital Pathology software.
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significantly more exacerbated ear thickening response was observed in KitW/W-v, 

mMCP4BMCMCsWBB6F1-KitW/W-v, and IL-10BMCMCsWBB6F1-KitW/W-v 

mice compare to WT and WT BMCMCs WBB6F1-KitW/W-v counterparts (Figure 4.5a). 

Associated with the ear thickening response, a high degree of damage was also observed 

in the ears of KitW/W-v, mMCP4BMCMCsWBB6F1-KitW/W-v, and IL-

10BMCMCsWBB6F1-KitW/W-v mice and this includes ulcerations and scabbing, 

particularly at the tips of the ears where the skin was most exposed to UVB (Figure 4.5b). 

On the contrary, minimal signs of damage was observed in the ears of WT and WT 

BMCMCs WBB6F1-KitW/W-v mice (Figure 4.5b). Coinciding with the in situ SCC 

findings, this observation further supports the protective functions of both mMCP4 and 

MC-IL-10 in response to chronic high-dose UVB. 

Due to the short wavelength of UVB, keratinocytes are typically the first layer of cells to 

be affected by chronic UVB exposure, leading to proliferation of keratinocytes and 

subsequent thickening of the epidermis320,324. Dermal MCs can secrete regulators of skin 

inflammation i.e. chymases and tryptases, therefore, we wanted to assess for any 

pathological changes in the epidermis associated with the lack of MCs or mMCP4, due 

to the significant degree of gross damage observed in the ears of KitW/W-v, and 

mMCP4BMCMCsWBB6F1-KitW/W-v mice (Figure 4.5b).  Epidermal thickness of 

the UVB-treated ears was measured from Toluidine blue stained sections (Figure 4.6). 

After 25 exposures of chronic UVB, an overall increase in thickening of the epidermis 

was observed in all groups of mice. Notably, KitW/W-v mice that lacked MCs or mMCP4 

showed significantly more epidermal thickening in the ears compared to WT and WT 

BMCMCs WBB6F1-KitW/W-v counterparts, particularly after 12 and 25 exposures. 

Whilst after 5 exposures, the lack of mMCP4 did not seem to influence epidermal 

thickening compared to KitW/W-v mice (Figure 4.7). 

Similar to the observation in the KitW/W-v mice, the ear thickening response from Tyrc-2j-

mMCP4 compared to Tyrc-2j-WT mice showed small, but no significant differences 

after 25 exposures at 8 kJ/m2 but a peak response in Tyrc-2j-mMCP4was observed after 

the 5 exposures (Figure 4.8a). Furthermore, a similar degree of gross damage was 

observed in both Tyrc-2j-WT and Tyrc-2j-mMCP4mice (Figure 4.8b). 

Prior to usage of the non-pigmented Tyrc-2j mice, pigmented B6-mMCP4mice were 

also applied to the same chronic high-dose UVB irradiation regime to attempt to confirm 



Figure 4.5. Mast cells, mMCP4, and MC-IL-10 protect and

limit exacerbated ear thickening and skin pathology responses

following chronic high-dose UVB irradiation (A) WT, WBB6F1-

KitW/W-v, WT BMCMCWBB6F1-KitW/W-v, mMCP4-/-

BMCMCWBB6F1-KitW/W-v, and IL-10-/- BMCMCWBB6F1-

KitW/W-v mice were exposed to chronic high-doses of UVB (12 x 4

kJ/m2 +13 x 8 kJ/m2) every 2 days for a total of 25 exposures

(cumulative dose 152 kJ/m2). Data represented as mean + SEM

from 4-8 independent experiments. 2-WAY ANOVA *p<0.05,

**p<0.01, ***p<0.001 for the indicated comparisons. (B)

Representative Images of gross ear pathology after 25 exposures of

chronic UVB irradiation.
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Figure 4.6. Toluidine blue stained-cross sections of UVB-treated

engrafted-WBB6F1-KitW/W-v mice (A) Representative images of

Toluidine blue stained-cross sections of untreated (no UVB) and

UVB-treated ears from WT, WBB6F1-KitW/W-v, WT

BMCMCWBB6F1-KitW/W-v, mMCP4-/- BMCMCWBB6F1-

KitW/W-v, and IL-10-/- BMCMCWBB6F1-KitW/W-v mice at 24

hours after the final exposure to 4 kJ/m2 (12 exposures) and 4 + 8

kJ/m2 (25 exposures). Scale bar: 600 mm; inset: 2 mm; Red arrows

indicate mast cells. Images were taken on an Nanozoomer

Technology microscope and visualised using Nanozoomer Digital

Pathology software.
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Figure 4.7. MCs and mMCP4 are important in regulating

epidermal thickening when exposed to chronic UVB irradiation

Epidermal thickness was measured in cross sections of ear skin

obtained from WT, WBB6F1-KitW/W-v, WT BMCMCWBB6F1-

KitW/W-v and mMCP4-/- BMCMCWBB6F1-KitW/W-v mice at 24

hours after the final exposure to 4 kJ/m2 (5 and 12 exposures) and

8 kJ/m2 (25 exposures). Images were taken on an Nanozoomer

Technology microscope and epidermal thickness was quantified

using Nanozoomer Digital Pathology software. Data are

represented as mean + SEM from 2-3 independent experiments. 1-

Way ANOVA with Bonferroni’s post-test . *p<0.05. **p<0.01,

***p<0.001.
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Figure 4.8. UVB-induced ear thickening response of pigmented

and non-pigmented mMCP4-/- mice. (A) Ear thickness responses

were measured from pigmented and non-pigmented WT and

mMCP4-/- mice that were exposed to UVB every 2 days for a total

of 25 (12 x 4 kJ/m2 +13 x 8 kJ/m2) exposures (cumulative dose 152

kJ/m2). Data are represented as mean + SEM from 1-3 experiments.

(B) Representative Images of gross ear pathology after 25

exposures of chronic UVB irradiation.
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the importance of mMCP4 as observed in KitW/W-v mice. However, the ear thickening 

response of these mice (<~0.2 mm) was greatly reduced compared to non-pigmented Tyrc-

2j mice (<~0.75 mm) throughout 25 exposures to UVB. More importantly, no difference 

in the ear thickening response was observed in the absence of mMCP4 compared to WT 

mice (Figure 4.8a). Hence, we extended the UVB irradiation regime to 70 exposures 

(cumulative dose: 502 kJ/m2) in attempt to assess any further differences in the absence 

of mMCP4. However, at the end of 70 exposures, the ear thickening response in these 

mice remains minimal despite a slight overall increase and no difference was observed 

between genotypes (Figure 4.9). Notably, no difference in MC number was observed 

between genotypes either (Figure 4.10). At the epidermal level, Toluidine blue stained 

ear sections showed no difference in epidermal thickness in the absence of mMCP4 in 

both pigmented B6 and non-pigmented Tyrc-2j mice (Figure 4.11a, b and 4.12a, b). 

4.2.3 Increasesing mMCP4 protein expression following chronic UVB irradiation 

To confirm mMCP4 expression was absent in KitW/W-v and 

mMCP4BMCMCsWBB6F1-KitW/W-v mice throughout the UVB irradiation regime, 

QRT-PCR and western blotting analysis were utilised to measure the level of mMCP4 in 

the ears of mice. The analysis showed a complete absence of mMCP4 mRNA and protein 

in the ears of KitW/W-v and mMCP4BMCMCsWBB6F1-KitW/W-v mice both before and 

after UVB irradiation. Elevated levels of mMCP4 protein was observed in WT and WT 

BMCMCsWBB6F1-KitW/W-v mice, despite a decrease in mRNA as suggested by QRT-

PCR (Figure 4.13a and 4.14a). Similar observations were also made in both pigmented 

B6 and non-pigmented Tyrc-2j mice, except no change was observed in the level of 

mMCP4 protein in Tyrc-2j-WT following exposure to UVB (Figure 4.13b, c and 4.14b). 

4.3 Discussion 

It is well known that exposure to UVB not only results in recruitment of MC into the 

dermis in both human and mice406-408, at the site of UVB exposure, MCs are also indirectly 

activated by UVB-induced mediators such as nerve growth factor and cis-UCA360,361.  

MCs were initially thought to be primarily pro-inflammatory and pro-carcinogenic in 

response to exogenous environmental agents such as UV irradiation409. For example, a 

study by Starkey et al., showed that when the  MC-deficient KitW/W-v mice were either 

systemically or locally engrafted with B16-BL6 murine melanoma cells, these mice 



Figure 4.9. Extended chronic UVB irradiation regime has no

affect on pigmented B6-WT and B6-mMCP4-/- ear thickening

response. Ear thickness responses were measured from pigmented

B6-WT and B6-mMCP4-/- mice that were exposed to chronic high-

doses of UVB every 2 days for a total of 70 exposures (12 x 4

kJ/m2 + 8 x 58 kJ/m2; cumulative dose 506 kJ/m2). Data are

represented as mean + SEM from 2-3 experiments.
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Figure 4.10. Mast cells numbers do not change in the absence of

mMCP4 in response to chronic UVB irradiation. Mast cell

numbers were quantified from Toluidine blue stained cross sections

of the ear pinnae of untreated and UVB-treated non-pigmented B6,

WT and mMCP4-/- mice (5, 12 [at 4 kJ/m2] and 25 exposures [at 8

kJ/m2]). Mast cell counts were normalised to length of the

cartilage. Data represented as median from 2-3 experiments.

Images were taken on an Nanozoomer Technology microscope and

visualised using Nanozoomer Digital Pathology software.



Figure 4.11. Toluidine blue stained-cross sections of pigmented

B6 and non-pigmented Tyrc-2j mice following chronic UVB

exposure (A) Representative images of Toluidine blue stained

cross-sections of untreated (no UVB) and UVB-treated ears from

pigmented B6-WT and B6-mMCP4-/- mice at 24 h after the final

exposure to 4 kJ/m2 (5 and 12 exposures) and 8 kJ/m2 (25 and 70

exposures). (B) Representative images of Toluidine blue stained-

cross sections of untreated (no UVB) and UVB-treated ears from

non-pigmented Tyrc-2j-WT and Tyrc-2j-mMCP4-/- at 24 h after the

final exposure to 4 kJ/m2 (5 and 12 exposures) and 8 kJ/m2 (25

exposures). Scale bar: 600 mm; inset: 2 mm. All Images were

taken on an Nanozoomer Technology microscope and digitised

using Nanozoomer Technology software.
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Figure 4.12. Absence of mMCP4 does not contribute to

exacerbated epidermal thickening in pigmented B6 and non-

pigmented Tyrc-2j mice (A) Epidermal thickness was measured from

Toluidine blue stained-cross sections of ears from untreated and UVB-

treated pigmented B6 and (B) non-pigmented Tyrc-2j, WT and mMCP4-

/- mice at 24 h after the final exposure to 4 kJ/m2 (5 and 12 exposures)

and 8 kJ/m2 (25 [and 70 exposures for pigmented mice]). Scale bar:

600 mm; inset: 2 mm. All Images were taken on an Nanozoomer

Technology microscope and epidermal thickness was quantified using

Nanozoomer Technology software. Data are represented as mean +

SEM from 2-3 experiments.



Figure 4.13. Real time qPCR to confirm the presence of mMCP4

mRNA expression in WBB6F1-KitW/W-v, mMCP4-/-

BMCMCWBB6F1-KitW/W-v, as well as pigmented and non-

pigmented mMCP4-/- mice (A) RNA generated from untreated and

UVB-treated ear tissues of WT, WBB6F1-KitW/W-v, WT

BMCMCWBB6F1-KitW/W-v and mMCP4-/- BMCMCWBB6F1-

KitW/W-v mice were used to determine the relative mRNA expression

of mMCP4 at 0 and 25 exposures. Data are represented as mean +

SEM from 1 experiment. (n=3 mice/genotype). (B) RNA generated

from untreated and UVB-treated ear tissues of pigmented B6-WT

and B6-mMCP4-/- mice were used to determine the relative mRNA

expression of mMCP4 after 0, 25 and 70 exposures of chronic UVB.

Data are represented as mean + SEM from 1 experiment. (n=3

mice/genotype). (C) RNA generated from untreated and UVB-

treated ear tissues of non-pigmented Tyrc-2j-WT and Tyrc-2j-mMCP4-

/- mice were used to determine the relative mRNA expression of

mMCP4 at 0 and 25 exposures of chronic UVB. Data are

represented as mean + SEM from 1 experiment. (n=3

mice/genotype). All relative mMCP4 mRNA expression were

quantitated by qRT-PCR and normalised to the expression of mouse

GAPDH housekeeping gene. Relative expression was assessed using

Rotorgene software using the comparative quantitation method.

N.D.: not detected
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Figure 4.14. Western blotting analysis to confirm the presence of

mMCP4 protein in WBB6F1-KitW/W-v, mMCP4-/- BMCMCWBB6F1-

KitW/W-v, as well as non-pigmented mMCP4-/- mice (A) Representative

immunoblot of endogenous mMCP4 protein expression was performed on

untreated (No UVB) and UVB-treated ear tissue lysates from WT,

WBB6F1-KitW/W-v, WT BMCMCWBB6F1-KitW/W-v and mMCP4-/-

BMCMCWBB6F1-KitW/W-v mice. Lane (1-4); 1) WBB6F1-Kit+/+ (WT),

2) WBB6F1-KitW/W-v 3) WT BMCMCWBB6F1-KitW/W-v 4) mMCP4-/-

BMCMCWBB6F1-KitW/W-v. (B) Representative immunoblot of

endogenous mMCP4 protein expression was performed on untreated (No

UVB) and UVB-treated ear tissue lysates from Tyrc-2j-WT and Tyrc-2j-

mMCP4-/- mice.
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showed enhanced macroscopic angiogenic responses and higher levels of spontaneous 

lung metastasis, compared to the animals into which MCs were reconstituted232. 

Clinically, in many cases, the number of mast cells has been correlated with disease 

progression and poor patient survival230,342,410.   

On the other hand, more evidence is emerging to suggest a potential protective role of 

MCs in skin cancers. For example, lower number of mast cells has been reported in 

melanoma compared to benign nevi411. A recent study by Siiskonen et al., also reported 

an association between reduced numbers of tryptase+ and chymase+ mast cells and poor 

patient survival and advanced tumour stage in melanoma412. In a model of chemical-

induced skin carcinogenesis, MC-deficient KitW/W-v mice engrafted with ex vivo-derived 

WT BMCMCs were able to curtail and control tumour growth and development 

compared to MC-deficient KitW/W-v mice when chemical carcinogens TPA and DMBA 

were topically applied to shaven back skin6.  

The regulatory effects of MCs are typically facilitated through release of MC-specific 

mediators. Following the UV-induced recruitment and activation, MCs can release 

mediators such as histamine, which is an important rate-limiting step in UV-induced  

immunosuppression105,413. Studies have shown that histamine can alter the function of 

cutaneous dendritic cells to adopt an immune suppressive phenotype which can suppress 

Th1-mediated anti-tumour responses414. In addition, histamine can also promote host anti-

tumour immune response through regulating the proliferation and cytokine profile of T 

lymphocytes residing in skin draining lymph nodes415.  MCs are also recognised as a 

major source of TNFα which is known to be present at high levels in UVB-exposed skin 

366. TNFα is known to be immunosuppressive due its ability to induce epidermal 

Langerhan cell migration to skin draining lymph nodes and mediate activation of IL-4-

producing regulatory NKT cells416,417. Interestingly, TNFα has also been suggested to 

modulate anti-tumour immune responses in human melanoma and non-melanoma skin 

tumours418. 

Our previous study also demonstrated the ability of MC-IL-10 in limiting UVB-induced 

inflammation and skin pathology following exposure to chronic low dose UVB 

irradiation. In response to chronic low-dose UVB, both MC-deficient KitW/W-v and IL-

10BMCMCsWBB6F1-KitW/W-v mice not only showed greater degree of skin 

pathology, including epidermal hyperplasia and ulceration, compared to WT and WT 
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BMCMCsWBB6F1-KitW/W-v mice, but also demonstrated a reduction in inflammatory 

cell infiltration (including granulocytes, macrophages, CD4+ and CD8+ T cells, as well as 

CD25+Foxp3+ Treg cells) as well as reduced release of pro-inflammatory cytokines (IL-

6, TNFα, and IL-4)8,9.  

Using the same model, our preliminary study identified mMCP4 as a novel MC-mediator 

that could exhibit protective properties against chronic low-dose UVB-induced ear 

thickening response at a similar level as MC-IL-10. In this chapter, we sought to 

investigate if mMCP4 could retain this protective function in a chronic high-dose UVB 

irradiation setting, and protect against development of UVB-induced skin carcinogenesis.  

As shown by H&E staining (Figure 4.1), our data confirmed that both MC-IL-10 and 

mMCP4 were able to retain their protective function even in response to chronic high-

dose UVB irradiation, and were shown to significantly limit development and progression 

of UVB-induced in situ SCCs. More importantly, utilising global mMCP4 knock-out 

mice (non-pigmented Tyrc-2j background), this protective role of mMCP4 was further 

confirmed where Tyrc-2j-mMCP4mice not only displayed higher rates of full-thickness 

epidermal necrosis indicating exacerbated inflammation of the epidermis, but more 

importantly mice lacking mMCP4 showed an earlier onset of in situ SCCs compared to 

the WT counterparts (Figure 4.3, Table 4.1). This is the first evidence so far showing 

mMCP4 as a novel MC-derived mediator that is able to limit development of UVB-

induced skin carcinogenesis. Interestingly, we did observe a temporary downregulation 

of full-thickness epidermal necrosis after 12 exposures. This could be due to expression 

of the anti-inflammatory mediator IL-10, which we know is also capable of dampening 

inflammatory responses when exposed to chronic UVB.  

Exposure to UVB irradiation is known to induce inflammation of the skin which can 

eventually lead to subsequent tumour development. Hence ear thickening response as 

well as gross pathological changes in the ears were also assessed throughout the UVB 

irradiation regime. As demonstrated in Figure 4.5, following UVB irradiation, KitW/W-v 

and mMCP4BMCMCsWBB6F1-KitW/W-v, and IL-10BMCMCsWBB6F1-

KitW/W-v all exhibited significantly more exacerbated ear thickening response and gross 

damage to the ears compared to WT and WT BMCMCsWBB6F1-KitW/W-v counterparts, 

further confirming the importance of mMCP4 as well as MC-IL-10 in protection against 
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UVB-induced skin pathology as well as precursor characteristics that can lead to ultimate 

skin carcinogenesis in response to chronic high-dose UVB settings.  

It is worth noting that the level of ear thickening in KitW/W-v and IL-

10BMCMCsWBB6F1-KitW/W-v were identical, confirming MC-IL-10 as a crucial 

negative mediator in this setting. However, in comparison, the ear thickening response of 

mMCP4BMCMCsWBB6F1-KitW/W-v mice were slightly lower, suggesting a 

compensatory protective effect by other anti-inflammatory MC mediators including MC-

IL-10, was playing a role. In addition, other MC-specific proteases may also compensate 

for the loss of mMCP4 and elicit their own protective roles. Tryptase for instance, has 

been demonstrated to be a regulator of skin inflammation by targeting chemokines 

(RANTES and eotaxin)419, neuropeptides (CGRP)420 and matrix metalloproteinases 

(MMP-3 and MMP-13)421. A recent study by Siiskonen et al., also reported a tryptase+ 

human MCs to be protective in advanced stage melanomas and associated with limiting 

the metastatic spread of cancer cells412.  

Photocarcinogenesis can also be characterised by an inhibition of apoptosis coinciding 

with an enhancement of cell proliferation276,422. This inhibition of apoptosis is known to 

occur through the loss of expression of the apoptotic Fas-ligand during UV-induced 

irradiation, which leads to hyperproliferation of keratinocytes, leading to thickening of 

the epidermis275,276. It has been shown that as keratinocytes become hyperproliferative in 

response to chronic UVB exposure, these cells begin to accumulate p53 mutations which 

could eventually lead to carcinogenesis264.  However, epidermial thickening could also 

assist in protecting against deleterious effects of UVB by preventing penetration of UVB 

rays into the dermal layer406. Measurement of epidermal thickness in engrafted-KitW/W-v 

mice demonstrated an increased level of epidermal thickening in KitW/W-v and 

mMCP4BMCMCsWBB6F1-KitW/W-v, compared to the WT and WT 

BMCMCsWBB6F1-KitW/W-v counterparts (Figure 4.7), further confirming the 

importance of mMCP4 in protecting against precursor characteristics in the UVB-

damaged skin which could eventually lead to development of in situ SCCs (Figure 4.1). 

However, it is important to note that this epidermal thickening associated with the lack of 

mMCP4 could either be a compensatory defensive mechanism, or an exacerbated 

response which eventually contributes to the development of in situ SCCs observed in 

these mice.  
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Interestingly, in the absence of global mMCP4 (non-pigmented Tyrc-2j background), no 

significant difference was observed in ear thickening response, gross pathology, or 

epidermal thickening throughout the UVB irradiation regime even though these mice 

have an earlier onset of in situ SCCs (Figure 4.8, 4.11b, 4.12b). The non-pigmented B6-

Tyrc-2j mice are known to be of different genetic background compared to the KitW/W-v 

mice (WB/ReJ×C57BL/6)174, this may explain the variation observed between the two 

models. Note that the ear and epidermal thickening responses are the only other 

pathological parameters measured to assess the protective function of mMCP4 in this 

chapter. It is likely that mMCP4 may be involved more so in other pathways that can 

contribute to UVB-induced skin carcinogenesis in these mice. 

Initially, the pigmented B6-mMCP4 mice were also applied to the same UVB 

irradiation regime in order to recapitulate the protective function of mMCP4 as observed 

in the engrafted-KitW/W-v mice. However, as shown in Figures 4.9, 4.11a and 4.12a , the 

B6 mice not only exhibited a significantly dampened ear thickening response compared 

to that observed in both KitW/W-v and B6-Tyrc-2j mice, in addition, no difference was 

observed in ear thickening response and epidermal thickening was observed even after an 

extended chronic UVB irradiation regime (70 exposures). Notably, an increased 

darkening of the ears of all mice were observed throughout the UVB irradiation regime, 

indicating an overall increase in pigmentation following exposure to UVB. These 

observations confirm the potent protective effect against UVB-associated skin pathology 

by pigmentation of the skin313,423. Interestingly, a study by Byrne and Sarchio showed 

that chronic solar simulated UV exposure could promote SCC formation on shaven back 

skin of pigmented B6 mice54,424. It is likely that this discrepancy between our current 

study (ears) and the observation by Byrne and Sarchio (back skin) is due to the difference 

in anatomical location, tissue composition but also spectra composition.     

MC counts were performed on the ear sections in order to confirm the successful 

BMCMC engraftment into the ears of KitW/W-v mice, and to determine whether a 

difference in MC number contributes to pathologies observed in response chronic UVB 

irradiation. As shown by Figure 4.2, no difference in MC number was observed between 

WT BMCMCsWBB6F1-KitW/W-v, mMCP4BMCMCsWBB6F1-KitW/W-v, and IL-

10BMCMCsWBB6F1-KitW/W-v throughout UVB irradiation regime, confirming that 

the protective function of these negative mediators is the main contributor to prevent the 
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development of skin carcinogenesis in this setting. This is also further supported in the 

non-pigmented B6-Tyrc-2j mice (Figure 4.4). 

An additional noteworthy observation is the increase in MC number in KitW/W-v mice over 

25 exposures to UVB.  This increase could be due to the high dosages of chronic UVB 

used, which could activate pathways that are able promote the proliferation of MCPs 

present at low numbers in the bone marrow of KitW/W-v mice174. It is also possible that in 

response to chronic UVB, MCPs could also be recruited by mediators such as CCL240,41 

and TNFα51 and proliferate locally in response to growth factors such as IL-3425. Note 

that it is rather unlikely that the c-kit/SCF pathway is being utilised in this context, since 

the mutations generated in the c-kit receptor is known to significantly reduce tyrosine 

kinase signalling and subsequently perturb its ability to promote MC proliferation426.  

Interestingly, an increased level of mMCP4 protein was detected in both WT and WT 

BMCMCsWBB6F1-KitW/W-v mice following 25 exposures of UVB, suggesting a 

protective function of mMCP4 in the chronic UVB setting (Figure 4.14a). Notably, no 

difference in mMCP4 protein was seen in Tyrc-2j-WT mice following UVB irradiation 

(Figure 4.14b), this corresponds to less potent protective function of mMCP4 observed 

in the Tyrc-2j mouse model under UVB setting. It is likely that in the Tyrc-2j-WT mice, at 

the end of 25 UVB exposures, the level of damage has surpassed the protective function 

of mMCP4, this is supported by the similar level of in situ SCC development between 

Tyrc-2j-WT and Tyrc-2j-mMCP4mice at this time point (Figure 4.3). 

To summarise, results in this chapter has demonstrated for the first time that mMCP4 is 

a novel MC-derived mediator which is able to elicit protective functions against chronic 

high-dose UVB-induced skin carcinogenesis. However, the mechanism of how mMCP4 

exert this function remains unclear. Since mMCP4 is known to degrade and in some cases 

activate various substrates, it is likely that via targeting its known and unknown substrates, 

mMCP4 is able to regulate many pathways that could be attributable to the development 

of cancer.  
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Chapter 5  

 

CHARACTERISING THE 

ROLE OF mMCP4 IN THE 

BLOOD AND LYMPHATIC 

VASCULATURE 

FOLLOWING CHRONIC UVB 

IRRADIATION 
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5.1 Introduction 

As we have demonstrated in chapter 4, MCs and mMCP4 are critical in limiting the UVB-

induced skin associated hallmark pathology that can lead to subsequent in situ SCC 

development. The initial findings based on gross pathological changes utilising engrafted-

WBB6F1–KitW/W-v mice suggest that MCs and mMCP4 may have a role in regulating 

UVB-induced skin pathology but the mechanistic role of mMCP4 in chronic UVB-

induced skin tumourigenesis is still not clearly defined as the pathological changes 

between the pigmented B6-mMCP4 and non-pigmented Tyrc-2j-mMCP4 mice were 

not necessarily consistent with the observations in engrafted-WBB6F1–KitW/W-v mice. 

However, previous studies have demonstrated mMCP4 to target extracellular matrix 

components7,384 and to be vital for homeostatic tissue remodelling194. Therefore, it is 

likely that mMCP4 may be more critical in the underlying pathology where its direct or 

indirect involvement in other pathways could lead to the changes in the tissue architecture 

and subsequent development of in situ SCCs that we observed in Chapter 4. 

The stepping stones to tumourigenesis are typically associated with the attainment of 

multiple hallmark features which are extensively reviewed by Hanahan and Weinburg’s 

“Hallmarks of Cancer” and “Hallmarks of cancer: the next generation”225,427. Exposure 

to the carcinogenic environmental factor UVB can influence many of the pathways 

reviewed by Hanahan and Weinburg, which include promoting DNA damage320,401, 

pathological angiogenesis346,347, evasion of apoptosis276, immunosuppression309,367 and 

chronic inflammation225,428. Ultimately, attaining these traits is required to convert normal 

cells to a tumourigenic state which eventually becomes malignant.  

Of all of the hallmark features, the angiogenic and lymphangiogenic response in 

tumourigenesis is one of the major critical stepping stones429-431. The blood and lymphatic 

vasculature are indispensable for skin homeostasis and play key roles in inflammation. 

Blood vessels promote inflammation by allowing extravasation of leukocytes and plasma 

proteins to sites of inflammation, hence, leading to an overall increase interstitial fluid432. 

Subsequently, this increase in interstitial fluid at the site of inflammation leads to the 

opening of lymphatic capillaries, allowing the entry of inflammatory cell infiltrate and 

plasma proteins which drain to local lymph nodes and further promote or modulate the 

inflammatory response; this includes the induction of the adaptive immune response336,433. 

There has been a growing interest in the blood and lymphatic vasculature due to their 
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dysfunctional and aberrant characteristics in many inflammatory disorders including 

asthma (allergic airway inflammation)434, lymphedema435, rheumatoid arthritis436 and 

more importantly, for the purpose of this study, tumourigenesis and metastasis354,437,438.  

As demonstrated in Chapter 4, chronic UVB exposure can promote ulceration, necrosis 

and scabbing, and underlying features including degradation of ECM components, 

elastosis, epidermal hyperplasia, erythema, vascular hyperpermeability and oedema 

formation353. UVB exposure is also known to cause an angiogenic switch whereby a 

pronounced increase in angiogenesis is observed in the skin of humans and mice through 

the up-regulation of angiogenic factors, particularly VEGF-A346,368,439, but also other 

factors including fibroblast growth factor (FGF)2440 and IL-8441. Moreover, UVB 

exposure also down-regulates the potent anti-angiogenic factor thrombospondin (TSP-

1)368,442, suggesting that blood vessels play a critical role in mediation of UVB-induced 

cutaneous damage.  

The roles of lymphatic vessels in acute and chronic UVB settings have only begun to 

surface with the availability of new lymphatic vessel markers such as Prox-1443, LYVE-

1444 and podoplanin445. In addition to well established roles in angiogenesis, reports also 

suggest that VEGF-A can induce inflammatory lymphangiogenesis. It is thought that the 

lymphatic vessels induced by VEGF-A are dysfunctional and unable to resolve the 

inflammatory response induced by both acute and chronic UVB exposure353.  In contrast, 

VEGF-C and VEGF-D-mediated lymphangiogenesis is crucial in resolving UVB-

induced inflammation of the skin356. The processes of angiogenesis and 

lymphangiogenesis are under strict regulatory control, based on a fine balance of positive 

(VEGF-A, VEGF-C, VEGF-D, FGF-2, PDGFBB)336,341,410 and negative 

(thrombospondin-1446, endostatin447, angiostatin448) mediators. Aberrant angiogenesis 

and lymphangiogenesis contribute to a range of pathologies. MCs are typically in close 

proximity to the vasculature and are known to play crucial roles in the angiogenic 

response by releasing angiogenic factors including VEGF358, IL-8344 and basic fibroblast 

growth factor (bFGF)449. However, the adverse effects of UVB exposure on both the 

blood and lymphatic vasculature, and the role of MCs in these processes is still yet to be 

clearly defined. For this part of the study, the effects of MCs and mMCP4 on the blood 

and lymphatic vasculature following chronic UVB exposure were assessed.  
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5.2 Results 

5.2.1 MCs and mMCP4 are important in regulating blood and lymphatic vasculature 

in WBB6F1-KitW/W-v mice in response to chronic UVB irradiation.  

To assess the effects on the blood and lymphatic vasculature following UVB irradiation, 

triple immunofluorescence staining was conducted on frozen cryosections from 

engrafted-WBB6F1-KitW/W-v mice, utilising the pan-vascular endothelial cell marker, 

CD31 (PECAM1), vascular smooth muscle cell marker α-smooth muscle actin (SMA) 

and the lymphatic specific hyaluronan receptor marker (LYVE-1).  

At baseline, the blood vasculature (CD31+SMA- and CD31+SMA+ vessels) and lymphatic 

vasculature (CD31+LYVE1+ vessels) in the ears of WT, KitW/W-v, WT 

BMCMCsWBB6F1–KitW/W-v and mMCP4BMCMCsWBB6F1–KitW/W-v mice 

appeared morphologically normal. However, after exposure to chronic UVB, both blood 

vessels and lymphatic vessels appeared more irregular and enlarged/dilated in the ears of 

all groups of mice (Figure 5.1a). Quantification of vessel number demonstrated an overall 

increase in the number of total and dilated blood and lymphatic vessels in the ears of all 

groups of mice, suggesting chronic UVB exposure is promoting an angiogenic and 

lymphangiogenic response (Figure 5.1b, c and 5.1e, f).

After 5 exposures of chronic UVB, an overall increase in the number of total and dilated 

blood vessels was observed in the ears of all groups of mice, but no differences could be 

seen between all genotypes. It is noteworthy to point out that the increase in vessel 

number was more pronounced in the mice that lacked pigment compared to the pigmented 

WT mice (Figure 5.1b, c). 

After 12 and 25 exposures of chronic UVB, a significant increase in the number of total 

blood vessels was observed in the ears of KitW/W-v compared to their WT counterparts. A 

significant increase in the number of total blood vessels was also seen in mMCP4 

BMCMCsWBB6F1–KitW/W-v mice compared to WT BMCMCsWBB6F1–KitW/W-v 

mice following 12 exposures. Whilst this increase was not significant after 25 exposures, 

a trend was observed (Figure 5.1b). The number of dilated blood vessels also appeared 

to be significantly greater in the ears of KitW/W-v and mMCP4
WBB6F1–KitW/W-v mice 

compared to their WT counterparts after 12 and 25 exposures of chronic UVB (Figure 

5.1c). 



Figure 5.1 (A) Mice deficient of MCs and mMCP4 exhibit

pronounced morphological changes in lymphatic or blood vessels

when exposed to chronic high level doses of UVB. Representative

confocal images demonstrating immunofluorescence staining of

lymphatic vessels (CD31+/LYVE-1+) and blood vessels (CD31+/SMA+

or CD31+/SMA-) in UVB-treated (12 x 4 kJ/m2 and 12 x 4 kJ/m2 + 13

x 8 kJ/m2) ears of WT, WBB6F1-KitW/W-v and KitW/W-v engrafted with

WT and mMCP4-/- BMCMCs. Scale bar = 100 μm. Red arrow heads;

lymphatic vessels with distinct lumen (dilated/enlarged)

(CD31+/LYVE-1+). (B) Blood vessels that were CD31+ or

CD31+/SMA+ were counted and quantified per field of view. (C)

Vessels that were CD31+ or CD31+/SMA+ that displayed a distinct

enlarged lumen were counted and quantified per field of view. (D) The

area of CD31+ and CD31+/SMA+ vessels that displayed a distinct

lumen were calculated using ImageJ. (E) Lymphatic vessels that were

CD31+LYVE-1+ were counted and quantified per field of view. (F)

CD31+LYVE-1+ Lymphatic vessels with a distinct lumen were counted

and quantified per field of view. (G) The area of CD31+LYVE-1+

vessels that displayed a distinct lumen were calculated using ImageJ.

All quantified vessels were assessed per field of view (639.5 x 639.5

μm); 18 images/mouse ear were assessed. All data represented as

Median ± range. Mann-Whitney U Test; *p<0.05, **p<0.01;

Compared to No UVB control #p<0.05, ##p<0.01. Data from 2-3

experiments (n=5-11 mice/genotype).
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In regards to the lymphatic vasculature, we made similar observations where a significant 

increase in the number of CD31+LYVE+ lymphatic vessels in the ears of KitW/W-v and 

mMCP4
WBB6F1–KitW/W-v mice was observed after 12 and 25 UVB exposures 

compared to their WT littermates (Figure 5.1e). Moreover, the number of dilated 

lymphatic vessels was also significantly higher in the ears of KitW/W-v and 

mMCP4BMCMCsWBB6F1–KitW/W-v mice compared to their WT counterparts after 

5 and 25 UVB exposures. A similar trend was also present after 12 exposures, although 

not statistically significant (Figure 5.1f).

The lumen area of the dilated blood and lymphatic vessels was also assessed. Overall, 

both types of dilated vessels showed a small increase in the lumen area in all groups of 

mice across the entire UVB regime, however, no differences could be seen between 

genotypes (Figure 5.1d, g). Taken together, the data generated from engrafted KitW/W-v 

mice suggests MCs and mMCP4 do appear to play a role in regulating the architecture 

and potentially function of the blood and lymphatic vasculature following UVB exposure. 

Additionally, the changes in the vasculature appear to be more pronounced in non-

pigmented mice compared to pigmented mice.   

5.2.2 The role of mMCP4 appears to be more critical in regulating lymphatic 

vasculature in pigmented B6-mMCP4 mice. 

As explained in Chapter 4, due to the phenotypic abnormalities present in WBB6F1–

KitW/W-v mice, we utilised pigmented B6-mMCP4 mice to ensure that any changes 

observed were based on the deficiency of MC populations and absence of mMCP4 and 

independent of the other phenotypic abnormalities arising from mutations in c-kit174. The 

changes in the blood and lymphatic vasculature in the absence of mMCP4 following 

chronic UVB irradiation were also assessed in these mice.  

Based on immunofluorescence analysis, at basal levels there were no distinct 

irregularities or changes in the morphological features of either blood vessels or 

lymphatic vessels in both B6-WT and B6-mMCP4 mice, similar to that observed in the 

engrafted KitW/W-v mice. Following exposure to UVB, enlargement of both blood vessels 

and lymphatic vessels was observed throughout the regime (Figure 5.2a).  

Quantification analysis revealed an overall increase in the number of total and dilated 

blood vessels following UVB exposure. However, the lumen area of dilated blood vessels 



Figure 5.2 (A) Pigmented B6-mMCP4-/- mice exhibit distinct

changes in morphological features of lymphatic vessels after an

extended chronic UVB regime. Representative confocal images

demonstrating immunofluorescence staining of lymphatic vessels

(CD31+/LYVE-1+) , blood vessels (CD31+/SMA+ or CD31+/SMA-) in

UVB-treated (5x4 kJ/m2, 12 x 4 kJ/m2 and 12 x 4 kJ/m2 + 13 x 8 kJ/m2

and 12 x 4 kJ/m2 + 58 x 8 kJ/m2 ) ears of B6-WT and B6-mMCP4-/-

mice. Scale bar = 100 μm. Red Arrow; lymphatic vessels with distinct

lumen (dilated/enlarged) (CD31+/LYVE-1+). (B) Blood vessels that

were CD31+ or CD31+/SMA+ were counted and quantified per field of

view. (C) CD31+ or CD31+/SMA+ Blood vessels that displayed a

distinct enlarged lumen were counted and quantified per field of view.

(D) The area of CD31+ and CD31+/SMA+ vessels that displayed a

distinct lumen were calculated using ImageJ. (E) Lymphatic vessels

that were CD31+LYVE-1+ were counted and quantified per field of

view. (F) CD31+LYVE-1+ Lymphatic vessels with a distinct lumen

were counted and quantified per field of view. (G) The area of

CD31+LYVE-1+ vessels that displayed a distinct lumen were

calculated using ImageJ. All quantified vessels were assessed per field

of view (639.5 x 639.5 μm); 18 images/mouse ear were assessed. All

data represented as Median ± range. Mann-Whitney U Test;

***p<0.001. Data from 2-3 experiments. (n=5-11 mice/genotype)
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show no distinct changes. More importantly, no differences was observed in these 

parameters between B6-WT and B6-mMCP4 mice (Figure 5.2b-d).  

In contrast, the number of total and dilated lymphatic vessels as well as lumen area of 

dilated vessels showed an increase across the chronic UVB regime in both B6-WT and 

B6-mMCP4 mice. Both the number of dilated lymphatics and lymphatic vessel lumen 

area were significantly increased in the absence of mMCP4 after 70 exposures (Figure 

5.2e-g).    

These data demonstrates that the impact of loss of mMCP4 on UVB-mediated effects on 

the lymphatic vasculature is consistent across mouse models. However, effects on the 

vasculature appeared to be more delayed in the pigmented B6-mice compared to non-

pigmented KitW/W-v mice. This is likely due to the presence of pigment, which can protect 

or limit some of the deleterious effects of UVB. Notably, although pigmentation has 

shielded the protective effect of mMCP4 at the gross pathological level as reported in 

Chapter 4, the protective effect on the underlying vasculature is still evident. 

5.2.3 The role of mMCP4 is critical in regulating lymphatic vasculature in non-

pigmented Tyrc-2j-mMCP4 mice. 

As the presence of pigment impacted our ability to optimally assess the function of 

mMCP4 in the vasculature of B6-WT and B6-mMCP4 mice, the effects of chronic UVB 

were assessed in non-pigmented Tyrc-2j-mMCP4 mice. Based on our standard protocol, 

the response to chronic UVB irradiation was measured 24 h post exposure8,9 and 

consistently the response to UVB irradiation in the skin has been reported to peak at 24 h 

following irradiation441. However, since mMCP4 is a pre-formed mediator found in MC 

dense granules, they are typically released through the process of degranulation, which is 

an innate immune response that normally occurs within an hour of stimulation5. In order 

to assess whether or not there were any differences in the kinetics of the response at earlier 

time points, changes in the vasculature 3 h post UVB irradiation were also assessed. 

At steady state, no irregularities or morphological changes were evident in  

Tyrc-2j-WT or Tyrc-2j-mMCP4 mice. Following UVB irradiation, an overall increase in 

the number of total and dilated blood and lymphatic vessels was observed (Figure 5.3b, 

c, e, f). Additionally, an increase in the lumen area of dilated lymphatic vessels was also 



Figure 5.3 (A) 3 hours after the final UVB exposure, non-

pigmented Tyrc-2j-WT and Tyrc-2j-mMCP4-/- mice show pronounced

changes in the architecture of blood and lymphatic vessels.

Representative confocal images demonstrating immunofluorescence

staining of lymphatic vessels (CD31+/LYVE-1+) and blood vessels

(CD31+/SMA+ or CD31+/SMA-) in UVB-treated (12 x 4 kJ/m2 and 12

x 4 kJ/m2 + 13 x 8 kJ/m2) ears of Tyrc-2j-WT and Tyrc-2j-mMCP4-/-

mice. Scale bar = 100 μm. Red Arrow; lymphatic vessels with distinct

lumen (dilated/enlarged). (B) Blood vessels that were CD31+ or

CD31+/SMA+ were counted and quantified per field of view. (C)

CD31+ or CD31+/SMA+ blood vessels that displayed a distinct

enlarged lumen were counted and quantified per field of view. (D) The

area of CD31+ and CD31+/SMA+ vessels that displayed a distinct

lumen were calculated using ImageJ. (E) Lymphatic vessels that were

CD31+LYVE-1+ were counted and quantified per field of view. (F)

CD31+LYVE-1+ Lymphatic vessels with a distinct lumen were counted

and quantified per field of view. (G) The area of CD31+LYVE-1+

vessels that displayed a distinct lumen were calculated using ImageJ.

All quantified vessels were assessed per field of view (639.5 x 639.5

μm); 18 images/mouse ear were assessed. All data represented as

Median ± range. Mann-Whitney U Test; ****p<0.001. Data from 1

experiment (n=4-7 mice/genotype).
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observed and a similar trend was seen in blood vessels within the first 5 exposures, except 

the lumen area was slightly reduced after 25 exposures (Figure 5.3d, g).  

Similar to the pigmented B6-mice, no changes were observed in the number of total and 

dilated blood vessels as well as the lumen area of dilated blood vessels between genotypes 

(Figure 5.3b-d). No changes were observed in the number of total or dilated lymphatic 

vessels in the absence of mMCP4 (Figure 5.3e, f). However, importantly, there was a 

significant increase in the lumen area of dilated lymphatic vessels in Tyrc-2j-mMCP4 

mice compared to WT counterparts at 5 and 25 exposures (Figure 5.3g).  

The same analysis was again carried out but 24 h post UVB irradiation. Again at baseline, 

no irregularities or morphological changes were evident in  

Tyrc-2j-WT or Tyrc-2j-mMCP4 mice. Following UVB irradiation, an increase in the 

number of total and dilated blood and lymphatic vessels was observed and the lumen 

areas of dilated blood and lymphatic vessels were elevated (Figure 5.4b-g).  

Interestingly, although not significant, an increase in the number of total and dilated blood 

vessels was observed in Tyrc-2j-mMCP4 mice compared to WT following UVB 

irradiation. The lumen area of dilated blood vessels was also increased in the absence of 

mMCP4 at 12 exposures (not significant) (Figure 5.4b-d). Similarly, in the absence of 

mMCP4, the total number of lymphatic vessels was not significantly elevated but an 

increasing trend could be observed when compared to WT mice after 12 and 25 exposures. 

Additionally, the number of dilated lymphatic vessels as well as the lumen area of dilated 

lymphatic vessels was increased (Figure 5.4e-g). It is important to note that the effect of 

mMCP4 on the vasculature appears to be more evident at 24 h post UVB irradiation 

compared to 3 h. 

In comparison to the observations in the pigmented B6-mMCP4 mouse model, in non-

pigmented mice, an effect of mMCP4 on the blood vasculature was also observed but the 

effects on lymphatic vasculature were more profound. This supports the hypothesis that 

pigmentation in the B6-mMCP4 mouse model is shielding the protective effect of 

mMCP4 in the UVB setting. Finally, based on the assessment of all three models, mMCP4 

appears to have intermediate roles in angiogenesis but a more pronounced impact on the 

lymphatic vasculature. 

 



Figure 5.4 (A) Non-pigmented Tyrc-2j-WT and Tyrc-2j-mMCP4-/-

mice exhibit similar morphological changes in blood and

lymphatic vasculature to engrafted-KitW/W-v mice following

chronic (24 hours-post final UVB) UVB irradiation.

Representative confocal images demonstrating immunofluorescence

staining of lymphatic vessels (CD31+/LYVE-1+) and blood vessels

(CD31+/SMA+ or CD31+/SMA-) in UVB-treated (12 x 4 kJ/m2 and 12

x 4 kJ/m2 + 13 x 8 kJ/m2) ears of Tyrc-2j-WT and Tyrc-2j-mMCP4-/-

mice. Scale bar = 100 μm. Red Arrow; lymphatic vessels with distinct

lumen (dilated/enlarged). (B) Blood vessels that were CD31+ or

CD31+/SMA+ were counted and quantified per field of view. (C)

CD31+ or CD31+/SMA+ blood vessels that were that displayed a

distinct enlarged lumen were counted and quantified per field of

view. (D) The area of CD31+ and CD31+/SMA+ vessels that displayed

a distinct lumen were calculated using ImageJ. (E) Lymphatic vessels

that were CD31+LYVE-1+ were counted and quantified per field of

view. (F) CD31+LYVE-1+ Lymphatic vessels with a distinct lumen

were counted and quantified per field of view. (G) The area of

CD31+LYVE-1+ vessels that displayed a distinct lumen were

calculated using ImageJ. All quantified vessels were assessed per

field of view (639.5 x 639.5 μm); 18 images/mouse ear were

assessed. All data represented as Median ± range. Mann-Whitney U

Test *p<0.05 **p<0.01 data from 1 experiment.
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5.2.4 Drainage of interstitial inflammatory fluid is mediated by mMCP4 following 

UVB exposure. 

Dilation of lymphatic vessels typically occurs in settings of inflammation and reflects 

elevated lymph flow450,451. Our findings suggest that the absence of mMCP4 results in 

significantly larger lumen areas of dilated lymphatic vessels. This may indicate that the 

loss of mMCP4 could promote or impair lymphatic drainage functions. To investigate 

this possibility, the functionality of lymphatic vessels in the ears of Tyrc-2j-WT and  

Tyrc-2j-mMCP4 mice was assessed by intradermal injection of 1% Evan’s blue dye into 

the ears after 5 exposures of chronic UVB irradiation. The dye was then allowed to drain 

from the UVB-treated ears to respective draining lymph nodes for 1 hr before the ears 

and their respective lymph nodes were harvested and the levels of Evan’s blue dye in 

these tissues measured by absorbance spectroscopy (610 nm absorbance); (normalised to 

tissue weight). 

Compared to Tyrc-2j-WT mice, Tyrc-2j-mMCP4 mice had significantly more dye 

retained in the ears while slightly less was detected in the lymph nodes (not significant) 

(Figure 5.5). This suggests that the lymphatic vessels in the ears of Tyrc-2j-mMCP4 

mice are potentially less efficient at draining inflammatory infiltrate and plasma proteins 

from the site of UVB-induced damage compared to Tyrc-2j-WT mice. 

5.2.5 The role of mMCP4 in regulating myeloid derived suppressor cell populations 

at the site of UVB damage.  

Based on our findings, the dilated lymphatic vessels following chronic UVB irradiation 

appeared to be dysfunctional, which might lead to lymphatic deficiency and the inability 

to efficiently drain inflammatory infiltrate from the site of UVB-induced inflammation. 

This suggests a potential mechanism to promote a pro-tumour microenvironment by the 

accumulation of dysregulated immune cell populations at the site of damage452. To 

address whether mMCP4-deficiency associated impairment of lymphatic vessel functions 

results in dysregulated accumulation of immune cell populations, the following 

populations were assessed by flow cytometric analysis: CD45 immune cells; CD3CD8 

T cells, CD3CD4 T cells, B220 B cells, CD25 FoxP3 Treg cells, NK1.1CD3 NKT 

cells and Gr-1 granulocytes; Gr1CD11b neutrophils, Gr-1CD11b macrophages and 

CD11b F4/80 GR-1 myeloid derived suppressor cells (MDSCs)453,454.  



Figure 5.5 (A) Tyrc-2j-mMCP4-/- mice exhibit dysfunctional

lymphatic drainage of Evan’s blue dye from the site of UVB

damage. To assess functionality of lymphatic vessels, 1% Evan’s blue

was interdermally injected into the ears of UVB-treated (5 exposures)

Tyrc-2j-WT and Tyrc-2j-mMCP4-/- mice (24 h post final UVB

irradiation). 1 h post injection, ears and draining lymph nodes were

recovered and the presence of Evan’s blue dye was assessed by

measuring absorbance values at 610 nm. Absorbance was normalised

to weight of tissue. Data shown from 2 independent experiments and

represented as median. Mann-Whitney U Test *p<0.05 (n=9-11

mice/genotype). (B) Representative images of demonstrating the

retainment of 1% Evan’s blue dye in the ears of UVB-treated Tyrc-2j-

WT and Tyrc-2j- mMCP4-/- mice.



Figure 5.5 (A) Tyrc-2j-mMCP4-/- mice exhibit dysfunctional

lymphatic drainage of Evan’s blue dye from the site of UVB

damage. To assess functionality of lymphatic vessels, 1% Evan’s blue

was interdermally injected into the ears of UVB-treated (5 exposures)

Tyrc-2j-WT and Tyrc-2j-mMCP4-/- mice (24 h post final UVB

irradiation). 1 h post injection, ears and draining lymph nodes were

recovered and the presence of Evan’s blue dye was assessed by

measuring absorbance values at 610 nm. Absorbance was normalised

to weight of tissue. Data shown from 2 independent experiments and

represented as median. Mann-Whitney U Test *p<0.05 (n=9-11

mice/genotype). (B) Representative images of demonstrating the

retainment of 1% Evan’s blue dye in the ears of UVB-treated Tyrc-2j-

WT and Tyrc-2j- mMCP4-/- mice.
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At baseline, no statistically significant differences between genotypes were observed in 

any of the immune cell populations analysed. Following UVB irradiation, an influx of all 

cell populations analysed was observed (Figure 5.6). No difference was observed 

between genotypes in most cell populations analysed except a slight increase in 

F4/80CD11bGr-1 myeloid-derived suppressor cells (Figure 5.6g; refer to 

Supplementary Figure S5.1 for flow plots). These data suggest that the absence of 

mMCP4 does not have a significant influence on regulating the trafficking of distinct 

immune cell populations.  

5.2.6 mMCP4 mediates UVB-induced hyperproliferation of lymphatic endothelial 

cells 

The enlargement of vessels can occur through two different mechanisms; one involves 

stretching of the lumen walls and the other is via the proliferation of endothelial cells455. 

To assess if the vessel distension we observed is due to hyperproliferative endothelial 

cells, mouse-derived endothelial cells were cultured with supernatant of BMCMCs that 

are stimulated with ear lysates of UVB-treated Tyrc-2j-WT and Tyrc-2j-mMCP4 mice (5 

exposures) and their proliferation was measured by MTS assay. However, no significant 

difference in proliferation status was observed in these endothelial cells (Figure 5.7a).  

We also assessed the proliferation of lymphatic vessels by staining frozen cryosections 

with the proliferation marker Ki67. Quantification analysis showed that after 5 exposures 

of chronic UVB, there were significantly more Ki67+ cells/enlarged lymphatic vessel in 

Tyrc-2j-mMCP4 mice compared to Tyrc-2j-WT mice (Figure 5.7b). These data suggest 

that increased proliferation of lymphatic endothelial cells results in the lymphatic vessel 

enlargement observed in mMCP4-deficient skin following UVB irradiation. To further to 

confirm this hypothesis, it will be ideal to examine whether blocking UVB-induced 

proliferation of LECs can induce failure of lymphatic vessel enlargement. 

5.2.7 mMCP4 regulates the neuropeptide vasoactive intestinal peptide, and 

potentially VEGF-A, but not VEGF-D   

As described earlier in this chapter, aberrant angiogenesis and lymphangiogenesis 

following exposure to chronic UVB irradiation were associated with the loss of mMCP4. 

In addition, hyperproliferation of endothelial cells was observed in the ears of UVB-

treated Tyrc-2j-mMCP4 mice, suggesting that there is a disrupted balance of positive 



Figure 5.6 Characterisation of cell populations in the ears of

Tyrc-2j-WT and Tyrc-2j-mMCP4-/- mice following chronic UVB

irradiation. (A) Following chronic UVB irradiation (25 exposures),

cell populations were extracted from the ears of Tyrc-2j-WT and Tyrc-2j-

mMCP4-/- mice by liberase digestion. Following extraction, specific

cell populations were assessed from both genotypes; (A) CD45+

immune cells, (B) CD4+ T cells, (C) CD8+ T cells, (D) B220+ B cells,

(E) NK1.1+ NKT cells, (F) CD25+FoxP3+ T regulatory cells, (G) Gr-1+

granulocytes, (H) F4/80+ macrophages or (I) F4/80+CD11b+Gr-1-

activated macrophages and (J) CD11b+Gr-1+F4/80- neutrophil and

MDSCs. Data from 2 independent experiments are represented as

median (n=6-11 mice/genotype).



CD45+ immune cells CD4+ T cells

CD8+ T cells B220+ B cells

NK1.1+ NKT cells CD25+ Foxp3+ T reg cells

C
e
lls

 r
e
c
o

v
e

re
d

 p
e

r 
e

a
r

C
e
lls

 r
e
c
o

v
e

re
d

 p
e

r 
e

a
r

C
e
lls

 r
e
c
o

v
e

re
d

 p
e

r 
e

a
r

Gr-1+ Granulocytes F4/80+ Macrophages

F4/80+ CD11b+ Gr-1-

activated macrophages
CD11b+Gr-1+F4/80-

Neutrophils and MDSCs

C
e
lls

 r
e
c
o

v
e

re
d

 p
e

r 
e

a
r

A B

C D

E F

G H

I J

Tyrc-2j-mMCP4-/-

Tyrc-2j-WT

0.0

0.4

0.8

1.2

1.6

R
e

la
ti

v
e

m
M

C
P

4
m

R
N

A

e
x

p
re

s
s

io
n

 (
+

S
E

M
)

Tyrc-2j-WT

Tyrc-2j-mMCP4-/-

*

0

200000

400000

600000

UVB -

0

20000

40000

60000

UVB -

0

2000

4000

6000

UVB -

0

20000

40000

60000

UVB -

0

10000

20000

30000

40000

UVB -
0

10000

20000

30000

40000

UVB -

0

1000

2000

3000

UVB -

C
e
lls

 r
e
c
o

v
e

re
d

 p
e

r 
e

a
r

0

1000

2000

3000

UVB -

0

25

50

75

UVB -
0

400

800

1200

UVB -

C
e
lls

 r
e
c
o

v
e

re
d

 p
e

r 
e

a
r



Figure 5.7 Absence of mMCP4 causes increasing number of Ki67+

lymphatic endothelial cells following UVB irradiation. (A) WT and

mMCP4-/- BMCMCs derived from non-pigmented B6-Tyrc-2j mice

were co-cultured and activated by UVB-treated ear lysates from Tyrc-

2j-WT and Tyrc-2j-mMCP4-/- mice (5 exposures). Supernatants were

collected and added to mouse lymphatic endothelial cells (LEC)s for a

period of 6 h. Following incubation, proliferation status of mLECs was

assessed by MTS assay. Data from 1 experiment is represented as

mean + SEM. (B) Proliferation status of lymphatic endothelial cells

was assessed by immunofluorescence staining of UVB-treated

cryosections from UVB-treated Tyrc-2j-WT and Tyrc-2j-mMCP4-/- mice

(5 exposures). Sections were stained with Ki67 proliferation marker

and counterstained with CD31, and CCL21 to detect lymphatic

vessels. Data from 1 experiment are represented as median. Mann

Whitney U test *p<0.05. (C) Representative confocal images taken

from 1 experiment.
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and negative mediators of vascular growth in these mice. The best characterised positive 

regulators of angiogenesis and lymphangiogenesis are VEGF-A, VEGF-C and VEGF-D. 

Hence we investigated the possibility that VEGF-A and VEGF-D are target substrates of 

mMCP4. VEGF-C is typically known to be involved in this pathway but based on our 

initial findings, no changes or differences in VEGF-C was observed in the absence of 

mMCP4 (data not shown). 

The levels of mRNA expression of VEGF-A and VEGF-D were investigated as these 

mediators are known to promote vascular proliferation and dilation under inflammatory 

conditions. We assessed mRNA expression of VEGF-A and VEGF-D from UVB-treated 

ear lysates from WT, KitW/W-v, WT BMCMCsWBB6F1–KitW/W-v and mMCP4 

BMCMCsWBB6F1–KitW/W-v mice and found that throughout all stages of the 

irradiation regime, the level of VEGF-A and –D mRNA expression remained unchanged, 

and no change was observed between genotypes (Figure 5.8a, b). We further investigated 

the level of VEGF-A and VEGF-D protein in ear lysates by ELISA. Based on ELISA 

analysis, VEGF-A levels increased in all genotypes except for WT over 25 exposures. 

Interestingly, at 5 exposures, mMCP4 BMCMCsWBB6F1–KitW/W-v mice appeared to 

have significantly higher levels of VEGF-A compared to not only WT 

BMCMCsWBB6F1–KitW/W-v but also WBB6F1–KitW/W-v mice (Figure 5.8c). In 

comparison to VEGF-A, VEGF-D levels were higher at baseline in all genotypes 

compared to UVB-treated mice over 25 exposures. Notably at 5 exposures, VEGF-D 

levels were significantly lower in mMCP4 BMCMCsWBB6F1–KitW/W-v mice 

compared to WT BMCMCsWBB6F1–KitW/W-v mice (Figure  5.8d).  

Similarly, in the pigmented B6-WT and B6-mMCP4 mice, no difference in mRNA 

expression of VEGF-A or VEGF-D was observed throughout the 70 exposures, except a 

higher level of VEGF-D mRNA expression in B6-mMCP4 mice at baseline (Figure 

5.9a, b). At the protein level, there is an overall increase of VEGF-A throughout 70 

exposures in both genotypes, whereas VEGF-D peaked at 5 exposures which eventually 

returned to basal levels at the end of 70 exposures. Similarly no differences were observed 

between genotypes in either VEGF-A or –D as shown by ELISA (Figure 5.9c, d).   

Similar to the other two models, no difference in mRNA expression of VEGF-A or 

VEGF-D was observed between genotypes (Figure 5.10a, b). At the protein level, there 

was an overall increase in VEGF-A observed in both genotypes throughout the UVB 



Figure 5.8 mMCP4 may have a potential role in regulating

VEGF-A protein in engrafted-KitW/W-v mice following UVB

irradiation. (A) Following UVB irradiation (5, 12 and 25 exposures),

vegfa and (B) vegfd mRNA expression was assessed by qRT-PCR

from ear lysates from WT, KitW/W-v, WT BMCMCsKitW/W-v and

mMCP4-/- BMCMCsKitW/W-v. Data from 1 experiment and

represented as mean (normalised to GAPDH) + SEM. (C) VEGF-A

and (D) VEGF-D protein was assessed by ELISA from ear lysates

derived from UVB-treated and no UVB-treated WT, KitW/W-v, WT

BMCMCsKitW/W-v and mMCP4-/- BMCMCsKitW/W-v. Data from

1 experiment and represented as mean (normalised to total protein) +

SEM. Student’s unpaired T-test, *p<0.05; compared to no UVB

control, #p<0.05, ##p<0.01, ###p<0.001
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Figure 5.9 The absence of mMCP4 does not influence relative

mRNA expression or protein expression of VEGF-A or VEGF-D in

pigmented B6 mice. (A) vegfa and (B) vegfd mRNA expression was

assessed by qRT-PCR from no UVB-treated and UVB-treated ear

lysates from B6-WT and B6-mMCP4-/- mice following an extended

chronic UVB irradiation regime (5, 12, 25 and 70 exposures). Data

from 1 experiment and represented as mean (normalised to GAPDH) +

SEM. After an extended chronic UVB regime, (C) VEGF-A and (D)

VEGF-D protein was assessed by ELISA from no UVB-treated and

UVB-treated ear lysates from B6-WT and B6-mMCP4-/- mice. Data

from 1 experiment are represented as mean (normalised to total

protein) + SEM.
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Figure 5.10 The absence of mMCP4 does not influence relative

mRNA expression or protein expression of VEGF-A or VEGF-D in

non-pigmented B6-Tyrc-2j mice. (A) vegfa and (B) vegfd mRNA

expression was assessed by qRT-PCR from no UVB-treated and UVB-

treated ear lysates from Tyrc-2j-WT and Tyrc-2j-mMCP4-/- mice

following 5 and 25 exposures. Data from 1 experiment and represented

as mean (normalised to GAPDH) + SEM. After exposing mice to

chronic UVB, (C) VEGF-A and (D) VEGF-D protein was assessed by

ELISA from no UVB-treated and UVB-treated ear lysates from Tyrc-2j-

WT and Tyrc-2j-mMCP4-/- mice. Data from 1 experiment are

represented as mean (normalised to total protein) + SEM.



A

B

C

D

R
e
la

ti
v
e

 v
e

g
fa

m
R

N
A

 

e
x
p

re
s
s
io

n

R
e
la

ti
v
e

 v
e

g
fd

m
R

N
A

 

e
x
p

re
s
s
io

n
V

E
G

F
-A

  
(p

g
/m

g
)

V
E

G
F

-D
  
(p

g
/m

g
)

Tyrc-2j-mMCP4-/-

Tyrc-2j-WT

0.0

0.4

0.8

1.2

1.6

R
e

la
ti

v
e

m
M

C
P

4
m

R
N

A

e
x

p
re

s
s

io
n

 (
+

S
E

M
)

Tyrc-2j-WT

Tyrc-2j-mMCP4-/-

*

0 5 25
0.0

0.5

1.0

1.5

2.0

0 5 25
0.0

0.5

1.0

1.5

2.0

0 5 25
0

20

40

60

80

0 5 25
0

50

100

150

200

250

Number of UVB exposures



107 
 

irradiation regime but not VEGF-D; and no difference was observed between genotypes. 

Interestingly, a slight increase (not significant) in VEGF-A was observed by ELISA in 

Tyrc-2j-mMCP4 mice (Figure 5.10c, d). Altogether, the data suggests that mMCP4 may 

potentially target VEGF-A, but not VEGF-D. 

mMCP4 has previously been shown to target and cleave to degrade the neuropeptide 

vasoactive intestinal peptide (VIP), which has been reported to cause toxicity especially 

at high concentration in mice378. Among other functions, VIP is also known to have a 

plethora of biological functions including promoting vasodilation, smooth muscle activity, 

epithelial cell secretion, regulating blood flow and even activating MCs372,385,456. Notably, 

VIP is also known to be abundant in the skin. In response to chronic UVB, the level of 

VIP was significantly increased in Tyrc-2j-mMCP4 mice after 5 UVB exposures, but it 

did not further increase following 12 and 25 exposures. On the contrary, the level of VIP 

in Tyrc-2j-WT mice remained unchanged. When comparing between Tyrc-2j-WT and Tyrc-

2j-mMCP4 mice, at baseline there were no differences observed between genotypes. 

However, in response to chronic UVB, the level of VIP in Tyrc-2j-mMCP4 mice was 

approximately 2.5-fold higher than Tyrc-2j-WT mice across all exposures examined 

(Figure 5.11).   

5.3 Discussion 

Acute and chronic doses of UVB have been reported to induce pronounced angiogenesis 

of the skin but chronic UVB exposure is thought to cause a reduction of both blood and 

lymphatic vessels as well as ECM degradation and elastosis353,356. The data we showed 

utilising engrafted-KitW/W-v mice demonstrates that in response to progressive chronic 

UVB exposure, there is a continuation of skin angiogenesis as observed by an overall 

increase in the number of total and dilated blood vessels. Interestingly, a significant 

increase in the number of total and dilated blood vessels could be seen in the absence of 

MCs and mMCP4 after 12 and 25 exposures. This suggests that MCs and mMCP4 are 

involved in regulating UVB-induced angiogenesis in this particular model, a finding 

supported by previous studies showing that MCs contribute to the angiogenic response  

by releasing VEGF-A and contributing to the release of ECM-bound angiogenic 

factors357,457,458. However, a study by Schweintzger et al, demonstrate that UVB-induced 

dermal angiogenesis was MC independent359. 
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Figure 5.11 The absence of mMCP4 results in significantly greater

levels of VIP in non-pigmented B6-Tyrc-2j mice following chronic

UVB exposure. VIP protein was assessed by ELISA from no UVB-

treated and UVB-treated (5, 12 and 25 exposures) ear lysates from

Tyrc-2j-WT and Tyrc-2j-mMCP4-/- mice. Data from 1-3 experiments

(n=5-16 mice/genotype) and represented as mean (normalised to total

protein) + SD. Student’s unpaired T-test, *p<0.05, ***p<0.001
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Based on ELISA data, the level of VEGF-A in mMCP4BMCMCsWBB6F1–KitW/W-

v mice was significantly greater compared to WT BMCMCsWBB6F1–KitW/W-v mice 

after 5 exposures of UVB. This may be correlated with the significantly higher number 

of total and dilated blood vessels at later time points. Interestingly, KitW/W-v mice showed 

significantly lower levels of VEGF-A compared to mMCP4 BMCMCsWBB6F1–

KitW/W-v mice. Although MCs are the only source of mMCP4, we would expect a similar 

level of VEGF-A in both genotypes. Recent findings suggest that the loss of mMCP4 is 

associated with increased activity of MC-derived tryptases175. It is also known that 

tryptases can promote the release of VEGF-A459, hence this could explain why we 

observed such a significant increase in VEGF-A in mMCP4 BMCMCsWBB6F1–

KitW/W-v mice. This also further confirms that MCs are indeed major contributors for the 

release of VEGF-A. What is also worth noticing is that this drastic difference in the level 

of VEGF-A between KitW/W-v and mMCP4 BMCMCsWBB6F1–KitW/W-v mice were 

not translated into a difference in blood vasculature pathology. This lack of difference 

could be associated with the release of angiogenic factors such as VEGF-A, IL-8 and 

FGF2 derived from other cell populations410, such as macrophages, to compensate for the 

loss of MC-derived VEGF-A. Moreover, interestingly, we do not see such a high level of 

VEGF-A in the WT BMCMCsWBB6F1–KitW/W-v mice compared to mMCP4 

BMCMCsWBB6F1–KitW/W-v mice. This could potentially be due to the specific 

targeting of VEGF-A by mMCP4.  

The mechanistic role of how the loss of mMCP4 in engrafted-KitW/W-v mice is contributing 

to the aberrant angiogenesis is not clear. It is possible that VEGF-A could be a negatively 

regulated substrate of mMCP4 at the early stages of chronic UVB irradiation, but this 

may not be the case as the levels of VEGF-A did not differ between all groups of mice 

later than 5 exposures.  

Previous studies have shown the microenvironmental concentration of VEGF-A but not 

the total level can determine a threshold between normal and aberrant angiogenesis.  This 

finding suggests a high concentration of VEGF-A can influence how blood vessels 

respond460. Studies have also suggested that expression of the antiangiogenic factor TSP-

1 is dependent on the tumour suppressor gene, p53461. Since UVB exposure results in 

mutation of p53, which is the initiating factor for skin tumourigenesis462,463, it is likely 

that following UVB irradiation, p53 mutation leads to a downregulation of TSP-1, 
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causing an imbalance in the regulation of angiogenesis and generation of a pro-angiogenic 

environment. As a result of this imbalance and the absence of mMCP4, it is possible that 

the downregulation of TSP-1 may result in a lowered threshold for VEGF-A to promote 

aberrant angiogenesis. This could explain why we did see changes in blood vessels even 

though we did not see a consistent increase of VEGF-A concentration in the ears of 

mMCP4 BMCMCsWBB6F1–KitW/W-v mice over 25 exposures. However, it would be 

beneficial to determine the specific time point when p53 mutations take place in order to 

further clarify this hypothesis. It would also be worthwhile to determine whether or not 

the changes we observed in the lymphatic vasculature were a result of the increasing 

VEGF-A levels in the absence of mMCP4, as VEGF-A has been reported to induce 

inflammatory lymphangiogenesis353.  

Our understanding of lymphangiogenesis is still limited in comparison to our knowledge 

of angiogenesis. It is known that the presence of tumour cells in sentinel lymph nodes is 

associated with poor patient outcome429,464,465. This is primarily due to the presence of 

lymphatic vessels and their ability to efficiently transport and disseminate primary tumour 

cells to secondary organs, a process known as metastasis. This process typically comes 

about through lymphangiogenesis and enlargement of initial lymphatic vessels. Both of 

these processes aid the transport of tumour cells to sentinel nodes466,467. 

Lymphangiogenesis in the tumour microenvironment is primarily driven by the growth 

factors VEGF-C and VEGF-D, acting via VEGFR3468-470. Consistently, blocking 

VEGFR3 signalling on VEGFR3 expressing lymphatic vessels has been shown reduce 

the spread of tumour cells to secondary organs466,470,471. VEGFR-2 has also been 

suggested to induce inflammatory lymphangiogenesis through the angiogenic factor 

VEGF-A in response to UVB exposure346,352. 

Our findings suggest that in the absence of MCs and mMCP4, UVB-treated KitW/W-v and 

mMCP4 BMCMCsWBB6F1–KitW/W-v mice show significantly higher levels of total 

and dilated lymphatic vessels which implies that MCs and mMCP4 do appear to have a 

role in regulating lymphangiogenesis. Interestingly, lack of changes in VEGF-D at 

mRNA and protein levels suggest that it is not the rate limiting factor required to promote 

the differences we observed in our engrafted mice. This finding supports previous studies 

which proposed that both VEGF-C and VEGF-D are not upregulated and do not promote 

lymphangiogenesis in response to UVB irradiation353. Instead, up-regulation of VEGF-A 
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was suggested to be the crucial factor in promoting higher numbers of lymphatic vessels. 

Our findings suggest this to be partially true as mMCP4 BMCMCsWBB6F1–KitW/W-

v mice exhibited higher levels of VEGF-A compared to WT BMCMCsWBB6F1–

KitW/W-v mice after 5 exposures. However, it is interesting to observe that there is no 

difference between mMCP4 BMCMCsWBB6F1–KitW/W-v and WT 

BMCMCsWBB6F1–KitW/W-v mice after 12 and 25 exposures, but it would again be 

worthwhile to assess the influence caused by the imbalance of pro- (VEGF-A) and anti-

angiogenic factors (TSP-1), as stated above. Exposure to UVB is well known to induce 

the production of many other growth factors that do not depend on VEGFR3 signalling, 

including PDGF469, IL-8441 and bFGF472. MMP2, which is another known target of 

mMCP4, has also been suggested to govern lymphatic vessel growth and development. 

Although MMP-2 can be cleaved by other proteases, it is possible that the lack of mMCP4 

could influence MMP-2’s ability to act as an interstitial collagenase and regulate the 

lymphatic vasculature473. Hence, it would be wise to assess other mediators that are 

known to promote blood and lymphatic growth. It is also noteworthy to point out that 

these differences in blood and lymphatic vessels were not due to differences in the number 

of MCs injected into each mouse, as there was no significant differences in the number 

of MCs in the local area in all groups of mice (Chapter 4, Figure 4.4).  

As previously elucidated, in order to ensure that the pathology we observed in KitW/W-v 

and mMCP4 BMCMCsWBB6F1–KitW/W-v mice was due to the absence of MC and 

mMCP4 but not because of other phenotypic abnormalities, pigmented B6-mMCP4 

mice were utilised. No differences in the number or morphology of blood and lymphatic 

vessels were observed prior to UVB irradiation. Following chronic UVB irradiation we 

again saw very little difference in the number of total or dilated blood vessels or lumen 

area between genotypes over 70 exposures. 

Although we could not see any differences in the number of lymphatic vessels, we did 

see changes in the number of dilated lymphatic vessels from 25 exposures onwards. Most 

importantly, the lumen area was significantly larger in B6-mMCP4 mice compared to 

B6-WT mice after 70 exposures. This again suggests that mMCP4 may have a role in 

regulating lymphatic vessel architecture in response to chronic UVB.  

We again assessed the level of VEGF-A and VEGF-D at both mRNA and protein levels 

in pigmented mice. An overall increase in VEGF-A protein was observed in both 
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genotypes over 70 exposures which correlates with an overall increase in the number of 

blood vessels and lymphatic vessels we observed. Although no differences were observed 

between B6-WT and B6-mMCP4 mice at any time point, this does suggest that VEGF-

A or VEGF-D may not be the rate limiting factor that are promoting the differences in 

lymphatic vessel vasculature observed in both pigmented B6-mMCP4, and WBB6F1–

KitW/W-v mouse models.  

In comparison to engrafted–KitW/W-v mice, where we observed drastic changes in the 

blood and lymphatic vasculature within the first 5 exposures of chronic UVB, it took an 

astonishing 70 exposures before any differences manifested in the vasculature in the 

pigmented B6-mMCP4. This is most likely due to the presence of pigment which 

shielded against the deleterious effects of UVB irradiation. Due to the protective 

properties of pigment, individuals with darker skin are less likely to have a sensitive 

UVB-induced angiogenic response, compared to indivduals with fairer skin. This is 

mainly through the release of the angiogenic factor fibromodullin which can stimulate 

endothelial cell proliferation through SMAD1, SMAD2, VEGF and TGF both in vitro 

and in vivo474,475. This could explain the lack VEGF-A production in WBB6F1-Kit+/+ (WT, 

which are pigmented) mice compared to non-pigmented KitW/W-v mice. Nevertheless, it is 

still encouraging to see that mMCP4 continues to be involved in the lymphangiogenic 

response following UVB irradiation. 

Due to the presence of pigment, the B6-mMCP4 mice may not be the most beneficial 

or optimal model considering the reduced angiogenic and lymphangiogenic response 

observed in these mice. 

Hence, non-pigmented Tyrc-2j-mMCP4 mice were utilised to further investigate 

changes in the vasculature following UVB irradiation. In addition to assessing the 

changes in the vasculature 24 h post final irradiation, an earlier time point (3 h post final 

irradiation) was also assessed to investigate any events we have may have missed out. No 

differences were observed between genotypes at 3 h post irradiation. However notably, 

the lumen areas were significantly increased in the absence of mMCP4 at 5 and 25 

exposures. This significant change could be a result of exacerbated inflammation in the 

ears of Tyrc-2j-mMCP4 mice causing an influx of interstitial fluid which ultimately leads 

to an increase in pressure and subsequent enlargement of lymphatic vessels. Whilst we 

did not observe any changes at 12 exposures in the lumen area between genotypes; it 
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could be due to a resolution of inflammation at that particular time point. MC-IL-10 could 

be acting as a potential immunomodulator and dampening or even resolving the 

inflammatory response at 12 exposures8, additionally this could potentially due to 

photohardening. Overall, it does seem that there are very little changes in the vasculature 

immediately following the chronic UVB irradiation regime. However, our data suggests 

in the absence of mMCP4 there may be a heightened level of inflammation.   

On the other hand, significant changes were observed 24 h post UVB irradiation which 

included a significant increase in the number of total and dilated lymphatic vessels as well 

as the lumen area of dilated lymphatic vessels in Tyrc-2j-mMCP4 mice compared to 

Tyrc-2j-WT mice. In regards to the blood vasculature, although not significant, there is still 

a trend of a higher number of total and dilated blood vessels. This may suggest that 

mMCP4 could be involved in the blood vasculature but the effect could be compensated 

by other mechanisms. These findings provide further indication that mMCP4 does appear 

to have a role in regulating the lymphangiogenic response but also a potential role in 

angiogenic response in a setting of chronic UVB irradiation. 

What was also intriguing was the significantly enlarged lymphatic vessels after 25 

exposures. Typically, lymphatic vessels play an important in inflammatory conditions, 

where they regulate the inflammatory response by transporting extravasated fluid, 

inflammatory cell infiltrate and antigen-presenting cells from the site of inflammation to 

draining lymph nodes. This process normally occurs through signalling of VEGFR3, 

typically activated by binding of specific ligands VEGF-C and VEGF-D. Interestingly, 

Karnezis et al. recently showed that prostaglandins E2 and I2 are also capable of 

regulating lymphatic vessel dilation and promoting drainage of cell populations towards 

sentinel lymph nodes450. Based on our findings, the loss of mMCP4, particularly in our 

B6-mMCP4 and Tyrc-2j-mMCP4 mice, resulted in significantly enlarged lymphatic 

vessels compared to WT counterparts. As we investigated the functional capabilities of 

lymphatic vessels by Evan’s blue injections, in the absence of mMCP4, the lymphatic 

vessels appeared to be more dysfunctional as more Evan’s blue dye was retained in the 

ears and less detected in the lymph nodes of UVB-treated Tyrc-2j-mMCP4 mice, 

compared to Tyrc-2j-WT mice. This suggests that the lymphatic vessels in the ears of Tyrc-

2j-WT mice are more efficient in draining UVB-induced fluid and inflammatory infiltrates. 

Based on the literature one possibility for this inefficient draining of lymphatic vessels 
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could be due to the overabundance of the neuropeptide and immunomodulator VIP. A 

study by von der Weid et al, has shown that VIP can alter lymphatic pumping by 

decreasing the frequency of lymphatic contractions and hyperpolarising the lymphatic 

muscle membrane potential in a concentration-dependent manner. As a result, VIP could 

compromise lymph drainage, oedema resolution and trafficking of immune cells to the 

draining lymph nodes378,456. Indeed, our data also shows that although no differences in 

the level of VIP was observed in the absence of mMCP4 at baseline, which suggests VIP 

is not targeted by mMCP4 at physiological conditions, but when challenged by chronic 

UVB, higher levels of VIP were detected only in Tyrc-2j-mMCP4 mice, while the level 

of VIP in Tyrc-2j-WT mice remained unchanged. This elevated level of VIP in Tyrc-2j- 

mMCP4 mice is consistent with the aberrant lymphatic phenotype seen in these mice 

(enlarged and dysfunctional lymphatic vessels). Therefore, our data suggests that mMCP4 

is likely to be required to regulate VIP levels in the skin. Particularly, mMCP4 appears to 

be required to remove regulate VIP levels in the local UVB exposed environment, hence 

preventing the lymphatic drainage from being compromised.  

Taken together, our data suggests that across all models, mMCP4 is a critical mediator in 

the regulation of lymphangiogenesis and lymphatic vessel function, and it may also have 

an intermediate influence on angiogenesis. Our data also suggests that VIP is a specific 

target substrate of mMCP4 in this chronic UVB setting. Additionally, mMCP4 may also 

target VEGF-A but not VEGF-D. However, the targeting of VEGF-A by mMCP4 needs 

to further confirmed.   

Based on the results in Chapter 4, Tyrc-2j-mMCP4 mice appear to show earlier signs of 

in situ SCC features compared to Tyrc-2j-WT mice, suggesting the loss of mMCP4 may 

be associated with an earlier shift towards a pro-tumour microenvironment. We showed 

that mice deficient of mMCP4 have more dilated and dysfunctional lymphatic vessels 

following UVB irradiation. We suspect if the lymphatic vessels in the ears of UVB-

treated Tyrc-2j-mMCP4 mice are unable to efficiently drain inflammatory infiltrate from 

the site of inflammation, the inflammatory response cannot be resolved due to an 

accumulation of cell populations. A balance of all immune cell population are required to 

maintain local tissue homeostasis. The dysregulation of one or more population of 

immune cells can disrupt this balance and contribute to changes in the microenvironment, 

subsequently promoting tumour formation. Hence, it is critical to assess whether there is 
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any changes in immune cell populations that is associated with the loss of mMCP4 at the 

site of UVB damage.  

Although we did not observe any signicantly distinct difference in specific cell 

populations following UVB irradiation, it is noteworthy to add that the total number of 

CD45+ immune cells is much larger than the total number of cells combined from all of 

the populations assessed, suggesting that there are large number of cells that are 

unaccounted for. This could suggest the presnce of additional populations not measured 

by our FACS protocol.  

Out of all of immune cell populations assessed, only CD11bGr-1 myeloid-derived 

suppressor cells (MDSCs) was shown to be elevated in number (not significant) in the 

absence of mMCP4, following UVB irradiation. This cell population consists of 

precursors of dendritic cells, macrophages and granulocytes, and it has been reported that 

increased numbers of MDSCs is associated with multiple types of cancers476-478. The 

immunosuppressive functions of MDSCs have been shown to promote tumorigenesis by 

mechanisms such as disrupting tumour immunosurvellaince via interfering with T cell 

cytoxicity, antigen presentation, activation and polarisation479-481. As a result MDSCs are 

becoming better recognised as a potential target for immunotherapies for cancer patients.  

Interestingly, the levels of CD8+ T and CD4+ T cells are also elevated in both Tyrc-2j-WT 

and Tyrc-2j-mMCP4mice following 25 UVB exposures. This would suggest that indeed, 

the CD8+ T and CD4+ T  cells are responding to the chronic UVB irradiation and are quite 

likely to be exibiting anti-tumour functions477,482,483 as we have observed in situ SCC 

development in both Tyrc-2j-WT and Tyrc-2j-mMCP4mice (more so in Tyrc-2j-

mMCP4mice). Simultaneously, the presence of more MDSCs in the ears of Tyrc-2j-

mMCP4 mice is also observed and suggests that the local microenvironment at the site 

of UVB damage is more immunosuppressive, which would potentially counteract the 

anti-tumour functions of CD4 T cells and CD8 T cells477,482,483. Cumulative UVB 

irradiation is known to promote a highly immunosuppressive microenvironment, which 

is one of the crucial precursors leading to skin tumourigenesis. For example it is known 

that UVB irradiation can supress cellular immunity through serotonin and PAF-dependent 

activation of regulatory B cells484,485. Studies also showed that Langerhan cell-dependent 

induction of T regulatory cells is associated with supressed cellular immunity following 

UVB irradiation486,487. Hence, in Tyrc-2j-mMCP4 mice, the accumulation of more 
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MDSCs at the site of UVB damage is likely to further enhance the immune suppression 

caused by UVB, inhibit CD8+ and CD4+  T cell anti-tumour functions and likely to 

promote earlier onset of in situ SCC development as we observed in Chapter 4.  

But how is mMCP4 playing a role in this scenario? As shown earlier, mMCP4 may target 

VIP, as a greater abundance of VIP was detected in the ears of Tyrc-2j-mMCP4 mice 

following chronic UVB irradiation. Interestingly, VIP has been shown to promote the 

differentiation of CD14 mononuclear cells into activated MDSCs224. The same study has 

also shown that VIP can also enhance MDSC function as measured by their ability to 

impair Th1 responses of CD4+  and CD8+T cell. Hence, it is likely that the loss of mMCP4 

results in high levels of VIP, which causes an expansion of MDSCs at the site of UVB 

damage and subsequently impairing anti-tumour functions of the local microenvironment. 

However, it is also noteworthy to add that the markers used to assess MDSCs in the 

current study was not specific enough to fully identify this population. To further confirm 

out findings, utilisation of markers such as Ly6CLy6G(monocytic) and Ly6GLy6C 

(granulocytic) will be required. To further confirm the presence of accumulating 

immunosuppressive MDSCs at the site of damage, it would be beneficial to assess the 

release of MDSC-derived mediators such as Arginase 1, inducible nitric oxide synthase, 

reactive oxygen species and peroxynitrite; and ability of these cells to supress T-cell 

responses476. 

Taken together, we have shown that MCs and mMCP4 do have a critical role in regulating 

lymphatic vascular structure and function following chronic UVB irradiation. We have 

shown that mMCP4 could be involved in the blood vasculature more so in the engrafted–

KitW/W-v mice than the non-pigmentedTyrc-2j-mMCP4 mice. The lack of effect in 

pigmented B6-mMCP4 mice is more likely due to the presence of pigment. In regards 

to the lymphatic vasculature we have shown that mMCP4 does have a prevalent role in 

regulating the lymphatic vasculature architecture and function as well.  

Furthermore, our data suggests that loss of mMCP4 results in aberrant lymphangiogenesis 

and impaired lymphatic vessel function. Simultaneously, we have shown for the first time 

that mMCP4 could potentially target VIP to allow normal drainage of inflammatory 

infiltrate and maintain balance of the local microenvironment in a chronic UVB setting. 

This is supported by the observation that loss of mMCP4 is associated with enhanced 
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levels of VIP following chronic UVB irradiation. Furthermore, this is potentially 

correlated with the presence of more immunosuppressive MDSCs which could potentially 

lead to earlier onset of in situ SCCs.  

 

 

 

 

 

 

 



Figure S1. Characterisation of cell populations in the ears of

Tyrc-2j-WT and Tyrc-2j- mMCP4-/- mice following chronic UVB

irradiation. (A) Following chronic UVB irradiation, cell populations

were extracted from the ears of Tyrc-2j-WT and Tyrc-2j-mMCP4-/- mice

by liberase digestion. Following extraction, specific cell populations

were assessed from both genotypes; representative flow plots of

specific cell populations. Data from 2 independent experiments (n=6-

11 mice/experiment).
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Chapter 6 

 

MICROARRAY ANALYSES 

SUGGESTS LOSS OF mMCP4 

CAUSES ALTERATIONS IN 

EXTRACELLULAR MATRIX 

AND CELL TRAFFICKING 

PATHWAYS  
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6.1 Introduction 

Proteases are known to play fundamental roles in multiple biological processes. Via 

highly selective cleavage of specific substrates, proteases have been well recognised as 

critical regulators of cellular processes, including tissue remodelling. The dysregulated 

functions of proteases have been associated with a wide variety of pathological conditions, 

including cancer6,236. MMP9, for example, is a well-known metalloproteinase that 

facilitates physiological processes such as cell migration488,489, angiogenesis490 and 

wound healing by breaking down ECM proteins such as collagen type I and IV421. The 

upregulation of MMP9 has been found in pathological conditions including angiogenic 

dysplasia and invasive cancer of the epidermis induced by HPV16 oncogenes267, 

advanced ovarian cancer491, as well as lung metastasis of tumour cells 492. UVB exposure 

is known to induce production of cytokines which can induce local accumulation of MCs 

and MMP prodcution which are both known to be contributing factors in UVB-induced 

skin inflammation369. In addition, MCs are also known to release MMP’s such as MMP2 

and MMP9384, as well as their own mast cell-specific proteases. As noted in earlier 

chapters of this thesis, mast cell-specific proteases can play important roles the initiation 

as well as the resolution of inflammation in certain contexts of inflammation57, functions 

that are also shared by some MMPs, including MMP2493,494 and MMP9267,494,495. 

mMCP4 is thought to be involved in multiple pathways including, collagen turnover, 

chemokine-induced trafficking of cells, and inflammation, through targeting substrates 

such as fibronectin194,381, CCL2380, and TNF5. However, these findings currently appear 

to be disease and context dependent. More importantly, no study has investigated the role 

of mMCP4 in UVB-induced skin tumourigenesis. As discussed in chapters 4 and 5, we 

have clearly demonstrated mMCP4 is a protective factor against the development of skin 

tumourigenesis following chronic UVB irradiation. mMCP4 also appears to be required 

for functional lymphatic drainage and potentially trafficking of inflammatory infiltrates 

in this disease model. Although we have identified VIP as a potential substrate of mMCP4 

in mediating normal lymphatic function, other direct or indirect targets that may facilitate 

mMCP4 function in this setting remains to be further elucidated.  

ECM provide a scaffold for all cell types in the tumour microenvironment and they are 

important in initiating the development of tumours and assisting the spread of cancer 

cells496. MMPs that are secreted and activated by tumour cells, tumour-associated 
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macrophages, and cancer-associated fibroblasts are able to remodel ECM by degradation. 

As a result of ECM remodelling, factors including chemokines, growth and angiogenic 

factors are released and made readily available not only to structural cells, but also 

resident and infiltrating immune cells497. As a result, modulation of the infiltrating 

immune cells and local microenvironment can activate downstream pathways including 

chronic inflammation, angiogenesis and metastasis498. This relationship between the 

ECM and tumour microenvironment is critical for the progression of malignancies499-501. 

Although the role of mMCP4 in UVB-induced skin carcinogenesis is not yet fully 

elucidated, a study by Siiskonen et al., reported an association between the expression of 

chymases and tryptases and metastasis of melanoma412. This further suggests a role of 

mMCP4 in regulating other pathways in the tumour microenvironment. Therefore, in this 

chapter, we sought to explore other pathways regulated by mMCP4 via examining the 

global effect of mMCP4 deficiency in the context of UVB-induced skin carcinogenesis.  

6.2 Results 

6.2.1 Deficiency in mMCP4 causes global changes in mRNA expression of multiple 

pathways  

In order to study the global effects of MCs and the consequences associated with the loss 

of mMCP4 in the chronic UVB setting, mRNA microarray was utilised. The RNA 

integrity was confirmed via BioAnalyzer assessment and was shown to be adequate for 

further assessment. To maximise the coverage of potential genes and pathways being 

affected, tissue samples from the mouse model (engrafted-KitW/W-v mice) and the time 

point (12 exposures) that were previously found to produce the most pronounced response 

was selected. Based on our microarray analyses, a large number of genes were 

differentially regulated in UVB-treated skin that lacked MCs or mMCP4. More 

importantly, based on pathways analysis using INGENUITY PATHWAY ANALYSIS 

software, several genes involved in the ECM (p-value=1.82 x 10-16 ) and cell migration 

(p-value=1.69 x 10-3) pathways appeared to be upregulated in the absence of both MCs 

and mMCP4 (Figure 6.1a, b), suggesting that these genes may be direct or indirect 

downstream targets of mMCP4. These findings were then further verified by qRT-PCR. 

 

 



Figure 6.1 Signalling pathway analysis of WBB6F1-KitW/W-v mice in

response to chronic UVB irradiation (A) Pathway analysis produced

by Ingenuity Pathway Analyser indicating potential pathways that

were affected by the loss of mMCP4. (B) Genes involved in

chemokine trafficking and ECM.
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6.2.2 Loss of MCs and mMCP4 causes up-regulation of genes involved in chemokine-

dependent cell trafficking 

Although not much is known about the targeting of chemokines by mMCP4, previous 

studies have demonstrated that CCL2 can be targeted and degrade by mMCP4 in a mouse 

model of post-traumatic spinal cord damage380. In the absence of mMCP4, it is likely that 

the loss of this protease will result in alterations of various pathways, potentially including 

cell trafficking that ultimately contribute to changes in the skin. Based on the mRNA 

microarray data, we observed non-significant up-regulation of chemokines ccl3, ccl12 

and cxcl11 in the absence of mMCP4. By qRT-PCR analysis, in agreement with the 

microarray data, ccl3 expression was elevated in both KitW/W-v and mMCP4 

BMCMCsKitW/W-v mice (Figure 6.2a), while mRNA transcript of ccl12 and cxcl11 

were up-regulated only in mMCP4 BMCMCsKitW/W-v mice (Figure 6.2b, c).   

6.2.3 Loss of mMCP4 causes dysregulation in genes involved in the extracellular 

matrix 

ECM and cell-cell junction proteins are crucial for both tissue homeostasis and 

patholigcal conditions such as cancer. ECM proteins such as fibronectin is a direct target 

of mMCP4194,381. Our microarray data, validated by qRT-PCR analysis, also 

demonstrated that in the absence of MCs and mMCP4, other ECM components such as 

fibulin 2 (fbln2), Versican (Vcan), collagen XII (col12a1), cell-cell junction molecules 

desmocollin2 (dsc2), integrin cadherin11 (cdh11), and collagen cross linking enzyme lysl 

oxidase (lox), were all up-regulated transcriptionally after  12 exposures of  UVB (12 x 4 

kJ/m2) in mMCP4 BMCMCsKitW/W-v mice, and also in some cases, in KitW/W-v mice  

(Figure 6.3a-f). 

6.2.4 Loss of mMCP4 potentially causes loss of the anti-angiogenic factor tumstatin 

Next, we wanted to investigate whether expression of other ECM genes that are involved 

in tumour progression were affected by the loss of mMCP4. A study by Hamano et al., 

demonstrated that MMP9 is required to generate the anti-angiogenic factor tumstatin 

through cleavage of collagen type IVV3. By assessing the presence of the active 

(cleaved) and inactive (uncleaved) form of MMP9 in naïve WT and mMCP4 BMCMC, 

we found that, in agreement with the literature, the loss of mMCP4 is associated with the 

absence of active MMP9 (Figure 6.4a). We therefore hypothesised that mMCP4 could 



Figure 6.2. Quantitative real-time PCR analysis suggests the

importance of mMCP4 in regulating ccl3, and cxcl11 mRNA

expression in engrafted-KitW/W-v mice following 12 exposures of

chronic UVB. (A) Following UVB irradiation (12 exposures), ccl3,

(B) ccl12 and (C) cxcl11 mRNA expression was assessed by qRT-

PCR from ears of WT, KitW/W-v, WT BMCMCsKitW/W-v and

mMCP4-/- BMCMCsKitW/W-v mice. Data from 1 experiment (n=3

mice/genotype) and represented as fold change in gene expression

compared to non-UVB treated samples (normalised to GAPDH) +

SEM. Student’s unpaired T test *p<0.05, **p<0.01, ***p<0.001, n.s.:

not significant.
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Figure 6.3 Quantitative real-time PCR analysis suggests the

importance of mMCP4 in regulating mRNA expression of ECM

components in engrafted-KitW/W-v mice following 12 exposures of

chronic UVB. (A) Following UVB irradiation (12 exposures), dsc2, (B)

fbln2, (C) lox, (D) col12a1, (E) Vcan, and (F) cdh11 mRNA expression

was assessed by qRT-PCR from ears of WT, KitW/W-v, WT

BMCMCsKitW/W-v and mMCP4-/- BMCMCsKitW/W-v mice. Data from

1 experiment (n=3 mice/genotype) and represented as fold change in gene

expression compared to non-UVB treated samples (normalised to GAPDH)

+ SEM. Student’s unpaired T test *p<0.05, **p<0.01, n.s.: not significant.
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Figure 6.4 Western blot analysis confirms that mMCP4-/- BMCMCs

exhibit low levels of the activated form of MMP9. (A) Immunoblot of

endogenous MMP9 protein expression in naive WT and mMCP4-/-

BMCMCs. Data from 1 experiment. (B) Hypothetical mechanism

whereby mMCP4 exhibits protective function through targeting the

MMP9/ colIVaV3 /tumstatin pathway.



121 
 

elicit its anti-tumourigenic functions through targeting the 

MMP9/collagenIVV3/tumstatin pathway (Figure 6.4b). To clarify, we initially 

assessed mRNA expression of collagen IVV3 following 12 exposures of UVB, however, 

we did not observe any changes (data not shown). Following 25 exposures of UVB (12 x 

4 kJ/m2 + 13 x 8 kJ/m2), the mRNA expression of collagen IVV3 was elevated in WT 

and WT BMCMCsKitW/W-v mice, whereas no change was observed in KitW/W-v or 

mMCP4 BMCMCsKitW/W-v mice, suggesting that lack of MCs and mMCP4 results 

in deficient turnover of this collagen (Figure 6.5a). Similar results were observed in 

pigmented B6 mice (Figure 6.5b), even though the protective effect of mMCP4 was not 

as pronounced as the KitW/W-v model, consistent with previous observations described in 

Chapters 4 and 5.  

6.3 Discussion 

Determining the array of specific substrates of proteases in vivo continues to be a difficult 

task due to many technical limitations. Therefore we used mRNA microarray as an 

alternative approach to assess global effects of mMCP4 in chronic UVB setting. This is 

because changes in mRNAs can provide potential indications of what pathways mMCP4 

may be influencing, irrespective of whether it reflects a direct or indirect effect of mMCP4 

proteolytic activity. As suggested by the microarray, and later confirmed by qRT-PCR, 

some genes involved in chemokine/cell trafficking and ECM/cell-cell junction are 

upregulated by the loss of both MCs and mMCP4 following UVB irradiation.  

CCL3 can regulate intra-tumoural accumulation of leukocytes and fibroblasts and 

promote angiogenesis in the murine lung-metastasis process502, and it has been reported 

to recruit monocytic myeloid derived suppressor cells (monocytic MDSCs) to the tumour 

tissue454,503. Our observation of higher levels of ccl3 in the ears of both KitW/W-v and 

mMCP4 BMCMCsKitW/W-v mice following UVB irradiation suggests that there may 

be an increasing abundance of cell populations at the site of UVB irradiation that can 

assist in development of local tumourigenic microenvironment. Interestingly, considering 

CCL3 can recruit certain populations of MDSCs454,503, this could correlate with our 

previous data in Chapter 5 where there were elevated levels of MDSC populations 

detected in the UVB treated ears in the absence of mMCP4.  
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Figure 6.5 Quantitative real-time PCR analysis suggests the

importance of mMCP4 in regulating mRNA expression of ECM

components in engrafted-KitW/W-v mice following 12 exposures of

chronic UVB. (A) Following UVB irradiation (12 exposures), mRNA

expression of colIVaV3 in engrafted-KitW/W-v mice and (B) pigmented

B6-mice was assessed by qRT-PCR from ears of WT, KitW/W-v, WT

BMCMCsKitW/W-v and mMCP4-/- BMCMCsKitW/W-v mice. Data

from 1 experiment (n=3-5 mice/genotype) and represented as mean

(normalised to GAPDH) + SEM.
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On the contrary, CCL12, is not as well-studied. However, CCL12 is a homologue of 

CCL2, and they both bind to the same receptor CCR2504. Therefore, CCL12 may have 

redundant functions with CCL2 in terms of recruiting monocytes, macrophages, MCs40, 

MDSCs505 as well as activating T and B cells506. As a result, it is difficult to differentiate 

the true function between these two chemokines. Interestingly, CCL2 is a bona fide 

substrate for mMCP4 and is indicated to be involved in promoting cancer505,507. Hence it 

is likely that the potential regulation of CCL12 by mMCP4 indicates a novel mechanism 

whereby mMCP4 exerts its protective role in chronic UVB-induced skin carcinogenesis. 

Although our results suggest that the levels of both ccl3 and ccl12 can be up-regulated in 

the absence of mMCP4, further verification, ideally via ELISA, is required to determine 

whether this targeting effect is direct.  

CXCL11 is another chemokine that has been demonstrated to be involved in cancers 

including ovarian508 and colorectal cancer509. The poposed roles of CXCL11 include 

facilitating tumour growth, as well as promoting cancer cell migration and metastasis, 

potentially through regulation of MMPs508,509. Based on our findings, although not 

signifcant, we did observe a trend in elevated mRNA expression of cxcl11 in mMCP4 

BMCMCsKitW/W-v mice. Notably, overexpression of CXCR3, the receptor for CXCL11, 

has been associated with tumour grade and lymph node mestastises in ovarian cancer508.  

Hence it is likely that the expression level of CXCL11 could also act as a prognostic 

marker and provide insights into tumour progression. Further stuies will be required to 

fully elucidate this hypothesis, and whether mMCP4 is involved in its regulation will also 

need to be addressed, which will add valuable knowledge to this field. 

Notably, the mRNA up regulation of the above mentioned chemokine genes in the 

absence of mMCP4 are not signficant. A larger sample will be required to further confirm 

these hypotheses. 

The ECM is composed of many structural components that play important roles in 

regulating cancer cell metastasis496. Fibulin2 is an ECM protein component of the 

basement membranes and elastic fibre matrix. It is known to be associated with 

fibronectin and has also been reported to assist the adherence of cells to ECM via its 

interaction with  integrins510,511. Apart from their structural function, ECM components 

are important in both anti- and pro-tumourigenic roles512,513. Based on our data, we 

observed elevated levels of fbln2 gene expression in both KitW/W-v and mMCP4 
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BMCMCsKitW/W-v mice following 12 exposures of chronic UVB. It is difficult to 

conclude whether fibulin 2 is promoting or limiting tumourigenesis. Some studies suggest 

that overexpression of fibulin 2 can initiate tumourigenic properties particularly in the 

presence of collagen. Interestingly, it has also been reported that fibulin 2 is preferentially 

expressed in highly metastatic cells513,514. On the other hand, fibulin2, interacts with the 

protease ADAMTS12, by which it can also exhibit tumour suppressive functions via 

reducing cell migration, invasion and other tumourigenic properties in breast cancer cell 

lines512.  Nevertheless, it would be worthwhile to assess the overall protein expression of 

fibulin2 in UVB-treated tissue to provide a better understanding of how it is regulated by 

mMCP4 at the protein level. This can also indicate the potential role of fibulin2 in the 

current disease setting.  

DSC2 is a desmosomal cadherin protein that is involved in maintaining epithelial 

homeostasis by reinforcing adhesion of epithelial cells515. Although its roles in cancer is 

yet to be fully elucidated, recent studies have suggested that DSC2 acts as a tumour 

suppressor. It has been reported that loss of DSC2 expression confers a tumourigenic 

phenotype in colon516, oesophageal SCCs517 as well as skin cancers. The loss of DSC2 in 

epithelial cancers such as skin cancers also correlates with advanced tumour grade and 

poor prognosis518,519. Interestingly, in some cases, an increase in expression of other 

desmosomal components such as desmoglein 2 (DSG2) have also been suggested to be 

associated with enhanced tumour growth and reduced patient survival520,521. Based on our 

data, elevated levels of dsc2 gene expression was observed in the ears of both KitW/W-v 

and mMCP4 BMCMCsKitW/W-v mice following 12 exposures to chronic UVB. It is 

likely that at this particular time point, this up-regulation of dsc2 gene expression could 

be a result of a loss of the protective functions of MCs and mMCP4. By up-regulating 

dsc2 expression, UVB-treated tissues may be attempting to compensate for the loss of 

anti-tumour functions elicited by MCs and mMCP4 as a repair or rescue mechanism. 

Similarly, fibulin2 can also act as a tumour suppressor522. The elevated levels of fibulin2 

may also be an attempt to compensate for the loss of MCs and mMCP4 and promote their 

tumour suppressive properties to prevent further damage.  

Versican is a proteoglycan and has been implicated in a number of malignancies including 

brain, ovarian, colon, breast, and pancreatic cancers523-527. Also found playing a role in 

melanoma, versican is upregulated upon exposure to UVB528. Based on current studies, 

versican can regulate a number of different pathways and promote tumourigenesis. For 
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example, overexpressing the functional domains of versican induces in vitro proliferation 

of NIH-3T3 mouse fibroblasts and astrocytoma cells529; and it is able to promote tumour 

growth by breast cancer530 and melanoma cells531. Versican has also been shown to 

promote motility and invasion of various cancer cell lines532,533 and promote metastasis 

of melanoma as well as lung and breast cancer cells530,531. Furthermore, angiogenesis is 

enhanced by the addition of the G3 functional domain of versican, leading to the increase 

in blood vessel formation in nude mouse tumours529. In our study, we observed a 

significant increase in versican mRNA transcript in the absence of mMCP4 following 

UVB irradiation, suggesting that versican and its functional domains are potential 

substrate for mMCP4. In the absence of mMCP4, the abnormal accumulation of versican 

could contribute to the initiation and progression of the skin tumourigenesis as we 

observed in these mice. Proteomic analysis will be critical to confirm this hypothesis.    

Cadherin11, also known as osteoblast-cadherin, is expressed in breast, prostate, colon and 

stomach cancers534-537. The high expression of cadherin 11, particularly in breast and 

prostate cancers, is associated with increased invasiveness and poor patient survival536,537. 

However, the underlying mechanism for the expression of cadherin 11 and its 

involvement in cancers has not been elucidated until recently. Epithelial-mesenchymal 

transition (EMT) is a critical process required in the invasion and metastasis of cancer 

cells and it is characterised by the expression of epithelial markers (E-cadherin) and the 

induction of the mesenchymal marker ZEB2 that drives EMT. A study by Nam et al. 

recently demonstrated that ZEB2 can also trans-activate the promoter of cadherin 11, 

suggesting that cadherin 11 may also be involved in EMT dependent invasion538. 

Additional studies also suggested that the expression of cadherin 11, particularly early in 

breast and ductal carcinomas, is crucial in malignant progression. This is supported by 

the observation that knocking down cadherin 11 or blocking it with antibodies can 

suppress colony formation and tumour growth by breast cancer, glioblastoma and prostate 

cancer cells539. Based on our findings, mRNA expression of cdh11 is significantly up 

regulated in the absence of mMCP4 following UVB irradiation. However, whether this 

is directly contributing to the observed pathology of these mice is not entirely clear, since 

this upregulation was observed at a relatively early stage of tumour development. 

Validation of this effect at the protein level, especially at later stages of tumourigenesis 

will allow us to further confirm whether mMCP4 is involved in regulating cadherin-11 

mediated tumourigenic properties. 
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Lysyl oxidases (Lox) enzymes are key contributors of tissue stiffening by initiating 

crosslinking of collagens and elastins540. They were well studied due to their established 

involvement in tumour progression540,541. Tumours are typically stiffer compared to 

normal tissues. Increased Lox activity results in increased stiffness of the ECM and this 

is suggested to increase the invasiveness of many cancer cells540,542-546. Further, elevated 

Lox expression has been correlated with metastasis and decreased survival in cancer 

patients. A similar correlation was also observed in mouse models of various cancer 

types543,547. To further verify the upregulation of lox transcripts we observed in the UVB-

treated mMCP4 BMCMCsKitW/W-v mice, it will be ideal to measure the enzymatic 

activity of Lox, but also the stiffness of the ECM in these mice at different stages of the 

disease development. Collagens are also critical in tumour progression, particularly due 

to their roles as scaffolding proteins. They regulate ECM remodelling through collagen 

degradation and re-deposition. Additionally they also promote tumour infiltration, 

angiogenesis, migration and invasion548-550. Collagens I, III and IV are typically the most 

abundant, hence are normally one of the most well studied collagens particularly in 

cancers550-553. Collagen XII belongs to a subgroup of non-fibrillar collagens that has been 

suggested to be involved in basement membrane regulation by providing molecular 

bridges between collagen I fibrils554 and other ECM components such as fibromodulin 

and lumican555. Although the understanding of collagen XII and its roles in cancer are 

limited, a recent study by Yen et al., suggest collagen XII to be a potential biomarker in 

the malignant breast cancer cell line MCF10CA1a556. Collagen XII was also suggested as 

a marker of myofibroblastic differentiation in a setting of colorectal cancer metastasis 

according to a proteomic study557. In our study, an increase in mRNA expression of 

col12a1 was observed in the absence of mMCP4 following chronic UVB exposure. It 

would be interesting to investigate their protein expression levels as well its 

degradation/deposition following UVB irradiation, in order to determine whether their 

roles may correlate with the previous studies, as outlined above.  

Simiarly, the sample size used in these qRT-PCR validations are still insufficient to draw 

any concrete conclusions. Therefore, it would be advisable to further validate these 

findings using a larger sample size. Furthermore, we observed differences in the level of 

mRNA modulation between  mMCP4 BMCMCsKitW/W-v mice and KitW/W-v mice. 

This suggests the absence of mMCP4 may not be responsible for direct regulation of the 

genes including; Vcan, lox and cdh11. This also suggests that other MC mediators (i.e. 
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other MC-specific  protease that can also regulate ECM genes558,559 may be involved, that 

are counter regulating mMCP4 induced effects. Similarly, this also applied to the 

observations regarding the chemokine genes, considering other MC-specific proteases are 

also known to regulate chemokine expression560-563 

Additionally, mMCP4 can target substrates that are involved in processing other 

extracellular matrix proteins, particularly MMP9384. Previous studies have shown that 

mMCP4 can cleave and activate MMP9 to its active state. MMP9 is responsible for 

cleavage of collagen IVV3 and the subsequent generation of the bioactive fragment, 

tumstatin. Based on our data, in both engrafted KitW/W-v and pigmented B6 mouse models, 

we observed a significant upregulation of tumstatin gene expression in WT controls, 

while this gene upregulation was abolished in the absence of mMCP4. This lack of 

tumstatin gene upregulation is likely to suggest a lack of collagen IVV3 turnover, which 

could be due to a reduced MMP9 activity. And this correlates with the literature and our 

own observation that MMP9 is a direct target of mMCP4. Based on the findings of 

Hamano et al.495, tumstatin inhibits tumour growth in xenografted mouse models, by 

inhibiting pathological CD31+VEGFR2+ angiogenesis, but not physiological 

angiogenesis, via an V3 integrin-dependent pathway495. This could correlate with our 

findings from Chapter 5 where we observed a significant increase in the number of blood 

vessels in the absence of mMCP4 in multiple mouse models following UVB irradiation. 

Interestingly, it has been reported that tumstatin can also target lymphatic vessels 564. This 

may also correlate with our findings where the absence of mMCP4 also promotes aberrant 

lymphangiogenesis following chronic UVB irradiation. Although our findings have 

provided the first link between mMCP4 and tumstatin, qRT-PCR is not an optimal 

method to measure the presence of bioactive fragments. It would therefore be ideal to 

utilise ELISA or immunohistochemistry staining to confirm our hypothesis.  

Tumor development is a complex, dynamic and progressive process that involves both 

cellular and environmental cues. The tumour microenvironment is mechanically and 

biologically active and, more importantly, is dynamic, as is highlighted by the fact that it is 

continuously and progressively remodelled565. It is well known that interactions between cells 

and an altered microenvironment can drive malignancy. Conversely, tumour cells can 

manipulate their microenvironment to enhance their own survival, thereby creating a positive 

tumorigenic feedback loop. Based on our findings in this chapter, the absence of mMCP4 

appears to have substantial impact on not only the blood and lymphatic vasculature (Chapter 
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5) but also on the ECM and the migration of immune cells. These findings further demonstrate 

the requirement of multiple pathways to be affected in order to promote a microenvironment 

that is capable of inducing tumourigenesis. Furthermore, this also suggests that mMCP4 is a 

key negative regulator of UVB-induced skin tumourigenesis and is required to mediate 

multiple cellular and environmental pathways. 
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While MC’s typically have a reputation as notorious promoters of tumourigenesis, recent 

advances in the field have resulted in a paradigm shift such that we now know that MCs 

are capable of tumour-suppressive functions in conditions including skin cancers. In 

Australia, exposure to UVB is a critical contributing factor in the development of non-

melanoma skin cancers. Following our previous studies which showed that MC’s, MC- 

IL-10, and a MC-specific protease, mMCP4, play an important protective role against 

chronic low dose UVB-induced skin inflammation, this study aimed to investigate 

whether MCs and mMCP4 continue to be protective against chronic high dose UVB 

induced skin tumourigenesis. 

In the first part of the study, we characterised mMCP4mice and MC’s derived from 

these mice. Following confirmation of the absence of mMCP4 transcript and protein, we 

also confirmed that the mMCP4BMCMC are phenotypically and functionally normal, 

which allowed us to re-engraft these MCs into MC-deficient KitW/W-v mice in order to 

assess the function of mast cell derived mMCP4 in chronic high dose UVB irradiation. 

Using this model, we have shown for the first time that MCs and mMCP4 have critical 

tumour-suppressing functions and protect against the development of in situ SCCs. This 

finding was also supported by the use of non-pigmented Tyrc-2j-mMCP4mice, which 

also showed higher rates of in situ SCC development compared to WT counterparts, 

further confirming the protective function of mMCP4 in this disease setting. To 

investigate the underlying mechanism of this protective function of mMCP4, we focused 

on the influence of mMCP4 on the vasculature following chronic high dose UVB in both 

KitW/W-v and Tyrc-2j-mMCP4models. Interestingly, our results revealed that mMCP4 is 

a potential regulator of lymphatic vessel function in the chronic high dose UVB setting, 

via regulating vasoactive intestinal peptide (VIP) activity.  

As described in Chapter 3, we were able to show that the neuropeptide, substance P, could 

induce degranulation of BMCMCs cultured with IL-3 and SCF. However, this finding 

remains to be further characterised. In our study, BMCMC degranulation was observed 

following 24 h of stimulation, as opposed to the study by van der Kleij et al, which 

reported a more immediate effect on MCs cultured in the presence of IL-3, IL-4 and 

SCF393. It has been recently reported that substance P can induce MC degranulation 

through the binding of substance P (SP) receptor Mrgprb293 in peritoneal-derived MCs. 

Hence, this discrepancy could reflect the difference in tissue origin of the MC populations 
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used in our study, compared to McNeil et al. Although we observed degranulation 

following SP stimulation, further investigation is required to assess whether SP can 

induce selective release of mMCP4. It is known that UVB can induce production of 

neuropeptides like SP360, but other UVB-induced mediators (such as vitamin D9, 

CGRP360,385, PAF566, NGF361, and -MSH363) are also known to be able to activate MCs. 

Hence it will be worthwhile investigating and determining whether these factors can also 

induce the release of mMCP4 in a chronic UVB-induced context. A complete 

understanding of the mechanism of MC activation and especially release of mMCP4 will 

be beneficial for the future manipulation of MCs and mMCP4, with an ultimate goal of 

utilising them for therapeutic interventions.   

As shown in Chapter 4, using the MC-deficient KitW/W-v mouse model, we demonstrated 

that MC-IL-10 and mMCP4 retained their protective function in chronic high-dose UVB 

irradiation. This shows for the first time that MCs can secrete protective mediators that 

suppress the formation of UVB-induced in situ SCCs. Based on these findings, the next 

question would be to determine whether knocking out both MC-IL-10 and mMCP4 will 

induce an additive damage response beyond that observed in the normal MC-deficient 

KitW/W-v mice. This would shed light on whether MC-IL-10 and mMCP4 function 

simultaneously, or in an independent manner.  We previously published that the active 

form of vitamin D3 (125-dihydroxyvitamin D3) could induce the release of MC-IL-109. 

In addition, we have also shown in vivo that topically applied 125-dihydroxyvitamin D3 

could reduce IgE-dependent passive cutaneous anaphylaxis ear thickening responses10. 

In the context of chronic UVB irradiation, 125-dihydroxyvitamin D3 has been shown 

to protect against UVB-induced cell loss, DNA damage, immunosuppression and skin 

carcinogenesis251,252,256,257. Hence it will be interesting to investigate whether topical 

application of 125-dihydroxyvitamin D3 on UVB-treated ears could enhance MC-

mediated protection and rescue some of the damage observed in the absence of mMCP4. 

As described in Chapter 4, the protective function of mMCP4 observed in MC-deficient 

KitW/W-v mice was also evident in non-pigmented Tyrc-2j mice. However, it is worth noting 

that there was a difference in the overall level of gross pathology between these two 

models, despite the association of higher level of in situ SCC and the absence of mMCP4 

observed in both models. This difference in observations is likely due to the difference in 

genetic background of the mice, where the WBB6F1-KitW/W-v mice consist of a mixed 
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background of C57BL6J and WB/ReJ whereas Tyrc-2j mice are derived from purely 

C57BL6J background. It is known that different genetic background between mouse 

strains is associated with variations in both physiological and pathological processes in 

these animals, hence it is likely that these mice will respond differently in response to 

UVB-induced skin damage. Additionally, these discrepancies could also relate to the 

difference in the nature of the two models, with KitW/W-v model based on mutations of the 

c-kit receptor followed by reconstitution of BMCMCs, while Tyrc-2j model is based on 

global knockout of the mMCP4 gene, without affecting specific MC populations. 

Additionally, to further confirm these findings it would be beneficial to reassess this data, 

but by engrafting WT or mMCP4BMCMCs into the back skin of the mice, as the 

architeture of back skin is more physiologically relevant compared to ear skin. 

Although our data has shown a role of MCs and mMCP4 using the WBB6F1-KitW/W-v 

mice, determining the role of MCs using this mouse model is becoming more complicated 

due to the phenotypic abnormalities associated with mutations of the c-kit receptor in 

these mice, such as deficiencies in melanocyte populations, macrocytic anaemia, sterility, 

reduced numbers of BM and blood neutrophils, and lack of interstitial cells of Cajal as 

well as T cell receptor (TCR)γδ cells in the small intestine; and, for the latter, enlarged 

spleen, mild cardiomegaly, and increased numbers of BM and blood neutrophils174. Since 

the reconstitution of syngeneic BMCMCs is critical to exclude the major impact of 

genetic alterations independent of the deficiency in MC populations, an alternative way 

to achieve this without affecting the c-kit receptor would be using CPA3;Cre-Mcl-1fl/fl or 

‘Hello Kitty’ mice, which introduce MC-deficiency through deletion of the anti-apoptotic 

factor Mcl-1 in CPA3 expressing MCs. The use of these mice has confirmed previously 

published roles of MCs that were initially found through the use of WBB6F1-KitW/W-v 

mice175.  It is well documented that global knockout mouse models are widely used to 

study the function of MC proteases. As shown by our data, the use of Tyrc-2j-

mMCP4mouse models indeed allow confirmation of the protective function of 

mMCP4 against UVB-induced in situ SCC development. However, there are also 

limitations associated with global knockout mouse models, similar to the WBB6F1-

KitW/W-v mice. Knockout of a gene globally can have systemic effects on the animal, 

leading to other changes accumulated throughout pre- and post-natal development, which 

could complicate the assessment of direct effects due to the loss of this particular gene. 

Although no significant physiological abnormalities were observed in the Tyrc-2j-
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mMCP4mice, it is likely that there are changes in these animals that only become 

evidence upon challenge. Hence, it would also be beneficial to utilise a tissue-specific 

knockout mouse model. It has been previously shown in mMCP5-Cre:IL-10fl/fl, i.e. mice 

that express Cre recombinase under the mMCP5 promoter gene crossed with IL-10 floxed 

mice, were able to delete the IL-10 gene specifically in MCs that express mMCP5, which 

are typically CTMCs localised in the peritoneum and the skin182,183. Hence a similar 

model engineered to remove mMCP4 under control of promoters exclusively expressed 

in CTMCs in the skin could provide a model for future studies.  

Notably, multiple MC-specific proteases are expressed in mice, some of which are likely 

to share similar substrate specificities with mMCP463. This poses the question whether 

the loss of mMCP4 could be compensated for by other MC-specific proteases.  

Furthermore, although it has been reported that the absence of mMCP4 does not cause 

any changes in endogenous protein levels of mMCP5, 6 and MC-CPA3, the change in 

activities of these proteases in response to the loss of mMCP4 is yet to be elucidated. It 

is also possible that the loss of mMCP4 may cause an imbalance of protease activity from 

mMCP5 or mMCP6, and this effect may only be evident in response to stress or 

physiological challenge. In addition to regulation of mMCP function via its level of 

expression and activity, the storage of MC proteases can also play a role. For example, 

studies have reported that mMCP4, 5, 6 and MC-CPA3 are closely associated through the 

glycoamniprotein Serglycin (Srg). Srg mice exhibit instability in the storage of these 

proteases 36. Hence, to address the above mentioned questions, it would be ideal to 

quantify the intracellular and extracellular levels of additional MC proteases as well as 

assessing their activities, both under basal and challenged conditions as described in 

Chapters 3 and 4. 

Consistent with the effect of mMCP4 on the gross pathology associated with chronic 

UVB irradiation, the vasculature was also affected in the absence of mMCP4. Our data 

presented in Chapter 5 showed that the loss of mMCP4 is associated with aberrant 

lymphatic vessel function. Our investigation of KitW/W-v mice demonstrated a profound 

increase in the total number, as well as number of dilated lymphatic vessels, in the absence 

of MCs and mMCP4. Blood vessel number and dilation was similarly increased in KitW/W-

v mice. Notably, a similar trend was observed in Tyrc-2j-mMCP4mice, though only the 

lymphatic vessel lumen area was statistically significantly elevated in mMCP4 deficient 
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mice. Importantly, we showed that lymphatic vessels had deficient drainage functions in 

the absence of mMCP4. Nevertheless, it would be beneficial to also investigate the 

functional capabilities of lymphatic vessels in the MC-deficient KitW/W-v and the 

mMCP4BMCMCKitW/W-v mice to ensure this coincides with our findings in the Tyrc-

2j-mMCP4mice. Alternatively, when assessing lymphatic drainage functions, the use 

of fluorescent dyes such as FITC-Dextran in combination with intravital microscopy may 

be beneficial to allow real time assessment of leakiness of lymphatic vessels. Coinciding, 

labelling lymphocytes with CFSE could also assist in tracking specific cell populations 

within the lymphatic system. Together, this will not only show whether the lymphatic 

vessels are functional, but also provide information on whether certain cell populations 

are draining efficiently to their sentinel lymph nodes. As we have also shown that a 

deficiency in the drainage of the myeloid derived suppressor cells (MDSC) cell 

population may be associated with the loss of mMCP4. Importantly, this finding needs to 

be further validated by the use of more cell surface markers such as 

Ly6CLy6G(monocytic) and Ly6GLy6C (granulocytic) to identify specific subtypes 

of this population. Moreover, if the gross pathology we observed was associated with this 

abundance of MDSC populations at the site of UVB damage, it would be critical to assess 

the actual function of these cells by isolating these cells and assessing their 

immunosuppressive properties in vitro224,454,483.  

This study has revealed a potential correlation between dysfunctional lymphatics and 

UVB-induced skin carcinogenesis. However, this could either be a contributing factor to 

the damage, or a process that occurs in parallel, and this remains to be further investigated. 

In aged individuals (>60 years old), Conway and colleagues found a distinct trend of 

dysfunctional lymphatic vessels, coinciding with a higher rate of melanoma and poorer 

prognosis. However, interestingly, a lower rate of sentinel lymph node metastasis was 

observed in this patient cohort567. Notably, another study also found larger lesions at the 

primary site of melanoma in the elderly patient cohort568. In comparison, younger patients 

exhibit better lymphatic vessel function but show higher rates of sentinel lymph node 

metastases. This suggests a similar correlation to what we observed in Chapter 4 and 5, 

but in a different context. Elderly patients have poorer physiological and immune 

functions, and also accumulate more DNA damage and mutations due to a lifetime of 

exposure to deleterious environmental factors, particularly UVB exposure. These could 

all contribute to development of malignancies more easily. However, it is possible that 
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the dysfunction lymphatic vessels is responsible for the lack of metastasis, leading to 

further accumulation of local ulceration and damage at the primary tumour site. This 

could explain why an opposite trend was observed in the younger cohorts. Based on the 

protective function of MCs in UVB-induced skin damage observed by this study 412, it 

will be of interest to investigate whether MCs and MC-specific proteases are also 

protective in either patients with lymphatic function deficiency, especially among the 

elderly individuals. Even though the dynamics of immune responses and interaction 

between different cell populations and microenvironment differs between elderly and 

younger patients, this could still provide vital clues as to whether MCs are crucial in 

regulating lymphatic vessel function in cutaneous malignancies. Interestingly, human 

chymase polymorphisms have been described associated with various pathological 

conditions including gastric cancer569.  

Previous studies have shown that mMCP4 can limit morbidity and mortality induced by 

scorpion venoms, which are structurally similar to VIP378. VIP is a neuro- and 

immunological modulator and has been implicated in negatively regulating lymphatic 

vessel pumping456. As described in Chapter 5, our data, in agreement with the literature, 

demonstrated that in the absence of mMCP4, high concentrations of VIP result in 

deficient lymphatic vessel drainage. Surprisingly, although an inefficient lymphatic 

drainage was observed in the Tyrc-2j-mMCP4mice, the MDSCs was the only cell 

population that was differentially affected in these mice. This raises the question whether 

VIP is specifically targeting this population, or is this mediated through other factors that 

were also targeted by mMCP4. 

It is also worth noting that we observed an increase in the number of Ki67+ lymphatic 

endothelial cells in the UVB-treated ears of Tyrc-2j-mMCP4compared to WT 

littermates after 5 exposures of UVB, suggesting a potential mechanism by which the lack 

of mMCP4 is promoting a deficiency in lymphatic vessel drainage. Hyperproliferation of 

lymphatic endothelial cells has been correlated with enlargement of lymphatic vessels, 

which has been suggested to lead to inefficient lymphatic vessel drainage. It is known 

that mMCP4 can specifically target and degrade endothelial growth factors such as FGF2 

and PDGFBB7, both of which have roles in promoting lymphatic vessel proliferation 

455,570,571. Hence it is possible that the loss of mMCP4 results in accumulation of 

endothelial growth factors, which leads to hyperproliferation of lymphatic endothelial 
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cells, and contributes to the enlargement of lymphatic vessels observed in mast cell 

deficient mice.  

mMCP4 is known to target a wide range of substrates that are involved in multiple 

biological processes. Consistently, as shown by the microarray analysis in Chapter 6, we 

demonstrated that the loss of mMCP4 results in global changes in various cellular and 

physiological pathways, particularly in the recruitment of immune cell populations and 

tissue homeostasis. This supports some previous studies which have shown that mMCP4 

can specifically target chemokines such as CCL2379 and ECM-related factors including 

MMP-2, MMP-9384 and fibronectin7,381. However, we did not observe changes in other 

signalling pathways which mMCP4 is known to regulate in various other models. These 

include TNF5, IL-6, IL-13379, IL-33572, FGF2 and PDGFBB7. Hence it is important to 

confirm the involvement of these other substrates and their related biological processes 

in our chronic UVB model, preferably through proteomic analysis. 

As processing enzymes with highly specific cleavage of selective substrates, proteases 

play fundamental roles in various biological and pathological processes, including cancer. 

Proteases have long been known to aid in all aspects of cancer progression through 

targeting a diversity of substrates. However, a number of studies have also revealed 

tumour-suppressive functions of various proteases. By utilising multiple mouse models, 

this study has demonstrated a protective function of a MC-specific protease, mMCP4, 

against chronic UVB-induced skin tumourigenesis. The protective function of mMCP4 

revealed by this study might imply potential novel strategies for therapeutic interventions 

against this disease. In order to further exploit the tumour-suppressive function of 

mMCP4 as a means of either early prevention or tumour intervention, elevating the 

amount of accessible mMCP4 or enhancing the enzymatic activity of mMCP4 could both 

be beneficial. A potential approach could include introducing recombinant mMCP4 via 

nanoparticle delivery system, specifically targeting this enzyme to tumoural 

microenvironment. It is also possible, via gene therapy and other interventional 

approaches, to directly increase the gene expression or enhance the enzyme activity of 

mMCP4. However, each of these potential approaches has their own limitations and will 

require further investigations and refinement.  

As suggested by growing evidence accumulated in the recent decades, the function of 

MCs is more complicated than originally anticipated. In addition to their roles in host 
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defence against infections5,208,374and toxins378,375, MCs are well known to positively 

regulate inflammatory responses416,573,574. Moreover, MCs are also known to play a role 

in negative immunomodulation via supressing the initiation, magnitude and/or duration 

of immune responses in certain disease settings8,9,53,184,424. More importantly, this 

plasticity of MCs has now attracted growing attention due to their potential therapeutic 

applications. In order to optimally exploit the protective function of mMCP4 in chronic 

UVB-induced skin tumourigenesis as revealed in this study, in addition to the direct 

manipulation of mMCP4 expression/activity as we previously suggested, a more 

physiological approach could be through manipulation of MCs. By manipulating MCs to 

produce more mMCP4 at critical time points of UVB-induced skin tumourigenesis, we 

may be able to limit the potentiation of tumour development at early stages. However, 

our study did not identify which factors are critical in promoting mMCP4 release, which 

requires further investigation.  

Taken together, this study constitutes a new body of work indicating the protective 

function of MCs and mMCP4 against chronic UVB-induced development of in situ SCCs 

in vivo. Overall, the outcome of this project highlights and confirms the complexity of 

MC functions in cancer, and importantly, the therapeutic potential of  MCs and mMCP4 

for the prevention and intervention of UVB-induced skin tumourigenesis.  
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